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Abstract
META-pipe is ametagenomic analysis service provided in the ELIXIR distributed
life science infrastructure. It provides assembly of sequence data, functional
annotation, and taxonomic profiling. The analysis is computationally intensive
and it consist of many jobs which have different requirements and varying
complexity and execution times It therefore requires an execution environment
that can provide a large set of nodes, and elasticity to scale up and down the
resources depending on the current resource needs.

We propose an auto scaling framework that automatically scale clusters and
schedule jobs on different execution environments. It adds auto scaling to the
META-pipe architecture, and provides a simulator that enables the development
and comparison of auto scaling algorithms. No earlier solutions provide the
needed ability schedule jobs across multiple execution environments and scale
their resources. The earlier solutions only provide scaling for a single cloud or
cluster.

We designed our framework to support applications that submit jobs for process-
ing, and to support any type of execution environment. The framework consist
of of three key components, an estimator, an auto scaling algorithm and the
cloud components, that interact with an auto scaling runtime and a simulator
through defined interfaces. The framework relies on an external job manager
to schedule jobs on the correct execution environments.By implementing these
three components based on the requirements of the application, the users can
both visualize the changes made by the algorithm and deploy the auto scaling
algorithm to a backend system.

To evaluate the simulator we implemented an estimator, three algorithms
and a simulated cloud component. The results show that the simulator can
accurately simulated different algorithms and simulate the external scheduler.
The results from the algorithms show that integrating and deploying an auto
scaling algorithm would prove beneficial for the META-pipe application by
removing the need for manual execution environment selection and reducing
the total duration of the job queues.
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1
Introduction
META-pipe is a metagenomic analysis service developed by Center for Bioinfor-
matics at the Arctic University of Norway in the european wide project ELIXIR¹.
Currently, the service provides functional annotation, taxonomic classification
and assembly of metagenomes. These analyses are both I/O intensive and
computationally intensive. This has created the need to reduce costs and the
response time of the analysis. The META-pipe analysis can currently be run
on the cPouta OpenStack cloud², the CESNET-MetaCloud OpenNebula cloud,
Amazon Web Services (AWS) Elastic MapReduce and on the Stallo supercom-
puter. A method for reducing cost and response time, is introducing automatic
scaling, and work propagation to the most compute and cost efficient platform
available. Cloud platforms such as AWS provides a method for scaling the
number of compute nodes dynamically within a compute cluster, but with
the current META-pipe implementation, the decision of how much resources
to allocate for the job and where to run a specific META-pipe job has to be
manually done as a job is submitted, either by the user or by an administrator.
Inefficient job placement wastes computational power, increases job completion
wait time, and increases costs. Automating this process by auto scaling both
the execution environments and the META-pipe job queue would remove the
need for manual allocation of compute resources, and the manual selection of
execution environment. Auto scaling the META-pipe job queue is not an easy
task. To scale the META-pipe application to multiple environments the cost

1. ELIXIR Europe." https://www.elixir-europe.org/. Accessed 12 Sep. 2017
2. CSC - cPouta. https://research.csc.fi/cpouta. Accessed 12 Sep. 2017
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of running a job and the job execution time must be estimated to select the
environment which will result in the lowest cost, the shortest execution time
and, the shortest wait time. The META-pipe jobs are complex and have a large
list of parameters which all can affect the execution time and which execution
environment it should run on.

No existing system have been found that is able to scale across multiple execu-
tion environments and satisfy the requirements of the META-pipe application.
The existing auto scaling systems rely on scaling for a single platform or within
a single cluster and can therefore not be used by META-pipe.

Our solution was to design a framework, simulator and an auto scaling runtime
which could be integrated in the META-pipe backend system and provide auto
scaling accross different execution environments. The framework consist of
multiple components that interact with an auto scaling runtime and a simulator
through defined interfaces. There are three key components, an estimator, an
auto scaling algorithm and the cloud components. We found that the simulator
is able to simulate multiple different algorithms and provide a graphical user
interface to both debug and analyze the algorithm output. We also found that
the META-pipe application would benefit from integrating the auto scaling
framework, in terms of reducing the total queue durations and job wait time.
We make the following contributions:

• We describe the design of a framework which enable its users to imple-
ment and deploy auto scaling algorithms for cross execution environment
scaling.

• We provide use cases for how user can use the framework to develop
new algorithms, test the algorithms using the simulator and deploy them
using the runtime.

• We discuss the results of both the algorithm and the simulator.

The thesis is separated in to 7 chapters. We first provide a background on
META-pipe to give context for the META-pipe backend and the META-pipe jobs.
Secondly we present the design of the auto scaling framework. In the design
chapter we describe the architecture of the framework and its components. We
then describe both the simulator and the auto scaling runtime. In chapter 4 we
show how the framework can be used to develop and deploy new algorithms,
how the user can add new compute resource providers, and how to add a new
application using the existing simulator and runtime. In chapter 5 we present
the results for the execution time estimator and the simulator and give an
explenation as to why the runtime has not been evaluated. In the next chapter
we discuss the related work and why these can not be used by META-pipe.
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Finally a conclusion is drawn and we make some suggestions on what can and
should be done in the future.





2
Background: META-pipe
service architecture

Figure 2.1: Metapipe architecture

The auto scaling algorithm and simulator presented in this paper is designed
to be integrated with the META-pipe architecture (figure 2.1¹), it can also
be started independently of META-pipe as long as certain criterias are met.
The META-pipe architecture consists of multiple separated services which run

1. https://docs.google.com/document/d/16iwUrfh6_eK-_T158_zgsRuItJ-
qw1YsCiF1gnNfzLY/edit Accessed 14 Dec. 2017

5

https://docs.google.com/document/d/16iwUrfh6_eK-_T158_zgsRuItJ-qw1YsCiF1gnNfzLY/edit
https://docs.google.com/document/d/16iwUrfh6_eK-_T158_zgsRuItJ-qw1YsCiF1gnNfzLY/edit


6 CHAPTER 2 BACKGROUND : META-P IPE SERV ICE ARCH ITECTURE

independent of each other. The architecture is designed with Separation of
Concerns² as a key concept, where each service has a single responsibility. To
provide the background necessary to understand the constraints and integra-
tion challenges for the framework, we describe the services the auto scaling
algorithm and the simulator depends on.

Job Manager
The main focus of the description is the job manager. This is due to its im-
portance in integrating the auto scaling algorithm and framework. The auto
scaling algorithm uses the data provided by the job manager to make pre-
dictions for the execution time, and outputs directly to it with an updated
queue structure. The job manager is responsible for validating submitted jobs
and enqueuing the jobs on the respectable execution environment target. The
job manager handles jobs launched on different execution environments. The
main environments is Stallo and cPouta. META-pipe has also been deployed
on AWS.

Job State
Each job within the META-pipe infrastructure contains an overall state. The
job states dictates which interactions and further transitions the job can make.
The job state is maintained and stored by the job manager in the database.
The state is used by the web application to filter out jobs that are no longer
relevant. Internally the state of the attempts are used for calculating the next
step in the scheduling and execution.

Attempts
A job contains attempts which are queued on the spark executors. These
attempts hold an internal state dictates the job state. A healthy attempt has
either queued locally, queued executor, running or completed state.

1. Queued locally: The attempt is queued on the job manager and is stored
in the job manager database. The job manager will schedule the attempt
on an executor when it becomes available.

2. Chapter 2: Key Principles of Software Architecture. https://msdn.microsoft.com/
en-us/library/ee658124.aspx. Accessed 12 Sep. 2017.

https://msdn.microsoft.com/en-us/library/ee658124.aspx
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2. Queued executor: The attempt has been queued on the executormanager
and is scheduled to be submitted to a spark driver on the targeted envi-
ronment. The spark executor manager contains an internal scheduling
algorithm which dictates how the queued attempts are executed.

3. Running: The attempt is properly executing the job on the targeted
execution environment.

4. Completed: The job and attempt has been successfully completed.

During the execution of an attempt it can fail. These failures have been
structured in to different types.

1. Executor failed: The executor manager could not be schedule for the
attempt at the given execution environment target.

2. Workflow failed: The attempt encountered breaking exceptions during
the execution of the analysis and could not continue. This requires the
intervention of an administrator in order to both debug the META-pipe
pipeline and restart the attempt.

3. Timed out: The heartbeat could not reach the attempt. During this state
the job manager creates a new attempt for the job and this is submitted
again.

4. Cancelled: The cancelled state is only set if an admin cancelled either
the attempt or the entire job.

An attempt is periodically checkpointed during execution. If the attempt tran-
sitions into an erroneous state and is restarted it will continue from the check-
point. This reduces the computation loss when an error occurs.

Execution Manager, Spark Driver and Executors
The spark driver is a spark process ³ which manages the execution of jobs on
a cluster. The driver is responsible for launching executors and managing the
execution order and flow of the job. Each executor is independent from each
other and is an isolated process. The execution manager is a process manages
the submission of jobs. This process can be launched in two different modes
depending on the execution target.

3. Cluster Mode Overview - Spark 2.2.0 Documentation - Apache Spark. http://spark.
apache.org/docs/latest/cluster-overview.html. Accessed 24 Oct. 2017.

http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/cluster-overview.html
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Figure 2.2: Spark process

1. The execution manager is launched on the cluster frontend and fetches
jobs from the job manager queue. After a job is fetched the execution
manager runs spark submit with a new spark driver for each job. The
driver can be run on two different locations.

(a) The driver is on the same node as the execution manager

(b) The driver is launched in cluster mode. This runs the driver on a
random worker node.

2. The execution manager is launched in “integrated” mode where it runs
as a part of the spark driver. When launched in this mode, it is a thread
that fetches jobs from the job manager and submits it to the cluster.

Which mode that is used is dependent on which cluster is the target environ-
ment. Stallo uses 1a, Amazon Web Services uses 1b, and mode 2 is used on
cPouta (CSC). This is done due to the different cluster configurations and
setups.

Authorization Service
The authorization service is designed as a separate service from both the job
manager and the web application. The main purpose for this service is to
separate users based on privileges in order to ensure correct access to the
META-pipe tools, interfaces and services. For the authentication process it uses
the ELIXIR-AAI as a federated id provider (IDP). The ELIXIR-AAI has federated
multiple IDPs such as Feide and Google. The authorization service also provide
a client and client secret authentication protocol defined in SAML 2.0. Services
in the META-pipe backend use this protocol to authenticate internally.
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Storage Service
The META-pipe storage service is a simple key-value store implemented by the
META-pipe devlopers. The storage service provide endpoints for uploading data
sets and downloading them. The storage server is used by both the META-pipe
web application and the different analysis.

Execution environments
The execution environments are external compute resource provides that the
META-pipe application can run on. Providers that are supported by META-
pipe include cPouta OpenStack cloud, the CESNET-MetaCloud OpenNebula
cloud, Amazon Web Services (AWS) Elastic MapReduce and on the Stallo
supercomputer. Each execution environment has at least a single Spark driver
hosted when the META-pipe application runs.





3
Design
In this chapter we describe the design of the auto scaling simulator and runtime.
First, we give an overview of the auto scaling system. Then we describe the
algorithm design and usage. The simulator, the auto scaling runtime and
algorithms described in this section have been developed as a framework
for testing, analysing and deploying the auto scaling algorithm. Parts of the
framework are backend specific and have been developed for META-pipe.

Architecture

Figure 3.1: Auto scaling architecture for the auto scaling runtime and simulator

Figure 3.1 has an overviewof the architecture for both the simulator and the auto
scaling runtime. The blue components are provided as dependencies to both
the auto scaling runtime and simulator and can be replaced by implementing

11
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their interfaces and providing them as dependencies. This makes it easy to
replace or extend these components.

Job Manager
The job manager is an external service for scheduling the execution of queued
jobs on different execution environments. The job manager must be able to
schedule jobs based on priority to the specified execution environment. If this
requirement is not met, external resources are added, but the jobs in the queue
will not be correctly scheduled.

Input queue and Estimator
The input queue is a set of external jobs that have the following values:

• Id - Created by the job manager

• Tag - Specifies where to run the job. Can be empty

• Parameters - Map of parameter name to values

• State - Defines if the job is queued, running, cancelled or delayed

• Priority - Defines the external scheduling priority on the job manager

• Execution time - Estimated execution time for each execution environ-
ment.

• Deadline - The targeted wanted finish completion time

• Created - Timestamp of when the job was submitted

• Started - Timestamp of when the job was started. , Only set if state is
running

• Instance flavour - The cloud instance type for the job

These jobs are passed to the estimator that predicts the execution time of
a job in the queue based on the job parameters and the input dataset size.
The estimator is defined as an interface. The implementation of the estimator
defines how to handle the input jobs. The estimator outputs a list of jobs
that have their execution time estimated. The estimated jobs in the queue are
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passed to the algorithm with a timestamp that defines the starting time of
the algorithm, and a map containing the interface instances for the different
cloud platforms. The estimated execution times are used by the autoscaling
algorithm to decide when to add or remove compute resources, and to calculate
the cost of executing the jobs.

Cloud Interface Map
The cloud interface map is a mapping between a key and the respective cloud
interface instance. The key is the job tag associated with the respective cloud,
for META-pipe these are

• aws - AWS

• csc - cPouta

• metapipe - Stallo

The cloud interface defines methods for interacting with cloud APIs, calculating
job cost, queue cost and queue duration.

The cloud component implements the interface for the cloud. Each component is
implemented targeting a specific execution environment, such as AWS, cPouta
or Stallo. The cloud API is usually provided through a SDK or by using http
requests directly against the API. The cloud components should also write
events to a database when adding or deleting resources. This should be done
to both debug and analyse the algorithms impact on cost and total queue
durations.

The cluster state is an in-memory cache for the current state of the cluster or
cloud. The state is a list of the current allocated resources and their states.
If an instance is available for processing its state is set to “INACTIVE”. If it
is running and executing, its state is set to “ACTIVE”. The cloud components
has a responsibility of setting the state based on the states retrieved from the
respective cloud API.

Algorithm Responsibility
The algorithm is responsible for optimizing the input queue of jobs from the
estimator and making a decision of when to add or delete instances. The tag
specifies the execution environment for the job, if the tag is empty it can not
be scheduled by the job manager. The job should be assigned a tag according
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to the algorithm scheduling policy. How the policy is defined is based on
user requirements. The policy can for instance be set to reduce the execution
time, or to reduce cost. The algorithm sets the job priorities according to the
policy. The algorithm uses the cloud interfaces to add or remove resources
during execution based on the scaling policy defined by the user. An example
of a scaling policy is that it should not exceed a certain limit of instances.
The priority value is used by the job manager for priority scheduling. Each
execution environment is handled independently by the job manager

Auto scaling Algorithm
The auto scaling algorithm interface is designed as a single queue optimiza-
tion function. The algorithm is given a queue of estimated jobs. The scaling
algorithm decides where to run the queued jobs, and adds or remove resources
during its execution by using the cloud interface.

Example Algorithm

Figure 3.2: Example algorithm overview

An overview of an algorithm that scales jobs on AWS, an HPC system, and
OpenStack for META-pipe jobs is in figure 3.2. The algorithm input is a map of
instances implementing the cloud interface, the job queue and the timestamp
for the start time of the algorithm. Each META-pipe job has a tag parameter
which dictates which execution environment it should be executed on. Currently,
these tags can be “aws”, “csc”, “metapipe” and an empty tag which has no
specification for where to execute and is set by the algorithm to a specific
execution environment. The input queue is split into separate queues based on
the tag. The jobs in each queue is optimized by using any type of approach.
A possible approach to optimize the queue is constraint programming [4].
A constraint programming approach yields an approximated optimal queue,
based on the constraints given. For this scaling algorithm, the constraints are
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the limit of allocated instances, job deadlines, priority and the cost. The limit
of maximum allocated resources, the currently allocated resources and the cost
for each job on a specific flavour are retrieved by the resource handler in the
algorithm. Jobs that do not have tags must be assigned a tag, which can be done
by running each permutation of the untagged jobs and the different queues and
comparing both cost and execution time. The policy of this algorithm is: if the
job has a high priority the tag which gives the shortest execution time is selected.
Otherwise the tag which gives the cheapest execution is selected.

Example queue optimization

Figure 3.3: Example of a queue optimization and scaling process

An illustration of optimizing a queue is in figure 3.3. In the top half of the
figure, three jobs are scheduled to run on a compute platform with only a single
instance allocated. The bottom half of the figure shows an optimized queue
and the allocate and delete instance events. Each line separates represents a
call to the auto scaling algorithm. For each call the algorithm optimizes the
queue. This results in a new instance being allocated by the algorithm in the
first run and the optimized queue is sent to the META-pipe job manager in
order to reschedule the jobs. This allows the longer job to run in parallel with
the two shorter jobs. In the second scaling run, nothing needs to be changed.
At the third scaling request the instance allocated in the first run is no longer
required, and is deleted, there are no changes to the queue. In the final run
there are no more jobs in the queue and the last instance can be deleted.
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Clouds have instances in multiple flavors with different costs and performance
characteristics. An algorithm may use different instances for cost-performance
trade-off. The instance types are defined at launch time in a config file. These
are loaded in the to the cloud components and can be retrieved through the
cloud component interface. The META-pipe application has certain flavors that
is optimal to run the application on. Changing instance flavours can therefore
increase or reduce execution time and cost. The instance type is not included in
the execution time estimation of a job since the information of which instance
type the job used, is not available.

Three implemented algorithms
Three algorithms have been developed for testing and comparing the results of
the auto scaling simulator. First, simple algorithm that takes a naive approach to
optimizing the queue. Second, a worst-case algorithm that reduce the amount
of instances to one, and third an algorithm that does nothing which is equivalent
to no auto scaling.

Naive algorithm

The simple algorithm splits the queue into per-cloud queues based on the job
tag. If there is a queue where the jobs have an empty tag it is iterated through
and for each job, and a tag is assigned (Algorithm 1).
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Algorithm 1 Scheduling policy

queueMap ← taдSplitQueue
for job in queueMap[Empty] do

for cloud in Clouds do
jobCost ← cloud .calculate JobCost(job)
jobDuration ← cloud .calculate JobDuration(job)
expectedCost ← jobCost + cloud .totalCost
expectedDuration ← jobduration + cloud .totalDuration
if cheapest > expectedCost then

cheapest ← expectedCost
cheapestCloud ← cloud

end if
if shortest > expectedDuration then

shortest = expectedDuration
shortestQueue = cloud

end if
if shortestCloud == cheapestCloud then

job .Taд = shortestCloud
else if job .Priority < THRESHOLD then

job .Taд = shortest
else

job .Taд = cheapestCloud
end if

end for
end for

After the jobs with an empty tag has been assigned a tag the algorithm sorts
the queue on priority and then on deadlines. The algorithm then checks if it
should delete or add resources for execution environment (Algorithm 2).

Algorithm 2 Scaling policy

for jobinqueue do
if job .state == RUNNING then continue
end if
if cloud .IdleInstances > 0 then cloud.ReuseInstance
else if cloud .limit > instances .lenдth then cloud.AddInstance
else if instances .lenдth > queue .lenдth then cloud.DeleteInstance
end if

end for

If a job has the “RUNNING” state, the algorithm skips to the next job, since it is
assumed to have an instance which it is running on and can not be rescheduled.
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This assumption can be made, since the META-pipe job manager continuously
pings the jobs and they should instantly change state if an instance has crashed
or been externally removed.

Worse-case Algorithm

The worst-case algorithm splits the queue based on the job tags into multiple
queues. Jobs with an empty tag is processed with the same method as in
the simple algorithm. Each queue is processed separately. The algorithms
scaling policy removes instances until only a single instance for each execution
environment is left. The algorithm does not remove instances that are actively
processing a running job. The algorithm does nothing to the queue and returns
the unchanged input queue.

Null Algorithm

The null algorithm only returns the same queue. It can be usedwhile integrating
with the META-pipe backend, while not using the auto scaling. This algorithm
can also be used to compare against other algorithms to visualize the changes
made. The null algorithm does not schedule unassigned jobs, so the comparison
should only be done with queues that does not contain unassigned jobs.
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Shared Database for the Simulator and the auto
scaling Runtime

Figure 3.4: Entity Relation Diagram of the shared Database

The simulator and auto scaling runtime use a simple Postgresql database (figure
3.4) for storing the auto scaling runs and the estimator training data.
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The estimator training table in the database contain the jobs used for training
the estimator. Each row contain is a META-pipe job that have been parsed from
its original JSON description to the values present in the table. The parameters
are stored in a separate table with the job id as the foreign key to the estimator
training table. This enables the future developers to easily add parameters for
different type of jobs without modifying the estimator training table.

The auto scaling run table contain the initial start time and the finish time of
a single run. The name is used as the foreign key for the simulator events,
cloud events and the algorithm jobs that are stored during execution of an auto
scaling run. The name must be set when creating a new auto scaling run. The
simulator and the auto scaling runtime both use the database for creating runs.
The cloud events table contain the events generated by the cloud components
which implement the cloud interface. It is however up to the implementation
of the cloud component to create these events and is not a requirement. The
users of the simulator and the auto scaling runtime can use this table to analyse
the algorithm.

The algorithm job table is used to store the state of the queue after the algorithm
has finished executing. The jobs in the table can be used by both the simulator
and the auto scaling runtime to ensure that the jobs have the expected tags
and priorities.

The simulator events table is only used by the simulator to store total queue
cost, total queue duration for each tag in the input queue. The simulator needs
this because the cost calculations rely on the estimated job execution time. The
events in this table is used by the simulator to create and visualize the cost
and the duration of the different queues.

META-pipe execution time estimation
The auto scaling algorithms take as part of the input, a queue of jobs that
have their execution times estimated and use these to calculate the cost in
order to scale. The job execution times are estimated outside of the algorithm.
The execution times for META-pipe jobs are measured in milliseconds. In the
META-pipe job manager a job can be queued locally without being assigned
an executor or queued on the executor. The time spent queued is not set in old
META-pipe jobs, since it was added to the META-pipe jobs along with the time
spent executing. The jobs that have the time spent executing value available
use it. We calculate the execution time based on the initial creation time of
the job and the last ping to the job for the jobs that do not have the time
spent executing value available. For the jobs that have their values calculated
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based on the creation time, can have long queue times which affects their
calculated execution time. These jobs have therefore not been used in the
estimator. Models were created for these jobs and are discussed in the result
section.

Estimator Interface
The estimator interface is in listing 3.1.

Listing 3.1: Estimator Interface

type Est imator in ter face {
I n i t ( ) error
ProcessQueue ( jobs [] AlgorithmJob )

( [ ] AlgorithmJob , error )
}

The estimator is a dependency for both the runtime and the simulator. The init
method initializes the estimator by training the models used to estimate the
input jobs. The input defined in the interface is a list of jobs for the algorithm
that have not been estimated. The estimator output is a list with the same jobs,
with their time estimated. Converting jobs to the input format of the estimator
is trivial. For META-pipe jobs a parser has been implemented.

Linear regression implementation
We assume there is a linear relation between the META-pipe job parameters,
execution time and data size, and therefore linear regression¹ is used. Multiple
models using linear regression were developed and implemented. Each model
is explained in depth and the results are presented in the result section. The
estimator used by the simulator for development and testing is split in to three
different models, one for each execution environment.

META-pipe training dataset

To estimate execution time we need a representative dataset for training. The
META-pipe job manager database has an entry for every job that has been run.
The jobs are retrieved and every completed job is stored in the database. We
use the execution time, parameters and the data size to train an estimator

1. https://en.wikipedia.org/wiki/Linear_regression Accessed 16 May. 2018

https://en.wikipedia.org/wiki/Linear_regression
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using linear regression. To use the parameters as a single number for the
regression, they are OR’d together at different bit indexes for each parameter
set, except for the input contig cutoff parameter which is used directly as a
separate variable in the model.

Weaknesses of the linear model

A linear model is very restricted due to its inability to curve. This leads to
outliers that increases the variance and reduce the fitting of the model. This
could lead to heavily underestimated or overestimated execution times. The
META-pipe analyses have three representative categories of data:

• Virus: kilobytes

• Genome: megabytes

• Meta-genome (Collection of genomes): gigabytes

Each category has varying sizes of input data. Viruses data size is in the
kilobyte range, while genomes lies in the lower end of the megabyte scale
and meta-genomes ranges from half a gigabyte to several gigabytes. It could
be a possibility to separate out each category and create a model for each of
them. This could potentially lead to a finer grained estimator. The input data
to META-pipe jobs can vary in internal complexity. The complexity of the input
data not been factored in.

Instance flavour type has also not been factored in for the estimator. The
META-pipe application usually run on the same instance flavour for each
compute cloud. This may change in the future and should be handled, however
the instance information is not available in the job description and there is
currently no possible way of retrieving it.

Cloud Interface
The cloud components each implement the cloud interface in listing 3.2
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Listing 3.2: Cloud Interface

type Cloud in ter face {
Authent i ca te () error

Se tSca l i ng Id ( id s t r ing ) error

GetExpectedJobCost ( job AlgorithmJob ,
instanceType str ing ,
currentTime time . Time) f loat64

AddInstance ( in s t ance * Ins tance ,
currentTime time . Time)
( str ing , error )

De le te In s tance ( id str ing , currentTime time . Time) error

Get Ins tances () ( [ ] Ins tance , error )

GetInstanceTypes () (map[ s t r ing ] InstanceType , error )

Get Ins tanceL imi t () in t

GetTota lDurat ion ( queue [] AlgorithmJob ,
currentTime time . Time)
( int64 , error )

GetTota lCost ( queue [] AlgorithmJob ,
currentTime time . Time) f loat64

}

The interface is designed to expose cloud APIs to the algorithm and the auto
scaling runtime. For the auto scaling runtime each supported compute plat-
form, including AWS, Stallo andcPouta, must be individually implemented
because they require different SDKs or requests to interact with their respective
APIs.

Cloud Components
A cloud component is the implementation of the cloud interface. The cloud
components must implement all the methods described in the interface. A
cloud component should interact with a database to keep track of adding or
deleting instances. The “SetScalingId” method in the interface is used by both
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the simulator and the auto scaling runtime to set the id for the current auto
scaling run. The “Authenticate” method authenticates against targeted cloud
and creates an open session between the component and the cloud. For META-
pipe, three cloud components should be implemented to use the auto scaling
algorithms.

Amazon Web Services

AWS provides auto scaling[3] for their Elastic Compute Cloud (EC2). This
can scale capacity up or down based on predefined conditions. It is also
possible to enable dynamic scaling which responds to resource usage and
demand spikes. Using the auto scaling provided by AWS gives some benefits
beyond the capacity change, including monitoring of instance health, automatic
replacement of impaired and crashed instances, and capacity balance across
regions. The auto scaling provided by AWS provides solutions for scaling a
META-pipe job internally if it is run on AWS.

The cloud component for AWS is responsible for adding and deleting new
instances on the EC2. AWS provide a SDK for interacting with their systems.
To add or remove instances, a session to AWS must be initiated by using the
Authenticate method in the cloud interface. The sessions should be active until,
at least, the auto scaling algorithm finishes. The instances allocated on EC2 can
simply be retrieved and their states can be inferred by checking for running
jobs on the instances.

OpenStack

META-pipe is set up to run on an OpenStack cloud configuration. OpenStack is
an open source software which cloud systems can use, and it provides APIs for
accessing data, user identity, cloud management. Each underlying system of a
cloud provider using OpenStack can differentiate. The system architecture is
complex containing multiple systems.

• Compute - Resource pools, compute configurations, etc.

• Storage - Different types of storages

• Identity - Identity provider to get associated instances and user informa-
tion

• Network - underlying network infrastructure of the cloud
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• Image service - VM provider

• Cloud management - Intercloud management

• Control plane - Multipurpose controlling of the entire system, such as
databases, API endpoints, scheduling policies and etc

The cloud component does not need to interact with all these systems to satisfy
the cloud interface requirements. The cloud component has to interact with
the identity system to authenticate and the control plane to add, remove and
retrieve instances and their states.

A user of an OpenStack cloud has most of the entire system abstracted away,
where the user in this case is the cloud component. The user only has to choose
between compute resources and the storage solutions provided by the cloud
environment.

Figure 3.5: OpenStack user view²

The cloud component can use the APIs as seen in figure 3.5 to add and remove
instances. Each instance can have different flavours which is a combination of
an instance type and a storage solution. The instance states can be retrieved
using the API for the monitoring tools.

Stallo

Stallo is a high performance computer, used mainly for research and is located
at the Arctic University of Norway. Stallo uses SLURM to schedule jobs. The
Stallo resource provision system requires users to wait in a queue for resources
to be freed up and provided. META-pipe has a continuously running job that
has seven compute instances that executes jobs, and an instance that host a
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Spark driver. The Spark driver is used to orchestrate the jobs on Stallo. The
cloud component for Stallo should interact with the Spark driver to retrieve
the cluster states. It is still not clear how the cloud component should scale the
cluster.

Simulated Cloud Component
The cloud component for the simulator can simulate all the different platforms,
since it does not need to connect to other resources than a database. The
simulated cloud component write cloud events to the database, when the
“AddInstance” or “DeleteInstance” methods are used. For the simulated cloud
component, the default initial states are loaded through a configuration file³.
The configuration file is in JSON and its path is set as an environment variable
on the system that runs the simulator. Authentication is not needed for the
simulated cloud component since it does not interact with external resources
except the database.

Simulator and auto scaling Runtime

Figure 3.6: Simulator and Runtime dependencies as instances of interfaces

The simulator and the runtime are designed as two separate entities (figure
3.6). They run independent of each other. The estimator, cloud components
and algorithm share the same interface across the simulator and runtime. The
algorithm can therefore be easily moved from the simulator to the runtime
in deployment. The simulator is designed as a testbed for the auto scaling
algorithms. It can be used to both debug and compare the changes made by
the algorithms. The runtime is designed as a service that is run in production
side by side with a job manager that is responsible for scheduling the jobs
which the algorithm outputs.

3. A config file is provided in the source repository
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Simulator
The simulator is a http server which provides endpoints for running simulated
job queues. Only META-pipe jobs are currently supported. It provides a graphi-
cal user interface for comparing previous simulation runs. The simulator has a
Postgresql database which contain the simulations and their respective simula-
tion events, as well as the jobs used for the estimator and the job parameters
as defined in the database section. The estimator is provided as a dependency
is initialized when the simulator is created. The simulator is used to analyze,
evaluate, and compare auto scaling algorithms before they are deployed in
production.

Figure 3.7: Simulator execution flow and components

Figure 3.7 is an overview of the execution of the algorithm using the default
queue and cluster states. A user initiates a simulation with a request to the
simulator API. The database and the algorithm have both been described in
the previous sections.
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Simulator API

The simulator provides an API which can be used with http client, such as cURL.
The simulator GUI retrieve simulations from the server. The simulator defines
three endpoints to interact with it (table 3.1).

Table 3.1: Simulator API

Action Endpoint Request type

Load GUI / GET

Launching a simulation /metapipe/simulate/ POST

Retrieving all simulation /simulation/all GET

Retrieving a simulation /simulation/?id= GET

The index endpoint gets the html and javascript code for the GUI. It can be
used by a web browser to view the GUI.

A simulation can be launched with a request to the endpoint with the pa-
rameters in table 3.2 in JSON provided in the request body. Note that all the
parameters are optional. An empty body will use the default values for all
parameters.

Table 3.2: Simulation input

Parameters Description Default value

timestamp Unix timestamp defines the algorithm start time 23.05.2018 - 20:40:23

job_queue META-pipe job queue From config file

cluster_states State of the clusters From config file

name Name of the simulation run. [Unique] auto generated

timestep
The amount of time the algorithm
should increase the timestamp

for each iteration
30 minutes

iterations The number of iterations 96

Amap indexed by the simulator iteration value containing the optimized queues
are returned in the response body. This endpoint has been designed for the
META-pipe backend services. To support different backend infrastructures, a
new endpoint that can handle and parse different type of jobs to the algorithm
job type must be implemented.
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The request retrieves the values in table 3.3 from the simulator. The name can
be used to retrieve the events and queue for a specific simulation run.

Table 3.3: Get all simulation runs return values

Return values Description

Name Name of the simulation

Started Timestamp of when the simulation was started

Finished Timestamp of when the simulation finished

Each simulation is assigned a name in the database. The name can be used to
retrieve the associated events and algorithm jobs for the simulated auto scaling
run with a request to the endpoint where the id is the name of the run. In the
response body three lists are returned shown in table 3.4.

Table 3.4: Single simulation run return values

Return values Description

cloud_events
All the associated cloud events in the database

which have been generated by the simulated cloud component

jobs All the jobs for each iteration of the simulator as a list

sim_events all the associated simulation events generated by the simulator

Simulation run

When a request is received to start a simulation run, a simulation entry is
created in the database. The simulation entry contain an optional user defined
name, a timestamp for when the simulation was initiated and a timestamp for
when the simulation finished, which is set when the simulation has completed.
The algorithm input is initialized by loading in the cluster states from the
configuration file and the default queue is loaded and set as the input queue.
Note that the default queue does not require estimation since it is a set of
predefined algorithm input jobs where the execution time has been directly
set. In the default queue config a timestamp for the simulator is also provided.
The simulator timestamp defines the time the simulator begins simulating
from.

The user can specify a new queue and a new cluster state in the post request
body. If the queue and/or cluster states are provided they will be used instead
of the default values. If a user specify a new queue, it is expected to be a set
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of META-pipe jobs. These are parsed to the algorithm input jobs and their
execution time is estimated using the estimator. A timestamp value can be
provided in the requestwhich is used instead of the default simulator timestamp.
The time increment can be specified if a longer simulation is wanted with a
coarser granularity. The number of iterations the simulator executes can be
increased for a finer granularity.

The simulator executes in multiple steps and for 96 iterations (default). Each
iteration after the first increases the value of the simulator timestamp by 30
minutes. The simulator first select which jobs in the job queue to append to
the algorithm input queue, which is initially empty in the first iteration of the
simulation. The selection is done by checking the “Created” timestamp in the
algorithm job. If the “Created” timestamp is before the algorithm timestamp
it is added to the algorithm input queue and removed from the job queue.
The input queue, the cloud interfaces and the timestamp are passed to the
algorithm. The algorithm outputs an optimized queue and a set of instances
that have been either added or deleted. The simulator splits the queue from
the algorithm based on the job tags in to a map of queues with the tag as its
key. Each queue in the map is then processed individually.

Each queue is sorted on the job priorities. The simulator counts the number of
active instances for each cloud, and the number of running jobs for each queue.
The simulator iterates over the queue and retrieves each job. For each job in
the queue algorithm 3 is executed.

Algorithm 3 Simulating job state transitions

if RunninдJobs < ActiveInstances then
Job ← RUNNING
Job .Started ← SimulatorTime
RunninдJobs + +

else if InactiveInstances > 0 then
if Job .State , RUNNING then

Job .State ← RUNNING
Job .Started ← SimulatorTime
Instance .State ← ACTIVE
InactiveInstances − −

end if
end if
if Job .Started + Job .ExecutionTime < SimulatorTime then

Job .State ← FIN ISHED
Instance .State ← INACTIVE
Delete Job

end if
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When a queue has finished iterating and executing the algorithm, each job
is written to the algorithm_job table. Simulator events are created for each
separate queue and are written after each queue iteration. When every queue
has been iterated the queues are recombined and provided as the new input
queue for the algorithm.

The output to the user is a map indexed by the simulator iteration value
containing the optimized queues. The map is indexed by the iteration count,
from 0 - total iterations.

Cluster States

The simulator assumes that the cluster state is reflected in the job queue. If a
cloud has two running jobs, it is assumed that at least two instances will have
the “ACTIVE” state. The behaviour of the simulator is undefined if there are
more or less running jobs than active instances and vice versa.

Graphical User Interface

The simulator provides a GUI for evaluating and comparing the auto scaling
algorithms from previous runs. The GUI retrieves all the simulation names
when loaded. The user can select two simulations to compare side by side.
When a simulation is selected the GUI generates two timeline graphs for each
simulation, a total expected cost graph for each cloud and a total queue duration
for each cloud (figure 5.6). Both graphs are created by using the simulator
events from the database. The The graphs provided in the GUI are interactive
and the user can hover over each value on the x-axis to compare the values for
each trace in the graph.

Auto scaling Runtime
The auto scaling runtime is a http server. The design is similar to the simulator
with the exception of not simulating the external job manager. The auto scaling
runtime has no graphical user interface and is designed to run as a service with
an external job manager to process the output of the algorithm. The runtime
is intended to be integrated with a backend infrastructure and periodically
be sent auto scaling requests to continuously optimize the job queue and the
clouds and cluster the jobs will run on. In figure 3.8 is an overview of the auto
scaling runtime.

The database, the algorithm and the estimator can be the same as the ones
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Figure 3.8: Runtime execution overview

in the simulator. The runtime uses the same interfaces and this allows the
algorithm that has been tested and analysed on the simulator to be moved to
the runtime without modification.

Runtime API

The auto scaling runtime has a simple API (table 3.6).

Table 3.5: Runtime API

Action Endpoint RequestType

Run auto scaling /metapipe/autoscale/ POST

Get previous run /autoscale/id?= GET

The user creates an auto scaling run by sending a request to the endpoint with
the parameters in the request body in JSON (table 3.6).

The name parameter defines the run name. If it is not set a unique name is
generated. The queue is a list of META-pipe jobs that are used as the input for
the estimator. The start time parameter sets the time from when the algorithm
and the cloud components should do its calculations for estimating remaining
execution time, queue time, and costs. The response body is populated by the
output queue from the algorithm and return the http status code “201 Created”.
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Table 3.6: Run auto scaling input

Parameter Description

Name Name of the simulation - [Optional, unique]

Queue Input queue of META-pipe jobs - [Required]

StartTime Timestamp for the algorithm, also used by cloud components - [Optional]

This endpoint has been implemented to handle META-pipe queues. If other type
of jobs are to be supported a different endpoint must be implemented.

Getting the previous run can be done by sending a request with the name of
the auto scaling run to the endpoint. The return values are in table 3.7.

Table 3.7: Get previous run return values

Name Description

queue The queue after scaling

cloud_events The events generated by the cloud components

start Start time of the run

finish Finish time of the run

The queue returned is the optimized queue from the algorithm for the specific
auto scaling run.

Auto scaling run

An auto scaling run is initiated by the user with a POST request to the endpoint.
This creates an entry in the auto scaling run table in the database. The input
queue is parsed to create a list of algorithm jobs that are passed to the estimator.
The job execution times are estimated using the model set in the estimator.
The estimated queue, the timestamp defining the start time for the algorithm
and the cloud interfaces are passed to the algorithm.

The algorithm optimizes the queue and and scales the resources in the clouds
by using the cloud interfaces. The cloud components add or remove resources
based on the algorithm implementation and create cloud events which are
stored in the database. The algorithm output is an optimized queue with the
correct priorities set. The queue is then returned to the user in the response
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body. The user for the runtime in production is the job manager. The job
manager proceeds to schedule the jobs on the given execution environment
based on the job tag set by the algorithm in the order defined by the priority
value.



4
Use Cases
The users of the auto scaling simulator and the auto scaling runtime are backend
developers that have an application that can be run on multiple different cloud
systems and require external auto scaling and scheduling between the cloud
systems. The auto scaling runtime requires an external job manager which
handles launching jobs on the clouds depending on the tags and priorities
set.

Develop and simulate new algorithms
An algorithm should be developed by the users to fit their specific requirements
for the application and their jobs. Each type of application have different
requirements. Some applications has a need for fast processing of jobs, while
others require low costs. The algorithm should reflect these needs.

Implementing an algorithm
Implementing an algorithm can be done in 6 steps:

1. Split the input queue on desired tags (if more than one)

2. Define the scheduling policy (which jobs should have priority and where

35
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to run)

3. Assign priorities and tags to the jobs based on the policy

4. Define the scaling policy (how much to scale and when)

5. Scale the compute resources

6. Return the queue with reprioritized jobs

The implementer should set the conditions forwhen the algorithm should assign
different priorities andwhere to schedule the job, and assign these priorities and
tags to the jobs. The implementer should also define a scaling policy to decide
when to add or remove resources. Scaling the compute resources on the clouds
should be done by using the cloud interfaces while executing the algorithm.
The reprioritized job queue should be returned by the algorithm.

Simulating the algorithm
Once a new algorithm has been developed the user must set it as a dependency
for the simulator. Currently the simulator can only have a single algorithm
dependency. Once this is done the simulator can be started. The simulation can
be run by making a POST request to the simulator API. Once the simulation
has been finished, it will be present in the simulator GUI.

Deploying an algorithm
Once an algorithm has been developed and is ready for production it can
simply be moved by setting it as the algorithm dependency for the auto scaling
runtime. The runtime must be recompiled and the new binary must be started
for the changes to take effect.

Adding a new compute resource provider
Adding a new resource provider can be done in 4 steps:

1. Implement new cloud component for the provider

2. Choose a tag name (used by the cloud interface map, estimator and the
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jobs)

3. Update the algorithm (if needed)

4. Update estimator

The new resource provider require an associated cloud component for the
algorithm to use. The cloud component must satisfy the cloud interface and be
provided as a dependency for both the simulator and the auto scaling runtime.
If the algorithm refers to cloud platforms by name (keyed index into the cloud
map), it has to be updated to support the new cloud component. The estimator
must be updated to support the new provider, be creating a new model for
the new tag. The estimator require a set of jobs that has been run on the new
compute resources. If this is not available, it is recommended to run test jobs
in order to generate a training set for the estimator.

Adding a new application
The users can add a new application in 6 steps:

1. Create unique tags for the jobs

2. Add an additional parameter table to the database

3. Populate the database with training data

4. Create a new estimator

5. Create a new endpoint to the simulator and the auto scaling runtime

6. Create a job parser that converts from the new job description to algo-
rithm jobs

If the users have at least another application running on the same runtime
when adding a new application, the user must ensure that the job tags that
specify the execution environment is unique. The estimator_training table in
the database is a generic table for storing jobs meant for training estimators.
A new parameter table must be added to store the parameters for the new
jobs. The user should populate the database with training data for the new
estimator. A new estimator must be implemented that can predict the new jobs.
The new estimator must be set as a dependency for both the simulator and
the auto scaling runtime. The implementer must also create a new endpoint
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in both the simulator and the auto scaling runtime. The new parser must be
implemented that can convert from the job descriptions of the new application
to the algorithm jobs. A method in the simulator is provided to run the
simulation.



5
Results
The auto scaling runtime and simulator are both using the estimator to calcu-
late costs, and the total duration for the jobs in each queue. The simulations
use the estimated values to calculate the finish time for a job and as a conse-
quence when the instances change state. Therefore the results from both the
auto scaling runtime and the simulator are dependent on the accuracy of the
estimator.

Estimator: Linear regression
The linear regression model achieved different results for the different input
data. First all the jobs were used for the training set, with and without pa-
rameters set. Second only the jobs which had their total runtime and queue
duration values set by the META-pipe backend were used. Finally only the jobs
with their total runtime and queue duration values set were used and split to
three different models based on the target execution environment.

Single model for all jobs
Figure 5.1 contain a scatter plot with all the jobs that have data sizes available,
a total of 1137 jobs. . We can see that there are no clear linear solution for the
META-pipe jobs. 977 of the jobs in the META-pipe database does not have their

39
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Figure 5.1: Relation between execution time and data size for all META-pipe jobs

execution time calculated by the META-pipe backend. The calculated execution
time for these jobs are done when adding them to the database by using the
start time and the final heartbeat time of the job. The calculated execution
times contain the queue time. The queue time for the jobs vary greatly, from
seconds to weeks. This can be the reason for this to show no clear correlation
between data size and execution time. The input data was expected to have a
more clear separation between the three data categories, virus, genome and
meta-genomes. If there had been a clearer separation it could have lead to
using different models for estimating the execution time based on the data
category.

Figure 5.2 show the correlation between execution time and input data size for
the jobs with their execution time and queue duration set by the META-pipe
backend. 160 out of 176 jobs which had the queue duration value set had valid
input data available on the META-pipe storage system. From this we can see
that there is a linear trend. 9 jobs that have a data size above 600MB have
all been executed on AWS. These jobs were run as part of testing to run the
META-pipe application on AWS and have used different instance types for
executing, which is the reason for the large spread in execution times for the
same input data size.
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Figure 5.2: Relation between execution time and data size for META-pipe jobs with
queue duration and execution time set by the META-pipe backend

Table 5.1: Models

Input data Function Variance R2

All Jobs
−994.9 ∗ 106 + datasize ∗ 0.35+

parameters ∗ 422.6 ∗ 106

+contiдs ∗ 238 ∗ 103
1.83 ∗ 1017 0.14

All jobs,
only data size

5410.8 ∗ 105 + datasize ∗ 0.40 3.35 ∗ 1015 0.29 ∗ 10−2

Only jobs
with

queue duration

−180.4 ∗ 104 + datasize ∗ 0.32+
parameters ∗ 122.4

∗102 + contiдs ∗ 113.6 ∗ 102
2.58 ∗ 1015 0.57

Only jobs
with queue
duration,

only data size

1143.1 ∗ 106 + datasize ∗ 0.32 2.37 ∗ 1015 0.57

Multiple linear regression models were trained. In table 5.1 is an overview of
the models created by the different sets of input data and, with and without
using the job parameters. The R2 value represent the fitting of the model to
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the data. A value of 1 is a perfect fit for the model. Variance describes the
fluctuation of execution times predicted by the model. The model using all the
jobs without the parameters has an R2 value close to 0. This was expected
when comparing it to the scatter plot of all the data. The same holds true for
using all the jobs and including the parameters. The fitting of this model is
higher, but the value is not high enough to be useful for estimating execution
durations. The models created using only the jobs with their execution time set
by the META-pipe backend resulted in a better fitting with a R2 value of 0.57.
A R2 score of 0.57 shows that there is correlation between input data size and
execution time, but it can be improved. Since the fitting of the models were
poor, a new models were created.

Separate models for different execution environments
Each supported compute cluster have different performance capabilities. From
this it is clear that each compute cluster estimation should therefore be handled
separately. However an issue with this is that the number of jobs present for
each tag is low and results in a poor model.

Table 5.2: Job count

Tag (execution environment) Count

csc-* (cPouta) 40

metapipe-* (Stallo) 14

*-aws-* (AWS) 84

In table 5.2 the job count for each tag is listed. The job count with the tag for
Stallo is underrepresented by only 14 finished jobs.
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Figure 5.3: Jobs on Stallo

The jobs that have been executed on Stallo (figure 5.3) have an approximate
linear trend. A possibly better model for Stallo could to use an exponential
regression function for estimating the execution times.

Figure 5.4: Jobs on cPouta



44 CHAPTER 5 RESULTS

The figure 5.4 show the jobs that has been executed on cPouta. This again
shows a linear trend. There are exceptions that do not follow the trend, however
the most extremes should be filtered out. One thing to note is that the jobs ran
on cPouta has not completed any large datasets. If there is a linear correlation
between execution time and the input data size for META-pipe jobs on cPouta,
the lack of jobs that have finished large datasets should not be a problem.
However it is uncertain if the optimal regression model would be linear or
exponential without any training data for jobs that have finished large sets of
input data.

Figure 5.5: Jobs on AWS

The jobs that have executed on AWS (figure 5.5) have no clear correlation
between input data size and execution time. TheMETA-pipe jobs that have been
executed on AWS were part of an experiment to evaluate different compute
instance flavours and storage solutions. There is currently no method to find
the instance flavour the job has executed on. However a regression model can
be trained using the jobs.
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Table 5.3: Models

Tags Function Variance R2

metapipe
21.6 ∗ 104 + datasize ∗ 0.20+

parameters ∗ −3480.54
+contiдs ∗ −498.37

7.42 ∗ 1014 0.86

csc
22.9 ∗ 1019 + datasize ∗ 1.01+

parameters ∗ 17.0 ∗ 104

contiдs ∗ −45.8 ∗ 1016
1.06 ∗ 1015 0.34

Only jobs
with

queue duration

22.8 ∗ 1019 + datasize ∗ 0.32+
parameters ∗ −18.9 ∗ 1018

∗102 + contiдs ∗ −30.2 ∗ 1016
4.45 ∗ 1015 0.66

The models (table 5.3) were trained using the job parameters and data size.
The trained models have a better fitting compared to the previous models that
were not split based on the execution environment. The cPouta model has a
R2 value of 0.34, which is due to the execution time outliers in the training
data. The outliers skew the model and the outlying jobs should have been
removed before training the model. The Stallo model should be able to predict
META-pipe jobs which will execute on Stallo within an acceptable margin with
a R2 value of 0.84. The AWS model has a better fitting than expected with a R2
value of 0.66, however the model should not be used for important decisions
in production, since the instance flavour have not been decided upon by the
META-pipe developers. The jobs used in the experiment should be ignored and
future jobs should be used to train the model.

When more jobs are used to train the models they can shift and the fitting can
become either better or worse. The models should be evaluated continuously to
ensure that the estimations are acceptable. The assumption that the execution
time have a linear relation to the input data size can be wrong since the
number of jobs available is low and not all data categories are present for all
the execution environments (figure 5.4 and 5.5). A conclusion for the relation
between input data size, parameters and execution time is not possible due to
the lack of data, but the models are used for the simulator.
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Simulator
The simulator estimator uses the models which estimates execution time based
on the target execution environment. The job queue used to compare the
algorithms have been manually developed. The jobs are created as already
estimated jobs that can directly be used by the algorithm. The execution times
were predefined to avoid the estimator estimating different execution times
for jobs between runs of the simulator, since the estimator is re-trained when
the simulator is started.

The evaluation criteria set for the simulator are:

• How well it simulates the external job manager by scheduling jobs cor-
rectly

• The ability to provide insight about the algorithms and their effect on
the queue and the clouds

• How well the simulator reflects the algorithms and clouds in production

Job queue
The job queue¹ used for testing the algorithms and the simulator consist of 23
jobs with different tags (table 5.4) that all have the same parameters. These
parameters have not been used by any of the algorithms and does not affect
the result.

Table 5.4: Job count

Tag (execution environment) Count

csc (cPouta) 7

metapipe (Stallo) 4

aws (AWS) 7

Each job has the execution time set to either a short job, a medium job or
a large job. These values might not represent the actual execution times on
the execution environments, but they are used as a proof of concept for the
simulator. The start time set for these jobs (see source code) are either from
the beginning of the simulation or at a given point after, while still within the
default time range of the simulator, 30 minutes timesteps and 96 iterations of

1. See source code under uit-go/metapipe/metapipe.go for job creation function
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the simulation, a total of 2 days simulated. A single job has the state “RUNNING”
in the dataset, it has the AWS tag. The jobs with the empty tag have estimated
execution times for each execution environment. The test dataset is also used as
the default job queue when nothing is declared in the simulation request.

Cluster states
The cluster states (table 5.5) used for testing the algorithms and the simulator
reflect the job queue where only the AWS instances have a single “ACTIVE”
instance.

Table 5.5: Cluster states

Tag (execution environment) INACTIVE ACTIVE Limit Cost

csc (cPouta) 2 0 5 0.78 USD / h

metapipe (Stallo) 1 0 7 0.48 USD / h

aws (AWS) 2 1 8 0.68 USD / h

The test cluster state is also used as the default cluster state for the simulator
when this is not declared in the simulation request. Prices for Stallo and cPouta
are in this case fictive, the AWS price is based on the c5-4xl compute instance
on EC2.

Algorithm comparison
The algorithms that are used to evaluate the simulator have been defined in the
design section under the implemented algorithms subsection. Each algorithm
give different results for the same queue depending on what it does to the
cluster states and the job queue. In the following graphs the value on the x
axis is the algorithm timestamp, and on the y axis is the accumulated queue
time for each simulation iteration
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Naive algorithm

Figure 5.6: Total job durations for each cloud using the naive algorithm

The simple algorithm optimize the queue based on the cost and queue duration
and assign the jobs without tags to the queue where it is most efficient to run the
job. Each spike in figure ?? is a job being assigned a tag. During the simulation
each cloud is scaled to the required number of instances for the queued jobs
to run on, up to the limit set. Resources are deleted or reused when a job
completes (see appendix A for event outputs). The simulator schedules each
assigned job to the correct cloud based on the output queue of the algorithm.
This has been carefully verified by manually analyzing the input queue and the
behaviour of the algorithm to predict where the jobs would run. This coincides
with the duration graph. A graph of the cost has not been shown since it follows
the exact same trend as the duration graph. The reason for this is that the
cloud components currently only use a single instance type for the different
execution environments.
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Worst-case algorithm

Figure 5.7: Total duration for each cloud using the worst-case algorithm

The bad algorithm reduces the amount of available instances to a single instance,
as long as it satisfies the amount of running jobs. It will not remove an instance
that has a job running on it. The bad algorithm behaves as expected. The queue
durations (figure 5.7) are longer, however the cost will stay the same since the
number of instances used are reduced to one and only a single instance type
is used. When comparing the simple algorithm to the bad algorithm it is clear
that the total duration for each queue is visibly shorter. The shorter duration
of the queues will ensure that the users of the system where the algorithm is
deployed have less waiting time for the jobs to complete. The simulator GUI
enables the user to compare both the duration graphs and the cost graphs to
easily make decisions on which scaling algorithm to use.
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Null algorithm

Figure 5.8: Total duration for each cloud using the null algorithm

The null algorithm does nothing to the cluster states or the input queue. As
a consequence no jobs with an empty tag is scheduled on any execution
environment. Hence there are no spikes from jobs being assigned a tag. The
spikes present in the graph is for the jobs which have predefined tags. However
it is unclear what causes the spikes in the aws trace in the beginning.

The nil algorithm performs comparably well to the bad algorithm, with ex-
ecuting the jobs predefined to run on both AWS and cPouta equally to the
simple algorithm. In the worst case algorithm the total queue duration is overall
higher than the null algorithm. From the cluster states we know that for AWS
at least three jobs can run in parallel. However the nil algorithm should not
be compared against since it does not add jobs with empty tags to any queue.
The simulator outputs the queue for each iteration and and this can be used to
ensure that all jobs have been assigned a tag at the end of the simulation.

Summary
The simulator can accurately simulate the algorithms over time (based on
the estimations from the estimator) and provides a graphical interface for
comparing and analyzing the executed algorithms. The simulator schedule
jobs in the correct order based on the priority and on the correct execution
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environment based on the tags set in the algorithm. The simulator does not
consider the start up time for either the jobs or the instances. Because of this,
the simulator might not accurately reflect how the algorithms and clouds will
behave in production.
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Related Work
CloudScale: Elastic Resource Scaling for

Multi-Tenant Cloud Systems
CloudScale [2] is a fine grained elastic resource scaling system for multi-
tenant cloud computing infrastructures. It runs inside the cloud system and
is connected to the VM’s in the infrastructure through the Xen hypervisor. A
prediction based method for resource scaling is used to achieve elasticity. It
is uses a technique based on fast fourier transforms (FFT) to identify burst
patterns from the resource usage time series which is retrieved from the Xen
hypervisor. If such a pattern is found a resource demand model [2] is used. If
no pattern was identified, a discrete time Markow chain based model is used to
predict the resource usage in near future, because the FFT technique requires a
pattern to calculate the expected resource demand. These techniques calculate
the expected minimal resource usage. Scaling conflicts occur when multiple
applications are scaled concurrently and there is not enough resources for the
applications to scale. The CloudScale system resolves scaling conflicts by either
locally handling the conflict ormigrating processes to different virtualmachines.
Scaling conflicts occur when multiple applications are scaled concurrently and
there is not enough resources for the applications to scale. The local conflicts
are resolved either by strictly enforcing a cap on the resource usages of the
processes in conflict or by allowing the cap to be raised to the maximum value
for a short duration, resulting in resource waste, but alleviating the conflict
until the resources are freed. Scaling conflicts that require VM migrations are

53
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costly and only done if require to meet the expected deadlines. Migrations
are triggered based on the resource usage and a predictive method is used
to migrate before the conflict happens. This system relies heavily on the Xen
hypervisor for the time series data and for the management of the virtual
machines. The concept of using time series data for analysing the resource
requirements is a relevant concept for scaling META-pipe. Real-time predictions
is not in the scope of this project, but using the time series data for analyzing
the resource dependencies and requirements is an approach that should be
explored in future work.

Jockey: Guaranteed Job Latency in Data Parallel
Clusters

Jockey[1] is a scheduling system that analyses the complex internal structure of
a data analysis job, to step by step predict the resource usage of the job. Jockey
was implemented to run in a cluster environment as a daemon process which
continuously analyse the allocated data in the cluster. Each job has a individual
tracking mechanism and is dynamically allocated resources. The Jockey system
uses precomputed statistics based on a simulator which encapsulates the job
complexities in order to estimate the resource usage and its complexity. The
simulator uses a per stage allocation and time usage algorithm to calculate
both the resource usage and time estimation for a single job. In order to
retrieve a jobs statistics the internal structure is used and each stage is given
both an estimate and resources needed. The jockey system is designed to
work with MapReduce type of jobs (or similar data parallel processes model).
Performance and synchronization issues arise with these type of jobs when an
interrupting operation is required that has to synchronize all the nodes. These
issues can lead to a complete halt in the entire system. Jockey requires an
existing dataset to create the precomputed statistics

Jockey is relevant to scaling META-pipe. Jockey limits the implementation
to a single cluster and it is not a separate entity from the cluster it operates
on. Precomputed statistics are used to estimate run times for individual jobs
based on the job parameters. The limitation of only scaling a single cluster
makes it bad match for scaling the META-pipe job queue, it could be used to
scale the cluster internaly instead of using the cloud components to scale the
clusters.
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Dynamically Scaling Applications in the Cloud
L. M. Vaquero et. al.[5] describes the basic structure and the necessary com-
ponents to achieve cloud scaling from the view of the server. In this paper
it is assumed that virtual machines are used for containing user application
and new virtual machines are allocated or reused for scaling an application. A
major component for cloud scaling is a load balancer that distributes the work
delegated to the cloud. This is a elasticity controller, which can be implemented
in two ways.

• A multi-tier implementation that synchronizes between multiple con-
trollers at the VM abstraction level

• A single, global controller that controls all applications and VM’s in the
cloud. This controller operates on the logical tier in the cloud, for instance,
an application is scaled when the limit for requests is reached

The methods for elasticity presented in this paper is out of date for a modern
commercial cloud, as it is written in 2011. Hower for the automatic scaling
algorithm for META-pipe, a single global controller for providing elasticity
would be sufficient. L. M. Vaquero et. al. describes the container-level scalability
where multiple user components are used in a single virtual machine. This can
reduce the time and resource usage of allocating new virtual machines for each
user application. The method for running, if possible, multiple applications in
a VM is used in the design of the automatic scaling algorithm.

The auto scaling algorithm which have been developed for META-pipe require
the ability to schedule jobs accross different cloud platform and on multiple
clusters. The components described in Dynamically Scaling Applications in the
Cloud focuses on a single cloud platform. The scaling of a single META-pipe
job can be done by ensuring that the components necessary to achieve scaling
on the cloud platform is present and in effect.

CloudSim, OMNeT++, SMICloud
There are multiple frameworks for simulating different structures and systems.
Each of these systems contain methods for simulating an algorithms or provide
data for cost and performance decisions. These have been viewed as possible
solutions to the simulator needed to analyze the auto scaling algorithms.
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CloudSim
CloudSim[6] is a framework for simulating and modeling of cloud computing
infrastructures and services. It used to test new applications and experimenting
without provisioning an actual cloud system. It can also be used to compare
potential costs and energy consumption. CloudSim enables the user to identify
bottlenecks before deploying. The goal for CloudSim is to provide a general
and extensible simulation framework that can be used by both scientist and
industry developers so that they can focus on design issues and not low level
issues in specific cloud providers. InternalMETA-pipe runtime application could
be analyzed on CloudSim, but the auto scaling algorithm is abstracted a level
above the cloud and could not be simulated using CloudSim since it targets
multiple execution environments.

OMNeT++
OMNeT++[8] is a network simulator that is extensible,modular and component-
based. The meaning of network for OMNeT++ is in the broader sense of the
word, which includes, wired and wireless communication networks, on-chip
network, queueing networks and etc. Many components are provided for free.
These components can be combined into a structured network. The main us-
ages are internet protocols simulation and, performance modeling, and so on.
A graphical user interface is provided for visualizing the network flow. As with
CloudSim, OMNeT++would not be a good simulator for the scaling algorithm,
but it could be use to analyze the network communication of the cloud compo-
nents. This could help limit bottlenecks which could potentially occur during
resource provisioning on the different execution environments.

SMICloud
SMICloud [7] is a framework for comparing and ranking cloud computing
services. With the multitude of cloud providers it is necessary to be able to
differentiate and compare the providers to find the most suitable system for
an application. The framework uses a “Service Measurement Index” (SMI)
which is designed based on ISO standards. It defines a set of attributes which
defines the quality of service. These attributes consist of Key Performance
Indicators (KPIs). The KPIs consist of 15 different metrics. The score for each
cloud provider is based on how well it meets the SMI and on previous user
given scores and performance. Three different ranking systems are proposed
in the framework.

• Service quality ranking using an analytical hierarchical process (AHP)
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• Cost-quality based ranking

• Time complexity of AHP

A system like SMICloud could potentially be a valuable framework for the auto
scaling algorithm if it could provide a proper cost analysis and comparison of
different clouds for the META-pipe application, which could be used to improve
the scaling algorithm. The SMICloud framework is not a finished product, and
implementing such a system would go beyond the scope of this project.





7
Conclusion
We have proposed a design for an auto scaling frameworkwhich support scaling
different compute clusters and schedule jobs on different execution environ-
ments. The user can use the simulator to visualize the algorithm decisions and
the visualization provides a method for both debugging and comparing the
algorithm results. Three algorithms have been developed for testing the simu-
lator. The simulator simulates the external job scheduler and each algorithm
behaves as expected. An estimator for the META-pipe jobs have been developed
and evaluated. The estimator estimates the job execution time based on the
job parameters, its input data size and the execution environments.

We have seen that the existing systems do not offer a solution to the problem of
scalling accross different execution environments. The related work all focus
on a single cluster or a single execution environment.

The designed simulator and auto scaling framework support simulating auto
scaling algorithms and can accurately simulate META-pipe job queues when
the cluster states are predefined. The simulator GUI can be used to analyze the
resource allocations, cost changes and total expected queue time. The analysis
can be used to further develop auto scaling algorithms and to compare the
advantages and disadvantages when choosing which algorithm to use. The
linear regression models used by the estimator does not fit perfectly to the
training data, but for both AWS and Stallo the model fitting is within acceptable
limits. The assumption that there was a linear relation between execution time
and data size has held true.

59
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The auto scaling runtime has not been evaluated. The runtime cloud compo-
nents do not have an implementation and the runtime could therefore not be
used to scale compute clusters on any of the execution environments.

Integrating the auto scaling runtime (once the cloud components have been
implemented) and using an auto scaling algorithm would prove beneficial for
an application such as META-pipe. Comparing the null algorithm to the naive
algorithm show that the scaling would reduce the overall queue processing time
by spreading the workload to the execution environments with the shortest
expected execution time.

Future Work
The simulator only simulates a single type of external job manager. For the
simulator to simulate the external job manager it must schedule jobs based on
the job priority. A possible extension to the simulator would be to design an
interface for the framework which could be used to simulate the external job
manager.

The cloud components for the supported execution environments must be
implemented before the auto scaling runtime can be deployed on the META-
pipe backend. This is a task the META-pipe developers must consider before
deciding to integrate the runtime. A careful approach should be taken when
integrating the runtime, since it has not been fully tested.

A new estimator that support multiple instance types should be developed.
From the results of the estimator implemented for META-pipe it is clear that
the different instance types can be a major factor for the execution time of
a job. For each instance type there is trade off for both cost and execution
time.
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