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Background: Approximately 15%–20% of all diagnosed breast cancers are characterized by 

amplified and overexpressed HER2 (= ErbB2). These breast cancers are aggressive and have 

a poor prognosis. Although improvements in treatment have been achieved after the introduc-

tion of trastuzumab and lapatinib, many patients do not benefit from these drugs. Therefore, 

in-depth understanding of the mechanisms behind the treatment responses is essential to find 

alternative therapeutic strategies.

Materials and methods: Thirteen HER2 positive breast cancer cell lines were screened 

with 22 commercially available compounds, mainly targeting proteins in the ErbB2-signaling 

pathway, and molecular mechanisms related to treatment sensitivity were sought. Cell viability 

was measured, and treatment responses between the cell lines were compared. To search for 

response predictors and genomic and transcriptomic profiling, PIK3CA mutations and PTEN 

status were explored and molecular features associated with drug sensitivity sought.

Results: The cell lines were divided into three groups according to the growth-retarding effect 

induced by trastuzumab and lapatinib. Interestingly, two cell lines insensitive to trastuzumab 

(KPL4 and SUM190PT) showed sensitivity to an Akt1/2 kinase inhibitor. These cell lines had 

mutation in PIK3CA and loss of PTEN, suggesting an activated and druggable Akt-signaling 

pathway. Expression levels of five genes (CDC42, MAPK8, PLCG1, PTK6, and PAK6) were 

suggested as predictors for the Akt1/2 kinase-inhibitor response.

Conclusion: Targeting the Akt-signaling pathway shows promise in cell lines that do not respond 

to trastuzumab. In addition, our results indicate that several molecular features determine the 

growth-retarding effects induced by the drugs, suggesting that parameters other than HER2 

amplification/expression should be included as markers for therapy decisions.

Keywords: ErbB2, drug screening, gene expression, pharmacogenomics, predictors

Introduction
Although breast cancer therapies have become more personalized, not all patients 

benefit from the treatment. Approximately 15%–20% of breast cancers have an 

amplification of the chromosome region 17q12–17q21,1 and are termed HER2/ErbB2-

positive cases. ErbB2 is a receptor tyrosine kinase encoded by the ERBB2 gene. These 

patients are treated with trastuzumab, a monoclonal humanized antibody targeting 

the extracellular domain of ErbB2, or lapatinib, a small-molecule EGFR–ErbB2 dual 

tyrosine-kinase inhibitor. Although both drugs have reduced poor survival rates, more 

than half of patients do not benefit from treatment.2

Phosphorylation of ErbB2 leads to activation of prosurvival mechanisms via 

the PI3K and MAPK pathways.3 Both trastuzumab and lapatinib inhibit ErbB2 and 
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inactivate its downstream signals. PTEN and INPP4B are 

negative regulators of the PI3K pathway,4 and loss of PTEN 

and/or mutation in PIK3CA have been shown to promote 

resistance to trastuzumab and lapatinib through activation 

of the PI3K pathway.5–9 Mutations in PIK3CA are associ-

ated with increased risk of progression and shorter overall 

survival in HER2-positive patients.8,10 Also mutations in 

ERBB2 have been suggested as mechanism of resistance to 

trastuzumab,11 and nonamplified patients with ERBB2 muta-

tions are reported to benefit from HER2-targeted therapies.12 

Due to the lack of response/development of resistance to 

trastuzumab and lapatinib, it is essential to understand the 

underlying mechanisms to develop new treatment strategies 

and to improve patient outcome.

Several studies have suggested drug sensitivity to be 

dependent on the mutation and expression of specific can-

cer genes, and Garnett et al showed that most cancer genes 

were associated with either sensitivity or resistance to one 

or more drugs.13 In addition, sensitivity was associated with 

mutation in at least one cancer gene. Another study based 

on the Cancer Cell Encyclopedia analyzed the response of 

24 anticancer drugs across 479 cell lines and reported sev-

eral gene expression-based predictors of drug sensitivity,14 

emphasizing the importance of taking multiple factors into 

account when searching for response markers.

In this study, 13 HER2-positive breast cancer cell lines 

were screened with 22 commercially available compounds 

to search for alternative mechanisms to be used in target-

ing HER2-positive cancers that do not respond to current 

therapeutic strategies. Genomic and transcriptomic profiles 

were explored to search for predictors for drug sensitiv-

ity. Alterations of several genes were associated with the 

sensitivity of certain drugs, and in silico analyses using 

elastic-net regression analyses identified additional gene–

drug associations of 13 compounds, indicating that several 

molecular features are required for the cells to react to a 

certain treatment. This emphasizes the importance of not 

only measuring ErbB2 levels but also including other factors, 

such as mutations of specific genes and protein levels, to 

predict the appropriate treatment for HER2-positive breast 

cancers. We propose these types of in silico analyses in addi-

tion for functional experiments, to be able to understand the 

mechanisms behind drug sensitivity and to find biomarkers 

for treatment response.

Materials and methods
Cell culturing
Thirteen HER2-positive breast cancer cell lines were used in 

this study (Table 1). AU565, BT474, HCC1419, HCC1569, 

HCC1954, HCC202, MDA-MB-453, and SKBR3 were 

obtained from the American Type Culture Collection (ATCC; 

Manassas, VA, USA), and EFM-192A and JIMT1 from the 

German Collection of Microorganisms and Cell Cultures 

(DSMZ; Braunschweig, Germany). ATCC and DSMZ 

authenticate human cell lines by DNA typing using short 

tandem repeats. SUM190PT and SUM225 were provided by 

S Ethier from Karmanos Cancer Institute in Michigan, USA, 

and KPL4 by J Kurebayashi from Kawasaki Medical School 

in Japan. The growth media are described in Table S1. Cells 

were cultured for a maximum of 30 passages prior to use. ER 

Table 1 HER2 breast cancer cell-line panel

Cell line ER 
status

PIK3CA-mutation 
status

TP53-mutation status PTEN 
status

CAAI score 
17q

Trastuzumab 
response status

Lapatinib 
response status

AU565 – WT c.524G>A p.R175H Loss + Responsive Highly responsive
SKBR3 – WT c.524G>A p.R175H Loss + Responsive Highly responsive
BT474 + WT c.853G>A p.E285K WT + Responsive Intermediate
HCC1419 – WT c.659A>G; 

c.220_226del7
p.Y220C; 
p.A74NA

WT + Intermediate Highly responsive

EFM-192A + c.1258T>C p.C420R c.810_811ins1 p.E271NA WT + Intermediate Intermediate
HCC1569 – WT c.880G>T p.E294X Loss – Intermediate Less responsive
HCC202 – c.1633G>A p.E545K c.850_851del2 p.T284NA WT + Intermediate Less responsive
MDA-MB-453 – c.3140A>G p.H1047R c.991_1182del192 p.Q331NA WT + Intermediate Less responsive
SUM190PT – c.3140A>G p.H1047R c.949C>T p.Q317X Loss + Nonresponsive Intermediate
HCC1954 – c.3140A>G p.H1047R c.488A>G p.Y163C Loss – Nonresponsive Less responsive
JIMT1 – c.1258T>C p.C420R c.742C>T p.R248W WT – Nonresponsive Less responsive
KPL4 – c.3140A>G p.H1047R c.456_468del36 p.P152NA Loss + Nonresponsive Less responsive
SUM225 – WT c.794T>C p.L265P Loss + Nonresponsive Less responsive

Notes: HER2-positive cell lines with ER status as noted in the literature.38–42 PIK3CA and TP53 mutations with codon position and protein change, PTEN status based on copy 
number data, CAAI score for 17q, and response to trastuzumab and lapatinib.
Abbreviations: WT, wild type; CAAI, complex arm-wise aberration index.
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statuses for the cell lines were obtained from the literature,15–19 

and only BT474 and EFM192A were ER-positive.

Mutation analyses of PIK3CA and TP53
All cell lines were sequenced for detection of mutations 

in PIK3CA (exons 9 and 20) and TP53 (exons 2–11). For 

PIK3CA, 10 ng DNA was used for polymerase chain reac-

tion (PCR) touchdown with HotStarTaq DNA polymerase 

(Qiagen NV, Venlo, Netherlands).20 The PCR products were 

visualized on 1.5% agarose gel, and the products were 

cleaned with EpMotion 5075 (Eppendorf AG, Hamburg, 

Germany). For the sequencing reactions, 3 μl of the purified 

PCR product and BigDye Terminator version 1.1 reaction 

mix was used. Sequencing reactions were performed on an 

MJ Research Tetrad DNA Engine (Bio-Rad Laboratories 

Inc, Hercules, CA, USA), and cleaned on Sephadex mini-

columns (GE Healthcare, Little Chalfont, UK). Sequencing 

was performed on a 3730 DNA analyzer (Thermo Fisher 

Scientific, Waltham, MA, USA). For TP53, 5 ng DNA was 

used and BigDye Direct Cycle Sequencing Kit (AB) and 

BigDye XTerminator Purification Kit (AB) were used. The 

principle has previously been described.21 All mutation scor-

ing was performed in SeqScape version 2.7 (AB) by two 

independent investigators.

aCGH analysis
Array-based CGH analysis has previously been described 

for nine of the cell lines,22 available at the Gene Expres-

sion Omnibus (http://www.ncbi.nlm.nih.gov/projects/geo) 

GSE34236. The four remaining cell lines are available at 

GSE58886. Piecewise-constant fitting of copy-number data 

was done in R23 using the CRAN package Copynumber24 

with K-min =5, gamma =4, and gamma =150. Estimates 

obtained with gamma =4 were used for determining PTEN 

levels. Cell lines with estimate below ~–0.3 were classified 

with loss in PTEN. The complex arm-wise aberration index 

(CAAI) was calculated for the cell lines according to the 

algorithm described in Russnes et al.25 A rough segmenta-

tion was preferred for this analysis, and a gamma of 150 

was used. CAAI was calculated both chromosome-wise and 

overall for the cell lines.

Gene-expression analysis
Gene expression was measured using Affymetrix Human 

Genome U133 plus 2.0 GeneChip oligonucleotide arrays 

(Affymetrix, Santa Clara, CA, USA). Per sample, 3 μg of total 

RNA was prepared according to the manufacturer’s protocols, 

and 15 μg of fragmented complementary RNA was used for 

hybridization. The arrays were stained with phycoerythrin–

streptavidin, and signal intensity was amplified by treatment 

with a biotin-conjugated antistreptavidin antibody, followed 

by a second staining using phycoerythrin– streptavidin. The 

arrays were scanned using the GeneChip Scanner 3000. Data 

were preprocessed using the R language,23 and the RMA 

method implementation in Bioconductor package Affy.26 

Alternative CDF files (version 14) mapping Affymetrix 

probes directly to Ensembl gene IDs were used in prepro-

cessing,27 resulting in one expression value per Ensembl 

gene ID. Ensembl gene positions are based on Ensembl 

database version 63 (hg19). The data were log
2
-normalized. 

The gene-expression profiles for all cell lines are available 

at GEO at GSE58700.

Drug-screening and cell-viability assays
The cell lines were screened using a library of 22 compounds 

(Table S2). The compounds were printed in seven dilu-

tions (0.34 pM–20 μM) and two technical replicates with a 

Hamilton robot (Hamilton Robotics Inc, Reno, NV, USA) 

in 384-well plates (Corning Inc, Corning, NY, USA). The 

cell amounts ranged from 500 to 2,250 cells/well depending 

on cell line. Each cell line was screened in two biological 

replicates. The screening was conducted for 5 days, and cell 

viability was measured using a CellTiter-Glo assay (Promega 

Corporation, Fitchburg, WI, USA), where luminescence sig-

nal was read by a MicroBetaTriLux (PerkinElmer, Waltham, 

MA, USA). Cell viability was converted into relative 

response using the average of the lowest concentrations of all 

compounds as control. The relative response was further cor-

rected through compound-wise normalization to the average 

response of the three lowest concentrations. Drug responses 

were plotted in GraphPad Prism version 5.0 (GraphPad Soft-

ware, San Diego, CA, USA), and half-maximal inhibitory 

concentration (IC
50

) values were obtained for compounds 

that showed effect.

Apoptosis assays
Four cell lines (HCC1954, KPL4, MDA-MB-453, and 

SUM190PT) were treated with Akt1/2 kinase inhibitor 

with dilutions ranging from 10 pM to 10 μM and apoptosis 

was measured using Caspase-Glo. Cell lines were treated 

in three technical replicates for two days. Cells without 

treatment were used as control. Luminescence was read by 

MicroBetaTriLux (PerkinElmer). Apoptosis was calculated 

as percentage of controls.

Western blotting
Four cell lines (HCC1954, KPL4, MDA-MB-453, and 

SUM190PT) were treated with 2 μM Akt1/2 kinase  inhibitor 
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for 5, 10, 15, 30, 60, 90, and 120 minutes, and 24 hours, 

and protein lysates were collected. The samples were run on 

4%–20% Mini-Protean TGX precast gels (Bio-Rad), and 

transferred to nitrocellulose membranes (Trans-Blot Turbo 

Mini PVDF transfer packs; Bio-Rad) by using the Trans-Blot 

Turbo transfer system. p-Akt (Ser473, 9271S; Cell Signal-

ing Technology, Boston, MA, USA), total Akt (9272S; Cell 

Signaling Technology), MAPK8 (SAPK/JNK, 9258P; Cell 

Signaling Technology), and pMAPK8 (phospho-SAPK/JNK, 

#4668P, Cell Signaling Technology Inc.) were used as primary 

antibodies and peroxidase-conjugated antibodies were used 

as secondary antibodies. α-Tubulin (T9026; Sigma-Aldrich, 

St Louis, MO, USA) was used as loading control. The 

Supersignal West Dura extended-duration substrate (Thermo 

Fisher Scientific) was used as enhanced-chemiluminescence 

horseradish-peroxidase substrate. The signals were developed 

on Amersham Hyperfilm ECL (GE Healthcare).

Statistical and bioinformatic analyses
One-way analysis of variance (ANOVA) was used to distin-

guish the response groups obtained from the IC
50

 curves for 

trastuzumab and lapatinib. Bonferroni correction for multiple 

testing was used for P-values <0.05. One-way ANOVAs were 

also calculated to distinguish differences in both trastuzumab 

and lapatinib response depending on PIK3CA and PTEN 

status. Mutated PIK3CA, wild-type PTEN, mutated PIK3CA, 

loss in PTEN, and wild-type PIK3CA (PTEN status indiffer-

ent) were analyzed. All ANOVAs were performed in SPSS 

version 21 (IBM, Armonk, NY, USA).

Spearman’s correlation for gene expression and com-

pound response were calculated using R, and the significant 

correlations (P<0.05) were plotted with the package Gplots.28 

Linear regression was calculated in order to get the intercept 

for the lines in the plots. For correlation, 189 ErbB2-pathway 

genes were selected based on KEGG,29,30 Gene Ontology,31 

BioCarta,32 and WikiPathways.33 Expressions of these genes 

were correlated one by one with maximum growth inhibition 

(cell viability at the lowest – cell viability at the highest).

Elastic-net analysis was performed to identify gene–drug 

associations. Elastic-net analysis is a regression that takes 

several features into account simultaneously when calculating 

for predictors. For the analysis, mutation status for PIK3CA, 

loss in PTEN, and ER and CAAI status, in addition to the 

189 ErbB2-pathway genes, were used as possible predictors. 

The R package Elasticnet34,35 was used for this purpose. The 

overlapping genes from correlation and elastic-net analyses 

were subjected to IPA for complex ‘omics data to explore 

the networks.

Results
PIK3CA- and TP53-mutation status of the 
cell-line panel
Thirteen HER2-positive breast cancer cell lines were cho-

sen for this study (Table 1). The cell lines were sequenced 

for PIK3CA and TP53 mutations, as these have previously 

been associated with trastuzumab resistance6 and develop-

ment of HER2-positive breast cancers.36 Six cell lines had 

wild-type PIK3CA: AU565, BT474, HCC1419, HCC1569, 

SKBR3, and SUM225. Four cell lines – HCC1954, KPL4, 

MDA-MB-453, and SUM190PT – shared the same activating 

PIK3CA mutation in exon 20 (c.3140A>G, p.H1047R), while 

HCC202 had a mutation in exon 9 (c.1633G>A, p.E545K). 

The two remaining cell lines, EFM-192A and JIMT1, did not 

harbor mutations in exon 9 or 20, but have previously been 

reported mutated in exon 7 (c.1258T>C, p.C420R).36,37 We 

thus classified them as mutated. TP53-mutation screening 

showed that all the cell lines harbored inactivating mutations 

in different codons (Table 1).

PTEN status and complex arm-wise 
aberration index from copy-number data
Loss of PTEN has been suggested to lead to decreased 

response of trastuzumab and lapatinib.4,7,37 PTEN status was 

determined using copy-number data as a surrogate for PTEN-

protein level, since copy number has previously been shown 

to correlate with protein levels.38 Seven cell lines showed loss 

of PTEN – AU565, HCC1569, HCC1954, KPL4, SKBR3, 

SUM190PT, and SUM225 – while the remaining were wild 

type. We also calculated CAAI scores25 where all cell lines 

were positive, meaning that they had chromosomal rear-

rangements in at least one chromosome arm. For 17q (where 

ERBB2 is located), all except three cell lines (HCC1569, 

HCC1954, and JIMT1) had a positive CAAI score, indicating 

large chromosomal rearrangements (Table 1).

HER2-positive cell lines are sensitive to 
the PI3K–Akt–mTOR pathway inhibitors
Thirteen HER2-positive cell lines were screened using a 

library of 22 compounds (Table S2) to identify compounds 

that inhibit cell viability. The compounds clustered into four 

groups based on their effect on cell viability (Figure 1). Group 

1 consisted of five compounds – bevacizumab and AAL-

993 (VEGFR inhibitors), AG538 (IGFR), PD184352 and 

UO126 (MEK/Erk) – with no or little effect. Group 4 showed 

highest effects on cell viability, and included  lapatinib and 

afatinib (dual EGFR/ErbB2 inhibitors), radicicol (HSP90), 
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 doxorubicin hydrochloride (DNA replication), and bortezo-

mib (proteasome). Groups 2 and 3 showed varying effects 

across the cell lines tested.

Compounds that affected cell growth at two or more 

concentrations (2 and 20 μM) in at least two cell lines were 

used for further analyses. The cutoff for growth inhibition 

was set to 50% for the highest concentration and to 20% for 

the second highest. Thirteen compounds met these criteria: 

trastuzumab and Symansis CP-724714 (ErbB2 inhibitors), 

gefitinib (EGFR), afatinib and lapatinib (dual EGFR/ErbB2 

inhibitors), canertinib (pan-ErbB), Akt1/2 kinase inhibitor 

and API2 (Akt), radicicol (HSP90), everolimus and temsi-

rolimus (mTOR), doxorubicin HCl (topoisomerase II), and 

bortezomib (proteasome). This indicates that the PI3K–Akt–

mTOR pathway may be an attractive target in HER2-positive 

breast cancers.

The proteasome inhibitor bortezomib showed the highest 

growth inhibition of the compounds tested, whereas the two 

mTOR inhibitors induced >20% growth inhibition over the 

widest concentration (20 μM–20 nM). AU565, BT474, and 
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SKBR3 were the most responsive cell lines tested show-

ing sensitivity to 12 compounds (excluding Akt1/2 kinase 

inhibitor). JIMT1 showed the most modest response, as only 

five compounds (bortezomib, doxorubicin HCl, everolimus, 

radicicol, and temsirolimus) induced a clear inhibition of cell 

viability. The two MAPK-pathway inhibitors did not show 

any effect on cell viability in the cell lines tested (Figure 1 

and Table S3).

Three groups of response were identified 
for both trastuzumab and lapatinib
At the second-highest concentration of trastuzumab 

(0.52 μM), the cell lines formed three groups (P<0.001, 

Figure 2A). These groups were named responsive (>20% 

growth inhibition), intermediately responsive (<20% growth 

inhibition), and nonresponsive (no growth inhibition). 

Based on this, AU565, BT474, and SKBR3 were defined as 
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Figure 2 Cell lines divided into three groups based on response to trastuzumab and lapatinib.
Notes: (A) The cell lines were divided into three groups based on trastuzumab response: nonresponsive cell lines (blue), intermediate (<20% growth inhibition [GI], green) 
and responsive (>20% GI, pink). For this grouping, the most significantly differentiating concentration (0.52 µM, P<0.001) was used (the highest concentration has been left 
out of the graph). (B) The cell lines were divided into three groups based on the lapatinib response. The most significant differences between the groups were seen at 2 
µM concentration (P<0.001). The three groups were less responsive (<50% GI, blue), intermediately responsive (60%–65% GI, green), and highly responsive (>75% GI, red) 
(highest concentration left out). ***P<0.001.
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responsive, EFM-192A, HCC202, HCC1569, HCC1419, and 

MDA-MB-453 as intermediately responsive, and HCC1954, 

JIMT1, KPL4, SUM190PT, and SUM225 as nonresponsive 

(Table 1). MDA-MB-453 is known as an apocrine cell-line 

model, and HER2-positive apocrine breast carcinomas harbor 

alterations in the PI3K-signaling pathway.39,40 Cell lines with 

wild-type PIK3CA showed a better response to trastuzumab 

than cell lines with PIK3CA mutation (P<0.001, Figure 3A). 

Loss of PTEN together with PIK3CA mutation led to further 

resistance to trastuzumab (P<0.001, Figure 3A).

All cell lines responded well to lapatinib in vitro, except 

JIMT1, which responded only at the highest (20 μM) 

concentration. However, the cell lines divided into three 

groups based on the response to lapatinib at the second-

highest concentration (2 μM, P<0.001, Figure 2B). The 

categories were less responsive (<50% growth inhibition), 

 intermediately responsive (60%–65%), and highly responsive 

(>75%) (Table 1). Mutation in PIK3CA led to less response 

(P<0.001, Figure 3B), while PTEN status did not influence 

the response to lapatinib.

Akt1/2 kinase inhibitor significantly 
inhibited cell growth in two 
trastuzumab-nonresponsive cell lines
Nonresponsive cell lines mimic HER2 cancers that do 

not respond to treatment. Therefore, it is of high interest 

to find drugs that inhibit cell growth in these cases. One 

such compound was the Akt1/2 kinase inhibitor, where 

two trastuzumab-nonresponsive cell lines (KPL4 and 

SUM190PT) responded well (P<0.001 for the two highest 

concentrations, Figure 4A). To investigate mechanisms for 

sensitivity, we compared molecular features and found that 
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Figure 3 Box plots showing trastuzumab and lapatinib response in 13 HER2 positive cell lines relative to PIK3CA and PTEN status.
Notes: The x-axes show mutation status, where red is PIK3CA-mutated (Mut) and PTEN loss; blue is PIK3CA-Mut and PTEN wild type (WT); green is PIK3CA WT and PTEN 
WT. (A) The effects on trastuzumab response. The PIK3CA-Mut cell lines were more resistant than the WT to trastuzumab (P<0.001 for the second- and third-highest 
concentrations [left and right panel, respectively]). PTEN loss in addition to Mut PIK3CA increased resistance to trastuzumab (P<0.001 for the second and third concentrations). 
(B) Effects on lapatinib response. Cell lines with Mut PIK3CA were significantly more resistant to lapatinib (P<0.001 for second- and third-highest concentrations) than the 
rest. PTEN loss did not show any additional effect on lapatinib response. ***P<0.001.
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Akt1/2 kinase-inhibitor treatment
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Figure 4 Akt1/2 kinase-inhibitor response.
Notes: (A) Cell viability. Two cell lines KPL4 (trastuzumab nonresponsive, lapatinib less responsive) and SUM190PT (trastuzumab nonresponsive, lapatinib intermediate) 
showed significant growth inhibition at the two highest concentrations of the Akt1/2 inhibitor (***P<0.001). (B) Western blot analysis. pAkt, total Akt, pMAPK8, total 
MAPK8, and α-tubulin levels in HCC1954, KPL4, MDA-MB-453, and SUM190PT cells treated with the Akt1/2 kinase inhibitor. All four cell lines showed a decrease in the 
level of pAkt upon treatment with the inhibitor. However, HCC1954 still had detectable pAkt after 24 hours of treatment, which could explain the resistance. (C) Induction 
of apoptosis. Cells were incubated with Akt1/2 kinase inhibitor for 2 days and apoptosis was measured. MDA-MB-453 and SUM190PT showed induced apoptosis, whereas 
KPL4 and HCC1954 did not.
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all nonresponsive cell lines were ER-negative (Table 1). 

Furthermore, KPL4 and SUM190PT had the same mutation 

in PIK3CA, loss in PTEN, and both were positive for CAAI 

17q. The three remaining trastuzumab-nonresponsive cell 

lines had either negative CAAI 17q (HCC1954 and JIMT1) 

or wild-type PIK3CA (SUM225).

To verify the effect of the Akt1/2 kinase inhibitor, we 

analyzed the phospho-Akt (pAkt) and total Akt levels in 

KPL4 and SUM190PT, together with two cell lines that 

did not respond to the inhibitor: HCC1954 (nonresponsive) 

and MDA-MB-453 (intermediately responsive). Akt1/2 

kinase inhibitor indeed decreased pAkt in all four cell lines 

(Figure 4B), while total Akt levels were not affected by the 

treatment.

To determine whether induction of apoptosis caused the 

decreased cell viability induced by the Akt1/2 kinase inhibi-

tor, we measured the activity of caspase 3/7 in the treated cells 

by Caspase-Glo® assay. MDA-MB-453 and SUM190PT 

showed induced apoptosis at the highest concentration. As 

expected, HCC1954 did not show increased apoptosis, but 

neither did KPL4. However, it is possible that the decreased 

cell viability in KPL4 was mediated through other pathways 

(Figure 4C).

Correlation of gene expression and 
cell viability revealed 116 gene–drug 
associations
To learn more about genes involved in the response to ErbB2-

targeted therapy, we correlated the drug responses to gene-

expression levels of 189 ErbB2-related genes in the same cell 

lines. A total of 116 significant gene–drug correlations were 

identified (Table S4). Expression levels of ten genes (BCAR1, 

BRAF, CAMK2D, CDKN1A, ERBB3, EREG, HDAC1, SHC3, 

TGFA, and TP53) were significantly associated with the 

response to trastuzumab, whereas ten genes (BRAF, CDC42, 

ERBB3, GAB1, GRB7, NRG3, NRG4, RRAS2, STMN1, 

and TGFA) were significantly associated with lapatinib 

response. High expression levels of BRAF (positive corre-

lation), ERBB3 (negative correlation), and TGFA (positive 

correlation) were found correlated with both trastuzumab 

and lapatinib response. Interestingly, high BRAF expression 

correlated with stronger response for five more compounds, 

of which four (afatinib, canertinib, gefitinib, and Symansis 

CP724714) were targeting EGFR-family members and one 

(bortezomib) the proteasome. High ERBB3 expression was 

negatively correlated with responses to the mTOR inhibitors 

everolimus and temsirolimus. TGFA expression was posi-

tively correlated with afatinib, bortezomib,  doxorubicin HCl, 

gefitinib, and Symansis CP724714 responses. Correlation 

analysis of gene expression with Akt1/2 kinase-inhibitor 

response suggested the involvement of seven genes: CDC42, 

EPN1, GAB1, MAPK8, PAK6, PLCG1, and PTK6.

Elastic-net analysis revealed additional 
predictors for drug responses
To investigate gene–drug associations as possible predictors 

for treatment outcome, we performed elastic-net analysis.34,35 

In addition to the 189 ErbB2-related genes, ER status, 

PIK3CA-mutation status, PTEN status, and CAAI score 

were included in the analysis. A total of 186 predictors were 

identified (Table S4). When compared to the 116 significant 

gene–drug associations identified by correlation analysis, an 

overlap of 52 gene–drug associations was seen (Table S5). 

The 52 associations consisted of 32 unique genes. These 32 

genes formed three main networks under interactive pathway 

analysis (IPA) and coded for proteins involved in cellular 

growth, proliferation, cellular movement, and cell death and 

survival (Figures S1–S3). The top five canonical pathways 

obtained for these networks were: ErbB signaling, HER2 

signaling in breast cancer, molecular mechanism of cancer, 

renal cell carcinoma signaling and neuregulin signaling. 

Symansis CP724714 had the most overlapping associations 

between the two analyses, with eleven genes involved.

The elastic-net analysis identified 12 predictors for 

trastuzumab, of which five were identified also by correlation 

analysis: BCAR1, CDKN1A, EREG, SHC3, and TGFA. For 

lapatinib, 14 predictors were identified by elastic-net analy-

sis, of which seven were also found by correlation: BRAF, 

CDC42, ERBB3, GAB1, NRG4, RRAS2, and TGFA. Overall, 

the expression levels of five genes that were predicted for 

lapatinib response were also predictors for other drugs. These 

were BRAF, CDC42, GAB1, NRG4, and TGFA. Only TGFA 

was predicted for both trastuzumab and lapatinib response, 

and had a positive effect on cell viability (high gene expres-

sion led to more resistance to the compound). BRAF was also 

suggested as a predictor for the same five drugs by correla-

tion analysis, indicating an important role for this protein in 

treatment response in HER2-positive breast cancer.

The elastic-net analysis for Akt1/2 kinase inhibitor 

revealed 15 predictors, of which five were also found with 

the gene–drug correlations: CDC42, MAPK8, PAK6, PLCG1, 

and PTK6 (Figure 5 and Table S5). When more factors were 

included in the analysis, CDC42 was no longer predictive 

(Figure 5). MAPK8 was the strongest predictor for response 

to Akt1/2 kinase inhibitor. The protein and phosphorylation 

levels of MAPK8 were thus tested in the cell lines after 
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Figure 5 The five drug–gene associations found by both Spearman’s correlation and through elastic-net analysis for the Akt1/2 kinase inhibitor.
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Akt1/2 kinase-inhibitor treatment. KPL4 showed increased 

phosphorylation of MAPK8, peaking at 15 minutes’ treat-

ment, a transient increase followed by a gradual decrease 

in phosphorylation were observed in HCC1954, whereas 

no phosphorylation was observed in MDA-MB-453 or 

SUM190PT (Figure 4B).

Discussion
Treatment resistance is a challenge in cancer management, 

and for patients diagnosed with HER2-positive breast cancer, 

less than half will respond to the currently used compounds 

trastuzumab and lapatinib.2 It has been shown that HER2-

positive patients with mutation in PIK3CA and/or loss in 

PTEN are less responsive,5–8 but it is believed that other 

mechanisms are also involved.41 Therefore, more studies to 

unravel the molecular mechanisms in treatment response in 

HER2-positive cancers are crucial to obtain more precise 

treatment decisions and identify patients that will not benefit 

from the current treatment.

In this study, 13 HER2+ breast cancer cell lines, char-

acterized on PIK3CA and TP53 mutation status and PTEN 

expression, were screened with a library of 22 compounds. 

Drug responses were compared to the molecular profiles of 

the cell lines. Thirteen compounds, including inhibitors that 

targeted either of the EGFR family members, the downstream 

signaling targets Akt, HSP90, or mTOR, topoisomerase II, or 

the proteasome, were analyzed. The inhibitors of the MAPK 

pathway did not show any effect on cell viability, possibly 

because the cells were grown in two dimensions and not as 

spheroids.42 However, as only two MAPK-pathway inhibitors 

were included in the screen, one targeting MEK and the other 

the downstream molecule Erk, no conclusions could be made.

As trastuzumab and lapatinib are used in the clinic, we 

classified the cells based on response to these compounds. 

For both drugs, the cell lines were separated into three 

groups, showing significant growth-inhibiting differences 

at the second-highest concentrations (0.52 μM and 2 μM, 

respectively; P<0.001). The groups did not overlap, which 

supports the use of both trastuzumab and lapatinib for this 

patient group. However, we observed that mutated PIK3CA 

followed by an additional loss in PTEN added resistance to 

trastuzumab, which could be explained by an activation of 

the PI3K pathway, as previously suggested.5–8 We observed 

that mutation in PIK3CA led to increased resistance also to 

lapatinib, but no additional resistance due to PTEN loss. This 

is in line with a study by Xia et al,43 where a knockdown of 

PTEN by small interfering RNA did not interfere with lapa-

tinib response. HER2 patients that do not show response to 

first-line treatment are less likely to respond to subsequent 

treatments, due to de novo resistance.44,45 Several clinical 

studies have shown increased pathological complete response 

in HER2-positive breast cancer patients when trastuzumab 

is given in combination with another drug.2,46,47 Combinato-

rial treatment of HER2-positive breast cancers thus leads to 

better outcome, indicating the need to consider alternative 

pathways leading to response, in addition to HER2 status.

We were particularly interested in compounds that showed 

effect in cells that did not respond well to either trastuzumab 

or lapatinib. The Akt1/2 kinase inhibitor showed a growth 

inhibitory effect in two of the trastuzumab non-responsive 

cell lines (KPL4 and SUM190PT). Two Akt inhibitors were 

included in the compound library: API2 and Akt1/2 kinase 

inhibitor (Table S2). API2 inhibits Akt directly, and Akt1/2 

kinase inhibitor inhibits the Akt-activating kinase. All cell 

lines responded to API2, and no clear differences between 

trastuzumab-responsive groups were observed. This suggests 

that Akt could be a key target in HER2-positive cancers and 

inhibition in the PI3K pathway to avoid effects of PIK3CA 

mutation and PTEN loss may be effective, which has also 

been suggested by Wang et al.48

The two trastuzumab-nonresponsive cell lines, KPL4 

and SUM190PT (both with mutated PIK3CA and loss in 

PTEN), were significantly more sensitive to the Akt1/2 

kinase inhibitor than the rest of the cell-line panel. For 

SUM190PT, apoptosis was the main cause of decrease in 

cell viability. KPL4 did not show induced apoptosis, and 

underwent some other type of cell death or cell arrest. pAkt 

levels did indeed decrease after treatment with Akt1/2 kinase 

inhibitor in all four cell lines tested, verifying the inhibition 

of Akt phosphorylation. Through elastic-net and correlation 

analyses, several predictors for the Akt1/2 kinase-inhibitor 

response are suggested. Importantly, MAPK8 was predicted 

as the main factor, as high expression resulted in a more 

pronounced growth-inhibiting effect of the Akt1/2 kinase 

inhibitor. pMAPK8 protein levels in KPL4 increased after 

Akt1/2 kinase-inhibitor treatment, but remained constant in 

the other cell lines tested. MAPK8 is involved in regulation 

of stress-induced apoptosis and cell proliferation, and thus 

cells with high expression might be more prone to apopto-

sis. Furthermore, both KPL4 and HCC1954 showed Akt1/2 

inhibitor-dependent changes in their MAPK8-phosphoryla-

tion patterns indicate an important role for MAPK8 in the 

trastuzumab- and lapatinib-resistant HER2-positive cells. The 

four other genes (CDC42, PLCG1, PTK6, and PAK6) are in 

the same network as MAPK8, implying this network to be 

highly important for the function of this inhibitor (Figure S1).
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The cell lines submitted to elastic-net analysis were too 

few to determine the optimal amount of predictors; how-

ever, the results could still indicate mechanisms behind the 

drug response. Correlation and elastic-net analysis together 

identified 32 unique genes in 52 gene–drug associations for 

13 compounds. These gene–drug associations could poten-

tially be used as predictors for treatment outcome. However, 

all genes included in the analyses were chosen based on 

their involvement in the ErbB2 pathway. Therefore, one of 

the main cellular pathways obtained from IPA was cellular 

growth and proliferation. Five genes that predicted lapa-

tinib response were predictors for other drugs. These were 

BRAF, CDC42, GAB1, NRG4, and TGFA. BRAF, CDC42, 

and GAB1 are included in the same network (Figure S1). 

High BRAF expression led to better drug response for six 

pan-ErbB inhibitors and one proteasome inhibitor. BRAF is 

downstream from RAS in the MAPK pathway. Garnett et al13 

showed that an activating mutation in BRAF (BRAFV600E*) 

leads to resistance to afatinib (one of the inhibitors found 

to correlate with BRAF in our data). A reason might be that 

BRAF does not need the signal from the EGFR family of 

receptors, but is activated by other mechanisms, as has been 

suggested for colorectal cancers resistant to EGFR thera-

pies.49 The expression of BRAF in our data was determined 

from untreated cells. As ERBB2 was amplified in the cell 

panel, it led to higher activity and thereby higher expression 

of downstream signals, such as BRAF.

ERBB3 expression was a unique predictor for lapatinib 

response when analyzed by elastic-net analysis, but when 

considering the correlations, high ERBB3 expression corre-

lated with higher trastuzumab, everolimus, and temsirolimus 

response. High expression of ERBB3 has repeatedly been 

suggested as a mechanism of resistance to trastuzumab,46,50–53 

which leads to the development of pertuzumab, which blocks 

ErbB2–ErbB3 dimerization. However, in the elastic-net 

analysis, ERBB3 expression lost its predictor status for trastu-

zumab response in our study. Even though the trastuzumab 

response groups differed significantly, the actual difference in 

cell viability might not have been sufficient for the elastic-net 

analysis to capture, and thus these results should be viewed 

with caution.

Gene expressions of nine EGFR-family ligands54 were 

included in the analyses, of which three – EREG, NRG4, 

and TGFA – were suggested as predictors for the response of 

three drugs. High expression of NRG4 was associated with 

poorer drug response to lapatinib and Symansis CP724714, 

high TGFA expression was associated with poorer response 

to both trastuzumab and lapatinib, and high EREG  expression 

was associated with poorer trastuzumab response. High 

expression of the ligands leads to an activation of EGFR 

receptors,55 and it is likely that EREG, NRG4, and TGFA 

interfere with and activate one of the other EGFRs, thereby 

overcoming the inhibitory effects of ErbB2 inhibitors. EREG 

and NRG4 grouped into the same network, mainly consisting 

of the EGFR family and their immediate downstream signals. 

TGFA grouped into a network affected by TP53.

Although the outcome for HER2-positive breast cancer 

patients has improved with the introduction of trastuzumab 

and lapatinib, still many patients do not respond to the treat-

ment. At present, the decision on whether to offer ErbB2-

targeted therapy is solely based on gene amplification/protein 

expression of the target. However, to reveal up front whether 

a patient will benefit from the treatment, it is necessary to 

base the treatment decision on several selection criteria, as 

drug responses are not explained by one single factor.11,13 

Cells try to overcome inhibitions by rewiring their signaling 

pathways through cross talk with other signals. A mutation 

that changes the protein can overcome inhibition of another 

protein further up in the signaling cascade, as has been 

exemplified with HER2-positive breast cancer cell lines with 

activating mutations in PIK3CA.5–8 Therefore, in-depth stud-

ies for treatment response in cancer should be encouraged, to 

gain more knowledge of the genotypic and phenotypic events 

that play important roles in drug sensitivity or resistance. The 

emphasis should lie on multiple cellular events occurring 

at the same time and mutations that change the function, 

rather than focusing on one single event. This knowledge is 

of high importance for designing new, improved treatments 

that would be beneficial for patients.

Conclusion
HER2-positive cell lines showed sensitivity to PI3K/Akt-

signaling inhibitors, in particular the Akt1/2 kinase inhibitor 

were efficient in cell lines that did not respond to trastuzumab. 

Predictors for drug response were identified, and the results 

indicated that several molecular features influenced the 

growth-inhibiting effect, suggesting that several factors, 

in addition to HER2 status, have to be considered to make 

optimal treatment decisions.
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