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Abstract

The autoregressive process of order p (AR(p)) is a central model in time series analysis.
A Bayesian approach requires the user to define a prior distribution for the coefficients of
the AR(p) model. Although it is easy to write down some prior, it is not at all obvious
how to understand and interpret the prior distribution, to ensure that it behaves according
to the users prior knowledge. In this paper, we approach this problem using the recently
developed ideas of penalised complexity (PC) priors. These prior have important properties
like robustness and invariance to reparameterisations, as well as a clear interpretation. A
PC prior is computed based on specific principles, where model component complexity is
penalised in terms of deviation from simple base model formulations. In the AR(1) case,
we discuss two natural base model choices, corresponding to either independence in time
or no change in time. The latter case is illustrated in a survival model with possible time-
dependent frailty. For higher-order processes, we propose a sequential approach, where the
base model for AR(p) is the corresponding AR(p − 1) model expressed using the partial
autocorrelations. The properties of the new prior distribution is compared with the reference
prior in a simulation study.

Keywords: AR(p), latent Gaussian models, prior selection, R-INLA, robustness.

1 Introduction

Autoregressive (AR) processes are widely applied to model time-varying stochastic processes,
for example within finance, biostatistics and natural sciences (Brockwell and Davis, 2002; Chat-
field, 2003; Prado and West, 2010). Applications also include Bayesian model formulations,
often combined with Markov chain Monte Carlo computations to perform posterior and pre-
dictive inference (Albert and Chib, 1993; Chib, 1993; Barnett et al., 1996). Particularly, AR
processes are useful to model underlying latent dependency structure and they make up impor-
tant building blocks in complex hierarchical models, for example analysing spatial data (Lesage,
1997; Sahu et al., 2007; Sahu and Bakar, 2012).

In fitting an AR(p) process using a Bayesian approach, it is necessary to select prior distri-
butions for all model parameters. A simple choice is to assign uniform priors to the regression
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coefficients (Zellner, 1971; DeJong and Whiteman, 1991), but this is not optimal neither for the
first-order nor higher-order processes (Berger and Yang, 1994). Alternative approaches to de-
rive objective priors are given by Liseo and Macaro (2013), who provide a general framework
to compute both Jeffreys and reference priors using the well-known partial autocorrelation func-
tion (PACF) parameterisation (Barndorff-Nielsen and Schou, 1973). Stationarity of the AR(p)
process is equivalent to choosing the partial autocorrelations within a p-dimensional unit hyper-
cube. In general, Jeffreys priors are invariant to reparameterisations, while reference priors are
not. Liseo and Macaro (2013) recommend reference priors, at least when the order of the AR
process is smaller or equal to 4. For higher-order processes, calculation of the reference prior is
numerically cumbersome and requires extensions of their suggested numerical approximation.

This paper derives and investigates penalised complexity (PC) priors (Simpson et al., 2017)
for the partial autocorrelations of stationary AR processes of any finite order. In general, a PC
prior distribution is computed based on specific underlying principles, in which a model compo-
nent is seen as a flexible parameterisation of a simple base model structure. The main idea is to
assign a prior distribution to a measure of divergence from the flexible version of the component
to its base model and the PC prior for the relevant parameter is derived by transformation. In
the AR(1) case, we can derive two different PC priors by considering two different base models.
Define an AR(1) process of length n by xt = φxt−1 + εt, t = 1, . . . , n, where the coefficient
|φ| < 1 while εt is a zero-mean Gaussian white noise process. One possible base model is to
assume that the observations are independent, using white noise (φ = 0) as a base model. Al-
ternatively, we can view the limiting random walk case (φ = 1) as a base model, representing
no change in time. Which of these base models that represent a natural choice to derive the PC
prior depends on the relevant application.

In the higher-order AR(p) case, we introduce a sequential approach to construct a PC prior
for the pth partial autocorrelation, using the corresponding AR(p− 1) process as a base model.
The resulting joint prior density for the partial autocorrelations is consistent under marginalisa-
tion, and each of the marginals can be adjusted according to a user-defined scaling criterion. The
scaling is important and prescribes the degree of informativeness of the prior distribution. Here,
we suggest to incorporate a scaling criterion using the variance of the one-step ahead forecast
error, allowing for different rates of shrinkage for each of the partial autocorrelations. The re-
sulting prior distributions have good robustness properties and are also seen to have comparable
frequentistic properties with reference priors.

The plan of this paper is as follows. PC priors and their properties are reviewed in Section 2.
We derive PC priors for the autocorrelation coefficient of an AR(1) process in Section 3, using
the two mentioned base models. PC priors are designed to prevent overfitting and this property is
demonstrated for a real data example in Section 4, where an AR(1) process is used to model time-
dependent frailty in a Cox proportional hazard model. Contrary to previous results (Fleming
and Harrington, 2005; Yau and McGilchrist, 1998), the given data on chronic granulomatous
disease do not seem to support the additional introduction of a time-varying frailty. Extension
of the PC priors to higher-order AR processes is given in Section 5, including incorporation of
interpretable scaling parameters to adjust the rate of shrinkage. Section 6 contains simulation
results, comparing the performance of the PC and reference prior distributions, while concluding
remarks are given in Section 7.
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2 Penalised complexity priors and their properties

The framework of PC priors (Simpson et al., 2017) represents a systematic and unified approach
to compute prior distributions for parameters of model components with an inherit nested struc-
ture. A simple version of the model component is referred to as a base model, typically charac-
terised by a fixed value of the relevant parameter, while the flexible version is seen as a function
of the random parameter. The PC prior is computed to penalise deviation from the flexible
model to the fixed base model. This section gives a brief review on PC prior distributions and
their properties in the context of AR(p) processes.

2.1 A brief review on the principles underlying PC priors

The informativeness of PC priors is specified in terms of four main principles stated in Simp-
son et al. (2017). These principles are useful both to compute priors in a unified way and to
understand their properties. The principles, summarised below, express support to Occam’s ra-
zor, penalisation of model complexity using the Kullback-Leibler divergence, a constant rate
penalisation and user-defined scaling.

1. Let π(x | ξ) denote the density of a model component x where we want to assign a prior
distribution to the parameter ξ. A simpler structure of this model component is charac-
terised by a density π(x | ξ = ξ0), where ξ0 is a fixed value. This model is referred to
as a base model and in accordance with the principle of parsimony expressed by Occam’s
razor, the prior for ξ should be designed to give proper shrinkage to ξ0. This implies that
model simplicity is preferred over model complexity, and the prior will prevent overfitting.

2. For simplicity, we use the short-hand notation f1 = π(x | ξ) and f0 = π(x | ξ = ξ0) to
denote the flexible and base model, respectively. In order to characterise the complexity of
f1 compared with f0, a measure of complexity between these two densities is computed.
Specifically, a PC prior is derived using the Kullback-Leibler divergence (Kullback and
Leibler, 1951),

KLD(f1 ‖ f2) =

∫
f1(x) log

(
f1(x)

f0(x)

)
dx,

which measures the information lost when the flexible model f1 is approximated with
the simpler model f0. For zero-mean multinormal densities, calculation of the Kullback-
Leibler divergence simplifies to performing simple matrix computations on the covariance
matrices as

KLD(f1 ‖ f0) =
1

2

(
tr(Σ−10 Σ1)− n− ln

(
|Σ1|
|Σ0|

))
where fi ∼ N(0,Σi), i = 0, 1, while n is the dimension. To facilitate interpretation, the
Kullback-Leibler divergence is transformed to a unidirectional distance measure

d(ξ) = d(f1 ‖ f0) =
√

2KLD(f1 ‖ f0). (1)

This is not a distance metric in the ordinary sense, but a quantity which is interpretable as
a measure of distance from the flexible model f1 to the base model f0.

3. In choosing a prior distribution for the distance measure d(ξ), it is natural to assume that
the mode should be located at the base model while the prior density decays as the distance
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from the base model increases. The PC prior is derived based on a principle of constant
rate penalisation which is expressed by

πd(d(ξ) + δ)

πd(d(ξ))
= rδ, d(ξ), δ ≥ 0, (2)

where r ∈ (0, 1) represents the constant decay rate. This implies that the relative change
in the prior distribution for d(ξ) is independent of the actual distance. Consequently,
d(ξ) has the exponential density, π(d(ξ)) = λ exp(−λd(ξ)), where the rate parameter is
λ = − ln(r). The corresponding PC prior for ξ follows by a standard change of variable
transformation. Other prior choices for the distance d(ξ) could also be investigated but a
constant rate penalisation seems reasonable as it would be complicated to properly char-
acterise different decay rates for different distances, see Simpson et al. (2017) for further
discussion.

4. The rate λ characterises the shrinkage properties of the prior and it is important that this
parameter can be chosen (implicitly) in an intuitive and interpretable way, for example by
a user-defined probability statement for the parameter of interest. Simpson et al. (2017)
suggest to determine λ by incorporating a probability statement of tail events, e.g.

P (Q(ξ) > U) = α, (3)

where U represents an assumed upper limit for an interpretable transformation Q(ξ),
while α is a small probability. Other scaling suggestions might be just as reasonable,
depending on the specific application. In deriving PC priors for the partial autocorrela-
tions of AR(p) processes, the rate parameter is derived by imposing that the variance of
the one-step ahead forecast error should stabilise as the order of the process increases.

2.2 Important properties of PC prior distributions in the context of AR processes

The given four principles provide a strategy to calculate prior distributions for model parameters
in a systematic way, rather than turning to ad-hoc prior choices still often made in Bayesian
literature. Also, the principles can be helpful to interpret the assumed prior information and how
this influences posterior results.

A first important property of PC priors is invariance to reparameterisations. This follows
automatically as the prior is derived based on a measure of divergence between models, which
does not depend on the specific model parameterisation. We consider the invariance property to
be particularly useful in the case of autoregressive processes, as these are typically parameterised
either in terms of the regression coefficients, or by using the partial autocorrelations. The great
benefit of using the partial autocorrelations is that these give an unconstrained set of parameter
values, ensuring a positive definite correlation matrix. In contrast, the valid parameter space for
the regression coefficients is rather complicated, especially for higher-order processes (p > 3).

Second, the PC priors are designed to shrink towards well-defined base models. In the setting
of autoregressive processes, this implies that the priors will prevent overfitting, for example
in terms of selecting an unnecessarily high order of the process. In addition, the base model
can be chosen to reflect different simple structures of a model component, depending on the
given application. For an AR(1) process, we consider it to be relevant to assume either no
dependency or no change in time as simple base model formulations. For higher-order processes,
we could also choose no correlation as a base model but this might cause too much shrinkage
in many applications. As an alternative, we introduce a new sequential approach which defines
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a sequence of base models, reflecting the additional complexity in increasing the order of the
fitted AR process. It is important to realise that the rate parameter in (2) plays a very important
role as it governs shrinkage to the base model.

Third, PC priors are computationally simple and already implemented within the R-INLA
framework (Rue et al., 2009; Martins et al., 2013) for different latent Gaussian model compo-
nents. The PC priors can also be used with other software that allows for user-specified prior
distributions and for applications where the AR model refers to the observable process. The
priors are designed to have a clear interpretation as the informativeness of these distributions
is adjusted by user-defined scaling. Here, we will take advantage of this to allow for different
rates of shrinkage for priors assigned to partial autocorrelations of different lags. In contrast,
objective priors simply aim to incorporate as little information to the inference as possible.

3 PC priors for AR(1) using two different base models

We define a first-order autoregressive process by

xt = φxt−1 + εt, εt ∼ N(0, κ−1), t = 2, . . . , n,

where x1 is assumed to be normally distributed with mean 0 and marginal precision τ =
κ(1−φ2), and the variables {εt}nt=1 are independent and normally distributed random variables
with mean 0 and variance κ. The AR(1) model represents an important special case of general
autoregressive processes, in which the dependency structure is completely specified by the au-
tocorrelation coefficient φ. Using the framework of penalised complexity priors, φ is viewed as
a flexibility parameter reflecting deviation from simple fixed base model formulations. In this
section, we derive PC priors for φ both using no autocorrelation (φ = 0) and no change in time
(φ = 1) as base models, and we suggest how these priors can be scaled. A real-data application
using the latter base model is included in Section 4.

Note that we also use a penalised complexity prior for the precision parameter τ . Following
Simpson et al. (2017), this prior is derived using infinite precision as a base model, which gives
the type-2 Gumbel distribution

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), λ > 0. (4)

The rate λ is inferred using the probability statement P (1/
√
τ > U) = α, where α is a small

probability. The prior is scaled by specifying an upper limit U for the marginal standard devia-
tion 1/

√
τ , in which the corresponding rate is λ = − log(α)/U . To make an intuitive choice for

U , one can consider the marginal standard deviation after the precision τ is integrated out. For
example, if α = 0.01 this standard deviation is 0.31U (Simpson et al., 2017).

3.1 Base model: No dependency in time

In general, the correlation matrix of the first-order autoregressive process is Σ1 =
(
φ|i−j|

)
.

Choosing no autocorrelation (φ = 0) as a base model, the resulting process is white noise
with correlation matrix equal to the identity matrix, Σ0 = I . By simple matrix calculations,
the distance function (1) is seen to equal d(φ) =

√
(1− n) log(1− φ2). Using the principle

of constant rate penalisation (2), an exponential prior is assigned to d(φ) with rate θ/
√
n− 1.

The resulting prior distribution is invariant to n and by the ordinary transformation of variable
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formula, the PC prior for the one-lag autocorrelation is

π(φ) =
θ

2
exp

(
−θ
√
− ln(1− φ2)

) |φ|
(1− φ2)

√
− ln(1− φ2)

, |φ| < 1, θ > 0. (5)

The rate parameter θ is important as it influences how fast the prior shrinks towards the white
noise base model. To infer θ, we need a sensible criterion which facilitates the interpretation of
this parameter. Simpson et al. (2017) suggest to use a probability statement for an interpretable
transformation of the parameter of interest, for example in terms of tail events as defined by (3).
When the base model is φ = 0, a reasonable alternative is to define such a tail event as large
absolute correlations being less likely, i.e.

Prob(|φ| > U) = α.

This implies that θ = − ln(α)/
√
− ln(1− U2). The interpretation of this criterion is intuitive

in the first-order case, but we find it difficult to use in practice for higher-order processes. An
alternative scaling idea is presented in Section 5.2, where we consider the variance of the one-
step forecast error. We recommend the latter approach, as this is more intuitively implemented
for general AR(p) processes.

3.2 Base model: No change in time

An alternative base model for the AR(1) process is to assume that the process does not change in
time (φ = 1). This represents a limiting random walk case, being a non-stationary and singular
process. Consequently, a limiting argument is needed to derive the PC prior for φ.

Let Σ1 =
(
φ|i−j|

)
and Σ0 =

(
φ
|i−j|
0

)
where φ0 is close to 1 and φ < φ0. In this case, the

Kullback-Leibler divergence is

KLD(f1(φ) ‖ f0) =
1

2

(
1

1− φ20
(n− 2(n− 1)φ0φ+ (n− 2)φ20)− n− (n− 1) ln

(
1− φ2

1− φ20

))
.

Considering the limiting value as φ0 → 1, the distance

d(φ) = lim
φ0→1

√
2KLD(f1(φ) ‖ f0) = lim

φ0→1

√
2(n− 1)(1− φ)

1− φ20
= c
√

1− φ, |φ| < 1,

for a constant c that does not depend on φ. Since 0 ≤ d(φ) ≤ c
√

2, we assign a truncated
exponential distribution to d(φ) with rate θ/c and the resulting PC prior for φ is

π(φ) =
θ exp

(
−θ
√

1− φ
)(

1− exp
(
−
√

2θ
))

2
√

1− φ
, |φ| < 1. (6)

Again, we need to suggest an intuitive criterion to scale the prior in terms of θ. This case
requires separate consideration, as it cannot be seen as a special case of the approach in Section 5.
One option is to make use of (3), and determine (U,α) in terms of the probability statement
Prob(φ > U) = α. The solution to this equation is given implicitly by

1− exp
(
−θ
√

1− U
)

1− exp
(
−
√

2θ
) = α,

provided that α is larger than the lower limit
√

(1− U)/2.
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3.3 The PC priors versus the reference prior

The two alternative PC priors for the autocorrelation coefficient of an AR(1) process are illus-
trated in Figure 1, using rate parameter θ = 2 in (5) and (6). As already explained, these two
priors are designed to give shrinkage towards φ = 0 and φ = 1 respectively. In a given analysis,
the aim would not be to compare these two priors but choose the base model that is more suit-
able, either reflecting no correlation or no change in time. In extending the PC prior formulation
to higher-order cases we only consider the case of using no correlation as the first base model,
see Section 5.

−1.0 −0.5 0.0 0.5 1.0
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.0

0
.5

1
.0

1
.5

2
.0

φ

π
(φ

)

Figure 1: The PC priors for the coefficient φ of AR(1), using φ = 0 (solid thick line) and φ = 1
(dashed line) as base models. The rate parameters θ in (5) and (6) are set equal to 2 in both
cases. For comparison we also include the reference prior for φ (dotted line).

Figure 1 also displays the reference prior defined by π(φ) = 1
π (1 − φ2)−1/2, |φ| < 1

(Barndorff-Nielsen and Schou, 1973; Berger and Yang, 1994; Liseo and Macaro, 2013). In
general, reference priors are designed to give objective Bayesian inference in the sense of be-
ing least informative in a certain information-theoretic sense (Berger et al., 2009). This implies
that the data are given a maximum effect on the posterior estimates. In general, the reference
prior is calculated to maximise a measure of divergence from the posterior to the prior. In the
given AR(1) case, the reference prior for φ is calculated to maximise an asymptotic version of
the expected Kullback-Leibler divergence, in practice performed using an asymptotic version of
the Fisher information matrix (Barndorff-Nielsen and Schou, 1973; Liseo and Macaro, 2013).
The resulting reference prior is seen to be similar to the Jeffreys prior which is defined (up to
a constant) by the square root of the determinant of the Fisher information matrix (Liseo and
Macaro, 2013). Using a small rate parameter, the PC prior with base φ = 0 will be quite similar
to the reference/Jeffreys prior but for increasing rate parameters, the effect of shrinkage to 0 is
increased. Note that a PC prior using φ = −1 as the base model can be derived similarly as for
the φ = 1 case.
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4 Application: Modeling time-varying frailty with AR(1)

To demonstrate the use of the PC prior for the autocorrelation coefficient of AR(1), we con-
sider an example of a Cox proportional hazard model with time-varying frailty. The Cox
proportional hazard model is a popular type of survival model that can be fitted to recurrent
event data. It assumes that the time-varying hazard for the ith subject can be expressed as
h(t; i) = h0(t) exp(ηi), where the combined risk variable ηi in most cases depends on subject-
specific covariates zi and contributions from random effects/frailty. The function h0(t) is the
baseline hazard, see Fleming and Harrington (2005) for further details and applications of the
model. In the given example, our main focus is on the inclusion of a subject-specific and possibly
time-dependent frailty term in ηi.

4.1 Dependent Gaussian random effects

A full Bayesian analysis of the Cox proportional hazard model requires a model for the baseline
hazard. A natural choice is to consider the log baseline hazard as a piecewise constant function
on small time intervals, and impose smoothness to penalise deviations from a constant, see for
example Fahrmeir and Tutz (2001, Sec 8.1.1) and Rue and Held (2005, Sec. 3.3.1). Let [0, T ] be
the time interval of interest, and divide that interval into n equidistant (for simplicity) intervals
0 < t1 < t2 < · · · < tn−1 < T . Let hj , j = 1, . . . , n denote the log baseline hazard in the jth
interval. The first-order random walk (RW1) model imposes smoothing among neighbour hi’s,

π(h | τ) ∝ (ττ∗)(n−1)/2 exp

−ττ∗
2

n∑
j=2

(hj − hj−1)2
 .

This is a first-order intrinsic Gaussian Markov random field with a covariance matrix on the
form τ−1R, where the correlation matrix R is singular and of rank n− 1. The parameter τ∗ is a
positive scaling constant which is added such that the generalised variance (the geometric mean
of the diagonal elements of R−1), is 1. This is needed to make the model invariant to the size
of n and to unify the interpretation of τ , which then represents the precision of the (marginal)
deviation from the null space of R, see Sørbye and Rue (2014) and Simpson et al. (2017) for
further details. To separate the baseline hazard from the intercept, we impose the constraint∑

i hi = 0. The base model is a constant (in time) baseline hazard, which corresponds to
infinite smoothing, τ =∞. The resulting penalised complexity prior for τ is given by (4).

An interesting extension to the commonly used subject specific frailty model is to allow
the frailty term to depend on time (Yau and McGilchrist, 1998), leading to a time-dependent
combined risk variable ηi(t). Anticipating a positive correlation in time, it is natural to model
this time dependent risk using a continuous-time Ornstein-Uhlenbeck process or its discrete time
version given by AR(1). The stationary AR(1) model for subject i’s specific frailty is given by

vit | {vis, s < t} ∼ N (φvi,t−1, 1/(τv(1− φ2))),

parameterised so that τv is the marginal precision and φ is the lag-one correlation. For this model
component, the natural base model (keeping the marginal precision constant) is a time-constant
frailty, in which we use the PC prior for φ in (6). For a fixed correlation φ, the base model for
the precision τv is the constant zero which gives the type-2 Gumbel prior in (4).
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4.2 Analysis of chronic granulomatous disease data

We end this section by analysing data on chronic granulomatous disease (CGD) (Fleming and
Harrington, 2005) available in R as the cgd dataset in the survival package. This data set
consists of 128 patients from 13 hospitals with CGD. These patients participated in a double-
blinded placebo controlled randomised trial, in which a treatment using gamma interferon (γ-
IFN) was used to avoid or reduce the number of infections suffered by the patients. The recorded
number of CGD infections for each patient ranged from zero to a maximum of seven, and the
survival times are given as the times between recurrent infections on each patient. We follow Yau
and McGilchrist (1998) and introduce a deterministic time dependent covariate for each patient,
given as the time since the first infection (if any). Additionally, we include the covariates treat-
ment (placebo or γ-IFN), inherit (pattern of inheritance), age (in years), height (in cm), weight
(in kg), prophylac (use of prophylactic antibiotics at study entry), sex, region (US or Europe),
and steroids (presence of corticosteroids) (Manda and Meyer, 2005; Yau and McGilchrist, 1998).
The covariates age, height and weight were scaled before the analysis.

The computations were performed using the R-INLA package, by rewriting the model into a
larger Poisson regression, see Fahrmeir and Tutz (2001) for a more general discussion and Mar-
tino et al. (2010) for R-INLA specific details. The prior specifications are as follows. We used
a constant prior for the intercept and independent zero mean Gaussian prior with low precision,
i.e. 0.001, for all the fixed effects. For the log baseline hazard with n = 25 segments, we used
the type-2 Gumbel prior with parameters (U = 0.15/0.31, α = 0.01) giving a marginal standard
deviation for the log baseline hazard of about 0.15. This seems adequate as we do not expect
the log baseline hazard to be highly variable. The time-dependent frailty was assigned a type-2
Gumbel prior for the precision with parameters (U = 0.3/0.31, α = 0.01) giving a marginal
standard deviation of about 0.3, hence we allow for moderate subject specific variation. For the
derived prior distribution (6) for φ, we used the parameters (U = 1/2, α = 0.75), which puts
most of the prior density mass for high values of φ as P (φ > 1/2) = 0.75. This corresponds to
using a rate parameter θ ≈ 1.55 in (6).

Figure 2 (a) shows the prior (dashed) and posterior (solid) densities for the autocorrelation
coefficient of the AR(1) model for the frailty. The data hardly alters the prior density at all,
showing that there is not much information in the data available for this parameter, and we cannot
conclude anything about the time-varying frailty. This is contrary to the findings in Manda and
Meyer (2005) and Yau and McGilchrist (1998). Figure 2 (b) displays the log baseline hazard,
showing an increasing trend (additional to the deterministic time dependent covariate), but the
wide point-wise credible bands give no clear evidence for a time-dependent baseline hazard.
With the new prior we are more confident that we do not overfit the data using the more flexible
model for the log baseline hazard, as we do control the amount of deviation and its shrinkage
towards it. The given conclusions are robust to changes in the parameter choices (U,α) for the
different model components.

5 Deriving PC priors for higher-order AR processes

Define an autoregressive process of order p by

xt = φ1xt−1 + · · ·+ φpxt−p + εt, εt
iid∼ N (0, κ−1), (7)

where x = (x1, . . . , xn) is an n-dimensional vector, t = p, . . . , n, and κ is the precision of
the innovations. The corresponding p × p correlation matrix Σp is Toeplitz (Gray, 2002) with
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Figure 2: Panel (a) displays the posterior density (solid) and prior density (dashed) for the lag-
one autocorrelation φ in the AR(1) model for the time-dependent frailty. Panel (b) displays
the log baseline hazard, mean (solid), median (dashed-dotted), lower (0.025, dashed) and upper
(0.975, dotted) quantiles.

elements that can be expressed as Σij = σ|i−j|, where σ0 = 1. Although (7) is a natural param-
eterisation for known parameter values φp = (φ1, . . . , φp), it is an awkward parameterisation
when these are unknown, as the positive definiteness requirement of the correlation matrix makes
the space of validφp complicated for p > 3. This implies that it is necessary to impose a number
of non-linear constraints on these coefficients to define a stationary process.

A good alternative is to make use of the invariance property of the PC prior and define the
prior distribution for φp implicitly. The basic idea, which is commonly used when estimating
AR(p) parameters, is to assign the prior to the partial autocorrelations ψp = (ψ1, . . . , ψp) ∈
[−1, 1]q, where q = p− 1. This gives a useful unconstrained set of parameters for this problem.
Furthermore, there is a smooth bijective mapping between the partial autocorrelations and the
autocorrelations in Σp, given by the Levinson-Durbin recursions (Monahan, 1984; Golub and
van Loan, 1996).

5.1 A sequential approach to construct PC priors

In deriving PC priors for the partial autocorrelations of an AR(p) process, we suggest to use a
sequential approach, augmenting the partial autocorrelations one by one. Define ψ0 = 0 and
assume that ψp = (ψp−1, ψp) for p = 1, 2, . . . . We calculate the Kullback-Leibler divergence,
conditional on the terms already included in the model,

KLD(f1(ψp) ‖ f0(ψp−1)) =
1

2

(
tr(Σ−1p−1Σp)− n− ln

(
|Σp|
|Σp−1|

))
,

where Σ0 = I and f1 and f0 represent the densities of the AR(p) and AR(p − 1) processes,
respectively. Notice that by augmenting the partial autocorrelations ψp−1 with one (or several)
terms, the correlation structure between the first p − 1 elements of the corresponding AR(p)
process remains unchanged. As the inverse correlation matrix of the AR(p − 1) process is a
band matrix of order 2p− 1, we immediately notice that

Σ−1p Σp+r = I, r = 1, 2 . . . ,
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and tr(Σ−1p−1Σp) = n. Also,

ln

(
|Σp|
|Σp−1|

)
= ln

(∏p
i=1(1− ψ2

i )
n−i∏p−1

i=1 (1− ψ2
i )
n−i

)
= (n− p) ln(1− ψ2

p).

The resulting measure of distance from the AR(p) model to its base AR(p − 1), is only a
function of the pth order partial autocorrelation, i.e.,

d(ψp) =
√

2KLD(f1(ψp) ‖ f0(ψp−1)) =
√
−(n− p) ln(1− ψ2

p).

Applying the principle of constant rate penalisation (2), an exponential density is assigned to
d(ψp) with rate θp/

√
n− p. The resulting prior density for the pth partial autocorrelation is

π(ψp) =
θp
2

exp
(
−θp

√
− ln(1− ψ2

p)
) |ψp|

(1− ψ2
p)
√
− ln(1− ψ2

p)
, |ψp| < 1, (8)

where the parameter θp > 0 influences how fast the prior shrinks towards the base model.
The given formulation allows us to derive interpretable conditional priors for each of the

partial autocorrelations ψp, given the previous parametersψp−1. In fact, π(ψp | ψp−1) = π(ψp)
and the partial autocorrelations are seen to be consistent under marginalisation (as discussed in
West (1991) in the context of kernel density estimation). Also, the marginal for an AR(q) process
is not influenced by higher-order partial autocorrelations when these are 0, i.e. for q ≤ p:

π(ψq) =

∫
π(ψp)dψ−q = π(ψq | ψq+1 = 0, . . . , ψp = 0).

5.2 Controlling shrinkage properties

The given sequential approach implies that the prior distribution for partial autocorrelations of
different lags have the same functional form, but potentially different rate parameters. The
next step is to determine a reasonable criterion to choose the rate θp in (8). Our suggestion is
motivated by the conditional variance of the one-step ahead forecast error for an AR(p) with
fixed p,

Var ((xt+1 − x̂t+1) | xs≤t, τ) = τ−1(1− ψ2
1)(1− ψ2

2) · · · (1− ψ2
p),

and the observation that often 1− ψ2
k is an non-decreasing function with k. We assume that

E(1− ψ2
k) = 1− (1− a)bk−1, a, b ∈ [0, 1], k = 1, . . . , p,

so the one-step ahead prediction, a priori, is non-decreasing with k. This reduces the prior
specification into two parameters a and b, which have to be specified by the user. The parameter
a represents the initial expectation E(1−ψ2

1) = a. The choice b = 1 induces the same shrinkage
for all ψk while b < 1 gives increasing shrinkage for increasing k. For given values of a and b,
the corresponding value for the rate parameter in (8) is found by solving

E(1− ψ2
k) =

θk
√
π

2
exp

(
θ2k
4

+ log

(
erfc

(
θk
2

)))
= 1− (1− a)bk−1 (9)

for each k = 1, . . . , p, where erfc(z) denotes the complementary error function

erfc(z) =
2√
π

∫ ∞
z

e−t
2
dt.

11



6 Simulation results

To illustrate the properties of PC priors for the partial autocorrelations of autoregressive pro-
cesses, we conduct a simulation study in which an AR(3) process is fitted to seven different
test cases. We have chosen to present results when the length of each series is n = 50. In the
first test example, we simply generate white noise series, while in the second and third cases
we generate AR(1) processes where the autocorrelation coefficient is 0.7 and 0.9, respectively.
Further, the test cases include three examples where the underlying processes are AR(2), while
the last example is AR(3). The partial autocorrelations of the last four models were chosen to
be equal to the test examples used in Liseo and Macaro (2013). All of the generated series are
standardized to have variance one.

Root mean squared error Coverage (95%)
Test cases r̂mse1 r̂mse2 r̂mse3 ζ̂1 ζ̂2 ζ̂3
PC prior (a = b = 0.5)
1. ψ = (0, 0, 0) 0.133 0.123 0.111 0.928 0.939 0.956
2. ψ = (0.7, 0, 0) 0.106 0.118 0.103 0.912 0.961 0.968
3. ψ = (0.9, 0, 0) 0.078 0.123 0.107 0.889 0.944 0.964
4. ψ = (0.2, 0.3, 0) 0.174 0.150 0.106 0.888 0.882 0.968
5. ψ = (−0.2,−0.6, 0) 0.070 0.123 0.108 0.953 0.921 0.959
6. ψ = (0.5,−0.3, 0) 0.093 0.136 0.107 0.938 0.918 0.965
7. ψ = (0.5,−0.3,−0.1) 0.092 0.146 0.118 0.937 0.892 0.950
Reference prior
1. ψ = (0, 0, 0) 0.146 0.151 0.135 0.911 0.901 0.931
2. ψ = (0.7, 0, 0) 0.101 0.143 0.126 0.911 0.932 0.944
3. ψ = (0.9, 0, 0) 0.076 0.149 0.131 0.895 0.908 0.939
4. ψ = (0.2, 0.3, 0) 0.185 0.143 0.130 0.879 0.920 0.929
5. ψ = (−0.2,−0.6, 0) 0.070 0.111 0.133 0.949 0.933 0.934
6. ψ = (0.5,−0.3, 0) 0.092 0.133 0.130 0.939 0.923 0.938
7. ψ = (0.5,−0.3,−0.1) 0.088 0.143 0.133 0.938 0.916 0.928

Table 1: The root mean squared error and the frequentistic coverage of 95% highest posterior
density intervals for each of the estimated partial autocorrelations of AR(3) processes, using PC
priors with a = b = 0.5 and the reference prior, respectively. The given results are averaged
over 1000 simulations, and the time series length in each simulation is n = 50.

We have chosen to fit autoregressive models of order 3 to all of the generated time series
to investigate whether the order of the underlying process is overestimated. The autoregressive
models using both PC and reference priors are fitted in R-INLA, using the latent model named
ar. Further specifications for this model include the order of the process and hyperprior choices
for both the precision parameter and the partial autocorrelations. The code to specify PC priors
for the partial autocorrelations have been included in the documentation of the ar-model in
R-INLA. Also, the reference priors for the partial autocorrelations up to order 3 are specified as
”ref.ar”.

Results including root mean squared error and coverage of credible intervals in estimating
the partial autocorrelations of the different test cases are displayed in Table 1. The results are
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based on m = 1000 simulations where the average root-mean squared error is denoted by

r̂msei =

√√√√ 1

m

m∑
j=1

(ψ̂i − ψi)2, i = 1, 2, 3.

We also report frequentistic coverage, ζ̂i, i = 1, 2, 3, of the estimated 95% highest posterior
density intervals. In all test examples, the PC prior was implemented with scaling a = b = 0.5.
By solving (9), this corresponds to using rate parameters (θ1, θ2, θ3) ≈ (0.87, 1.94, 3.33) in
estimating the three partial autocorrelations. This imposes a higher rate of shrinkage to 0 as
the order of the partial autocorrelations increase. In comparing the two prior distributions, we
also considered the forecast error and coverage of 95% highest posterior density intervals for
one-step ahead predictions. The results were very similar using the PC and reference priors,
with coverage varying between 0.934 and 0.947 for all the seven cases, and these results are not
shown explicitly.

As expected, the simulation results illustrate that we avoid overfitting using the PC prior.
Specifically, in the first test case where the underlying process is white noise, the PC prior is
seen to give both smaller root mean squared error and better frequentistic coverage compared
with using the reference prior. We also notice that the use of the PC prior gives smaller error
and higher coverage in estimating ψ̂3, for all the test cases. For the other parameters, the PC and
reference priors are seen to have quite comparable performance. This implies that the PC priors
seem like a promising alternative to reference priors in estimating the partial autocorrelations
of AR(p) processes. The main advantage of PC priors is that these are easy to compute, also
for higher-order processes. Also, the PC priors are more flexible as the rate parameters can be
chosen differently for partial autocorrelations of different order.

The given approach to scale the PC prior is designed to reflect decreasing partial autocorre-
lations as the order of the process is increased. If we have reasons to believe that the partial
autocorrelations do not decrease with higher order, we suggest to scale the prior densities for
the partial autocorrelations of all lags similarly, using b = 1. We have chosen to report results
only using a = b = 0.5 but we have also investigated results using several other combinations
of the scaling parameters a and b. The main impression is that the PC priors are robust to dif-
ferent choices of a and b. Also, it is easy to understand how changes in these parameter will
induce changes in the estimates. Increasing values of a and/or decreasing values of b give more
shrinkage to 0. This will improve on the given results if the true partial autocorrelation is in fact
0 or close to 0. In contrast, more shrinkage will give higher error and lower coverage if the true
partial autocorrelation is far away from 0. In general, we recommend that a is chosen to be less
or equal to 0.5 as higher values of a might impose too must shrinkage for the first-lag partial
autocorrelation. Also, values of b less than 0.5 might impose too much shrinkage for the partial
autocorrelations of higher lags.

7 Discussion

An important aspect of statistical model fitting is to select models that are flexible enough to
capture true underlying structure but do not overfit. Among competing models we would prefer
the more parsimonious one, for example in terms of having fewer assumptions, fewer model
components or a simpler structure of model components. Hawkins (2004) describes overfitting
in terms of violating the principle of parsimony given by Occam’s razor, the models and proce-
dures used should contain all that is necessary for the modeling but nothing more. The given
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PC priors obey this principle, ensuring shrinkage to specific base models chosen to reflect prior
information.

The PC priors represent a weakly informative alternative to existing prior choices for autore-
gressive processes, allowing for user-defined scaling to adjust the informativeness of the priors.
The PC priors are computationally simple and are easily implemented for any finite order p
of the AR process in software that allows the user to define their own priors. Specifically, the
given PC priors are available within the R-INLA framework, in which AR processes can be
used as building blocks within the general class of latent Gaussian models (Rue et al., 2009).
This class of models have many applications, among others including analysis of temporal and
spatial data. A natural extension in time series applications is to derive PC priors also for autore-
gressive (integrated) moving average processes. Other useful model extensions would include
vector autoregressive models (Sims, 1980), frequently used to analyse multivariate time series,
for example within the fields of econometrics.

In this paper, we have only considered stationary AR processes and testing of stationarity
has not been addressed. In the AR(1) case, a posterior estimate of the autocorrelation coefficient
close to 1 might indicate that the true model is non-stationary. If we suspect this a priori, it might
be natural to use the random walk as the base model. Previous controversy (Phillips, 1991) in
assigning a prior density to the first-lag autocorrelation of AR(1) processes relates to whether the
stationarity condition |φ| < 1 is included, or not. Phillips (1991) argued that objective ignorance
priors, like the Jeffreys prior, should be used for AR(1) processes if no stationarity assumptions
are made, while uniform priors would give inference biased towards stationarity. One of the
problems seen with Jeffreys prior is that it puts most of its probability mass on regions of the
parameter space giving a non-stationary process (Liseo and Macaro, 2013). The reference prior
was originally only defined for stationary process but has been extended in a symmetric way
for |φ| > 1 (Berger and Yang, 1994), in which it is seen to have a more reasonable shape than
Jeffreys prior (Robert, 2007). A relevant future project is to include testing of stationarity and
study the use of PC priors also for non-stationary AR processes.
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