
Faculty of Science and Technology
Department of Computer Science

OUA: Observation Unit Autonomy
—
Emil Jønsson
Master thesis in Computer Science . . . June 2018



This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2018 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis


“So long, and thanks for all the fish.”
–Douglas Adams, The Hitchhiker’s Guide to the Galaxy





Abstract
More and more scientific equipment are being placed outside to monitor the
environment. Such observation units can benefit from increased autonomy to
function during harsh conditions and network partitioning. Environmental con-
ditions like low temperatures can damage equipment. Therefor it is important
for equipment to be able to autonomously launch countermeasures.

This thesis describes an autonomous task scheduling system called OUA: ob-
servation Unit Autonomy, which is designed to schedule tasks autonomously
on a observation unit based the units internal and external states. To schedule
tasks the system comes with a standard model that tells the scheduler what it
should expect will happen when it performs a set of actions.

Not all observation units have the same hardware, or perform the same tasks,
so a fixed model will be inaccurate. That is why the system has the ability
to improve on the model based on the data it gathers about its internal and
external state.

Experiments where run to determine if an observation unit could increase
its internal temperature to avoid damage from the environment, and what
those factors would allows the system designed here to be able to increase the
internal temperature in the observation unit.

We have will in this thesis describe the architecture, design and implementation
of a scheduling system, that schedules tasks based on temperature and network
availability in order to increase the internal temperature of an observation
unit.





Acknowledgements
I would like to thankmymain advisor professor Otto Anshus and co-advisor Pro-
fessor John Markus Bjørndalen at the University of Tromsø for their guidance,
feedback and help through the process of writing this thesis.

I would also like to thank technical staff and administration at Department of
Computer Science here at the University of Tromsø.

Finally I would like to thank my Mom for her endless support, when it comes
to me pursuing a higher education.





Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work 5
2.1 Applying autonomous sensor systems in logistics—Combining

sensor networks, RFIDs and software agents . . . . . . . . . 5
2.2 Wireless intelligent sensor network for autonomous Struc-

tural Health Monitoring . . . . . . . . . . . . . . . . . . . . 6
2.3 Automated Irrigation System Using a Wireless Sensor Net-

work and GPRS module . . . . . . . . . . . . . . . . . . . . 6
2.4 ResiDI: towards a smarter smart house system for decision-

making using wireless sensor and actuators . . . . . . . . . 7

3 Architecture 9
3.1 State(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Internal . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 External . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Monitor . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 Dataset(s) . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Analytics to improve model . . . . . . . . . . . . . . 12
3.2.2 Analytics to discover significant state . . . . . . . . . 12

vii



viii CONTENTS

3.2.3 Analytics to select workload . . . . . . . . . . . . . . 12
3.3 List(s) of workloads . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Run workload . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Design 15
4.1 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 List of workloads . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Scheduling workloads . . . . . . . . . . . . . . . . . 16

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Premade model . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Custom model . . . . . . . . . . . . . . . . . . . . . 19

4.3 Collecting state(s) . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Temperature states . . . . . . . . . . . . . . . . . . . 20

5 Implementation 21
5.1 Equipment and sensors . . . . . . . . . . . . . . . . . . . . 21
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 How the premade model is created . . . . . . . . . . 22
5.2.2 Updating the model . . . . . . . . . . . . . . . . . . 23

5.3 Scheduling algorithm . . . . . . . . . . . . . . . . . . . . . 24
5.4 Network state . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Reading temperature . . . . . . . . . . . . . . . . . . . . . 25
5.6 workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6.1 Starting a workload . . . . . . . . . . . . . . . . . . 25
5.6.2 Stoping workloads . . . . . . . . . . . . . . . . . . . 25
5.6.3 List(s) of workloads . . . . . . . . . . . . . . . . . . 26

6 Workloads 27
6.1 Disk workload . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 CPU workload . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Memory workload . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Network workload . . . . . . . . . . . . . . . . . . . . . . . 28

7 Experiments 29
7.1 Testing equipment . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 Insulation . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Freezer . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2 Different levels on insulation . . . . . . . . . . . . . . . . . 30
7.2.1 Experiment 1: no thermal insulation . . . . . . . . . 31
7.2.2 Experiment 2: 1 layer of thermal insulation . . . . . 37
7.2.3 Experiment 3: 2 layers of thermal insulation . . . . . 45
7.2.4 Experiment 1 vs Experiment 2 vs Experiment 3 . . . 51

7.3 How long between each workload run . . . . . . . . . . . . 52
7.4 Different amount of processes running at the same time . . . 53



CONTENTS ix

7.5 Amount of time to run the processes for . . . . . . . . . . . 54
7.6 Results used in the premade model . . . . . . . . . . . . . . 55

8 Discussion 57
8.1 Stop(pause) and resume workloads . . . . . . . . . . . . . . 57
8.2 In memory cache . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3 Alternative way to run workloads . . . . . . . . . . . . . . . 58
8.4 Thermal bags . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.5 Heat generated from sensor reading . . . . . . . . . . . . . 60
8.6 Finding out heat is generated over n time rather then finding

heat generated by individual tasks . . . . . . . . . . . . . . 60
8.7 Problem with having the scheduler starting the workload that

need to run at a set time . . . . . . . . . . . . . . . . . . . . 61
8.8 Might never get to update model . . . . . . . . . . . . . . . 61
8.9 Alternative way to gather data to update the model . . . . . 62
8.10 Updating the model more than once . . . . . . . . . . . . . 63
8.11 Updating the model with the number of parallel processess it

should run . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.12 Memory workload . . . . . . . . . . . . . . . . . . . . . . . 64
8.13 Alternative workload selection algorithm . . . . . . . . . . . 64
8.14 Only using the workloads that increase the temperature the

most . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Conclusion 67

10 Future work 69
10.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . 69
10.2 Reduce energy consumption . . . . . . . . . . . . . . . . . . 70
10.3 Add more sources to gather states from . . . . . . . . . . . . 70
10.4 Find a balance between how often we gather states, and power

and resource use . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 73





List of Figures
1.1 Idea for the system; data is gathered from the world, it learns

from the data, and then makes an decision based on the data,
and then that decision have an effect on the world . . . . . . 2

3.1 Architecture of system, arrows indicate data flow in system . 10

4.1 Figure shows design of system, arrows indicate who talks to
who . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Figure shows design of the scheduler in the system, arrows
indicate who talks to who . . . . . . . . . . . . . . . . . . . 16

4.3 Shows how workloads are picked to fill an block of T time of
50, where it first picks workload E the oldest workload and
then picks workload D the next in the list that was th best fit 18

5.1 Figure shows how everything is connected . . . . . . . . . . 22

7.1 Figure shows inside, outside, and CPU temperature of the ob-
servation while idle with no insulation over an 1 hour and 20
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Shows temperature when cpu workloads are run with 0 lay-
ers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.3 Shows temperature when disk workloads are run with 0 lay-
ers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.4 Shows temperature when memory workloads are run with 0
layers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.5 Shows temperature when network workloads are run with 0
layers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



xii L IST OF FIGURES

7.6 Figure shows inside and outside temperature of the obser-
vation unit as all the workloads are being run on it with 0
layers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.7 Figure shows inside, outside and cpu temperature as a cpu
workload is run with 0 layer of insulation. . . . . . . . . . . 35

7.8 Figure shows inside, outside and cpu temperature as a disk
workload is run with 0 layer of insulation. . . . . . . . . . . 35

7.9 Figure shows inside, outside and cpu temperature as a mem-
ory workload is run with 0 layer of insulation. . . . . . . . . 35

7.10 Figure shows inside, outside and cpu temperature as a net-
work workload is run with 0 layer of insulation. . . . . . . . 35

7.11 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last cpu workloads have run . . . . 36

7.12 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last network workloads have run . 36

7.13 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last disk workloads have run . . . . 37

7.14 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last memory workloads have run . 37

7.15 Figure shows inside ,outside, and CPU temperature of the ob-
servation while idle with 1 layer of insulation . . . . . . . . 38

7.16 Shows temperature when cpu workloads are run with 1 lay-
ers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.17 Shows temperature when network workloads are run with 1
layers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.18 Shows temperature when memory workloads are run with 1
layers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.19 Shows temperature when cpu workloads are run with 1 lay-
ers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.20 Figure shows inside and outside temperature of the observa-
tion unit as all the workloads are being run on it with 1 layer
of insulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.21 Figure shows inside, outside and cpu temperature as a CPU
workload is run with 1 layer of insulation. . . . . . . . . . . 42

7.22 Figure shows inside, outside and cpu temperature as a disk
workload is run with 1 layer of insulation. . . . . . . . . . . 42

7.23 Figure shows inside, outside and cpu temperature as a mem-
ory workload is run with 1 layer of insulation. . . . . . . . . 43



L IST OF FIGURES xiii

7.24 Figure shows inside, outside and cpu temperature as a net-
work workload is run with 1 layer of insulation. . . . . . . . 43

7.25 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last cpu workloads have run . . . . 44

7.26 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last network workloads have run . 44

7.27 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last disk workloads have run . . . . 44

7.28 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last memory workloads have run . 44

7.29 Figure shows inside ,outside, and CPU temperature of the ob-
servation while idle with 2 layers of insulation . . . . . . . . 46

7.30 Shows temperature when cpu workloads are run with 2 lay-
ers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.31 Shows temperature when disk workloads are run with 2 lay-
ers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.32 Shows temperature when memory workloads are run with 2
layers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.33 Shows temperature when network workloads are run with 2
layers of insulation. Measurements are over an 4 hour and 50
minute period. . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.34 Figure shows inside and outside temperature of the observa-
tion unit as all the workloads are being run on it. . . . . . . 49

7.35 Figure shows inside, outside and cpu temperature as a cpu
workload is run with 0 layer of insulation. . . . . . . . . . . 49

7.36 Figure shows inside, outside and cpu temperature as a disk
workload is run with 0 layer of insulation. . . . . . . . . . . 49

7.37 Figure shows inside, outside and cpu temperature as a mem-
ory workload is run with 2 layer of insulation. . . . . . . . . 50

7.38 Figure shows inside, outside and cpu temperature as a net-
work workload is run with 2 layer of insulation. . . . . . . . 50

7.39 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last cpu workloads have run . . . . 51

7.40 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last network workloads have run . 51

7.41 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last disk workloads have run . . . . 51

7.42 Shows temperature for inside OU, outside OU and for the OU
cpu for an hour after the last memory workloads have run . 51

7.43 Shows temperature for inside OU, outside OU when there is
1 minute between each workload . . . . . . . . . . . . . . . 52



xiv L IST OF FIGURES

7.44 Shows temperature for inside OU, outside OU when there is
10 minutes between each workload . . . . . . . . . . . . . . 52

7.45 Shows temperature for inside OU, outside OU when there is
20 minutes between each workload . . . . . . . . . . . . . . 53

7.46 Shows temperature for inside OU, outside OU when there is
30 minutes between each workload . . . . . . . . . . . . . . 53

7.47 Shows temperature for inside OU, outside OU when there is
1 only one process running at a time . . . . . . . . . . . . . 54

7.48 Shows temperature for inside OU, outside OU when there is
2 processes running in parallel . . . . . . . . . . . . . . . . 54

7.49 Shows temperature for inside OU, outside OU when there is
3 processes running in parallel . . . . . . . . . . . . . . . . 54

7.50 Shows temperature for inside OU, outside OU when there is
4 processes running in parallel . . . . . . . . . . . . . . . . 54

7.51 figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.52 figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.53 figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.54 Shows temperature for inside OU, outside OU when work-

loads run for 4 minutes . . . . . . . . . . . . . . . . . . . . 55

8.1 Alternative system for notifying the scheduler that a task needs
scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of Tables
7.1 Average change in temperature inside the observation unit(with

0 layers of insulation) right after a workload and 10 minutes
after a workload has run . . . . . . . . . . . . . . . . . . . 36

7.2 Tabel shows average change in temperature right after a work-
load and 10 minutes after a workload . . . . . . . . . . . . 43

7.3 Shows differences in temperature outside observation unit
durring workloads and once all workloads are done running 45

7.4 Shows differences in temperature inside observation unit dur-
ring workloads and once all workloads are done running . . 45

7.5 Tabel shows average change in temperature right after a work-
load and 10 minutes after a workload . . . . . . . . . . . . 50

7.6 tabel shows values for premade model . . . . . . . . . . . . 56

xv





List of Algorithms
1 Create data for premade model . . . . . . . . . . . . . . . . 22
2 Scheduling algorithm . . . . . . . . . . . . . . . . . . . . . 24

3 Alternative way to gather data to update the model . . . . . 62

xvii





1
Introduction
Monitoring the arctic tundra and seeing how its ecosystem is affected by
climate change is important as it is more affected than most other ecosystems
on earth.[1] A project doing this is COAT(Climate Ecological Observatory for
the Arctic Tundra)[1][2]. Coat aims to monitor the arctic, as well as model and
predict impact of climate change.

A problem posed when monitoring in the arctic is the cold. The solder on the
hardware in the monitoring equipment will become brittle when it reaches
below a certain temperature[3][4]. Another problem these monitoring device
might have is intermittent connectivity, making it use resources to try and send
data when it can’t.

One of the things that can be improved on these devices, is to increase the
autonomy of these devices, and have themmake some of the decisions normally
made by humans. By making these devices more autonomous, we could have
them regulate their temperature to avoid them being damaged by the cold
temperatures. Or have it decided what is the best time to send data.

We propose a system called OUA, observation unit autonomy. A system for
autonomously scheduling workloads based on internal and external state of
the observation unit. The system monitors the internal and external states of
the observation unit, and based on the states it collects and its model it makes
decisions about what to do.

1



2 CHAPTER 1 INTRODUCT ION

Since not every observation unit are affected the same way by things, a model
that works for one observation unit might not be accurate for another. Therefor
it has the ability to update the model it uses to decide what action to take(like
increase the temperature inside the device by sending some data).

1.1 Idea
A platform for the observation unit to increase autonomous operations based
on data about itself and its surrounding. This is done by collecting data that
can be used to establish internal and external states. The purpose of this data
is to make the observation unit more autonomous.

Figure 1.1: Idea for the system; data is gathered from the world, it learns from the
data, and then makes an decision based on the data, and then that decision
have an effect on the world

The technical requirements are:

• Collect data about internal and external states of the observation unit.
• Analyse the data concerning internal and external state, to create a model

that tells it what the effect on an action will have
• Learn and improve based on the data
• Make autonomous decisions about what actions it should take.



1.2 CONTR IBUT ION 3

1.2 Contribution
This thesis makes the following contributions;

• Lessons learned about how one can schedule workloads autonomously:
– How to pick tasks
– How to update model
– How to starts tasks
– How to gather states
– How to analyse states

• Architecture, design, and implementation of a autonomous scheduling
system for observation units.

• Insigth into if a process(workload) can be used to increase the tempera-
ture inside a device.

1.3 Outline
This report consists of 10 chapters including the introduction chapter.

Chapter 2 talks about the related work in the WSN and automation field. It
describes the work and compares it to the OUA system presented in this
thesis.

Chapter 3 shows a detailed overview of the architecture of the system.
Chapter 4 shows a detailed overview of the design of the system.
Chapter 5 goes into detail about how the system was implemented and what

tools were used to build the system.
Chapter 6 explains how each simulation of a workload was implemented both

for use in testing as well as when running the scheduler
Chapter 7 describes and discusses the experiments and the results that were

done to see what if the heat generated from a process could increase the
temperature inside a observation unit.

Chapter 8 discussion design and implementation decisions about the sched-
uler, workloads.

Chapter 9 conclustion concludes the thesis
Chapter 10 has sugestions for future work for ways to improve the system.





2
Related work
In this chapter we focus on previously related work. The related work we will
be looking at is one where they use sensors to create an autonomous system.
We will also look at how they differ from the OUA system we created.

2.1 Applying autonomous sensor systems in
logistics—Combining sensor networks, RFIDs
and software agents

The paper Applying autonomous sensor systems in logistics—Combining sen-
sor networks[5], RFIDs and software agents, describes a system that uses
sensors, RFIDs and software agents to autonomously monitor agricultural
products.

The system monitors and reports on conditions that affects the quality and
degree of ripeness in the agricultural products; temperature, humidity , illumi-
nation, acceleration/shock, and the gaseous hormone ethylene.

Instead of reporting detailed sensor information back to the end user the system
reports statements about the freights conditions. To do this the system assessing
unit configures itself to the specific agricultural product it is transporting. To
do this it reads data about what it is transporting of a RFID labels.

5



6 CHAPTER 2 RELATED WORK

Althoughboth this system and theOUA system are autonomous system there are
differences. One is that decisions about what to do under different conditions
are made by the end user in this system, but in OUA are made by the system
itself. Making OUA even more autonomous then this system.

2.2 Wireless intelligent sensor network for
autonomous Structural Health Monitoring

The paper Wireless intelligent sensor network for autonomous structural health
monitoring[6], describes a system that uses sensor nodes to autonomously
monitor the structural health of civil infrastructure, such as bridges.

The sensors nodes in this structural health monitoring(SHM) system are or-
ganised into a two level architecture. The architecture has 3 types of nodes,
sensor nodes, cluster heads and super nodes.

Sensor nodes are nodes that use little power and usually have a battery attached
to them, cluster heads are more powerful nodes that are connected to a more
powerfull energy source like solar panels or a power line. Supernodes, are like
more powerful cluster heads with more computational power.

To reduce energy use, one thing the SHM system does is to have the sensor
nodes send data to the cluster head/super nodes. This is so it can broadcast
the data long distances but also so that the sensor nodes does not have to do
any computational work, allowing it to save energy.

Unlike the OUA system, here they don’t need to schedule work. This is because
the sensor nodes all send their “work” to the cluster heads or supernodes.

2.3 Automated Irrigation System Using a
Wireless Sensor Network and GPRS module

The paper Automated irrigation system using a wireless sensor network and
GPRS module[7] presents an approach for irrigating agricultural crops using
a distributed wireless sensor network. They describe the development of an
automated irrigation system that uses microcontrollers and wireless commu-
nication. The aim of the system was to show that automated irrigation would
reduce water use for agricultural crops.



2.4 RES ID I : TOWARDS A SMARTER SMART HOUSE SYSTEM FOR
DEC IS ION-MAK ING US ING W IRELESS SENSOR AND ACTUATORS 7

The automated system consist of two components, a wireless information unit
and a wireless sensor unit. The wireless sensor unit collects sensor data about
moisture and temperature, packages the data, sends the data to the wireless
information unit and then sleeps. While on the wireless information unit, the
data is received, identified, recorded and analysed. The wireless information
unit makes decision about when to run the irrigation system based on the data
it has gathered from its wireless sensor units.

The main difference between this system and the OUA system is that here data
is gathered by a set of nodes, and sent back to a single node to make a decision.
While on the OUA system decision are made locally.

2.4 ResiDI: towards a smarter smart house
system for decision-making using wireless
sensor and actuators

The article “ResiDI: Towards a smarter smart home system for decision-making
using wireless sensors and actuators”[8] describes an autonomous system for
a smart house using wsn and actuators.

The system splits the nodes in the network into four types. Sensor nodes, a
type of node that collects data. Decider nodes, a node that receives the data
from the sensor nodes, processes it and makes a decision with the data. The
decision is forwarded to the next type of a node, the actuator node. This node
performance the action it is told to do by the decider node. The last type of node
is the sink node, this node handles th external communications, performance
updates and trains the neural network used for decision making.

The system has a trained an artificial neural network, that it uses to find the
actions it should perform.

This system differs from the OUA system in 2 ways, it consist of multiple nodes,
and each node does not make its own decisions, gather its own data, or execute
its own actions,but rather they have different type of nods that have specialised
in doing each type of job.

The second way it differs is that they use an artificial neural network to find
the best action to perform.





3
Architecture
OUA is a platform that schedule workloads on a observation unit autonomously
based on the internal and external states of the observation unit. The system
architecture can be broken into three parts(see figure 3.1);

1. The states that affect the observation unit.
2. The analysis of the states that affects the observation unit.
3. Choosing a workload to run based on those states.

9



10 CHAPTER 3 ARCH ITECTURE

Figure 3.1: Architecture of system, arrows indicate data flow in system

3.1 State(s)
The states in the program are various variables(weather, temperature, internett
access) the program has gathered and that the scheduler has to take into
account when making a decision to do something. The scheduler has two types
of states, external and internal.

3.1.1 Internal
Internal state is data about the state inside the observation unit, that the
observation unit have gathered itself. The internal state can both be states the
the observation unit have some degree of control over(battery, power usage)
and states that it has no control over(temperature inside the observation
unit).



3.2 ANALYT ICS 11

3.1.2 External
External state is data about the state outside the observation unit, that both
the observation unit have gathered, as well as other data from other sources.
The external satte is a state that the observation unit have no control over(i.e
temperature outside the observation unit)

3.1.3 Monitor
The OUA system has functionality called a monitor. Its job is to gather the
internal and external states. Sources for it;

1. Sensors reading states outside and inside the observation unit.
2. Log of successful package send times

The monitor checks the sources, and retrieves a set of states from the sources.
Once it has gathered the states it formats the states according to a set of
specifications, turning it to a string of formatted data. After that the formatted
data is written into a local dataset that contain the same type of formatted
data.

3.1.4 Dataset(s)
The dataset is a collection of data about the states gathered by the monitor.
These datasets that are created on the observation unit are stored locally on
the observation unit. The datasets are formatted data organized into a data
structure.

3.2 Analytics
The datasets are used by the scheduler for analytics. The scheduler has three
types of analytics;

1. Analytics using the data to improve model.
2. Analytics using the data to find significant states.
3. Analytics to find the correct workload.



12 CHAPTER 3 ARCH ITECTURE

3.2.1 Analytics to improve model
To begin with the observation unit has a predefined model, this is a gen-
eral model for an observation unit and not specific for the this observation
unit. This model was created using analysis before the observation unit was
deployed.

The first type of analytics the scheduler has, is looking at all the states we have
gathered and analysing them. This is to get a more accurate model of what
happens when we perform a set of workloads in a certain state.

3.2.2 Analytics to discover significant state
The second type of analytics analyses the most recent state and if it is discovered
that this is a state where the scheduler wants to do something based on the
model it has, it will move on to the analytics to select a workload for that
state.(subsection 3.2.3).

3.2.3 Analytics to select workload
The last type of analytics try to find the appropriate workloads to do(from the
lists of workloads) when a significant state has been found.

From the list of workloads a workload or a set of workloads are picked to be
executed. The workload or workloads that are picked will be the one that best
meets the requirements for the workload or workloads needed(requirements
such as, do we have internett now) in that current state.

3.3 List(s) of workloads
The scheduler has a list of workloads that other programs wants the scheduler
to run. These workloads can be both workloads that needs to be executed at
a certain time or workloads that can be executed when the scheduler wants.
The workloads that are going to be scheduled are added to the lists by the
programs themself.



3.4 RUN WORKLOAD 13

3.4 Run workload
All the workloads that are added to the lists of workloads are started by the
scheduler. When the scheduler decides that it want to run a workload, it selects
a set a workloads from the list of workloads, and then starts them.





4
Design
The previous section described a high level view, the architecture, of the OUA
platform. This section gives a more detailed design overview(figure 4.1 and
4.2) of how the scheduler works by looking at how the workloads are found
and started and how the states of the observation unit is gathered and anal-
ysed

Figure 4.1: Figure shows design of system, arrows indicate who talks to who

15



16 CHAPTER 4 DES IGN

Figure 4.2: Figure shows design of the scheduler in the system, arrows indicate who
talks to who

4.1 Workloads
The workloads that other programs need to have scheduled are programs that
the scheduler have the power to start.

4.1.1 List of workloads
The lists of upcoming and available workloads that the scheduler has access to
are a set of files that contain lists of workloads. These files contains the name
of the workload, the duration the workload will need to run, and in some cases
a timestamp for when the workload should run(in the case when the workload
needs to run at a set time). The workload lists are written to by the programs
using the scheduler and not the scheduler.

4.1.2 Scheduling workloads
Workloads that are to be executed on the Observation Unit are grouped in
either one of two ways;

1. A workload that needs to be scheduled at a specified time.
2. A workload that can be scheduled whenever it is optimal for the obser-

vation unit.

Scheduling workloads at a set time
Someworkloads need to be run a certain intervals or times. When the scheduler
wants to run a workload, and start to look in the list of workloads. It will first



4.1 WORKLOADS 17

check if any workloads are already assigned to run during the time period it
wants to schedule work. If it finds that a workload is already going to be run
during that period, it will stop looking for work to schedule during that time.
And it checks when the workload will finish, and checks the state again after
the workload is done running to see if it should run any more workloads.

Workloads that are assigned to run at certain times, will be started by the
programs that use the scheduler(the scheduler has no control over this program,
it is only notified through the workloads list that a workloads is going to run
at a set time). This is so that the scheduler won’t miss a scheduling that should
have happened when it sleeps between schedulings.

Scheduling workloads at arbitrary times
Some workloads don’t need to be run at certain times, and can be started when
it best suits the observation unit. These workloads are under the control of the
scheduler. When the schedulers model says to run a workload, it will find a
set of workloads from the workloads lists that will run for t amount of time.
These workloads will run until completed, and these is no limit to how long a
workload can run for(in section 8.1 the effect of this will be discussed in more
detail).

Since these workloads are under the control of the scheduler they are also
started by the scheduler and not by the programs that add them to the work-
loads lists.

Making sure no workload starves
When picking workloads to run, it is important that we pick a workloads so
that all workloads get to run at some point in time. To avoid the problem of
making sure all workloads getting to run, the algorithm for picking a workloads
starts by picking the workload that have been in the lists the longest. It then
needs to check if the run time of the selected workload takes t amount of time
to run or if its needs to find more workloads to run.

If the runtime is less than t amount of time. It will then check the workload that
has been in the list the second longest. If it’s run time + the run time of the
workload already to the block of workloads that he scheduler are going is less
then or equal to the max runtime that is sent for a block of workloads(t1 + t2
<=t). Then we add it to the block of workloads the scheduler are going to run.
If if is more then it will move on down the list of available workloads starting
from the back, and continuing until it fills up the entire block of workloads the



18 CHAPTER 4 DES IGN

scheduler is going to run(figure 4.3 shows exampel of how it works).

Figure 4.3: Shows how workloads are picked to fill an block of T time of 50, where it
first picks workload E the oldest workload and then picks workload D the
next in the list that was th best fit

Starting workloads
When the list of workloads that the scheduler wants to run is selected, it is
time to run it. The scheduler starts by starting the first program in the list it
has gathered as its own process. It will then wait for the workload it started to
finish and then run the next in the list. It will continue to do this until the list
of workloads are complete. Sometimes the scheduler has created multiple lists
of workloads it wants to run concurrently. When this happens the scheduler
will the start the first workload in each of the lists concurrently with each other,



4.2 MODEL 19

and run all workloads lists concurrently.

4.2 Model
The model of an observation unit is used to describe how the temperature
changes based on the behavior of a action that the scheduler might do or a
future state as a result of a action/non-action. When the observation unit
reaches the threshold temperature set, it will schedule workloads based on the
model(how long to run workloads for and how long to wait between each time
it runs workloads).

The scheduler has two models; a pre-made model that it starts with, and a more
accurate custom model that it builds as it runs workloads over time.

4.2.1 Premade model
A premade model is a model that was created to be used initially for schedul-
ing until the scheduler itself can create a better and more accurate custom
model specifically for that observation unit. The premade mode can be created
by either a different scheduler, or by the scheduler it self(with the help of
humans).

4.2.2 Custommodel
Once enough data has been collected, the scheduler will create a new model
based on the data it collected. And after it has created the model it will update
itself with the model and use it when scheduling workloads. The new custom
model is created the same way as the old model, the only difference is that
it uses data that is specific for that observation unit, rather than data that is
specific for another observation unit.

4.3 Collecting state(s)
The observation unit has datasets on four states;

1. The network state, which has data showing at what times the network
connection is up.

2. The temperature inside the case of the observation unit.



20 CHAPTER 4 DES IGN

3. The temperature of the CPU on observation unit.
4. The temperature outside the case of the observation unit.

4.3.1 Temperature states
The observation unit collects temperatures inside and outside the observation
unit;

There are two temperatures inside the observation unit that is gathered. The
first one is the temperature inside the casing containing the OU hardware. This
temperature is gathered by having a temperature sensor read the temperature,
and logging it to the file system of the observation unit. The second temperature
gathered is the cpu temperature, this temperature is gathered by reading the
cpu temperature and logging it to the file system of the observation unit.

The temperature outside the observation unit is gathered by a sensor that is
outside the observation unit. The sensor data from the outside sensors are
logged to the file system on the observation unit.



5
Implementation
5.1 Equipment and sensors
The system is implemented using Python 2.7[9]. The system runs on a obser-
vation unit that is a Raspberry Pi 3 model B[10] running Raspbian version
9(“stretch”). To get the temperatures that was needed, two temperature sen-
sors were connected to the Raspberry Pi(figure 5.1). One inside the protective
case, and one outside the case.

For the sensors to find the outside and inside temperature of the observation
unit, the DHT22[11] temperature and humidity sensor was used. To get the
DHT22 sensors to work, the python adafruit DHT library[12] is used. To gather
data on the CPU temperature the monitor function uses the gpiozero python
library[13] to read the temperature.

To power the observation unit, it is connected to a power outlet on a wall.
For the observation unit to have Internet it uses a wired ethernet connection
because the observation unit is placed in a freezer for some of the experiments,
and therefore cannot use WIFI to communicate as the freezer blocks the
signals.

21



22 CHAPTER 5 IMPLEMENTAT ION

Figure 5.1: Figure shows how everything is connected

5.2 Model
To create any of the models, it requires that we find out two things. Number
one is how long does it take to regenerate n amount of heat inside the case of
the observation unit, and number two is how long does it take for n amount of
heat to dissipate inside the case of the observation unit.

5.2.1 How the premade model is created
To generate the data needed for the premade model, the four different types
of workloads are run like this for each workload:

Algorithm 1 Create data for premade model

1: for EachWorkloadType do
2: for i < 25 do
3: run workload for 2 minutes
4: sleep 10 minutes
5: end for
6: sleep for 1 hour
7: end for

Once the data has been gathered we first try to find howmuch heat is generated
by a workload. For each dataset we have on the workloads, we compare the the
temperature before a workload starts, and after a workload starts. We do this
for the entire dataset for that workload. After that we find the average for those
values. We now have the average temperature increase for a 2 minute workload.
We repeat the same steps for each of the different workload types.



5.2 MODEL 23

Next we take all average temperature increase values from the different work-
loads, and we average them. We can now with this find how long it will take
to increase the temperature n amount. We use this for the premade model to
define how long a workload should run for so it increases the temperature with
n amount.

Next we need to find out how long it will take for the temperature to drop inside
a observation unit after a workload has run. Here we go over each dataset for
each workload. We compare the temperature after a workload has run to one
of the temperatures that comes after. And we see how much the temperature
has dropped. We then do that for the entire dataset. After that we take all the
values of the drop in temperature and find the average amount of temperature
the that fell after a workload from those values. We repeat this process for
each type of workload. After that we take those average temperatures and
average them to find the average of any workload. We can now use this for the
premade model to define how long it should wait before checking if it should
run another set of workloads.

Lastly we manually update the code with the model we created.

5.2.2 Updating the model
To update the model we need to gather data first. So first we use the premade
model while we gather n amount of data. After the we gather the required
amount of data we can start the analyses of the data to update the model.

Next step is analyzing how heat is generated by a workload. This is done by
looking at the temperature before a workload and after a workload. We do
this for the entire dataset. And then we calculate the average of those values.
With this we can calculate how much how long we need to run a workload for
to increase the temperature n amount. Then we can use this information to
update the model with the new time it needs to run workloads for.

To update the mode for the time it should wait before it checks if it needs to
run a workload. We analyse the data, by comparing the temperature after a
workload, and the next temperature reading that is taken. We then do this for
our entire dataset, and we average the results. To find the average temperature
drop in a given time span. Using the average temperature drop over n time,
we calculate how long it would take for temperature to drop n amount. Lastly
we update the model with this information, so it can know how long to sleep
between each time it checks if it needs to run a workload.



24 CHAPTER 5 IMPLEMENTAT ION

5.3 Scheduling algorithm
The scheduling of workloads is done by a scheduling algorithm(Algorithm 2).
It first checks if there is a conditions that warrants a workload to run. The
next step is to check whether a workload is already set to run now(a workload
that has to run at a specific time), if such a workload is found. The algorithm
stops and starts again when a new condition is found. If it does not find such a
workload it checks if it should run network workloads, by checking the network
model. If it finds out it should run network workloads, it will select the network
workloads from the list of workloads. If it finds it does not need to run network
workloads, it will pick any workload to run.

The scheduling algorithm model also eventually needs to be updated to better
match the observation unit it is running on. But to do this we first needs to
gather data, so the scheduling algorithm will first use the premade model,
and when it determines it has gathered enough data. To update how long a
workload block should be, it first waits until it has scheduled workloads N times.
It then calculates the new values for how long a workload block should be(as
described in section 5.2.2). To update how long it should sleep for it needs to
gather N entries of workloads running and then waiting at least T time before
starting a new workload. This is done by having timer keeping track of how
long it was since the last workload ran. Once it has all this data it will update
the model with new values that better match this observation unit.

Algorithm 2 Scheduling algorithm

1: while True do
2: if data collected >= N then
3: Update Model
4: end if
5: if Temperature <= MinimumTemperature then
6: if NoScheduledwork then
7: if NetworkAvailable then
8: Do workload that requiers network
9: else
10: Do any workload that dont requiere network
11: end if
12: end if
13: else
14: Sleep
15: end if
16: end while



5.4 NETWORK STATE 25

5.4 Network state
The network state in the program is just a model of the uptime of a network.
This simulation is implemented as a list of times, with a start time and an end
time for when the network is up. The network checker will look at this list of
times and compare it to the current time. If the current time falls in the range
of the one of times in the list, it will report the network sa up. Else the network
is down.

5.5 Reading temperature
The reading of the temperature is done during two different times, one is at a
set interval and the other is after the scheduler has run a block of workloads.
To read the temperature at set intervals, we have a seperate thread that reads
the temperature every 60 seconds.

5.6 workloads
For the workloads, the we have implemented simulations of 4 different types
of workloads, a disk workload, a cpu workload, a memory workload, and a
network workload(more about each workload in chapter 6). These workloads
are implemented as python processes.

5.6.1 Starting a workload
All workloads are run as their own programs(processes). They are started by
using the python subprocesses library.

5.6.2 Stoping workloads
All the workloads will either run for a very long time or forever. This was
implemented so that we could more precisely control how long a workload
runs for, by killing it. The way we kill a workload is a by searching with the
process name and getting the PID. with the process PID we can send a kill
command to terminate the process.



26 CHAPTER 5 IMPLEMENTAT ION

5.6.3 List(s) of workloads
Workloads are stored in lists(textfiles) on the local file system. When a program
wants to add a workload it appends it to the lists. Adding it to the bottom of
the file. When a program appends the workload to the file, it adds the name
of the workload(the name of the python program) and the duration of time
the workload runs for. For the workloads that need to run at a set time, it also
adds a timestamp for when the workload will run.



6
Workloads
The system has four different types of work that uses a lot of a resource on a
computer;

6.1 Disk workload
The disk workload is a workload consisting of a series of writes to a file on
on disk. The workload starts by creating a file. After that it writes random
10240000 bytes(arbitrary large number chosen) to the file on disk using the
pythons os.urandom method. The next step is to delete the file and then it
starts over again creating the file and filling it up. It will repeat this process
1000 times(arbitrary large number chosen) or until killed by the scheduler
program.

6.2 CPU workload
The CPU workload is a workload that try and use as much of the CPU as possible.
To do this the workload loops over a range of numbers from 2 to 1000000
trying to find every primes. To find these primes it loops over the numbers and
then for each number it compares it to all the numbers it has already looped
over. The workload will continue to search for prime numbers until it reaches

27



28 CHAPTER 6 WORKLOADS

the max number(1000000) or until interrupted.

6.3 Memory workload
The memory workload is a workload that tries to put as much pressure as
possible on the memory usage. To do this the workload reads a 3367 byte file
into memory. Then the workload starts at the beginning of the file searching
word by word for a specific word(this word is placed at the end of the file),
once the word is found the word resets to the beginning of the position of
the file in memory and starts again. It will keep doing this forever or until
interrupted.

6.4 Network workload
The network workload is a workload that generates a lot of network traffic. To
do this the workload is client that talks to a server. The client first creates a file
if random 10240000 bytes generated by the os.urandom method. After that
the clients opens a connection to a remote server and then reads a chunk of
65536 bytes from the disk, it then sends the chunk to the remote server. It will
continue to send chunks until it reaches the end of the file we created. After
that it sleeps for 1 second and then starts sending the file again using the same
sending technique as described above.



7
Experiments
The experiments chapters consist of how insulation affects workloads ability
to increase the temperature inside an observation unit, an analysis of how
different types of workloads affect temperatures, and what parameters when
running the workloads affect the temperature.

The system is configured with a Raspberry Pi 3 model B running the OUA
system. A macbook pro(3,3 Ghz Intel Core i7, 16GB memory) runs the remote
server for the network workloads.

All the measurements are performed on the raspberry pi.

7.1 Testing equipment
7.1.1 Insulation
To keep the observation unit warm, we need to insulate it. For insulation
we placed the observation unit in thermal bags. To increase the amount of
insulation(from 1 layer to 2 layers) we put the observation unit into a thermal
bag and then placed that thermal bag into another bag.

29



30 CHAPTER 7 EXPER IMENTS

7.1.2 Freezer
To run experiments in low temperatures a freezer was used. The freezer used
for the experiments is a Matsui 98L freezer chest(M98CFW15E). The freezer
has 7 temperature settings. The temperature in the freezer will go as low as
about -20°C according the documentation(measurements during experiments
showed it can go lower) when the settings is set to 7. For the experiments
where the freezer was used, the setting was set to 6(setting 6 was chosen over
setting 7 as setting 7 is used for freezing items. And it should be dial down
from seting 7 after 24 hours according to the manual) and the temperature
here is about -18°C(but can dip lower). The freezer temperature fluctuates up
and down. When the freezer reaches a set temperature it will stop cooling(this
can be seen on figure 7.6), and then the temperature starts going up again.
When it reaches a set point it will start to cool down again.

7.2 Different levels on insulation
To measure how much of an impact thermal insulation has on the observation
unit, we test the observation unit with increasing number of layers of insulation.
We split the measurements into 3 experiments. Experiment 1 has no insulation
just the protective casing. Experiment 2 has one layer of thermal insulation,
and Experiment 3 has 2 layers of thermal insulation.

For all the Experiments here, we placed the observation unit running the OUA
system in a freezer. While in the freezer it had a wired internet connection and
power from the power grid.

We measure the workloads with different levels of insulation by running them
as follows for each workload:

• Step 1: run a workload for 2 minutes.
• Step 2: sleep 10 minutes.
• Step 3: repeat step 1 and 2, 25 times for the selected workload
• Step 4: sleep 60 minutes.
• Step 5 select a new type of workload and start start at step 1 again.

The temperatures are sampled once every 1 minute for the CPU, inside the
observation unit and outside the observation unit. The same temperatures
are also sampled once before a workloads starts and after a workload is done
running.



7.2 D IFFERENT LEVELS ON INSULAT ION 31

7.2.1 Experiment 1: no thermal insulation
On figure 7.1 we see the temperature inside the observation unit, outside the
observation unit, and for the CPU on the observation unit, while the observation
unit is idle with no insulation.

Figure 7.1: Figure shows inside, outside, and CPU temperature of the observation
while idle with no insulation over an 1 hour and 20 minute period.

On figures 7.2, 7.3, 7.4, 7.5 we see the inside and outside temperature when
running a CPU workload, a disk workload, a memory workload, and a network
workload. We see on these graphs that the inside temperature decreases as
the outside temperature decreases, and increases as the outside temperature
increase.

The outside temperature fluctuates up and down, as the freezer starts the heat
pump(to remove the hot air) when the temperature gets to high and stops
when it reaches a certain threshold.



32 CHAPTER 7 EXPER IMENTS

Figure 7.2: Shows temperature when cpu workloads are run with 0 layers of insulation.
Measurements are over an 4 hour and 50 minute period.

Figure 7.3: Shows temperaturewhen diskworkloads are runwith0 layers of insulation.
Measurements are over an 4 hour and 50 minute period.



7.2 D IFFERENT LEVELS ON INSULAT ION 33

Figure 7.4: Shows temperature when memory workloads are run with 0 layers of
insulation. Measurements are over an 4 hour and 50 minute period.

Figure 7.5: Shows temperature when network workloads are run with 0 layers of
insulation. Measurements are over an 4 hour and 50 minute period.

We see from figure 7.6 that the temperature inside the observation unit stays
within a range of about -18 celsius and -20 celsius, while the outside tempera-



34 CHAPTER 7 EXPER IMENTS

ture fluctuates between -16.5 celsius and -22.5 celsius.

Figure 7.6: Figure shows inside and outside temperature of the observation unit as all
theworkloads are being run on itwith0 layers of insulation. Measurements
are over an 4 hour and 50 minute period.

These readings(figure 7.6) indicate that the inside of the observation unit
have a few degrees of difference between the outside temperature of the
observation unit. We also see that the temperature outside thave a strong
effect on the temperature inside, as we see the temperature inside rises when
the temperature outside goes up and temperature inside goes down as it does
down outside.

We also see that the outside temperature is higher than the inside temperature
sometimes. This might be because the observation unit has trapped cold air
inside the casing, and the air inside the casing will go up and down with the
outside temperature but it will not change as fast, causing lower fluxuations
when the temperature outside fluxuates.

From this we gather that what affects the inside temperature of the observa-
tion unit the most, is the outside temperature and not any workloads being
run.



7.2 D IFFERENT LEVELS ON INSULAT ION 35

Figure 7.7: Figure shows inside, outside
and cpu temperature as a cpu
workload is run with 0 layer of
insulation.

Figure 7.8: Figure shows inside, outside
and cpu temperature as a disk
workload is run with 0 layer of
insulation.

On figures 7.7, 7.8, 7.9 and 7.10 we see how the inside temperature, outside
temperature and the CPU temperature for the observation unit changes when
we run one workload for 2 minutes and then wait for 10 minutes. For the CPU
workload we see that the CPU temperature rises right away when the workload
starts, and peaks at 40°C. When the workloads stops, the CPU temperature
drops straight down after the workload has finished(it is almost back down
to the original temperature a few second after the workload is done) and
does not increase until the next workload starts. Both the inside and outside
temperature stays about the same when the workload runs, as well as when
the workload is done running.

For the disk workload we see that the cpu temperature goes up when the work-
load starts and reaches 20°C and when the workload stops drops down again.
Both the inside temperature and the outside temperature of the observation
unit is unaffected by this both while the workload is running and after it is
done running.

Figure 7.9: Figure shows inside, outside
and cpu temperature as a mem-
ory workload is run with 0
layer of insulation.

Figure 7.10: Figure shows inside, outside
and cpu temperature as a net-
work workload is run with 0
layer of insulation.



36 CHAPTER 7 EXPER IMENTS

On figure 7.9 we see the temperatures inside the observation unit for a single
workload, we see that the cpu temperature raises right after the workload
begins, and peaks at about 37°C, and when the workload is done the temper-
ature of the cpu drops down again. Both the inside temperature and outside
temperature of the observation unit is unaffected by his workload.

On the last of these figures(figure 7.10) we see the network workload, here
we see that neither the cpu, inside or outside temperature is affected by the
workload.

Table 7.1: Average change in temperature inside the observation unit(with 0 layers of
insulation) right after a workload and 10 minutes after a workload has run

Workload Average change right after Average change 10 mins after
CPU -0.032 0.008333333333
Disk -0.04 0.07083333333

Memory -0.008 -0.004166666667
Network -0.03333333333 0.225

In table 7.1 we see that that the average change in temperature inside the
observation unit after running any of the workloads is about 0 degrees celsius.
We also see that the average temperature change inside the observation unit
10 minutes after any workload is completed is 0 degrees celsius.

From this we can assume the the workloads have a very small effect on
the temperature inside the observation unit, and the temperature inside the
observation unit is mostly controlled by the temperature outside the observation
unit. We can also conclude that the workload type has very little effect here on
the ability to increase the temperature here.

Figure 7.11: Shows temperature for inside
OU, outside OU and for the OU
cpu for an hour after the last
cpu workloads have run

Figure 7.12: Shows temperature for inside
OU, outside OU and for the OU
cpu for an hour after the last
network workloads have run



7.2 D IFFERENT LEVELS ON INSULAT ION 37

Figure 7.13: Shows temperature for inside
OU,outside OU and for the OU
cpu for an hour after the last
disk workloads have run

Figure 7.14: Shows temperature for inside
OU,outside OU and for the OU
cpu for an hour after the last
memory workloads have run

On figures 7.11, 7.12, 7.13 and 7.14 we see the inside temperature, outside
temperature, and cpu temperature for the observation for 1 hour after it is
done running the workloads. Here we see that the temperatures don’t show
any change from when it was running any of the workloads. Based on this we
can conclude that the workloads were not able to affect the temperature inside
the observation unit.

7.2.2 Experiment 2: 1 layer of thermal insulation
On figure 7.15 we see the temperature for inside the observation unit, outside
the observation unit, and the CPU on the observation unit,while the observation
unit is idle with 1 layers of insulation. The observation unit is placed inside the
thermal bag that is used for insulation. The thermal bag is much larger in size
then the observation unit. This means that the insulation wont be wrapped
tightly around the observation unit.



38 CHAPTER 7 EXPER IMENTS

Figure 7.15: Figure shows inside ,outside, and CPU temperature of the observation
while idle with 1 layer of insulation

On figure 7.16, 7.17, 7.18 and 7.19 we see the inside and outside temperature
when running a cpu, a disk, a memory, and a network workload with one
layer of insulation. We see that when running the cpu and memory workload,
we are able to increase the temperature(it also looks like we are affecting
the temperature inside the freezer and increasing the temperature inside it).
We also see that the temperature inside the observation unit stays about
the same as the outside temperature(we are probably leaking too much hot
air, and therefore using energy trying to increase the temperature inside the
freezer).



7.2 D IFFERENT LEVELS ON INSULAT ION 39

Figure 7.16: Shows temperature when cpu workloads are run with 1 layers of insula-
tion. Measurements are over an 4 hour and 50 minute period.

Figure 7.17: Shows temperature when network workloads are run with 1 layers of
insulation. Measurements are over an 4 hour and 50 minute period.

We see from figure 7.16 and figure 7.18 that during the first hour of the
experiment the temperature increases and after a while the temperature stops
increasing. This probably shows the max temperature increase we can get with
these parameters(workload length, time between workload and how many



40 CHAPTER 7 EXPER IMENTS

workload the scheduler runs at once) are 1.25°C(+- 0.25°C).

Figure 7.18: Shows temperature when memory workloads are run with 1 layers of
insulation. Measurements are over an 4 hour and 50 minute period.

Figure 7.19: Shows temperature when cpu workloads are run with 1 layers of insula-
tion. Measurements are over an 4 hour and 50 minute period.

We also see that for the disk and network workloads(figure 7.17 and figure
7.19), we are not able to increase the temperature inside the observation unit.



7.2 D IFFERENT LEVELS ON INSULAT ION 41

The inside temperature of the observation unit follows the outside temperature
of the observation unit.

However, temperature fluctuations low(compared to when it has no insula-
tion), where it increases and decreases about 0.375°C. We also see that these
fluctuations are not as high as in the experiments with no insulations(figure
7.6).We also see that these fluctuations are higher than the fluctuations for the
CPU and memory workloads that where ran with 1 layer of insulation.

Figure 7.20: Figure shows inside and outside temperature of the observation unit as
all the workloads are being run on it with 1 layer of insulation.

We see on figure 7.20 that the CPU workload and the memory workload
are the ones that are able to raise the temperature the most out of the four
workloads(an increase of allomost 2°C in under an hour while the memory
workload was able to increase almost 1.5°C in the same time. The other two
workloads(disk and network) are the worst for raising the temperature with
the disk workload being slightly better then the network workload to raise
the temperature in the observation unit with 1 layer of insulation. We also
see that the figure(figure 7.19) with the network workloads starts at a higher
temperature and then drops, this might be because it was the first type of
workload to be run, meaning that the freezer that the observation unit has
been placed in had to be open to place the observation unit in it, and it has
not had time to cool down all the way like the others.



42 CHAPTER 7 EXPER IMENTS

Figure 7.21: Figure shows inside, outside
and cpu temperature as a CPU
workload is run with 1 layer of
insulation.

Figure 7.22: Figure shows inside, outside
and cpu temperature as a disk
workload is run with 1 layer of
insulation.

On figure 7.21, 7.22 , 7.24and 7.23 we see the cpu temperature on the observation
unit when a single workload(for all four types) is started, when the workloads
stops and all the way until the next workload is started.

From these we see that the CPU workload and the memory workload are
the only ones that result in a significant increase in the temperature for the
CPU(up to 40°C). The disk workload increases the CPU temperature a also
(up to 20°C), but not as much as the CPU and memory workloads.

The network workload is not able to increase the temperature of the CPU at
all(it stays at around 10°C). The low effect on the CPU temperature from both
the disk and the network workload is probably why those workloads have a
hard time increasing the temperature inside the observation unit, while the
other two workloads are able to increase it.

We also see that the CPU temperature increases right away when a workload
is started, and drops fast down again right after a workload is done.



7.2 D IFFERENT LEVELS ON INSULAT ION 43

Figure 7.23: Figure shows inside, outside
and cpu temperature as a
memory workload is run with
1 layer of insulation.

Figure 7.24: Figure shows inside, outside
and cpu temperature as a net-
work workload is run with 1
layer of insulation.

The reason for the table 7.2 showing that the disk workload has the highest
positive change(after 10 minutes) in temperature is that it fluctuates more
compared to the memory and disk workloads(since the disk has such large
fluctuations it has higher numbers for when the outside temperature increases
the inside temperature and therefore shows the largest average temperature
increase).

And the reason for the network workload not having the same positive tem-
perature as the disk workload, when it too has such fluctuations is that its
temperature is still decreasing while the disk workloads temperature is staying
at the same range.

Table 7.2: Tabel shows average change in temperature right after a workload and 10
minutes after a workload

Workload Average change right after Average change 10 mins after
CPU -0.044 0.692
Disk -0.01363636364 0.75

Memory 0 0.7041666667
Network -0.02083333333 -0.04583333333



44 CHAPTER 7 EXPER IMENTS

Figure 7.25: Shows temperature for inside
OU, outside OU and for the
OU cpu for an hour after the
last cpu workloads have run

Figure 7.26: Shows temperature for inside
OU, outside OU and for the
OU cpu for an hour after the
last network workloads have
run

Figure 7.27: Shows temperature for inside
OU,outside OU and for the OU
cpu for an hour after the last
disk workloads have run

Figure 7.28: Shows temperature for inside
OU, outside OU and for the
OU cpu for an hour after the
last memory workloads have
run

We see from figures 7.25, 7.26 7.27 and 7.28 that after the workloads have
finished running the observation units inside temperature stays about the
same, while the outside temperature drops and starts fluctuating between
-16°C and -23°C. But if we look on figures 7.16, 7.17, 7.18, and 7.19, we see
that the outside temperature only fluctuates between -17.5°C and -15.5°C. And
looking at table 7.4 we see that the average temperature inside when any
workload experiments were running stays about the same, both during the
experiments and when we don’t run experiments any more. If we look at the
average temperature outside(table 7.3) the observation unit during any type
of workload and after we dont run workload any more, we see that the outside
temperature decreases.

From this we can conclude that we are also heating up the freezer when we
are running workloads. The lowest temperature increases by about 4.5°C and
the highest temperature by 0.5°C.



7.2 D IFFERENT LEVELS ON INSULAT ION 45

Table 7.3: Shows differences in temperature outside observation unit durring work-
loads and once all workloads are done running

Workload Average during workloads Average after all workloads done
CPU -15.9557554°C -19.65362319°C
Disk -16.695053°C -20.39428571°C

Memory -16.07333333°C -19.87681159°C
Network -16.85827338°C -20.30142857°C

Table 7.4: Shows differences in temperature inside observation unit durring workloads
and once all workloads are done running

Workload Average during workloads Average after all workloads done
CPU -16.018°C -16.44057971°C
Disk -16.696°C -16.85142857°C

Memory -16.114°C -16.53913043°C
Network -16.84°C -17.05714286°C

7.2.3 Experiment 3: 2 layers of thermal insulation
On figure 7.29 we see the temperature for inside the observation unit, outside
the observation unit, and the CPU on the observation unit,while the observation
unit is idle with 2 layers of insulation. We see that the inside temperatures
are at almost -16°C and that the temperature is stable and does not fluctuate
much. We also see that the outside temperature is always lower than the inside
temperature. The outside temperature also fluctuates between almost -16°C at
its highest and almost -23°C at its lowest. The CPU temperature stays at about
13°C. Once the Observation unit is placed inside 2 thermal bags for insulation,
the insulation becomes tightly wrapped around the observation unit.



46 CHAPTER 7 EXPER IMENTS

Figure 7.29: Figure shows inside ,outside, and CPU temperature of the observation
while idle with 2 layers of insulation

On figure 7.34 we see the inside and outside temperature of the observation
unit as different workloads are run. Here we see(for the CPU and memory
workload) that initially the temperature inside the observation unit increases
by a few degrees, and after 1 - 2 hours of running the workloads the amount
that the temperature increases by goes down, and eventually levels out.

We also see that for the disk workload, there is no increase in the inside
temperature as we run disk workloads.This might be because the disk workload
consists of a long write, rather then lots of small writes, and a long write might
not generate any noticeable amount of heat. We also see that the outside also
is flat does not increase, unlike with the CPU and memory workloads. There
we see that the outside temperature increases when the inside temperature
increase, meaning that the some of the heat generated inside the observation
unit might leaking out and warming up the freezer also.



7.2 D IFFERENT LEVELS ON INSULAT ION 47

Figure 7.30: Shows temperature when cpu workloads are run with 2 layers of insula-
tion. Measurements are over an 4 hour and 50 minute period.

Figure 7.31: Shows temperature when disk workloads are run with 2 layers of insula-
tion. Measurements are over an 4 hour and 50 minute period.



48 CHAPTER 7 EXPER IMENTS

Figure 7.32: Shows temperature when memory workloads are run with 2 layers of
insulation. Measurements are over an 4 hour and 50 minute period.

Figure 7.33: Shows temperature when network workloads are run with 2 layers of
insulation. Measurements are over an 4 hour and 50 minute period.



7.2 D IFFERENT LEVELS ON INSULAT ION 49

Figure 7.34: Figure shows inside and outside temperature of the observation unit as
all the workloads are being run on it.

We see that for all the workloads the outside temperature stays in the same
range, -16 too -22.5. We also see that for all the workloads the temperature
inside is always higher than the outside temperature. The inside temperature
is also stable and does not fluctuate like the outside temperature(like it did for
0 and 1 layer of insulation).

Figure 7.35: Figure shows inside, outside
and cpu temperature as a cpu
workload is run with 0 layer
of insulation.

Figure 7.36: Figure shows inside, outside
and cpu temperature as a disk
workload is run with 0 layer
of insulation.



50 CHAPTER 7 EXPER IMENTS

Figure 7.37: Figure shows inside, outside
and cpu temperature as a
memory workload is run with
2 layer of insulation.

Figure 7.38: Figure shows inside, outside
and cpu temperature as a net-
work workload is run with 2
layer of insulation.

Another thing we see(table 7.5) is that the temperature inside the observation
unit does not increase right after a workload has run(for 2 minutes), but rather
a little while later(after 10 minutes).

On figure 7.35, 7.37 , 7.36 and 7.38 we see the cpu temperature on the ob-
servation unit when a single workload(for all four types) is started, when the
workloads stops and all the way until the next workload is started. From these
we see that the CPU workload and the memory workload are the only ones
that get a significant increase in temperature(up to 46-48°C). While the disk
workload can increase the CPU temperature a little bit(up to 25°C). And the
network workload is not able to increase the temperature of the CPU at all(it
stays at around 17-19°C). The low effect on the CPU temperature from both
the disk and the network workload is probably why those workloads have a
hard time increasing the temperature inside the observation unit, while the
other two workloads are able to increase it. We see that the cpu and memory
workload is able to increase or hold the temperature at the current level with
one workload.

Table 7.5: Tabel shows average change in temperature right after a workload and 10
minutes after a workload

Workload Average change right after Average change 10 mins after
CPU -0.032 0.0.056
Disk -0.008 -0.012

Memory -0.008 0.032
Network -0.036 -0.084



7.2 D IFFERENT LEVELS ON INSULAT ION 51

Figure 7.39: Shows temperature for inside
OU, outside OU and for the
OU cpu for an hour after the
last cpu workloads have run

Figure 7.40: Shows temperature for inside
OU, outside OU and for the
OU cpu for an hour after the
last network workloads have
run

Figure 7.41: Shows temperature for inside
OU,outside OU and for the OU
cpu for an hour after the last
disk workloads have run

Figure 7.42: Shows temperature for inside
OU, outside OU and for the
OU cpu for an hour after the
last memory workloads have
run

On figures 7.39, 7.40, 7.41 and7.42, we see the inside temperature, outside
temperature, and cpu temperature for the observation for 1 hour after it is
done running the workloads with 2 layers on insulation. We see that for the
disk and network workloads there is no drop in in temperature after the
workload are done as they did not change the temperature inside. As for
the workloads that managed the increase the temperature(cpu and memory
workload), we see that over about an hour the temperature has dropped down
to where it started before the workloads ran. Which is about -0.8°C to -1°C
drop in temperature over an hour.

7.2.4 Experiment 1 vs Experiment 2 vs Experiment 3
From the results we see that what has the biggest impact on the inside temper-
ature of the observation unit is not any workload, how long they are run for,



52 CHAPTER 7 EXPER IMENTS

howmany processes are run at the same time, etc. but the amount of insulation
the observation unit has.

We also see that with the CPU workload we can increase the temperature inside
the observation unit by almost 1°C over an hour. To achieve this we had to run
only 6 workloads for 2 minutes each, at 10 minutes intervals.

7.3 How long between each workload run
In the experiments were different layers of insulation was measured on the
observation unit(figure 7.6, 7.20 and 7.34), we saw that the we needed to
use at least 2 layers of insulation or else we would not manage to get the
inside temperature of the observation unit above the outside temperature
of the observation unit. In this experiment we will therefore use 2 layers of
insulation when we run experiments to see how long a of a break we need
between each time we run a set of workloads. To do this we will see how much
the temperature drops after a set time when we are done running a set of
workloads. As the temperature drop inside the observation unit does not have
anything to do with what workload is run, we will run CPU workloads as they
generate the highest temperature. These workloads will be run for 2 mins with
different amount of time between each set of workloads. We will look at how
much the temperature dropped after each workload after each set time.

On graph 7.43 we see the temperatures when running the workloads with
1 minute intervals. Here we so no increase in temperature. This might be
because it takes some time after the workload is done running for the workload
to running for the observation units inside temperature to increase.

Figure 7.43: Shows temperature for inside
OU, outside OU when there is
1 minute between each work-
load

Figure 7.44: Shows temperature for inside
OU, outside OU when there
is 10 minutes between each
workload



7.4 D IFFERENT AMOUNT OF PROCESSES RUNN ING AT THE SAME T IME 53

Figure 7.45: Shows temperature for inside
OU, outside OU when there
is 20 minutes between each
workload

Figure 7.46: Shows temperature for inside
OU, outside OU when there
is 30 minutes between each
workload

On graph 7.44 we see the temperatures when running the workloads with 10
minutes intervals. Here we see a increase in temperature of 0.2°C over a 36
minute period. For the experiment(graph 7.45) that is running workloads with
20 minute intervals on the workloads, we see a 0.5°C increase of the inside
temperature over a period of 1 hour and 5 minutes.

We see on graph 7.46 that is running a workload at 30 minute intervals that
the temperature it starts at and the temperature it stops at is the same. We
also see that the temperature increases initially and then decreases.

7.4 Different amount of processes running at the
same time

We have so far been running 4 sets of workload in parallel in previous exper-
iments. Here we are going to run experiments to see the effects of running
different amount of workloads sets in parallel, to see how many we should run
in parallel. For these experiments we are only using the CPU workload(as it
was the one who has had the greatest effect, when it comes to increasing the
temperature inside the observation unit) and use 2 layers of insulation(since
according to the previous results, we need at least that much insulation to get
the temperature to increase)

For this experiment we will be running sets of CPU workloads 3 times. And for
each experiment we will change the amount of processes we run in parallel.
Starts with no workloads running in parallel, and working up to 4 workloads
running in parallel.



54 CHAPTER 7 EXPER IMENTS

Figure 7.47: Shows temperature for inside
OU, outside OU when there is
1 only one process running at
a time

Figure 7.48: Shows temperature for inside
OU, outside OU when there is
2 processes running in paral-
lel

Figure 7.49: Shows temperature for inside
OU, outside OU when there is
3 processes running in paral-
lel

Figure 7.50: Shows temperature for inside
OU, outside OU when there is
4 processes running in paral-
lel

7.5 Amount of time to run the processes for
In the graphs 7.51, 7.52, 7.53 and 7.54, we look at the effects of running work-
loads of different lengths. We run 3 workloads after one another with a set
time between each workload. This is done for 4 different workload lengths, 1
,2 ,3 and 4 minutes workload length.

We see that on all the graphs, the inside temperature is able to increase, but
the longer you run a workload for the more it increases. Another thing we see
is that the longer with run a workload for the faster the inside temperature
increases.



7.6 RESULTS USED IN THE PREMADE MODEL 55

Figure 7.51: Shows temperature for inside
OU, outside OU when work-
loads run for 1 minute

Figure 7.52: Shows temperature for inside
OU, outside OU when work-
loads run for 2 minutes

Figure 7.53: Shows temperature for inside
OU, outside OU when work-
loads run for 3 minutes

Figure 7.54: Shows temperature for inside
OU, outside OU when work-
loads run for 4 minutes

7.6 Results used in the premade model
In table .. one can see the values chosen for the premademodel for the scheduler.
The 2 layers of insulation was chosen, since we needed a minimum of that in
order to increase the temperature. We choose to run 4 parallel workload since
it would increase the temperature the most.

The amount of time to run a workload was calculated by taking one run of a
workload for each workload and calculating the temperature increase 10 mins
after each one of those had run. And then averaging these results for all types
of workloads. Then we divide that by 120 seconds and take that result and
divide that by 2 to find how much it takes to increase the temperature by half
a degree.

To find the amount each workload should wait look at table 7.6, and look at the
temperature at the beginning of the graph, and then find the first temperature



56 CHAPTER 7 EXPER IMENTS

that is half a degree lower than the initial value. Then we take the difference
in time between the first value found and the second found and use that as
how long it takes for the observation unit to drop half a degree.

Table 7.6: tabel shows values for premade model

Layers of insulation 2
Amount of time to run a workload 600s
Time between each workload 46m

Number of parallel process to run 4

If we follow this model, we should run a workload for 600s, and then the
temperature inside the observation unit should increase 0.5°C, and after 46
minutes it should drop down again.



8
Discussion
8.1 Stop(pause) and resume workloads
Right now the scheduler does not support pausing and resuming workloads.
The problem with not supporting these features is that some workloads could
end up starving(not fully, since no process can in this setup run forever) other
workloads by taking to long to complete. A pause and resume system could be
built by using the “kill -STOP <PID>” for pausing the workload, then adding
it list of workloads as “kill -CONT <PID>”. By adding it as that command
in the back of the workloads list, not many more changes would have to be
done.

8.2 In memory cache
When a state is read and formatted into data, it is passed to memory and then
straight to disk. And when the scheduler needs the data it reads it from disk.
This method of doing it was chosen for it simplicity. A better method of doing
this might be to have an in memory cache, that keeps a few of the latest pieces
of data that has been gathered by the state reader.

One way this could be designed, would be to have a cache of n size in memory
with a first in first out(FIFO) policy for the data. And only write the data to
the file system when an item gets pushed out of the cache. Using a cache like

57



58 CHAPTER 8 D ISCUSS ION

this would mean that the scheduler could read data from the cache rather then
reading it from the file system.

The effects of using a memory cache would be a faster access time on the data
that the scheduler needs. This faster speed might a have a small effect on how
much energy the devices use, as it would be able to be done with its tasks faster
and therefore get back to sleep faster.

One problem with this setup would be that you could lose data in the memory
chace if something were to happen that would cause the unit to lose power.
This could be addressed by having the state reader in addition to adding the
data to the chace, it would write it to disk. The good thing about doing it
this way would be that it won’t add that many more writes, as the number of
disk writes would be m disk writes - n number of piece of data that can fit in
memory.

8.3 Alternative way to run workloads
For a program to be able to schedule its workload using the scheduler, it needs
to have those workloads written in python. This happens because it is the
scheduler that runs the workloads for the programs, so it needs to be able to
start the workloads.

This approach was chosen because of its simplicity when implementing it. But
because of this, programs are forced into using python when they might not
want to do so. Or for each new type language a workload is written in, the
code that starts the workload would need to be updated.

An alternative to this would be to have another a system where the scheduler
tells the programs when they can run their workload, rather than having the
scheduler do it. A very basic system for this is presented in figure 8.1



8.4 THERMAL BAGS 59

Figure 8.1: Alternative system for notifying the scheduler that a task needs scheduling

The scheduler has 2 lists, a list(now called list A) with workloads programs
wants to run, and a list(now called list B) with workloads that programs can
run now.

The programs pushworkloads theywant to run to list A, andwhen the scheduler
decides to run a workload, it pushes a workload from list A to list B. the
programs subscribe to list B, and when one of their workloads are found in list
B, they start it.

A second and more simple alternative would be to have everything that would
have to be written into the terminal to start the workload within the file
containing the list of workloads. This way the scheduler could just run that
command.

8.4 Thermal bags
As mentioned, to test the effect of different levels of insulation on the system
we use insulated thermal food bags. They were chosen because they were
an easy way to provide some insulation for the observation unit. The main
problem with them is since we have wires coming out from them, they don’t
close all the way. This means they leak some hot air, and are not able to keep
the heat trapped as well as they should. This is ok though as we just wanted
to see the general effect adding some insulation to the observation unit would
have.

Another issue with the thermally insulated bags is thatwe don’t have data on the



60 CHAPTER 8 D ISCUSS ION

properties of the materials used when insulating the observation unit.

Another thing with the freezing bags that affect the observation unit is how
tight the freezing bags wrapped around the observation unit. When there is just
one freezing bag used. The freezing bags fits loosely around the observation
unit and there is a lot of air inside the freezing bag with the observation unit.
Meaning there is a lot of room inside the freezing bag that the observation unit
needs to heat up, and that can be filled with cold air.

8.5 Heat generated from sensor reading
When creating the model(the one that it starts with) for the OUA system
you want as many data points as possible to get a more accurate model. The
problem with taking many readings is that each reading generated some heat
from reading the state from the sensor, processing the state into data, and
storing the data on the local file system.

When deciding how often we were going to read the sensor we tried to strike
a balance between getting as many data points as possible to use to create the
model and generating as little heat as possible when collecting the data.

8.6 Finding out heat is generated over n time
rather then finding heat generated by
individual tasks

When trying to find the workloads that would create the right amount of heat,
to heat up the observation unit, there were two approaches considered.

The first option was that we find out how much heat each workload creates,
and then try and find a combination of workloads that would generate enough
heat to reach the desired temperature.

The second option was not look at each workload, but rather combine the heat
generated from all types of workloads and take the average from that. And
use that to see how long any workload would need to run for to generate n
amount of heat.

We chosen to go with option 2, as it simplifies the way we pick workloads.
The second reason we chose to go with it, is that the first option requires the



8.7 PROBLEM W ITH HAV ING THE SCHEDULER START ING THE WORKLOAD THAT
NEED TO RUN AT A SET T IME 61

observation unit to gather more data, and it is more complex(and therefore
uses more energy) both when it comes to calculating heat generated by each
type of workloads, but also when picking which workloads it should run.

8.7 Problem with having the scheduler starting
the workload that need to run at a set time

When a workload needs to run at a set time, it is started by the program
that owns that workload. The reason we can’t have the workload started by
the scheduler(like the other workloads), is that the observation unit needs
to conserve power usage. To do this the scheduler sleeps at intervals. So if
a workload would need to run at a certain time, it could end up having that
time when the scheduler sleeps and therefor missing the time it should have
run. Alternatively we could have the workload constantly checking the list for
workloads that needs to run at a set time, but the scheduler would then need
to be on all the time.

8.8 Might never get to update model
For the model to get updated it needs data. To get this data its needs workloads
to run at a set interval. If they are scheduled to fast, we can calculate how fast
the temperature is dropping so we need to have a minimum of time to pass
before each workload is scheduled.

If the observation unit is placed in a area that’s so cold that the temperature
outside is causing the temperature inside to constantly be below the threshold.
The scheduler will keep starting workloads to get the termature inside the
workload up above the threshold. This will make it so that he scheduler cannot
update the model it uses.

Another way this might happen is if the premade model is to inaccurate causing
the scheduler not to schedule the right amount of workloads, and thus not
bringing the temperature up enough to get it above the threshold. Causing it
to keep scheduling workloads that have a low effect on the temperature inside
the observation unit.

The only way to fix this problem would be to stop scheduling workloads for
a set amount of time if the scheduler have not updated the model after a set
time. But this would cause major problems, since the temperature inside the



62 CHAPTER 8 D ISCUSS ION

box would drop below the threshold during this time. So this solution is not
acceptable. This is of course because the observation unit might get damaged
from having its internal temperature to low.

An alternative might be to allow for a partial update of the model. Istead
updating both how long it would need to wait between each set of workloads
and how long it should run workloads for. It just updates how long it should
run workloads for. This can be done since the gathering of this data is not
affected by having workloads constantly running.

8.9 Alternative way to gather data to update the
model

A way to to improve the way the costume model for the observation unit is
made would be to add so that instead of using the data it has on hand now,
which is the data it gets from executing workloads based on the premade
model.

It would have a function that generates data. This function would at some set
times, put together a set of workloads of a set length, and test how that affects
the observation unit and gather data on that.

Then it would change that parameter for the length it would run a set of
workloads and gather data again at some later time. It would repeat this
process n times, until it would have enough data to make a better model.
(Algorithm 3)

Algorithm 3 Alternative way to gather data to update the model

1: if SetTime then
2: if i < n then
3: Run workload for i mins
4: Calculate and store change in temperature
5: i++
6: else
7: Use stored results to update model
8: end if
9: end if



8.10 UPDAT ING THE MODEL MORE THAN ONCE 63

8.10 Updating the model more than once
The observation unit starts with a premade model that it uses to make decisions
about what workloads it should run. Once it gathers enough data it updates the
model, to be more accurate for the observation unit it runs on. This updating
of the model is done only once. The problem with this is that it can lead to an
inaccurate model, because the temperature outside is constantly change, and
might vary a lot depending on how long a observation unit is placed outside.
The mode might say it only needs to run workloads for 1 minute to raise the
temperature 1 degree, but if it has gotten a lot colder outside it might need
to run it for 2 minutes. And this can end up causing the observation units
internal temperature to drop to low, since its not running the correct amount
of workloads. The opposite might also be true. It might be a lot varmer outside,
and it can end up running workloads a lot longer than it needs too. And end
up using more power then it needed to.

This can be fixed by having the updated model update again at a set time after
it has updated. The problem with this is that you want to update the model
as often as needed to keep it accurate, but not so often that you are using to
much power. One would need to find a balance power use and accuracy of the
model.

To find how often you update the model one could look at the climate in the
area where you place the observation unit. And try and look at how much the
temperature increases and decreases over time(months andweeks), and try find
the average temperature for those times. And use those average temperatures
to determine how often you should update the model.

8.11 Updating the model with the number of
parallel processess it should run

The premade model the observation unit has consists of how long it should run
workloads for, how long it should sleep before scheduler checks the temperature
again after running a workload, and how many workloads it should run in
parallel. But when the scheduler updates the model, it only updates the amount
of time it should sleep, and the amount of time it should run a set workloads
for. This is because the scheduler always runs 4 sets of workloads in parallel,
and therefore never gets any data on any different amount of sets of workloads
run in parallel.

A way it could have gathered this data would be to have a data creating



64 CHAPTER 8 D ISCUSS ION

workload. The purpose of this workload is to create data that is needed
to update the model. This workload would run different amount of sets of
workloads in parallel. But it could also be used to gather data on the other
values that gets update in the model, and additional values that might get
added to the model at a later date.

Themain problemwith this solution is that itwould need to runworkloads these
workloads when the temperature was above the threshold temperature(you
can run it when it is below in case it would increase the temperature to little),
and therefore the scheduler would end up spending energy just to gather data
that would be used to update the model.

And since one of the goals of the observation unit is to stay alive and it needs
power to do so, one would need to weight the potential gain of an even more
accurate model vs the energy cost of getting a more accurate model.

8.12 Memory workload
Except for the CPU workload, the memory workload is the only workload abel
to increase the temperature inside the observation unit. It is able to do this since
the memory workload makes the CPU increase in temperature. The reason it
might be doing this is because the file loaded into memory is to small, and
the file is being cached in the L2 cache on the CPU. this means that instead of
searching through the memory, it is actually searching through the L2 cache
on the CPU causing the CPU to increase in temperature.

8.13 Alternative workload selection algorithm
For selection of workloads right nowwe use a type of first-fit algorithm that first
picks the oldest workload, and then tries to add more workloads, by looking
through all the workloads to see if any of them fit the workload block(starting
looking at the oldest workload). This algorithm was chosen to avoid to starve
the workloads. The main problem with this approach is that a workload could
end up having to run for hours(or indefinitely), and since we don’t pause and
resume workloads we could end up starving the rest of the workloads.

If we were to look at other scheduling algorithms to select workloads, one of the
most important parts is that the workloads don’t starve. Because of this algo-
rithms like shortest workload first, or one where we select the newest workload
first would end up causing starvation. Round robin is an alternative that could



8.14 ONLY US ING THE WORKLOADS THAT INCREASE THE TEMPERATURE THE
MOST 65

be used, and it would fix the problem caused by some workload running for
hours. For this to work support for stopping/pausing workloads and resuming
workloads like explained in chapter 8.1 would have to be added.

8.14 Only using the workloads that increase the
temperature the most

When observation unit drops below a set temperature, it tries to increase the
temperature inside it self by running sets of workloads. When it choses a work-
load, it will use any workload, but not all workloads increase the temperature
the same amount, some increase the temperature more.

An alternative solution to the one that is implemented would be when the
scheduler picks a set of workloads priorities the ones that increase the tempera-
ture the most, rather than the ones that increase the temperature the least. The
good thing about this solution is that one might need to run a set of workloads
for a shorter period of time to increase the temperature the set amount then if
you were to use a mixture of workloads that increase the temperature a little
and those that increase the temperature a little.

The bad thing about this is that you might end up starving some workloads
as the scheduler would priorities the workloads that increase the temperature
the most. And at worst you could have some workload that don’t get to run at
all.





9
Conclusion
In this paper we have done the architecture, design and implementation of
a system for autonomously scheduling of tasks based on the internal and
external states of the observation unit. Focus has been on the temperature
of the environment, of the observation unit and of the observations units
CPU.

The system job is to schedule tasks in order to keep the temperature inside
the observation unit above a set temperature in order to keep it from taking
damage from the cold. To be able to schedule tasks to keep the temperature up
the system needs to know the effect running the tasks has on the temperature
inside the observation unit. The scheduler comes with a premade model that
tells it the effects of the tasks it can schedule. The observation unit is able to
update this model based on data it gathers while scheduling tasks in order
to make the model more accurate for the specific observation unit it runs
on.

In order to make a model for the scheduler and see the effect of different
layers of insulation on the observation unit, we have analyzed the effect of
different layers of insulations with different tasks running on the observation
unit. From the results of our experiments we see that the observation unit
needs insulation(we found in our experiments that it needs 2 layers) in order
to increase the temperature inside the observation unit by a few degrees( 1°C to
2°C), and if we have enough insulation the temperature inside the observation
unit is able to be higher than the temperature outside. We also see that the

67



68 CHAPTER 9 CONCLUS ION

more insulation we add to the observation unit the more stable the temperature
gets.



10
Future work
10.1 Machine learning
Finding the best possible model for the observation unit is difficult. There
are many factors that needs to be taken into consideration(outside tempera-
ture,inside temperature, what workload is running, layers of insulation, how
long a workload runs for, how long it weight between each workload). Right
now we only have a very basic not very accurate model. A way to get a better
model could be to try and use linear regression on the data in order to find a
correlation between the different factors, and use that to make a better model.
Another approach could be to use unsupervised learning with a neural network
to create a model and based on the model it input the factors and it outputs a
action.

To reduce energy usage by the observation unit using unsupervised learning,
one option could be to transfer the data it gathers locally to a remote server
and have the server create the model using unsupervised learning. Of course
here one would need to compare the energy cost of transferring the data vs
the energy cost of training the model locally.

Another way to use machine learning to increase the observation units auton-
omy would be to use neural networks with reinforcement learning and have the
observation unit it self learn what each action it can perform does and when it
is best to use them to best reach the desired goal of the observation unit. Likey
they did in the paper “Playing Atari with Deep Reinforcement Learning”[14]

69



70 CHAPTER 10 FUTURE WORK

and “Playing Tetris with Deep Reinforcement Learning”[15] where they take
in some states(the screen pixels) and output some actions(what buttons to
push).

To implement reinforcement learning like this, one would first need to also
create a accurate model a simulated observation unit, in order have something
to train the system on. This is because you would need to be able to run many
1000 of instances of training for the reinforcement learning. And doing it on a
real physical observation unit would take to long.

10.2 Reduce energy consumption
Observation units are often placed far away from places where there are
humans, and often have just batteries as a power source and don’t know when
they will be recharged or replaced. Reducing the amount of power that the
observation unit uses is critical for making the observation unit laster longer on
a battery charge. Therefor finding different ways to reduce the OUA systems
power use is vital to increase the survival time of the observation unit. A way to
reduce the energy use would be to have the unit turn it self of. So if the hardware
supports some kind of low power mode(where parts of the observation unit or
all off it is turned of), this should be integrated into the scheduler and one could
have the scheduler power down the observation unit instead of just having the
scheduler program sleep to reduce power consumption.

10.3 Add more sources to gather states from
Observation units will probably have some sort of way to generate power.
Therefore we should also be collecting the battery state, as well as the future
weather state(weather forecast). This way the OUA can take into account these
states when scheduling workloads. And scheduled tasks if they see the battery
will be recharged to more than 100%(using equipment like solar panels), or to
many to schedule tasks, if they see there will be a few days before the battery
will be able to start charging.



10.4 FIND A BALANCE BETWEEN HOW OFTEN WE GATHER STATES , AND POWER
AND RESOURCE USE 71

10.4 Find a balance between how often we
gather states, and power and resource use

For the observation unit to make a decision about what action it should take,
it needs to know the state of the observation unit. This means checks various
things like temperature and network state. But not only does it cost resources
and energy to check these states, but checking the states might impact the
state(reading the temperature might increase the temperature). Therefore it
would be useful to find a balance between the amount of data that is needed
to make a decision about an action and how often that data is gathered. How
often the state is gathered might also be different depending on what you are
gathering data on(network state might need to be monitored less than the
temperature outside the observation unit).





Bibliography
[1] Åshild Ø. Pedersen, A. Stien, E. Soinien, and R. A. Ims, “Climate-ecological

observatory for artic tundra - status 2016,” Fram Forum 2016, pp. 36 – 43,
2016.

[2] Coat, “Coat website.” http://www.coat.no/. Accessed on 2018-05-23.

[3] P. Limaye, W. Maurissen, K. Lambrinou, F. Duflos, B. Vandevelde, B. Al-
laert, J. Hillaert, D. Vandepitte, and B. Verlinden, “Low-temperature em-
brittlement of lead-free solders in joint level impact testing,” in 2007 9th
Electronics Packaging Technology Conference, pp. 140–151, Dec 2007.

[4] Q. An, C. Wang, X. Zhao, and H. Wang, “The mechanism study of low-
temperature brittle fracture of bulk sn-based solder,” in 2017 18th Inter-
national Conference on Electronic Packaging Technology (ICEPT), pp. 1233–
1237, Aug 2017.

[5] R. Jedermann, C. Behrens, D. Westphal, and W. Lang, “Applying au-
tonomous sensor systems in logistics—combining sensor networks, rfids
and software agents,” Sensors and Actuators A: Physical, vol. 132, no. 1,
pp. 370 – 375, 2006. The 19th European Conference on Solid-State
Transducers.

[6] R. J. Edward Sazonov,Kerop Janoyan, “Wireless intelligent sensor network
for autonomous structural health monitoring,” 2004.

[7] J. Gutiérrez, J. F. Villa-Medina, A. Nieto-Garibay, and M. Porta-Gándara,
“Automated irrigation system using a wireless sensor network and gprs
module,” IEEE Transactions on Instrumentation and Measurement, vol. 63,
pp. 166–176, Jan 2014.

[8] G. P. R. Filho, L. A. Villas, H. Freitas, A. Valejo, D. L. Guidoni, and
J. Ueyama, “Residi: Towards a smarter smart home system for decision-
making usingwireless sensors and actuators,”ComputerNetworks, vol. 135,

73

http://www.coat.no/


pp. 54 – 69, 2018.

[9] python, “Python website.” https://www.python.org/download/releases/
2.7/. Accessed on 2018-04-24.

[10] R. P. Foundation, “Raspberry pi website.” https://www.raspberrypi.org/
products/raspberry-pi-2-model-b/. Accessed on 2018-04-24.

[11] adafruit, “Dht22 adafruit website.” https://www.adafruit.com/product/
385. Accessed on 2018-04-24.

[12] A. Industries, “Dht-sensor-library.” https://github.com/adafruit/
Adafruit_Python_DHT, 2018.

[13] B. Nuttall and D. Jones, “python-gpiozero.” https://github.com/RPi-
Distro/python-gpiozero, 2018.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013.
cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013.

[15] M. Stevens and S. Pradhan, “Playing tetris with deep reinforcement learn-
ing,” 2016.

https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.adafruit.com/product/385
https://www.adafruit.com/product/385
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/RPi-Distro/python-gpiozero
https://github.com/RPi-Distro/python-gpiozero

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Idea
	1.2 Contribution
	1.3 Outline

	2 Related work
	2.1 Applying autonomous sensor systems in logistics—Combining sensor networks, RFIDs and software agents
	2.2 Wireless intelligent sensor network for autonomous Structural Health Monitoring
	2.3 Automated Irrigation System Using a Wireless Sensor Network and GPRS module
	2.4 ResiDI: towards a smarter smart house system for decision-making using wireless sensor and actuators

	3 Architecture
	3.1 State(s)
	3.1.1 Internal
	3.1.2 External
	3.1.3 Monitor
	3.1.4 Dataset(s)

	3.2 Analytics
	3.2.1 Analytics to improve model
	3.2.2 Analytics to discover significant state
	3.2.3 Analytics to select workload

	3.3 List(s) of workloads
	3.4 Run workload

	4 Design
	4.1 Workloads
	4.1.1 List of workloads
	4.1.2 Scheduling workloads

	4.2 Model
	4.2.1 Premade model
	4.2.2 Custom model

	4.3 Collecting state(s)
	4.3.1 Temperature states


	5 Implementation
	5.1 Equipment and sensors
	5.2 Model
	5.2.1 How the premade model is created
	5.2.2 Updating the model

	5.3 Scheduling algorithm
	5.4 Network state
	5.5 Reading temperature
	5.6 workloads
	5.6.1 Starting a workload
	5.6.2 Stoping workloads
	5.6.3 List(s) of workloads


	6 Workloads
	6.1 Disk workload
	6.2 CPU workload
	6.3 Memory workload
	6.4 Network workload

	7 Experiments
	7.1 Testing equipment
	7.1.1 Insulation
	7.1.2 Freezer

	7.2 Different levels on insulation
	7.2.1 Experiment 1: no thermal insulation
	7.2.2 Experiment 2: 1 layer of thermal insulation
	7.2.3 Experiment 3: 2 layers of thermal insulation
	7.2.4 Experiment 1 vs Experiment 2 vs Experiment 3

	7.3 How long between each workload run
	7.4 Different amount of processes running at the same time
	7.5 Amount of time to run the processes for
	7.6 Results used in the premade model

	8 Discussion
	8.1 Stop(pause) and resume workloads
	8.2 In memory cache
	8.3 Alternative way to run workloads
	8.4 Thermal bags
	8.5 Heat generated from sensor reading
	8.6 Finding out heat is generated over n time rather then finding heat generated by individual tasks
	8.7 Problem with having the scheduler starting the workload that need to run at a set time
	8.8 Might never get to update model
	8.9 Alternative way to gather data to update the model
	8.10 Updating the model more than once
	8.11 Updating the model with the number of parallel processess it should run
	8.12 Memory workload
	8.13 Alternative workload selection algorithm
	8.14 Only using the workloads that increase the temperature the most

	9 Conclusion
	10 Future work
	10.1 Machine learning
	10.2 Reduce energy consumption
	10.3 Add more sources to gather states from
	10.4 Find a balance between how often we gather states, and power and resource use

	Bibliography

