
Faculty of Science and Technology
Department of Computer Science

Peer Observations of Observation Units
—
Camilla Stormoen
INF-3981 Master’s Thesis in Computer Science
June 1, 2018

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2018 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
The Arctic Tundra in the far northern hemisphere is one of ecosystems that are
most affected by the climate changes in the world today. Five Fram Center¹
institutions developed a long-term research project called Climate-ecological
Observatory for Arctic Tundra (COAT). Their goal is to create robust observation
systems which enable documentation and understanding of climate change
impacts on the Arctic tundra ecosystems.

This thesis describes a prototype of a Wireless Sensor Network (WSN) system
where nodes in the network creates clusters of Observation Units (ous) to
accumulate data. The purpose is to fetch and accumulate data observed by
ous for further use and to provide for a more flexible and powerful sensor in
the coat monitoring of the Arctic Tundra.

We describe a system where nodes discover each other through a range limited
broadcast. Together they form clusters. Each cluster elect a Cluster Head (CH)
which is responsible for sending out a request for gather and accumulate data
from the other nodes in the cluster. The role as ch is rotating among the nodes
to conserve battery.

Results show that the system have a steady memory usage between 60% and
76% and CPU usage around 75% during execution. Experiments also show that
the ch received fewer packets of data compared to sent packets from ous in
the cluster which indicates that the ous in the system accumulates data when
intended.

The proposed prototype of the system proved capable of electing chs that
gathers and accumulates data efficiently. As a prototype, it still has room for
improvements such as the availability of nodes in the system, ch-elections
and multiple chs in each cluster. A future system could further investigate
the benefits of having multiple chs and how to gather and accumulate data
more efficiently. There is still a need for conducting further work for a real-life
environment in the Arctic Tundra.

1. http://www.framsenteret.no/english

http://www.framsenteret.no/english

Acknowledgements
First I would like to thank my main advisor Professor Otto Anshus and co-
advisor Professor John Markus Bjørndalen for providing guidance, support,
ideas and feedback whenever I needed it through this thesis.

I would also like to thank the Department of Computer Science with its technical
and administrative staff for support when needed.

I want to express my sincerest gratitude to the Masterinos. Thank you for all
your help and for five great and fun years, both outside and inside the university.
I would not have made it without you guys.

I would also like to thanks my parents for encouraging me to take a higher
education and supporting me through every decision. At last I would like to
thank my boyfriend.

Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

List of Listings xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Limitations . 2
1.4 Outline . 3

2 Routing Techniques in WSNs 5
2.1 Routing Protocols in WSNs 6

2.1.1 Hierarchical Routing 6
2.1.2 Location-based Routing 6

2.2 Flood And Gossiping Protocol 7
2.2.1 Flooding Protocol 7
2.2.2 Gossiping Protocol 7

3 Related Work 9

4 Idea 13

5 Architecture 15
5.1 Node Lookup Service . 15
5.2 Discovery Of Other Nodes 15
5.3 Data Accumulation . 17

v

vi CONTENTS

5.4 Incoming And Outgoing Network Requests 17
5.4.1 Connect To Neighbours 17
5.4.2 Cluster Head Election Request 17
5.4.3 Data Transmission 18

6 Design 19
6.1 Discovery Of Other Nodes 19

6.1.1 Broadcasting . 19
6.2 Cluster Head Election . 21

6.2.1 New Node In Cluster Starts Election 21
6.2.2 Cluster Head Starts Election 23

6.3 Data Accumulation . 24

7 Implementation 25
7.1 Distance To Other Nodes In The Network 26
7.2 Connect To Neighbours . 27
7.3 Cluster Head Election . 27

7.3.1 Cluster Head Calculation 28
7.4 Minimize Path To Cluster Head 29
7.5 Data Accumulation . 29

7.5.1 Node Data Accumulation 29
7.5.2 Cluster Head Data Accumulation 29

7.6 Concurrent CH-Election And Data Accumulation 31

8 Evaluation 33
8.1 Experimental Setup . 33
8.2 Experimental Design . 34

8.2.1 Memory Measurements 35
8.2.2 CPU Measurements 37
8.2.3 Network Usage . 37
8.2.4 Number Of Sends To Neighbours 37
8.2.5 Number Of Sends To Cluster Heads 38
8.2.6 Cluster Head Count 38
8.2.7 Cluster Head Receives Packages 38

8.3 Results . 39
8.3.1 Memory Usage . 39
8.3.2 CPU Usage . 41
8.3.3 Network Usage Amounted By Number Of Connections 42
8.3.4 Number Of Sends To Neighbours 44
8.3.5 Number Of Sends To Cluster Heads 45
8.3.6 Cluster Head Count 46
8.3.7 Cluster Head Receives Packages 47

9 Discussion 49

CONTENTS vii

9.1 Availability Of Nodes In The System 49
9.1.1 Connect To Neighbours 49
9.1.2 Ping Neighbours . 50
9.1.3 Node Waking Up After Sleeping/Being Unavailable . . 50

9.2 Cluster Head Election . 51
9.2.1 Cluster Head Calculation 51
9.2.2 Gossip Information Between Nodes 51
9.2.3 When To Elect A New Cluster Head 52

9.3 Remember Previous Cluster Head 52
9.4 Multiple Cluster Heads . 53
9.5 Path To Cluster Head . 53

9.5.1 Multi-hop or single-hop routing 53
9.6 Data Accumulation . 55
9.7 Replication Of Data . 55
9.8 Concurrent CH-Election And Data Accumulation 56
9.9 Base Station Access . 56

10 Conclusion 57

11 Future Work 59

Bibliography 61

Appendices 67

A Running The System 67

List of Figures
2.1 Figure shows an example of a multi-hop WSN architecture. . 6

4.1 Figure shows the technical idea of the system. 14

5.1 Figure shows the architecture of the system. 16

6.1 Figure show design of the system. 20
6.2 Figure show broadcast range of a OU. 20
6.3 Figure show how a new node starts a CH-election. 22
6.4 Figure show how a CH starts a CH-election. 23
6.5 Figure show how a CH gossips a GET-data request and how

nodes sends their data to the CH through the nodes in the path. 24

7.1 Figure show how the network grid size in scale 10 x 10 and
nodes broadcast width. 26

7.2 Broadcast simulation . 27
7.3 Figure show flowchart of when a new node is created and

eventually starts a CH-election. 28

8.1 Figures show average memory percentage for 100 nodes per
network with different accumulation intervals with standard
deviation. 40

8.2 Figures show average CPU percentage for 100 nodes per net-
work with different accumulation intervals with standard de-
viation. 42

8.3 Figures show average network connections for 100 nodes per
network with different accumulation intervals with standard
deviation (lighter colors). 43

8.4 Figures show average number of sends from nodes to neigh-
bour nodes for 100 nodes per network with different accumu-
lation intervals with standard deviation. 44

8.5 Figures show average number of sends to CHs for 100 nodes
per network with different accumulation intervals with stan-
dard deviation. 45

ix

x L IST OF FIGURES

8.6 Figure shows the number of CHs for 100 nodes per network
with different accumulation intervals. 47

8.7 Figures show average number of CHs for 100 nodes per net-
work with different accumulation intervals with standard de-
viation. 48

8.8 Figure shows average number of CH with different accumula-
tion intervals. 48

9.1 Figure show single-hop routing and multi-hop routing. . . . 54

List of Tables
8.1 Parameters of simulation 34

xi

List of Listings
7.1 Small Go program showing how mutexes are used when up-

dating a map by CH. 30

8.1 Go program showing how psutil is implemented for experiments 36

xiii

List of Abbreviations
bs Base Station

ch Cluster Head

coat Climate-ecological Observatory for Arctic Tundra

dao Distributed Arctic Observation

f-leach Fuzzy-LEACH

gaf Geographic Adaptive Fidelity

gbcp Gossip-based communication protocol

gear Geographic and Energy-Aware Routing

leach Low-Energy Adaptive Clustering Hierarchy

ou Observation Unit

p2p Peer-To-Peer

pegasis Power-efficient gathering in sensor information systems

tcp Transmission Control Protocol

wsn Wireless Sensor Network

xv

1
Introduction
The Arctic tundra in the far northern hemisphere is challenged by climate
changes in the world today and is one of the ecosystems that are most affected
by these changes [1]. Five Fram Center¹ institutions developed a long-term re-
search project called Climate-ecological Observatory for Arctic Tundra (coat).
Their goal is to create robust observation systems which enable documentation
and understanding of climate change impacts on the Arctic tundra ecosystems.
COAT was in autumn 2015 granted substantial funding to establish research
infrastructure which allowed them to start up a research infrastructure during
2016-2020 [1].

Wireless Sensor Network (wsn) is a system that consists of hundreds or
thousands of low-cost micro-sensor nodes. These nodes monitor and collect
physical and environmental conditions. The various activities in the sensor
nodes consume lots of energy and the battery of the sensor node is difficult to
recharge in wireless scenarios and also because the sensor nodes are located
at remote areas in the Arctic tundra.

This thesis presents the architecture, design, implementation and evaluation
of a peer observation system that can observe and accumulate data from other
peers in multiple clusters in a network.

1. http://www.framsenteret.no/english

1

http://www.framsenteret.no/english

2 CHAPTER 1 INTRODUCT ION

1.1 Motivation
The motivation behind this project is that multiple Distributed Arctic Observa-
tion (dao)-Stores [28] may want different data from sensors deployed in the
Arctic Tundra. With all the data gathered from each sensor, there will be a need
for gathering data that is most important for each dao-Store. One example
can be a dao-Store coat that wants data such as images of animals for their
research.

This thesis will develop an approach to let Observation Unit (ou) observe
each other and gradually accumulate data to ous being a dao-Store. There
can be multiple daos-Stores depending on user needs. The purpose is to
fetch and accumulate data observed by ous for further use and to provide
for a more flexible and powerful sensor in the coat monitoring of the Arctic
Tundra.

1.2 Contributions
The thesis makes the following contributions:

• An description of relevant wsns and routing techniques in wsns.

• An architecture, design and implementation of a wsn system.

• An evaluation of the system.

• Thoughts on further improvements to the current system and future
work.

1.3 Limitations
This thesis focuses on creating a prototype of a cluster network and do not
focus on the data passed between the nodes. Data collected from the nodes
are not actual data collected from sensors, as this isn’t crucial for the system
implementation itself.

1.4 OUTL INE 3

1.4 Outline
This thesis is structured into 12 chapters including the introduction.

Chapter 2 describes different routing- and communication protocols inwsns.

Chapter 3 presents related work in the field of wsn, node communication
and comparing it to the work done in this thesis.

Chapter 4 describes the technical idea.

Chapter 5 describes the system architecture.

Chapter 6 describes the design of the system and how a cluster network may
appear.

Chapter 7 describes the implementation of the system together with choices
and issues during implementation.

Chapter 8 describes the experimental setup, metrics used to evaluate the
implemented system and the results from the experiments.

Chapter 9 discusses our approach, experiences, how we solved the problem
and why we chose the solution we ended up with.

Chapter 10 concludes the thesis.

Chapter 11 suggests future work to improve the system.

Chapter 12 Appendix

2
Routing Techniques in
WSNs
Wireless Sensor Network (wsn) is a system that consists of hundreds or
thousands of low-cost micro-sensor nodes which monitor and collect physical
and environmental conditions. Figure 2.1 shows how a wsn architecture can
be, with multi-hop routing.

wsns main task is to periodically collect information of the interested area
and broadcast the information to a Base Station (bs). An easy approach to
achieve this task is to make each sensor node transmit their data directly to the
BS. But the problem is that the bs can be far away from the sensor node so a
direct data transmission would not be possible, or if the routing path from the
sensor node to the bs is long, the sensor node may require more energy than
available. There are multiple hierarchical protocols that has been proposed as
a solution to this problem.

5

6 CHAPTER 2 ROUT ING TECHN IQUES IN WSNS

Figure 2.1: Figure shows an example of a multi-hop wsn architecture.

2.1 Routing Protocols in WSNs
2.1.1 Hierarchical Routing
Hierarchical routing, also called cluster-based routing, is a well know technique
for network routing with special advantages related to scalability, efficient
communication and lower energy consumption in WSNs. Each cluster in the
hierarchical routing protocol have a special node which is responsible for
coordinating data transmission between all nodes in the cluster [2, 3, 5].

Two approaches based on hierarchical routing are Low-Energy Adaptive Cluster-
ing Hierarchy (leach)[2] and Power-efficient gathering in sensor information
systems (pegasis)[6] which are described in Chapter 3.

2.1.2 Location-based Routing
In location-based routing, nodes are addressed based on their location. The
distance between a node and its neighbour can be estimated by incoming signal
strengths, by GPS or via coordination among nodes [5]. Two approaches are
Geographic Adaptive Fidelity (gaf)[18] and Geographic and Energy-Aware
Routing (gear)[19].

2.2 FLOOD AND GOSS IP ING PROTOCOL 7

2.2 Flood And Gossiping Protocol
2.2.1 Flooding Protocol
The simplest forwarding rule is to flood the network. In flooding, a node sends
a packet received to all its neighbours expept the neighbours which sent the
packet until the packet arrives at the destination or maximum number of hops
for the packet is reached. Its biggest drawback is that the protocol is not an
energy efficient protocol and is not designed for sensor networks [17].

2.2.2 Gossiping Protocol
Gossiping is a modified version of flooding attempting to correct some of its
drawbacks. In gossiping, a node with updated data will contact an arbitrary
node with updated information. However, it is possible that the contacted node
was updated by another node and in that case may not spreading the update
any further [20].

3
Related Work
To improve the overall energy dissipaton of Wireless Sensor Networks (wsns),
Low-Energy Adaptive Clustering Hierarchy (leach) [2] introduce a hierar-
chical clustering algorithm for sensor networks. It is self-organized and use
randomization to distribute the energy load evenly among the sensors in the
network. The sensor nodes organize themselves into local clusters where one
node is the local Base Station (bs) or Cluster Head (ch). The chs are not
fixed to avoid nodes to drain their battery and to spread the energy usage
over multiple nodes. The nodes self-elect a new ch depending on the amount
of energy left at the nodes at different time-intervals. leach is divided into
different rounds where each round include a setup phase and a steady-state
phase [4]. In the setup phase will each node decide whether to become a ch
or not. When a ch is chosen, each node will select its own ch based on the
distance between the node and the ch and join the cluster. In the steady-state
phase will the ch fuse the received data from the node members in the cluster
and send it to bs. Details of the leach algorithm is listed below:

• Advertisement Phase: where each node decides whether to become a
ch or not. If a node has elected itself as ch, it will broadcast a message
to the rest of the nodes. Each node will then decide which cluster it
belongs to for this round.

• Cluster Set-Up Phase: the nodes will inform the ch that it will be a
member of the cluster.

9

10 CHAPTER 3 RELATED WORK

• Schedule Phase: based on the number of nodes in the cluster, the ch
creates a schedule telling each node when it can transmit data.

• Data Transmission: as long as a node has data, it sends data to the ch
during their allocated transmission time. After a certain time, the next
round begins with each node determine if it should be a ch.

In contrast, will nodes in our approach first connect to a cluster and then start
a ch-election rather than elect a ch first and then nodes joining the cluster. A
resemblance between the two approaches is that neither of them consider a
node’s energy level when calculating the ch. Details of our approach is listed
below:

• Cluster Set-up Phase: nodes will create clusters by connecting to reach-
able nodes.

• Advertisement Phase: when a node joins a cluster, it will start a ch-
election to decide whether to become a ch or not. The nodes will gossip
the election until the ch is consistent at all nodes.

• Data Transmission: the ch broadcasts a message to all nodes in the
cluster asking for data. The chwill ask for data a random number of times
and when it has received all the data, the next round of a ch-election
begins.

leach do not consider a node’s energy level when calculating the ch. It has
therefore been a benchmark for improving algorithms such as the centralized
clustering algorithm LEACH-C [10] and distributed clustering algorithm such
as LEACH-E [12] and LEACH-B [13]. They concentrate on energy consumption
reducing a nodes residual energy and more relevant criterions [9].

Fuzzy-LEACH (f-leach) [7, 8] have three different fuzzy descriptors such
as energy, concentration and centrality used to complement the cluster head
selection process. The bs performs the ch-election in each round by computing
the chances of a node becoming a ch by calculating the three fuzzy descriptors.
f-leach also assumes that the bs elects the appropriate ch because it has a
complete information about the whole network.

In contrast to f-leach, our approach will elect a ch by the nodes in the cluster
and not in a bs. The ch-election will not consider sub-factors such as battery
level or number of nodes in the cluster.

Geographic Adaptive Fidelity (gaf) [18] propose a energy-aware location-
based routing algorithm designed for mobile ad hoc networks, but are also

11

applicable for sensor networks. First, the network area is divided into different
zones and forms virtual grids. Inside each zone, the nodes communicate with
each other to figure out their different roles. E.g., one node will be elected to
stay awake for a certain period of time and is responsible for monitoring and
reporting data to the bs while the rest of the nodes goes to sleep. Each node
is also located by a GPS-position which is associated with a point in the virtual
grid. Nodes within the same point are considered equivalent in terms of packet
routing. This means that some nodes within the same point can sleep in order
to save energy. This apporach is also an example of adaptive fidelity [26] where
the quality (fidelity) of the answer of the algorithm can be traded against
battery lifetime, network bandwidth, or number of active sensors.

Our approach have no adaptive fidelity algorithm for trading battery lifetime,
network bandwidth or number of active sensors. However, our approach use
simulated GPS-coordinates (x,y) to place nodes within a grid as similar to
gaf [18]. Nodes can only contact other nodes within a simulated broadcast
width. This is explained further in Section 7. In contrast to gaf, will the ch
and regular nodes in our approach accumulate received data with its own
data.

Power-efficient gathering in sensor information systems (pegasis) is a chain-
based protocol with the idea to form a chain among the sensor nodes so each
node will receive and transmit data to a close neighbour. The sensor nodes will
also take turns on being the ch for transmitting data to the bs and therefore
distribute the energy load evenly among the sensor nodes. The chain can be
organized by the nodes themselves using a greedy algorithm starting from
some node, or the bs can compute the chain and broadcast it to all the nodes
in the network [6]. The greedy algorithm assumes that all nodes have a global
knowledge of the network for constructing the chain. Each node, except the
end nodes, performs data aggregation with data received from its neighbours
data and transmit that to its other neighbours.

Our approach do not assume that all nodes have a global knowledge of the
network and computing the path is done in the same task as electing a ch.
Furthermore, our approach is a cluster based protocol and not a greedy based
approach used for chain formation. Our network have one ch per cluster
instead of only one node who will aggregate data and pass it to the bs.

To increase the robustness of devices and lower power consumptions, ZebraNet
[14] provides a low-power wireless system for position tracking of wildlife by
using peer-to-peer network techniques. This reduces the researchers effort to
manage the sensors and collecting logged data for their research. The radios
on their devices also operates on different frequencies and have different
bandwidth, range and other characteristics.

12 CHAPTER 3 RELATED WORK

A diversity to our approach is that ZebraNet stores multiple copies of the same
data across multiple nodes while our approach forwards the data to the next
node in the path to the ch. They’ve also deployed their sensors on zebras in
a real-life environment. For us, it’s not feasible to deploy sensors out in the
real-life Arctic Tundra in such an early development.

Gossip-based protocols, or epidemic protocols, are popular protocols due to
their ability to reliably pass information among a large set on interconnected
nodes. Jelasity et al. [15] provide a Gossip-based communication protocol
(gbcp) where each node have peers to gossip with in a large-scale distributed
system [11]. These nodes can quickly join and leave the network at any given
point of time. The general principle of their framework is that every node (1)
maintains a relatively small local membership table that provides a partial
view of all nodes and (2) periodically refreshes the table using a gossiping
procedure.

The difference between gbcp and our approach is that our approach does
not use a gossip protocol to update its table of nodes, but instead relies on
the communication with other nodes to know about the election of a new ch,
which of the node is the ch and when a node should accumulate data and
send it to the ch.

4
Idea
The technical idea behind the system is that it should be a partially centralized
unstructured Peer-To-Peer (p2p) system where nodes, also called Observation
Units (ous), connect to nearby nodes and create clusters. Using an unstructured
network would be efficient with regards to a large number of nodes that are
frequently joining and leaving the network since it’s highly low cost in the face
of high rates of churn. The technical idea is shown in Figure 4.1.

The node lookup service in Figure 4.1 should provide a functionality for nodes
to discover nearby nodes they can connect to. Together, the nodes creates a
network of nodes. However, it may occur that the network will be partitioned
into multiple clusters due to nodes not reaching each other.

In a partially centralized network, the role of all peers are the same except of
some nodes that assume a more important role. These nodes are called Cluster
Heads (chs) or super nodes. These chs will be important when accumulating
data for further use. A node will assume a more important role in the network
decided by multiple sub-factors. The ch nodes are the red nodes in Figure
4.1.

All nodes should be able to observe data observed by other nodes and to
gradually accumulate data to ous being a ch or e.g. a Distributed Arctic
Observation (dao)-Store.

13

14 CHAPTER 4 IDEA

Figure 4.1: Figure shows the technical idea of the system.

5
Architecture
This chapter describes the architecture of the system. The main functionality
can be divided into 4 sub-sections: a nodes lookup service, discovery of other
nodes, data accumulation and incoming- and outgoing network requests. The
architecture of the system is presented in Figure 5.1.

5.1 Node Lookup Service
The lookup service is responsible for storing all previous discovered nodes and
their address. This lookup service is responsible for detecting which nodes
that are in range for other nodes and return this result to a corresponding
node.

5.2 Discovery Of Other Nodes
Each node can only discover other nodes within a simulated radio range. Figure
6.2 shows how a simulated radio range of a node may be discovered. When a
new node in the network has been discovered, meta-data about the node such
as address, is stored locally on the node in the cluster.

15

16 CHAPTER 5 ARCH ITECTURE

Figure 5.1: Figure shows the architecture of the system.

5.3 DATA ACCUMULAT ION 17

5.3 Data Accumulation
A node will accumulate data received from another node if its data hasn’t
been sent to the Cluster Head (ch) earlier. A ch will gather data from nodes
in order to provide the accumulated data to a Base Station (bs) for further
use.

5.4 Incoming And Outgoing Network Requests
A node may receive incoming requests from other nodes in the network. The
request handler will handle the request based on the type of request. The types
of requests a node may receive are listed below.

5.4.1 Connect To Neighbours
When a node receive a list of neighbours in range from the lookup service, it
will try to connect to the neighbours that are within the nodes range. It will
only connect to the neighbour node if it receives a OK-message, i.e. the node
is allowed to connect.

When a node receives a OK-message it will connect itself to the neighbour. The
neighbour will also then be connected to the new node.

5.4.2 Cluster Head Election Request
When a node receives a ch-election request it will perform a ch-election and
forward the result to it’s neigbours which will do a ch-election as well. A node
may receive a ch-election request when a node has joined the cluster.

Cluster Head Election Calculation Request

If there is a ch in the cluster already and a new election should be proposed,
a ch-calculation request is sent from the ch. Nodes receiving this request will
calculate their ch-election number.

18 CHAPTER 5 ARCH ITECTURE

5.4.3 Data Transmission
Notify Neighbours About Sending Data To Cluster Head

A node may receive a request that it should send its data to the ch. This request
is forwarded to the nodes neighbour and so on.

Send Data To Cluster Head

This request forwards a nodes data to the next node in the path to the ch. If
the node receiving this requests hasn’t sent its data to the ch of the cluster,
the data will be accumulated with the received data and then forwarded to
the next node.

6
Design
In this chapter we will look at the design of the system and present the design
of each component. Figure 6.1 shows how the cluster network may appear in
the system. Nodes are connected to other nearby nodes represented by arrows
and together they form a cluster network.

6.1 Discovery Of Other Nodes
6.1.1 Broadcasting
When a new node start, it will contact the node lookup service to discover
other nodes in the network. The node will then initiate a broadcast. Broadcast
is limited due to a radio range limitation where only nodes that are within this
range will receive the broadcast, shown in Figure 6.2. Node 1 will only reach
node 5 and node 7.

19

20 CHAPTER 6 DES IGN

Figure 6.1: Figure show design of the system.

Figure 6.2: Figure show broadcast range of a Observation Unit (ou).

6.2 CLUSTER HEAD ELECT ION 21

6.2 Cluster Head Election
A Cluster Head (ch)-election may occur in two scenarios listed below.

6.2.1 New Node In Cluster Starts Election
When a new node has joined the cluster, it will start a new ch-election based on
the Bully algorithm [23]. It will calculate it’s own ch-score and gossip the score
to its neighbours. The neighbours will then start a ch-election comparing the
received ch-score against their own ch-score. The result of the ch-election
will then be gossiped to the node’s neighbours with either the received ch-
score or the nodes own ch-score. The gossiped message also contains a path to
the ch. The node append its own address to the path if the received ch-score
won the election, otherwise will the path to ch only contain the node itself.
Eventually a new ch is elected by all the nodes and the ch-election result will
be consistent in the whole cluster. An example of a ch-election is shown in
Figure 6.3.

22 CHAPTER 6 DES IGN

Figure 6.3: Figure show how a new node starts a ch-election.

6.2 CLUSTER HEAD ELECT ION 23

Figure 6.4: Figure show how a ch starts a ch-election.

6.2.2 Cluster Head Starts Election
When a ch has accumulated data ’X’ times, it will start a new ch-election.
Initially, the ch will gossip a message to the nodes the cluster to calculate a
new ch-score. Then, the ch will start a new election and gossip this election
to the other nodes. The nodes receiving this gossip message will start their
ch-election as described in the section above. The election is illustrated in
Figure 6.4.

24 CHAPTER 6 DES IGN

Figure 6.5: Figure show how a ch gossips a GET-data request and how nodes sends
their data to the ch through the nodes in the path.

6.3 Data Accumulation
A ch will start gathering data by gossiping a message to the nodes in the
cluster, illustrated as the red arrows shown in Figure 6.5. When a node receives
this message, it will send its data to the next node in the path to the ch, as
Figure 6.5 shows. When a node receive data from another node it will check
if its own data has been sent to the ch or not by a fingerprint and a status. If
it hasn’t been sent earlier, the node will accumulate the received data with its
own data, and then send the data to the next node in the path to the ch. The
ch will accumulate all received data and store it.

7
Implementation
This chapter will elaborate implementation of the system, general implemen-
tation requirements, issues and choices.

The system is implemented in the open source programming language GO
1.9.3¹. Each node is launched as an unique process and they communicate with
each other by Golangs HTTP Server which listens on the Transmission Control
Protocol (tcp) network address. The reason for using Golang is because it’s
developed for making concurrent mechanisms easy and to utilize multicore
and networked machines, and it offers multiple different libraries. When nodes
communicate with each other, they send packets structured as JSON ².

Each node in the network has a limited battery lifetime and during execution
the node’s battery will be drained causing the node to eventually die. A Cluster
Heads (chs) battery lifetime will be drained faster to simulate that a ch have
potentially more tasks than a regular node.

It is not suitable to have nodes deployed in the Arctic Tundra at such an early
development. This implementation simulates a real-life environment where
nodes can communicate with each other through the tcp network. Each node
is assigned x,y coordinates within a network grid size and a broadcast width,
as shown in 7.1. The purple nodes are new nodes in the network and the purple

1. https://golang.org/
2. https://www.json.org/

25

https://golang.org/
https://www.json.org/

26 CHAPTER 7 IMPLEMENTAT ION

Figure 7.1: Figure show how the network grid size in scale 10 x 10 and nodes broadcast
width.

arrows show connection between the new node and reachable nodes.

7.1 Distance To Other Nodes In The Network
A new node will contact the lookup service to discover other nodes in the
network by sending a POST-request containing meta-data about itself such as
address and position (x,y coordinates).

The distance formula 7.1, also called Euclidean distance [24], is used to calculate
the range between two points in a two-dimensional coordinate map and is
used to see if a node is within a simulated radio range or not, as seen in Figure
6.2. The two points to be calculated is the position of the node itself together
with the positions of all the running nodes in the network.

d =
√
(X2 − X1)2 + (Y2 − Y1)2 (7.1)

7.2 CONNECT TO NE IGHBOURS 27

Figure 7.2: Broadcast simulation

Figure 7.2 shows how a node contacts the lookup service. The lookup ser-
vice computes the node’s position. Nodes within the simulated radio range
is returned to the node. Finally, the node will try to connect to the these
nodes.

7.2 Connect To Neighbours
A node will only be able to connect to another node in the network if the
node accept the request to be neighbours. Presently, every node will be able to
connect with their neighbours, as long as the node isn’t unavailable by means
of sleeping or if it’s dead. There is no restriction in number of neighbours a
node can have or that a node receiving a request from a new neighbour must
forward the request to the ch and let the ch decide whether the new node can
connect to the neighbour or not. Improvements to this approach is discussed
in Section 9.1.1. Figure 7.3 shows the flowchart of when a new node is created
and when it will contact reachable neighbours and to start ch-election.

7.3 Cluster Head Election
A ch-election is proposed either when a new node joins the network or by
a ch. The ch-election algorithm is based on the Bully algorithm [23] where
typically the node with the highest ID number is selected to be the ch. Our
approach do not use the node with highest ID number, but elect the node
with highest score by choosing a random value between 0 and 1 to be a ch.
Each node makes its own decision about whether to become a ch or not

28 CHAPTER 7 IMPLEMENTAT ION

Figure 7.3: Figure show flowchart of when a new node is created and eventually starts
a ch-election.

depending on the received score from neighbour nodes. Our approach have
several improvements discussed further in Section 9.2.1.

To avoid flooding the network, each ch-election round have an ID. If a node
receiving an election have received a request with similar ID and the ch haven’t
changed, the request will not be forwarded to other nodes considering that the
node have forwarded the same request previously.

7.3.1 Cluster Head Calculation
To make the systemmore realistic in terms of battery lifetime and the capability
to become a ch, each node will receive a ch computation request before an
election if the ch-election is started by a ch. This approach assumes that all
nodes are possible candidates to become chs. This is to simulate that the nodes
characteristics may change during execution and that a node that was highly
capable to be a ch before may not be efficient in the next ch-election.

7.4 M IN IM IZE PATH TO CLUSTER HEAD 29

7.4 Minimize Path To Cluster Head
Since ch-elections are gossiped from all nodes, each node can receive multiple
gossips per ch-election and some paths will be longer than others. In order to
minimize the path to the ch, a node will when receive an election, compare
its existing path to the one received [21] and choose the shortest path to be its
path to the ch.

7.5 Data Accumulation
7.5.1 Node Data Accumulation
Since all nodes run concurrently and independently, each node can receive
multiple requests from different neighbouring nodes. When a ch creates a
request for gathering data will the request contain an ID used for identification.
Since the request is gossiped to all nodes in the cluster, a node will most likely
receive the same message multiple times, but only need to forward its data
once. If a node have not received a request with a specific ID, it will gossip the
message to its neighbours and then send its data to the next neighbour in the
path to the ch. Otherwise, the node will just ignore the request.

When a node needs to send data, it will create a request containing the received
request-ID from the ch, the data to be sent together with a fingerprint and a
path to the ch. The path to the ch is a list containing the addresses for the
nodes between the sender and the ch.

The data is a fabricated byte array with a fingerprint that is the hashed value
of the data. The fingerprint will make it easier to identify the numerous data
on each node. The data will also have a boolean tag which is used to check
whether the data has been accumulated or not.

7.5.2 Cluster Head Data Accumulation
When a ch starts a gathering of data, the node will chose a value between
one and six which indicates how many times it should gather data before
it eventually sends out a new ch-election. We chose to implement the chs
to accumulate data between one and six times because finding the exact
number of how many times a ch should accumulate data wasn’t our primary
focus.

As mentioned previously, each node can receive multiple requests from different

30 CHAPTER 7 IMPLEMENTAT ION

neighbour nodes. This especially occur in the chwhen collecting data from the
nodes in the cluster. The collected data is stored in a map and maps in Go³ are
not safe for concurrent use. If a map is read from andwritten to from concurrent
goroutines, the access must be synchronized. One of the most common ways
to protect maps is by using mutexes, illustrated in Listing 7.1.

Listing 7.1: Small Go program showing how mutexes are used when updating a map
by CH.

1
2 /* SensorData is data from " sensors " on the OU */
3 type SensorData struct {
4 ID uint32
5 Fingerprint uint32
6 Data [] byte
7 }
8
9 /* DBStation is a strucure that contains

10 a map that store data at CH */
11 var DBStation struct {
12 sync.Mutex
13 BSdatamap map[uint32][] byte
14 }
15
16 func sendDataToLeaderHandler () {
17 var rd SensorData
18
19 DBStation .Lock ()
20 defer DBStation . Unlock ()
21
22 (...)
23
24 err := json. Unmarshal (body , &rd);
25 if err != nil {
26 panic(err)
27 }
28
29 (...)
30
31 /* Update map in key FingerPrint
32 with received data */
33 DBStation . BSdatamap [rd. Fingerprint] = rd.Data
34 }

3. https://golang.org/

https://golang.org/

7.6 CONCURRENT CH-ELECT ION AND DATA ACCUMULAT ION 31

7.6 Concurrent CH-Election And Data
Accumulation

To avoid having a ch-election occur concurrently with a data accumulation,
the following functionalities are scheduled to execute. Firstly, the ch-election
will execute until the election result is consistent between all nodes. Second,
the ch broadcast a request for gathering data and nodes will accumulate and
send data to the ch. Third, after gathering data according to the accumulation
interval, the ch starts a new ch-election.

If a ch-election and a data gathering happens concurrently, there may be issues
when the node is supposed to send its data because the ch may have changed
and the path to the ch may be incorrect. The node assumes there is a path to
the ch, but if there isn’t any because of a ongoing ch-election, the node will
receive an index out of range error. To avoid this issue, the node will only send
it’s data if there are nodes in the path to the ch. Otherwise, it will wait for a
new accumulation request from the ch.

Our approach to a solution to this interference is to have the two functionalies
divided into different phases similar to Low-Energy Adaptive Clustering Hier-
archy (leach) [2], described in Chapter 3. Timers are implemented to stall
the next phase by making the system sleep until the timer is ended. This issue
and improvements are discussed further in Section 9.8.

8
Evaluation
This chapter describes the experimental setup and metrics used to evaluate
the implemented system.

8.1 Experimental Setup
All experiments were done on a Lenovo ThinkCenter with the following speci-
fications:

• Intel® CoreTM i5-6400T CPU @ 2.20GHz × 4

• Intel® HD Graphics 530 (Skylake GT2)

• 15,6 GiB memory and 503 GB disk

• Ubuntu 17.04 64-bit with gcc V6.3.0 compiler and GO 1.9.3

We use gopsutil, a psutil for Golang [22], to measure CPU,memory, network and
process connections. Each experiment is described further in Section 8.2.

33

34 CHAPTER 8 EVALUAT ION

Parameter Value
Number of nodes 100
Network grid size 500 x 500
Node broadcast width 50

Table 8.1: Parameters of simulation

8.2 Experimental Design
All experiments were conducted on a computer, where a process is simulating
an Observation Unit (ou). In order to determine memory, CPU and network
usage, several experiment scenarios were designed and performed.

The experiments ran with a 500 millisecond’s measurement interval and the
system execute minimum 10 minutes. Each ou starts it’s own experiment, and
each 500 millisecond during execution are the measurement values written to
a log-file for further evaluation. We chose to measure with a 500 millisecond
time interval because the system is implemented to run concurrently and the
experimental measurements change rapidly in terms of Cluster Head (ch)-
elections and data accumulations.

The log-file contains data for each time interval (500 millisecond) where one
row is one node, identified by its process ID, and one column is one time
interval during execution. We calculate each column in the log-file to obtain
an average value because of the huge amount of data. The graphs displayed
contains the average values for each time interval (500 millisecond) with a
standard deviation of all values.

The experiments are done executing 100 nodes with a broadcast range at
50, as shown in Table 8.1. Each node execute their own experiment when
launched. During execution, the nodes in the systemwill communicate between
each other, gossip ch-election and store and accumulate data both between
themselves and at the chs.

A ch will chose a value between one and six which indicates how many times
it should gather data before it sends out a new ch-election. The experiments
are ran on 4 different accumulation intervals as listed below:

• ch accumulate data two times

• ch accumulate data four times

• ch accumulate data six times

8.2 EXPER IMENTAL DES IGN 35

• ch accumulate data a random time between one and six times

8.2.1 Memory Measurements
We measure the memory usage to examine how much memory is consumed
when executing our system. The memory usage measured, is the total percent-
age of RAM used by the program. It is important to keep the memory usage
at a minimum due to execution on devices in real-life environment to avoid
exceeding the limited memory.

We measure the memory usage independently for each node every 500 millisec-
onds during execution when the nodes communicate with each other, electing
new chs and accumulating data to the chs.

• Psutil - VirtualMemoryStat - UsedPercent: percentage of RAM used by
programs. Listing 8.1 show how the the psutil is used to measure memory
usage.

36 CHAPTER 8 EVALUAT ION

Listing 8.1: Go program showing how psutil is implemented for experiments

1
2 func (ou * ObservationUnit) Experiments (pid int) {
3 tickChan := time. NewTicker (time. Millisecond * 500).C
4
5 infoSlice := [] string {}
6
7 (...)
8
9 go func () {

10 time.Sleep(time. Second * time. Duration (batteryStart))
11 doneChan <- true
12 }()
13
14 for {
15 select {
16 case <-tickChan :
17
18 // Measure memory usage
19 mem , _ := mem. VirtualMemory ()
20
21 // Round used percent memory to 3 decimals
22 memUsedPercentage := toFixed (mem. UsedPercent , 3)
23 infoSlice = append (infoSlice , memUsedPercentage)
24
25 // Measure CPU usage
26 oneCPUPercentage , _ := cpu. Percent (0, false)
27
28 // Round used CPU percent to 3 decimals
29 oneCPUPercentage [0] = toFixed (oneCPUPercentage [0], 3)
30 infoSlice = append (infoSlice , oneCPUPercentage [0])
31
32 // NET - number of connections for process by pid
33 conn , err := net. ConnectionsPid ("all", int32(pid))
34 ErrorMsg ("conn: ", err)
35
36 // Number of connections
37 numConn := len(conn)
38 infoSlice = append (infoSlice , numConn)
39
40 // Append to a file
41 AppendFile (path , writer , infoSlice)
42 }
43 }

8.2 EXPER IMENTAL DES IGN 37

8.2.2 CPU Measurements
We measure the total CPU usage for the computers four cores combined to
document CPU utilization. This as well, is important to keep at a minimum
due to execution on devices in real-life environment to avoid draining the
battery.

Wemeasure the CPU usage independently for each node every 500milliseconds
during execution when the nodes communicate with each other, electing new
chs and accumulating data to the chs.

• Psutil - Percent: calculates the percentage of CPU used either per CPU
or combined. Listing 8.1 show how the the psutil is used to measure CPU
usage.

8.2.3 Network Usage
We measure the number of process connection and network usage when ex-
ecuting our system. The number of communication channels are represented
by open sockets that a node have open at any given point. These open sockets
may be because of discovery of other nodes, ch-election, forwarding- and data
accumulation. It’s important to measure the number of process connection and
network usage because the system heavily relies on it and it’s important to
keep it to a minimum.

We measure the number of process connections and network usage indepen-
dently for each node every 500 milliseconds during execution when the nodes
communicate with each other, electing new chs and accumulating data to the
chs.

• Psutil - ConnectionsPid: Return a list of network connections opened by
a process. Listing 8.1 show how the the psutil is used to measure number
of process connections and network usage.

8.2.4 Number Of Sends To Neighbours
We measure the number of sends to neighbours in the system during execution.
This experiment is in connection with the network usage and communication,
described in Section 8.2.3.

We measure the number of sends independently for each node every 500
milliseconds during execution every time the node sends a request to a neigh-

38 CHAPTER 8 EVALUAT ION

bour, like discovering other nodes, connecting to other nodes, ch-election or
accumulating and sending data to the ch.

8.2.5 Number Of Sends To Cluster Heads
We measure the number of sends to a ch during execution. The number of
sends are only counted when there is a accumulation request to send data to
a ch. As described in Section 8.2.3, are communication between nodes and
network usage important to keep to a minimum.

We measure the number of sends to the ch independently for each node every
500 milliseconds during execution every time there is a accumulation request
to send data to a ch.

8.2.6 Cluster Head Count
We measure how many times nodes have been chs at each time interval to
examine if howmany chs there is at each time interval. The ch is only counted
when it’s done gathering all the data.

We measure the number of chs independently for each node every 500 mil-
liseconds during execution.

8.2.7 Cluster Head Receives Packages
We measure how many times a ch receives data from other nodes in the
network. This is measured only at eachch. Wewant tomeasure this to examine
the difference between the number of sends to a ch and how many times a
ch have received a packet and to see the effect of the accumulation.

We measure the number of receives independently for each node every 500
milliseconds during execution every time the ch receives a request containing
accumulated data.

8.3 RESULTS 39

8.3 Results
In this section we will present and discuss the results of the experiments
described in the sections above.

8.3.1 Memory Usage
The purpose of this experiment was to examine memory footprint when exe-
cuting the system.

The result is presented in Figure 8.1. We can see that the system has between
60% and 76% memory usage during execution and the graphs shows that each
experiment use approximately the same amount of memory.

There is one graph that stands out by using under 50% of the memory during
execution, which is the graph showing the memory usage after 4 accumulations,
as seen in Figure 8.1b.

As for the experiment for the implementation with a random number of ac-
cumulations, as seen in Figure 8.1d, we can see that this implementation use
between 58% and 68% memory while executing. There is reason to think that
this implementation version uses less memory than the others because the
accumulation intervals are more distributed during execution in contrast to the
other accumulation intervals where all chs accumulate data appropriately at
the same time interval. This also means that the ch-elections also will occur at
different times compared to the other implementations where this will happen
at the same iterations per implementation.

As for the experiment for the implementation with six accumulations, seen in
Figure 8.1c, the memory percentage is the overall highest of all experiments.
We can assume that this is because of the most amount of accumulation causing
the ch to use more memory.

40 CHAPTER 8 EVALUAT ION

(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Figure 8.1: Figures show average memory percentage (dark colors) for 100 nodes per
network with different accumulation intervals with standard deviation
(lighter colors).

8.3 RESULTS 41

8.3.2 CPU Usage
As we can see from Figure 8.2, the CPU percentage is between 50% and 95%
during execution and each experiments uses approximately the same amount
of CPU. The CPU percentage is stable on around 75% during the execution
for each experiment. We believe that the reason there are no peaks during
execution, is because of Golangs¹ built-in language features and ability to
utilize multicore and networked machines.

Every node in the system spawn new goroutines when they start a new ch-
election and sends- or receives requests from other nodes in the network.
Golangs goroutines are very cheap to create and because they are so light, it is
possible to have hundreds or thousands of them running at the same time, and
in the same address space. Threads are the basic units for processor scheduling
and distribution. Threads need to go to the kernel when acquiring a lock for
synchronization in contrast to goroutines that are implemented on-top of OS
threads and can stay in user space and acquire locks.

Another reason for the graphs being so stable can be because the nodes are
waiting for a request to either accumulate data or elect a new ch. Most of the
execution time, the nodes are waiting for requests.

From Figure 8.2, we can see that each implementation uses less CPU usage
in the start and end of the execution. This is because in the beginning, nodes
take time to start and to find neighbours to connect to. Then, the CPU usage
will increase because nodes that have found nearby neighbours to connect to
and they will start ch-elections. In the end of the execution, nodes will die
because of simulated energy consumption during the execution.

1. https://golang.org/

https://golang.org/

42 CHAPTER 8 EVALUAT ION

(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Figure 8.2: Figures show average CPU percentage (dark colors) for 100 nodes per
network with different accumulation intervals with standard deviation
(lighter colors).

8.3.3 Network Usage Amounted By Number Of
Connections

The purpose of this experiment was to measure the network usage and commu-
nication between nodes since it’s important to keep this to a minimum since it’s
aimed to execute on small, low-power ous. The result is presented in Figure
8.3 and show a wave like pattern. The number of connections in the system
range from 1 connection to 18 connections on average per node for 100 node
in the system. There is reason to believe that these high wave like patterns
showing a high amount on connections is because of three reasons:

• Firstly, nodes are created and communicate with reachable nodes to
connect to and eventually starts a ch-election resulting in a high amount
of connections.

• Second, when a ch broadcasts a message that a data accumulation
should be started, the message is broadcast to every node in the cluster
resulting in many open connections.

• At last, after accumulating data from other nodes in the cluster, the ch
gossip a new ch-election calculation and then gossip a new ch-election.

8.3 RESULTS 43

There is also reason to think that these wave like patterns occurs at different
time intervals is because of the different implementations accumulate data
and elect chs at different time intervals. Each cluster of nodes may also get
out of sync with the other clusters resulting in that accumulation of data and
ch-elections occurs at different iterations. This may smooth out the graphs
eventually, as seen in Figure 8.3c

(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Figure 8.3: Figures show average network connections (dark colors) for 100 nodes per
network with different accumulation intervals with standard deviation
(lighter colors).

44 CHAPTER 8 EVALUAT ION

(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Figure 8.4: Figures show average number of sends from nodes (dark colors) to neigh-
bour nodes for 100 nodes per network with different accumulation inter-
vals with standard deviation (lighter colors).

8.3.4 Number Of Sends To Neighbours
Since it’s important to keep communication and network usage to a minimum,
we measure the number of sends from nodes to neighbours. As we can see
from Figure 8.4, the number of sends from one node to another increases
during execution. The average number of sends from nodes range between
1 send up til around 95 sends. This is an expected result since each time a
node communicate with another node, it’s counted and therefore will increase
during execution.

As Figure 8.4 also show, is how some nodes send few messages while other
nodes send a lot of requests. As we can see from Figure 8.4b, some nodes have
sent requests over 160 times and other nodes only around 20 requests. This
will vary in terms of where the nodes are placed in the network. Those nodes
that have a low rate of sends are most likely placed at the outer edge of the
cluster while the nodes that have a high rate are most likely placed in the path
to the ch for many nodes resulting in a higher send rate.

8.3 RESULTS 45

(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Figure 8.5: Figures show average number of sends to chs (dark colors) for 100 nodes
per network with different accumulation intervals with standard deviation
(lighter colors).

8.3.5 Number Of Sends To Cluster Heads
Number of sends to chs is also connected to the experiment with communi-
cation and network usage. The result is presented in Figure 8.5 where we can
see that the number of sends to the chs increase during execution. This is also
an expected result in thought of the ch are gathering more and more data.
The average number of sends to the ch range between 0 sends up til around
35 sends.

Figure 8.5d show how nodes quickly accumulates data to the ch by having
the ch chose a random value of how many times it should accumulate data
between one and six. Even though the ch starts gathering in a more varied
way, it has less sends to the ch than the other implementations. We can also
see that this graph decrease right after 1400 iterations. The reason for this
is assumable because nodes starts dying of energy consumption because of a
more spread ch-election and data accumulation during execution causing the
nodes to drain more of their limited battery.

46 CHAPTER 8 EVALUAT ION

8.3.6 Cluster Head Count
The result is presented in Figure 8.6. The graphs are as expected flat during
parts of the execution because the ch-count is only counted when the ch is
done gathering data. There is reason to think that all the graphs, except the
graph of ch-count after a random number of accumulations, have flat graphs
during execution because all the ch-counts happens approximately at the same
time interval and don’t change until the next ch-election.

We can see that the ch-count after 2 accumulations increase to almost double
because of ch-elections in the clusters. Since there is only 2 gathering of data
per ch, the ch will get started earlier with a ch-election. Our implementation
also support that a ch can be elected as ch again, which can explain why the
graph increase significantly. Since it’s the average value from the 100 nodes
running during the experiment, some chs may have been elected ch again
causing the graph to increase to double.

ch-election after 6 accumulations have also a little increase by around 2. This
may also be caused by some a ch-election where some previous chs have
been elected again.

Counting the number of ch after a random number of accumulations, show a
more increasing graph during execution because of the accumulations happens
at different time interval causing the ch-election to be more spread during
execution. We can also see that this graph stop right after 1600 iterations. The
reason for this is assumable because nodes starts dying of energy consumption
because of a more spread ch-election and data accumulation during execution
causing the nodes to drain more of their limited battery.

8.3 RESULTS 47

Figure 8.6: Figure shows the number of chs for 100 nodes per network with different
accumulation intervals.

8.3.7 Cluster Head Receives Packages
As we can see from Figure 8.7, are the number of packets chs receives relatively
similar during each experiment. This result as well, is expected because the
chs will receive more data each time they ask for it.

Figure 8.8 show the number of sends from nodes to neighbours, sends from
nodes to chs and number of times chs have received data. As we can see, are
the number of received packets less than sends to chs. It is therefore reason
to think that the nodes accumulate data to reduce the number of packets a ch
receives. The reason for the drop down at the end of the iteration is caused by
nodes shutting down due to their limited energy and they these nodes are not
taking in account when calculating an average.

48 CHAPTER 8 EVALUAT ION

(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Figure 8.7: Figures show average number of chs (dark colors) for 100 nodes per
network with different accumulation intervals with standard deviation
(lighter colors).

Figure 8.8: Figure shows average number of chwith different accumulation intervals.

9
Discussion
This chapter discusses our approach, experiences, how we solved the problem
and why we chose the solution we ended up with.

9.1 Availability Of Nodes In The System
9.1.1 Connect To Neighbours
In the current approach a node can connect to nearby nodes and be a part of
a cluster without any restrictions. In our first approach when a node received
a request from a new node, it would forward the request to the Cluster Head
(ch). The ch then determine if the new node is allowed connect to the cluster
or not. However, making a ch take this decision could be problematic because
the ch needs to know information about the whole network or at least its own
cluster, and also need some requirements for when a node can join and not.
Some requirements that a ch can consider are:

• Number of nodes per cluster

• Number of neighbours a node can have

• Distance from new node to ch

49

50 CHAPTER 9 D ISCUSS ION

• Node characteristics (bandwidth, energy level, memory etc.)

Another interference with having a ch take the decision is that the ch may
be unavailable because it’s sleeping or if it’s unreachable because nodes in the
path to the ch are sleeping or unavailable due to e.g. saving battery.

9.1.2 Ping Neighbours
An improvement to check if neighbours are alive or not, is to ping neighbouring
nodes frequently to check if they are alive or not. However, pinging other nodes
frequently will eventually flood the network. An improved solution is to only
ping neighbours if there is a need for communication between nodes. For
example to ping neighbours before forwarding a message to the ch. This
ping-request will most likely contain a wake-up call to the next node in the
path to the ch so nodes are awake when receiving a forwarding request to the
ch. Another approach is to have time slots for when nodes are awake. During
these time slots, nodes could ping other nodes to check if they’re alive or not.
ch-elections and accumulating and forwarding data would also happen during
these time slots.

9.1.3 Node Waking Up After Sleeping/Being Unavailable
At the current approach, there is no timestamp or schedule for when the ch
was elected. If a node was unavailable during the ch-election, it will most
likely forward its data to the old ch. However, this isn’t necessary a drawback
since the node receiving this data will forward the accumulated data in the
next gathering phase. To improve this approach and avoid inconsistency of the
ch, we could implement a solution to ask the nodes neighbours who the ch
is. Each ch-election should have a timestamp to compare in case the node
receives multiple different answers. Then the node could compare the different
timestamps and choose the timestamp that is the biggest or the closets to its
own clock, depending on the implementation.

9.2 CLUSTER HEAD ELECT ION 51

9.2 Cluster Head Election
Being a ch is more energy intensive than being a regular cluster node because
it may transfers data over longer distances and performs more tasks. If the ch
is chosen a prior, meaning the ch is chosen before the nodes have knowledge
of each other and created clusters, e.g. by a Base Station (bs) without any
knowledge about the network, then the node would quickly use up its limited
energy. Once a ch runs out of battery, it is no longer operational and all
nodes belonging to the cluster will lose their communication ability. To avoid
this problem, our approach will not chose chs a priori, but instead have a
ch-election algorithm to possibly rotate the ch.

9.2.1 Cluster Head Calculation
Presently, the ch-election is based on which node has the highest score between
0 and 1. This intentionally simplified implementation does not take in account
many other realistic aspects which would improve the ch-election. To improve
this approach and make it more realistic in terms of saving battery lifetime and
a real-life scenario for deploying sensors in the Arctic tundra, we could have
used several sub-factors listed below:

• Number of nodes between a node and ch

• Number of neighbours for the node

• Access to bs

• Power left on node

• Bandwidth - WiFi, LoRaWan¹, Ethernet

• Prior history

• Network traffic on node

9.2.2 Gossip Information Between Nodes
The main advantages of gossiping is its ability to scale. Gossiping have no
centralized component where information is coordinated and is therefore an
excellent way to rapidly spread information among a large number of nodes

1. https://lora-alliance.org/about-lorawan

https://lora-alliance.org/about-lorawan

52 CHAPTER 9 D ISCUSS ION

using only local information. However, gossiping can not guarantee that all
nodes will receive the information [11].

To avoid flooding the network, each message sent between nodes have an ID so
the node can check if it has received the same message before. If the node have
received the message earlier, the node doesn’t need to forward the message
because it has forwarded the message in an earlier gossip, as described in
Section 7.3.

Another approach to avoid flooding the network and reduce nodes energy
level is to limit the number of hops when gossiping to other nodes. To avoid
this flooding can each packet have a hop count and every time a packet hops,
its hop count increment. When a packet’s hop counts equals a hop limit, the
packet will be discarded. Flooding the network with updates as the current
approach does, ensures eventual consistency.

9.2.3 When To Elect A New Cluster Head
The present approach starts a new ch-election in two scenarios: either when
a new node joins the cluster or when the ch have accumulated data ’X’ times.
Other approaches such as Low-Energy Adaptive Clustering Hierarchy (leach)
[2], mentioned in Chapter 3, have multiple phases during execution where one
phase is to elect a new ch which occurs periodic.

The current approach is similar to leach using different phases for electing a
new ch and accumulate data. We chose this solution because of concurrency
issue when these two events happen at the same time, as mentioned in Section
7.6. This issue is also discussed further in Section 9.8.

There is also a need for electing a new ch if the ch itself crashes, runs out
of battery or something happens like a flood or if the node gets destroyed by
an animal. This can be done by either ping the ch to check if it’s alive during
time slots, as discussed in Section 9.1. If there is no response from the ch, the
node responsible for the ping starts a new ch-election.

9.3 Remember Previous Cluster Head
At the present approach, nodes do not know that they have been chs in an
earlier election. The nodes should know if they have been elected to chs earlier
because they have accumulated data from other nodes in the cluster. This data
should be sent to a bs. The chs can have access to a bs during their whole

9.4 MULT IPLE CLUSTER HEADS 53

lifetime or at some points during their lifetime. Access to bss are discussed
further in Section 9.9

To improve our current approach, each ch should remember that they have
been elected as ch in an earlier election. Eventually, when the ch have been
in contact with a bs that collects all the chs data, they can forget that they
have been chs and also remove their data to increase memory capacity.

9.4 Multiple Cluster Heads
The current approach have one ch per cluster. If there are many nodes in one
cluster, there can be a lot of work load for the ch, and the path to the ch
can be long for some nodes. An improvement to this is to introduce multiple
ch to load balance work and may also provide shorter path for some nodes.
The question is then which ch should a node choose to be its ch if there
are multiple. ch-elections will be based on several sub-factors described in
Section 9.2.1. If we assume that all nodes that are qualified to become chs
are equivalent in terms of battery lifetime, network bandwidth and number
of neighbours, the node should choose the ch with the shortest path to avoid
flooding the network with requests and to avoid draining the limited energy
on more nodes than necessary. Having multiple chs that accumulates data
would also support scalability and performance issues in terms of balance the
work load between chs.

9.5 Path To Cluster Head
One advantage with the present approach is that the ch-election chose the
shortest path from a node to the ch to avoid flooding the networkwith requests.
The idea to use the shortest path [21], is presumably not beneficial to change
in any approach. However, it may be that some nodes in a path to the ch have
a limited battery lifetime and therefore should not be in a path to the ch. This
is a corner case which will be difficult to give a right answer to since the paths
and nodes can occur in many different scenarios.

9.5.1 Multi-hop or single-hop routing
Wireless Sensor Network (wsn) consists of hundreds or thousands of low-
cost micro-sensor nodes and their main task is to collect information of the
interested area and broadcast the information to a bs. An easy approach to

54 CHAPTER 9 D ISCUSS ION

achieve this task is to make each sensor node transmit their data directly to the
bs, as Figure 9.1 shows. However, the problem is that the bs may be placed
far away from the sensor node so a direct transmission would not be possible.
Another problem can be that the routing path from a sensor node to the bs is
long and the node will require more power consumption than available.

In some cases can multi-hop routing be more energy efficient than single-
hop routing[27]. Our approach is currently using multi-hop routing to deliver
accumulated data to the ch. To use single-hop routing in our approach would
not be efficient in terms of energy consumption or sensor nodes radio range. In
a real-life scenario where nodes are deployed in the Arctic Tundra, all nodes
would not be able to reach each other by radio range or a bs.

However, multi-hop routing has it’s drawbacks. There is more likely a packet
will be lost during multi-hop routing than single-hop because the packet will
have multiple nodes in it’s path that can be unavailable during transmission.
Multi-hop routing can also introduce problems of routing in terms of different
paths to a bs or a ch, as seen in Figure 9.1. As mentioned in in Section 9.5,
will nodes in our approach choose the shortest routing path to a ch.

Figure 9.1: Figure show single-hop routing and multi-hop routing.

9.6 DATA ACCUMULAT ION 55

9.6 Data Accumulation
In the current approach, the chs are always the ones that initiate a request to
the other nodes in the cluster for collecting data. This means that regular nodes
can not decide that they want to send data to theirch. Another approachwould
be that the node’s sends their data when they have new data or when they
have almost used up their memory capacity. However, if nodes have new data
regularly, this approach would not be efficient in terms of energy consumption
because other nodes in the routing path must be awake to transmit the data
further to the ch. There is reason to think that there is a possibility that the
majority of the nodes in the clusters are awake most of their time instead of
sleeping and saving battery.

9.7 Replication Of Data
In the current approach will nodes only accumulate data that haven’t been
accumulated earlier. This approach will therefore have some degree of replica-
tion because a nodes data will be accumulated at the next node in the routing
path.

It may take long time before a ch gets access to a bs or is contacted by a data
mule that collects the data. Meanwhile, the ch may fail or die due to battery
limitations and all its accumulated data will be lost.

An approach to this problem is to only let nodes delete its data if the ch have
delivered all the data to a bs or a data mule. Otherwise, the data is stored at
each node. Replication of node data is important if a node fails and we need to
access the nodes data. However, replication of data also require more memory
but sensor nodes have limited memory. In this case, there is a need for finding
a degree of replica that can both be memory efficient and handling system
failures.

Another approach is to have multiple chs that collects the same data, as
discussed in Section 9.4. In this approach, nodes that are not chs can delete
their data when they have sent their data to the ch to minimize memory
usage.

56 CHAPTER 9 D ISCUSS ION

9.8 Concurrent CH-Election And Data
Accumulation

The current approach provides an eventual consistency when electing a new
ch as mentioned before. This may raise some issues when a data gathering
occurs when an election is ongoing due to rapidly change of chs and paths to
ch before all nodes have an consistent ch-election, as mentioned in Section
7.6.

leach have divided their system into different rounds, as described in Chapter
3. To improve our approach, we could have implemented our system to be
divided into rounds such as in leach. Instead of having timers to stall the
next phase, an improvement to our approach could be to have a status at each
node saying if the node is going through a ch-election, if it accumulates data
to the ch or if it’s just waiting for requests. In this way, when one status is true,
e.g. a ch-election has status true, can’t a data accumulation happen because
its status will be false.

9.9 Base Station Access
At the current approach, all nodes have the same broadcast range to reach
nearby neighbours. This means that there is no node that have access to a bs
where it can deliver it’s data.

Another question is how nodes or chs have contact with bss. As discussed in
Section 9.2, can a node be elected as ch if it has access to a bs, if there are any
placed in the same area as the nodes. Another approach is to use a data mules
to collect data from the chs. One problem is how the ch should be contacted
since the bs or data mule don’t know who has the data in the cluster. One
approach is that they know who the chs are, another approach is to let the bs
or data mule contact an arbitrary node and let the node alert the ch that it
should send it’s data. The node can also tell the mule where the ch is located
by giving the mule the chs x- and y-coordinates.

10
Conclusion
In this thesis, we have implemented a prototype of a Wireless Sensor Network
(wsn) system where nodes observe and accumulate data from other nodes for
further use. We describe a system where nodes discover each other through a
broadcast range and together they form clusters. Each cluster elect a Cluster
Head (ch) which is responsible for sending out a request for gather and
accumulate data from the other nodes in the cluster. The role as ch is rotating
among the nodes to conserve battery. Even though our approach works as
intended, there is a need for improvements in how a ch is elected and when
a ch should accumulate data.

Our experiments showed that the system have a steady CPU andmemory usage.
We can also see that the number of receiving packets of accumulated data is
lower than sent packets with accumulated data which indicates that the nodes
in the system accumulates data when intended to reduce traffic on the paths to
the chs. There is also a big variety of how many requests nodes in the system
sends, depending on their location in the network.

A future system could further investigate the benefits of having multiple chs
and how to gather and accumulate data more efficiently. There is still a need for
conducting further work for a real-life environment in the Arctic Tundra.

57

11
Future Work
We will outline some of the areas that can be elaborated in future work. These
include:

• Availability of node: In the current implementation, nodes can join the
cluster without any requirements, as discussed in Section 9.1. We discuss
how how we could improve the implementation by having the Cluster
Head (ch) take the decision if a node can join the cluster or not. We also
discussed how to improve a nodes knowledge about the network around
them and how to get the newest information.

• ch-election: The ch-election, together with the ch calculation, in the
current solution is not the best, but it is an introduction to a solution.
As mentioned in Section 9.2, would another approach be to include sub-
factors such as power left on node, network traffic, number of neighbours
etc, to calculate which nodes that are most qualified to be a ch.

• Multiple chs: This implementation of the system does not support
multiple chs in one cluster. In Section Section 9.4, we discuss how
we could have improve our approach by to load balance work, possibly
provide shorter paths for some nodes to chs and minimize scalability
and performance issues.

• Access to Base Station (bs): The current approach have no bs or data
mule to collect the data. In Section 9.9, we discuss how the cluster should

59

60 CHAPTER 11 FUTURE WORK

get access to a ch by implementing either a bs or a data mule and how
these should contact the nodes in the network.

Bibliography
[1] Åshild Ø. Pedersen, A. Stien, E. Soininen, and R. A. Ims, Climate-ecological

observatory for arctic tundra-status 2016, Mars 2016, in Fram Forum 2016,
pages 36-43.

[2] W. R. Heinzelman and A. Chandrakasan and H. Balakrishnan, Energy-
efficient communication protocol for wireless microsensor networks, 2000, in
Proceedings of the 33rd Annual Hawaii International Conference on System
Sciences, 10 pp. vol.2-.

[3] K. Latif and M. Jaffar and N. Javaid and M. N. Saqib and U. Qasim
and Z. A. Khan, Performance Analysis of Hierarchical Routing Protocols in
Wireless Sensor Networks, 2012, in 2012 Seventh International Conference
on Broadband, Wireless Computing, Communication and Applications, pp.
620-625.

[4] Z. Han and J. Wu and J. Zhang and L. Liu and K. Tian, A General Self-
Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor
Network, 2014, in IEEE Transactions on Nuclear Science Vol.61, Nr.2, pp.
732-740.

[5] J. N. Al-Karaki and A. E. Kamal, Routing techniques in wireless sensor
networks: a survey, 2004, in IEEE Wireless Communications Vol.11, Nr.6, pp.
6-28.

[6] S. Lindsey and C. S. Raghavendra, PEGASIS: Power-efficient gathering in
sensor information systems, 2002, in Proceedings, IEEE Aerospace Conference
Vol.3, pp. 3-1125-3-1130.

[7] A. K. Mishra and R. Kumar and J. Singh, A review on fuzzy logic based
clustering algorithms for wireless sensor networks, 2015, in 2015 International
Conference on Futuristic Trends on Computational Analysis and Knowledge
Management (ABLAZE), pp. 489-494.

61

62 B IBL IOGRAPHY

[8] Indranil Gupta and D. Riordan and Srinivas Sampalli, Cluster-head elec-
tion using fuzzy logic for wireless sensor networks, 2005, in 3rd Annual
Communication Networks and Services Research Conference (CNSR’05), pp.
255-260.

[9] Maryam Sabet and Hamid Reza Naji, A decentralized energy efficient hier-
archical cluster-based routing algorithm for wireless sensor networks, 2015,
in AEU - International Journal of Electronics and Communications Vol.69,
Nr.5, pp. 790 - 799.

[10] W. B. Heinzelman and A. P. Chandrakasan and H. Balakrishnan, An
application-specific protocol architecture for wireless microsensor networks,
in IEEE Transactions on Wireless Communications Vol.1, No.4, October 2002,
pp. 660-670.

[11] Demers, Alan and Greene, Dan and Hauser, Carl and Irish,Wes and Larson,
John and Shenker, Scott and Sturgis,Howard and Swinehart,Dan and Terry,
Doug, Epidemic algorithms for replicated database maintenance, in ACM:
Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, 1987, pp. 1–12.

[12] Chen, Bai and Zhang, Yaxiao and Li, Yuxian and Hao, Xiao-Chen and Fang,
Yan, A Clustering Algorithm of Cluster-head Optimization for Wireless Sensor
Networks Based on Energy, in Journal of Information and Computational
Science, Vol.8, 2011.

[13] M. Tong and M. Tang, LEACH-B: An Improved LEACH Protocol for Wire-
less Sensor Network, in J2010 6th International Conference on Wireless
Communications Networking and Mobile Computing (WiCOM), 2010, pp.
1-4.

[14] Juang, Philo and Oki, Hidekazu andWang, Yong and Martonosi, Margaret
and Peh, Li Shiuan and Rubenstein, Daniel, Energy-efficient Computing
for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet,
in ACM: SIGARCH Comput. Archit. News, Vol.30, No.5, December 2002, pp.
96–107.

[15] Jelasity,Márk andVoulgaris, Spyros andGuerraoui,Rachid and Kermarrec,
Anne-Marie and van Steen, Maarten, Gossip-based Peer Sampling, in ACM
Trans. Comput. Syst., Vol.25, No.3, August 2007.

[16] Draves, Richard and Padhye, Jitendra and Zill, Brian, Routing in Multi-
radio, Multi-hop Wireless Mesh Networks, in Proceedings of the 10th Annual
International Conference onMobile Computing andNetworking, 2004,pp.114–

B IBL IOGRAPHY 63

128.

[17] Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor
Networks, John Wiley & Sons, Ltd, 2006.

[18] Xu, Ya and Heidemann, John and Estrin, Deborah, Geography-informed
Energy Conservation for Ad Hoc Routing, in MobiCom ’01: Proceedings of the
7th Annual International Conference on Mobile Computing and Networking,
2001, pp.70–84.

[19] Yu, Yan and Govindan, Ramesh and Estrin, Deborah, Geographical and
Energy Aware Routing: a recursive data dissemination protocol for wireless
sensor networks, in UCLA Computer Science Department Technical Report,
Vol.463, 2001.

[20] Tanenbaum, Andrew S. and Steen, Maarten van, Distributed Systems:
Principles and Paradigms (2Nd Edition), Prentice-Hall, Inc., 2014.

[21] Dijkstra, E. W., A note on two problems in connexion with graphs, in
Numerische Mathematik, Vol.1, No.1, December 1959, pp.269–271.

[22] W. Shirou, gopsutil: psutil for golang, in GitHub: GitHub repository,
https://github.com/shirou/gopsutil, last commit= 57f370e.

[23] H. Garcia-Molina, Elections in a Distributed Computing System, in IEEE
Transactions on Computers, 1982, Vol.C-31, No.1, pp.48-59.

[24] H. Garcia-Molina, Euclidean space, ed. (2001)[1994], in Encyclopedia
of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic
Publishers. URL: http://www.encyclopediaofmath.org/index.php?title=
Euclidean_space&oldid=38673.

[25] J. N. Al-Karaki and R. Ul-Mustafa and A. E. Kamal, Data aggregation
in wireless sensor networks - exact and approximate algorithms, in 2004
Workshop on High Performance Switching and Routing, 2004. HPSR., pp.241-
245.

[26] Estrin, Deborah and Govindan, Ramesh and Heidemann, John and Kumar,
Satish, Next Century Challenges: Scalable Coordination in Sensor Networks,
in Proceedings of the 5th Annual ACM/IEEE International Conference on
Mobile Computing and Networking, 1999, pp.263–270.

[27] S. Fedor and M. Collier, On the Problem of Energy Efficiency of Multi-Hop
vs One-Hop Routing in Wireless Sensor Networks, in Advanced Information

https://github.com/shirou/gopsutil
http://www.encyclopediaofmath.org/index.php?title=Euclidean_space&oldid=38673
http://www.encyclopediaofmath.org/index.php?title=Euclidean_space&oldid=38673

64 B IBL IOGRAPHY

Networking and Applications Workshops, 2007, AINAW ’07. 21st International
Conference on, 2007, Vol.2, pp.380-385.

[28] O. Anshus, Distributed Arctic Observatory (DAO): A Cyber-
Physical System for Ubiquitous Data and Services Covering the Arc-
tic Tundra, 2018 in https://www.forskningsradet.no/prognett-
iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_
Ubiquitous_data_and_services/1254032932215?lang=no, "Norwegian
Research Council (NRC) - Project no: 270672"

https://www.forskningsradet.no/prognett-iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_Ubiquitous_data_and_services/1254032932215?lang=no
https://www.forskningsradet.no/prognett-iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_Ubiquitous_data_and_services/1254032932215?lang=no
https://www.forskningsradet.no/prognett-iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_Ubiquitous_data_and_services/1254032932215?lang=no

Appendices

65

A
Running The System
Running The System

• Get and install Golang: https://golang.org/doc/install

• Run go get github.com/shirou/gopsutil/...

• Locate folder master_thesis_code

• Run go install ./...

Start simulator

• Locate folder master_thesis_code/cmd/simulator

• go run simulation.go -numCh=5

Start One Observation Unit

• Locate folder master_thesis_code/cmd/server

• go run server.go run -Simport=8080 -host=localhost -port=:8082

67

https://golang.org/doc/install

68 APPEND IX A RUNN ING THE SYSTEM

– -Simport=:8080: port of simulator

– -host:localhost: host of Observation Unit (ou)

– -port=: port of ou

Start Multiple Observation Units

• go run run_all.go 3

– 3: number of ous

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Limitations
	1.4 Outline

	2 Routing Techniques in WSNs
	2.1 Routing Protocols in WSNs
	2.1.1 Hierarchical Routing
	2.1.2 Location-based Routing

	2.2 Flood And Gossiping Protocol
	2.2.1 Flooding Protocol
	2.2.2 Gossiping Protocol

	3 Related Work
	4 Idea
	5 Architecture
	5.1 Node Lookup Service
	5.2 Discovery Of Other Nodes
	5.3 Data Accumulation
	5.4 Incoming And Outgoing Network Requests
	5.4.1 Connect To Neighbours
	5.4.2 Cluster Head Election Request
	5.4.3 Data Transmission

	6 Design
	6.1 Discovery Of Other Nodes
	6.1.1 Broadcasting

	6.2 Cluster Head Election
	6.2.1 New Node In Cluster Starts Election
	6.2.2 Cluster Head Starts Election

	6.3 Data Accumulation

	7 Implementation
	7.1 Distance To Other Nodes In The Network
	7.2 Connect To Neighbours
	7.3 Cluster Head Election
	7.3.1 Cluster Head Calculation

	7.4 Minimize Path To Cluster Head
	7.5 Data Accumulation
	7.5.1 Node Data Accumulation
	7.5.2 Cluster Head Data Accumulation

	7.6 Concurrent CH-Election And Data Accumulation

	8 Evaluation
	8.1 Experimental Setup
	8.2 Experimental Design
	8.2.1 Memory Measurements
	8.2.2 CPU Measurements
	8.2.3 Network Usage
	8.2.4 Number Of Sends To Neighbours
	8.2.5 Number Of Sends To Cluster Heads
	8.2.6 Cluster Head Count
	8.2.7 Cluster Head Receives Packages

	8.3 Results
	8.3.1 Memory Usage
	8.3.2 CPU Usage
	8.3.3 Network Usage Amounted By Number Of Connections
	8.3.4 Number Of Sends To Neighbours
	8.3.5 Number Of Sends To Cluster Heads
	8.3.6 Cluster Head Count
	8.3.7 Cluster Head Receives Packages

	9 Discussion
	9.1 Availability Of Nodes In The System
	9.1.1 Connect To Neighbours
	9.1.2 Ping Neighbours
	9.1.3 Node Waking Up After Sleeping/Being Unavailable

	9.2 Cluster Head Election
	9.2.1 Cluster Head Calculation
	9.2.2 Gossip Information Between Nodes
	9.2.3 When To Elect A New Cluster Head

	9.3 Remember Previous Cluster Head
	9.4 Multiple Cluster Heads
	9.5 Path To Cluster Head
	9.5.1 Multi-hop or single-hop routing

	9.6 Data Accumulation
	9.7 Replication Of Data
	9.8 Concurrent CH-Election And Data Accumulation
	9.9 Base Station Access

	10 Conclusion
	11 Future Work
	Bibliography
	Appendices
	A Running The System

