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1. Introduction

Nonlinear evolutionary partial differential equations

ut = A(u)xx, (1)

or

ut = A′′(u)u2
x + A′(u)uxx,

describe many processes. Among them:

• one-dimensional motion of ground water with a free surface4 when A(u) = κu2, κ ∈ R;
• polytropic gas filtration when A(u) = κun, κ ∈ R3;
• distribution of heat radiation in nuclear explosions in their initial phase12;
• filtration in porous media3.

We call equation (1) by filtration equation and suppose that A(u) � const.
In this paper we construct finite dimensional submanifolds (“finite dynamics”) in the infinite dimensional solution

space of equation (1). Constructed dynamics allow one to construct new numeric methods and exact solutions.
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Finite dimensional dynamics were constructed for Kolmogorov–Petrovsky–Piskunov equation7 and for generalized
Rapoport – Leas equation2,11.

The basic principles of the theory of finite dimensional dynamics5 are as follows.
Evolutionary differential equations

ut = φ (u, ux, uxx) (2)

defines “dynamics”, i.e. flows on the infinite-dimensional space of functions of one variable x.
Their finite dimensional “sub-dynamics” can be viewed as a dynamics on the solution space of some ordinary

differential equations. Evolution equation (2) determines symmetries for such ordinary differential equations.
Thus, the problem of construction of finite dimensional dynamics comes down to finding the ordinary differential

equations

F
(
y, y′, . . . , y(k)

)
= 0 (3)

for which the function φ (y0, y1, y2) is a generating function of symmetries6,8. Here y(x) = u(t, x) with “frozen”
coordinate t.

2. Symmetries of Ordinary Differential Equations

Let Jk be the space of k-jets of functions of one independent variable x and let x, y0, y1, . . . , yk be canonical coordi-
nates9 on Jk.

Equation (3) corresponds to the hypersurface

E = {F (y0, y1, . . . , yk) = 0}
in the space Jk.

Naively, by finite dynamics we mean a “finite dimensional submanifold in a function space” which is invariant
with respect to the evolutionary vector field

S φ = φ
∂

∂y0
+ D(φ)

∂

∂y1
+ D2(φ)

∂

∂y2
+ · · ·

where

D =
d
dx
=
∂

∂x
+ y1

∂

∂y0
+ y2

∂

∂y1
+ · · ·

is the total derivation and D2 = D ◦ D, . . ..
Recall a geometrical meaning of the generating functions of symmetries8.
Let S φ be a shuffling symmetry and a solution of equation (3) respectively. Then the corresponding curve

Ly =
(
y0 = y(x), y1 = y′(x), . . . , yk = y(k)(x)

)
⊂ E

is a prolongation of the function y = y(x) to the space Jk.
Let Φt be a one-parametric group of shifts along the trajectories of S φ.
Then locally and for small t we have Φt

(
Ly

)
= Lyt

yt = y + t φ|Ly
+ o(t),

and

y(i)
t = y + Di(φ)

∣∣∣
Ly

t + o(t)

for i = 1, . . . , k.
In other words, an action of symmetry S φ on a solution y corresponds to the transformation of the form

yt = y + t φ|Ly
+ o(t)

on functions.
This means that the function h(t, x) = yt(x) is a solutions of the evolutionary equation (2).
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3. Finite Dimensional Dynamics

The ordinary differential equation (3) is called a finite dimensional dynamic or dynamic for evolutionary equation
(2) if φ(y0, y1, y2) is a generating function for shuffling symmetries of (3). The number is called the order of the
dynamic.

Theorem 1. A function φ (y0, y1, y2) is a generating function of symmetries of equation (3) if and only if

[φ, F] = 0 mod 〈DF〉, (4)

where 〈DF〉 is a differential ideal which is generated by the function F (y0, y1, . . . , yk) and

[φ, F] = S φ(F) − S F(φ)

is the Poisson–Lie bracket2,8.

Note that the Poisson–Lie bracket is skew-symmetric, R-bilinear, satisfies the Jacobi identity and can be calculated
by the following formula8:

[φ, F] =
k∑

i=0

(
∂φ

∂yi
Di(F) − ∂F

∂yi
Di(φ)

)
.

Therefore the equation F (y0, y1, . . . , yk) = 0 is is a finite dynamics for evolutionary equation (2) if F satisfies (4).
Solving equation (4) one can find F.

Theorem 2. 2 Equation (3) is a dynamic of evolutionary equation (2) if and only if

[φ, F] = aF + bD(F),

where a and b are functions from the space Jk+1.

Conditions when dynamics F is an attractor10 of evolutionary equation (2) can be formulated in terms of the
functions a and b1,2.

Assume that equation (3) is resolved with respect to the higher derivative:

y(k) = f
(
y, y′, . . . , y(k−1)

)
, (5)

i.e. the hypersurface

E = {yk = f (y0, . . . , yk−1)}. (6)

Then the solution space of this equation could be identified with Rk by taking the initial data at a point x0.
In this case the dynamics is given by the vector field

Eφ = φ
∂

∂y0
+ D
(
φ
) ∂
∂y1
+ · · · + Dk−1

(
φ
) ∂
∂yk−1

.

The bar over the function φ denotes its restriction to hypersurface (6).

4. Dynamics of Filtration Equation

Find first order dynamics for equation (1). We find them in the form

F(y0, y1) = y1 − f (y0).

In this case the Poisson–Lie bracket has the following form

[φ, F] = − (A′′′(y0) f (y0) + A′′(y0) f ′(y0) + A′(y0) f ′′(y0)
)

y2
1 − A′′(y0) f (y0)y2.
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Restrict this bracket to the equation E = {y1 − f (y0) = 0}. Since

y1 = f (y0),

y2 = y1 f ′(y0) = f (y0) f ′(y0),

equation (4) takes the form

f (y0)2 (A′′′(y0) f (y0) + 2A′′(y0) f ′(y0) + A′(y0) f ′′(y0)
)
= 0.

The last equation can be viewed as an ordinary differential equation with respect to the function f . Its common
solution is

f (y0) =
αy0 + β

A′(y0)
,

where α and β are arbitrary constants.
Equation (5) has the following form:

y′ =
αy + β
A′(y)

. (7)

Suppose that A(y) = y2. Then equation (7) has two singular points: y = 0 and y = −1. The corresponding vector
field shown in Fig. 1. A common solution of this equation can be written in terms of Lambert’s function. When
α = β = 1 we get:

y(x) = −LambertW
(
γ exp

(
−1 − x

2

))
− 1,

where γ is an arbitrary constant.

Theorem 3. First order dynamics for equation (1) has the form (7), where α and β are arbitrary constants. The
dynamics on the initial data is given by vector field

Eφ =
α(αy0 + β)

A′(y0)
∂

∂y0
.

Second order dynamics for equation (1) we find in the form

F(y0, y1, y2) = y2 − a(y0)y1 − b(y0).

In this case the Poisson–Lie bracket has the following form

[φ, F] = −A(4)(y0)y4
1 − 5

(
y2 +

1
5 b(y0)

)
A(3)(y0)y2

1−

−
(
a′(y0)y3

1 + b′(y0)y2
1 + 2y1y3 + 2y2

2 + y2b(y0)
)

A(2)(y0)−

−y1A′(y0)
(
a′′(y0)y2

1 + b′′(y0)y1 + 2a′(y0)y2

)
.

Since
y2 = a(y0)y1 − b(y0),

y3 = a′(y0)y2
1 + a(y0)(a(y0)y1 − b(y0)) + b′(y0)y1,

equation (4) takes the form

−A(4)(y0)y4
1 −
(
5a(y0)A(3)(y0) + 3a′A(2)(y0) + a(2)(y0)A′(y0)

)
y3

1+

+
(
4b(y0)A(3)(y0) − (4a2(y0) + 3b′(y0))A(2)(y0)−

− (2a(y0)a′(y0) + b′′(y0))A′(y0)) y2
1+

+
(
5a(y0)b(y0)A(2)(y0) + 2a′(y0)b(y0)A′(y0)

)
y1−

−b2(y0)A(2)(y0) = 0.

The last equation is polynomial with respect to y1. Therefore, it is equivalent to a system of five ordinary differential
equations with respect to the functions a, b and A. Solving this system, we find all second order dynamics.
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Theorem 4. Second order dynamics for equation (1) have the following forms:

• if

A(y0) = αy3
0 + βy

2
0 + γy0 + δ,

then

a(y0) = b(y0) = 0;

• if

A(y0) = αy2
0 + βy0 + γ,

then

a(y0) =
δ

(2αy0 + β)2 , b(y0) = 0;

• if

A(y0) = αy0 + β,

then

a(y0) = γ, b(y0) = δy0 + ζ,

where α, β, γ, δ and ζ are arbitrary constants.

Third order dynamics for equation (1) we find in the form

F(y0, y1, y2) = y3 − a(y0)y2 − b(y0)y1 − c(y0).

Theorem 5. Suppose that A′′(y0) �.
Then there exists a third order dynamics when

A(y0) = αy2
0 + βy0 + γ,

where α � 0, β, γ are arbitrary constants. This dynamic has the form

F = y3.

5. Finte Dynamics in Maple

Note that calculations in jet spaces are very cumbersome. Therefore, the calculations we have carried out in the
system of symbolic computations Maple-17.

We have used packages DifferentialGeometry and JetCalculus which were created by I. Anderson.
A fragment of Maple programm for calculation of first order dynamics is bellow:

> with(DifferentialGeometry): with(JetCalculus):

with(Tools): with(PDETools):

> Preferences("JetNotation", "JetNotation2");

> DGsetup([x], [y], DYN1, 5, verbose):
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> phi := convert(convert(diff(A(y(x)),x$2), DGjet), diff);

# Procedure of calculation of Poisson-Lie brackets:

> com := proc (A, B)

(diff(A, y[0]))*B+(diff(A, y[1]))*TotalDiff(B, [1])+

(diff(A, y[2]))*TotalDiff(B, [2])+(diff(A, y[3]))*TotalDiff(B, [3])+

(diff(A, y[4]))*TotalDiff(B, [4])+(diff(A, y[5]))*TotalDiff(B, [5])+

(diff(A, y[6]))*TotalDiff(B, [6])+(diff(A, y[7]))*TotalDiff(B, [7])-

(diff(B, y[0]))*A-(diff(B, y[1]))*TotalDiff(A, [1])-

(diff(B, y[2]))*TotalDiff(A, [2])-(diff(B, y[3]))*TotalDiff(A, [3])-

(diff(B, y[4]))*TotalDiff(A, [4])-(diff(B, y[5]))*TotalDiff(A, [5])-

(diff(B, y[6]))*TotalDiff(A, [6])-(diff(B, y[7]))*TotalDiff(A, [7])

end proc:

# First order dynamics:

> F:=y[1]-f(y[0]):

# Calculation of Poisson-Lie bracket:

> ur := simplify(com(phi,F),size);

# Restriction y[1] and y[2] to the equation F=0:

sub1:={y[1]=f(y[0])};

sub2:={y[2]=eval(solve(TotalDiff(F, [1]), y[2]), sub1)};

# The main equation:

pol:=simplify(eval(eval(ur, sub1), sub2), size);

# Solution of the main equation:

dsolve(pol, f(y[0]));

Here TotalDiff(B, [k]) is the k-th the total derivation of a function B.
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Fig. 1. First order dynamics.


