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Structured illumination microscopy is able to improve the spatial resolution of wide-field fluorescence imaging by
applying sinusoidal stripe pattern illumination to the sample. The corresponding computational image
reconstruction requires precise knowledge of the pattern’s parameters, which are its phase (¢) and wave vector
(p). Here, a computationally inexpensive method for estimation of p from the raw data is proposed and illustrated
with simulations. The method estimates p through a selective discrete Fourier transform at tunable subpixel
precision. This results in an accurate p estimation for all the illumination patterns and subsequently improves
the superresolution image recovery by a factor of 10 around sharp edges as compared to an integer pixel approach.
The technique as presented here is of major interest to the large variety of custom-build systems that are used. The
feasibility of the presented method is proven in comparison with published data.  ©2018 Optical Society of America
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1. INTRODUCTION

Wide-field fluorescence microscopy is limited in its maximum
spatial resolution to what is commonly known as the Abbe
diffraction limit [1]. The diffraction limit is a result of the finite
range of spatial frequencies that a microscope’s objective can
capture depending on its aperture. The 2D image formation
under plain illumination can be formulated as a convolution
(®), giving D(r) = [S(r)I] ® Ah(r), with the acquired image
D, the sample S, the plain illumination intensity 7, the point
spread function (PSF) / and the spatial coordinate r. In the
Fourier transform of this expression, the convolution is
replaced by a multiplication and vice versa Dk) =[I(k) ®
S(k)]i(k), where tilde (~) indicates the Fourier transform,
k is the Fourier space coordinate or spatial frequency, and 4
is called the optical transfer function (OTF), which has the
property of limiting the highest spatial frequency of the sample
represented in the image to a cutoff frequency | k||, < 4., and
thus the maximum resolution of the image. Introducing non-
uniform illumination of the sample will mix high spatial fre-
quency information lying beyond the OTF’s support into its
passband [2]. In structured illumination microscopy (SIM),
this idea can be used by implementing a sinusoidal stripe
pattern illumination. It is described by a wave vector
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p=p.k. + p]/ey, with the unit vectors £, and k,, that
determines a pattern angle

y = arctan(p, /p,), (1)
a fringe spacing of
L= p2+p)7' ()

and a phase ¢ yielding the pattern’s shift along the wave vector.
Computational image reconstruction upon raw data acquisition
may now separate spatial frequency components shifted from
their original position into the passband and those naturally
lying within the passband [3]. Relocating shifted components
to their original position eventually results in a larger informa-
tion content in the Fourier domain and equivalently in a higher
resolution of the reconstructed image. For a single SIM
reconstruction, multiple raw images of the sample with differ-
ent illumination patterns are needed. In the 2D case, a typical
configuration of three different illumination wave vectors p
(with constant fringe period and three different orientations)
and three different phases ¢ each yielding a total of nine images
can be used to reconstruct one image. Image reconstruction in
SIM for the described stripe pattern illumination is well known
and can be derived from the more general 3D case [4]. Software
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implementations for SIM reconstruction are readily available
[5,6]. Given a sinusoidal illumination pattern in the object
plane, its wave vector p and phase ¢ need to be known for each
of the raw data images to perform the well-established direct
reconstruction. Estimation of p and ¢ is a critical task in
SIM and is addressed here because a wrong parameter estima-
tion for one of the nine raw data images is sufficient to corrupt
the overall reconstruction. Common methods used to estimate
the phase rely on precise knowledge of the wave vector [7-10]
or require the pattern phases to be equally distributed [4,6].
This means that an incorrect estimation of p will inevitably lead
to a wrong value for ¢ if no further assumptions on the phase
distribution can be made and thus prevent correct image
reconstruction. Furthermore, some of the methods for param-
eter estimation involve iterative steps that come with an in-
creased computational cost [6,7]. This problem is usually
addressed by gaining experimental control over the illumina-
tion pattern, using expensive hardware like spatial light mod-
ulators, vibration-free suspension systems, and piezo actuators
to introduce predefined phase shifts. The idea of the proposed
method is to determine the wave vector p, based on the raw
data images in a noniterative way at a precision that is sufficient
to apply a direct solution for the phase estimation as presented
by Wicker [8].

As can be seen in Fig. 1, the sinusoidal illumination pattern
results in three peaks in the Fourier spectrum of each input
image, and p is estimated by localizing these peaks. Because
the input images are real valued, one peak will be located at
the center (zero frequency), and the other two peaks will be
distributed symmetrically around the center along the vector
p in the Fourier space. In essence, the algorithm presented here
localizes one of the outer peaks with subpixel precision in the
absolute value map of the Fourier transform. First a conven-
tional Fourier transform as given by the fast Fourier transform
(FFT) is applied on the raw image. To rule out contributions of
the low frequencies, a mask is applied. Frequencies smaller than
95% of the actual pattern frequency are masked. This corre-
sponds to a rough estimate in an actual setup. The maximum
in the masked FFT image is identified with integer pixel
precision offered by the FFT routine. Then the Fourier trans-
form in a small region around the peak position with a higher
sampling is calculated, where the peak can be localized with
improved precision. As opposed to padding the raw image with
zeros prior to applying the FFT, which increases the precision
of the peak localization in the same way albeit at a high com-
putational cost, the proposed method calculates the Fourier
transform in a significantly smaller area at a specific sampling
rate around the pre-estimated peak location. This reduces the
computational cost to a fraction of an approach based on zero
padding [11,12].

In Section 2, the theoretical background for sinusoidal SIM,
including current methods of parameter estimation and the
proposed subpixel peak detection for SIM, is described. In
Section 3, the presented method is applied to simulated data,
and the results are compared to published data. Finally,
Section 4 provides concluding remarks on where the presented
method integrates within published methods for parameter
estimation.

Fig.1. Illustration of the subpixel peak localization in Fourier space.
Panel (a) shows a raw data image of the sample pirate under stripe
pattern illumination as described in the text. The edges of the image
have been dampened to avoid discontinuities. In (b), the Fourier spec-
trum of (a) calculated by the FFT routine is shown. The pattern wave
vector p is indicated in green. Estimating p based on the integer pixel
location of the maximum in the Fourier spectrum will lead to a peak
location mismatch as shown in the cropped Fourier spectrum (c). The
red cross is the location of the maximum, the green cross the actual
peak location based on the numerical value of the fringe period and
orientation used. Panel (d) shows the result of the proposed selective
Fourier transform of (a). The center has been selected to be the
location of the maximum found in (c). The upsampling factor is
a = 10, and the size of the area is the same as in (c). Now the
maximum (red) is much closer to the actual peak position (green).

2. THEORY

The theoretical background is described widely using the
notation of Wicker ez al. [7,8]. First, the general framework
for SIM using a sinusoidal illumination pattern is presented.
Then an overview of current parameter estimation methods
is outlined, and the proposed approach for computationally in-
expensive peak localization at subpixel precision is presented.

A. Sinusoidal SIM
Given a sinusoidal illumination pattern, the image formation
can be described as

D(r) = [S(r)1(1)] ® h(r), (3
where
(1) = Y a, explim(2zpr + §)] (&)

denotes the illumination pattern with the modulation depth
a,,. The Fourier transform of D(r) can be written as
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D(k) = exp(ime)a,,S(k - mp)h(k). (5)
m=-1 —_
C(k)

It can be seen that D(k) contains frequency components or
bands S,,(k) = S(k - mp) that are shifted by mp with respect
to their original position in frequency space prior to multipli-
cation with the OTF. In this way, high spatial frequency
components of the sample that are not observable under plain
illumination are transferred into the image, although the bands
are shifted and summed up. By taking /V images of the sample
with different phases ¢, with » =1,.., N, the resulting
Fourier transforms of the images D, (k) can be written as

D(k) = MC(k), (6)
with the acquired images in the vector [~)~= D, o DAL]T,
the matrix M,,,, = exp(im¢,,), and a vector C(k) = [C_;, C),

C_1]1. If the inverse of M (M) exists, the different compo-
nents can be separated by

C(k) = M'D(k). (7)

The final image is the inverse Fourier transform of S(k), the
final estimate in the Fourier domain. It is obtained by shifting
each band to its original position and recombining them using a
generalized Wiener filter:

S o C o + mp )b (k + mp,)

S(k) = A :
> la,h(k + mpy)|” + w
md

Ak).  (8)

The Wiener filter reduces the degrading influence of the
OTF and weights the bands in regions where they overlap
according to their expected SNR. The Wiener parameter w
is determined empirically, A(k) is an apodization function
decreasing linearly from unity at the center to zero near the
end of the extended OTF support, shaping the overall spectrum
to prevent ringing artifacts in the final image, and the asterisk
(%) indicates the complex conjugate. Because the resolution im-
provement only takes place in the direction of p, the process of
image acquisition and band separation is repeated for different
orientations 4 to obtain isotropic resolution enhancement. As
can be seen from Egs. (7) and (8), the phases ¢,, and the wave
vectors p need to be known to perform the reconstruction.

B. Conventional Parameter Estimation Techniques
Following Gustafsson et al. [4] and Miiller ¢t al. [6], if an equi-
distant phase distribution of ¢, can be assumed, retrieval of p is
straightforward. Then Eq. (7) can be applied by using these
relative phases in M that differ from the true phases only by
a constant offset 5. Given a large enough OTF support with
respect to p, and the OTF corrected components C), = CIZ—I}];’
C’,, will have an overlapping region k" with C;, where they
will be different by a complex factor 4;, only for the correct p
(see Fig. 2). Thus, by maximizing the cross correlation (%) for
m# 0,

[CoxCol(p) =D Co )T, + mp),  (9)
=

the vector p can be determined, and the complex factor a;, is
calculated as
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Fig. 2. Spectral overlap. The separated components C§ and C} in
Fourier space (k,, k). If C! is shifted by p (red arrow) to its correct
position in Fourier space, both bands will have a region of overlap k’ in
which they differ only by a complex factor [see Eq. (10)].

oSG )G+ mp)
" SIC )P

(10)

Furthermore, ¢ = arg(a,,), with arg(-) giving the angle of
a complex number, and 4,, = |a,,| for 45 = 1. The workflow
described so far is applied when equidistant phase steps within
one pattern orientation are provided in the experimental setup.

However, if the assumptions about the phase distribution
cannot be made but p is known, the phase of the illumination
pattern can be determined based on the phase of the peak at p
in En as

¢, = arg[D,(p)], (11)

as described by Shroff ez a/. [9,10]. Alternatively the spectrum’s
autocorrelation can be evaluated at p, and the phase can be
determined as

¢, = arg[(D,0D,)(p)] (12)
as described by Wicker, where D is filtered by the complex
conjugated OTF yielding D), = D, b* to reduce the influence
of noise and asymmetries in the PSF [8]. Here ® represents the
autocorrelation. Due to its noniterative and flexible nature, it is
the method of choice for the work presented here. It is applied
after p is estimated as described in Section 2.C.

A related method is mentioned for the sake of completeness.
It determines the phase values by an iterative optimization. The
idea is that two separated bands C,(k) and C (k- /p) (/ being
an integer) should not have common information in the region
where they overlap for i # j + / if they are separated correctly.
They have similar components, if M in Eq. (7) contains the
wrong phase values. The phases in the separation matrix M
are then found by minimizing a cost function that evaluates
the cross correlation in the overlapping regions [7].

C. Subpixel Peak Detection

Because it may not be possible to do a parameter estimation
based on a given prior knowledge like the phase distribution
or the pattern wave vector, these parameters need to be
extracted from the acquired raw data [13]. We address the
situation where no assumption can be made about phase
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distribution, and the values of p are unknown to begin with.
We propose to reconstruct p using the approach we describe as
follows and then use the reconstructed value of p with Eq. (12)
for reconstructing the phase value ¢b. This way the precision of
the peak localization does not only govern the accuracy for the
determined value of p but also the fidelity of the estimated ¢.
One approach is to localize the peaks in D(k) that come from
the sinusoidal illumination pattern. For a discretized image
consisting of N, x N, pixels (N, being even integers) with
indices x = [1, ..., N,]and y = [1, ..., V,] and spatial coordi-

nates from (- Nz”) to (N2” - 1) px in steps of 1 px in £ and j

direction, the conventional FFT returns an array of the same
size with indices u = x and v =y, which correspond to fre-

quency coordinates from (- %)px’1 to (%—Ni)px’I in steps
%)

of (N%V)px‘1 in the /;x and lgy directions, /;x and /;y being fre-
quency domain analogs of £ and j. The localization precision of
a maximum in the FFT thus depends on the step size N%y This
can be improved by padding the image with zeros prior to the
Fourier transform. Depending on the padding size, this
approach may become computationally expensive.

Our approach to this problem is to first localize the peaks in
D(k) without any padding, giving the indices (#, ) with a
localization precision equal to the step size 7— in the frequency
domain. In the second step, the Fourier transform of the input
image is calculated in a selected region in the frequency domain
around the position of the peak with a chosen oversampling
[11,12] using a twofold matrix multiplication:

D(d,¥) = exp (% GTy> D(x,y) exp (_]im xTﬁ)) (13)

y X

where exp(Z) is the exponential of each element in array Z
The indices in 4 and v can now be chosen as fractional numbers
around #, and z;. An adequate choice is to select an
upsampling factor @ and an area around the initial pixel loca-
tion of 1.5 px in each direction such that 4,V =
-2, -4l 5215 ﬂ + ug, vy represent subpixel
indices around the original position of the peak. The corre-
sponding frequency space coordinates range from {-1 + [1\% .

(w40, v - % - D]} o {—%‘*‘[N%J'(”o: o +%— 1)]—‘,]\1/&]}[3’(1 in

steps of # px~L. The position of the maximum localization in
o

D(4, ¥) will then be as precise as if it had been localized in the
FFT of the original image after increasing its size by a factor
of a in both directions using zero padding at a negligible
computational cost. Performing the peak localization for a
set of nine raw input images, for a fivefold oversampling the
computation times are 0.03 s and 0.43 s and for a tenfold
oversampling 0.04 s and 1.80 s for the subpixel approach
and the zero padding approach, respectively, on an Intel
Core i7 at 2.10 GHz, using MATLAB. With respect to
the computational complexity for a raw SIM image of dimen-
sion M x M, a fivefold zero padded FFT in both row and
column directions will have a computational complexity of
O(25M? log(25M?)), whereas the proposed method has
complexity of O(5M?). For a tenfold oversampling, these
numbers are O(100M? log(10041?)) versus O(10M?). The

timing numbers provided can be seen in this context. When
the oversampling factor is much smaller than M, as in this case,
this is significant computational gain for achieving the same
level of accuracy.

3. SIMULATIONS

To test the subpixel precision estimation of the illumination
pattern, raw data images for two different samples (Siemens star
and pirate; see Fig. 3) have been simulated, similar to what was
done by Wicker ez al. [7,8]. In the first step, the samples (pixel
size of 65 nm) have been scaled such that their brightest pixel
would have a photon count of 5 x 10', 5x 10%, 5 x 10, and
5 x 10% (four data sets), and the darkest photon count of zero,
to add noise of the Poisson distribution in the last step. No
further offset or noise was added. The illumination patterns
of 200 nm fringe spacing are generated based on 20 randomly
distributed orientation angles y. For each orientation, a set of
three phases (0°, 120°, and 240°, with a random variation of a
Gaussian distribution at a standard deviation of 10° for each
phase step) is generated. To maintain the maximum possible
photon count in each raw data image, the sinusoidal illumina-
tion patterns are scaled such that they only vary in a range from
zero to one. This way 60 raw data images are simulated per set.
Each image is convolved with a point spread function, simu-
lated using a 2D distribution based on the Bessel function of
first kind and first order [14], given a numerical aperture of the
imaging objective of NA = 1.4. The emission wavelength was
set t0 Ay, = 515 nm. Finally, noise is simulated based on the
Poisson distribution. For each raw data image, the parameter
estimation was performed as described previously for upsam-
pling factors of @ = 1-10. First the peaks in the Fourier do-
main that come from the sinusoidal illumination pattern in real
space were localized applying Eq. (13). From those peak
positions, the orientation and fringe period of the illumination
pattern in each raw data image are calculated using Egs. (1)
and (2).

The orientation y as calculated from the peak location in
Fourier space deviates from the actual orientation j by
Ay = |7 - y|. Although only 20 different values for y were used
for the simulations, for each individual raw data image, the
deviation Ay was calculated because the pattern phase and
noise may change the result of the peak localization. Thus, each
raw data image yields a value for y and Ay. In Fig. 4(a), the

Fig. 3. Samples (a) pirate and (b) Siemens star as they have been
used in the simulations. They are represented in a size of

256 x 256 px.
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Fig. 4. (a) Deviation of the pattern orientation and (b) fringe spac-
ing calculated from the detected peak position from the actual value for
oversampling factors of 1-10. The calculations are performed for a
maximum expected photon count of 5 x 10! in the brightest pixel.
The solid line represents the mean deviation for all 60 samples,
and the shaded area shows the standard deviation. This is done for
two different samples [Siemens star (red) and pirate (blue)].

mean (solid line) and standard deviation (shaded area) of the 60
values for Ay in a data set are presented for parameter estima-
tion based on peak localization at different oversampling factors
a and for the two different samples, for data sets simulated with
a maximum photon count of 50. This result does not show
significant variations for the other selected photon counts
and is thus exemplary.

Similar to the orientation, the fringe spacing L as calculated
per Eq. (2) has a deviation from the initially set 200 nm. This
deviation is calculated as AL = % to free the measure
from scaling. The evaluation in Fig. 4(b) shows the mean (solid
line) and standard deviation (shaded area) of the 60 values for
AL in a data set. This evaluation is presented for parameter
estimation based on peak localization at different oversampling
factors a and for two different samples. The underlying data
sets are simulated using a maximum photon count of 50. As
for the orientation deviation, this result is exemplary for all se-
lected photon counts. The pattern phase for each raw data im-
age is calculated with Eq. (12) and the determined value for p.
The values for the phases are evaluated following [7,8]. For
each orientation ¥, the deviation of the three phases was calcu-
lated as 5¢p = ¢ - ¢. The relative error E ; for one orientation is
then calculated as the standard deviation of all three 6¢, in a
subset. As described in Refs. [7,8], this way a global phase offset
is rejected. The mean (solid line) and standard deviation
(shaded area) of £}, are shown in Fig. 5 as a function of a.

A second evaluation of the estimated phases is shown in
Fig. 6. Instead of the relative error E}, the absolute error Ey
is presented. It is calculated as the mean of the absolute values
of all three 5¢b, in a subset. This way a global phase offset is not
rejected in the evaluation.

Finally, Fig. 7 shows the influence of the proposed param-
eter estimation at subpixel precision. A raw data set was
simulated as described earlier with three pattern angles of
11°,71° and 131° (similar to Shroff ez a/. [9]) and three phases
each at a maximum photon count of 5 x 10%. The data sets
used to generate actual image reconstructions only contain nine
raw images. Although the pattern angles are selected such that
an isotropic resolution improvement can be achieved, the se-
lected phases are still displaced from an equidistant distribution
as described previously. In addition to the SIM raw data, a
wide-field image under plain illumination was simulated,
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Fig. 5. Relative phase error at oversampling of 1-10 for four differ-
ent photon levels (a) 5 x 10, (b) 5 x 10%, (c) 5 x 10%, and (d) 5 x 10%,
and two different samples [Siemens star (red) and pirate (blue)]. The
solid lines represent the mean value and the shaded areas the standard
deviation of the phase error.
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Fig. 6. Absolute phase error at oversampling of 1-10 for four differ-
ent photon levels (a) 5 x 10!, (b) 5 x 102, () 5 x 103, and (d) 5 x 104,
and two different samples [Siemens star (red) and pirate (blue)]. The
solid lines represent the mean value and the shaded areas the standard
deviation of the phase error.

and the result of a Wiener deconvolution is shown in
Fig. 7(a). The SIM reconstruction based on the actual input
parameters yields the optimal result in Fig. 7(b) with the ex-
pected resolution enhancement compared to Fig. 7(a).
Figures 7(c) and 7(d) show the reconstruction results based
on parameter estimation for oversampling factors of 1 and
10. Figures 7(e) and 7(f) show the deviations of the results
in Figs. 7(c) and 7(d) from Fig. 7(b), respectively. It is the ab-
solute value of the difference of the values in corresponding
pixels, and it can be seen that a reconstruction based on sub-
pixel precision parameter estimation at an oversampling factor
of 10 yields a result whose deviation from the optimal
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Fig. 7. Reconstruction of simulated SIM data. For a raw data set of
nine images (three orientations with three phases each), parameter es-
timation and reconstruction were performed for oversampling factors
of 1 and 10. Panel (a) shows the result of a conventional wide-field
deconvolution under plain illumination. The SIM reconstruction with
known pattern parameters in (b) shows the expected resolution en-
hancement. In (c) and (d), the image reconstruction based on the pro-
posed parameter estimation for oversampling of 1 and 10, respectively,
is shown. In (e) and (f), the absolute deviation of the reconstruction as
shown in (c) and (d) from the reconstruction with known pattern
parameters is presented.

reconstruction can be reduced by almost 1 order of magnitude
around sharp edges in the image. For the presented data, an
oversampling larger than 10 does not improve the result of
the reconstruction in terms of the shown deviation. The same
evaluation has been done for the Siemens star as presented in
Fig. 8. Here the absolute deviations of the reconstructions for

4e+05

| 2e+06 3e+05

2e+05

1e+06
Te+05

Fig. 8. Similar to Figs. 7(e) and 7(f), the absolute deviation of the
reconstruction from the reconstruction with known pattern parame-
ters is presented for oversampling factors of (a) 1 and (b) 10.

one- and tenfold oversampling are shown in Figs. 8(a) and 8(b)
similar to Figs. 7(e) and 7(f).

4. RESULTS AND DISCUSSION

It can be shown that the proposed subpixel precision localiza-
tion of a maximum in the Fourier domain is suitable to deter-
mine the wave vector of a sinusoidal pattern imposed on a
structure in real space (Fig. 4). This method achieves an im-
provement in precision as a method based on zero padding
would do, although at a fraction of the computational cost
(time and memory), especially at increased oversampling fac-
tors. The benefit of this approach can be directly shown when
doing phase estimation on 2D SIM data using Eq. (12).

In the introduction of the noniterative phase estimation [8],
its feasibility was demonstrated in comparison with an iterative
approach [7] that would determine the relative phases in a data
set, and a reference to [2] and [15] is given for the estimation of
the global phase offset to get the absolute phases. Figure 5
shows that the quality of the phase estimation does not change
significantly by increasing the precision of the wave vector es-
timation in the tested range, and the results, at least for the
pirate sample, correspond well to published results in Figs. 2(a)
and 2(b) of Ref. [8] for the single-step approach at maximum
expected number of photons of 5 x 10!, 5 x 10%, 5 x 10°, and
5 x 10%. Disregarding a global phase offset, localizing the pat-
tern wave vector to conventional pixel precision is sufficient, as
the error drops below 1° for realistic SNRs.

However, the absolute phase error as shown in Fig. 6 sug-
gests that if Eq. (12) is to be applied for phase estimation, the
presented method is of major importance. The high-precision
calculation of the wave vector based on subpixel peak localiza-
tion enables the phase estimation without an additional step to
find a global phase offset. A difference in the behavior of both
samples is visible. The Siemens star sample enables good phase
detection even at lower oversampling. Phase estimation, except
for the lowest simulated SNR, performs well. The more gen-
eralized sample pirate shows significant improvement with an
increased oversampling.

Applying subpixel precision peak localization in the Fourier
domain to determine the orientation and fringe spacing of
sinusoidal patterns in real space is presented and its feasibility
demonstrated on simulated data. Especially the application of
the results in an established method for phase estimation
shows that this is a way for parameter estimation in sinusoidal
structured  illumination microscopy for comparably fine
(i.e., 200 nm) illumination patterns.

The benefits are twofold because the whole work flow of
determining the necessary parameters in SIM reconstruction
does not require prior knowledge of the phase distribution
or the pattern wave vector, nor does it depend on iterative proc-
esses. Furthermore, it was demonstrated that the deviation
from the optimal reconstruction can be reduced by about 1
order of magnitude, thus producing a more accurate result us-
ing the subpixel peak detection method. In addition, the sav-
ings in computational time for SIM reconstruction provided by
the proposed subpixel method will be beneficial for real-time
reconstruction of the SIM images if the pattern parameters
need to be estimated prior to reconstruction.
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