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Abstract

This thesis deals with polarimetric multi-frequency radar signatures of sea ice. It
is divided into two parts. The first part presents a thorough background on the
topic and the second part presents three case studies.

The first study presents a global sensitivity analysis of the fully polarimetric
radar backscatter response from snow covered sea ice. The analysis is global
in the sense that it takes into account the observed ranges of sea ice properties
that are needed as input, and it attributes a quantitative sensitivity measure to
each individual input parameter, such that the most influential one(s) can be
identified. The considered model is configured with different snow layers and in
particular the presence of brine-wetted snow is considered both in comparison
and in combination with dry snow. Generally it can be concluded that param-
eters describing roughness of interfaces and dimensions of brine inclusions and
snow grains, are more important than parameters describing bulk properties such
as salinity, temperature and density. It is moreover found that parameters asso-
ciated to the snow and upper part of the ice dominate at X- and C-band, while
the roughness of the ice-water interface is important at L-band.

The second study complements the sensitivity analysis by showing that the
considered backscatter model compare well to synthetic aperture radar (SAR)
data at both C- and L-band, for ice identified as lead ice and ice floes (which
presumably is first year ice). Generally, C-band data compare better than L-
band data. Likewise, the ice identified as ice floes is better represented than ice
types identified as lead ice. The model primarily deviates from the data in the co-
polarised phase difference and the cross-polarised channel. Overall, the variance
in model output is very large which can be explained by insufficient constraints
on roughness and volumetric structure parameters.

The third study focuses on the backscatter from frazil and grease ice. A model
for the dispersion relation of gravity waves in viscous ice slicks is considered and
linked to a band ratio. This ratio provides the backscatter relative to a reference
radar frequency and can readily be compared to data. The analysis concludes
that under certain conditions, ice slicks have strong impact on the spectral be-
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haviour of the radar backscatter. According to the numerical simulation, the
damping due to ice slicks is strong at wavelengths relevant to radar remote sens-
ing. Consequently, the wind speed presumably needs to be high in order to cause
significant roughness of the ice slick surface and thus detectable amounts of Bragg
scattering.
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Chapter 1

Introduction

1.1 Sea ice

To many, sea ice may seem like a rarely occuring peculiarity that mainly is of
interest to academics or the sparse population of the far north. However, the
global sea ice extent is vast. While it is highly variable, on average sea ice covers
about 20 to 25 million square kilometres of the Earth’s oceans (Parkinson 2014),
which is comparable to the size of North America.

Most of the global sea ice can be found in the Arctic Ocean1 and the Southern
Seas around Antarctica. Also seas at lower latitudes such as the Gulf of St.
Lawrence, the Sea of Okhotsk, the Baltic Sea, the Caspian Sea, the Sea of Japan
and the Bohai Sea can be important hosts in the winter time. In the Arctic,
the sea ice normally reaches its maximum in early March and its minimum in
September, while the situation is reversed for the Southern Seas. The average
extent over a year is similar for both regions, although the Antarctic extent varies
more from summer to winter.

The major differences between sea ice characteristics in the Arctic compared
to the Antarctic relates to the fact that the Arctic Ocean is confined by land while
the Southern Seas are not. The Arctic waters are consequently more affected by
terrestrial fluxes of fresh water and contain more sediments and anthropogenic
pollutants. Additionally, the Arctic sea ice is located at higher latitudes, with
lower radiative input from the sun and also considerably lower heat flux from
the ocean (Krishfield & Perovich 2005, Lytle et al. 2000). Another important
difference that is currently in rapid change, is the significantly larger amount of
multi-year ice (MYI) in the Arctic. This is ice that has survived at least one

1Including Baffin Bay, Barents Sea, Beaufort Sea, Chukchi Sea, East Siberian Sea, Greenland

Sea, Hudson Bay, Hudson Strait, Kara Sea, Laptev Sea and White Sea.
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4 1.1. SEA ICE

melting season and is typically very fresh and thick. During the last decades
however, the amount of MYI has rapidly decreased in the Arctic (Polyakov et al.
2012), making the age, salinity and thickness conditions between the two regions
somewhat more similar than before.

Although many results of this thesis may be equally applicable to both polar
regions, primarily Arctic sea ice is of consideration here. In figure 1.1 the Arctic
sea ice extent is illustrated for March (maximum) and September (minimum)
in 2017. The corresponding winter maximum and summer minimum extent as
measured from 1981 to 2010 are also indicated. This map shows two remarkable
features.

Firstly, the difference between the largest and smallest seasonal median extent
is substantial (shown in figure 1.1 as blue and red dashed lines, respectively).
During one season the ice in the Arctic can grow by about 10 million square
kilometres, which is about the size of continental Europe. This variation is shown
in more detail in figure 1.2 where the extent is plotted as a function of time of
the year, for a the most recent 17 years. Sea ice is thus very dynamic over one
season and the extent may fluctuate significantly from year to year. Also on short
time scales, sea ice typically drifts (if not fastened to land or grounded icebergs)
with speeds that can be up to tens of kilometres per day which causes local and
regional changes of sea ice extent.

Secondly, during the year of 2017 (shown in figure 1.1) both the maximum and
minimum extent were below the median. The minimum extent is especially small,
which repeatedly has been observed over the last couple of decades, as also can
be seen in figure 1.2. In fact, ever since satellite measurements became available
in the late seventies, a clear decline in the summer extent has been observed
(Cavalieri & Parkinson 2012, Fetterer et al. 2018). Estimates of earlier ice extents
dating back to the late eighteen hundreds (based on data from historical sources
such as ship logs and airplane surveys) indicate that the recent rate of change is
unprecedented (Walsh et al. 2017). Model predictions, moreover, indicate that
this trend will continue. It is expected that within a few decades, the Arctic may
be ice free in the summer time (Overland & Wang 2013).

Apart from being an interesting, dynamic and versatile topic of research,
knowledge about sea ice is important for a number of practical reasons. Generally
sea ice plays a major role when modelling the climate, sea ice conditions need to
be considered in local and regional weather forecasts, and the presence of sea ice
affects the polar ecosystems. In addition, sea ice is of increasing interest to the
industries involved in for example oil and gas, shipping, fishing and tourism. In
the following sections, these items are discussed in more detail.
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Figure 1.1: Map of the Arctic sea ice extent from March and September 2017
shown in blue and red, respectively. The corresponding median extent during
the period 1981 to 2010 are highlighted as dashed lines. The map is based on the
NSIDC Sea Ice Index (Version 3, for details see Fetterer et al. 2018).
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Figure 1.2: Graph of Arctic sea ice extent as a function of time of year, for the
years 2007 to 2017 (coloured lines) and for the average from 1981 to 2010 (grey
line). Year 2012, shown as a dashed line, was an extreme with regard to the
minimum sea ice extent. The graph is based on data from the National Snow
and Ice Data Center.
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1.1.1 Weather and climate

Sea ice plays an intricate role in the weather and climate system. The implica-
tions and feedback mechanisms associated to changes in sea ice are not yet fully
understood. Generally, sea ice:

1. has a high albedo and thus reflects significant amounts of the solar radiation
back to space.

2. modulates the interactions between ocean and atmosphere, such as reducing
fluxes of heat, momentum and gasses.

3. redistributes brine and fresh water which affects sea water density stratifi-
cation and hence ocean circulation.

Much focus has been put on the sea ice in the Arctic due to its rapid decline,
but also since the Arctic has suffered a much quicker warming over the past
decades than any other parts of the Earth. The phenomenon is called the Arctic
amplification and the decline in sea ice is believed to feed back on the rise in
temperatures (Screen & Simmonds 2010, Kumar et al. 2010, Vihma 2014, Screen
& Francis 2016). The ice thus plays a key role for understanding what the Arctic
climate will be like in the future.

A decline in sea ice may also have an effect on climate over longer distances.
Recent studies indicate for instance that the mid-latitudes may suffer colder win-
ters as a result, since the sea ice decline may destabilise the polar jet stream,
pushing cold air further south (Vihma 2014). A reduced sea ice cover may addi-
tionally contribute to North Atlantic freshening, which in turn could slow down
thermohaline circulation (Serreze et al. 2007). This would have severe conse-
quences for the climate in Northern Europe, since heat transport by the Gulf
stream could decrease.

Arguably due to its rapid decline in the Arctic, sea ice has been one of the
most recognized topics related to climate change. The manner of which sea ice
interacts with the climate is however not yet fully understood and still gains con-
siderable attention. It is far from a settled issue which calls for better and more
detailed measurements. The two most important parameters are arguably the
extent and thickness. The thickness is especially important for thin ice types,
since a relatively thin ice layer (of only a few centimetres to decimetres) signifi-
cantly changes the thermal heat flux between the ocean and atmosphere (Maykut
1978). Information about large scale deformation in terms of ridge statistics for
instance, is important for estimating wind drag coefficients and momentum trans-
fer (Guest & Davidson 1987, Garbrecht et al. 2002). Other important parameters
include ice floe size distribution (Herman 2010, Zhang et al. 2015), ice salinity
(Vancoppenolle et al. 2009) and age (Rigor & Wallace 2004).
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1.1.2 Ecology

Since large parts of the Arctic consist of ocean regions, the species in the high
north are predominantly marine and almost all are in one way or the other
dependent on sea ice for their survival. Polar bears (see figure 1.3) are perhaps
the most majestic and iconic of them all. Besides humans, they are the top
predator of the food chain and are dependent on sea ice for hunting.

There is however much more to the Arctic ecosystem than just polar bears.
Inside the porous structure of the sea ice, micro-organisms and algae thrive (see
figure 1.4). These contribute significantly to the primary production and provide
food for larger organisms such as various types of zooplankton, krill or shrimp.
These in turn are eaten by various fish, squid or comb jellies, such as the one
shown in figure 1.5. Further up this food chain are different kinds of sea bird,
seals, walruses, whales and polar bears.

It is still unclear exactly how changes in ice cover will affect this ecosystem.
The ice extent is clearly an important parameter for the species living directly
on or inside the ice. Other parameters do also play a role, such as the fractional
area of leads which determine the amount of light transmitted into the water,
which in turn controls algae blooms (Assmy et al. 2017). Open leads are also
important for seals and whales for breathing. Snow cover is another important
parameter, which is needed for seals to build lairs to their cubs (Smith & Stirling
1975) and also affects the light transmission through the ice. Mapping of, not
only sea ice extent, but also ice types and morphology are thus important for
better understanding of the Arctic ecosystem and how changes in ice conditions
will affect it.

1.1.3 Industry

Sea ice is one of the main reasons why the Arctic is relatively inaccessible to hu-
mans. The environment is harsh and it is difficult and expensive to operate in the
region since ice breakers typically are needed. With a declining ice cover, indus-
tries involved in oil and gas, shipping, fishing, tourism and mining are however
becoming increasingly interested in the region.

The cargo industry is for instance interested since shipping routes across the
Arctic Ocean, from Europe to East Asian and North America, are significantly
shorter than conventional ones via the Suez or Panama canal (Melia et al. 2016).
Experimental test voyages aiming at commercial shipping have been carried out
since the 1990s (Brubaker & Ragner 2010). In 2017, the first tanker sailed the
northern sea route (NSR) (see figure 1.6) without aid of ice breakers. The journey
took 19 days between Norway and South Korea. With further decline in sea ice,
general cargo type vessels could reduce their sailing time to East Asia by about
10-13 days (a reduction of roughly 50%) when travelling the NSR instead of
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Figure 1.3: Polar bear cubs photographed in the Fram Strait during a cruise in
2013. Although giving a cute impression as cubs, polar bears are notoriously
dangerous and are the top predators of the Arctic (apart from humans). Photo:
Jakob Grahn.
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Figure 1.4: Algae growing inside the porous structures of the sea ice, seen from
underneath the ice. These play a key role in the primary production of the Arctic
Ocean. Image courtesy: Andrew Thurber.

Figure 1.5: A comb jelly observed under the sea ice in May during the Norwegian
young sea ice cruise 2015 (N-ICE 2015). Image courtesy: Haakon Hop.
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Figure 1.6: Map showing shipping routes through the Arctic. Since routes like
these may significantly shorten travel from Europe to East Asia, there is an in-
creasing interest in the observed changes of Arctic sea ice conditions from indus-
tries. Image courtesy: national oceanic and atmospheric administration (NOAA).
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using the route through the Suez canal, and the time to North America could be
reduced by about 4 days (Melia et al. 2016, Aksenov et al. 2017).

Depleting oil and gas reserves are also pushing the petroleum industries for
exploring new sources. The United States geological survey (USGS) estimated
the world’s undiscovered oil and gas deposits and found that about 13% of the
undiscovered oil and 30% of the undiscovered gas may be found north of the
Arctic Circle, and most of it is likely located off-shore (Gautier et al. 2009). Also
the fishing industry is moving north for similar reasons.

Industrial endeavours are however challenging in the Arctic environment,
which is characterised by remoteness, low temperatures, bad visibility and dark-
ness for several months of the year. Sea ice is a particularly critical hazard that
needs to be monitored and permanently monitored by operational ice services.
Rescue operations are difficult and costly, and incidents may quickly cost lives.
Accidents involving oil production or shipping may moreover be devastating for
the natural environment, since sea ice may complicate clean-up operations or
even make them impossible.

There is thus an increased need for rapid and accurate systems for observations
of sea ice. To this end, remote sensing may contribute significantly. This may
include ice charts of sea ice types, thickness maps or estimates of ice hardness.

1.2 Radar remote sensing

Just considering the vast extent of the Earth’s sea ice cover, combined with the
remoteness and harsh environment of the polar regions, monitoring of sea ice is
difficult. Not until satellites carrying microwave sensors became available was a
global picture of the Earth’s sea ice obtained.

Sensors operating in the microwave range of the electromagnetic spectrum
(that is, with waves of a few millimetres to a metre in length) are arguably the
most successful types of sensors for observing sea ice. There are two main reasons
for this. Firstly, waves that are longer than some centimetre can penetrate clouds,
which typically cover about 70-80% of the Arctic seas (Schweiger 2004). Secondly,
solar illumination is not needed which is critical during the polar night. Either
the microwaves emitted by the sea ice itself can be detected by so called passive
sensors, or the illumination can be generated by a transmitter, in so called active
sensors.

Passive microwave sensors, such as the scanning multichannel microwave ra-
diometer (SMMR) or the special sensor microwave/imager (SSM/I), have been
used successfully for large scale monitoring of sea ice extent, concentration and
for discriminating between various sea ice types. Passive microwave sensors have
provided data since the late 1970s, resulting in the longest consistent record of
global sea ice extent that currently exists (on which both figures 1.1 and 1.2 are
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based). They are characterised by a very large swath and can monitor the whole
Arctic in short time.

Active microwave sensors, such as radars, altimeters or scatterometers, in-
clude their own source of illumination by transmitting a pulse of microwaves that
scatters on the target of interest. The received pulse is measured and informa-
tion about the target can be retrieved. Since the radiation is generated, active
sensors enable more control over the measurement in contrast to passive sensors.
The radiation can in particular be polarised and coherent which can yield more
information about the target.

Synthetic aperture radars (SARs) in particular, utilise the coherent nature
of the transmitted pulse to significantly increase the spatial resolution. These
are, depending on their configuration, capable of resolving features on the size of
metres in contrast to the tens of kilometres that are typical for passive microwave
sensors. SARs can thus resolve important sea ice features like individual ice floes,
leads or ridges.

For a SAR, there is however a trade-off between spatial resolution and swath
width. The swath is therefore usually much narrower than for passive sensors. In
addition, the sensor can typically not be operated continuously due to high power
consumption. This makes mapping on pan-arctic or global scales difficult. During
the last two decades, there has however been a minor boom in the number of
satellites carrying SAR sensors. Current SAR equipped satellites include Sentinel
1a and 1b (C-band), Radarsat-2 (C-band), advanced land observing satellite 2
(ALOS-2) (L-band), ICEYE-X1 (X-band), TerraSAR-X (X-band), TanDEM-X
(X-band), Cosmo-SkyMed SG (X-band) and Huan Jing-1-C (HJ-1-C) (S-band).
Multiple future missions are planned and the increasing number of sensors will
likely enable better pan-arctic and global sea ice monitoring capabilities.

Conventionally, SARs operating with frequencies at C-band are used. This
frequency band is regarded as a sensible choice for good sea ice monitoring ca-
pabilities both in summer and winter. Relatively recently, space borne SARs
operating at other frequency bands have become available, in particular at X-
and L-band. These bands may be favourable for specific mapping tasks and
yield complementary information about sea ice compared to C-band. Dierking &
Busche (2006) conclude for instance that deformation features such as ice ridges,
rubble fields and brash are better characterised using L-band, while X- and C-
band may be favourable for thin ice types.

The full potential of using data acquired at multiple frequency bands have
however still not been properly clarified, and the diversity in frequency bands used
in recent and future satellite missions raises the interest in the multi-frequency
aspects of radar remote sensing of sea ice. There are still many unresolved or
only partly resolved issues, in particular in the basic understanding of how the
microwaves at different bands interact with the ice. This is critical for forward
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and inverse modelling and designing new radar systems, in particular since in-situ
measurements of sea ice are difficult to obtain which makes empirical approaches
based on training data problematic.

1.3 Problem formulation

The major questions that this thesis is addressing can be formulated as:

1. Can the polarimetric radar signatures measured over Arctic sea ice be de-
scribed in terms of idealised physical models, and is it better described at
some frequency bands than at others?

2. What geophysical parameters of the sea ice have the largest influence on
the radar backscatter and which ones can potentially be retrieved? Are
some frequency bands better for certain parameters?

These are critical questions for assessing the full potential of radar remote sensing
as a tool for science applications (for example monitoring the evolution of the
Arctic ice cover) and for operational sea ice mapping.

Previous work on backscatter modelling has been extensive. Some of the ear-
liest analytical models dedicated to sea ice appeared in the early eighties (for
example Fung & Eom 1982, 1985, Lee & Kong 1985), but the topic is still sub-
ject to active research with new models being proposed (Albert et al. 2012, Ko-
marov et al. 2014, are two relatively recent examples). What may at first appear
surprising is the diversity of model descriptions. Some focus on the volumetric
scattering from inclusions within the ice (Nghiem et al. 1990, 1995b, for instance),
while others are pure surface scattering models (Fung 1994, Winebrenner et al.
1995). Considering on the other hand the dynamic and complex nature of sea ice,
the diversity in model descriptions is perhaps necessary for describing the wide
range of ice types that typically exists in the Arctic. At the same time, however,
there is as per today no clear consensus on which models best suited for given
ice conditions, which is a major problem when applying them.

Regarding model sensitivity, less work has been done. On the one hand,
there are many existing studies that illustrate the sea ice backscatter sensitivity
to particular parameters (for example Fung & Eom 1982, 1985, Kim et al. 1985,
Soulis et al. 1989, Nghiem et al. 1990, 1993, 1995b, Tjuatja et al. 1992, Partington
& Hanna 1994, Winebrenner et al. 1995, Kwok et al. 1995, Carlström 1997,
Wakabayashi et al. 2004, Albert et al. 2012, Komarov et al. 2014). On the other
hand, no studies (to my knowledge) compare the sensitivity of all model input
parameters in a ”global” sense, that is, providing quantitative measures of the
relative influence of all model input parameters. Such information is critical in
order to explain variations observed in data.
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While previous work on modelling sea ice backscattering is rather extensive,
in this thesis it is acknowledged that relatively few investigations are focused on
(1) radar frequencies different from those at C-band (such as X- or L-band) and
(2) the impact of brine wetted snow and (3) the backscatter from grease and
frazil ice. With this in mind, the above questions are narrowed down to:

A. What input parameters are most important in a layered backscatter model
(based on existing surface and volume scattering models) at X-, C- and
L-band radar frequencies?

B. How does brine wetted snow affect model sensitivity?

C. Can a layered backscatter model generally be used to describe typical ice
types observed at multiple frequency bands?

D. What is the multi-frequency backscatter characteristic of frazil and grease
ice?

These questions constitute the main problem statements of the thesis.

1.4 Objectives

In light of the problem formulation in the previous section, this thesis has the
following objectives:

1. Implement a layered backscatter model and conduct a global sensitivity
analysis to identify the most influential geophysical parameters.

2. Assess the representativeness of the implemented model on SAR data ac-
quired at multiple frequency bands in connection to field campaigns.

3. Characterise the backscatter response as a function of radar frequency for
frazil and grease ice by considering wave dispersion and damping.

These objectives are attended in the second part of the thesis, specifically in
chapters 5 to 7.

1.5 Thesis structure

This thesis is divided into two major parts. Part I, which includes this chapter,
covers the general background of the thesis. In chapter 2, fundamental equations
and definitions are stated for describing scattering of electromagnetic waves in
dielectric media. These provide the principal starting point for physical backscat-
tering models used later in the thesis. A general and important statement of the
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chapter is that a contrast in permittivity is the cause for scattering, for instance
at the interface between air and ice, or ice and brine. In chapter 3, the basic
properties of sea ice are outlined. While sea ice is a complex medium, the main
focus is on the properties that relate to its permittivity and structure. These are
essential for understanding how the ice interacts with microwaves. Chapters 2
and 3 build up towards the last chapter of part I, which deals with backscatter
models applicable to sea ice. The models presented in chapter 4 (together with
relations from chapter 3) are used extensively in the rest of the thesis and contain
the basic building blocks for the studies presented in part II.

Part II contains three chapters, each presenting a study of its own. Chapter 5
presents a sensitivity analysis of a composite backscatter model based on the
models in chapter 4. This analysis highlights what input parameters are most
important with regard to variations in the backscatter. The analysis is particu-
larly focused on differences in sensitivity across different frequency bands, and a
discussion of the basic scattering processes is also presented. In chapter 6, the
same composite model is used in comparison to real data from satellite borne
SAR sensors operating at X-, C- and L-band, accompanied with in-situ observa-
tions and meteorological data. While chapter 6 deals with multiple types of sea
ice, the last chapter of part II (chapter 7) is focused particularly on grease and
frazil ice. By modelling the dispersion relation of gravity waves propagating in
slicks of frazil and grease ice, the effect on the radar backscatter is investigated
as a function of operating frequency. A hypothesised band ratio is discussed and
compared to observations from chapter 6 at C- and L-band.



Chapter 2

Electromagnetic waves and
scattering

2.1 Maxwell’s equations

The fundamental equations for describing electromagnetic waves classically, are
Maxwell’s equations. They read:

∇×E = − ∂

∂t
B (2.1a)

∇×H =
∂

∂t
D+ J (2.1b)

∇ ·D = ρ (2.1c)

∇ ·B = 0 (2.1d)

where ∇× ... is the curl operator and ∇· ... denotes divergence. E and H are the
electric and magnetic fields, respectively, produced by sources realised through
the current and charge densities, denoted J and ρ, respectively. D and B relates
to the electric and magnetic field, respectively, in a manner that depends on the
specific medium in question.

Maxwell’s equations can alternatively be stated in terms of a frequency instead
of time, assuming that the fields have harmonic time dependence, such that:

Eω(t) = E(ω)e−iωt (2.2)

17
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and similarly for D, H and B. Equations 2.1 then read:

∇×E = iωB (2.3a)

∇×H = −iωD+ J (2.3b)

∇ ·D = ρ (2.3c)

∇ ·B = 0 (2.3d)

which are the spectral form of Maxwell’s equations. These are assumed through-
out the rest of the thesis.

2.1.1 Linear media

For a linear isotropic dielectric medium the D and B fields relate to the E and
H fields as (Chew 1995, page 5):

D = ε0εE (2.4a)

B = µ0µH (2.4b)

where ε0 and µ0 are the permittivity and permeability for free space, respectively,
while ε and µ are the corresponding relative permittivity and permeability of the
medium. In this thesis, only non-magnetic media are considered for which µ = 1.

If the medium is conductive, the conduction current Jc relates to the electric
field as (Griffiths 2005, page 285):

Jc = σcE (2.5)

where σc is the conductivity. By inserting equation 2.5 in the spectral form of
Maxwell’s equation, conduction can be included in an effective complex permit-
tivity ε̃:

ε̃ = ε− i

ωε0
σc (2.6)

Waves that propagate through conductive media are attenuated due to the imag-
inary part of ε̃ (see ).

If the medium is anisotropic, ε, µ and σc are in general tensors. Although this
will be the case for sea ice, these quantities are written as scalars in this chapter
for readability.

2.2 Wave equation

For linear media, the following wave equation can be derived from the spectral
form of Maxwell’s equations (Chew 1995, page 17):

∇×∇×E− k2E = iωµ0J (2.7)
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where the charge density ρ is neglected and the wave number k is:

k =
√
εk0 (2.8)

with k0 = ω
√
ε0µ0. An analogous wave equation can be found for the magnetic

field H. Both fields are however coupled such that, if E is known, H can be
derived straightly from Maxwell’s equations. It is thus sufficient to solve for only
one of the two and conventionally the electric field E is considered, as will be
done here.

2.2.1 Dyadic Green’s function

A powerful and illustrative approach to solve the wave equation (equation 2.7)
is by means of Green’s function. Green’s function is the impulse response of the
wave equation, that is, the solution when the source is a point. When Green’s
function is found, the wave equation can be solved by convolving the source with
Green’s function.

Since the source in the wave equation is a vector, namely the current J, the
Green’s function is a dyadic and will be referred to as the dyadic Green’s function
(DGF). This is a 3×3 matrix that transforms a vector at one position to a vector
at another position. Convolving the source current J with the DGF Ḡ(r, r′)
yields the electric field (Chew 1995, page 376):

E(r) = iωµ0

∫

V

dr′ Ḡ(r, r′)J(r′) (2.9)

where dr′ = dx′ dy′ dz′ and V is a volume that contains the current J. A useful
interpretation of Ḡ(r, r′) is to view it as a propagator. Here it propagates the
electric field from its source, that is the current at r′ to the point of observation
at position r.

The DGF is further given as the solution to the point source wave equation
(Chew 1995, page 376):

∇×∇× Ḡ(r, r′)− k2(r)Ḡ(r, r′) = Īδ(r−r′) (2.10)

where the right hand side is the dyadic point source, with the Dirac delta function
δ(r−r′) and 3×3 unit dyadic Ī.

For unbounded homogeneous media, the DGF can be written in terms of the
scalar Green’s function g(r, r′) (Chew 1995, page 375-378):

Ḡ(r, r′) =
(

Ī− k−2
∇∇

)

g(r, r′) (2.11)

where g(r, r′) is the solution to the simpler scalar wave equation:

∇
2g(r, r′) + k2g(r, r′) = δ(r−r′) (2.12)
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If the distance between r and r′ is large, the scalar Green’s function is (Ulaby
et al. 1982, page 1022):

g∞0 (r, r′) = − e−ik|r−r
′|

4π|r− r′| (2.13)

The corresponding DGF is:

Ḡ∞
0 = (̄I− d̂d̂)

e−ik|d|

4π|d| (2.14)

where d = r− r′, d̂ = d/|d|. Note that the factor (̄I−d̂d̂) implies that a vector

multiplied by Ḡ∞
0 will be perpendicular to the radial direction d̂ and the second

factor in 2.14 has the same spatial dependence as a spherical wave. In unbounded
homogeneous media, the DGF can thus be seen as a spherical wave propagator
if the observation point is far from the source point.

2.3 Representation of waves

2.3.1 Polarisation

From the far field Green’s function in free space (equation 2.14) it was noted
that point sources produce fields on the form of spherical waves. Moreover, being
sufficiently far from the source, spherical waves can locally be treated as plane
waves in a cartesian coordinate system.

Specifically, if a local cartesian coordinate system is chosen such that the z-
axis points in the propagation direction, a plane wave can be fully described in
the x-y-plane perpendicular to z. Conventionally, the x- and y-axes are chosen
horizontally and vertically relativ to the ground and denoted h and v, respectively.
In this coordinate system, a monochromatic plane wave takes the form (Lee &
Pottier 2009, page 33):

E =





Eh

Ev

0



 ei(kz−ωt) (2.15)

where Eh and Ev are complex valued amplitudes. These amplitudes constitute
the so called Jones vector of the wave, denoted (Lee & Pottier 2009, page 37):

Ẽ =

[

Eh

Ev

]

(2.16)

which completely describes the polarisation state of the wave. If the field is not
a plane monochromatic wave, the Jones vector will be dependent on time and
space. If the dependence is random, the wave is said to be depolarised. This can
be quantified by considering the wave coherency, as will be described next.
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2.3.2 Depolarisation

In order to describe partially polarised waves, consider the coherency matrix (Lee
& Pottier 2009, page 47):

J̄ = 〈ẼẼ†〉 (2.17)

where 〈...〉 indicates ensemble average and † conjugate transpose. Denote the
eigenvectors of this matrix by u1 and u2, with associated largest and smallest
eigenvalues λ1 and λ2, respectively. For a polarised, unpolarised and partially
polarised wave, the following conditions apply (Lee & Pottier 2009, page 49):

Polarised: λ1 > λ2 = 0

Unpolarised: λ1 = λ2

Partially polarised: λ1 > λ2 > 0

A measure of the degree of polarisation can accordingly be defined as (Lee &
Pottier 2009, page 49):

Dp =
λ1 − λ2
λ1 + λ2

(2.19)

such that:

Polarised: Dp = 1

Unpolarised: Dp = 0

Partially polarised: 1 > Dp > 0

An alternative measure of the degree of polarisation, which can more easily be
generalised to scattering, is the wave entropy. It is defined in terms of the prob-
ability of a polarisation state being represented by the eigenvector ui:

P
(w)
i =

λi
∑

j λj
(2.21)

The wave entropy is then defined (Lee & Pottier 2009, page 49):

H(w) = −
2
∑

i=1

P
(w)
i log2 P

(w)
i (2.22)

such that, for a polarised, unpolarised and partially polarised wave, it holds:

Polarised: H(w) = 0

Unpolarised: H(w) = 1

Partially polarised: 1 > H(w) > 0
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J
V0

V1 ε(r)

ε0

Figure 2.1: In the principal radar remote sensing setup, the source current is
located in an antenna above ground. The resulting field is incident on the ground,
where it is scattered whenever the permittivity fluctuates. The scattered field is
the convolution of the DGF with the permittivity fluctuations of the ground
(equation 2.27).

2.4 Scattering

The principal radar remote sensing setup is depicted in figure 2.1. An antenna is
situated above ground, in free space, and accounts for the only active source of
radiation through the current J. The ground is characterised by a permittivity
ε(r), that may fluctuate arbitrarily with space. The antenna generates an electric
field that propagates towards the ground, where it scatters.

2.4.1 Volume integral equation

To find the scattered field, the wave equation 2.7 must be solved with the ap-
propriate boundary conditions. Note, however, that the wave equation can be
rewritten such that the ground acts as an effective source:

∇×∇×E− k20E = iωµ0J+ k20(ε(r)− 1)E (2.24)

This is the free space wave equation, modified such that an additional source term
is included on the right hand side, which accounts for scattering. As outlined in
section 2.2.1, this can be solved using Green’s function. In fact, the corresponding
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Green’s function is now the known Ḡ0, as defined in equation 2.11. Convolving
it with the source terms yields:

E(r) =iωµ0

∫

V0

dr′ Ḡ0(r, r
′)J(r′) +

k20

∫

V1

dr′ Ḡ0(r, r
′)(ε(r′)− 1)E(r′)

(2.25)

This is referred to as the volume integral equation (VIE) and is the basic equation
for describing scattering in a great number of models and applications.

Some notes of physical insight can be made from equation 2.25. Firstly, the
first term on the right hand side involves the source current J and is accordingly
the field produced by the radar antenna. This will be referred to as the incident
field and denoted:

Ei(r) = iωµ0

∫

V0

dr′ Ḡ0(r, r
′)J(r′) (2.26)

For the majority of radar remote sensing applications, this field can be assumed
to take the form of a plane wave, since the antenna is small compared to the
distance between antenna and ground.

The second term in equation 2.25 is the field produced by the target, i.e. the
scattered field, denoted:

Es(r) = k20

∫

V1

dr′ Ḡ0(r, r
′)(ε(r′)− 1)E(r′) (2.27)

Note that the integrand contains the factor ε(r′)− 1. It is thus variations in per-
mittivity relative to the background that is the source of scattering, and hence
the source of information about the target in question. For a geophysical param-
eter to be measurable by means of radar remote sensing, it must in other words
be linked to the spatial variation of permittivity in one way or the other.

2.4.2 Stratton Chu integral equation

If the considered volume in equation 2.27 is bounded by a surface S, it can be
written as a surface integral equation using Green’s vector theorem (Chew 1995,
page 436):

Es(r) =

∫

S

dS′
(

iωµ0Ḡ(r−r′)n̂×Hs(r
′)− (∇′ × Ḡ(r−r′))n̂×Es

)

(2.28)

where n̂ is the normal unit vector of the surface. If the observation point is
far from the surface, and the medium outside the surface is homogeneous, the
corresponding homogeneous Greens function defined in equation 2.14 can be used.
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This results in the famous Stratton Chu integral equation (Ulaby et al. 1982, page
1021-1023):

Es(r) = − ike
−ikr

4πr
r̂×

∫

S

dS′

(

n̂×Es −
√

µ0

ε0
r̂× (n̂×Hs)

)

eikr·̂r (2.29)

Here r̂ is the unit vector pointing in direction of observation seen from the surface.
This is the starting point of many popular surface scattering models, in particular
the geometric optics model (GOM) and the integral equation model (IEM) (see
sections 4.1.3 and 4.1.4, respectively).

2.4.3 Born series

Note that E = Es+Ei. Inserting this in the integrand of the VIE in equation 2.27
yields:

Es(r) = k20∆(r′)Ḡ0(r, r
′)Ei(r

′) + k20∆Ḡ0(r, r
′)Es(r

′) (2.30)

where integration is implicit over the primed positions. The permittivity contrast
is expressed as ∆(r′) = ε(r′)− 1. Note that the scattered field Es appears both
on the left-hand side and in the integrand on the right-hand side. The equation
can thus be iterated to yield a series:

Es(r) = k20∆(r′)Ḡ0(r, r
′)Ei(r

′) +

k40∆(r′)∆(r′′)Ḡ0(r, r
′)Ḡ0(r

′, r′′)Ei(r
′′) +

O(∆3)

(2.31)

where again, integration over all primed positions is implicit. This is called a
Born series and has a very useful interpretation. Specifically, the first term is the
incident field propagated spherically from the permittivity contrast at r′ to the
observation point r and the field is scaled by the strength of the contrast. The
second term is the incident field spherically propagated from the permittivity
contrast at r′′ to the contrast at r′, where it again propagates spherically to the
observation point. The third term propagates through three permittivity con-
trasts and so on. Each term in the series thus represents the order of scattering.
If only the first term is kept, single scattering of the incident field is described.
This is called the first order Born approximation (FBA) and thus reads:

Es(r) = k20

∫

dr′Ḡ0(r, r
′)∆(r′)Ei(r

′) (2.32)

where now integration is explicit. An approximation of analogous form, namely
the distorted Born approximation (DBA) discussed in section 4.2.1, will later be
considered for volume scattering in snow and sea ice.
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2.5 Representation of scatterers

2.5.1 Scattering vectors and matrices

If the antenna is far from the ground, the incoming wave at the ground as well
as the scattered wave at the antenna can be treated as plane waves and can thus
be represented by Jones vectors, denoted Ẽi and Ẽs respectively. The linear
transformation between these two vectors characterises the target causing the
scattered wave:

Ẽs =
e−ikr

r
S̄Ẽi (2.33)

where the transformation matrix S̄ is referred to as the scattering matrix. The

factor e−ikr

r , where r is the distance between the antenna and the target, accounts
for propagation of the scattered wave from the ground to the antenna, which
follows naturally from the far field Green’s function in equation 2.13.

If expressed in terms of horizontally and vertically polarised basis vectors
(called the lexicographic basis), the matrix elements can alternatively be ex-
pressed as a vector, specifically the so called lexicographic scattering vector:

kL4 =









Shh

Shv

Svh

Svv









(2.34)

Most natural targets are reciprocal, such that Shv = Svh, in which case it can be
reduced to a three element vector:

kL3 =





Shh√
2Shv

Svv



 (2.35)

The scattering covariance matrix is further defined as:

C̄ = 〈kL3k
†
L3〉 (2.36)

resulting in a 3×3 matrix under the assumption of reciprocity. Note the similarity
to the wave coherency in equation 2.17.

2.5.2 Radar cross section

In terms of the incident and scattered Jones vectors, Ẽi and Ẽs respectively, the
pq-polarised radar cross section (RCS) is defined as (Lee & Pottier 2009, page
54):

σpq = 4πr2
|Ẽp

s |2
|Ẽq

i |2
(2.37)
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where the incident wave is q-polarised, the scattered wave is p-polarised and r is
the distance between the antenna and the target. Following from equation 2.33,
the RCS can alternatively be written in terms of the scattering vector as (Lee &
Pottier 2009, page 56):

σpq = |Spq|2 (2.38)

In terms of the 3×3 scattering covariance matrix, the co- and cross-polarised RCS
differ by a factor 1/2 (following from equation 2.35), specifically:

σhh =4π|C11| (2.39)

σhv =2π|C22| (2.40)

σvv =4π|C33| (2.41)

For extended targets, illuminated by an area A, the normalised radar cross section
(NRCS) is defined as:

σ0
pq =

〈σpq〉
A

(2.42)

where 〈σ〉 is the average RCS over the area A.

2.5.3 Scattering entropy

Similarly to how the wave entropy (equation 2.22) could be defined from the
eigenvalues of the wave coherency matrix (equation 2.17), a scattering entropy
can be defined from the covariance matrix in equation 2.36, for describing wave
depolarisation upon scattering. Let the eigenvectors of the scattering covariance
matrix be denoted as ui and the corresponding eigenvalues with λi, where i =
1, 2, 3. The probability of a scattering state being represented by the eigenvector
ui is then defined:

Pi =
λi

∑

j λj
(2.43)

The scattering entropy is further (Cloude 2010, page 97):

H = −
3
∑

i=1

P i log3 P i (2.44)



Chapter 3

Basic properties of sea ice

In order to interpret and model electromagnetic scattering from sea ice, a de-
scription of its dielectric characteristics is needed. This in turn is dependent
on its physical and chemical composition. Being a result of sea water freezing,
sea ice is mainly made up of pure ice, brine and solid salts. In addition, it may
contain air as well as snow, sediments or algae. In particular the brine has a dras-
tically different permittivity compared to the other components, making sea ice
dielectrically very heterogeneous. In order to model radar signatures accurately,
a description of the processes involved in shaping the ice is thus needed.

3.1 Components

Sea ice is mainly composed of the same basic ingredients as sea water. Primarily,
these are pure water (H20) and a variety of salts. In sea ice, the water is frozen
into pure ice, while the salts are either dissolved in water and trapped in small
brine cells or crystallised in solid salts. This section contains some notes on key
properties and relations regarding these basic ingredients that make up sea ice.

3.1.1 Pure ice

Most of the liquid water in sea ice contains large amounts of dissolved salts and is
then denoted as ”brine”. Some amounts of relatively fresh water may also exist,
in for instance melt ponds or in wet snow on top of the ice. For most types of sea
ice, however, the majority of the water is in the form of pure ice (quantitative
numbers about the relative amount of pure ice for typical sea ice can be found
in section 3.2).

27
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Water molecule

Hydrogen

Oxygen

Basal plane (top view)

Basal plane

Basal plane

Optical c-axis

Figure 3.1: An illustration of the crystal lattice in ice Ih. The hydrogen and
oxygen atoms form hydrogen bonds in a hexagonal pattern in the basal plane
(see the left illustration). Half of the oxygen atoms will have a free hydrogen
atom which bonds to an oxygen atom in another basal plane. The lattice thus
takes the form of multiple parallel planes (see the right illustration). The axis
perpendicular to the basal plane is called the optical c-axis of the crystal.

Crystal structure of pure ice

Although salts make sea ice drastically different from pure ice, the basic ice
formation process is the same. That is, at low enough temperatures H2O solidifies
into crystal lattices. The water molecules may solidify into a number of different
crystal structures, depending on the temperature and pressure. However, at
conditions typical for the biosphere, water freezes into so called ice Ih.

In ice Ih, the water molecules stick together with hydrogen bonds in a hexag-
onal pattern. This particular structure is favoured due to the six-fold symmetry
of the H20 molecule. The hexagonal pattern makes up the so called basal plane,
of which the perpendicular axis is called the c-axis. The bonds in the basal plane
involve 3/4 of the hydrogen atoms, the other 1/4 bond along the c-axis to another
crystal plane. The full lattice thus consists of a stack of such crystal planes, as
depicted in figure 3.1.

Density of pure ice

In contrast to many other naturally occurring substances, water has the peculiar
property that it is less dense in its solid than in its liquid phase. Specifically, the
density of pure ice, denoted ρpi, can be approximated as (Thomas & Dieckmann



CHAPTER 3. BASIC PROPERTIES OF SEA ICE 29

2009):

ρpi = 917− 0.1403T (3.1)

where T is the temperature.

Permittivity of pure ice

The relative permittivity for pure ice is weakly dependent on the temperature
(Matzler & Wegmuller 1987):

εpi = 3.1884 + 0.00091T − i

(

A

f × 10−9
+B(f × 10−9)C

)

(3.2)

where T is the temperature in ◦C, f is the frequency in Hz and A, B and C
are temperature dependent constants. The constants were measured for -15◦C
and -5◦C. For -15◦C: A=0.0013, B=0.00012 and C=1.0. For -15◦C: A=0.026,
B=0.0023 and C=0.87. For other temperatures, linear interpolation will be used
in the following chapters.

Despite the anisotropy of the ice crystals, the permittivity can be assumed
isotropic. The crystal structure does however play an important role in shap-
ing inclusions of brine, which can make the effective permittivity of sea ice
anisotropic.

3.1.2 Sea water and brine

When salt is dissolved into water, the solution is called brine. In the literature,
there is sometimes a distinction made between brine and sea water depending on
the salinity. In this thesis, the distinction is made such that sea water embedded
in sea ice or with a changed chemical composition due to ice formation, will be
referred to as brine.

In Earth’s oceans, sodium chloride (NaCl) is the most abundant salt and
is dissolved into Na+ and Cl− ions (due to ion-dipole bonds with the water
molecules). Other common salt ions are sulphate (SO2−

4 ), magnesium (Mg2+),
calcium (Ca−) and potassium (K+) ions. Typically, however, these are at least
one order of magnitude less abundant compared to the sodium chloride ions
(Thomas & Dieckmann 2009).

When sea water and brine do freeze, the salt ions are separated from the ice
crystals, since ion-dipole bonds cannot form with the crystal lattice (see section
3.1.1). This separation increases the salinity of the remaining brine and thus
decreases its freezing point. In a closed system, both liquid brine and pure ice
can thus coexists in thermal equilibrium.
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Figure 3.2: The freezing point of sea water compared to the temperature of
maximum density plotted versus salinity. Above roughly a salinity of 24 ppt, sea
water at its freezing point is heavier than warmer water. As water is cooled at the
surface by the atmosphere, it will sink as it reaches its freezing point, resulting
in a layer of supercooled water at the top of the water column.

Density of sea water

Pure water is most dense at about -4◦C. As the salinity increases, the point
of maximum density decreases roughly linearly, as illustrated in figure 3.2 (Mc-
Dougall et al. 2003). As the salinity goes above about 24 ppt, the temperature
of maximum density as a liquid is lower than the freezing point. In most oceans,
the salinity is higher than this, in particular in the Arctic and Antarctic oceans.
As sea water is cooled from the atmosphere it will become denser than the un-
derlying water. An unstable density profile will form causing mixing in the top
water layer. If the atmospheric cooling continues, the top layer may become su-
percooled. This allows for rapid ice growth and the formation of dendritic ice
crystals. For open water, this results in an ice-water mix called frazil ice. Under
consolidated ice, this can result in columnar ice.
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Permittivity of brine

Since brine contains dissolved salt ions, a finite dielectric relaxation should be ac-
counted for when calculating the permittivity. The single Debye relaxation equa-
tion has shown to be applicable for brine in the microwave frequencies (Stogryn
& Desargant 1985), which is of the form:

εb = ε∞ +
εs − ε∞
1 + iωτr

− iσc
ωε0

(3.3)

where the first two terms account for Debye relaxation and the last term accounts
for conductive currents (as in equation 2.6). Specifically, ε∞ and εs are the
respective high frequency and static limits of the relative permittivity, τr is the
relaxation time in seconds and σc is the conductivity.

The single Debye relaxation equation 3.3 has shown to be applicable for brine
in the microwave frequencies. Stogryn & Desargant (1985) fitted it to samples of
brine extracted from sea ice, resulting in empirical and temperature dependent
expressions for ε∞, εs, τr and σc, which are stated in section B.2.

Permittivity of sea water

For sea water, the single Debye relaxation equation 3.3 has been shown inaccurate
at high frequencies. A double Debye relaxation equation has been suggested by
Meissner & Wentz (2004), valid for a wider range of frequencies:

εb = ε∞ +
εs − ε1

1− iωτ
(1)
r

+
ε1 − ε∞

1− iωτ
(2)
r

− iσc
ωε0

(3.4)

The corresponding permittivity limits εs, ε1 and ε∞, relaxation times τ
(1)
r and

τ
(2)
r and conductivity σc are listed in section B.2.2. The relation is valid for
salinities of 20 to 40 ppt.

3.1.3 Solid salts

At low temperatures, dissolved salt ions may crystallise into solid salts. Sodium
chloride may for instance combine with water and form NaCl·2H20, or Na+ ions
may combine with sulphate and water, into Na2SO4·10H20. Compared to pure
ice, solid salts constitute only a small fraction of the sea ice. In particular, more
than half of the water transforms into ice before any solid salts appear (Assur
1958). The solid salts are thus regarded as insignificant for wave propagation in
microwave frequencies, thus their permittivities will not be stated here.
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3.2 Phase relations and inclusions

In the previous section, the basic sea ice components are described, that is; pure
ice, brine and solid salts. In this section, the effect of temperature on the relative
fraction of single sea ice components is investigated in more detail. To this end,
sea ice phase relations are described.

When making statements about the phase relations of sea ice, it is common
to assume that if melted, the sea ice would have the same chemical composition
as the sea water it originated from. This is called ”standard” sea ice which was
introduced by Assur (1958). Although this assumption has been shown not to
be strictly correct in real sea ice samples, due to growth and depletion of frost
flowers (Rankin et al. 2002) or differential diffusion of salt ions through the ice
microstructure (Maus et al. 2011), it will be assumed valid for the purpose of
discussing electromagnetic wave interactions.

Assuming ”standard” sea ice, Assur (1958) compiled data from laboratory
grown samples (Nelson & Thompson 1954, Ringer 1928) and tabulated the frac-
tional weight of a number of components over a range of temperatures. Based on
this table, the fractional weights of brine, dissolved salts and pure ice are plotted
as solid lines in figure 3.3. The most abundant salt ions and solid salts are plotted
as dashed or dotted lines.

As seen in figure 3.3, the amount of brine quickly decreases as the temper-
ature drops. Initially, this is almost only due to liquid water turning into pure
ice. The latter dominates the total weight soon after passing the freezing point
around -2◦C. The first solid salt, Na2SO4 · 10H2O, appears around -8◦C, but in
very small amounts. Considering the dominant salt ions, Na+ and Cl−, their
amounts remain relatively constant down to about -21◦C, where they crystallise
into NaCl·H20. As the temperature decreases even further, other solid salts form,
but even at -40◦C, they only account for 3% of the total weight. Note also that
liquid brine still exists at these low temperatures.

3.2.1 Volume fraction of brine

From the phase relations plotted in figure 3.3, the volume fraction of the different
components can be calculated. In terms of the dielectric properties of sea ice, the
volume fraction of brine is most important due to its relatively high permittivity.

Based on the phase relations of Assur (1958), Frankenstein & Garner (1967)
found a simple relation between the volume fraction of brine Vb (as a fraction of
1), the sea ice bulk salinity Ssi (in ppt) and temperature T (in ◦C):

Vb(T , S) = Ssi(0.0532−
4.919

T
)× 10−2 (3.5)

which is stated to be valid for temperatures from −22.9◦C to −0.5◦C. The density
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of pure ice is assumed to be 926 kg/m3. This is however weakly dependent on
temperature, as was noted in equation 3.1. To account for this, Cox & Weeks
(1983) later proposed the following relation, which allows for a variable ρpi:

Vb(T , S, ρpi) =
ρpiSsi

F1(T )− ρpiSsiF2(T )
(3.6)

where F1(T ) and F2(T ) are polynomial functions of temperature (based on the
data presented in Assur 1958) stated in section B.3. The relation is valid for
temperatures from −30◦C to −2◦C. Note that if equation 3.1 is used for ρpi,
equation 3.6 is a function of temperature and salinity only.

A comparison between equation 3.5 and 3.6 (using equation 3.1 for Ssi) for
a salinity of 10ppt is shown in figure 3.4. It is evident that the differences are
small, with a maximum deviation of about 0.005 for the volume fraction of brine
in the temperature range −22◦C to −2◦C. Note also the large sensitivity of the
volume fraction to temperatures above −5◦C. For example, the volume fraction
is about twice as large at −2◦C compared to −5◦C.

3.2.2 Characteristics of brine inclusions

For an accurate description of the scattering from brine inclusions, the knowledge
of only the volume fraction is not sufficient. Clearly, one large inclusion will
scatter differently from ten small ones, even if they occupy the same fractional
volume. Thus, a description of the sizes, shapes and orientations of the brine
inclusions is also needed.

Traditionally, size measurements of brine inclusions are made by slicing ice
cores into thin sections and estimating the inclusion sizes from photographs
(Nakawo & Sinha 1984, Perovich & Gow 1996). The 2D-nature of such mea-
surements may however hamper the ability to quantitively measure the inclusion
sizes and shapes. More recently, magnetic resonance (MR) imaging (Eicken et al.
2000, Galley et al. 2015) and X-ray computed tomography (Golden et al. 2007)
have been used to get a 3D-picture of the inclusion sizes, shapes and connectivity.
Such measurements are however still rare which makes it difficult to provide a
detailed and general description of the inclusions.

Studies indicate that the brine inclusions are on the order of a millimetre to
fractions of a millimetre in size (Perovich & Gow 1991, 1996). When the inclusions
get trapped in the sea ice, they typically become sandwiched in between the basal
planes of the ice crystals. Initially, they tend to have a spherical shape (Galley
et al. 2015) but later become elongated along the basal planes. Consequently
their orientation is generally random in granular ice, but may have a preferred
vertical alignment in columnar ice (Arcone et al. 1986, Weeks & Ackley 1986).
Occasionally, they may have a preferred orientation also in the horizontal plane
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Figure 3.3: The phase relations between the different sea ice components plotted
as fractional weights versus temperature. Plotted as solid lines, are the major
components: pure ice, brine and solid salts. Solid salts and components of brine
are plotted as dashed and dotted lines. The plot is based on table III in Assur
(1958) corresponding to so called ”standard” sea ice, with a salinity of 34.325
ppt at atmospheric pressure.

due to sea currents that align the ice crystals and thus also the brine inclusions
(Weeks & Gow 1978, Nakawo & Sinha 1984), although generally no preferred
horizontal orientation is observed.

3.3 Sea ice formation and structure

In this section, the spatial structure of these components is discussed in order to
get an idea about what the sea ice permittivity configuration ε(r) looks like, which
determines the scattered electric field in equation 2.27. While the phase relations
were simply a function of two parameters, that is temperature and salinity, the
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Figure 3.4: A comparison between the two expressions for the volume fraction of
brine Vb shown in equation 3.5 by Frankenstein & Garner (1967) and equation
3.6 by Cox & Weeks (1983).

spatial structure is affected by a lot more factors, such as sea state, currents,
winds and precipitation.

3.3.1 Frazil ice

Pure water is in its most dense state above the freezing point of 0◦C. When salt
is added, the temperature of maximum density goes down and if the salinity
is higher than roughly 24 ppt, this temperature is below the freezing point, as
illustrated in figure 3.2. This means that, when sea water is cooled from the
atmosphere, the top of the water column becomes denser than deeper water,
resulting in vertical mixing. Warm water will thus continually replace the colder
water at the surface until the whole mixing layer is cooled. Studies show that this
continues beyond the freezing point and the layer becomes supercooled (Katsaros
1973, Katsaros & Liu 1974, Tsang et al. 1985, Ushio & Wakatsuchi 1993).

Eventually, the water crystallises. Since the water is supercooled, the growth
is dendritic and it is mainly confined to the basal plane of the crystal lattice.
Initially, the crystals take the form of hexagonally shaped discs. After reaching
a certain size, needle shaped spicules grow radially outwards in the basal plane.
The spicules easily break off from the discs, resulting in a collection of discs and
needle shaped spicules, referred to as frazils. These typically are a few to a couple
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of tens of millimetres in length, but less than a millimetre in thickness (Thomas
& Dieckmann 2009) and collectively make up so called frazil ice.

Under calm conditions, the frazil ice will form a thin layer at the sea surface
and consolidate into an ice layer. If the water is turbulent, however, the frazils
will be kept suspended in the water and eventually accumulate into a viscous
layer, called grease ice. A characteristic feature of grease ice is that it dampen
short surface waves, as seen in the photograph in figure 3.5.

3.3.2 Granular ice

If the sea state is turbulent, wave motion disturbs the ice growth process. Instead
of forming a consolidated ice layer, frazil ice tends to transform into a smooth
viscous soup, called grease ice. This may further consolidate into nilas, but then
as so called granular ice. In this case the ice crystals and consequently also
the brine inclusions do not have a preferred orientation. Continued ice growth
can however be in the form of congelation growth. In fact, a transition from a
granular to columnar structure is often found at some depth of a sea ice layer.

If the sea state is too turbulent for nilas to consolidate, grease ice tends to
form collections of pancake-like ice plates instead, referred to as pancake ice. The
ice pancakes eventually freeze together into one solid ice layer of young ice (YI),
from which again congelation growth can proceed.

3.3.3 Columnar ice

Under calm conditions, the frazil ice consolidates to a thin elastic ice layer, called
nilas. As the ice continues to grow, brine is rejected into the water column.
As the brine mixes with the less saline sea water, the freezing point of the lat-
ter increases and it may become supercooled. This enables rapid dendritic-like
ice growth into the supercooled water, called congelation growth that results in
vertical lamellar ice structures. In particular, crystals with their basal planes ori-
ented vertically will grow faster than those with more horizontally oriented planes
(Perey & Pounder 1958, Weeks & Gow 1978), a phenomenon called geometric
selection.

Brine will further be trapped in between the lamellar structures, as they freeze
together into so called columnar ice. The brine inclusions are typically found to
be elliptical in shape and vertically oriented, parallel with the basal plane of the
ice crystals. The preferred orientation of the brine inclusions may further lead to
a strong anisotropy of the permittivity of columnar ice.

In summary, depending on the sea state during ice formation, young sea ice
typically consists of a granular ice layer at the top and of columnar ice further
down. In figure 3.6 an example is shown. Specifically, vertical thin sections of
the top and bottom of an ice core is viewed through cross polarised filters. The
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Figure 3.5: A photograph of grease ice (to the left) in open water (to the right),
in the Bering Sea. The matte and oily appearance of the grease ice is due to the
damping of short surface waves. Image courtesy: U.S. Fish and Wildlife Service.
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Figure 3.6: Thin vertical sections of the top and bottom part of an ice core
collected during the N-ICE 2015 campaign. The top part is identified as granular
ice, with randomly oriented rounded ice crystals. The bottom part is identified as
columnar ice, with vertical elongated ice crystals. Courtesy: Martine Espeseth,
UiT.
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different colours relate to the orientation of the c-axis in the ice crystals. It can
be seen that the top consists of a granular crystal structure and the bottom is
characterised by columnar crystal structures.

3.3.4 Surface features

The characteristics of the sea ice surface are very important for microwave scat-
tering. A number of weathering and deformation processes affect the surface. The
large scale roughness features are mainly caused by ice deformation. Specifically,
rafting and ridging may cause significant deformation.

Small scale roughness of the ice surface is in addition governed by factors like
the sea state and temperature during the ice formation process, precipitation,
melt or wind. A notable example of small scale roughness features are so called
frost flowers (see figure 3.8). These are relatively large ice crystals with high salt
content that grow at the sea ice surface at specific atmospheric conditions (Style
& Worster 2009) and may play an important role to the backscattering response
of the surface (Isleifson et al. 2014).

It is difficult to make general statements about typical roughness characteris-
tics, partly due to their dynamic nature and partly due to lack of measurements
covering large regions. The deformation features on the order of decimetres to
metres can be mapped with helicopters, airplanes and satellites (Yitayew et al.
2018, Dierking et al. 2017). Measurements of the small scale characteristics are
however usually done using ground based laser scanners or other types of profilers
(Johansson 1988, Drinkwater 1989, Paterson et al. 1991, Onstott 1992, Dierking
1999, Landy et al. 2015) with limiting coverage. Johansson (1988) and Drinkwa-
ter (1989) find that the height distribution is Gaussian. Regarding the correlation
function, some indicate that an exponential correlation function is realistic for
undeformed sea ice (Kim et al. 1985, Johansson 1988, Dierking 1999). Even
less is known about the surface features of the ice-water interface. It is however
reasonable to believe that this is smoother than the upper surface, as shown in
figure 3.7.

3.3.5 Snow

Snow is of great importance to the microwave response in several ways. A layer
of snow will change the angle of incidence of the waves hitting the ice surface
and cause volume scattering. If the snow is dry, volume scattering mainly occurs
at relatively high frequencies. If the snow is wet, the liquid content will also
scatter, which can be significant even at lower frequencies. The liquid water also
attenuates the electromagnetic (EM) waves which depending on frequency, may
decrease the total volume scattering response from the snow as well as from the
sea ice under the snow.
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Figure 3.7: Underwater photographs showing the interface between sea ice and
sea water. The roughness of the interface may play an important role to mi-
crowave scattering for wavelengths that can penetrating through the sea ice. The
images are taken during the N-ICE 2015 campaign. The top and bottom im-
age are from the 10th and 18th May, respectively. In general, litttle is however
known about typical roughness conditions of the ice-water interface. Image cour-
tesy: Haakon Hop, norwegian polar institute (NPI)
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Figure 3.8: A close up photograph of frost flowers on sea ice. Frost flowers grow
under cold low wind conditions and may be up to a few centimetres in height.
Since they typically are very saline and rough, they may contribute significantly
to microwave scattering. Image is used under the public domain.

Figure 3.9: A close up photograph of a thin brine wetted snow layer on top
of young ice. The image was taken on the 8th of May during the N-ICE 2015
campaign. The high permittivity of brine makes such snow layers important to
microwave scattering. Image courtesy: Martine Espeseth, UiT.
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Snow is typically assumed dry in cold condition. However, brine being ex-
pelled from the sea ice may also cause wetting, even at low temperatures. This
affects the bottom of the snow layer and occurs on relatively relatively young and
saline ice types (see an example in figure 3.9). Several studies have indicated that
brine wetted snow plays a significant role to the scattering response from sea ice
(Barber & Nghiem 1999, Nandan et al. 2017).

Large snow loads may also cause flooding of sea water on top of the ice, greatly
changing the dielectric properties of its surface.



Chapter 4

Backscatter modeling

Radar backscattering from sea ice has been the topic of research for many decades,
resulting in a wide variety of backscattering models (excellent summaries of some
models can be found for instance in Winebrenner et al. (1992), Dierking (1992)).
Common to most models is the treatment of sea ice as a random medium. This
means that the geometry of the medium is described in terms of random variables
and the modelled backscatter is the ensemble average over geometrical realisa-
tions. Moreover, most models regard sea ice as a layered medium, resulting in
scattering from layer interfaces as well as from inhomogeneities within the layer
volumes. In particular, brine and air inclusions are important for the latter.

In this chapter, the scattering models used later in the thesis are highlighted.
Although there is in principal not a clear distinction between scattering from
layer interfaces and volume inhomogeneities in terms of the integral equation
(equation 2.27), the problem is greatly simplified by treating surface and volume
scattering separately. Accordingly, section 4.1 deals with surface scattering and
section 4.2 with volume scattering. Based on these models, a semi-coherent
layered backscatter model representing sea ice is described in section 5.2.

4.1 Surface scattering

Surface scattering denotes scattering resulting from a single horizontal interface
between two media of different permittivity. If the boundary is perfectly flat,
the incident wave is only reflected into the so called specular direction, such that
the incident and scattered angles are the same. For backscattering to occur, the
boundary needs to be rough.

There are many approximate solutions to the backscattering problem from
rough surfaces (an extensive review can be found in Elfouhaily et al. (2004)).

43
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Historically, two approximations, stand out in popularity: the small perturbation
model (SPM) and the stationary phase approximation of the Kirchoff model, also
referred to as the GOM. These approximations result in closed form expressions
for the backscattering coefficient, but are limited to small and large roughness
scales, respectively. Many approaches have been suggested to bridge the gap in
validity between the SPM and GOM, of which the integral equation model (IEM)
is one of the most popular.

In the following, the concept of surface roughness is first presented. Then,
the SPM, GOM and IEM are introduced with according validity ranges.

4.1.1 Surface roughness

Surface roughness can be modelled as random but correlated vertical height vari-
ations, denoted z(x, y). Normally, the variations can be assumed Gaussian dis-
tributed and the coordinate system can be chosen in a way that the mean is zero,
such that z(x, y) ∼ N (0, σ2

z). The standard deviation σz is referred to as the
root mean square (RMS) height of the surface. The smoothness of the surface is
realised though the correlation of the height variations along x and y, which is
typically modelled with some idealised correlation function.

Before considering a few correlation functions in more detail, it is worth noting
that most correlation functions are parameterised by a correlation length l. Thus,
given a specific correlation function, the roughness of a surface is fully described
by only two parameters: the RMS height σz and the correlation length l.

Surface correlation

The (normalised) correlation function tells how the vertical heights z(x, y) at two
displaced positions along the surface are correlated and is defined as:

ρ(x, y) = lim
S→∞

1

S

∫ ∫

S

z(x′, y′)z(x′ − x, y′ − y)

σ2
z

dx′ dy′ (4.1)

where x and y are the displacements. Often, the correlation function can be
assumed isotropic, such that it only depends on the radial variable r =

√

x2 + y2.
It is then sufficient to consider the one sided radial correlation function defined
as:

ρ(r) = lim
R→∞

2π

R

∫ R

0

z(r′)z(r′ − r)

σ2
z

dr′ (4.2)

In this thesis, all surfaces are assumed isotropic. Specifically, the following three
radial correlation functions are considered: the Gaussian, the exponential and the
generalised power law (GPL) correlation function. These are defined as (Fung
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1994, Li et al. 2002):

Gaussian: ρ(r) = e−r2/l2 (4.3a)

Exponential: ρ(r) = e−|r|/l (4.3b)

GPL: ρ(r) =
1

2p−2Γ(p− 1)

(

2bpr

apl

)p−1

Kp−1

(

2bpr

apl

)

(4.3c)

where Γ(·) is the Gamma function,Kν(·) is the ν:th order modified Bessel function
of the second kind and the coefficients ap and bp are defined in equations B.19
and B.20 (appendix B).

The Gaussian and exponential correlation functions are clearly mathemati-
cally simpler. The GPL correlation function is less simple, but more general in
the sense that the other two functions are special cases of it. Specifically, for
p = 1.5, the GPL correlation function reduces to the exponential one and as
p→ ∞ it approaches the Gaussian one (Li et al. 2002).

In figure 4.1(a), the three correlation functions are plotted versus the radius r.
In figure 4.2, corresponding random surfaces are generated, using identical RMS
heights, correlation lengths and random seeds. The profiles that are highlighted
across the surfaces are shown in figure 4.1(c).

Roughness spectrum

Regarding surface scattering, the Fourier transform of the correlation function
plays an important role (see sections 4.1.2 and 4.1.4). Specifically, the Fourier
transform of the n:th power of the correlation functions is:

Wn(k) =

∫ ∞

0

ρn(r)J0(kr)r dr (4.4)

where J0(·) is the 0:th order Bessel function of the first kind. For the above
mentioned correlation functions this yields (Fung 1994, Li et al. 2002):

Gaussian: Wn(k) =
l2

2n
e−(kl)2/4n (4.5a)

Exponential: Wn(k) =
l2n

((kl)2 + n2)
3/2

(4.5b)

GPL: Wn(k) ≈
(

l

nfp

)2
p− 1

2

a2p
b2p

(

1 +
1

4

a2p
b2p

(

kl

nfp

)2
)−p

(4.5c)

where fp is defined in equation B.21 (appendix B). Note that for n = 1, these
yield the power spectra of the surfaces, also referred to as the surface roughness
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Figure 4.1: The Gaussian, exponential and generalised power law (GPL) (with
p = 2.1) correlation functions plotted in (a), with corresponding power spectra in
(b) and generated horizontal profiles in (c) (see corresponding surfaces in figure
4.2). The RMS height is σz = 0.3 and correlation length is l = 1.
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Figure 4.2: Three surfaces generated using the Gaussian (top), exponential (mid-
dle) and GPL with p = 2.1 (bottom) correlation functions, using the RMS height
σz = 0.3 and correlation length l = 1. The surfaces have been shaded in order to
enhance the small scale roughness.
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spectra. Note further that the GPL spectrum is given as an approximation of
the true Fourier transform (see Li et al. (2002) for details). In figure 4.1(b), the
three roughness spectra are plotted versus the wave number k.

RMS surface slope

The RMS slope of a random rough surface is an important parameter, partly
because it enters explicitly into the GOM (equation 4.13), but also because it
indicates if multiple surface scattering is significant. Specifically, if the surface
has very large slopes, multiple scattering typically needs to be considered. The
RMS slope σs is defined as (Ulaby et al. 1982, page 1012):

σs = σz

(

−d2ρ(r)

dr2

∣

∣

∣

∣

∣

r=0

)1/2

(4.6)

which for the above mentioned correlation functions yields (Fung 1994, Li et al.
2002):

Gaussian: σs =
σz
l

√
2 (4.7a)

Exponential: σs is undefined (4.7b)

GPL: σs =
σz
l

√

2

p− 2

bp
ap

for p > 2 (4.7c)

For the exponential correlation function, the derivative at the origin is not defined
thus neither is the RMS slope. This is also the case for the GPL correlation func-
tion for p ≤ 2. Note however the similarity between the exponential correlation
function and the GPL with p = 2.1 in the generated profiles and corresponding
surfaces in figures 4.1(c) and 4.2, respectively, where the latter does have a well
defined RMS slope.

Average radius of surface curvature

The average radius of curvature of a random rough surface is a key parameter in
the Kirchhoff approximation which is the basis for both the GOM and IEM. If
the RMS slope is small, such that σs ≪ 1, the average radius of curvature Γc is
approximately given as (Ulaby et al. 1982, page 1013):

Γc ≈
1

σz

(

− 2

π

d4ρ(r)

dr4

∣

∣

∣

∣

∣

r=0

)−1/2

(4.8)
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For the considered correlation functions, this yields:

Gaussian: Γc ≈
l2

σz

√

π

24
(4.9a)

Exponential: Γc is undefined (4.9b)

GPL: Γc ≈
l2

2σz

a2p
b2p

√

π

6
(6− 5p+ p2) for p > 3 (4.9c)

As for the RMS slope, curvature cannot be derived for the exponential function.
The expression for the GPL average radius of curvature is derived in section A.1
in appendix A.

4.1.2 Small perturbation model (SPM)

The SPM (also referred to as the Bragg model) dates back to work on sound
waves by Lord Rayleigh in the late nineteenth century, but was formulated for
dielectric surface scattering by Rice (1951). There are many ways to derive the
model (see Elfouhaily et al. 2004, for an overview), but popularly it is derived
from the wave equation 2.7 rather than the surface integral equation 2.29.

In this case, the derivation can be carried out using Rayleigh’s hypothesis.
The scattered field at the surface is then assumed to be a superposition of up-
going plane waves of unknown amplitudes, thus this requires small surface slopes
relative to the EM wavelength to be valid. By imposing appropriate boundary
condition at the surface, the amplitudes can be determined and the incident and
scattered fields can be expressed as power series with respect to the RMS height
relative to the wavelength, that is kσz. If kσz is sufficiently small, the series can
be truncated to yield an approximate closed form solution.

Truncation to first order results in (Ulaby et al. 1982, page 961):

Cijkl(k, θ, εr, σz, ρ) = 4(k cos θ)4σ2
zW (−2k sin θ, 0)αijα

∗
kl (4.10)

where the indices i, j, k, l indicate polarisation and:

αhh =
(µr − 1)(µrεr + sin2 θ(µr − 1)) + µr

2(εr − 1)

|µr cos θ + q|2 Rhh

αvv =
(εr − 1)(µrεr + sin2 θ(εr − 1)) + εr

2(µr − 1)

|εr cos θ + q|2 Rvv

αhv = αvh = 0

(4.11)

The range of validity of the first order SPM is (Ulaby et al. 1982, page 966):

kσz < 0.3

σs < 0.3
(4.12)
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Truncation to second order will result in a non-zero cross polarised channel,
that is αhv = αvh 6= 0. The second order terms are however very complicated
(Valenzuela 1967) and therefore not considered here.

4.1.3 Geometric optics model (GOM)

The GOM is another widely used surface scattering model. Its starting point is
the Stratton Chu integral equation (equation 2.27), where the surface is approxi-
mated locally as a tangent plane when evaluating the surface fields in the integral.
This is known as the Kirchhoff approximation and is valid if the curvature and
correlation length of the surface is large compared to the wavelength.

If the tangent planes are assumed infinite, referred to as the stationary phase
approximation, the integral can be evaluated analytically resulting in the GOM
(Ulaby et al. 1982, page 936):

Cijkl(θ, εr, σs) =

{

e−(σs tan θ)2/2
(

2σs
2 cos4 θ

)−1 |R0|2 if i=j=k=l

0 else
(4.13)

where i, j, k, l indicate polarisation and R0 = Rhh(0) = Rvv(0) is the fresnel
reflectivity at zero degree incidence angle (see equation B.4). The GOM is thus
independent of polarisation, yet the full covariance matrix notation is kept here
for consistency with the other models.

The GOM is valid if (Dierking 1992):

kσz >
π/2

cos θ
kl > 2π

kΓc > 2π

(4.14)

An alternative to the stationary phase approximation that results in the
GOM, is a small roughness approximation which results in a power series that
can be truncated. This is known as the scalar approximation and yields the so
called physical optics model (POM). As indicated in Tsang et al. (2004), however,
the POM is less accurate compared to the SPM and will not be considered here.

4.1.4 Improved integral equation model (IIEM)

In figure 4.3, the validity ranges of the SPM and GOM are plotted in purple and
yellow respectively, using the GPL correlation function for different values of p
(recall that p = 1.5 and p = ∞ yields the exponential and Gaussian correlation
functions, respectively). The validity for the respective model is constrained
by the inequalities in equation 4.12 and 4.14. Clearly, there is a wide range of
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Figure 4.3: The validity domains illustrated in terms of normalised RMS heights
(kσz) and correlation lengths (kl), for the three surface scattering models: SPM,
IEM and GOM. The generalised power law correlation function is considered for
varying values of the parameter p, as indicated in the figure. Note that only the
cases where p > 3 are shown for the GOM, when the mean radius of curvature is
well defined (see equation 4.9c). The incidence angle is 30◦.
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roughness conditions for which neither model is valid. A great number of unifying
methods trying to bridge the gap between the SPM and GOM has been proposed
(see e.g. Elfouhaily et al. 2004, and references therein). A group of models that
has gained a lot of popularity are the IEMs. The derivation of these models are
more involved than for the SPM and GOM, yet the key steps are highlighted
below.

The IEMs are based on a second iteration Kirchhoff approximation of the
surface fields in the Stratton Chu integral equation (see equation 2.29). Specifi-
cally, the electric surface field resulting from the Kirchhoff approximation, call it
(n̂×E)k, is separated form the total unknown surface field n̂×E, as:

n̂×E = (n̂×E)k + (n̂×E)c (4.15)

where the rest term (n̂×E)c is called the complementary field. The same is done
for the the magnetic surface field, but the approach is the same and therefore left
out here.

The main approximation of the IEMs is to apply the Kirchhoff approximation
on the complementary field. After a set of further simplifications of the Kirchhoff
approximation, restricting the incident and scattered fields to be either horizon-
tally or vertically polarised (see section III in Fung et al. 1992, for details), the
Stratton Chu integral can be split up into two parts (note that by simply insert-
ing equation 4.15 into the Stratton Chu integral equation 2.29, does not generally
result in two separate integrals), each corresponding to a component of the total
scattered field:

Es
qp = (Es

qp)k + (Es
qp)c (4.16)

where the indices qp indicate polarisation. As it turns out, (Es
qp)k only depends

on the Kirchhoff surface field (n̂ × E)k and (Es
qp)c only depends on the com-

plementary surface field (n̂× E)c. Specifically, these scattered field components
can be written as integrals over the so called Kirchhoff and complementary field
coefficients, denoted fqp and Fqp, respectively (Fung et al. 1992).

Thus, if the field coefficients fqp and Fqp are found (which depend on the
Kirchhoff and complementary surface fields, respectively), they can be integrated
and summed to give the total scattered field and thus the scattering covariance
matrix:

fqp → (Es
qp)k

Fqp → (Es
qp)c

}

→ Es
qp → Cijkl (4.17)

The first derivation of the field coefficients, fqp and Fqp, was carried out by Fung
et al. (1992) and is rather long and intricate. A particular approximation that is
made, is that the local incidence angle in the Fresnel reflection coefficients, which
appears in both field coefficients, is approximated with the (global) incidence
angle if the roughness is small to intermediate and as the specular angle if the
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roughness is large (validity range of GOM). Doing so, the integral reduces to the
GOM in the large scale limit (Fung et al. 1992). In the small to intermediate
scale, the integral becomes what is normally referred to as the original IEM. This
can further be reduced to the SPM if the roughness is sufficiently small.

A semi-empirical approximation thought to be more valid for intermediate
roughness scales was suggested by Wu et al. (2001), introducing modified Fresnel
reflection coefficients containing a transition function which smoothly bridges the
gap between the two limiting angle approximations. As stated in (Fung & Chen
2010, page 164), the suggested transition function is an estimation and may not
be correct for all roughness, angle and frequency conditions. Nevertheless, the
transition function described in Wu et al. (2001) is considered in this thesis.
Moreover, it is only applied to the Kirchhoff field coefficient fpp here, and not
to the complementary field coefficient Fqp (according to Fung & Chen 2010, this
appears to be adequate).

In addition to the transition function suggested by Wu et al. (2001), various
other modifications of the field coefficients have been suggested and resulted in a
variety of different IEMs (see Hsieh et al. 1997, Chen et al. 2000, Álvarez-Pérez
2001, Fung et al. 2002, Liu et al. 2003, Wu et al. 2008, for example). In this
thesis, the model described in Fung et al. (2002) and Fung & Chen (2010) is
considered, which hereafter will be referred to as the improved integral equation
model (IIEM) (also referred to as the IEM-B or I2EM, by some authors). Ignoring
multiple scattering, the IIEM does not predict a cross polarised backscatter and
the co-polarised elements of the covariance matrix are:

Cppqq(k, θ, εr, σz, ρ) =
k2

4π
e−2(k cos θσz)

2
∞
∑

n=1

Ipp(n)I
∗
qq(n)

W (n)(2k sin θ, 0)

n!
(4.18)

where:

Ipp(n) = (2kσz cos θ)
nfpp +

σz
4
(kσz cos θ)

nFpp (4.19)

and the expressions for fpp and Fpp can be found in Fung & Chen (2010).

The validity range of the single scattering IIEM is (Fung & Chen 2010):

kσz < 2

σs < 0.3
(4.20)

In figure 4.3, the corresponding region of validity is shown in green. The model
thus overlaps the SPM and it’s region of validity is considerably closer to the
region of the GOM for the plotted case (using the GPL correlation function and
30◦ incidence angle).
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4.1.5 Shadowing

Shadowing is considered by multiplying the backscatter coefficients by a factor
fshdw that depends on the RMS slope and incidence angle (Fung & Chen 2010,
page 12):

fshdw =

(

1 +
1

2

(

e−a2

√
πa

− erfc(a)

))−1

(4.21)

where erfc(·) is the complementary error function and:

a =
cot(θ)

σs
√
2

(4.22)

where σs is the RMS slope and θ is the incidence angle.

4.2 Volume scattering

Volume scattering is caused by permittivity contrasts within the bulk of a medium.
In sea ice, such contrasts are typically attributed to the brine or air being trapped
between crystalline ice (see section 3.2.2). In dry snow, the snow crystals account
for the contrasts, while if the snow is wet, liquid water or brine droplets are im-
portant.

All theoretical volume scattering models are in one way or the other ap-
proximate solutions to the volume integral equation (VIE) (equation 2.27). The
particular approximations distinguish the models from one another. Common
to most sea ice models is that they are one dimensional, such that material
properties vary only as a function of depth and typically in terms of discrete
layers. Other distinguishing features are to what extent the models account for
polarisation of the EM waves, material anisotropy, multiple backscattering and
coherent interactions within the media. The latter include interference between
the bulk permittivity fluctuations such as brine pockets or ice crystals, called
dense medium effects, as well as interference between layer boundaries, such as
between the snow-ice and ice-water interface in sea ice.

Two general classes of models can be identified: (1) those formulated in terms
of the VIE, called wave theory models, and (2) those formulated in terms of
the radiative transfer equation (RTE), called radiative transfer (RT) models.
Although both types of models in principal provide an approximate solution to
the basic wave equation, the RTE was initially motivated by phenomenological
arguments rather than being derived from first principles. Later, however, the
RTE has been derived from the VIE under certain assumptions (Mishchenko
2008), which makes the separation between wave theory and RTmodels somewhat
misleading.
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Nevertheless, a key difference is that wave theory models solve for the EM field
while RT models solve for the intensity or stokes vector. As such, wave theory
models are intrinsically coherent, although limiting approximations are typically
needed. Specifically, all wave theory models of volume scattering in sea ice that
can be found in the literature are based on the distorted Born approximation
(DBA) and as such, do not account for multiple backscattering (Lee & Kong
1985, Nghiem et al. 1990, 1993, 1995b). Some RT models on the other hand
include effects of multiple incoherent backscattering (Fung & Eom 1982) and can
be modified to account for dense medium effects as well (Fung & Eom 1985,
Tjuatja et al. 1992, Tonboe et al. 2011, Albert et al. 2012), although most of
them do not account for interference between layer interfaces, except a modified
RT model presented by Lee & Kong (1988).

At present, there is no analytical sea ice model that includes all aspects of
volume scattering mentioned above. In this thesis, the wave theory model de-
scribed in Nghiem et al. (1990, 1993) is considered. This is based on strong
fluctuation theory (SFT) accompanied with the DBA. The model (1) is fully po-
larimetric (that is, it calculates the full scattering covariance matrix), (2) allows
for anisotropic media resulting from elongated brine inclusions with a preferred
alignment and (3) accounts for coherent interaction between planar layer inter-
faces.

4.2.1 Strong fluctuation theory (SFT)

This section outlines the SFT described in Nghiem et al. (1990, 1993) which
mainly builds on the theory of Tsang & Kong (1981) and work referenced therein.

Inclusions of permittivity εi are embedded in a background permittivity εb,
such that the permittivity randomly fluctuates between the two:

ε(r) =

{

εi if r ∈ inclusion

εb if r ∈ background
(4.23)

The probability of ε(r) = εi corresponds to the volume fraction of the inclusions,
denoted Vi. The spatial smoothness of the permittivity fluctuations are described
in terms of a correlation function, which here is assumed exponential, that is:

ρε(r) = e
−
∣

∣

∣
L̄

−1
r

∣

∣

∣

(4.24)

where the matrix L̄ contains the correlation lengths in x, y and z on the diagonal:

L̄ =





lx 0 0
0 ly 0
0 0 lz



 (4.25)
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Figure 4.4: An exponentially correlated randomly fluctuating permittivity is vi-
sualised in terms of permittivity-iso-surfaces showing the boundary between the
background and inclusions. Here the volume fraction of inclusions is 5% and the
correlation lengths are lx = ly = 1 and lz = 2.
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In figure 4.4, a realisation of such a randomly fluctuating permittivity is visu-
alised. The figure shows the iso-permittivity surfaces, that is, the surfaces at
the boundary between the inclusions and the background. It is easy to recognise
that electric field in this geometry will be rather complex. However, it can be
decomposed into two parts; a mean field and a randomly fluctuating field with
zero mean. SFT provide approximate expressions for these in terms of integral
equations.

In the following, the mean field and its propagation through the random
medium by the mean dyadic Green’s function (DGF) will be discussed. These will
be used to describe the scattered field under the distorted Born approximation.

Mean wave propagation

The starting point for finding the mean field is the VIE (equation 2.27), which
reads:

E(r) = Eg(r) + k20

∫

dr′ Ḡ0(r, r
′)Q̄E(r′) (4.26)

where the permittivity contrast is introduced in the dyad:

Q̄(r) = ε(r)̄I− ε̄g (4.27)

where ε(r) is the randomly fluctuating permittivity and ε̄g is a homogeneous
permittivity that will be specified shortly.

Note first that to obtain the mean field within the medium, the DGF needs to
be integrated over r = r′ where it is singular. This can be treated by integrating
around an exclusion volume centred at the singularity, which is let to approach
zero in size. The shape of the exclusion volume corresponds to an iso-surface
of the correlation function. For the exponential correlation function in equation
4.24, this shape is an ellipsoid. Formally, this is done by expressing the Green’s
function in terms of a principal value part and a Dirac delta part:

Ḡg(r, r
′) = PV Ḡg(r, r

′)− δ(r− r′)k−2
0 S̄ (4.28)

where the dyad S̄ depends on the shape of the exclusion volume (Nghiem et al.
1990).

Next, it turns out to be convenient to express the electric field in terms of the
so called external field, defined as:

F(r) =
(

Ī+ S̄Q̄(r)
)

E(r) (4.29)

and the permittivity contrasts in terms of:

ξ̄(r) = Q̄(r)
(

Ī+ S̄Q̄(r)
)

−1 (4.30)



58 4.2. VOLUME SCATTERING

Equation 4.26 then becomes:

F(r) = Eg(r) + k20

∫

dr′ Ḡ0(r, r
′)ξ̄(r′)F(r′) (4.31)

The homogeneous permittivity ε̄g is now chosen such that 〈ξ̄〉 = 0.
The mean field 〈F(r)〉 can next be expressed in terms of a path integral in the

so called Dyson’s equation. This essentially means that at any point in space,
the mean field is a weighted average over fields that have propagated to that
point through all possible scattering paths. However, as it turns out, Dyson’s
equation contains an infinite series (the so called mass operator) that must be
approximated to give a closed form solution for the mean field.

In SFT, the so called bi-local approximation is applied (also referred to as
the Bourret or first order smoothing approximation). In the bi-local approxima-
tion, the paths that visit a unique scatterer only once are kept (formally, this
is obtained by expressing the mass operator in terms of a series of Feynman
diagrams, where only the first diagram is kept). The analytical expression for
Dyson’s equation under the bi-local approximation reads (Tsang & Kong 2004,
page 181):

〈F(r)〉 = Eg(r) +

∫ ∫

dr1dr2Ḡg(r, r1)Ḡg(r1, r2)〈F(r2)〉ρε(r1 − r2) (4.32)

Next, propagation of the mean external field through the random medium can
be describe in terms of the mean DGF 〈Ḡ(r, r′)〉. Similarly to the mean field in
equation 4.32, the mean DGF can be derived under the bi-local approximation
as (Tsang & Kong 2004, page 167):

〈Ḡ(r, r′)〉 = Ḡg(r, r
′) +

∫ ∫

dr1dr2Ḡg(r, r1)Ḡg(r1, r2)〈Ḡ(r2, r
′)〉ρε(r1 − r2)

(4.33)
Both the mean field and the mean DGF will be used to calculate the radar
backscatter through the DBA (in section 4.2.1 below).

Interpretation of the bi-local approximation

Since the mean DGF 〈Ḡ(r, r′)〉 is in the integrand in equation 4.33, the equation
can be iterated to expand in a series (similarly to the Born series in section 2.4.3).
One iteration yields:

〈Ḡ(r, r′)〉 = Ḡg(r, r
′) + ...

Ḡg(r, r1)Ḡg(r1, r2)Ḡg(r2, r
′)ρε(r1−r2) + ...

Ḡg(r, r1)Ḡg(r1, r2)Ḡg(r2, r3)Ḡg(r3, r4)〈Ḡ(r4, r
′)〉ρε(r1−r2)ρε(r3−r4)

(4.34)
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Figure 4.5: An illustration of the series expansion of the mean DGF under the
bi-local approximation. Solid lines indicate propagation by the mean DGF 〈Ḡ〉
and dotted lines indicate non-scattered propagation in a homogeneous medium
of permittivity εg governed by Ḡg. By iterating Dyson’s equation, new paths
going through the integration variables ri for i = 1, 2, 3... are obtained. Under
the bi-local approximation, these paths only go through a unique scatterer once.
Repeated scattering between inclusions are thus not considered in the approxi-
mation.

where the integration signs are omitted for readability (integration goes over all
ri for i = 1, 2, 3...). This iteration can be continued indefinitely to form an infinite
series. The physical interpretation of this series is that it represents a weighted
average of infinitely many propagation paths, all starting at r′ and ending at r.

Graphically, the series expansion can be illustrated as in figure 4.5. Solid lines
indicate propagation by the mean DGF and dotted lines indicate non-scattered
propagation by the homogeneous DGF Ḡg(r, r

′). The first graph shows the mean
DGF propagating the field from r′ to r. The second graph shows Dyson’s equation
under the bi-local approximation as written in equation 4.33. Here, one of an
infinite number of position pairs r1 and r2 involved in integration is shown. By
iterating Dyson’s equation once, the third graph which corresponds to the right
hand side of equation 4.34 is obtained, with new integration variables r4 and r5.
By iterating once more, the forth graph is obtained. By imagining this iteration
to continue an infinite number of times, it becomes clear that the propagation
of the mean DGF is an average of an infinite number of different propagation
paths through the medium, where the paths start at r′, go through the positions
r1, r2, r3, ..., and end at r.

Being subject to the bi-local approximation, SFT thus accounts for multiple
scattering in the mean dyadic Green function 〈Ḡ(r, r′)〉 and corresponding mean
field 〈F(r)〉.
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Effective permittivity

A consequence of the bi-local approximation is that the mean field behaves as
if the medium was homogeneous with an effective permittivity. Considering the
mean electric field 〈E〉, it can be shown that under the bi-local approximation, a
plane wave with wave number k satisfies:

〈D(k)〉 = ε̄eff (k) 〈E(k)〉 (4.35)

where ε̄eff (k) is the so called effective permittivity. An analytical expression for
ε̄eff (k) can be found if the frequency is assumed low, for which it becomes a
function of the background and inclusion permittivities εb and εi, respectively,
the volume fraction of the inclusions Vi and the correlation function ρε (Tsang
& Kong 1981, 2004, Nghiem et al. 1990).

Even if εb and εi are real numbers, that is, represent lossless media, the
effective permittivity has in general an imaginary part that accounts for scattering
losses. In addition, although εb and εi may be not dependent of k, the effective
permittivity will in general be so.

Moreover, if the correlation function is anisotropic, so is the effective per-
mittivity. Horizontally and vertically polarised waves will thus propagate with
different velocities through the medium resulting in different phase delays. In ad-
dition, transmission and refraction at the ice interfaces will be different between
the two polarisations, a phenomenon called birefringence.

Backscattering

The backscattered field is solved with the DBA, which reads:

Es(r) = k20

∫

dr′〈Ḡ(r, r′)〉ξ̄(r′)〈F(r′)〉 (4.36)

Note the similarity to the first order Born approximation (FBA) in equation 2.32.
The backscattered field is thus the sum of the mean field 〈F(r′)〉 being backscat-
tered by all the inclusions ξ̄(r′) and propagated back through the medium by
the mean DGF 〈Ḡ(r, r′)〉. The corresponding scattering covariance matrix is ob-
tained through the ensemble average over the random permittivity fluctuations.

Since both the mean field and the mean DGF involve multiple scattering
and the DBA involve single backscattering, models based on equation 4.36 are
sometimes referred to as ”multiple-forward-scatter, single-backscatter models”
(Winebrenner et al. 1992). Note however that, while the DBA may seem limiting
in that it only accounts for single backscattering, it is consistent with the bi-local
approximation in Dyson’s equation which assumes that the field is only scattered
by a unique scatterer once. If multiple backscattering would be included, this
assumption would break, since the integral in equation 4.36 goes over all scatterers
(see for example Stogryn 1983, for a formal derivation).
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4.2.2 Nghiem’s 2-layer Model (N2M)

A solution to equation 4.36 for a geometrical configuration consisting of two and
three planar layers was developed by Nghiem et al. (1990, 1993). In the two layer
version, which from now on will be referred to as Nghiem’s 2-layer Model (N2M),
an anisotropic heterogeneous media is sandwiched in between two homogeneous
media (see figure 4.6). This two layer version will later be used for volume
scattering calculations in section 5.2 and is therefore stated here in more detail.

For the sandwiched anisotropic media, the exponential correlation function
stated in equation 4.24 is used and restricted to be azimuthally symmetric, such
that lx = ly = lρ:

L̄ =





lρ 0 0
0 lρ 0
0 0 lz



 (4.37)

The corresponding effective permittivity tensor is calculated through SFT and
takes the shape:

ε̄ =





ερ 0 0
0 ερ 0
0 0 εz



 (4.38)

This is allowed to be rotated around one of the horizontal axes, say the x-axis,
by an angle ψ:

ε̄(ψ) =





1 0 0
0 cosψ sinψ
0 − sinψ cosψ









ερ 0 0
0 ερ 0
0 0 εz









1 0 0
0 cosψ sinψ
0 − sinψ cosψ





−1

(4.39)

The rotation makes the medium azimuthally non-symmetric. However, the hori-
zontal alignment is assumed uniformly distributed in the ensemble averaging such
that the averaged target will still be vertically uniaxial.

A characteristic feature of the model is that it generally predicts a phase
shift between the co-polarised channels. This is caused by the anisotropy of
the layer, which causes different phase delays between the h- and v-polarised
waves. Moreover, stronger anisotropy leads to larger phase shifts, as illustrated
in figure 4.7(a) (see caption for parameter settings). In the figure, the co-polarised
phase difference is plotted versus the ratio lz/lρ which here is referred to as the
elongation of the inclusions and is a measure of the anisotropy. The inclusions
are assumed vertically aligned (that is ψ = 0), with a permittivity of εi = 38−41i
(brine) in a background permittivity εb = 3.15 − 0.002i (pure ice). The cross-
polarised backscatter is moreover also caused by the anisotropy of the medium, as
shown in figure 4.7(b). Specifically, the cross-polarised channel is only significant
if the inclusions are tilted in their local frame of reference, such that ψ 6= 0.
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ε0

εb, εi, lρ, lz, ψ, V i, d

ε2

Figure 4.6: In the Nghiem’s 2-layer Model (N2M) model, an anisotropic medium
is sandwiched between two homogeneous non-scattering media as depicted above.
The associated model input parameters are shown for the respective media.
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Figure 4.7: The co-polarised phase difference is plotted versus the elongation
of the inclusions in (a) (with ψ = 0) and the cross polarised channel is plotted
versus the tilt of the inclusions in (b) (with lρ = 0.5 mm and lz = 1 mm). The
frequency is 5.4 GHz, the incidence angle is 30◦ and ε0 = 1, εb = 3.15 − 0.002i,
εi = 38− 41i, ε2 = 45− 40i, Vi = 0.03 and d = 1 m.
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Figure 4.8: Co-polarised phase difference in (a) and co-polarised ratio in (b),
plotted versus layer thickness, using ψ = 0, lρ = 0.5 mm, lz = 1 mm and the
other parameters are the same as in figure 4.7 (see figure caption).



64 4.3. OVERVIEW OF SEA ICE MODELS

Another associated and important feature is that the model is sensitive to
variations in the layer thickness, as illustrated in figure 4.8 where the co-polarised
phase difference and the co-polarised ratio is plotted versus the layer thickness.
Firstly, both plots show a strong high-frequency oscillation which is caused by
interference between the top and bottom interfaces. With regard to sea ice, such
effects are unlikely to observe in real data, since the layer thickness typically vary
on scales similar to the radar wavelength within the resolution cell. However,
even if the high frequency interference were to be smoothened out, there is a
trend in the signal as a function of thickness, in particular for the co-polarised
channel (Kwok et al. 1995).

4.3 Overview of sea ice models

Based on the different ways of modelling surface and volume scattering mentioned
above, an array of sea ice models can be found in the literature. Since the volume
of the ice is generally more complicated than the surface, the treatment of volume
scattering is generally what distinguishes them. A number of different models
are summarised in chronological order, in table 4.1.

Some of the earliest models appeared in the late seventies and early eighties.
An early example is Fung & Eom (1982) which treats a single ice layer using the
GOM and classical RT theory. A later model by the same authors (Fung & Eom
1985) includes dense medium effects. In the mid eighties, an early model appeared
using DBA for volume scattering (Lee & Kong 1985). This was later combined
with SFT in Nghiem et al. (1990, 1995b). A model based on dense medium
radiative transfer (DMRT) appeared at roughly the same time (Tjuatja et al.
1992). Later DMRT models include the one by (Albert et al. 2012). Recently,
a model allowing for multiple rough interfaces was presented in Komarov et al.
(2014).

Generally speaking, the main focus has been on models of level ice. For
heavily deformed ice and ridges, the study by Carlström (1997) is an exceptions.
No explicit models treating frazil or grease ice has been found. Also, relatively
little attention has been payed on snow layers that have been wetted by melt,
brine expulsion or flooding.
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Reference
Surface
model

Volume
model

Lay-
ers

Polari-
metric

Aniso-
tropic

Dense
media

Coh.
layers

Fung & Eom (1982) GOM RT 2 Semi No No No
Fung & Eom (1985) - DMT 2 Semi No Yes No
Lee & Kong (1985) GOM DBA 3 Yes Yes No Yes
Kim et al. (1985) POM RT 3 No No No No
Soulis et al. (1989) POM RT 3 No No No No
Nghiem et al. (1990, 1993) SPM SFT+DBA 3 Yes Yes Semi Yes
Tjuatja et al. (1992) IEM DMRT 3 Semi No Yes No
Partington & Hanna (1994) POM RT 3 No No No No
Nghiem et al. (1995b) GOM/SPM SFT+DBA 3 Yes Yes Semi Yes

Winebrenner et al. (1995) SPM† - - Yes No No -
Carlström (1997) GOM/IEM - - Yes No No -
Albert et al. (2012) IEM DMPACT 3 Semi No Yes No

Komarov et al. (2014) SPM†† - N Yes No No Yes

† This is an extension of the original SPM with a variable permittivity profile. The notion

of discrete interfaces beneath the top interface is not applicable for this model.

†† This is an extension of the original SPM which allows for multiple interfaces.

Table 4.1: A summarising table of analytical sea ice backscatter models found in
the literature.
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Chapter 5

Global model sensitivity
analysis of the radar
backscatter from snow
covered sea ice

The sensitivity of a model tells how much the output vary, when one or more
input parameters are changed. It is an important feature of a model, since it
indicates the causes of variation in measurements and thus what actually can
be estimated from radar remote sensing data. Knowledge about what physical
aspects the measurement is most sensitive to is thus imperative for parameter
retrieval by means of model inversion, as well as for making appropriate design
choices when developing new measurement systems (such as selecting radar fre-
quency or polarisation mode).

In this chapter, combination of the backscatter models described in chapter 4
is considered in a variance based global sensitivity analysis. The analysis is
probabilistic in the sense that the model input parameters are sampled randomly
and the resulting variance in the model output is decomposed into fractions
associated to the respective input parameters. These fractions are interpreted as
quantities of model sensitivity.

69
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5.1 Motivation and objectives

While backscatter models for sea ice have been developed for several decades (see
section 4.3 for an overview of analytical models), there is still an active debate
about what sea ice parameters are actually measurable.

A good example is the sea ice thickness, which also is one of the most impor-
tant parameters for a wide range of applications (see the section 1.1 for examples).
Winebrenner et al. (1995), for instance, show that there may be a sensitivity to
thickness by extending the small perturbation model (SPM) to allow for a permit-
tivity profile beneath the surface. Indeed, also the model described in section 4.2.2
by Nghiem et al. (1990) shows a sensitivity to the layer thickness (see figure 4.8).
In contrary to the surface scattering model by Winebrenner et al. (1995), the one
by Nghiem et al. (1990) is however a pure volume scattering model. Moreover,
Wakabayashi et al. (2004) and Nakamura et al. (2005) show by measurements
that there is a significant thickness dependence in radar data (at least for the
marginal ice zone (MIZ) in the Sea of Okhotsk), but argue that this relates to
the ice salinity, since thicker ice typically is less saline than thinner ice. The basic
description of the thickness dependence in these studies is thus very different and
in order to apply correct model assumptions for thickness retrieval, uncertainties
like these need to be clarified.

In contrast to ice thickness, there is a clear consensus that surface roughness
on the scales of the radar wavelengths is important. It is however less clear which
surface is contributing the most, wether it is the air-snow, snow-ice or ice-water
interface. Or, if possibly rough interfaces or volume structures within the ice or
snow are dominant. General effects of surface features like skims of brine (Nghiem
et al. 1995b,a) or frost flowers (Nghiem et al. 1997, Isleifson et al. 2014) are also
uncertain as per today.

The main objective of this chapter is to identify what physical parameters of
the sea ice are most important for the radar measurement.

5.2 Model composition

Common to most sea ice backscatter models, is the treatment of the ice as a strat-
ified random medium. Largely depending on the radar frequency and the amount
of brine present in the sea ice or snow, scattering is attributed to roughness at
the interfaces between discrete layers and to inhomogeneities due to brine and air
inclusions between the interfaces. A complete description of the radar backscat-
ter would thus involve rough surface scattering from multiple interfaces, multiple
volume scattering and scattering between interfaces and volume elements.

In this section, a layer-stacking approach that covers some of these aspects is
examined. Each layers may have a rough top surface, described by the improved
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integral equation model (IIEM) or geometric optics model (GOM) (depending on
roughness scale) and a two-phase fluctuating volume described by the Nghiem’s
2-layer Model (N2M). The surface and volume scattering responses are computed
separately and added incoherently. For each layer, transmission effects through
the above layers are accounted for. The resulting layer backscattering responses
are then added incoherently.

This approach is flexible considering that it is not limited to a certain number
of layers. The incoherent nature of the layer-stacking is however dismissing coher-
ent effects between layers. Coherence within each layer is however still accounted
for through the N2M, although such effects are seldom observed in measurements
(Nghiem et al. 1995a). It also limits a fully polarimetric description if anisotropic
layers are included.

5.2.1 Propagation through a layer

Note that the N2M assumes a vertically uniaxial anisotropic layer, thus wave
propagation can be decomposed into an ordinary (o) and an extraordinary (e)
direction. Recall that the model describes the layering setup as shown in fig-
ure 5.1, where the top medium is denoted by 0, the middle medium by 1 and
the bottom medium by 2. Downward and upward transmission through the 0-1
interface and medium 1 can be described by the 2×2 matrices (Nghiem et al.
1995b):

D̄ =
(

Ī− R̄10R̄12

)−1
T̄01 (5.1a)

Ū =T̄10 (5.1b)

As illustrated in figure 5.1, D̄ operates on an incident field Ei located just above
the 0-1 interface and propagates it down to just above the 1-2 interface. Ū takes a
scattered field Es located just above the 1-2 interface and propagates it upwards
to just above the 0-1 interface. The matrices T̄ij and R̄ij are transmission and
reflection matrices containing Fresnel coefficients and propagation delays and
losses. Full expressions for T̄ij and R̄ij can be found in Nghiem et al. (1990).

The factor
(

Ī− R̄10R̄12

)−1
account for multiple reflections between the layers.

For vertical uniaxial media, both D̄ and Ū are diagonal, that is:

D̄ =

[

Doh Dov

Deh Dev

]

=

[

Do 0
0 De

]

(5.2a)

Ū =

[

Uoh Uov

Ueh Uev

]

=

[

Uo 0
0 Ue

]

(5.2b)

where the indices o and e indicate ordinary and extraordinary directions, respec-
tively and the subscripts h and v are dropped on the right hand side. The trans-
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ŪEs
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Figure 5.1: Illustration of the transmission operators D̄ and Ū in equation 5.1.
D̄ operates on an incident field Ei located just above the 0-1 interface and propa-
gates it down to just above the 1-2 interface. Ū takes a scattered field Es located
just above the 1-2 interface and propagates it upwards to just above the 0-1
interface.
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mission of the ordinary and extraordinary polarised wave that passes through a
layer downwards or upwards can thus be written:

Dp = |Dp|e−iφp (5.3a)

Up = |Up|e−iφp (5.3b)

where the subscript p is either o or e and propagation losses and phase delays are
realised through the complex phases (Nghiem et al. 1995b, equation 21):

φo = kρρo + kozd (5.4a)

φe = kρρe − kezd (5.4b)

where

kρ = Lateral wave number
koz = Vertical (downward) wave number for the ordinary wave
kez = Vertical (downward) wave number for the extraordinary wave
ρo = Lateral distance travelled by the ordinary wave
ρe = Lateral distance travelled by the extraordinary wave

Definitions of the wave numbers can be found in Nghiem et al. (1990) and the
lateral distances are:

ρo = d
Re(kρ)

Re(koz)
(5.5a)

ρe = −dRe(kρ)
Re(kez)

(5.5b)

Unless the layer is isotropic, the distances are different to eachother. The ordinary
and extraordinary waves will thus arrive at the bottom of the layer at different
incidence angles, specifically:

θo = arctan
(ρo
d

)

= arctan

(

Re(kρ)

Re(koz)

)

(5.6a)

θe = arctan
(ρe
d

)

= arctan

(

−Re(kρ)

Re(kez)

)

(5.6b)

The ordinary and extraordinary waves will also propagate through the medium
according to the permittivities:

εo =
k2ρ + koz

2

k20
(5.7a)

εe =
k2ρ + kez

2

k20
(5.7b)
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In summary, when the anisotropy is vertically uniaxial, the horizontally and
vertically polarised waves will couple to the ordinary and extraordinary directions
in the media, respectively. Considering the h-polarised wave as an example, it
will be transmitted downwards through the layer interface according to Do. At
the bottom of the layer it will arrive at an incidence angle θo and at the interface
it will behave as if the current layer has a permittivity εo.

The transmission coefficients in equation 5.3 together with the angles in equa-
tion 5.6 and permittivities in equation 5.7 will next be considered for initiating
scattering model below a layer and thus enabling stacking of multiple layers.

5.2.2 Scattering from underneath a layer

Assume that the backscattering from a layer is described by a scattering matrix
with elements Spq. If another layer is introduced above this layer, Spq can be
modified to account for transmission and propagation through the above layer
as:

S(t)
pq = UpDqSpq (5.8)

where Up and Dq are the transmission coefficients for the layer above, given in
equation 5.3. The corresponding scattering covariance matrix elements are:

C
(t)
ijkl =

〈

S
(t)
ij S

(t)∗
kl

〉

=
〈

UiDjSij [UkDlSkl]
∗〉

=

UiDj [UkDl]
∗ 〈SijS

∗
kl〉 = UiDj [UkDl]

∗
Cijkl

(5.9)

Denoting:

Tijkl = UiDj [UkDl]
∗

(5.10)

equation 5.9 reads:

C
(t)
ijkl = TijklCijkl (5.11)

which is the scattering covariance matrix elements that accounts for transmission
through the layer located above.

Note that if a layer is anisotropic, the h- and v-polarised waves will decouple
and propagate differently through the layer. This is illustrate in figure 5.2, where
media 0 is isotropic and media 1 is anisotropic. As the waves reach the 1-2
interface, both the permittivity contrast and incidence angle at the interface will
consequently be different for the h- and v-polarisations. This decoupling should in
general be accounted for in the models describing the layers below the anisotropic
layer. With regard to sea ice, this is however a minor issue. Anisotropy is mainly
expected in the ice layers of an air-snow-ice-water configuration. For the water
layer located below the ice, surface scattering is expected to dominate which
mainly yield a co-polarised response anyways.
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Figure 5.2: Illustration of the different propagation paths the h- and v-polarised
waves take in an anisotropic layer.
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5.2.3 Incoherent layer-stacking

Considering a stack of layers, it follows from equation 5.11 that the backscattering
response from layer n is:

C
(t),n
ijkl = T 0

ijklT
1
ijkl...T

n−1
ijkl C

n
ijkl =

n
∏

m=1

Tm−1
ijkl C

n
ijkl (5.12)

where Cn
ijkl is the covariance matrix element in absence of the layers above. The

total backscattering response is formed as the sum over all layer responses:

Ctot
ijkl =

N
∑

n=1

C
(t),n
ijkl =

N
∑

n=1

n
∏

m=1

Tm−1
ijkl C

n
ijkl (5.13)

where Tm−1
ijkl is given in equation 5.10.

The incoherent layer-stacking approach in equation 5.13 will be used for cal-
culating the backscatter from multi-layer sea ice configurations. Volume and
surface scattering will be assumed uncorrelated such that:

Cn
ijkl = C

n(srf)
ijkl + C

n(vol)
ijkl (5.14)

In the following, volume scattering will be computed with the N2M (described
in section 4.2.2) and the IIEM and GOM will be used for surface scattering
(described in sections 4.1.3 and 4.1.4, respectively).

5.3 Layer parametrisation

In this section, the parametrisation of the layers describing sea ice, dry snow,
brine-wetted snow and sea water is stated. All layers except sea water are assumed
heterogeneous such that the N2M applies. The bulk of these layers are thus
described by the basic strong fluctuation theory (SFT) parameters:

εb = Background permittivity
εi = Inclusion permittivity
lρ = Minor correlation length
lz = Major correlation length
ψ = Inclusion tilt angle
Vi = Inclusion volume fraction

Moreover, the top surfaces of the layers are assumed rough and described by
the generalised power law (GPL) correlation function. Each layer surface is thus
defined by:
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σz = RMS-height
σs = RMS-slope
p = GPL p-value

Here, the σs is chosen as the independent parameter instead of the correlation
length in order to make sampling easier (the validity domain of the input pa-
rameters will be a square region instead of a triangle). The correlation length is
related to the RMS-slope through equation 4.7.

In the following subsections, the layer specific parameterisations of these basic
model input parameters are stated.

5.3.1 Dry snow

Dry snow is modelled as an air background with isotropic inclusions of pure ice.
Specifically, the permittivity of air is assumed to be the same as vacuum and the
empirical relation stated in equation 3.2 is used for the permittivity of pure ice.
The volume fraction if pure ice is assumed ρds/ρpi with ρds being the density
of the dry snow and ρpi the density of pure ice as is given by equation 3.1. In
summary:

εb = Air background permittivity equal to 1
εi = Pure ice inclusion permittivity from equation 3.2
Vi = Pure ice volume fraction from ρds/ρpi

Using this parametrisation, εb, εi and Vi are determined by the temperature T
and density ρds. As for sea ice, the temperature is derived from the neighbouring
layers assuming that the thermal conductivity is given by (Fukusako 1990, see
table I, line number 11):

κds = 10−1.25+2.12×10−3ρds (5.15)

The effective permittivity is calculated using SFT. An example is shown in
figure 5.3 where the SFT results are compared to the empirical relations by
Hallikainen et al. (1986) and Tiuri et al. (1984) which read:

ε′ds =

{

1 + 1.9× 10−3ρds if ρds ≤ 500kg/m3

0.51 + 2.88× 10−3ρds if ρds > 500kg/m3
(5.16a)

ε′′ds = 1.59×
(

0.52× 103ρds + 0.62ρ2ds
)

×
(

f−1 + 1.23× 10−14
√

f
)

× e0.036T

(5.16b)

where the temperature is given in degrees centigrades and the frequency f in
Hz. Equation 5.16a is based on data at frequencies between 3-37 GHz and equa-
tion 5.16b based on data below 13 GHz. As seen in the figure, the SFT results
fit remarkably well to the empirical relations.
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Dry snow: empirical vs. SFT
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Figure 5.3: The relative permittivity of dry snow, εds=ε
′
ds−iε′′ds, at 5.4GHz (C-

band) is computed with the empirical relation in equation 5.16 (solid blue line)
and with SFT (dashed red line). In the SFT calculation, the snow is modelled
as pure ice inclusions in an air background, letting both the minor and major
correlation lengths be 0.1 mm. The pure ice permittivity is given by equation 3.2
with the temperature set to -7◦C.
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As for sea ice, the correlation of the top surface is assumed close to exponential
with a GPL p-value of 2.1. In summary, the following independent parameters
are:

ρds = Dry snow density
lds = Snow grain correlation length
σz,ds = Surface RMS-height
σs,ds = Surface RMS-slope
dds = Snow thickness

5.3.2 Brine-wetted snow

Brine-wetted snow is modelled as a dry snow background with inclusions of brine.
Consequently, scattering from snow grains is ignored. This is a crude approxi-
mation, but is assumed to be adequate for the purpose of this thesis considering
the relatively high permittivity of brine compared to air and pure ice. The per-
mittivity of dry snow is calculated from the empirical relation in equation 5.16.
equation 3.3 is used for the permittivity of brine. The volume fraction of brine
is calculated as (Drinkwater & Crocker 1988, equation 4):

Vi =
ρbsV b

(1− V b)ρpi + V bρb
(5.17)

where ρbs, ρpi, ρb are the densities of the brine-wetted snow, pure ice and brine
respectively. The latter two are given by equation 3.1 and equation 3.3, respec-
tively. V b is the volume fraction of brine relative to the pure ice volume. This is
calculated assuming that the phase relation between pure ice and brine behaves
as in standard sea ice and thus can be approximated by equation 3.6. Again, the
temperature is derived from the above and below layers assuming the thermal
conductivity being the same as for dry snow (equation 5.15).

An example of the resulting effective permittivity as a function of density
and temperature according to SFT is shown in figure 5.4. The calculations are
compared to the empirical equations for dry snow by Hallikainen et al. (1986)
and Tiuri et al. (1984). Overall, both the real and imaginary parts are higher
in the brine-wetted snow as compared to the empirical equations for dry snow.
Both the real and imaginary part deviate most from the dry snow case at high
temperatures, due to relatively high volume fractions of brine.

As for dry snow and sea ice, the correlation of the top surface is assumed close
to exponential with a GPL p-value of 2.1. In summary, the following independent
parameters are:
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Dry vs. brine-wetted snow
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Figure 5.4: The relative permittivity of dry and brine-wetted snow (ε=ε′−iε′′)
plotted as a function of snow density for the top two plots and snow temperature
for the bottom two plots. The dry snow (solid blue line) is computed with the
empirical relation in equation 5.16 and for the brine-wetted snow (dashed red line)
the SFT is used with brine inclusions in a dry snow background. The frequency
is 5.4 GHz (C-band), both the minor and major correlation lengths are 0.5 mm,
the salinity of the brine-wetted snow is 40 ppt. For the top plots the temperature
is -7◦C and for the bottom ones the density is 400 kg/m3.
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ρbs = brine-wetted snow density
Sbs = brine-wetted snow salinity
lbs = Brine droplet correlation length
σz,bs = Surface RMS-height
σs,bs = Surface RMS-slope
dbs = Snow thickness

5.3.3 Sea ice

Sea ice is modelled as a two phase medium consisting of a pure ice background
with inclusions of liquid brine. As such, scattering from air filled structures
such as bubbles or empty drainage channels is ignored. This is a reasonable
approximation for sea ice with a relatively high salinity, due to the considerably
larger permittivity difference between brine and pure ice compared to air and
pure ice (see section 3.1). For low saline ice, such as multi-year ice (MYI) or ice
formed in brackish water such as the Baltic, inclusions of air are significant. In
this thesis, such ice types are however not considered.

The single Debye relaxation relation stated in equation 3.3 is used for the
permittivity of brine and the empirical relation stated in equation 3.2 is used for
the permittivity of pure ice. The volume fraction of brine is calculated assuming
standard sea ice (see section 3.2) using the relation in equation 3.6. In summary:

εb = Pure ice background permittivity from equation 3.2
εi = Brine inclusion permittivity from equation 3.3
Vi = Brine volume fraction from equation 3.6

Using this parametrisation, εb, εi and Vi are determined by the temperature T
and salinity S. The temperature is calculated from the layers located above and
beneath the current layer, using the thermal conductivity (Thomas & Dieckmann
2009, equation 2.14, page 48):

κsi = κpi + 0.13
Ssi

T 2
(5.18)

where Ssi is the salinity of the sea ice and T is the temperature in ◦C and the
pure ice thermal conductivity is given by (Thomas & Dieckmann 2009, equation
2.11, page 48):

κpi = 1.16×(1.91− 8.66×10−3T + 2.97×10−5T 2) (5.19)

The effective permittivity is calculated using SFT. An example is shown in
figure 5.5 where the SFT results are compared to the empirical relation by Vant
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et al. (1978):

ε′si = a0 + a1Vb (5.20a)

ε′′si = b0 + b1Vb (5.20b)

where a0,1 and b0,1 are empirically determined coefficients (see B.4) and Vb is
the volume fraction of brine. The coefficients are given for first-year ice (FYI)
and MYI, separately. With equations 3.1 and 3.6 for Vb and the pure ice density
ρpi, the empirical sea ice permittivity becomes a function of the sea ice salinity
Ssi and temperature T . Note that the empirical relation does not account for
anisotropy in the sea ice.

Overall, the SFT results are similar to the empirical relation. The real part
of the permittivity ε′si is generally higher according to SFT, while the imaginary
part ε′′si is lower. The deviation in the real part is higher at high salinities, while
the imaginary part deviate more at lower salinities. This may be a result of
neglecting air inclusions which have a low permittivity (thus lowers the real part)
but scatter (thus increases the imaginary part).

Regarding the roughness of the ice surface, systematic measurements on scales
relevant for microwaves are scarce. Johansson (1988) and Drinkwater (1989) how-
ever find that the assumption of a Gaussian height distribution is accurate. Kim
et al. (1985), Johansson (1988) and Dierking (1999) indicate that the exponential
correlation function is realistic for undeformed sea ice. Here, the GPL correlation
function is therefore used with p = 2.1. The surface is then close to the exponen-
tial (p = 2) but has a well defined RMS-slope (see section 4.1 for details).

In summary, this results in the following independent model parameters for
the sea ice layer:

Ssi = Bulk salinity
lρ,si = Brine minor correlation length
Esi = Brine elongation (= lz,si/lρ,si)
ψsi = Brine inclusion tilt angle
σz,si = Surface RMS-height
σs,si = Surface RMS-slope
dsi = Ice thickness

5.3.4 Sea water

Sea water is assumed homogeneous with a permittivity described by the double
Debye relaxation relation in equation 3.4. In contrast to the snow and sea ice
surfaces, the sea water top surface is assumed correlated according to the gaussian
correlation function. This makes the sea water medium parameterised by:
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Sea ice: empirical vs. SFT
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Figure 5.5: The relative permittivity of sea ice, εsi=ε
′
si−iε′′si, at 5.4GHz (C-

band) is computed with the empirical relation in equation 5.20 (solid blue line)
and with SFT (dashed red and yellow lines). Equation 3.6 is used to relate the
sea ice salinity to volume fraction of brine, where the sea ice temperature is set
to -7◦C. For the SFT calculations, the inclusions are non-tilted with horizontal
and vertical correlation lengths of lρ = 0.5 mm and lz = 0.8mm, respectively.



84 5.4. SOBOL INDICES

Tsw = Sea water temperature
Ssw = Sea water salinity
σz,sw = Surface RMS-height
σs,sw = Surface RMS-slope

In the subsequent layer configurations the bottom layer will always be sea wa-
ter. Consequently, the termperatures are not derived from other layers, but are
treated as an independent model variable and will together with the air temper-
ature determine the temperatures of the other layers.

5.4 Sobol indices

For different model configurations, a variance based global sensitivity analysis
which gives an overview of the most influential model input parameters is con-
ducted. Specifically, the first order and total effect Sobol indices are considered
(Sobol 1993). These assume that the input variables, denoted Xi, are uniformly
distributed in a cube in the input space. The distribution of a corresponding
output variable, call it Y , will have a variance denoted V (Y ), that is a measure
of the sensitivity of the model to all the input variables. Now, if one input vari-
able Xi is fixed at some value, the expectation of the output variable is denoted
E(Y |Xi). If the fixed input variable is randomly varied, this expectation will
have a variance denoted V [E(Y |Xi)]. This is a measure of how much the model
is sensitive to the input parameter Xi alone. By normalising this variance with
V (Y ), the so called first order Sobol index is defined:

S
(1)
i =

V [E(Y |Xi)]

V (Y )
(5.21)

which will take a value between 0 and 1. This is a measure of the sensitivity of
the output variable Y , due to variations in the input variable Xi.

Since the first order Sobol index only contains the expectation conditioned
on Xi, it does not contain information about coupling between input variables.
Since the backscatter models considered in this chapter are layered and non-
linear, such couplings are likely. For instance, the sensitivity to surface roughness
at an ice-snow interface will be strongly coupled to how much the snow layer
on top attenuates the electromagnetic (EM) waves. An index that contains all
conditional expectations, thus incorporates coupling between all input variables
is the total effect Sobol index, defined as:

S
(tot)
i = 1− V [E(Y |X∼i)]

V (Y )
(5.22)

where E(Y |X∼i) denotes the expectation of the output variable Y , when all input
variables except Xi are held fixed at some value. For instance, if the considered
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Configuration I:
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Figure 5.6: Illustrations of the model configurations considered in this chapter
(see table 5.1 for details). The layer thicknesses and roughness parameters are
set to the default values as listed in table 5.2.

model has the four input variables X1, X2, X3, X4, the total effect Sobol index
for the second input variable is:

S
(tot)
2 = 1− V [E(Y |X1, X3, X4)]

V (Y )
(5.23)

It should be noted that these indices are most appropriate if the distribution of Y
is not highly skewed or contains multiple pronounced modes (Pianosi & Wagener
2015).

5.5 Results

The first order and total effect Sobol indices (S(1) and S(tot), resectively) are
calculated using Monte Carlo sampling according to the method described in
Saltelli et al. (2008). This method involves N × (2 + k) samples, where k is the
number of input variables and N is a large enough number for the Monte Carlo
approach to give good estimates of the distribution of Y . In the following, N =
5×104 is assumed sufficient. After Monte Carlo sampling, the index calculations
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Configuration I:
Dry snow cover

Layer Effective medium
Top surface
correlation

Background
medium

Inclusion
medium

Inclusion
shape

0 Air - Air - -
1 Dry snow GPL Air Pure ice Spherical
2 Sea ice GPL Pure ice Brine Ellipsoidal
3 Sea water Gaussian Sea water - -

Configuration II:
brine-wetted snow cover

Layer Effective medium
Top surface
correlation

Background
medium

Inclusion
medium

Inclusion
shape

0 Air - Air - -
1 brine-wetted snow GPL Dry snow Brine Spherical
2 Sea ice GPL Pure ice Brine Ellipsoidal
3 Sea water Gaussian Sea water - -

Configuration III:
Dry and brine-wetted snow cover

Layer Effective medium
Top surface
correlation

Background
medium

Inclusion
medium

Inclusion
shape

0 Air - Air - -
1 Dry snow GPL Air Pure ice Spherical
2 Sea ice (granular) GPL Pure ice Brine Spherical
3 Sea ice (columnar) GPL Pure ice Brine Ellipsoidal
4 Sea water Gaussian Sea water - -

Table 5.1: Above are the three considered layer configurations for this chapter.
The tables indicate which correlation function is used for characterising the top
interface of each layer and which background and inclusion materials are con-
sidered (see sections 5.3.1 to 5.3.4 for details about these). See figure 5.6 for
graphical illustrations.
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are done using the SAFE toolbox (Pianosi et al. 2015) where confidence intervals
are estimated with the bootstrapping method.

The Sobol indices are calculated for the three model configurations:

Configuration I: Sea ice covered by dry snow.

Configuration II: Sea ice covered by brine-wetted snow.

Configuration III: Sea ice covered by dry and brine-wetted snow.

The respective configuration is summarised in table 5.1 and illustrated in fig-
ure 5.6. The sampling limits of the input parameters for the corresponding snow,
ice and water layers are listed in table 5.2. These limits are somewhat arbitrary,
but correspond to what typically is observed in Arctic sea ice (for a more detailed
discussion about typical limits for sea ice in the Fram Strait, see section 6.4). The
indices are calculated for X-, C- and L-band radar frequencies separately.

It should be pointed out that the method for computing the Sobol indices used
here (Saltelli et al. 2008) requires that the input parameters are independent.
This may in extreme cases lead to somewhat unphysical parameter settings. For
example, some samples may represent thin ice covered by very thick and dense
snow, which most likely would cause flooding of the ice in practice. This is
however not an effect that is incorporated in the considered backscatter model.

Since the Sobol indices assume output distributions that are not highly skewed,
some polarimetric output parameters may not be suitable. For the considered
model configurations, it is found that the co-polarised correlation coefficient ρhhvv
is such a parameter, which typically has a very pronounced and left-skewed peak
close to 1. Here, it is therefore proposed to use the ”un-correlation” expressed in
decibels, that is 10 log10(1−ρhhvv). Variations in ρhhvv close to 1 will then be em-
phasised and it is found that the corresponding distribution is considerably less
skewed. It is moreover also found that the Sobol indices are generally very similar
for both the co-polarised channels. The vv-channel will therefore be disregarded
in the following analysis and differences between the two co-polarised channels
will be discussed in terms of the co-polarised ratio. In total, the following output
parameters will be considered for X-, C- and L-band separately:

Y =































10 log10(σhh)

10 log10(σvv/σhh)

10 log10(σhv)

10 log10(1− ρhhvv)

φhhvv

(5.24)

This set of parameters describes the full scattering covariance matrix (assuming
reflection symmetry and reciprocity of the target, see for example Lee & Pottier
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2009, for details) and thus represents a fully polarimetric single frequency radar
measurement. The resulting Sobol indices are analysed in terms of box plots in
figures 5.11 to 5.25. The median values (of the Sobol index samples obtained
by bootstrapping) are indicated as red horizontal lines. The boxes indicate the

intervals between the 25th and 75th percentiles, for the first order index S
(1)
i in

blue and the total effect index S
(tot)
i in yellow. The whiskers (thin lines) extend to

the extreme points in the respective bootstrapping distributions. In the following
sections, these plots are discussed in more detail.

5.5.1 Configuration I: Dry snow cover

This is a 3-layer configuration representing an anisotropic sea ice layer covered by
an isotropic dry snow layer (see table 5.1 and figure 5.6 for details and table 5.2
for corresponding input sampling limits). The resulting Sobol indices are shown
in figures 5.11 to 5.15 and in the following paragraphs, the polarimetric output
parameters in equation 5.24 are discussed one by one.

Co-polarised channels

Considering the hh-channel in figure 5.11, all frequency bands indicate sensitivity
in terms of the first order index for the RMS slope at the snow-ice interface. This
parameter is most dominant at C-band, indicating penetration through the dry
snow without significant attenuation. This is consequently also the case for the
longer waves at L-band, where indeed the first order index for the ice surface
RMS slope is relatively high. However, the index for the RMS height at the
ice-water interface is of similar magnitude.

At L-band, also the sea ice salinity indicates sensitivity since it controls the
amount of brine in the ice and thus the penetration to the ice-water interface.
The situation is illustrated in more detail in figure 5.7, where the hh-channel is
plotted as a function of sea ice salinity and frequency (keeping the other input
parameters set to the default values listed in table 5.2). The figure indicates that
for low frequencies such as at L-band, the ice-water interface becomes dominant
if the sea ice salinity is low enough, given that the ice-water interface is rough.
In the shown scenario, this is the case below a salinity of 7 ppt.

For the hh-channel at X-band in figure 5.11, the first order index is high for
both the ice surface RMS slope as well as the snow grain correlation length. The
latter indicates significant volume scattering from the snow at X-band, which is
not the case for C- or L-band. This can also be seen for the special case shown in
figure 5.7(b), where the radar cross section for the snow layer dominates above
roughly 7 GHz.
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Model input parameter Symbol Default Min. Max. Unit

Air:

Temperature T air -10 -20 -5 ◦C

Dry snow:

Thickness dds 40 10 80 cm
Density ρds 300 200 400 kg/m3

Snow grain cor. length lds 0.5 0.1 1 mm
RMS height σz,ds 5 0.1 10 mm
RMS slope σs,ds 0.15 0 0.3 -
GPL p-value pds 2.1 fixed -

brine-wetted snow:

Thickness dbs 20 1 30 cm
Density ρbs 400 300 500 kg/m3

Salinity Sbs 40 20 60 ppt
Brine droplet cor. length lbs 0.5 0.01 1 mm
RMS height σz,bs 5 0.1 10 mm
RMS slope σs,bs 0.15 0 0.3 -
GPL p-value pbs 2.1 fixed -

Sea ice:

Thickness dsi 70 20 200 cm
Salinity Ssi 7 1 15 ppt
Brine pocket cor. length lsi 0.5 0.1 1 mm
Brine pocket elongation Esi 2 1.5 4 -
Brine pocket tilt ψsi 10 0 90 ◦

RMS height σz,si 5 0.1 100 mm
Surface slope σs,si 0.15 0 0.3
GPL p-value psi 2.1 fixed -

Sea water:

Temperature T sw -2 fixed ◦C
Salinity Ssw 32 fixed ppt
RMS height σz,sw 5 0.1 100 mm
Surface slope σs,sw 0.1 0 0.3
GPL p-value psw ∞ fixed -

Radar:

Incidence angle θ 30 fixed ◦

Table 5.2: The model parameter sampling limits used for the configurations listed
in table 5.1 to produce the Sobol sensitivity indices.
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Configuration I: Dry snow cover
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Figure 5.7: Plots showing sensitivity of the hh-channel to sea ice salinity at L-
band in (a) and frequency in (b). The non-variable input parameters are fixed
to the default values in table 5.2.
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Figure 5.8: Plots showing sensitivity of the co-polarised ratio to sea ice salinity at
C-band in (a) and L-band in (b) for varying roughness of the ice-water interface.
The non-variable input parameters are fixed to the default values in table 5.2.
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Configuration I: Dry snow cover
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Figure 5.9: Plots showing sensitivity of the co-polarised phase difference to sea
ice salinity in (a) and brine pocket elongation in (b). The non-variable input
parameters are fixed to the default values in table 5.2.

Co-polarised ratio

Regarding figure 5.12, both C- and L-band indicate a sensitivity to the salinity,
in particular for the total effect index S(tot). In both bands, this sensitivity is
partly related to the ice-water interface as illustrated in figure 5.8. The figure
shows the sensitivity to sea ice salinity for different roughness conditions of the
ice-water interface, for C-band in figure 5.8(a) and for L-band in figure 5.8(b).
Specifically, the figures indicate that the salinity modulates the impact of the ice-
water interface and that the sensitivity to salinity cannot in general be attributed
to the snow-ice interface only. Considering figure 5.12 again, the snow grain
correlation length is most important at X-band. However, the total variance in
the co-polarised ratio is relatively low here.

Cross-polarised channel

For the considered configuration the hv-channel is much lower than the co-
polarised channels, typically below -30dB with relatively little variance in total.
Note that neither the IIEM nor the GOM predicts a cross-polarised channel. In
addition, the N2M only has a non-zero hv-signal for anisotropic layers with non-
vertical tilt of the inclusions (see for example figure 4.7(b)). In this configuration,
the snow is isotropic and consequently it may not come as a surprise that the
brine correlation length and tilt are the most important parameters in all bands,
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as can be seen in figure 5.13.

Co-polarised (un)correlation

The sensitivity to the co-polarised correlation expressed as the un-correlation pa-
rameter 10 log10(1 − ρhhvv) is shown in figure 5.14. As for the cross-polarised
response, this parameter is mainly affected by tilted brine inclusions in the
anisotropic sea ice layer. It is thus balanced by surface scattering and isotropic
volume scattering from the snow that on the one hand increases the co-polarised
correlation, and volume scattering from the ice on the other hand that lowers
it. The sensitivity plots are however more complex than for the cross-polarised
channel.

The brine pocket correlation length is significant at all bands, while the brine
pocket tilt is significant at X- and C-band but not so much at L-band. At X-
band, the dry snow correlation length is important as well. At L-band, the sea ice
salinity has a relatively high total effect index yet low first order index, likely due
to strong coupling to the surface scattering response at the ice-water interface.

Co-polarised phase difference

Regarding the co-polarised phase difference φhhvv, the situation is similar to the
results for the hv-channel. The surface scattering models predict very small phase
shifts, which is also the case for isotropic layers in the N2M (that is the snow
layers). Phase shifts thus mainly result from propagation through the anisotropic
ice layer. Strong isotropic volume scattering from the snow or dominant surface
scattering may thus mask phase shifts resulting from the ice. For this reason, X-
band yields small shifts as the waves scatter in the snow and attenuates quickly in
the sea ice layer. The largest phase shifts occur at C- and L-band, as illustrated in
figure 5.9. In figure 5.9(a), the phase shift is plotted versus sea ice salinity for the
three frequency bands. At salinities below 5 ppt, C-band yield significantly larger
shifts than L-band. The attenuation is small enough for the waves to propagate
through the layer and scatter back but the anisotropy of the brine inclusions
is significant enough to cause phase delays between the h- and v-polarisations.
As the salinity increases, the wave attenuates more rapidly resulting in smaller
phase shifts. The same situation holds for L-band, although the salinities must
be higher for the brine to have an effect, due to the longer wavelength in relation
to the brine inclusions.

Considering the sensitivity indices for the co-polarised phase difference in
figure 5.15, the above description is manifested in that all bands show a relatively
high total effect index on the sea ice salinity and brine tilt. C- and X-band
have some sensitivity to the sea ice roughness, which reduces the shifts. At X-
band, suppression of phase shifts is however mainly attributed to the snow grain
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correlation length and thus volumes scattering in the snow. At L-band, the RMS-
height of the ice-water interface has a large total effect index, attributed to the
propagation through the ice layer. It is however interesting to note that the sea
ice thickness does not show a strong sensitivity in any band.

5.5.2 Configuration II: Brine-wetted snow cover

In section 3.3.5 it was mentioned that, even at low temperatures the snow cover
on sea ice is not necessarily dry since brine may be expelled upwards from the ice.
The effect of such a brine-wetted snow layer is examined in this model configura-
tion. The configuration is identical to the one in the last section (configuration
I), except that the dry snow is replaced with a thinner layer of brine-wetted
snow, which enable easy comparison to the dry snow case. An illustration of the
configuration can be seen in figure 5.6 and sampling limits of the involved input
variables are listed in table 5.2. The resulting Sobol indices are plotted as box
plots in figures 5.16 to 5.20 and discussed in detail below.

Co-polarised channels

The Sobol indices for the hh-channel are shown in figure 5.16. Considering X-
band, the correlation length of the brine droplets dominates (in contrast to that
of the snow grain in configuration I). The sensitivity to the sea ice RMS-slope is
lower, even though the brine-wetted snow layer is on average thinner than the
dry snow.

In configuration I, the sensitivity to the RMS-slope at the snow-ice interface
was dominating at C-band. In this configuration, the situation is more compli-
cated. No parameters stands out significantly in figure 5.16. The Sobol indices
for the RMS-slope and the brine droplet correlation length are somewhat larger
than the other input parameters, but there is a relatively large overlap in confi-
dence intervals. At C-band, scattering from the brine-wetted snow can in other
words not be neglected to the same extent as for dry snow.

The indices for L-band are generally very similar to the dry snow case in
configuration I. The sea ice salinity and the sea ice RMS-height are however
not as dominant. For the brine-wetted snow case, mainly the roughness at the
ice-water interface dominates.

Co-polarised ratio

Considering the co-polarised ratio at X-band (figure 5.17), the main difference to
configuration I is that the values for the roughness parameters for the snow-ice
interface are lower while those for the air-snow interface are increased. This can
be explained by: (1) the real part of the permittivity is higher for the wetted snow
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(see figure 5.4) which makes the contrast stronger at the air-snow interface but
weaker at the snow-ice interface and (2) the X-band waves are strongly attenuated
by the liquid brine in the wetted snow.

At C-band, the roughness parameters at the air-snow interface are also slightly
higher than in configuration I. The sensitivity to the sea ice salinity is slightly
lower in both the first oder and total effect index, while the air temperature and
snow thickness have slightly higher sensitivities. Overall, no single parameter
stand out in the box plot.

The box plot for L-band is very similar to that of configuration I. The indices
for the roughness parameters of the snow-ice and ice-water interfaces are generally
highest. The indices for the brine pocket tilt and elongation are slightly increased
as well as the roughness parameters of the brine-wetted snow.

Cross-polarised channel

As for configuration I, all cross-polarised responses originate from tilted and elon-
gated brine inclusions in the sea ice layer. As seen in figure 5.18, the indices for
the sea ice salinity and the brine pocket tilt are thus also here significant. How-
ever, for the shorter waves at X- and C-band attenuation through the brine snow
is important and which suppresses the sensitivity to the ice and sea water pa-
rameters. For X-band in particular, the indices for the air temperature, snow
thickness, snow density and snow salinity are relatively high, which all are asso-
ciated to attenuation. The L-band plot is however very similar to the dry snow
case.

Co-polarised (un)correlation

Compared to the dry snow case, the sensitivity for the co-polarised correlation
(figure 5.19) is somewhat similar for C- and L-band, while at X-band the brine-
wetted snow has a strong impact. The brine-wetted snow scatter and attenuates
the shorter waves too strongly for the anisotropic sea ice layer to have an effect.

The C-band plot indicate a slightly increased total effect index but decreased
first order index on the sea ice salinity as well as lower indices for the brine pocket
correlation length and tilt as compared to the dry snow case. At L-band, the first
order index for the sea ice salinity and thickness is increased.

Co-polarised phase difference

For the co-polarised phase difference plotted in figure 5.20, the situation is similar
to configuration I. At X-band, the correlation length for the brine droplets in the
wet snow is however slightly lower compared to the correlation length of the snow
grains in the dry snow case.
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At C-band, the situation is also similar to configuration I. The sensitivities to
the correlation length and thickness of the brine-wetted snow are slightly lower
than the corresponding parameters for the dry snow. Also the sea ice surface
roughness parameters are somewhat lower, due to the reduced permittivity con-
trast between the ice and snow.

The situation for L-band is generally similar to the dry snow case. The largest
first order indices are found for the brine pocket tilt and the RMS-height of the
the ice-water interface.

5.5.3 Configuration III: Dry and brine-wetted snow cover

This configuration represents sea ice with a snow cover that is dry on the top
and wetted by brine at the bottom. The layer setup is shown in table 5.1 and
also illustrated in figure 5.6. The corresponding input sample limits are listed in
table 5.2. The resulting Sobol indices are shown in figures 5.16 to 5.20 and will
be discussed more thoroughly below.

Co-polarised channels

The results for the HH-channel can be seen in figure 5.21. At X-band, the plot
is dominated by the correlation length of the dry snow grains. There is a slight
sensitivity to the correlation length of the brine droplets in the wetted snow, but
this is significantly lower compared to that of the dry snow. As in configuration I,
there is also a slight sensitivity to the dry snow thickness. The sea ice parameters
play an insignificant role indicating that the response from the ice essentially is
shielded by the snow.

The situation for C-band is in this configuration similar to that of X-band.
The correlation length of the dry snow has the highest sensitivity followed by the
brine droplet correlation length in the wetted snow. In contrast to the previous
two configurations, there is only a very low sensitivity to the sea ice in terms of
the RMS slope.

For L-band, the plot is more complicated than for the previous two configura-
tions, where very little sensitivity was attributed to the snow. As before, the first
order indices are relatively high for the roughness parameters at the ice-water and
snow-ice interface as well as for the sea ice salinity. However, these are not at all
as dominant as in configuration I and II. Also the air temperature, brine-wetted
snow salinity, density and roughness indicate some sensitivity.

Co-polarised ratio

The sensitivity for the co-polarised ratio are shown in figure 5.22. Considering
X-band, the indices are considerably larger for the correlation length of the dry
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snow that the other parameters. There is a small sensitivity also to the brine-
wetted snow parameters. The situation is thus simpler here than for the previous
configurations where in configuration I, the sea ice was not negligible and in
configuration II, the brine-wetted snow dominated.

At C-band, the situation is somewhat complicated with no clear dominant
parameter. The sea ice salinity has a significantly larger total effect index. For the
first order indices, no parameter stands out indicating strong coupling between
parameters.

The situation is on the other hand more similar to the previous configurations
for L-band. The first order indices are highest for the roughness at the snow-ice
and ice-water interfaces. The sea ice salinity has a relatively high total effect
index.

Cross-polarised channel

The sensitivity for the cross-polarised channel is shown in figure 5.23. As for
the previous configurations, this channel is in principal only affected by the
anisotropic sea ice layer. The snow thus acts to reduce the cross-polarised channel
and most so at higher frequencies. Indeed, X- and C-band indicate no, or very
little sensitivity to the sea ice parameters. In fact, the air temperature as well
as brine snow salinity and density indicate largest sensitivity. It should however
be noted that the response in absolute terms at these bands are extremely low,
below -30 db and would thus be close to the noise floor for conventional satellite
sensors.

Co-polarised (un)correlation

For this configuration, the reduction of the co-polarised ratio due to the brine
pockets in the sea ice layer is masked even mover by the snow cover than in the
previous configurations. Generally, the co-polarised correlation is relatively close
to 1 for most samples in all three configurations and the confidence intervals are
relatively wide, especially for the total effect indices.

As expected, the masking due to snow is however strongest at X-band where
both snow layers yield strong scattering and the brine-wetted snow attenuates
the waves significantly before reaching brine pockets. Consequently, the snow
parameters are dominant in the X-band plot.

At C-band, no single parameter stand out from the other. The brine pocket
correlation length and tilt still indicate sensitivity, but the air temperature, dry
snow thickness and salinity of both the sea ice and brine-wetted snow have first
order indices of similar magnitude.

At L-band, the situation is somewhat similar to configuration II (brine-wetted
snow cover), where the sea ice salinity and thickness yielded highest first order
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indices. Here, the sea ice brine pocket elongation and correlation length are
however of similar magnitude. The sea ice salinity has a again a relatively high
total effect index.

Co-polarised phase difference

In figure 5.25, the Sobol indices for the co-polarised phase difference are shown.
As for the cross-polarised channel, in this configuration mainly the sea ice layer
contribute to phase shifts due to its anisotropy. Consequently, at X-band the
total variance in phase shift is very small since the signal originating from the sea
ice is very weak due to attenuation in the two snow layers. No first order indices
show significant sensitivity.

At C-band, the attenuation in the snow is weaker and consequently a sensi-
tivity is seen in the sea ice salinity as well as brine pocket tilt. The total effect
index is not negligible for some of the dry snow parameters as well as the air
temperature, similarly to configuration I.

Also at L-band, the situation is similar to the previous configurations. The
sea ice tilt, salinity and the roughness parameters at the ice-water interface have
relatively large first order indices compared to the other parameters.

5.6 Summary and discussion

The above sections present the (to my knowledge) first global sensitivity analysis
of the fully polarimetric radar backscatter response from snow covered sea ice.
The response is modelled by an incoherent layer-stacking approach where each
layer is characterised by a rough top surface and a volume containing ellipsoidal
inclusions. Scattering from the surfaces are modelled by the IIEM and GOM (de-
pending on the roughness scale relative to the radar wavelength) while scattering
from the volume is modelled by the N2M which is based on SFT.

The model is set up in terms of three different configurations, distinguished
by the properties of the snow layer. Configuration I is ice with dry snow on top,
configuration II ice with a wet snow cover, and in configuration III the snow cover
consists of a layer of wet snow with a dry-snow layer on top of it. By comparing
the results for the configurations, the impact of the snow can be determined. The
analysis is performed for X-, C- and L-band radar frequencies.

A summary of the sensitivity analysis is shown in table 5.3 based on the first
order Sobol indices in the box plots of figures 5.11 to 5.25. Each cell in the
table specifies up to three of the model input parameters that yield the largest
sensitivity index (symbols for the input parameters are listed in table 5.2). Each
row corresponds to a polarimetric model output parameter and each column
corresponds to one of the three model configurations, run at either X-, C- or
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L-band. Cells containing input parameters that are all associated to a single
layer, are highlighted by a colour. The colour corresponds to the layer as shown
in the illustrations at the top of the table (dry snow = light grey, brine-wetted
snow = dark grey, sea ice = blue and sea water = green). Cases where many
input parameters are significant or where the confidence intervals are too large to
separate them from each other, are marked with the letter M(any). If the total
variance is very low (that is, no significant sensitivity could be estimated for any
input parameter) the letter N(one) is used.

Comparing the configurations

A general conclusion that instantly can be made from table 5.3, is that the
polarimetric backscatter response to snow covered sea ice is complex. There is
no single input parameter that stands out across all configurations and frequency
bands. Not even when restricted to only one frequency band, there is a single
input parameter that dominates across all configurations.

Considering configuration I however, it is clear that the sea ice layer dominates
at C-band (judging by the blue colour along most of the column). In particular,
the hh-channel is dominantly sensitive to the surface roughness at the snow-
ice interface (specifically the RMS-slope). On the contrary, at X-band the dry
snow is important. Particularly the correlation length of the snow grains yields
high sensitivities for both the co- and cross-polarised channels as well as the co-
polarised ratio. At L-band, most output parameters are most influenced by the
roughness of the ice-water interface. Thus, the bottom side of the ice cannot in
general be neglected when modelling signatures at L-band.

By introducing the brine-wetted snow layer in configuration II, the situa-
tion becomes somewhat more complicated than in configuration I. At X-band,
the direct influence of the snow is most substantial. At C-band, the hh-channel
and co-polarised ratio are not dominated exclusively by sea ice parameters as in
configuration I. Also at L-band, some sea ice parameters have a reduced influ-
ence. For the hh-channel in particular, the RMS-slope of the ice-water interface
becomes more important than that of the snow-ice interface.

By considering both a dry and wet snow layer as in configuration III, the
impact of the sea ice naturally becomes even weaker than in configuration I
and II. Particularly the hh-channel is dominated by the dry snow correlation
length at both X- and C-band. At C-band, only the co-polarised phase difference
is dominated by only sea ice parameters. At L-band, all output parameters
show a relatively complicated sensitivity with multiple input parameters being
important.

Considering all configurations, an interesting note can moreover be made
about the co-polarised phase difference φhhvv at L-band. Together with the RMS-
slope of the ice-water interface, the sensitivity to the tilt of the brine pockets in



CHAPTER 5. SENSITIVITY ANALYSIS 99

Air

Dry snow

Sea ice

Sea water

Air

Brine wetted snow

Sea ice

Sea water

Air

Dry snow

Brine wetted snow

Sea ice

Sea water

Configuration I Configuration II Configuration III

X C L X C L X C L

σhh (in dB)
lds
σs,si

σs,si
σz,sw
σs,si

lbs M
σz,sw
σs,sw

lds lds M

σvv/σhh (in dB) lds

Ssi

σz,si
ψsi

M
lbs
σz,bs
σs,bs

M M lds M M

σhv (in dB)
lsi
ψsi

lsi
ψsi

lsi
ψsi

T air

dbs
Sbs

lsi
ψsi

lsi
ψsi

T air

ρbs
Sbs

T air

ρbs
Sbs

M

1− ρhhvv (in dB)

ψsi

lsi
lds

M M M
lsi
ψsi

M M M M

φhhvv M M
ψsi

σz,sw
M M

ψsi

σz,sw
N Ssi

Ssi

ψsi

σz,sw

Table 5.3: Summary of the most influential model input parameters, considering
the five polarimetric output parameters (rows) as well as the different model
configurations and frequency bands (columns). If more than three parameters
dominate or the confidence intervals overlap significantly, the letter M(any) is
used. If no significant sensitivity to any input parameter were observed, the letter
N(one) is used. The cases where the dominant parameter(s) are all associated to
a specific layer, are indicated with a colour. The colour corresponds to the layer
as shown in the illustrations at the top of the table (the ice layer is for instance
blue).
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the ice is significant for all three configurations. This suggests that measurements
of φhhvv at L-band could potentially be used to infer information about the brine
inclusions even when dry or brine-wetted snow is present (assuming that the snow
can be treated as isotropic).

Effects of brine-wetted snow

The above analysis shows clearly that a snow layer that is fully or partially
soaked by brine can have a significant impact on the polarimetric radar return
at all frequency bands considered. As a final example of this effect, consider
figure 5.10 where the hh-channel is plotted for the three different configurations
versus the radar frequency (keeping all other input parameters at their ”default”
values as listed in table 5.2). The figure shows the backscatter decomposed per
layer. For L-band in the dry snow case (top plot), the sea water interface and sea
ice yield the highest backscatter. By replacing the dry snow with brine-wetted
snow (middle plot), the total response is almost unaffected, yet the response from
the sea ice is drastically reduced while the ice water interface is still of similar
magnitude. If the snow cover consists of a wet and a dry layer (bottom plot) the
response from the sea ice layer is further reduced and is more than 10 dB below
the total response. At X- and C-band, the ice-water interface never dominates,
but a similar trend in the heavily reduced influence of the sea ice layer due to
the brine-wetted snow can be seen. The general effect of the brine-wetted snow
layer can in summary be attributed to the following conditions:

1. The real part of the effective permittivity is closer to the one of sea ice (see
figures 5.4 and 5.5) making the permittivity contrast weaker at the snow-
ice interface, thus reducing the interface scattering contribution. This is
particularly the case if the temperature and salinity of the snow is high.

2. The imaginary part of the effective permittivity is considerably higher than
for dry snow. In particular, if the temperature and salinity is high, it
becomes even higher than for sea ice. Attenuation is then significant, par-
ticularly at higher frequencies such as X- or even C-band.

Note that the strong temperature dependence of the brine-wetted snow permit-
tivity also makes a potential dry snow cover important. In particular, if the air
temperature is low, such a snow cover can significantly insulate the brine-wetted
snow from the air, thus influencing its permittivity.

Comments on ice thickness

It is furthermore worth to note that none of the considered output parameters
reveal a dominant sensitivity to the sea ice thickness. Although it is clearly shown
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in figure 4.8 that the N2M used in the model configurations is sensitive to the
layer thickness, this sensitivity is evidently weak in relation to other input param-
eters. Unless detailed knowledge about other more significant input parameters
is at hand, thickness retrieval through model inversion appears difficult for the
considered model setup.

On the other hand, Kwok et al. (1995) concludes that thin sea ice thickness in
the range from 0 to 10 cm can be retrieved at C- and L-band. In their study, a fully
coherent 3-layer version of the N2M (see Nghiem et al. 1995b) is used and inverted
by an artificial neural network (ANN). The top layer represents a few millimetres
thick and highly saline surface skim, the middle layer represents sea ice and the
bottom layer is sea water. Both the brine skim and sea ice layer are modelled as
a pure ice background with brine inclusions. The brine skim is isotropic and does
not include volume scattering, while the sea ice is anisotropic and include volume
scattering using the distorted Born approximation (DBA). The model output
is moreover averaged over distribution of ice thicknesses to remove unrealistic
interference patterns (as shown in figure 4.8). Surface scattering is modelled
with the SPM. The model is thus different to the configurations considered here
in a number of ways and it is at this stage unclear if the apparent contradiction
in conclusions is due to such differences.

It is also interesting to highlight the sensitivity for the co-polarised ratio in
relation to sea ice thickness. The co-polarised ratio is particularly interesting
since the influence of the roughness is suppressed for slightly rough surfaces,
which makes it relatively sensitive to changes in the permittivity contrast at the
interface. To this end, the ratio is sometimes considered for inferring information
about parameters that relate to the dielectric properties, such as the moisture of
soil for example (Oh et al. 1992, Dubois et al. 1995).

For sea ice, the ratio has for similar reasons been considered for explaining
thickness dependencies observed in data at L-band. Specifically, Wakabayashi
et al. (2004) and Nakamura et al. (2005) use empirical equations that relate the
ice permittivity to ice salinity, which is further linked to ice thickness. Assum-
ing a single ice surface (modelled by the integral equation model (IEM)), they
continue to show a clear thickness sensitivity on the co-polarised ratio. Table 5.3
however indicates that if multiple layers are included in the model, the situation
becomes more complicated. The sea ice salinity is indeed significant at C-band
in configuration I, but other parameters are also important. Across all configu-
rations, the snow layers are most important at X-band. With the exception of
C-band at configuration I, multiple layers and parameters are significant at both
C- and L-band. While this is not strictly conflicting the results of Wakabayashi
et al. (2004) and Nakamura et al. (2005), it suggests that detailed knowledge
about other parameters such as inclusion correlation lengths, brine pocket tilt
and elongation are potentially needed for understanding and quantifying the link
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between ice thickness and co-polarised ratio.

Model limitations

In the above discussion, it is important to keep in mind the limitations of the
backscatter model. The main limitations include:

1. The model is described in terms of discrete layers. This means that it
disregards large scale deformation features due to ridging or rafting.

2. Coherent interactions between layers are disregarded.

3. A number of properties are assumed homogeneous across the layers. Specif-
ically, the layer thicknesses as well as inclusion and background properties
(tilt, permittivity, size and shape) are described by single values rather than
distributions as would be expected in reality.

4. Only one inclusion type is considered per layer. Consequently, the model
neglects backscattering from air bubbles in the sea ice and from ice crystals
in the brine-wetted snow.

5. Multiple backscattering is not accounted for due to the DBA.

6. The roughness scales at the layer interfaces is constrained. In particular,
multiple surface scattering is disregarded since the RMS-slope is limited to
low values.

7. The roughness at the layer interfaces as well as the volume inclusions are
described by means of simple correlation function (the GPL and exponential
correlation function, respectively). In reality, such functions may be over-
simplistic.

Models with other constraints could potentially yield different results. Direct
comparison of models is however difficult, due to mathematical and/or numerical
complexity but perhaps most importantly, because of differences in parametri-
sation. Moreover, there are many existing models in the literature but little
apparent consensus about which one to pick in general. In order to assess what
effect model limitations, detailed laboratory measurements are therefore needed.

5.7 Conclusions

While there are many existing studies that, in one way or the other, illustrate the
sea ice backscatter sensitivity to particular parameters (Fung & Eom 1982, 1985,
Kim et al. 1985, Soulis et al. 1989, Nghiem et al. 1990, 1993, 1995b, Tjuatja et al.
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Figure 5.10: Comparison of the hh-channel as a function of radar frequency
(keeping all other input parameters at their ”default” value listed in table 5.2)
for the three different configurations.
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1992, Partington & Hanna 1994, Winebrenner et al. 1995, Kwok et al. 1995,
Carlström 1997, Wakabayashi et al. 2004, Albert et al. 2012, Komarov et al.
2014, just to mention a few), this chapter presents the first (to my knowledge)
global sensitivity analysis that enable a readable comparison of the sensitivity to
different model input parameters. Such information is critical in order to explain
variations in measured data and assess the feasibility of parameter retrieval by
means of model inversion.

By analysing different snow cover, it is concluded that snow can have a sig-
nificant impact on what model parameters yield highest sensitivity, even for low
radar frequencies such as L-band. The results indicate a rather complex situa-
tion, where generally multiple input parameters dominate and that these may
differ depending on snow cover. Overall, it is found that:

• Brine-wetted snow generally suppresses the relative impact of the snow-ice
interface and the ice volume, even at L-band.

• Roughness at the ice-water interface is significant at L-band regardless of
snow cover.

• The sea ice dominate the sensitivity at C-band if the snow is dry, but
the situation becomes relatively complex if a brine-wetted snow layer is
introduced.

• The snow is generally important at X-band, specifically the correlation
lengths of grains and brine droplets in snow is significant.

While these general conclusions are relatively well known, the presented analysis
is unique in that it provides detailed and quantitative information about the
relative importance of different sea ice parameters.

Finally, it should be emphasised that the results may depend on the particular
limitations of the considered model. Other models, distinguished by other limita-
tions, could potentially yield different results. The number of existing models is
however quite large and there is no apparent consensus about which one to pick
in general. In order to assess the effect of model limitations, detailed laboratory
measurements that can provide validation data at variable sea ice conditions are
therefore greatly desired. Although such measurements are difficult and expen-
sive to perform, their importance still needs to be emphasised.
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Configuration I: Dry snow cover
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Figure 5.11: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σhh) for ”sea ice covered by dry snow” (see table 5.1). The indices
are shown for X-, C- and L-band, respectively, for an incidence angle of 30◦.
Input sampling limits are listed in table 5.2.
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Configuration I: Dry snow cover
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Figure 5.12: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σvv/σhh) for ”sea ice covered by dry snow” (see table 5.1). The
indices are shown for X-, C- and L-band, respectively, for an incidence angle of
30◦. Input sampling limits are listed in table 5.2.
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Configuration I: Dry snow cover
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Figure 5.13: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σhv) for ”sea ice covered by dry snow” (see table 5.1). The indices
are shown for X-, C- and L-band, respectively, for an incidence angle of 30◦.
Input sampling limits are listed in table 5.2.
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Configuration I: Dry snow cover
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Figure 5.14: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(1 − ρhhvv) for ”sea ice covered by dry snow” (see table 5.1). The
indices are shown for X-, C- and L-band, respectively, for an incidence angle of
30◦. Input sampling limits are listed in table 5.2.



CHAPTER 5. SENSITIVITY ANALYSIS 109

Configuration I: Dry snow cover
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Figure 5.15: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = φhhvv for ”sea ice covered by dry snow” (see table 5.1). The indices are
shown for X-, C- and L-band, respectively, for an incidence angle of 30◦. Input
sampling limits are listed in table 5.2.
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Configuration II: brine-wetted snow cover
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Figure 5.16: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σhh) for ”sea ice covered by brine-wetted snow” (see table 5.1). The
indices are shown for X-, C- and L-band, respectively, for an incidence angle of
30◦. Input sampling limits are listed in table 5.2.
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Configuration II: brine-wetted snow cover

Y = 10 log10(σvv/σhh)
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Figure 5.17: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σvv/σhh) for ”sea ice covered by brine-wetted snow” (see table 5.1).
The indices are shown for X-, C- and L-band, respectively, for an incidence angle
of 30◦. Input sampling limits are listed in table 5.2.
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Configuration II: brine-wetted snow cover
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Figure 5.18: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σhv) for ”sea ice covered by brine-wetted snow” (see table 5.1). The
indices are shown for X-, C- and L-band, respectively, for an incidence angle of
30◦. Input sampling limits are listed in table 5.2.
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Configuration II: brine-wetted snow cover
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Figure 5.19: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(1−ρhhvv) for ”sea ice covered by brine-wetted snow” (see table 5.1).
The indices are shown for X-, C- and L-band, respectively, for an incidence angle
of 30◦. Input sampling limits are listed in table 5.2.
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Configuration II: brine-wetted snow cover

Y = φhhvv

;

< < < <

A

< <

0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
s
i
t
i
v
i
t
y

X-band
S
1

i

S
tot

i

;

< < < <

A

< <

0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
s
i
t
i
v
i
t
y

C-band
S
1

i

S
tot

i

T
a
i
r

d
b
s

;
b
s

S
b
s

<
z
,
b
s

<
s
,
b
s

l
b
s

d
s
i

S
s
i

<
z
,
s
i

<
s
,
s
i

l
s
i

E
s
i

A
s
i

<
z
,
s
w

<
s
,
s
w

0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
s
i
t
i
v
i
t
y

L-band
S
1

i

S
tot

i

Figure 5.20: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = φhhvv for ”sea ice covered by brine-wetted snow” (see table 5.1). The indices
are shown for X-, C- and L-band, respectively, for an incidence angle of 30◦. Input
sampling limits are listed in table 5.2.
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Configuration III: Dry and brine-wetted snow cover
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Figure 5.21: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σhh) for ”sea ice covered by brine-wetted snow” (see table 5.1). The
indices are shown for X-, C- and L-band, respectively, for an incidence angle of
30◦. Input sampling limits are listed in table 5.2.
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Configuration III: Dry and brine-wetted snow cover
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Figure 5.22: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σvv/σhh) for ”sea ice covered by brine-wetted snow” (see table 5.1).
The indices are shown for X-, C- and L-band, respectively, for an incidence angle
of 30◦. Input sampling limits are listed in table 5.2.
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Configuration III: Dry and brine-wetted snow cover
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Figure 5.23: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(σhv) for ”sea ice covered by brine-wetted snow” (see table 5.1). The
indices are shown for X-, C- and L-band, respectively, for an incidence angle of
30◦. Input sampling limits are listed in table 5.2.
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Configuration III: Dry and brine-wetted snow cover
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Figure 5.24: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = 10 log10(1−ρhhvv) for ”sea ice covered by brine-wetted snow” (see table 5.1).
The indices are shown for X-, C- and L-band, respectively, for an incidence angle
of 30◦. Input sampling limits are listed in table 5.2.
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Configuration III: Dry and brine-wetted snow cover
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Figure 5.25: A box plot for Sobol indices S(1) and S(tot) for the output variable
Y = φhhvv for ”sea ice covered by brine-wetted snow” (see table 5.1). The indices
are shown for X-, C- and L-band, respectively, for an incidence angle of 30◦. Input
sampling limits are listed in table 5.2.
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Chapter 6

Models compared to SAR
data of sea ice in the Fram
Strait

While the previous chapter was focusing on the sensitivity of a backscatter model,
this chapter deals with the representativeness of such a model. While the sensi-
tivity is critical for identifying the parameters that can be retrieved from data,
the representativeness is critical for selecting a realistic model in the first place.

Specifically, model predictions are compared to synthetic aperture radar (SAR)
data collected in conjunction with the Norwegian young sea ice cruise 2015 (N-
ICE 2015). By considering meteorological data as well as in-situ observations
of the sea ice in the region, model input parameters can be partly constrained.
Within these constraints, the ability of the model to represent certain ice types
can be assessed.

The assessment suggests that a relatively simple composite backscatter model
(based on incoherent layer-stacking as described in chapter 5) can typically be
fitted well to SAR data at both C- and L-band, for ice types tagged as lead ice or
ice floes. Generally, C-band data is better represented by the considered models
than L-band data. Likewise, the ice identified as ice floes is better represented
than ice types identified as lead ice. The model primarily deviates from the
data in the co-polarised phase shift and the cross-polarised channel. Overall, the
range of plausible model predictions is however very wide, which is explained
by insufficiently constraints on roughness and volumetric structure parameters
(which seldom are known).
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6.1 Motivation and objectives

Throughout the years, a great number of models have been proposed for de-
scribing the radar backscatter from sea ice (see table 4.1 for an overview). In
fact, even though more than half a century has passed since some of the first sea
ice mapping experiments were conducted with imaging radars (Anderson 1966,
Rouse 1969), forward modelling of the radar backscatter from sea ice is still an
active research topic.

While the past development of models is both impressive and important for
the general understanding, a consensus on which models to use under what cir-
cumstances seems to be lacking. Moreover, few models have found their way to
operational applications. Considering geophysical parameter retrieval through
model inversion, one arguable reason for this is their complexity and high dimen-
sionality. It is therefore desirable to identify ice types and sensor configurations
for which relatively simple models with few input parameters do appear repre-
sentative to the data.

With this in mind, the objective of this chapter is to assess what types of
sea ice and what radar configurations are well described by a relatively simple
scattering model. The assessment is focused on sea ice in the Fram Strait during
the late winter and early spring, with data mainly containing new, young and
first year ice. The backscatter simulations are based on the composite model
used in the sensitivity analysis of chapter 5 (see section 5.2 for details).

6.2 SAR data

The data considered in this chapter were acquired in the Arctic ocean north of
Svalbard, in conjunction with the N-ICE 2015 campaign. N-ICE 2015 was an
research expedition lasting from 12 January to 24 June in 2015 and was lead by
the norwegian polar institute (NPI). In the expedition, the NPI research vessel
RV Lance was positioned at approximately 83◦N 21◦E and was let to drift with
the sea ice. The ship was repositioned three times, resulting in four periods of
passive drift. In figure 6.1, the ship track of RV Lance is shown as a grey dotted
line and the drift periods are highlighted as blue solid lines.

During drift, a research camp was established on the ice floe next to the
ship, enabling extensive in-situ data collection including continuous meteorologi-
cal measurements. A large amount of remote sensing data was also collected. In
particular, multiple SAR scenes were acquired from the satellites advanced land
observing satellite 2 (ALOS-2), Radarsat-2, TerraSAR-X and Sentinel-1. In this
section, the selected SAR data is presented.
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6.2.1 Selected scenes

From the large amount of remote sensing data aquired coincident with the N-ICE
2015 campaign, a subset of overlapping SAR scenes has been selected based on
the criteria:

(i) The overlapping scenes are acquired at different radar frequencies.

(ii) The overlapping scenes contain the same sea ice.

(iii) The maximum time difference between the overlapping scenes does not
exceed 24 hours.

This resulted in a total of 26 individual SAR scenes from the satellites ALOS-2,
Radarsat-2 and TerraSAR-X, constituting 5 overlapping scene sets. The foot-
prints of the scenes are shown in figure 6.1 and the acquisition times and radar
configurations are listed per overlapping scene set in table 6.1. The time sepa-
ration between the overlapping scenes range from 1 minute to 14 hours. As an
example, the scenes of overlap number 1 (see table 6.1) are displayed on top of
each other in figure 6.2 and separately in figure 6.3. Yellow polygons indicate
regions of interest, which are discussed next.

6.2.2 Regions of interest

Four types of regions are identified in the overlapping scenes and labeled as ”open
water”, ”lead ice”, ”ice floe” or ”ridge or brash”. These types are primarily
defined by their shape and motion characteristics. In particular:

Open water is defined as a region of homogeneous radar signature found in
linear openings in the ice pack, that may change in size and shape over
relatively short time and may have drifting ice features within them.

Lead ice is defined as a homogeneous region found in lead like features within
the ice pack, with a shape that does not change considerably over short
time.

Ice floe is defined as a homogeneous region within the ice pack that does not
resemble a lead or crack and does not change in size over time. These pre-
sumably corresponds to level FYI or similar (very little MYI was observed
during N-ICE 2015).

Ridge or brash is defined as a region of considerably higher backscatter than
the surrounding area. Ridges are typically identified by their elongated
shape. Brash ice, that is ice fragments of centimetres to decimetres in size,
are typically located between individual ice floes.
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Figure 6.1: Map showing the area of interest, including footprints of the 18 SAR
scenes considered in this chapter and the track of RV Lance traced out during
N-ICE 2015. The ship track for the whole expedition is depicted as a grey dotted
line while the four drift periods are highlighted as solid blue lines. The drift
periods are labeled according to their duration of drift, specifically as: (1) 15
Jan. - 21 Feb., (2) 24 Feb. - 19 Mar., (3) 18 Apr. - 5 June and (4) 7 - 22 June.
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Figure 6.2: All scenes of overlap number 1 acquired on the 19 April 2015 (see
table 6.1 for details). A Sentinel-1 scanSAR scene is included in the background
as an overview.
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Over-
lap Date UTC Satellite

SAR
mode

Freq.
band

Wave-
len.

Polari-
sation

Incidence
angle

Resolu-
tion [m]

1
2015-
04-19

20:32 ALOS-2 Strip L 24.2cm Quad 32.4-35.3◦ 2.9×3.2
13:19 RS-2 Strip C 5.6cm Quad 20.9-22.8◦ 4.7×5.4
13:18 TS-X Strip X 3.1cm Quad 17.3-19.1◦ 0.9×2.1
07:01 TS-X Strip X 3.1cm hh,vv 42.7-43.9◦ 0.9×2.9
08:02 S-1A Scan C 5.6cm hh,hv 18.9-46.4◦ 40×40

2
2015-
04-23

20:18 ALOS-2 Strip L 24.2cm Quad 32.4-35.3◦ 2.9×3.2
14:42 RS-2 Strip C 5.6cm Quad 36.5-38.0◦ 4.7×5.5
13:43 TS-X Strip X 3.1cm Quad 27.4-29.0◦ 0.9×2.2

3
2015-
04-28

20:25 ALOS-2 Strip L 24.2cm Quad 29.5-32.6◦ 2.9×3.1
15:37 RS-2 Strip C 5.6cm Quad 42.0-43.4◦ 4.7×5.0
07:35 TS-X Strip X 3.1cm hh,vv 30.9-32.4◦ 0.9×2.4

4
2015-
05-26

22:02 ALOS-2 Strip L 24.2cm Quad 37.7-40.3◦ 2.9×3.1
17:00 RS-2 Strip C 5.6cm Quad 48.4-49.5◦ 4.7×5.1

5
2015-
05-31

22:08 ALOS-2 Strip L 24.2cm Quad 37.7-40.3◦ 2.9×3.1
16:14 RS-2 Strip C 5.6cm Quad 37.5-39.0◦ 4.7×5.0
15:26 TS-X Strip X 3.1cm hh,vv 26.3-27.9◦ 0.9×2.4

Table 6.1: An overview of the overlapping sets of scenes with corresponding
acquisition times, satellite missions and radar configurations. For consecutive
scenes acquired along the same orbit track, only the first scene is included in the
table. The scenes of overlap number 1 are further shown in figures 6.2 and 6.4.
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Corresponding polygons were drawn manually on map projected RGB compos-
ites of the SAR scenes. In total, 943 individual polygons were drawn in the
overlapping scenes (table C.1 shows an overview of the number of polygons per
satellite sensor and overlapping scene set). In figure 6.4, a few examples are fur-
ther shown for an ALOS-2 scene from overlap 2. Polygons that corresponding to
the same sea ice or water area, but observed with different sensors, are referred
to as polygon pairs.

6.2.3 Processing

To get an overview of the data, each polygon is processed in the the slant range
radar geometry according to the following steps:

1. Cropping:
In the radar geometry (slant range and azimuth), the rectangular region
that bounds the polygon is cropped out into a sub-image.

2. Multi-looking:
The 3×3 scattering covariance matrix is formed by multi-looking the sub-
image with a 4×4 averaging filter.

3. Cutting:
The pixels within the polygon are extracted. If the pixels are fewer than
10, the polygon is dismissed and not considered further.

4. Feature extraction:
Polarimetric features are extracted.

5. Averaging:
The median value of all pixels is taken.

This will reduce each polygon to one data sample in the polarimetric feature
space of choice. All the SAR scenes were calibrated using the sentinel application
platform (SNAP) version 3.0.3, apart from the quad polarised TerraSAR-X scenes
that were calibrated by Deutsches zentrum für luft- und raumfahrt (DLR).

6.2.4 Sensor noise

The system noise level is strongly dependent on the sensor, in what mode the
sensor is operated and on incidence angle (Slade 2011, Mittermayer et al. 2010).
Estimates for the noise-equivalent sigma zero (NESZ) are provided in the meta-
data of Radarsat-2 and TerraSAR-X. For the Radarsat-2 scenes used in this
chapter, the NESZ at the polygons vary from -37.4 to -31.1 dB. For TerraSAR-
X, the noise level is higher and is moreover significantly different between the
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Figure 6.3: The scenes of overlap number 1 (see table 6.1 for details). The
manually selected regions of interest are highlighted as yellow polygons.

Figure 6.4: Example polygons for an ALOS-2 scene in overlap 2, labeled as ”open
water” and ”lead ice” in the left image and ”floe” and ”ridge or brash” in the
right image.
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dual- and quad-polarised modes and vary from -25.7 to -17.0 dB. The NESZ is
unfortunately not provided for ALOS-2. By analysing the darkest pixels in the
considered ALOS-2 scenes, it is however here roughly estimated to be around -35
dB. This value will be used regardless of incidence angle, for all ALOS-2 polygons.

In the following analysis, the signal-to-noise ratio (SNR) of a polygon is more-
over considered as the average power of the channels involved in the considered
polarimetric parameter, relative to the NESZ at the centre position of the poly-
gon. For instance, the co-polarised phase difference involve only the co-polarised
channels, thus SNR = 0.5(σhh+σvv)/σNESZ. The largest circle is indicated when
10 log10(SNR) = 0 dB and no circle is indicated if 10 log10(SNR) > 10 dB.

6.2.5 Polygon overview

An overview of all polygons as a function of incidence angle is shown in figures 6.5
to 6.8 for ”open water”, ”lead ice”, ”ice floe” and ”ridge or brash”, respectively.
The SNR is indicated by circles around the markers. Specifically, the largest circle
is indicated if 10 log10(SNR) ≤ 0 dB and no circle is indicated if 10 log10(SNR) >
10 dB.

In order to further compare the sensors, the polygon pairs are plotted in
difference plots in figures 6.9 to 6.12. The polygons from the ALOS-2 scenes are
indicated along the x-axis and the corresponding polygons from the Radarsat-2
and TerraSAR-X scenes are indicated along the y-axis. Here, the circles around
the markers show the difference in incidence angle between the paired polygons,
rather than SNR. Such differences will increase the spreading of the points in the
plot. In particular, the difference in incidence angle vary from less than a degree
for some pairs, up to 12.6◦ in the most extreme case. It should also be noted
that there are differences in acquisition time between the polygon pairs as well
(see table 6.1).

Open water

In figure 6.5, the polygons tagged as open water are displayed. Regarding all
sensors, the radar cross sections vary significantly. Specifically, σhh range from
-29 to -10 dB, σhv from -36 to -22 dB and σvv from -29 to -9 dB. This variabil-
ity is expected considering differences in fetch and wind conditions between the
polygons.

Considering the radar cross sections in the difference plots in figure 6.9, it is
evident that the TerraSAR-X polygons yield higher σhh than ALOS-2 in all cases
except two, while σvv is more similar. The Radarsat-2 polygons are more similar
to ALOS-2 in σhh than in σvv.

A few polygons are particularly noticeable in that σvv is considerably lower
for Radarsat-2 than for ALOS-2, despite similar incidence angles. This could
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"Open water"
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Figure 6.5: The polarimetric data for polygons tagged as ”open water”. Each
marker corresponds to the median value of a polygon. The colours indicate sensor
type and the shapes SNR (see legend).
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"Lead ice"
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Figure 6.6: The polarimertic data for polygons tagged as ”lead ice”. Each tick
corresponds to the median value of one polygon. The colours indicate sensor type
and the shapes SNR (see legend).
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"Ice floe"
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Figure 6.7: The polarimetric data for polygons tagged as ”ice floe”. Each tick
corresponds to the median value of one polygon. The colours indicate sensor type
and the shapes SNR (see legend).
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"Ridge or brash"
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Figure 6.8: The polarimetric data for polygons tagged as ”ridge or brash”. Each
tick corresponds to the median value of one polygon. The colours indicate sensor
type and the shapes SNR (see legend).
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Figure 6.9: The differences between paired polygons tagged as ”open water”.
Each tick corresponds to the median value of one polygon. The colour and size
of the markers indicate sensor and incidence angle difference, respectively (see
legend).
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Figure 6.10: The differences between paired polygons tagged as ”lead ice”. Each
tick corresponds to the median value of one polygon. The colour and size of the
markers indicate sensor and incidence angle difference, respectively (see legend).
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Figure 6.11: The differences between paired polygons tagged as ”ice floe”. Each
tick corresponds to the median value of one polygon. The colour and size of the
markers indicate sensor and incidence angle difference, respectively (see legend).
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Figure 6.12: The differences between paired polygons tagged as ”ridge or brash”.
Each tick corresponds to the median value of one polygon. The colour and size
of the markers indicate sensor and incidence angle difference, respectively (see
legend).
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be caused by differences in wind conditions, although as seen in figure 6.15, the
wind speeds recorded at RV Lance are generally similar at the Radarsat-2 and
ALOS-2 acquisitions, except for overlap 2. However, the polygons showing the
largest difference between the two sensors originate from overlaps 3 to 5. Another
explanation could be that a thin layer of frazil ice in the water suppresses short
surface waves and consequently Bragg waves in the C-band wavelength range.
This is discussed in more detail in chapter 7.

The co-polariserd ratio is above 0 dB for all polygons except a few from
TerraSAR-X. This may indicate dominant Bragg scattering for Radarsat-2 and
ALOS-2, which is expected from a wind roughened sea surface. ALOS-2 yield
the highest ratios, up to 5.9 dB. The hv-channel is very low for all polygons. It
is significantly above the NESZ only for ALOS-2.

The co-polarised phase difference is close to zero for all polygons with a sig-
nificant SNR. This is expected if surface scattering at the air-water interface
dominates. The co-polarised correlation coefficient is large, also as expected if
surface scattering dominates. Only the noisy polygons show low correlation.

Considering the scattering entropy and alpha angle, noisy polygons generally
show high entropies, as expected. The entropies are relatively low for ALSO-2,
below 0.4 in all examples except one. Radarsat-2 show slightly larger entropies,
but still below 0.6 for the less noisy polygons. While these values are relatively
low, they are not insignificant which could indicate that surface scattering is
not the only dominant scattering mechanism, or that the polygons contain large
texture variations within the multi-look window (4×4 pixels). Only two quad-
polarised examples were found for TerraSAR-X: one close to the NESZ and hence
with a large entropy and one less noisy polygon with a lower entropy. The
situation is similar for the alpha angles: the largest values are associated to a
low SNR, relatively small angles are observed for ALOS-2 and larger ones for
Radarsat-2 and TerraSAR-X.

Lead ice

The polygons tagged as ”lead ice” are plotted in figure 6.6. As for open water,
the range of values of the radar cross sections is wide. The co-polarised channels
vary between the NESZ and about -10 dB for Radarsat-2 and TerraSAR-X. The
backscatter in the ALOS-2 images are generally lower, but reaches up to -15 dB
in some examples. In the difference plots shown in figure 6.10, all pairs have a
higher backscatter for Radarsat-2 and TerraSAR-X than for ALOS-2. In some
examples, the difference is larger than 15 dB. The co-polarised ratio is however
generally larger for ALOS-2 than the other sensors, with up to 6 dB in difference.

The cross-polarised channel is close to the NESZ for most polygons. For
TerraSAR-X, which has a relatively high noise floor, all polygons have essentially
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zero SNR. The cross-polarised channel is on average higher for Radarsat-2 than
for ALOS-2, with a few points as high as about -22 dB.

The co-polarised correlation coefficient is high for most polygons with a high
SNR. Some exceptions exist for ALOS-2, with a relatively high SNR yet low
coefficient below 0.4. In most polygon pairs, the correlation coefficient is higher
for Radarsat-2 and TerraSAR-X compared to ALOS-2 (see figure 6.10).

The co-polarised phase difference varies considerably between the polygons
in all sensors, but with a bias towards positive phase shifts. This is interesting,
since the model configurations in chapter 5 typically yield negative shifts. For the
examples with a relatively high SNR, both Radarsat-2 and ALOS-2 show shifts
up to 40◦. The shifts for TerraSAR-X are typically lower.

The scattering entropy and alpha angle are highly variable, especially for
Radarsat-2 and ALOS-2. For many polygons, the large entropy values can be
explained by a low SNR, yet some points have relatively high values despite
being significantly above the noise floor. This may indicate that the scattering
mechanism is somewhat complicated and not simply the result of a single rough
interface or similar. This is in addition indicated by the relatively high values of
the alpha angle. Both the entropy and alpha angle is generally higher for ALOS-2
as seen in the difference plot in figure 6.10.

Ice floe

In figure 6.7 the polygons tagged as ”ice floe” are shown. Compared to lead
ice the variation among polygons is smaller. The co-polarised channels are most
variable for TerraSAR-X where the highest are recorded at about -7 dB. Most
polygons for TerraSAR-X do however have a steeper incidence angle than for the
other sensors. Considering the difference plots in figure 6.11, the backscatter is
higher for Radarsat-2 and TerraSAR-X compared to ALOS-2.

The co-polarised ratio is centred around 0 dB for the most part, also for
ALOS-2 (in contrast to the lead ice polygons where it was up to 4 dB in some
examples). The co-polarised correlation coefficient is generally high. All examples
with a coefficient below 0.6 are noisy for TerraSAR-X and Radarsat-2. There are
however some ALOS-2 polygons with a coefficient below 0.5 yet with a relatively
high SNR.

The co-polarised phase difference varies considerably with a bias towards pos-
itive values, as was also seen for the lead ice. All sensors include polygons with
positive shifts above 20◦, still with a high SNR. The values for the scattering
entropy and alpha angle are generally lower compared to the lead ice polygons.
The TerraSAR-X polygons are generally noisy.
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Figure 6.13: Air temperatures and wind speeds recorded at RV Lance. During
the plotted time interval, the ship was drifting with the sea ice. The dates for the
five overlapping scene sets are indicated by vertical lines. The data is averaged
over 1 hour to reduce short term fluctuations.

Ridge or brash

Despite being the least defined polygon type in terms of identifying what type
of ice it actually represents, the polygons tagged as ”ridge or brash” is the least
variable, as seen in figure 6.8. The co-polarised channels are generally very high,
up to -3 to -4 dB for TerraSAR-X. All pairs have a higher or similar backscatter
for Radarsat-2 and TerraSAR-X compared to ALOS-2, as seen in the difference
plot in figure 6.12. The cross polarised channel is also generally high, but lowest
for ALOS-2.

The co-polarised ratio is mostly close to 0 dB. The co-polarised correlation
coefficient is also high, with only a few cases below 0.6 for TerraSAR-X. The co-
polarised phase difference however, varies considerably and most so in X-band.
The entropy is generally in the range between 0.4 to 0.7 and similar among the
three sensors. The alpha angle is however significantly different between ALOS-
2 and TerraSAR-X, where the latter have angles above 40◦. Apart from one
polygon for Radarsat-2, both the Radarsat-2 and ALOS-2 polygons are around
20◦in alpha angle.
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6.3 Environmental conditions

During the N-ICE 2015 expedition, large amounts of ground based data of vari-
ous sorts were collected in addition to the remote sensing data presented in the
previous section. Here, the meteorological data recorded at the research vessel
RV Lance is presented (Hudson et al. 2015, for details), which will aid in the
interpretation of the SAR data.

Specifically, air temperature, air humidity, air pressure, sea water tempera-
ture, wind speed and wind direction were recorded continually. While these pa-
rameters all are important, the air temperature and wind speed are highlighted
here (the other parameters are presented in appendix C). The former affects the
ice temperature, which in turn modulates the amount of liquid water and brine
in the sea ice. The latter affects the ice formation process (see section 3.3) and
also roughens water surfaces, thus increasing the radar backscatter.

The wind speed was recorded every second and the air temperature every 34
seconds. In order to reduce short term fluctuations that are not consistent over
larger areas, the data is averaged over 1 hour. In figure 6.13, the air temperature
and wind speed are plotted together over a period for which RV Lance was
passively drifting with the ice pack (corresponding to drift period 3 in figure
6.1). This period covers all overlapping scenes of table 6.1, which are indicated
by vertical lines in the plot. In the following, the air temperature and wind speed
will be discussed in more detail for the individual overlaps.

Air temperature

Considering figure 6.13, two warm periods were recorded with temperatures up
to 0◦C that may have caused melting (around the 16th and 19th of May, respec-
tively). Otherwise, freezing degrees were recorded over the entire time interval
with a general increasing temperature trend.

In figure 6.14, more detailed plots of the air temperatures are shown indi-
vidually for the five overlapping SAR scene sets. The acquisition times of the
scenes are indicated by vertical lines with corresponding temperatures stated in
the plot. The temperatures are generally lower for the scenes from April (over-
lap 1, 2 and 3), varying from roughly -25◦C to -15◦C, compared to the scenes
from May (overlap 4 and 5), with temperatures around -5◦C. The temperatures
fluctuate mostly during overlap 1 and 2, with a maximum-minimum difference of
11◦C and 8◦C, respectively. In overlaps 3 to 5, the temperatures are relatively
stable and vary within 5◦C.
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Figure 6.14: Air temperatures at RV Lance during the five overlaps of table 6.1.
The values are averaged over 1 hour.



CHAPTER 6. MODELS COMPARED TO SAR DATA 143

0

5

10

15

20

A
L
O
S
2

T
S
X
(
D
)

T
S
X
(
Q
)

 
1
0
.
0
 

 
1
1
.
1
 

 
6
.
9
  
1
1
.
2
 

W
i
n
d
 
s
p
d
 
[
m
/
s
]

R
S
2

Overlap 1, 19 April

0

5

10

15

20

A
L
O
S
2

T
S
X
(
Q
)

 
1
3
.
7
 

 
9
.
1
  
8
.
4
 

W
i
n
d
 
s
p
d
 
[
m
/
s
]

R
S
2

Overlap 2, 23 April

5

10

15

A
L
O
S
2

R
S
2

T
S
X
(
D
)

 
5
.
7
 

 
5
.
6
 

 
7
.
5
 

W
i
n
d
 
s
p
d
 
[
m
/
s
] Overlap 3, 28 April

3

4

5

6

7

A
L
O
S
2

R
S
2

 
4
.
3
 

 
3
.
9
 

W
i
n
d
 
s
p
d
 
[
m
/
s
] Overlap 4, 26 May

18
:0
0

00
:0
0

06
:0
0

12
:0
0

18
:0
0

00
:0
0

06
:0
0

Time

2

4

6

8

10

A
L
O
S
2

T
S
X
(
D
)

 
3
.
5
 

 
3
.
4
 

 
3
.
7
 

W
i
n
d
 
s
p
d
 
[
m
/
s
]

R
S
2

Overlap 5, 31 May

Figure 6.15: Wind speed at RV Lance during the five overlaps of table 6.1. The
values are averaged over 1 hour.
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”Lead ice”

Layer Effective medium
Top surface
correlation

Background
medium

Inclusion
medium

Inclusion
shape

0 Air - Air - -
1 Brine wetted snow GPL Dry snow Brine Spherical
2 Sea ice GPL Pure ice Brine Ellipsoidal
3 Sea water Gaussian Sea water - -

”Ice floe”

Layer Effective medium
Top surface
correlation

Background
medium

Inclusion
medium

Inclusion
shape

0 Air - Air - -
1 Dry snow GPL Air Pure ice Spherical
2 Brine wetted snow GPL Dry snow Brine Spherical
3 Sea ice GPL Pure ice Brine Ellipsoidal
4 Sea water Gaussian Sea water - -

Table 6.2: Above are the considered layer configurations for simulating the data
tagged as ”lead ice” and ”ice floe”, respectively. The tables indicate what corre-
lation function is used for characterising the top interface of each layer and what
background and inclusion materials are considered (see sections 5.3.1 to 5.3.4 for
details about these).

Wind speed

Again considering figure 6.13, the hourly mean wind speed fluctuates considerably
over the time interval covering all overlaps, from around 0 to 17 m/s. The wind
speeds at the individual overlaps are further shown in figure 6.15. The highest
values were recorded in overlap 1 and 2, with mean wind speeds up to 12 to 14
m/s. The values do however vary considerably over the plotted 36 hours, at times
down to only a few m/s. Overlaps 3 to 5 show lower wind speeds and also less
fluctuations over the plotted 36 hours.

6.4 Polarimetric backscatter simulation

The layer-stacking method described in chapter 5 will now be used to simulate the
backscatter and compare it to the polygons described in the previous sections.
In summary, the model is built up by an arbitrary number of layers that are
stacked incoherently. Each layers may have a rough top surface, described by the
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”Lead ice”

Model input parameter Min. Max. Unit
Brine wetted snow:
Thickness 1 30 cm
Density 300 500 kg/m3

Salinity 20 60 ppt
Brine droplet cor. length (lbs) 0.01 1 mm
RMS height (σzbs) 0.1 10 mm
RMS slope (σsbs) 0 0.3

Sea ice:
Thickness 10 40 cm
Salinity 7 15 ppt
Brine pocket cor. length (lsi) 0.01 1 mm
Brine pocket anisotropy (-) 1 4 -
Brine pocket tilt (ψsi) 0 90 ◦

RMS height (σzsi) 0.1 100 mm
Surface slope (σssi) 0 0.3

Sea water:
RMS height (σzsi) 0.1 2 mm
Surface slope (σssi) 0 0.05

Table 6.3: The sampling limits for simulating lead ice.
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”Ice floe”

Model input parameter Min. Max. Unit
Dry snow:
Thickness 10 80 cm
Density 200 400 kg/m3

Snow grain cor. length (lds) 0.1 1 mm
RMS height (σzds) 0.1 10 mm
RMS slope (σsds) 0 0.3 -

Brine wetted snow:
Thickness 1 10 cm
Density 300 500 kg/m3

Salinity 10 20 ppt
Brine droplet cor. length (lbs) 0.01 1 mm
RMS height (σzbs) 0.1 10 mm
RMS slope (σsbs) 0 0.3

Sea ice:
Thickness 20 200 cm
Salinity 1 15 ppt
Brine pocket cor. length (lsi) 0.01 1 mm
Brine pocket anisotropy (-) 1.5 4 -
Brine pocket tilt (ψsi) 0 90 ◦

RMS height (σzsi) 0.1 100 mm
Surface slope (σssi) 0 0.3

Sea water:
RMS height (σzsi) 0.1 20 mm
Surface slope (σssi) 0 0.3

Table 6.4: The sampling limits for simulating ice floe.
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IIEM or GOM (depending on roughness scale relative to the radar wavelength,
see section 4.1 for details) and a volume containing inclusions as described by
the N2M (see section 4.2.2). The surface and volume scattering contributions are
computed separately and added incoherently. A more detailed description of the
layer-stacking method can be found in section 5.2.

6.4.1 Model configurations

Since the model is not intended for deformed ice or open water, the polygons
tagged as ”ridge or brash” and ”open water” are correspondingly disregarded
in the comparison, leaving those tagged as ”lead ice” and ”ice floe” up for con-
sideration. Lead ice is modelled as a thin sea ice layer with a relatively high
salinity covered by a thin layer of brine-wetted snow. Such wetted snow layers
were frequently observed during N-ICE 2015 (Merkouriadi et al. 2017). The ice
floe configuration contains a dry snow layer, a brine wetted snow layer and a sea
ice layer. In both configurations, interface roughness is described by the GPL
correlation function (with p = 2.1), except for the ice-water interface which is be-
lieved to have a smoother characteristic and therefore described by the Gaussian
correlation function. Details about how the different layers are parametrised can
be found in section 5.3, but an overview is shown in table 6.2.

6.4.2 Monte-Carlo sampling

The comparison between the model configurations and the SAR data contained
in the polygons is based on Monte Carlo sampling. Specifically, the model input
parameters are sampled uniformly between an upper and lower limit and the
corresponding model output samples are compared to the data. The sampling
limits for the model input parameters are shown in table 6.3 for the lead ice
configuration and in table 6.4 for the ice floe configuration. While it is hard to
argue for specific input limits without detailed, co-incident and co-located in-situ
measurements, observations from the N-ICE 2015 campaign can be used to set
plausible limits.

Specifically, the limits on the air temperature are based on data from the ship
log of RV Lance, as presented in section 6.3 (Hudson et al. 2015, for details).
The limits on ice and snow thickness, sea ice salinity and snow density are based
on detailed measurements that were made at the research camp close to the
ship. Specifically, ice core, snow pit and magna-probe measurements as well
as ground based electromagnetic sounding measurements are considered (Gallet
et al. 2017, Merkouriadi et al. 2017, Gerland et al. 2017, Rösel & King 2017).
For the ice thickness limits, additional data from an airborne electromagnetic
sounding instrument are also taken into account (Rösel et al. 2018), which yield
information over considerably larger areas than those from the research camp
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around RV Lance. While these in-situ observations were not collected at the
specific polygons of consideration, but a few to about a hundred kilometres away
(depending on particular polygon), they are extensive and thus believed to yield
a good indication on the general ice conditions for the region.

Some input parameters, such as correlation lengths of snow grains and brine
pockets, or roughness parameters at the layer interfaces, are notoriously diffi-
cult to measure in the field. Indeed, quantitative measurements of small scale
roughness, snow grains or brine pockets are limited from N-ICE 2015, thus cor-
responding limits are based on field and laboratory measurements found in the
literature. Specifically, limits on the roughness parameters are based on Fung &
Eom (1982) and Johansson (1988) and limits for the correlation lengths of snow
grains and brine pockets are based on Perovich & Gow (1991), Nghiem et al.
(1990) and Proksch et al. (2015).

6.4.3 Addative noise

In order to realistically simulate the SAR data, system noise cannot be neglected.
This is therefore incorporated into the model as an additive term with uncorre-
lated polarimetric channels, such that the diagonal elements of the total simulated

covariance matrix C
(tot)
ppqq are:

C(tot)
ppqq = C(model)

ppqq + C(noise)
ppqq (6.1)

where p and q indicate polarisation, C
(model)
ppqq is the noise-free model and C

(noise)
ppqq

is the noise term. The noise is chosen according to the sensor specifications for
Radarsat-2 and TerraSAR-X but is manually estimated for ALOS-2 (see sec-
tion 6.2.4).

6.5 Results

The results of the Monte Carlo simulation described in section 6.4 are now pre-
sented and analysed. Specifically, the model input limits listed in tables 6.3
and 6.4 are used for uniform random sampling of the model input parameters. In
the next two sections, the model output samples are compared to the polygons
based on (1) visual comparison and (2) a distance measure between model output
samples and polygon data samples.
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Figure 6.16: Model output and data polygons tagged as ”lead ice” in overlap 1
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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Figure 6.17: Model output and data polygons tagged as ”lead ice” in overlap 2
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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Figure 6.18: Model output and data polygons tagged as ”lead ice” in overlap 3
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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"Lead ice" [Overlap 4]

-40 -30 -20 -10 0

hh

-4

-2

0

2

4

6

8

v
v
/

h
h

Model (ALOS2)

Data  (ALOS2)

-40 -30 -20 -10 0

hh

-4

-2

0

2

4

6

8

v
v
/

h
h

Model (RS2)

Data  (RS2)

-40 -30 -20 -10 0

hh

-4

-2

0

2

4

6

8

v
v
/

h
h

No data

-40 -30 -20 -10 0

hh

-40

-35

-30

-25

-20

-15

-10

h
v

-40 -30 -20 -10 0

hh

-40

-35

-30

-25

-20

-15

-10

h
v

-40 -30 -20 -10 0

hh

-40

-35

-30

-25

-20

-15

-10

h
v

No data

-40 -30 -20 -10 0

hh

-60

-40

-20

0

20

40

60

h
h
v
v

-40 -30 -20 -10 0

hh

-60

-40

-20

0

20

40

60

h
h
v
v

-40 -30 -20 -10 0

hh

-60

-40

-20

0

20

40

60

h
h
v
v

No data

-40 -30 -20 -10 0

hh

0

0.2

0.4

0.6

0.8

1

h
h
v
v

-40 -30 -20 -10 0

hh

0

0.2

0.4

0.6

0.8

1

h
h
v
v

-40 -30 -20 -10 0

hh

0

0.2

0.4

0.6

0.8

1

h
h
v
v

No data

Figure 6.19: Model output and data polygons tagged as ”lead ice” in overlap 4
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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"Lead ice" [Overlap 5]
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Figure 6.20: Model output and data polygons tagged as ”lead ice” in overlap 5
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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"Ice floe" [Overlap 1]
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Figure 6.21: Model output and data polygons tagged as ”ice floe” in overlap 1
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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"Ice floe" [Overlap 2]
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Figure 6.22: Model output and data polygons tagged as ”ice floe” in overlap 2
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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"Ice floe" [Overlap 3]

-40 -30 -20 -10 0

hh

-4

-2

0

2

4

6

8

v
v
/

h
h

Model (ALOS2)

Data  (ALOS2)

-40 -30 -20 -10 0

hh

-4

-2

0

2

4

6

8

v
v
/

h
h

Model (RS2)

Data  (RS2)

-40 -30 -20 -10 0

hh

-4

-2

0

2

4

6

8

v
v
/

h
h

Model (TSX-DUAL)

Data  (TSX-DUAL)

-40 -30 -20 -10 0

hh

-40

-35

-30

-25

-20

-15

-10

h
v

-40 -30 -20 -10 0

hh

-40

-35

-30

-25

-20

-15

-10

h
v

-40 -30 -20 -10 0

hh

-40

-35

-30

-25

-20

-15

-10

h
v

No data

-40 -30 -20 -10 0

hh

-60

-40

-20

0

20

40

60

h
h
v
v

-40 -30 -20 -10 0

hh

-60

-40

-20

0

20

40

60

h
h
v
v

-40 -30 -20 -10 0

hh

-60

-40

-20

0

20

40

60

h
h
v
v

-40 -30 -20 -10 0

hh

0

0.2

0.4

0.6

0.8

1

h
h
v
v

-40 -30 -20 -10 0

hh

0

0.2

0.4

0.6

0.8

1

h
h
v
v

-40 -30 -20 -10 0

hh

0

0.2

0.4

0.6

0.8

1

h
h
v
v

Figure 6.23: Model output and data polygons tagged as ”ice floe” in overlap 3
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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"Ice floe" [Overlap 4]
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Figure 6.24: Model output and data polygons tagged as ”ice floe” in overlap 4
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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"Ice floe" [Overlap 5]
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Figure 6.25: Model output and data polygons tagged as ”ice floe” in overlap 5
are compared per polarimetric feature. The hh-channel is chosen on the x-axis
for all plots.
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6.5.1 Visual comparison

For visual comparison, the model output is computed and expressed in terms of
the following polarimetric parameters:

Y =































10 log10(σhh)

10 log10(σvv/σhh)

10 log10(σhv)

φhhvv

ρhhvv

(6.2)

The output parameters in equation 6.2 are considered pairwise to form 2D-
histograms of 50×50 bins. Bins containing one or more output sample are high-
lighted by a colour such that regions in the polarimetric output space are formed,
in which the model is able to produce a plausible prediction (given the limits of
the input parameters). By default, all 2D-histograms use the hh-channel on the
x-axis and one of the other polarimetric parameters of equation 6.2 on the y-axis.
By inserting the polygon data samples in the same plot, the overlap between
model and data is illustrated.

The plots for the respective overlapping scene sets are shown in figures 6.16
to 6.20 for the lead ice class and in figures 6.21 to 6.25 for the ice floe class. It
can be seen that when considering the output parameters pairwise, the models
generally overlap well with the data samples. The main exceptions are the cross-
polarised channel and the co-polarised phase difference, primarily for ALOS-2 in
the lead ice class. Specifically, the simulated hv-channel is generally too low and
the simulated phase difference is generally too small or has the wrong sign. It is
moreover interesting to note that the modelled output regions generally cover a
considerable part of the shown 2D output spaces.

6.5.2 Model-data distance

Note that the (coloured) model regions shown in figures 6.16 to 6.25 represent
5-dimensional regions in the full polarimetric output space (defined by the output
parameters in equation 6.2). This means that if all polarimetric parameters are
considered at the same time, the data samples may not necessarily be confined
in the 5-dimensional regions. To obtain a more quantitative measure of how well
the polygon data samples overlap with the model output, a distance measure will
now be considered.
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A simple distance measure

Denote a polygon data sample in the polarimetric output space by yd
i and a model

output sample by ym(xj), where xj is the corresponding model input sample
(containing all geophysical input parameters of the model). The displacement
between the data and model samples is:

dij = yd
i − ym(xj) (6.3)

Indeed, the Euclidian norm |dij | can readily be regarded as a measure of how
well the model sample ym(xj) matches with the data sample yd

i . However, since
the data samples are accompanied with noise and calibration uncertainties, the
displacement should be weighed accordingly. Specifically, if say the hh-channel is
certain to 1 dB, but the co-polarised phase difference is certain to 5◦, a 1◦ offset
in the phase should not be weighed the same as a 1 dB offset in the hh-channel.
Consider therefore the distance:

Dij =
√

dT
ijΣ̄

−1dij (6.4)

where superscript T denote transpose and scaling is introduced through the ma-
trix Σ̄. Ideally, the scaling should thus depend on the uncertainty of the data
samples, which unfortunately is not provided for all the considered sensors. They
are however provided for Radarsat-2 (Slade 2011), for which the radiometric er-
ror is specified as 1 dB and the error in polarimetric phase difference as 5◦. No
information is provided for the co-polarised correlation which was included in the
previous section, which therefore will be dropped in the following analysis. This
means that a point in the polarimetric output space can be expressed as:

y =









10 log10(σhh)
10 log10(σhv)
10 log10(σvv)

φhhvv









(6.5)

and the scaling matrix is chosen as:

Σ̄ =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 5









2

(6.6)

When computing distances according to equation 6.4, deviations in the radar
cross sections will thus be measured in units per 1 dB and deviations in co-
polarised phase difference in units per 5◦.
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Next, consider a data sample yd
i and denote the distance to the closest model

output sample as:
Di = min

j
Dij (6.7)

This minimum distance will be regarded as a measure of how well the model
is able to predict the particular data sample yd

i . Doing so, it should be noted
that the model output samples are not distributed uniformly in the output space.
Some regions are relatively dense in terms of model output samples, while other
regions are relatively sparsely sampled. It should moreover be noted that speckle
noise is assumed insignificant in the data samples. Note moreover that even if a
data sample is located within a 2D-histogram as shown in figures 6.16 to 6.25, it
may have a non-zero distance since the 2D-histograms are discretised into 50×50
bins. Additionally, the polygons from TerraSAR-X are excluded since most of
them are acquired in the dual-polarimetric mode and thus lack either one of the
co-polarised channels or the cross-polarised channel.

Histograms over the minimum distance according to equation 6.7, considering
polygons tagged as lead ice are shown in figure 6.26. Specifically, the top his-
togram shows the histogram over distances for all polygon pairs, and the lower
four plots shows the corresponding deviations per polarimetric parameter. Recall
that a distance unit in the top histogram corresponds to a deviation in σ by 1
dB or in co-polarised phase difference by 5◦. The green histograms correspond
to Radarsat-2 polygons and the red histograms to ALOS-2 polygons.

Considering the top histogram in figure 6.26, it is evident that the ALOS-
2 polygons generally deviate more than the Radarsat-2 polygons. In the four
lower histograms, it is evident that this is mainly attributed to deviations in the
cross-polarised channel and the co-polarised phase difference. For ALOS-2, the
former is typically 1-3 dB off, while the latter is up to 25◦ off. The co-polarised
channels are typically well described by the model for both sensors, with most of
the deviation being less than 2 dB. For Radarsat-2, the main offsets are in the
co-polarised phase difference.

In figure 6.26, the corresponding histograms are shown for polygons tagged
as ice floe. Compared to the lead ice class, they are overall very well predicted
by the model. The distances are again lower for Radarsat-2. Considering the
four lower histograms, it is clear that the deviations are typically larger in the
cross-polarised channel, in particular for ALOS-2. The phase shifts are moreover
considerably better matched for ALOS-2 in the ice floe class than in the lead ice
class.

Combining C- and L-band

For the two types of polygons (lead ice and ice floe) considered above, the models
generally agree well with the data when compared per sensor. A valid model
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Figure 6.26: Histograms over minimum model-data distances according to equa-
tion 6.7 for the lead ice class. 105 model samples were used.
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Figure 6.27: Histograms over minimum model-data distances according to equa-
tion 6.7 for the ice floe class. 105 model samples were used.
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Figure 6.28: Histograms over minimum model-data distances according to equa-
tion 6.10 for the lead ice class. 105 model samples were used.
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Figure 6.29: Histograms over minimum model-data distances according to equa-
tion 6.10 for the ice floe class. 105 model samples were used.
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should however also agree well when multiple radar configurations are combined.
That is, the same geophysical model input parameters should produce realis-
tic predictions for paired polygons, assuming they are co-located. This will be
investigated in terms of a combined distance as described next.

Denote two data samples of a polygon pair by yd
Ci and yd

Li, where the former
is the Radarsat-2 data sample and the latter is the paired ALOS-2 data sample.
Consider next the two model output samples resulting from the corresponding
radar configurations, but with a fixed geophysical configuration, denoted ym

C (xj)
and ym

L (xj), respectively. Denote the displacements:

dC
ij = yd

Ci − ym
C (xj) (6.8a)

dL
ij = yd

Li − ym
L (xj) (6.8b)

and the distances:

DC
ij =

√

dC
ij

T
Σ̄−1dC

ij (6.9a)

DL
ij =

√

dL
ij

T
Σ̄−1dL

ij (6.9b)

By minimising the averaged distance:

DC+L
i = min

j

1

2

(

DC
ij +DL

ij

)

(6.10)

a measure of the combined match between the polygon pair and the model is
obtained. In contrast to the distances previously shown in figures 6.26 and 6.27,
where the minimum distance per paired polygon could correspond to different
input parameters, the combined distance in equation 6.10 uses the same input
parameters for both polygons in a pair. The combined distance may this be
larger than simply the sum of the individual distances as shown in figures 6.26
and 6.27.

Histograms over the minimum combined distance according to equation 6.10
are shown in figure 6.28 for lead ice and figure 6.29 for ice floe. As previously,
the top plot show the histogram over distances for all polygon pairs, while the
lower four plots shows the corresponding deviations per polarimetric parameter.
In the lower plots, the green histograms correspond to Radarsat-2 polygons and
the red histograms to ALOS-2 polygons.

Considering the lead ice class and comparing the top histogram of the com-
bined distances in figure 6.28, with those computed per band in figure 6.26, it is
evident that the model generally deviate more when the bands are combined. The
bottom four plots moreover show that the main contribution to deviation comes
from the cross-polarised channel and the co-polarised phase shift in ALOS-2. The
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deviation in the co-polarised channels are however also increased compared to the
distances computed per band (figure 6.26).

Considering the histograms for the ice floe class, the combined distance is
generally larger than for the distances computed per band shown in figure 6.27.
It is however clear (from the top histogram) that the model generally fits consid-
erably better with the data than for the combined distances in the lead ice class.
In fact, the model typically deviates by less than 3 distance units. The deviation
is most attributed to cross-polarised channel for ALOS-2. Compared to the lead
ice class, the co-polarised phase shifts agree considerably better for ALOS-2.

6.6 Summary and conclusions

In this chapter, SAR images of sea ice acquired with three different satellite
sensors, operating at different frequency bands (X-, C- and L-band), are carefully
examined and compared to a layered backscatter model. Regions corresponding
to open water, lead ice, ice floes and ridges or brash ice are selected in terms of
manually drawn polygons. The polygons are processed and averaged into single
data samples in a polarimetric feature space. Polygons that are associated to
the same sea ice or water area, but are from different sensors, are referred to as
polygon pairs.

In section 6.2.5, an overview of all polygons is presented. In summary, those
tagged as open water show significant variation at all frequency bands which
is expected due to variability in wind conditions and fetch. Generally, the po-
larimetric parameters indicate dominant Bragg-like scattering (high co-polarised
ratios and correlation coefficients as well as small co-polarised phase differences),
although the scattering entropies and alpha angles are significant, suggesting that
other scattering mechanisms or texture are not negligible. A few polygons are
particularly noticeable in that σvv is considerably lower for Radarsat-2 than for
ALOS-2, despite similar incidence angles. The possibility that this is due to thin
layers of frazil ice in the water that suppresses short surface waves and conse-
quently Bragg waves at the C-band wavelength range, is discussed in more detail
in chapter 7. The polygons tagged as lead ice also show considerable variation.
In contrast to the open water class, relatively large co-polarised phase shifts are
observed, in particular at L-band. The ice floe and ridge or brash classes are less
variable. Also for these classes, significant co-polarised phase shifts are observed.

The polygons tagged as lead ice and ice floes are further compared to a
backscatter model. Specifically, the model input parameters are sampled ran-
domly and the corresponding output is compared to the polygon data samples.
The sampling limits for model input parameters are chosen carefully, partly based
on data from the N-ICE 2015 campaign and partly based on field and laboratory
measurements presented in the literature. The model is configured differently
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for the two ice classes and generally compares well with the observed data when
sensors are considered separately. Overall, the data from Radarsat-2 agree better
than that from ALOS-2 and the ice floe class agrees better than the lead ice class.
In particular, the cross-polarised channel and the co-polarised phase shift devi-
ate most between the model output and the data. The cross-polarised channel
is typically higher than the model output and the co-polarised phase difference
is typically positive in the data, but negative in the model output (although the
magnitude generally agree relatively well). The deviation in the cross-polarised
channel could result from the fact that the model does neither include multiple
backscattering effects nor large slopes of the layer interfaces.

When paired polygons are combined (excluding X-band) and compared with
the model, such that the same sea ice parameters are used for both polygons
in a pair, the agreement with the model is worse. The deviation is again larger
for the lead ice class than for the ice floe class, which still is relatively well
modelled. For the lead ice class, especially the co-polarised phase difference and
cross-polarised channel are problematic. For the ice floe class, the cross-polarised
channel contribute most to the deviation. The increased combined distances could
moreover be caused by (a) the polygon pairs not being accurately co-located, such
that different areas are compared and/or (b) the model not providing a realistic
representation of the backscatter response. Recalling that the model (1) neglects
higher order backscattering responses at interfaces (by restricting the RMS-slope
to small values) and in the volume (by assuming the DBA) and (2) assumes highly
symmetric inclusions (by describing them with a simplified correlation function),
it is perhaps not surprising that the cross-polarised channel deviates. The reason
for deviations in co-polarised phase shift is however less obvious.

Finally, it should be emphasised that the range of plausible model predic-
tions is quite large, even when the model input parameters are constrained by
the observations from N-ICE 2015. This relates to the results of the sensitivity
analysis in chapter 5, which concluded that the most important parameters in
terms of sensitivity are those describing small scale structures, specifically in-
terface roughness parameters as well as correlation lengths of brine pockets and
snow grains. These parameters are among the most difficult and variable ones to
measure in the field, and information about them is usually very limited. This
illustrates a major issue when applying backscatter models to SAR data. That
is, if complementary and rather detailed information about the sea ice conditions
is lacking, it is relatively easy to configure a model in a way such that it fits with
the data. The question if the model really represents the observed sea ice or not
still remains.
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Chapter 7

Backscatter reduction due
to damping of gravity waves
in frazil or grease ice slicks

It is well known that slicks of frazil or grease ice can cause a low radar backscat-
ter compared to open water roughened by wind or many types of consolidated
sea ice. A detailed understanding of this reduction of the radar backscatter is
important for characterisation, classification and parameter retrieval of sea ice
from radar remote sensing data. It is also critical for interpreting oil spills in ice
infested waters, since these also may cause a low radar backscatter and may be
misinterpreted as ice slicks (or vice versa). In this chapter, this is examined in
more detail. The general approach mimics the one used for slicks of oil presented
in, for instance, Alpers & Hühnerfuss (1989) and Gade et al. (1998).

The chapter begins with a brief motivation and background on the ice types
of consideration. Wave dispersion is then discussed, specifically for open water
and for slicks of ice. The model by Keller (1998) (referred to as the Keller
model) is considered for the latter, which treats an ice slick as a viscous layer and
provide the corresponding dispersion relation for gravity waves. The model is
solved numerically and compared to the well known dispersion relation for open
water. Next, the action balance equation is considered for linking the dispersion
relation to the wave spectrum. The source terms of the action balance equation
are examined. The term for wind input and the one for viscous dissipation are
assumed dominant and examined in detail. Lastly, the wave spectrum is coupled
with the SPM in order to relate the dispersion relation to a scattering band ratio.
The ratio predicts the reduction of the radar cross section (RCS) due to an ice
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slick, relative to some reference wavelength. Choosing the reference wavelength
to correspond to L-band radar waves, the ratio is used to interpret observations
from chapter 6.

The analysis concludes that under certain conditions, ice slicks have strong
impact on the spectral behaviour of the radar backscatter. According to the
numerical solution of the Keller model, the damping due to ice slicks is generally
very strong at wavelengths relevant to radar remote sensing. Consequently, the
wind speed presumably needs to be high in order to cause significant roughness
of the ice slick surface and thus detectable amounts of Bragg scattering.

While the approach presented in this study is essentially the same as the one
used for oil slicks in for example Gade et al. (1998), this study provide the first
attempt (to my knowledge) to quantitatively describe the spectral backscatter
characteristics of frazil or grease ice slicks. It is moreover different from Gade
et al. (1998) in that a band ratio (ratio of the RCS from a slick at one wavelength
relative to another) is here considered instead of a damping ratio (ratio of the
RCS from a slick relative to that of open water) as considered in Gade et al.
(1998) among others.

7.1 Motivation and objectives

Frazil and grease ice are under turbulent conditions the earliest ice types in the
ice formation process (see section 3.3.1 for further details). Their characteristics
and abundances are therefore important to monitor in order to better understand
and model sea ice growth and ocean-atmosphere interactions. As an example,
Smedsrud & Martin (2015) show that by incorporating grease ice into a basin-
scale sea ice-ocean model, the closing of sea ice leads is delayed and the heat loss
from the ocean to the atmosphere is significantly increased in fall and winter.

With increasing human activity in the Arctic Ocean in terms of fishing, ship-
ping and petroleum exploration or production, slicks of mineral oil at the sea
surface are likely to become much more frequent. Radar remote sensing has
proven to be extremely useful in detecting such slicks, since they typically re-
duces the radar backscatter significantly compared to open water (Brekke &
Solberg 2005). It is well known that slicks of frazil or grease ice also can cause
a reduction in backscatter. In figure 7.1, an example of a SAR image containing
streaks of grease ice is shown as an example (dark stripes perpendicular to the
highlighted transect). In ice infested waters, misclassification between slicks of
oil and ice is therefore a potential problem, thus a detailed understanding of their
characteristics is of great interest.

In this chapter, the reduction of the radar backscatter due to slicks of frazil or
grease ice is examined in more detail. In particular, the damping characteristics
as a function of radar wavelength is considered. This will also yield insights to
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Figure 7.1: Example of grease ice in a SAR image. These can be seen as dark
stripes perpendicular to the highlighted transect in the middle of the image.
The slicks were validated from co-incident optical data. The image cover the
Terra Nova Bay Polynya in Antarctica and is acquired by ALOS PALSAR (L-
band) on 10 September in 2009. The image is provided as a processed joint
photographic experts group (JPEG) file by Wolfgang Dierking through the ESA
project ALO.3545.
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observations made for open leads mentioned in the chapter 6, which is discussed
at the end of this chapter (section 7.4.5).

7.2 Frazil and grease ice

As mentioned in section 3.3.1, ice formation in turbulent and supercooled water
results in small submerged ice spicules and plates, called frazil ice. Accumulated
frazil ice is called grease ice. A characteristic property of frazil and grease ice is
the damping of short surface waves, which has been attributed to the viscosity of
the ice-water mixture (Weber 1987, Newyear & Martin 1997, 1999). Published
measurements of the viscosity of frazil or grease ice are however scarce, yet some
studies indicate that the kinematic viscosity of grease ice can be up to four orders
of magnitude larger than the one of sea water (Newyear & Martin 1997, 1999,
Rabault et al. 2017).

In the following, three different viscosities will be considered:

ν(i) =











101ν(w) ”Low-viscous case”

102ν(w) ”Medium-viscous case”

104ν(w) ”High-viscous case”

(7.1)

where ν(w) = 10−6 m2/s is the kinematic viscosity of water (Newyear & Martin
1997). The high-viscous case thus agrees with the measurements of accumulated
grease ice in Newyear & Martin (1997, 1999) and Rabault et al. (2017) and may
be considered as a ”worst case scenario” in terms of wave damping. No studies
have been found for less concentrated frazil ice, which is expected in the earliest
stage of the ice formation process. It is however arguable that these types of ice
will have a lower viscosity compared to the accumulated grease ice and can hence
be represented by the medium- and low-viscous cases.

7.3 Dispersion and damping of surface waves

Wave dispersion relates the frequency of a wave to its wavenumber (Crawford
1968). Knowing how these two quantities relate, yield information about the
propagation characteristics of the wave, such as its group or phase velocity as
well as its attenuation. Formally, the so called dispersion relation couples the
wave number ks (here the subscript s is used to distinguish the wavenumber of
surface waves to that of radar waves) and angular frequency ω of a plane wave
of the form ei(ksx−ωt) which can be assumed for small amplitude waves. Either
the wave number or the frequency can be considered a complex number which
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associates to wave damping. Here, ω will be a real number while ks will be
complex valued such that:

ks = k′s + ik′′s (7.2)

Here, the subscript s is used to distinguish wave number of surface waves to those
of the radar waves (these will however later be linked through the SPM). The
real part of the wave number relates to the wavelength λs as:

λs =
2π

k′s
(7.3)

and the imaginary part relates to wave damping, which can be expressed in terms
of the attenuation length l:

l =
1

k′′s
(7.4)

A freely propagating wave will thus decay as e−x/l, hence l is the distance the
wave needs to propagate before the amplitude is reduced to 1/e ≈ 0.37 of its
initial value. More details about wave dispersion can be found in an introductory
book on wave mechanics, fluid dynamics, optics or similar (Crawford 1968, for
example).

7.3.1 Waves in open water

For small amplitude waves, the dispersion relation for non-viscous water is:

ω2 =

(

gks +
γ(w)

ρ(w)
k3s

)

tanh(ksH) (7.5)

where g is the gravitational constant, γ(w) is the surface tension of water, ρ(w)

is the water density and H is the water depth. The term gks is associated to

gravitational forces and the term γ(w)

ρ(w) k
3
s to capillary forces. It is clear that for

long wavelengths (small ks) the gravitational forces dominate, while for short
wavelengths (large ks) the capillary forces dominate. In numbers, the gravity
term typically dominate above 7 cm in wavelength and capillary term below
about 4 mm. In between these regimes, both the gravity and capillary forces are
important.

The roots to equation 7.5 will yield real valued wave numbers, thus no damp-
ing is present. For viscous water however, the wave number will have a non-zero
imaginary part which is assumed (the solution to equation 9 with respect to the
spatial variable in Lamb 1916, section 948):

k′′s =
2ν(w)k′s

2

cg
(7.6)
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where ks
′ is the real valued root of equation 7.5, ν(w) is the kinematic viscosity

of water and:

cg =
dω

dk′s
(7.7)

is the group velocity.

7.3.2 Waves in frazil and grease ice

The dispersion and damping of gravity waves in grease ice has been studied by
several researchers. The main focus has been to understand how open water
waves behave as they penetrate into sea ice in the MIZ. Early attempts to model
the damping assumed a so called mass loading theory (Wadhams & Holt 1991),
which later turned out to be inconsistent with experiments (Newyear & Martin
1997). Models treating the ice as a viscous layer have shown considerably better
agreement with observations (Newyear & Martin 1997, 1999, Rabault et al. 2017).

An early attempt to model the viscous damping of grease ice was made by
Weber (1987). The model treats the grease ice as a layer on top of infinitely deep
water. It is assumed that both the ice and the water are homogeneous, viscous
and incompressible fluids. The dispersion relation is found by assuming that the
grease ice viscosity is very large and that the ice thickness is much smaller than
the wavelength of the surface waves. Since grease ice can be up to some tens
to hundred centimetres thick (Smedsrud 2011), the latter assumption makes the
model primarily applicable to ocean swell.

Later, Keller (1998) developed a two layer model, where the ice is viscous but
the water is not. It does not make explicit assumptions on the wavelength of the
waves, but lacks closed form solutions and thus needs to be solved numerically.
Approximate solutions on closed form are however found for wavelengths much
larger and much smaller than the ice layer thickness, respectively.

Further developments of the model by Keller (1998) were made by De Carolis
& Desiderio (2002) and Wang & Shen (2010). De Carolis & Desiderio (2002)
treat the case where also the water is viscous, while Wang & Shen (2010) extend
it by including elastic effects in order to better describe consolidated ice being
mixed with the frazil and grease ice. Both these models are mathematically more
involved than those by Weber (1987) and Keller (1998).

While the models mentioned above are mainly aimed at describing dispersion
of relatively long waves penetrating into the sea ice, this work needs a descrip-
tion of the damping of relatively short surface waves, comparable to the radar
wavelength. This rules out the model by Weber (1987), which assumes long
waves. Since additionally ice floes are not considered here, the model by Wang &
Shen (2010) is also not suitable. The model by Keller (1998) is moreover math-
ematically simpler than that of De Carolis & Desiderio (2002) and it has been
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successfully used for predicting the dispersion of relatively short waves (about
1-1.5m in wavelength) in laboratory grown grease ice (Newyear & Martin 1999).
For this reason, the model by Keller (1998), hereafter referred to as ”the Keller
model”, will be considered in this study.

7.3.3 The Keller model

This section briefly describes the Keller model. For further details please refer
to Keller (1998). The model yields the dispersion relation of small amplitude
gravity waves. In contrast to the dispersion relation for open water (equation
7.5), it does not account for surface tension and thus not capillary forces.

H

h

η(w)

η(i)

Inviscid water

Viscous ice

x

y

Figure 7.2: The physical setup of the Keller model. An ice slick is represented by
a viscous layer of thickness h positioned on top of an inviscid layer of thickness
H. The model yields the complex wave number as a function of frequency for
a small amplitude harmonic perturbation at the interfaces to the ice layer, with
amplitudes η(i) and η(w) as shown in the figure.
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The model represents the ice slick as a viscous layer of thickness h and kine-
matic viscosity ν, floating on top of an inviscid water layer of thickness H (see fig-
ure 7.2). The ice slick is governed by the Navier-Stokes equations for incompress-
ible fluids while the water layer is governed by the Euler equations. The former
accounts for a non-zero viscosity while the latter does not. The state of the system
is fully described by specifications of the interfaces between the air, ice and water
layers as well as the 2D velocity (vector) field u(x, y, t) = [U(x, y, t), V (x, y, t)]
and (scalar) pressure field P (x, y, t) (both being functions of space and time).
The system is at rest when the pressure and velocities are in hydrostatic equil-
librium and consequently the air-ice, ice-water and water-bottom interfaces are
at y = 0, y = −h and y = −H for all x, respectively (see figure 7.2). If the state
of rest is slightly perturbed however, gravity waves will propagate.

If the air-ice and ice-water interfaces are displaced slightly from their state of
rest, say by η(i)(x, t) and η(w)(x, t), respectively, the governing equations can be
linearised and solved analytically assuming a solution of the form:













U(x, y, t)
V (x, y, t)
P (x, y, t)
η(i)(x, t)
η(w)(x, t)













=













u(y)
v(y)
p(y)
a
b













ei(ksx−ωt) (7.8)

where ks is the complex wave number, ω the angular frequency and the vector
on the right hand side contains amplitudes. By imposing appropriate boundary
conditions, the problem of finding the unique solution can be reduced to that of
finding four unknown constants related to the amplitudes of equation 7.8 from
four linear equations (Keller 1998, equations (15)-(18)). These equations can be
written in matrix form as:

M(ks, ω)x = 0 (7.9)

where x is a vector of the four unknown constants and M(ks, ω) is a 4×4 co-
efficient matrix, with elements containing ks and ω. For this system to have a
non-trivial solution, the determinant of the coefficient matrix must be zero, that
is:

det(M(ks, ω)) = 0 (7.10)

which yields the dispersion relation. For the full expression see equation A.7
(or equivalently equation (19) in Keller 1998, although this is not written in di-
mensionless variables as in equation A.7). The equation may have multiple roots
which does not have closed form solutions. The roots must therefore be found nu-
merically and here the Levenberg-Marquardt algorithm is used with analytically
calculated gradients. If multiple roots are found, the one with the longest atten-
uation length is considered. Further details on the numerical implementation is
found in section A.2.2.



CHAPTER 7. BACKSCATTER REDUCTION DUE TO ICE SLICKS 179

1 3 10 30 100 300 1000

Frequency, ω/2π [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

W
a
v
e
l
e
n
g
t
h
,
 
λ
 
[
m
]

→

Capillary

←

Gravity

1 3 10 30 100 300 1000

Frequency, ω/2π [Hz]

10
-4

10
-2

10
0

10
2

10
4

A
t
t
e
n
u
a
t
i
o
n
 
l
e
n
g
t
h
,
 
l
 
[
m
]

→

Capillary

←

Gravity

Low visc.

Medium visc.

High visc.

Open water

Open water

(only gravity)

Figure 7.3: The above two plots show the dispersion relations for open water
(black line) and water covered by ice slicks (coloured lines) of various viscosities
(see legend) and thicknesses (solid = 10 cm and dashed = 50 cm). The water
depth H is infinite, the ice slick density ρ(i) = 969 kg/m3, the water density
ρ(w) = 1020 kg/m3, the water kinematic viscosity ν(w) = 10−6 m2/s and the
water surface tension γ(w) = 0.0745 N/m.
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7.3.4 Comparing wave dispersion in ice slicks to open water

In figure 7.3, the dispersion of waves in various ice slicks are compared to the
dispersion in open water. Specifically, the wavelength and attenuation length is
plotted for the frequencies 1 to 1000 Hz. The plotted ice viscosities (distinguished
by line colour in the figure) are stated in equation 7.1. The plotted ice thick-
nesses (distinguished by solid and dashed lines) are 10 and 50 cm, respectively.
The frequency regimes where gravity or capillary forces are dominant for open
water are indicated by vertical lines. The dispersion for open water, including
both capillary and gravity waves is shown as a black solid line and the relation
for only gravity waves is shown as a dotted line. Note that the two lines deviate
considerably for frequencies in the capillary regime, as anticipated. In particu-
lar, as the capillary forces begin to dominate there is a kink in the open water
dispersion relation (see top plot in figure 7.3), such that the wavelength is longer
than for pure gravity waves.

Considering the slicks, both the wavelength and the attenuation length de-
crease monotonically with increased frequency. At the lowest frequency (1 Hz),
the ice slicks do not affect the wavelength. As the frequency increases, all slicks
begin to deviate from the open water gravity waves (dotted black line) in terms
of increased wavelength. The effect is stronger for higher viscosities. Specifically,
a similar kink as for the open water case that includes capillary forces (solid black
line) is observed although the slicks do not account for capillary forces. This is
interesting, however for frequencies much higher than those in the gravity regime,
the results of the Keller model should be treated with care.

The attenuation length is considerably shorter in the ice slicks compared to
open water for all frequencies in the gravity regime. At higher frequencies, the
attenuation length becomes longer in the ice slicks than for pure gravity water
waves (dotted black line) but are still much shorter than for water waves gov-
erned by both capillary and gravity forces (solid black line). Again however, at
these frequencies the neglect of capillary forces in the Keller model needs to be
remembered.

In figure 7.4 the attenuation length is plotted versus wavelength for open
water and ice slicks (with the same settings as in figure 7.3). As before, the onset
of the regime for gravity waves is indicated by a vertical line (the capillary regime
is outside the plotted wavelength interval). It is clear that the slicks of lowest
viscosity (blue lines) have considerably longer attenuation lengths compared to
those of highest viscosity (yellow lines). Overall, the attenuation length is 1-4
orders of magnitude shorter for the slicks compared to open water.
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Figure 7.4: The attenuation length plotted versus wavelength for open water
(black lines) and water covered by ice slicks (coloured lines) of various viscosities
(see legend) and thicknesses (solid = 10 cm and dashed = 50 cm). The water
depth H is infinite, the ice slick density ρ(i) = 969 kg/m3, the water density
ρ(w) = 1020 kg/m3, the water kinematic viscosity ν(w) = 10−6 m2/s and the
water surface tension γ(w) = 0.0745 N/m.
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7.4 Scattering reduction due to ice slicks

From section 7.3 it is clear that a slick of frazil or grease ice will significantly
change both the wavelength and attenuation of surface waves compared to open
water. It is anticipated that this in turn will result in a reduction of the RCS, as
will be discussed in more detail here.

7.4.1 Bragg scattering

Considering the high permittivity of sea water, surface scattering can generally be
considered the dominant scattering mechanism from the sea surface. Specifically,
the small perturbation model (SPM) (see also section 4.1.2) has been extensively
used in oceanographic applications and will be assumed adequate for the purpose
of this chapter.

The SPM approximates the RCS from a randomly rough surface as (see also
equation 4.10):

σ0
pp = 4(k cos θ)4|αpp|2W (kb) (7.11)

where pp indicates polarisation, k is the radar wave number, αpp is defined in
equation 4.11 (being a function of only the incidence angle θ and permittivity εr)
andW (kb) is the surface spectrum evaluated at the so called Bragg wave number:

kb = 2k sin θ (7.12)

The backscatter is thus proportional to the surface spectrum evaluated at the
Bragg wavenumber kb, thus if a surface slick reduces the spectrum at the Bragg
wave number, the RCS will be reduced correspondingly. In order to relate this
reduction to wave dispersion and damping, the spectral action balance equation
is considered next.

7.4.2 Spectral action balance equation

The spectral action balance equation dictates how the surface spectrum, or more
precisely, the spectral action density evolves over time. The spectral action den-
sity is defined as (Alpers & Hühnerfuss 1989):

N =
g

ω
W (ks) (7.13)

where g is the gravitational constant and W (ks) is the surface wave spectrum.
For small amplitude waves, the rate of change of N is the sum of various sources
and sinks which is expressed in the so called spectral action balance equation
(Phillips 1985):

dN

dt
= Swi + Snl − Sbr − Svd (7.14)
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where the right hand side represents the sources and sinks. Specifically, Swi

represents input from wind and is the main generator of the waves and is thus
positive. The term Snl accounts for non-linear wave-wave interactions that re-
distribute the action density across wave numbers and can thus be both positive
and negative. Sbr represents wave breaking, also a non-linear effect but purely
dissipative and thus negative. The last term Svd represents dissipation due to
viscosity.

If the spectral action density and consequently the surface spectrum does not
change with time, the sources and sinks balance each other:

0 = Swi + Snl − Sbr − Svd (7.15)

If the source terms are known as functions of the action density, equation 7.15
can in principal be solved to yield the surface spectrum through equation 7.13.
General theoretical expressions for these terms are however seldom well known,
in particular for slicks of frazil or grease ice. However, the wind input and viscous
damping terms are likely to be the most important for viscous slicks, such that the
wind is the main source and viscous damping the main sink. A comparison of the
corresponding source terms could accordingly provide insights to how much the
spectrum is suppressed due to the ice slick at certain wave numbers. Specifically,
if the wind input at a certain wave number is much smaller than the dissipative
output due to viscosity, the spectrum is likely to be strongly reduced at that wave
number unless there are other sources, such as the non-linear one in equation 7.15,
that compensates the viscous dissipation. This is discussed in more detail next.

7.4.3 Wind input compared to viscous dissipation

For a slick free sea surface, the wind input is typically assumed proportional to
the action density as (Plant 1982):

Swi = βN (7.16)

where:

β = 0.04ω

(

u∗
cp

)2

(7.17)

where the wind and wave directions are assumed to be aligned for simplicity,
cp = ω/ks is the wave phase velocity and u∗ is the wind friction velocity. For
open water, the friction velocity can be assumed 3.5% of the wind speed at 10 m
height which is denoted U10 (Wu 1975). If a slick is present, the friction velocity
is likely lower. For oil slicks, it has been estimated to be as low as 68% of the
corresponding slick free friction velocity (Mitsuyasu & Honda 1982). Similar
studies have however not been found for ice slicks and therefore the reduction
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Figure 7.5: The source terms for wind input (with U10 set to 5, 15 and 25 m/s)
and viscous damping (see equations 7.16 and 7.19, respectively) for ice slicks of
different viscosity in the top, middle and bottom plot. The parameters for the
Keller model are the same as in figures 7.3 and 7.4 (see figure texts for details).
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compared to the slick free case will somewhat arbitrarily be assumed 70%, such
that for an ice slick:

u∗ = 0.7× 0.035 U10 (7.18)

Since this velocity will be used qualitatively in the subsequent sections and not
be compared to direct measurements, the exact number is not critical as long as
the order of magnitude is correct.

If the water is viscous, the term for the resulting viscous damping is (Phillips
1985):

Svd = 2k′′s cgN (7.19)

where cg = dω/dk′s is the group velocity of the surface waves. Equation 7.19
will be assumed valid also when a viscous slick is present (where k′′s and cg are
computed according to the Keller model).

The terms for the wind input and viscous damping in equations 7.16 and 7.19,
respectively, can now be compared to provide insights about the dissipative char-
acteristics of the slick in relation to the input from the wind. Specifically, if
equation 7.16 and equation 7.19 are inserted into the spectral action balance
equation (equation 7.14) and the terms for non-linear effects and wave-breaking
are ignored, it is easy to show that:

W (ks) =
ω

g
eγt (7.20)

where equation 7.13 is used to relate the spectral action density to the wave
spectrum and:

γ =
Swi

N
− Svd

N
= β − 2k′′s cg (7.21)

Clearly, whenever Swi

N < Svd

N the spectrum in equation 7.20 will decay exponen-

tially with time, while if Swi

N > Svd

N it will grow exponentially with time. The
latter is obviously not realistic over a long enough time scales, since non-linear
effects become important as the wave amplitude become large (equation 7.20 will
no longer be a valid solution to the action balance equation). It however illus-
trates that the difference between the normalised source terms in equation 7.21
dictates if the spectrum is likely to be suppressed or not. Small amplitude waves
will grow rapidly if the wind input is larger than viscous damping while if smaller,
they will quickly dissipate.

The normalised source terms Swi

N = β and Svd

N = 2k′′s cg are plotted in figure 7.5
as functions of wavelength, where the Keller model is used to compute the wave
numbers as functions of the frequency. The same model settings as in figures 7.3
and 7.4 are considered, that is for slicks of low, medium and high viscosity (see
equation 7.1). The slick thickness is 10 cm and the wind speed U10 is 5, 15 and
25 m/s, respectively, for the wind term plotted as black lines.
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In the top plot of figure 7.5, showing the low-viscous slick (ν(i) = 101ν(w)),
the wind input terms for 15 and 25 m/s winds are greater than the viscous
damping term for all wavelengths. For 5 m/s winds, only the longest waves have
a higher wind input. Small amplitude waves will grow rapidly until non-linear
effects become relevant and roughness due to the wind is thus likely if the wind
is sufficiently strong.

The middle plot in figure 7.5 shows the source terms for the medium-viscous
slick (ν(i) = 102ν(w)). For the low-wind case (5 m/s), the viscous dissipation is
larger than the wind input over the whole wavelength range. For intermediate
winds (15 m/s) only the waves longer than about 30 cm have larger wind input
than viscous dissipation. For the strong wind case (25 m/s), the input is larger
for waves longer than roughly 5 cm. The viscous dissipation is thus quite strong
and wind induced roughness at relevant radar wavelengths mainly appears likely
for very strong winds in the order of 20-30 m/s.

Considering the high-viscous slick (ν(i) = 104ν(w)) shown in the bottom plot
in figure 7.5, the viscous damping term shown in yellow dominates for wind situ-
ations and over the whole wavelength range. Surface roughness due to the wind
and consequently Bragg scattering will be significantly reduced in the presence
of a high-viscous slick, even in strong wind conditions.

It is evident that gravity waves in the wave length range relevant to radar
backscattering are very effectively attenuated by the presence of a viscous ice
slick. Unless the wind speed is very high or the viscosity of the slick is relatively
low, the surface is unlikely to be significantly roughened by the wind.

7.4.4 Backscatter reduction in low viscous slicks

Now, the damping characteristics of an ice slick will be linked to radar backscat-
tering assuming the SPM. The approach mimics that used for oil slicks in Gade
et al. (1998). By combining equations 7.13, 7.15 and 7.19, the surface spectrum
can be written as:

W (ks) =
ω

gγ
(Snl − Sbr) (7.22)

Note that this is not in general a solution for the spectrum, since Snl and Sbr will
generally depend on W (ks). Assuming however that wave breaking is negligible
compared to non-linear effects, Sbr may be dropped. Consider then the wave
spectrum normalised by its value at an arbitrary reference wavenumber ks0 as:

W (ks)

W (ks0)
=
ω(ks)γ(ks0)

ω(ks0)γ(ks)
· Snl(ks)

Snl(ks0)
(7.23)

In the following, the reference wave number is taken to be k0 = 25.2 m−1 which
corresponds to the centre frequency at L-band. If variations of this ratio, as a
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function of the wavenumber ks, is dominantly governed by the wind input and
viscous damping (through γ(ks)), then Snl(ks) is approximately constant and:

Snl(ks)

Snl(ks0)
≈ 1 (7.24)

The normalised spectrum then simplifies to:

W (ks)

W (ks0)
≈ ω(ks)γ(ks0)

ω(ks0)γ(ks)
(7.25)

Under the SPM, the ratio between the corresponding RCSs is consequently:

σ0
pp(k)

σ0
pp(k0)

=
W (kb)

W (kb0)
· |αpp(k)|2
|αpp(k0)|2

≈ ω(k)γ(kb)

ω(k0)γ(kb0)
· |αpp(k)|2
|αpp(k0)|2

(7.26)

where equations 7.11 and 7.25 are used and kb0 = 2k0 sin θ. Equation 7.26 will
be referred to as the band ratio relative to the radar wave number k0. The factor
αpp(k) depends on the radar wave number through the permittivity of the slick.
Here, the permittivity is assumed the same as for sea water at -2◦C with a salinity
of 32 ppt (see equation 3.4).

Note that, while the derivation of the band ratio in equation 7.26 mimics
the damping ratio presented in Gade et al. (1998), there is a major difference.
Gade et al. (1998) derives the ratio relative to open water, while equation 7.26 is
relative to the slick but at another wavenumber. This will enable comparison to
data from chapter 6.

A similarity to the damping ratio derived by Gade et al. (1998) is however that
the band ratio in equation 7.26 is singular at γ(k) = 0, that is when the source
terms for the wind input and viscous damping are equal. This is not physical
and wavenumbers close to, or lower than this singularity should be avoided. In
the previous section, it was found that this is avoided in the wavenumber range
relevant to radar Bragg scattering, if the wind is very high or the slick viscosity is
low (see figure 7.5). Therefore, only the slick of lowest viscosity (see equation 7.1)
with relatively high wind speeds is considered in the following analysis.

As an example, the band ratio relative to L-band is plotted as a function of
wavelength in figure 7.6. The incidence angle is 30◦, the viscosity is ν(i) = 101ν(w)

and the ice thickness is 10 cm (the results for 50 cm are almost identical). The
wind speed is varying from medium to high in order to avoid the singularity,
specifically it is 10, 15 and 25 m/s for the respective line. However, the 10 m/s
line begins to grow as the wavelength decreases below roughly 4 cm, which is
due to the singularity. The wavelengths corresponding to the centre frequencies
at X-, C- and L-band are highlighted with vertical lines. Since the band ratio
is relative to L-band, it is accordingly 0 dB at the L-band line. At the C-band
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Figure 7.6: Band ratios relative to L-band (at 30◦ incidence angle) according to
equation 7.26. Three different wind speeds are shown as indicated in the legend.
The wavelengths corresponding to X-, C- and L-band are highlighted as vertical
lines.

line, the band ratio vary from about -4 to -6 dB depending on wind speed and at
X-band from about -5 to -8 dB. It should however be noted that the wavelengths
at X-band are outside the regime for gravity waves and the results need to be
considered with care.

In summary, the band ratio yields a prediction on the backscatter reduction
relative to L-band for low viscous ice slick in medium to high wind speed cases.
It can now be used for analysing observations from chapter 6, as discussed in the
next section.
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Figure 7.7: The differences between polygons tagged as ”open water” from chap-
ter 6. Each tick corresponds to the median value of one polygon. The colour and
size of the markers indicate sensor and incidence angle difference, respectively
(see legend). Note specifically the green markers showing a significantly lower
backscatter for Radarsat-2 (C-band) than ALOS-2 (L-band), with a difference
up to 10 dB in the vv-channel.

7.4.5 Comparison to observations from chapter 6

Given the results of the previous two sections, a comment on the observations
shown in figure 7.7 can now be made. The figure originates from chapter 6 where
data from ALOS-2, Radarsat-2 and TerraSAR-X were analysed. Specifically,
manually selected polygons over open leads were examined. Figure 7.7 shows
the co-polarised RCSs for paired polygons, where the polygons in a pair cover
the same ice or water feature in the respective scene (each point in the plot
corresponds to the median of one polygon). The signal for ALOS-2 is shown
on the x-axis and the corresponding paired signal, either from Radarsat-2 or
TerraSAR-X, is shown on the y-axis.

A notable feature in the plots is that some Radarsat-2 polygons yield a signif-
icantly lower backscatter than the corresponding ALOS-2 polygons, in particular
for the vv-channel (right plot). The same is however not true for the TerraSAR-X
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polygons, which could be explained by a steeper incidence angle and possibly also
noise saturation due to a considerably lower SNR (with a NESZ at about -24 dB
for TerraSAR-X compared to below -30 dB for both ALOS-2 and Radarsat-2).
Differences in incidence angle or noise level do not explain the reduced backscatter
for Radarsat-2, since they are both similar to the ALOS-2 polygons. A hypo-
thetical cause could therefore be that slicks of frazil or grease ice reduces the
backscatter in the C-band observations (Radarsat-2), compared to the L-band
observations (ALOS-2).

In section 7.4.3 it was concluded that unless the wind speed is very strong
both the medium and high viscous slicks are likely to reduce surface waves very
effectively compared to the wind input for wavelengths relevant to Bragg scat-
tering. For the data points being mostly reduced at C-band in figure 7.7, the
wind speeds are however relatively low, around 5 m/s (measured at the research
vessel RV Lance, see chapter 6 for details). This suggests that a slick most likely
also would reduce the L-band signal significantly, which is not observed (the
vv-polarised RCS is above -20 dB).

Assuming however, that the wind speeds were higher than those recorded at
RV Lance and that the hypothesised slick viscosities were low, the backscatter
reduction as predicted by the band ratio in equation 7.26 agrees rather well to
the observations. Specifically, the results shown in figure 7.6 suggests that the
backscatter reduction relative to L-band (at 30◦ incidence angle) range roughly
from -4 to -6 dB depending on wind speed compared to the observed values in
figure 7.7 that ranges from minus a few dB down to -10 dB. Without further
in-situ data however, conclusions on the possibility of such high wind speeds or
low slick viscosities are difficult to draw. Given the relatively high backscatter
values at L-band and low wind speeds at RV Lance, it does however at this point
appear unlikely that the reduction is caused by slicks of grease or frazil ice.

7.5 Summary and conclusions

While it is well known that slicks of frazil or grease ice can reduce the radar
backscatter compared to wind roughened sea water, a thorough understanding
of the reduction is needed for interpreting radar backscatter data from ice slicks.
This chapter provide a detailed analysis of the damping characteristics of viscous
slicks of frazil or grease ice and their effect on the radar backscatter.

The initial assumption is that viscous damping is the main cause for reducing
the backscatter. This is further considered for gravity waves using the dispersion
model by Keller (1998), in which the ice slick is treated as a viscous layer floating
on top of an inviscid water layer. The model is solved numerically to yield the
wavelength and attenuation length of small amplitude gravity waves, as functions
of wave frequency.
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Relative ice viscosity, ν(i)/ν(w)

101 102 104

W
av
el
en
gt
h
,
λ 3.1 cm (X-band) 0.143 m 0.015 m - m

5.5 cm (C-band) 0.586 m 0.062 m 0.005 m

25.0 cm (L-band) 25.253 m 2.603 m 0.023 m

68.0 cm (P-band) 363.000 m 37.036 m 0.455 m

Table 7.1: Attenuation length for an ice slick (in metres), for various wavelengths
and viscosities. The wavelengths corresponds to X-, C-, L- and P-band radar
wavelengths. The ice thickness is 10 cm. For the highest viscosity and short-
est wavelength, a numerical solution to the Keller model was not obtained and
therefore the corresponding attenuation length is not stated for that case.

Wind speed, U10

10 m/s 15 m/s 25 m/s

W
av
el
en
gt
h
,
λ 3.1 cm (X-band) -4.7 dB -7.5 dB -8.3 dB

5.5 cm (C-band) -4.3 dB -5.7 dB -6.1 dB

25.0 cm (L-band) reference

68.0 cm (P-band) 3.2 dB 3.6 dB 3.8 dB

Table 7.2: Band ratios for the vv-polarisation at different wavelengths relative
to L-band at 30◦ incidence angle and for different wind speeds. The wavelengths
corresponds to X-, C-, L- and P-band. The ice thickness is 10 cm and the viscosity
of the ice is ν(i) = 101ν(w). These values can also be seen in figure 7.6.
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The attenuation length describes the distance scale at which small amplitude
waves dissipate. In figure 7.4, the attenuation length for various ice slicks was
plotted versus wavelength and to summarise, values corresponding to four impor-
tant wavelengths are highlighted in table 7.1. These wavelengths are: 3.1 cm, 5.5
cm, 25 cm and 68 cm, which roughly corresponds to X-, C-, L- and P-band radar
wavelengths. As expected, the attenuation length increases with wavelength and
decreases with ice viscosity, which is assumed 1, 2 and 4 orders of magnitude
greater than the viscosity of typical sea water (assumed 10−6 m2/s).

For the shortest wavelength (corresponding to X-band), the attenuation length
is very short (in the order of a centimetre or less) indicating very strong wave
damping even for the slick of low viscosity. For the longest wavelength (corre-
sponding to P-band) which is well in the range of pure gravity waves, the attenu-
ation length is considerably longer and vary from 46 cm up to 363 m, depending
on ice viscosity. Note however that both X- and C-band are in the wavelength
zone were capillary forces are important for corresponding water waves. This
needs to be emphasised since the Keller model only accounts for gravitational
forces.

The dispersion relation is further linked to source terms in the action balance
equation. In particular, the reduction of spectral action density per unit time
due to ice slicks is compared to the input from wind. It is found that the viscous
dissipation is stronger than the wind input, unless the slick has a relatively low
viscosity or the wind speed is very high (see figure 7.5).

The action balance equation is then used to relate the dispersion relation to
the radar backscatter. In particular, a band ration is found which yields the
reduction of the RCS relative to a reference wavelength, which here is chosen to
the wavelength corresponding to the L-band centre frequency (25.0 cm).

In table 7.2 a set of band ratios corresponding to the wavelengths at X-, C-,
L- and P-band are shown. X-band is here reduced relative to L-band by about
-5 to -8 dB depending on wind speed, C-band by about -4 to -6 dB and P-band
is increased by roughly 3 to 4 dB. The values are dependent on the viscosity of
the ice slick which here corresponds to the lowest case, that is ν(i) = 101ν(w).

By comparing the theoretically predicted band ratios for the high-wind-low-
viscosity scenario to observations from chapter 6, a good agreement is obtained.
Specifically, the reduction of radar backscatter at C-band relative to L-band as
observed in data, range from a few dB below zero down to -10 dB. The corre-
sponding theoretical predictions range from roughly -4 to -6 dB, depending on
wind speed and ice viscosity. While the theoretical values assume high wind
speeds, relatively low wind speeds were recorded simultaneous to the data acqui-
sitions. This may suggest that the reduction is not likely a result of ice slicks.
The results for X-band are not considered further due to differences in noise level
and incidence angle between TerraSAR-X and ALOS-2, in addition to the fact
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that X-band waves are well within the wavelength domain where capillary forces
are important, which are not accounted for in the model by Keller.

In conclusion, this chapter presents a quantitative analysis of the spectral be-
haviour of the radar backscatter from frazil or grease ice. The approach provides
predictions on the backscatter reduction, as a function of radar wavelength. It is
demonstrated that the predictions can readily be compared to data and signifi-
cantly help interpretation. While the approach mimics that used for oil slicks in
previous studies (Alpers & Hühnerfuss 1989, Gade et al. 1998, for example), it is
the first (to my knowledge) that provide quantitative predictions with regard to
frazil or grease ice, at wavelengths relevant to radar remote sensing.
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Chapter 8

Summary and outlooks

The studies presented in the previous three chapters will now be summarised.
Note that these chapters specifically address the objectives stated in the intro-
duction of the thesis (section 1.4). Then, concluding remarks will be made that
connect to the problem formulation in section 1.3 and lastly, research issues to
be considered in the future will be highlighted.

8.1 Summary of studies

Chapter 5 (to my knowledge) presents the first global sensitivity analysis of the
fully polarimetric radar backscatter response from snow covered sea ice. The
analysis is global in the sense that it takes into account the observed ranges of
sea ice properties that are needed as input, and it attributes a quantitative sensi-
tivity measure to each individual input parameter, such that the most influential
one(s) can be identified. The considered model is configured with different snow
layers and in particular the presence of brine-wetted snow is considered both in
comparison and in combination with dry snow. The analysis is performed for X-,
C- and L-band radar frequencies.

A general conclusion is that the polarimetric backscatter response of snow cov-
ered sea ice is complex. There is no single input parameter that stands out across
the considered radar frequencies or snow and ice conditions. Generally it can be
concluded that parameters describing roughness of interfaces and dimensions of
brine inclusions and snow grains, are more important than parameters describing
bulk properties such as salinity, temperature and density. It is moreover found
that parameters associated to the snow and upper part of the ice dominate at
X- and C-band, while the roughness of the ice-water interface is important at
L-band.

195
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The analysis moreover shows that a snow layer that is fully or partially soaked
by brine can have a significant impact on the radar signature. The general effect
of a brine-wetted snow layer is attributed to (1) the real part of the effective per-
mittivity being closer to that of sea ice, making the permittivity contrast weaker
at the snow-ice interface and (2) the imaginary part of the effective permittivity
being considerably higher than for dry snow, thus causing significant attenuation
at high frequencies (such as at X- or C-band). The effect of brine-wetted snow
is strongly dependent on its temperature and salinity, which also couples to the
dry snow since this insulates the brine-wetted snow from the air.

Chapter 6 complements the sensitivity analysis of chapter 5 by showing that
the composite backscatter model (based on incoherent layer-stacking as consid-
ered in chapter 5) can be fitted well to SAR data at both C- and L-band, for ice
identified as lead ice and ice floes (which presumably is first year ice). Generally,
C-band data compare better than L-band data. Likewise, the ice identified as
ice floes is better represented than ice types identified as lead ice. The model
primarily deviates from the data in the co-polarised phase shift and the cross-
polarised channel. Overall, the variance in model output is very large which
can be explained by insufficient constraints on roughness and volumetric struc-
ture parameters (which are among the most important ones in terms of model
sensitivity, as concluded in chapter 5).

While chapters 5 and 6 are tightly linked to each other (since they mainly
deal with snow covered sea ice) chapter 7 focuses on a rather special topic, that
is the backscatter from frazil and grease ice. A detailed analysis of the damping
characteristics of viscous slicks of frazil or grease ice and their effect on the radar
backscatter is presented. This was initially motivated by observations found over
open leads (presented in chapter 6), where the co-polarised backscatter at C-
band was significantly suppressed compared to that at L-band. A hyppothetical
explanation is that slicks of frazil ice can suppress short surface waves and thus
the C-band backscatter. In order to provide insights into the observations, a
model for the dispersion relation of viscous ice slicks by Keller (1998) (referred
to as the Keller model) is considered. An approach similar to the one described
in Gade et al. (1998) is then adopted and modified, such that the dispersion
relation is linked to a band ratio. This ratio provides the backscatter relative to
a reference radar frequency and can readily be compared to data from chapter 6
and significantly help the interpretation.

The analysis concludes that under certain conditions, ice slicks have strong
impact on the spectral behaviour of the radar backscatter. According to the
numerical solution of the Keller model, the damping due to ice slicks is generally
very strong at wavelengths relevant to radar remote sensing. Consequently, the
wind speed presumably needs to be high in order to cause significant roughness
of the ice slick surface and thus detectable amounts of Bragg scattering.
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8.2 Concluding remarks

In the problem formulation of the thesis (section 1.3), the following questions
were phrased:

A. What input parameters are most important in a layered backscatter model
(based on existing surface and volume scattering models) at X-, C- and
L-band radar frequencies?

B. How does brine wetted snow affect model sensitivity?

C. Can a layered backscatter model generally be used to describe typical ice
types observed at multiple frequency bands?

D. What is the multi-frequency backscatter characteristic of frazil and grease
ice?

So, does this thesis answer them?
Chapter 5 provides important answers to the first two questions, by presenting

a unique sensitivity analysis that (as far as I know) has not yet been been done
for the radar backscatter from sea ice. It does not simply suggest that certain
parameters are important, but it provides quantitative numbers of the relative
importance of the model input parameters in terms of Sobol indices. It suggests
that the model sensitivity is rather complex. Depending on the snow condition,
different input parameters dominate for different radar frequencies. In many
situations, multiple parameters are important. This is critical information that
should be taken into account when interpreting data and retrieving parameters
by means of model inversion.

Chapter 6 addresses the third question. While there are deviations, the anal-
ysis clearly shows that the selected model can predict the majority of the consid-
ered observations (restricted to what is identified as lead ice and ice floes). While
this is quite remarkable, it must be emphasised that without complementary data
that can be used to validate the model input parameters, some uncertainty is left
that the model actually fully represents the real sea ice configuration. Consider-
ing that the model sensitivity is highly dependent on radar frequency (as shown
in chapter 5), data acquired at different frequency bands could complement each
other. This is acknowledged by combining observations (of the same ice regions)
from Radarsat-2 and ALOS-2, and fitting the model to the combined data (assum-
ing the same geophysical input parameters in the model). Compared to treating
each frequency independently, the model compares worse to the combined data
which indicates that further model tuning is required. The co-location of the
combined data is however not perfect (due to ice drift), which complicates the
analysis.
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Finally, chapter 7 provides the first (to my knowledge) attempt to answer the
last question, characterising the multi-frequency backscatter response from frazil
and grease ice in a quantitative manner. While there are important simplifications
made in the analysis (capillary forces and non-linear effects are neglected), the
study provides simulation results that can readily be compared to the data.

8.3 Future outlooks

While previous work on modelling and analysis of the radar backscatter from sea
ice is extensive, there are still unresolved or only partly resolved issues remaining.
While this thesis provides some new insights, in particular on model sensitivity,
the impact of brine-wetted snow and the backscatter characteristics of frazil and
grease ice, some important issues to be dealt with in the future are discussed in
the following paragraphs.

In chapter 6, it is noted that the considered model primarily deviated from
data in the cross-polarised channel and the co-polarised phase shift. For better
agreement, other models should be considered. In particular models that account
for higher order backscattering mechanisms, irregular inclusion shapes, multiple
inclusion types (both air bubbles and brine pockets for instance), coherent layer
interactions (especially for thin layers) and a wider range of roughness scales
at layer interfaces should be tested or even still need to be developed. These
are all aspects that were neglected in the model used here. Regarding volume
scattering for instance, approaches that are based on dense medium radiative
transfer (DMRT) could potentially provide better agreement to data, since they
account for multiple backscattering of inclusions and coherent near range effects.
There are moreover a number of numerical approaches that are fully coherent
and include higher order scattering effects, for instance the method of moments
(MoM), the finite-volume time-domain (FVTD) method and the finite element
method (FEM). Such approaches are often regarded as computationally too de-
manding, but with computational power becoming cheaper, they are attracting
more attention (Isleifson et al. 2012, Xu et al. 2016) and could perhaps yield
better agreement to data.

Next, an issue that is arguably among the most pressing ones, relates to the
lack of validation data. From chapter 5 it was found that parameters describing
the small scale structure of interfaces and inclusions are among the most impor-
tant ones. In chapter 6, it was moreover found that relatively simple scattering
models agree quite well with SAR data. In order to validate such results, com-
plementary measurements of small scale structural parameters are thus needed.
Such measurements are however extremely difficult to perform.

Consider for example the roughness of a snow covered interface. For a rough-
ness measurement to be feasible (with for example a laser scanner), the snow
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needs to be removed without affecting the interface which is extremely difficult
in practice. The measurement moreover needs to cover a large area, since (a) the
roughness characteristics can be very variable and (b) the measurement should
preferably cover multiple pixels in a SAR image to be useful for validation. At
the same time, the interface needs to be sampled on sub-wavelength scales in
order to provide sufficiently good estimates of the roughness. Instruments being
able to resolve the volumetric structure of the snow and sea ice are also needed.
For that, radar tomography has proven to be useful for identifying from where in
the volume the dominant backscatter is coming (Yitayew et al. 2017a,b). Such
information could undoubtably be of great help in validating layered backscatter
models.

Regarding chapter 7, validation data are also lacking. There has been a few
documented tank experiments with relatively thick grease ice (Newyear & Martin
1997, 1999) aimed at understanding ocean swell. No published measurements of
less dense frazil ice, at wavelengths on centimetre to decimetre scales relevant to
radar scattering, were available to support this study. Such measurements would
be needed for validating the simulations presented in chapter 7. Also, multi-
frequency radar data acquired over known locations of frazil or grease ice would
be of great help.
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Appendix A

Expressions and derivations

A.1 Average radius of curvature for the GPL
correlation function

If σs ≪ 1, the approximate average radius of curvature Γc is given in equation
4.8, but restated here for clarity (Ulaby et al. 1982, page 1013):

Γc ≈
1

σz

(

2

π

d4ρ(r)

dr4

∣

∣

∣

∣

∣

r=0

)−1/2

(A.1)

Moreover, the 4th derivative of the correlation function at the origin can be
written in terms of the power spectrum W1(k) as:

d4ρ(r)

dr4

∣

∣

∣

∣

∣

r=0

=
3

8

∫ ∞

0

k5W1(k) dk (A.2)

The surface power spectrum for the GPL correlation function is given as (Li et al.
2002, equation 11):

W1(k) =
l2(p− 1)

2

a2p
b2p

(

1 +
a2p
b2p

k2l2

4

)−p

(A.3)

Inserting equation A.3 and A.2 in equation A.1 and integrating, yields:

Γc ≈
√

π

6

l2

2σz

a2p
b2p

√

6− 5p+ p2 (A.4)

conditioned that p > 3.
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A.2 Grease ice dispersion relation

A.2.1 Dispersion relation in dimensionless variables

As outlined in chapter 7, the dispersion relation for small amplitude gravity waves
in frazil or grease ice is given by finding the roots of equation 7.10. The full ex-
pression of this equation is stated in equation (19) in Keller (1998). However, it
is found that if the expression is rewritten in terms of dimensionless variables,
numerical root-finding appears more stable. In particular, the following dimen-
sionless variables are considered:

ω̃ =
ω

M
k̃ =

k

N

h̃ =
h

N
H̃ =

H

N

ρ̃ =
ρi
ρw

(A.5)

where the dimensoinal scaling factors are:

N =
( g

ν2

)1/3

M =
(g2

ν

)1/3
(A.6)

and ρi and ρw are the densities of frazil or grease ice and water, respectively.
Rewriting equation (19) in Keller (1998) in terms of these variables and dividing
by N4M2, the following expression is found:

f(k) = 2ABCD
(

1− sech
(

kh̃
)

sech
(

ah̃
))

−

BC(iA+B)(E + F ) tanh
(

ah̃
)

+

((BC)2 + (AD)2 + (iA+B)2EF ) tanh
(

ah̃
)

tanh
(

kh̃
)

−

AD(iA+B)(E + F ) tanh
(

kh̃
)

= 0

(A.7)

where:
A = 2ik̃2 B = a2 + k̃2 C = 2k̃2 − iω̃

D = 2ik̃a E =
k̃

iω̃

F =
iω̃

ρ̃

(

coth
(

k̃H̃
)

− (1− ρ̃)k̃

ω̃2

)

a =

√

k̃2 − iω̃

(A.8)

Given an angular frequency ω, equation A.7 is solved numerically to yield the
complex wave number k. The equation have multiple roots (Keller 1998), but
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the root with the smallest value of k′′ will however have the longest attenuation
length and thus be most relevant here (waves with shorter attenuation lengths
may still be excited, but will more quickly disappear and thus contribute less to
the surface power spectrum).

A.2.2 Numerical solution to equation 7.10 and A.7

The roots of equations 7.10 and A.7, are found numerically using the Levenberg-
Marquardt algorithm. This is a gradient based iterative method which needs to
be initialised with a guess of the true root.

Gradient

Since the unknown k of equation A.7 is a complex number, the respective real
and imaginary parts k′ and k′′ are treated as separate real valued variables.
Correspondingly, the gradient will be a 2×2 matrix defined as:

∇f(k′, k′′) =





Re
{

∂f
∂k

}

− Im
{

∂f
∂k

}

Im
{

∂f
∂k

}

Re
{

∂f
∂k

}



 (A.9)

where ∂f
∂k is given by differentiating equation A.7 with respect to k, as if it would

be a real valued variable. The full analytic expression is quite involved and is
therefore not stated in this document.

Initialisation

Since equation A.7 has multiple roots, the initialisation of the Levenberg-Marquardt
algorithm, call it k0, needs to be chosen carefully. Generally, the closer k0 is to
the true root, the higher is the likelihood that it will be found. Here two different
initialisations are used, as described below.

It is arguable that low frequency waves are little affected by the viscous ice
layer and therefore have a wave number close to that of gravity waves in an
inviscid fluid, given by the root of:

ω2 = gk tanh(kH) (A.10)

As a first initialisation, k0 is therefore chosen to be the root of this equation. If
H = ∞, the root is simply:

k′0 =
ω2

g
k′′0 = 0 (A.11)
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For higher frequencies, the roots may deviate considerably from equation
A.11. Therefore, a second initialisation is made by fitting a spline to the low
frequency roots and extrapolating to higher frequencies. The initialisation that
yields the root of smallest k′′ is then selected.

Validation

Based on the above mentioned numerical scheme, all figures of Keller (1998)
have been reproduced, apart from Figure 1 with the parameter setting R = 1000
and h = 0.1 (see parameter definitions in Keller (1998)). The above mentioned
scheme yields a slightly lower k′ for ω̂ higher than about 3.5. However, since
Figure 2 in Keller (1998) does not deviate for the same parameter setting, the
deviation of Figure 1 in Keller (1998) may be due to a misprint.
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Coefficients

B.1 Fresnel coefficients

Boundary conditions... Fresnel reflection coefficients:

rv =
εr cos θ − q

εr cos θ + q
(B.1)

rh =
µr cos θ − q

µr cos θ + q
(B.2)

where

q =

√

µrεr − sin2 θ (B.3)

Fresnel reflectivities:
Rv = |rv|2 (B.4)

Rh = |rh|2 (B.5)

B.2 Debye relaxation coefficients

This section contains expressions for the coefficients entering the Debye relaxation
equations 3.3 and 3.4.

B.2.1 Debye relaxation of brine

Below are the expressions for the coefficients for brine, that enter the Debye re-
laxation equation 3.3. That is; the static and high frequency limit of permittivity
(εs and ε∞), the relaxation time (τr) and conductivity (σc).
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Permittivity limits of brine (εs and ε∞)

For brine, the static and high frequency limits of the relative permittivity are
found to be temperature dependent (Stogryn & Desargant 1985):

εs(T ) =
939.66− 19.068T

10.737− T
(B.6a)

ε∞(T ) =
82.79 + 8.19T 2

15.68 + T 2
(B.6b)

Relaxation time of brine (τr)

The relaxation time (in seconds) of brine is found to be approximated as (Stogryn
& Desargant 1985):

τr(T ) =
1

2π
(0.10990× 10−9

+ 0.13603× 10−11 T

+ 0.20894× 10−12 T 2

+ 0.28167× 10−14 T 3)

(B.7)

Conductivity of brine (σc)

The conductivity of brine is found as (Stogryn & Desargant 1985):

σc(T ) =

{

−T e0.5193+0.08755T if T ≥ −22.9◦C

−T e1.0334+0.1100T if T < −22.9◦C
(B.8)

B.2.2 Debye relaxation of sea water

Below are the expressions for the coefficients for sea water, that enter the double
Debye relaxation equation 3.4. That is; the static, intermediate and high fre-
quency limit of permittivity (εs, ε1 and ε∞), the first and second relaxation time

(τ
(1)
r and τ

(2)
r ) and the conductivity (σc).

Permittivity limits of sea water (εs, ε1 and ε∞)

Static, intermediate and high frequency limit (Meissner & Wentz 2004):

εs(T , S) = εs(T , 0) e
d0S+d1S

2+d2TS (B.9a)

ε1(T , S) = ε1(T , 0) e
d6S+d7S

2+d8TS (B.9b)

ε∞(T , S) = ε∞(T , 0) (1 + S(d11 + d12T )) (B.9c)
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where:

εs(T , 0) =
37088.6− 82.168T

421.854 + T
(B.10a)

ε1(T , 0) = c0 + c1T + c2T
2 (B.10b)

ε∞(T , 0) = c6 + c7T (B.10c)

The coefficients ci and di are found in table B.1.

Relaxation times of sea water (τ
(1)
r and τ

(2)
r )

τ (1)r (T , S) = τ (1)r (T , 0) (1 + S(d3 + d4T + d5T
2))−1 (B.11a)

τ (2)r (T , S) = τ (2)r (T , 0) (1 + S(d9 + d10T ))
−1 (B.11b)

where:

τ (1)r (T , 0) =
c3 + c4T + c5T

2

45 + T
× 10−9

2π
(B.12a)

τ (2)r (T , 0) =
c8 + c9T + c10T

2

45 + T
× 10−9

2π
(B.12b)

The coefficients ci and di are found in table B.1.

Conductivity of sea water (σc)

σc(T , S) = σc((T , 35))R15RT/15 ×
2π

10−9
(B.13)

where:

σc(T , 35) = 2.903602

+ 8.607× 10−2 T

+ 4.738817× 10−4 T 2

− 2.991× 10−6 T 3

+ 4.3047× 10−9 T 4

(B.14)

and:

R15 = S
37.5109 + 5.45216S + 1.4409× 10−2S2

1004.75 + 182.283S + S2
(B.15)

and:

RT/15 = 1 +
A(T − 15)

B + T
(B.16)
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c0 5.7230

c1 2.2379 ×10−2

c2 −7.1237 ×10−4

c3 5.0478

c4 −7.0315 ×10−2

c5 6.0059 ×10−4

c6 3.6143

c7 2.8841 ×10−2

c8 1.3652 ×10−1

c9 1.4825 ×10−3

c10 2.4166 ×10−4

d0 −3.56417 ×10−3

d1 4.74868 ×10−6

d2 1.15574 ×10−5

d3 2.39357 ×10−3

d4 −3.13530 ×10−5

d5 2.52477 ×10−7

d6 −6.28908 ×10−3

d7 1.76032 ×10−4

d8 −9.22144 ×10−5

d9 −1.99723 ×10−2

d10 1.81176 ×10−4

d11 −2.04265 ×10−3

d12 1.57883 ×10−4

Table B.1: Polynomial coefficients for equations B.9, B.10, B.11 and B.12.

where:

A =
6.9432 + 3.2841S − 9.9486× 10−2S2

84.850 + 69.024S + S2
(B.17a)

B = 49.843− 0.2276S + 0.198× 10−2S2 (B.17b)

The coefficients ci and di are found in table B.1.

B.3 Brine volume fraction coefficients

The functions F1 and F2 of equation 3.6, for calculating the volume fraction of
brine (see Cox & Weeks 1983, for details):

F1 = (f
(1)
0 + f

(1)
1 T + f

(1)
2 T 2 + f

(1)
3 T 3)× 103 (B.18a)

F2 = f
(2)
0 + f

(2)
1 T + f

(2)
2 T 2 + f

(2)
3 T 3 (B.18b)

where the coefficients f
(1)
i and f

(2)
i for i = 0, ..., 3 are stated in table B.2
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Para- Temperature (◦C)

meter 0 ≥ T > −2 −2 ≥ T ≥ −22.9 −22.9 > T ≥ −30

f
(1)
0 −4.1221×10−2 −4.732 9.899×103

f
(1)
1 −1.8407×101 −2.245×101 1.309×103

f
(1)
2 5.8402×10−1 −6.397×10−1 5.527×101

f
(1)
3 2.1454×10−1 −1.074×10−2 7.160×10−1

f
(2)
0 9.0312×10−2 8.903×10−2 8.547

f
(2)
1 −1.6111×10−2 −1.763×10−2 1.089

f
(2)
2 1.2291×10−4 −5.33×10−4 4.518×10−2

f
(2)
3 1.3603×10−4 −8.801×10−6 5.819×10−4

Table B.2: Coefficients for equation B.18, which enter equation 3.6 used to cal-
culate the volume fraction of brine in ”standard” sea ice. The coefficients are
taken from Cox & Weeks (1983).

B.4 Sea ice bulk permittivity coefficients

The coefficients a0, a1, b0 and b1 used for calculating sea ice permittivity in
equation 5.20 are listed in table B.3. The tabulated coefficients are take from
Vant et al. (1978).

B.5 GPL coefficients

For the GPL correlation function defined in equation 4.3c, and it’s corresponding
spectrum and RMS slope in equations 4.5c and 4.7c, respectively, the coefficient
ap is defined as:

ap =
Γ(p− 0.5)

Γ(p)
(B.19)

where Γ(·) is the Gamma function. The coefficient bp is not defined on closed
form, but obtained numerically by solving the equation:

(

2bp
ap

)p−1

Kp−1

(

2bp
ap

)

= 2p−2Γ(p− 1)e−1; (B.20)
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FYI MYI

Parameter f (GHz) a0 a1 a0 a1

0.100 3.22 20.6

0.200 3.23 14.5

0.400 3.26 12.3

ε′ 0.800 3.12 9.9

1.000 3.12 9.0

2.000 3.07 7.6

4.000 3.05 7.2

b0 b1 b0 b1

0.100 0.161 13.24 0.022 6.66

0.200 0.043 8.95 - -

0.400 0.043 7.15 −0.058 12.01

ε′′ 0.800 0.048 5.34 0.000 4.74

1.000 0.039 6.04 −0.004 4.36

2.000 0.034 3.56 0.013 4.35

4.000 0.024 3.29 −0.007 2.99

7.500 0.032 3.53 - -

Table B.3: Coefficients used in equation 5.20 for calculating sea ice permittivity
for FYI and MYI. The coefficients are taken from Vant et al. (1978).
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where Kν(·) is the modified Bessel function of the second kind of order ν. For
the spectrum in equation 4.5c, the coefficient fp is further defined as:

fp =
1

2

(

1 +

(

3

2p

)2
)

(B.21)
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Overlap Date UTC Satellite
Open
water

Lead
ice

Ice
floe

Ridge or
brash

1 2015-04-19

20:32 ALOS-2 0 10 8 5

13:19 RS-2 0 10 8 5

13:18 TS-X (Q) 0 10 6 3

07:01 TS-X (D) 0 10 8 5

08:02 S-1A - - - -

2 2015-04-23

20:18 ALOS-2 9 100 43 10

14:42 RS-2 4 62 30 7

13:43 TS-X (Q) 5 67 39 8

3 2015-04-28

20:25 ALOS-2 3 7 23 8

15:37 RS-2 3 7 20 8

07:35 TS-X (D) 1 6 23 8

4 2015-05-26
22:02 ALOS-2 6 31 33 14

17:00 RS-2 4 16 24 2

5 2015-05-31

22:08 ALOS-2 15 31 33 14

16:14 RS-2 15 31 33 14

15:26 TS-X (D) 6 10 20 10

Total polygon count: 71 408 351 121

Table C.1: An overview of the number of polygons per sensor and overlap. See
table 6.1 for further details on radar configurations. As an example, the polygons
for overlap number 1 are shown in figure 6.4.
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ALOS-2 Radarsat 2 TS-X (D) TS-X (Q)

”
O
p
en

w
a
te
r”

No data

No data No data

”
L
ea
d
ic
e”

No data

”
Ic
e
fl
o
e”

No data

”
R
id
g
e/
B
ra
sh
”

No data

Figure C.1: Example polygons shown in the radar geometry (slant range on
the horizontal and azimuth on the vertical) after coherent and incoherent multi
looking.
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"Open water"

Overlap 1 - - - -

Overlap 2

- -

- -

Overlap 3 -

Overlap 4

- -

- -

Overlap 5

-

-

Figure C.2: Example polygons tagged as ”open water” shown in the radar geom-
etry (slant range and azimuth directions on the horizontal and vertical, respec-
tively).
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"Lead ice"

Overlap 1

Overlap 2

-

-

Overlap 3

-

-

Overlap 4

- -

- -

Overlap 5

-

-

Figure C.3: Example polygons tagged as ”lead ice” shown in the radar geometry
(slant range and azimuth directions on the horizontal and vertical, respectively).
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"Ice floe"

Overlap 1

Overlap 2

-

-

Overlap 3

-

-

Overlap 4

- -

- -

Overlap 5

-

-

Figure C.4: Example polygons tagged as ”ice floe” shown in the radar geometry
(slant range and azimuth directions on the horizontal and vertical, respectively).
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"Brash or ridge"

Overlap 1

-

Overlap 2

- -

-

Overlap 3

-

-

Overlap 4

- -

- -

Overlap 5

-

-

Figure C.5: Example polygons tagged as ”brash or ridge” shown in the radar
geometry (slant range and azimuth directions on the horizontal and vertical,
respectively).
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Figure C.6: Meteorological parameters averaged over 1 hour.
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Figure C.7: Air temperature averaged over 1 hour.
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Figure C.8: Sea water temperature averaged over 1 hour.
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Figure C.9: Wind speed averaged over 1 hour.
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Figure C.10: Wind direction averaged over 1 hour.
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Figure C.11: Air pressure averaged over 1 hour.
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Figure C.12: Relative humidity averaged over 1 hour.
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