A.l.

A.2.

A3

A4

Appendix A
Papers

@. Hanssen, F. Eliassen, "A Framework for Policy Bindings", Proc. DOA’99, Edin-
burgh, IEEE press, 1999, [Hanssen99].

@. Hanssen, F.Eliassen, "QoS aware Binding for Distributed Multimedia Systems",
OOPSLA’99 Doctoral Symposium, Denver, November 1999.

@. Hanssen, F. Eliassen, "Policy Trading", Proc. Distributed Objects and Applications
’00, Antwerp, IEEE press, September 2000, [Hanssen00].

(. Hansseen, "Towards Declarative Characterisation and Negotiation of Bindings, in
Proc. Adaptive and Reflecive Middleware 2005. ACM, 2005 [Hanssen(05a]

Towards a QoS aware Binding Model

. Hanssen, F. Eliassen

University of Tromsg, Dept of Computer Science
9037 Troms@, Norway,
{oivindhl frank } @cs.uit.no

ABSTRACT

In this paper, we present the design of QoSMail, a QoS email application demonstrating a flexible model for using simple
declarative requirement-statements and awareness of system properties to dynamically select policies governing message
delivery. We believe that these ideas may apply to other cases as well such as binding of stream interfaces. Foundations of
the QoSmail design are a framework for describing Quality of Service requirements, a framework for describing the
relevant attributes of the environment, i.e. the resources available for transport, and a framework for policy selection, based
on QoS-requirements and environment attributes.

Keywords: Binding, policies, Quality of Service, user profile, service profile, email.

1. INTRODUCTION

A problem in open distributed multimedia systems is the creation of bindings between different components, that meet the
requirements for Quality of Service from the user or application programmer. A challenge is to achieve adaptability to both
user-requirements and changing running-environments. We may imagine tools for mapping from a declarative QoS
specification plus some descriptions of the running-environment, to a policy telling how the binding should be set up. A
policy would typically denote the choice of protocols, resource allocation strategies etc.

In this paper, we present the design of QoSMail, a QoS aware email application demonstrating a flexible model for using
simple declarative requirement statements and awareness of system properties to dynamically select policies governing
message delivery. We believe that these ideas may apply to other application areas as well, such as the binding of
continuous media streams. Foundations of the design are the following:

e A framework for describing Quality of Service requirements.
e A framework for describing the relevant attributes of the environment, i.e. the resources available for transport

e A framework for policy selection, based on QoS-requirements and environment attributes. In our example this means
matching the delivery requirements with an appropriate transport channel, together with a policy for how channels and
protocols are used to deliver messages as required.

The rest of the paper is organised as follows. Section 2 compares our approach with some related research. Section 3
introduces the core concepts of flexible binding, policies, the user-profile model to capture application requirements, and a
service-profile model to capture system properties. We also show how these concepts are related to each other and how our
model can support adaptation to dynamic change in system properties.

Section 4 is a study of a QoS aware email application, demonstrating our concepts through a practical use of user-profiles,
service profiles and how those properties can be mapped to a proper policy. A selected policy is implemented during run
time by dynamically looking up and downloading corresponding pieces of code representing the policy. This code can
carry out delivery of mail with the requested QoS, by using the available resources.

2. RELATED WORK

With few exceptions, research on QoS and adaptability has traditionally focused on system level issues such as networks,
and operating systems rather than application level QoS. A notable exception is the QuO architecture (QoS for CORBA
objects) developed at BBN/Rome Lab. The goal of this architecture is to support the adaptability to different QoS
requirements, changing usage patterns and underlying resources®. It extends the functional interface definition language
(IDL) with a QoS description language (QDL). This capture application’s expected usage patterns and QoS requirements
for client’s connections to objects.

Both our approach and the QuO approach adopt the Open Implementation Approach 4 o allow object designers to expose
key design decisions that affect Quality of Service. This makes it possible to alter the non-functional behaviour of
applications by choosing the implementation which is best suited for the situation. Our profile abstractions are inspired by
the QoS region abstraction of the QuO project. Two types of regions are introduced:

® Negotiated regions which reflect the expectations of QoS and usage patterns.

e Reality regions which reflect the actual client usage/QoS measured. For one negotiated region there may be many
reality regions.

QuO has a layered model of communication. Each layer tries to mask changing regions of the layer below (regarded as
reality regions) to a negotiated region presented to the layer above, by using different masking objects. The use of masking
objects could be described by using our model of policies.

The QoS broker architecture” facilitates negotiation of QoS between application and system, mapping of QoS parameters
and orchestration of resource management at different levels (network, hosts OS etc.). Our model of policies capture the
resource management which may include all aspects of a communication. The process of selecting and installing policies
can be related to the QoS brokerage model, but many of the mechanims of the QoS broker entity will be policy-specific in
our approach and indeed.

In the Lancaster University Sumo project9 QoS is spefified as annotations on exported interfaces. An annotation consists
of two parts: (1) The QoS offered and (2) the requirements to the environments. Annotations are formally described in a
quality logic (QL), which captures time relations. This allows precise reasoning and mapping to resource management and
reactive QoS monitor implementations that control bindings so requirements are met, if possible.

3. CORE CONCEPTS OF FLEXIBLE BINDING
3.1. Bindings and policies

A binding is the association of a client program and the activation of a communication path to a remote object. The binding
will be associated to a policy that tells how the binding is activated to meet certain non-functional requirements. The policy
typically captures implementation issues like choice of protocols, resource management strategies etc. There are mainly
two concerns that lead to the choice of one particular policy when activating a binding:

® The application level requirements for non-functional properties (QoS).

e The type of running environment for the policy implementation expressing available computational resources. A
policy may require a certain type of environment.

3.1.1. Meta-policies

There is also a need for policies for how activations of bindings are managed and for the choice of and (possibly) dynamic
replacement of policies as a response to changing environment, non-functional requirements and usage patterns. We
therefore introduce the concept of meta-policies (policies for using policies). Examples of meta-policies include:

e Passivation of the binding after a certain time of inactivity.

e Changing policies dynamically to adapt to changing resource availability, usage patterns and Quality of Service from
the network.

3.2. QoS and User Profiles

The term Quality of Service (QoS) generally captures non-functional properties such as security, dependability,
synchronisation, presentation, performance etc. Research on QoS, however, have traditionally focused on properties
related to real-time and multimedia communications like performance and synchronisation. Research has also been mostly
focused on networks, network protocols, or operating systems*> >

In contrast, we are interested in QoS at a higher level, i.e. the parameters the user or the application programmer deal with.
However, to accommodate a QoS-requirement, applications or middleware must rely on QoS delivered from network and
operating system services. Thus, high level QoS provision requires mapping from application level QoS requirements to
lower level QoS requirements.

Generally the number of possible parameters and metrics to describe QoS requirements are many, and an important issue is
how to make abstractions that hide the complexity and irrelevant details. We want QoS requirements to be simple and
declarative.

Our approach is to introduce user profiles. A User Profile is an entity which denote a group of requirements for
non-functional properties (QoS) which typically appear together. A profile is named by applications to identify a related set
of requirements. For instance we may define a profile called CD-Quality-Audio which has a qualitative meaning to the
user, but which implicitly impose a set of (quantitative) QoS-requirements to the digital audio stream.

We also define a sub-profile relationship. A policy that meets the requirements of a profile X, also meets the requirements
of profile Y if X is a sub-profile of Y. For example we would define a profile CD-Quality-Audio as a sub-profile of
Phone-Quality if a digital audio stream satisfying CD-Quality-Audio, also satisfies Phone-Quality-Audio.

3.3. Service profiles

A service profile is an entity denoting a group of properties of the computing and networking environment (resources
available, type of services available, quality of service) which often appear together. We also define a sub-profile
relationship for service-profiles. A sub-profile inherits the properties of a super-profile.

Associated to a service profile is a (possibly empty) set of binding policies which require the profile. A policy which
requires a service profile X could be used with profile X or the sub-profiles of X.

3.4. Dynamic change of policy

Meta-policies specify how bindings may be reactivated with new policies in response to changing system properties, i.e.
paths of change.

Change of policy could be initiated from the system due to change of service-profile. This could be done transparently to
the client program, as long as the new policy still conforms to the user profile in use. If not, the system needs to renegotiate
the user-profile with the client program.

The figure below shows an example of a path of change (degradation path) caused by a reduction of available network
bandwidth (service profile is changed from "high bandwidth" to lower bandwidth profiles). This path leads to a change of
user-profile from "high quality video" to "video". The "high quality video" is a subprofile of "video". When the video is not
high quality, colours and resolution may be reduced and frames may be dropped, by use of filters”.

Figure 3.1: Example of degradation path

"High Quality Video"

Comression
(needs more
computing
resources

A

Reduction of Add frame
colour/

resolution dropping

Normal

x x

"High bandwidth” "Medium bandwidth" "Low bandwidth" "Very low bandwidth"

3.5. Profiles and policies - an example

In the following example we have a user profile Video with sub-profile Quality-Video, and a service profile MM-stream
which has with two sub-profiles. The profile Resources provides computing resources (e.g. for compression) and the profile
high-BW provides high bandwidth networking. We also include a service profile that provides both computing resources
and high bandwidth.

Three policies are available. The Normal policy supports Quality-Video and requires the high-BW service profile. The

Compression policy supports Quality-Video and requires the Resources service profile. The Reduction policy supports
Video (reduced quality) and requires the MM-stream service profile.

Figure 3.2: Relationship between profiles and policies

User profiles Policies Service Profiles

e L Ry

__l--4 Compression F--r---- Resources
Quality ~---""
video -

I =
Resources
+BW

4. THE QOSMAIL APPLICATION

In our case study, the concepts introduced above has been applied to the delivery of email where users have different
requirements of for example the secrecy or urgency of messages. The QoSMail application demonstrates the usage of
simple declarative requirement-statements and awareness of system properties to dynamically select policies governing
message delivery. In our example this means matching the delivery requirements with an appropriate transport channel,
together with a policy for how channels and protocols are used to deliver messages as required.

The QoSMail application is designed as a ‘‘microkernel’ that can be dynamically extended, by ‘‘plugging in’ software
modules that implement protocols and policies (see the figure below).

Figure 4.1: QoSMail architecure

QoS Mail
C Graphical User Interface]
C QoSMail Core J

Policy Protocol
Modules ' modules '

Dynamic loading

4.1. User Profiles for QoSMail

Many QoS parameters can be associated to email messages. QoSmail recognises the following types of parameters:
e Urgency of message delivery specified for example as a urgency level
e Reliability of message delivery, realised for example as the optional use of delivery receipts returned to the sender.

e Security level of message delivery. The selected level may, for example, trigger the use of encryption techniques or
restrict what types of transfer-media can be used.

Figure 4.2 shows an example of user-profiles for QoSMail. Note the Content-Proof profile which illustrates how QoS may
be expressed as combinations of profiles.

Figure 4.2. Example User Profile Graph

Mail without QoS
requirements. ,

Message guaranteed to be
delivered . Use retry-
mechanisms if neccessary.
Delivery receipt to sender.

Check that content is
not changed during

‘ delivery.

Rellable

10 minutes or faster
(for example)

5 minutes or faster
(for example)
Super
Express

Ensure that the sender of a
_ message really is who he
says.

Message guaranteed to be
delivered unchanged.
Delivery receipt to sender.

Authenticated

In general different nodes will have different profile-hierarchies. To ensure interoperability, there is a need to standardise
(i.e. agree among the users communicating), what the profiles are and what they mean. One might define a ‘‘core’-set of
profiles which all nodes know, and allow single users or sub-groups of users add new subprofiles of the core-set (typically
combinations). Hence it must be possible to add profiles dynamically at a node.

4.2, Transport resources

Users send messages to other users at specific locations. In QoSMail we use destination-nodes or destinations to identify
the recipient’s location. Destinations are grouped into domains. A domain is reached by a channel. Furthermore, domains
may have subdomains. A channel that reaches destinations in a domain also reaches destinations in its subdomains.

4.2.1. Channels

A channel is an entity representing the path to a specific domain together with associated resources for transport. A channel
may have certain attributes, e.g. media, Quality of Service, supported protocols, other available resources etc. More than
one channel may lead to a domain, each of which may have different attributes. When sending a message to a destination,
one of the possible channels must be selected, i.e. the one that makes the best fit to the requested quality of service. This
suggest a mapping from user-profile, to channel-attributes. This may be done through policies, i.e. the policies specify a
user profile and requirements of the attributes of the channel.

4.2.2. Service Profiles

From the set of attributes denoting capabilities of a channel, we can tell if a given policy may use the channel. The
attributes of a channel may be expressed as a service profile (c.f. section 3.3). A policy requires a specific service-profile,
i.e. it can only use channels which provides that profile or a subprofile.

The profile may change dynamically for a given channel, but only along certain paths in the profile graph. Dynamic change
may for instance be initiated by monitors that measure certain QoS parameters. One example is the measurement of
delivery time. An example service profile graph for QoSMail is shown below. The thicker edges shows allowed paths of
dynamic change.

Figure 4.4: Example Service Profile graph

Service for
transferring
messages
asynchronously

Message guaranteed to be Message
delivered . Use retry-
mechanisms if neccessary.

Delivery receipt to sender.

We may design a
specialized protocol
for the QoSmail
system

15 minutes or faster
(for example)

Reliable @
Delivery measured to be
FastAndReliable

quicker than 10 minutes (for

example)
Figure 3.5 illustrates the relationship between user-profiles, policies, channels, destinations and domains. First, a policy
conforms to a user-profile. For instance the policy P/ conforms to the profile U/, but also to U2 and U3 since Ul is a
subprofile of U2 and U2 is a subprofile of U3. Each policy can make use of a set of channels. P/ can only use channel-A,
which means that if user-profile Ul is requested, only channel-A may be used, and domain-Y and Z cannot be reached. If
U2 is requested, we can reach domain-X through channel-A with P1 and domain-Z through channel-C with P2. If U4 is
requested, all domains can be reached through channel-B or D.

A special variant of
MyMail protocol which
provide reliable delivery

Figure 4.5: Relationship between user profiles, policies, channels and destinations

User Profile Profile Profile
profiles uz us3

u1
* *

Delivery
policies

channel A
Channels

omain — omain
Domains }
(recipients)

4.3. Matching messages with channels and policies

A policy denotes how protocols and other resources should be used to deliver a given message on a given channel, such
that the quality of service requirement is met. Policies are represented as software modules which are dynamically loaded
into clients when needed. Policies may contain references to protocol-implementations or other resources, which may be
dynamically downloaded as well. Different policies may share implementations or parts of implementation. If two policies
uses the same implementation the difference may for instance be reflected in parameters used when activating the policies.

Each policy is associated with a user-profile (tells what quality it provides) and a service-profile (tells what it requires from
the channel). When a client wants to send a message, it uses the user-profile and the channel’s service profile to look up a
policy which match those in a policy-repository. The necessary code (and possibly parameters) are then downloaded from
there. This code will be used to carry out the delivery.

4.3.1. The selection mechanism

A mechanism for proper selection of channel and policy is the core of our framework for message delivery. We believe that
the models of quality of service and channel-attributes as profiles captures just what is necessary to do this selection,
provided that the profile definitions are well-defined and agreed on.

Figure 3.6 depicts an example of a configuration of profile-graphs, policies and channels. For example, domain-X may be
reached by internet mail only (channel-A) and domain Y may be reached by internet mail (channel-B) or by using a fast
and reliable MyMail service (channel-C). If a user want to send a message to domain-X with user profile Fast, channel-C
and policy #6 must be used. Policy #6 provide user-profile FastAndReliable, which is compatible with Fast. If the
destination is in domain-Y and user-profile is Reliable, policy #2 may be used (with channel-B) or Policies #4, #5 or #6
may be used with (channel-C).

From this example it is clear that more than one policy or more than one channel may be suitable for the delivery of a given
message. A simple approach is to select the first match. The algorithm will then be as follows:

1. Search the list of channels and select the first that reaches the destination- domain.
2. Search for the first policy that match the user-profile and the candidate channel’s service profile.

3. If such a policy is found, use this (and the channel) to send/receive message, if not, go back to (1) and try the next
channel that reaches the destination.

4. If we have tried all possible channels without finding any suitable policy, the search has failed, i.e. the message
cannot be delivered.

With this algorithm, the selected channel and policy are not necessarily the best choice. There may be reasons for choosing
one candidate before another, for instance cost or efficiency. Therefore, there is a clear potential for improving the

algorithm. A simple (but not perfect) approach may be to order the search of the channels and policies according to some
criteria, for instance the cheapest alternative first.

Figure 4.6: Matching of profiles, channels and policies

U N cemmem---1 Policy #1 K Channel A:
M%ssa@ e __-==""| "domain X"
1 Policy #2 s
Secure) L R T
/__{E}erff ;;;;;;; Channel B:
@ 7= Policy #3 =T "domain Y"
Geliab@; T
T\ T Policy #4 b
@iable
™y Policy#s
B ___| Channel C:
\\\\\ S astAndReliable - - "d in Y"
~-| Policy #6 =---""" oman

4.4. Prototype implementation

A prototype QoSmail framework has been implemented. This prototype may be developed further to a working application
by adding user-interface facilities, and by implementing usable delivery mechanisms and policies.

The prototype is realised as a Java applet. The applet, the extensions (policies, protocols) and the profile definitions are
therefore easily distributed to users by placing them at a web-server and downloading them by using the HTTP protocol.

When a QoSmail applet starts, it loads the profile-definitions plus a list of available policies from a web-server. For each
policy in this list we have a name, the full name of the Java-class representing the policy, plus the associated profile names.
Channels will typically be defined locally for each user.

To send a message (created and edited by the user) the applet select a channel and a policy (as described in section 4.3).
The selected policy refers to a Java class name and when the applet attempts to use this class, the Java run-time system
transparently downloads its code from the web-server. The applet uses the class to instantiate a sender-object which takes
the message and starts delivering it. The receiving applet will use the policy-class in a similar way to instantiate a
receiver-object.

S. CONCLUDING REMARKS

We have introduced a simple QoS-aware model of binding, and we have shown how these ideas can be applied to a
particular application domain. The main contributions are as follows:

® An abstraction which captures non-functional application requirements (QoS), the user profile.

e A abstraction which captures the relevant attributes of the environment, typically the transport mechanisms and
resources, the service profile.

* A model of policies to capture protocol choices, resource management and other implementation choices, and how we
can dynamically select policies for binding or email delivery.

Our model suggest repositories of portable code to represent policies. Since we have simple model of capturing application
requirements and environment, it should be relativelil straightforward to match these with the appropriate policy and install
its implementation. This is closely related to trading<.

According to Nahrstedt8 the following services are required in a multimedia environment to provide end-to-end QoS
guarantees: (1) Admission and resource allocation for local processor, (2) Admission and resource allocation for network,
(3) Negotiation and coordination and (4) Translation between application oriented QoS and resource polices.

If we apply this to our model, allocation is done by policies and admission is done by policy-trading in the sense that a
policy is found, only if the requred quality can be achieved, using the available resources denoted by the service profile.
Metapolicies may involve negotiation to agree on a policy. Coordination is done by protocols selected by policies, but
some coordination may be done by metapolicies in the process of at neccessary places. Translation is done by trading in the
sense that trading is mapping from requirements to policy, but much of translation work is actually done statically when
defining the profiles and their meaning.

This paper describes a work in progress. In future research we will investigate how well these ideas apply to other
application domains and in general. Currently, we study a flexible binding architecture for operational interfaces and we
also plan to investigate how the model apply to the binding of continuos media interfaces. Important topics are
implementation frameworks, trading architectures and negotiation of between heterogenous endpoints. There is a potential
for research in formal models for describing policies and for research in automatic implementation of policies from
declarative specifications.

ACKNOWLEDGEMENTS

Much of the work described in this paper was done while the first author was seconded to the ANSA project in Cambridge,
UK. This visit was supported by a NATO Science Fellowship through the Norwegian Research Council grant no.
116590/410. We wish to thank to Andrew Herbert, Richard Hayton and Billy Gibson at APM Ltd. for valuable comments
related to this work.

REFERENCES

1. C.Aurrecoechea, A.T. Campbell, L. Hauw, ‘A Survey of QoS Architectures’, Multimedia Systems Journal, special
issue on QoS architecture, 1996.

2. M.Y.Bearman, ‘‘ODP Trader’, Proc. ICODP’93, Berlin 1993, pp. 19-33.

3. @. Hanssen, ‘‘FlexiNet - Quality of Service Investigation’, ANSA Phase III Technical report APM.1977.01.00, June
1997.

4. G. Kiczales, ‘‘Beyond the Black Box: Open Implementation’, IEEE Software, 1996, 13(1), p. 8-11 (see also the Open
Implementation Home page, Xerox Palo Alto Research Center, http://www.parc.xerox.com/oi).

5. K. Nabhrstedt, J. Smith, ‘“The QoS Broker’, IEEE Multimedia, spring 1995.

6. J. A. Zinky, D. E. Bakken, R. E. Schantz, ‘‘Architectural support for Quality of Service for CORBA Objects’, Theory
and Practise of Object Systems (Special Issue on the OMG and CORBA), January 1997.

7. N. Yeadon, A. Mauthe, F. Garcia, D. Hutchison, ‘‘QoS Filters: Addressing the Heterogeneity Gap’, proc. Interactive
Multimedia Systems and Services (IDMS’96), Berlin, March 1996.

8. K. Nahrstedt, J. Smith, "A Service Kernel for Multimedia Endstations", in Multimedia: Advanced Teleservices and
High-Speed Communication Architectures, lecture Notes in Computer Science No. 869, R. Steinmetz (ed.), Springer
Verlag, 1994, pp. 8-22.

9. G. Blair, J.B. Stefani, Open Distributed Processing and Multimeda, Addison Wesley, 1997.

A Framework for Policy Bindings

@yvind Hanssen *, Frank Eliassen **

* Agder College, Faculty of Engineering, Grimstad, Norway
#+ University of Oslo, Department of Informatics, Oslo, Norway
Oyvind.Hanssen @hia.no, frank @ifi.uio.no

Abstract:

In this paper we investigate the design of extensible
middleware that support dynamic binding configuring by
pluggable and replaceable policies. An important aspect
of our approach is the distinction between bindings and
their activations, which allows us to reason about and
implement bindings with changing activations and activa-
tion policies (adaptation), and policies for managing acti-
vations (metapolicies) as separate entities. A design of a
prototype binding framework which supports pluggable
policies and metapolicies is described in detail.

1. Introduction

There is growing interest in distributed computing
middleware that can adapt to different (and changing)
non-functional application requirements as well as the ser-
vice level and QoS from the environments applications are
running in. Components of distributed applications are of-
ten hard to reuse in different environments and code itself
hard to maintain because code that tailors them to specific
environments and requirements is not clearly separated
from application code.

Our hypothesis is that there should be a separation of
concerns between functional properties and non-
functional properties of component interfaces. Such sepa-
ration of concerns has been proposed by several authors,
e.g. [1,2].

Further, we suggest to relate non-functional properties
to bindings between components. If components could be
implemented independently of non-functional properties, it
would enhance reusability of software components and
make them easier to implement and maintain. For in-
stance, we might think of binding to a video source inter-
face differently (e.g. colors/black and white or high/low
resolution) depending on application requirements and
run-time environment (resource availability, network QoS
etc). Figure 1 illustrates this principle: The non-functional
properties of a binding are provided by a policy (for con-
figuring the binding with respect to choice of protocols,
transparency mechanisms and resource management).
There may also be policies for how policies are selected
and installed, or how the binding should adapt by replac-
ing the policy.

m | Binding
@ [Object

Figure 1. Policy binding

To address the question of how and to what extent this
vision can be achieved, we aim to investigate the follow-
ing problem areas:

e The design of middleware to support dynamic bind-
ing configuration by "plugging in" or replacing poli-
cies. To achieve this, middleware need to be open,
extensible and configurable. This leads to the ques-
tion how we can open up certain aspects of middle-
ware engineering for policy programmers.

® Foundations for stating requirements and environ-
ment properties declaratively, for automated map-
ping of these to suitable policies, and for specifica-
tion and/or implementation of policies.

This paper focus mostly at the first problem area. Our
approach is to introduce a distinction between bindings
and their activations. Basically, the activation is the con-
figuration of the protocol stack (and associated resources)
which manipulate the invocation on its way to the target.
A policy determines how an activation should look like,
and is represented by a pluggable activator component.
Bindings can be associated with metapolicies (policies for
how activations are managed) and represented by a bind-
ing proxy at each side of the binding. Metapolicies might
for instance involve late binding, adaptation or selection of
binding policies, either directly, by policy trading or nego-
tiation. Bindings are set up by pluggable binder compo-
nents. We also introduce a way to open up middleware
engineering through PPI’s (policy programmer interfaces).
A proper type hierarchy for PPI’s supports pluggability of
policies.

The second problem area is addressed by a model for
stating QoS requirements and environmental properties.
This model is not treated in depth here (see [3]), but in es-
sence it is like a type/subtype model, i.e. a user requres a
specific type of QoS and the policy requires a specific type
of service from the environment. A subtyping relationship

ensures that a requirement can be met by a compatible of-
fer. Metapolicies which involves policy-trading or negotia-
tion can map from such declarative QoS descriptions to
suitable policies.

The paper is structured as follows: Section 2 introduces
a conceptual model of flexible bindings, supporting plug-
gable and adaptable policies. It defines the main prin-
ciples of bindings, policies, binding-management through
metapolicies and how middleware can expose engineering
viewpoint to programmers through PPIs. Section 3 pres-
ents the FlexiNet ORB framework developed by the
ANSA project. FlexiNet is used to realise our prototype
binding framework (The FlexiBind framework). The de-
sign of FlexiBind framework is presented in section 4 and
it is an extension to FlexiNet which supports dynamic con-
figuration and management of bindings and activations.

2. Foundations

In this section we describe a conceptual model of flex-
ible bindings supporting pluggable and adaptable policies.
We introduce the distinction between bindings and their
activations, policies and policy management (metapoli-
cies), a model of describing the capabilities and require-
ments of policies plus some principles for opening up en-
gineering aspects of middleware to policy implementers.

2.1. Policy-governed bindings

A binding can either be active or passive. When a bind-
ing is established, it is not necessarily active. Passive bind-
ings needs to be activated before interactions may be car-
ried out. Activation means that resources are allocated to
the object and the communication path between the client
and the object. This typically involves loading the object
(and its class) into memory, setting up protocol stacks,
transparency objects, buffers and other relevant resources.
This model allows bindings where the configuration of
protocols and resources is not done yet or even where the
policy is not known yet. It also allows adaptation of a
given binding through re-activation.

Activation is done according to a policy, which may be
different, due to different ways to implement objects and
due to different application requirements for non-
functional properties. Examples include:

e Use of a shared standard RPC-channel, e.g. IIOP.
e Reservation or allocation of resources at the end-
points and in the network, for each binding, to meet

strict real-time requirements of continuous media
streams.

e Authentication of the client, the server or both when
activating the binding to meet security requirements.

e Use of encryption, using per-activation session keys
to meet security requirements.

® Transaction logging to support recoverability.

A binding to an object will be represented (at the client
side) by a proxy object which know how to reach the
object’s representation if it’s active (typically a
name/address if it’s remote). A passive binding do not
have all resources necessary to interact, but it has knowl-
edge of how the binding should be activated, i.e. it is con-
nected to a policy.

There is a potential for research on formal models for
describing policies, and on methods for automatic imple-
mentation of policies from declarative specifications. The
idea of blueprints in the ANSA FlexiNet project [4] is one
approach to this. Our approach is that each policy is repre-
sented by a hand written piece of code (for instance a Java
class). There is a clear potential for re-use between policy
implementations since differences between policies may
be small. Careful design of object oriented frameworks
for polices, should simplify implementation.

With our distinction between binding and activation,
binding establishment do not carry out the policy but may
be responsible for selecting and installing a policy to be
used for (later) activation. To support adaptation, we may
allow the same binding to be reactivated with different
policies. Policy management is discussed below.

2.2. Policy selection and management

Metapolicies (policies for policy management) specify
how binding policies should be selected, when activation
should happen and how bindings may be reactivated with
new policies in response to changing system properties,
i.e. paths of change. Aspects of metapolicies might in-
clude:

e Passivation of the binding after a certain time of in-
activity.

® Pre-activation of bindings which are likely to be
used in near future.

e Changing policies dynamically to adapt to changing
resource availability, usage patterns and Quality of
Service from the network. This may also include
policies for degradation of the QoS delivered to the
application.

e Negotiation between clients and servers what policy
to use.

In our approach, non-functional (QoS) requirements are
specified as user profiles while the computing and net-
working environment are described as service profiles.
Furthermore, policies are related to user profiles through a
satisfaction relationship, and to service profiles through a
requirement relationship. Hence a specific policy satisfies
a set of user profiles (the qualities it provides) and re-
quires a service profile (the resources it requires from its
environment). Further, there is a compatibility relationship
between profiles (subprofiles).

Profiles are simple foundations for policy management.
Consider policy selection during binding establishment: It
is possible to adopt a trading model (c.f. ODP trading [5])

to select pre-existing policy implementations from a re-
pository. When doing policy trading, an user-profile and a
service profile are given to a trading service which returns
a suitable policy, possibly represented as downloadable
code fragments. Profiles and policy trading was first inves-
tigated in [3].

In adaptation metapolicies, change of policy could be
initiated from the system due to change of service-profile.
This could be done transparently to the client program, as
long as the new policy still conforms to the agreed user
profile. If not, the system needs to renegotiate the user
profile with the client program.

Figure 2 shows an example of a path of change (degra-
dation path) caused by a reduction of available network
bandwidth (service profile is changed from "high band-
width" to lower bandwidth profiles). This path leads to a
change of user profile from "high quality video" to
"video". The "high quality video" is a subprofile of
"video". When the video is not high quality, colours and
resolution may be reduced and frames may be dropped.

Reduce Add frame
colour/ dropping
resolution

% x

"High Quality Video"

Comression

Normal (needs more
computing
resources)

4 A

"High bandwidth” "Medium Bandwidth“ "Low ba'ndwidth“ "Very Ic;w bw"
Figure 2. Profiles, policies and paths of change

2.3. Open engineering

The activation of a binding carries out the communica-
tion between a client and the target object. It corresponds
to the channel concept in the RM-ODP engineering model
(including transparency objects). Policies should be able to
create and configure activations and therefore it is neces-
sary to "open up" the engineering aspect of middleware so
that different policy programmers are able to manipulate
the composition of the engineering objects that constitute a
channel as well as their resource management policies.

Our approach is to introduce a PPI (Policy Programmer
Interface) framework. A capsule offer a PPI to policy
implementations, separate from the API it offers to ap-
plications. PPI’s gives access to engineering aspects, but
different environments may offer different levels of engi-
neering support and hence they may conform to different
PPI-types. A subtyping relationship between PPI-types and
standardisation of PPI-type hierarchies are keys to open-
ness and pluggability of policies. A policy requires a par-
ticular PPI-type to be able to run, so if the middleware of-
fers a PPI which is a subtype of the required type, the
policy can be used with it.

Blair et. al. [6] proposes to apply the principles of open
implementation and reflection [7] as a principle for open-
ing up engineering aspects of middleware. We follow
these principles in the sense that service profiles and PPIs
describe and expose aspects of the meta space. They pro-
vide access to engineering objects. Thus, the conccept of
PPI’s are close the concept of meta object protocols
(MOP). A PPI can be viewed as the meta interface of the
nucleus while the API represents the base interface.

There is a direct relationship between service profiles
and PPI-types since PPI’s mirrors an important aspect of
what a particular environment is able to perform. Then
policy-trading automatically select a policy-
implementation which can be used with a given PPI-type.

2.4. Binding management model

Figure 3 summarises the ideas of binding and binding
management. The binding is managed by a metapolicy,
possibly represented by a controller object. The meta-
policy use information from applications and environment
and governs selection and installing of policies. Objects
representing policies can be viewed as activation factories
since they are responsible for setting up activations for the
binding. The binding use the activation to carry out invo-
cations. Activations may give feedback to the metapolicy
which can be used to decide if adaptation need to take
place.

Select/install

Application +
Environment

Install

Feedback/ configure

monitoring

Figure 3. Binding management model

3. The ANSA FlexiNet framework

The ANSA FlexiNet platform [4] is a Java middleware
system built to address some issues of configurable and
extensible middleware. It allows programmers to tailor the
platform for a particular application domain or deployment
scenario. The FlexiNet platform can be viewed as a flex-
ible toolkit for creating and (re)configuring ORB’s. It pro-
vides a generic binding framework plus a set of basic engi-
neering components to populate the framework. By ap-
propriate configuration of components, one can achieve
many different middleware facilities, e.g. mobile objects,
transactions, security, persistence etc. FlexiNet is focused
at operational interaction (RPC) but other interaction types
(for instance flows) are possible as extensions.

3.1. Basic principles of bindings

An interface on a remote object is represented by a lo-
cal proxy object, typically a stub that converts a typed in-
vocation (method call) into a generic form and passes it
through the layers of a protocol stack. Compared with tra-
ditional architectures such as CORBA, FlexiNet puts more
of the stub functionality into the protocol stack instead of
in the stubs. FlexiNet stubs use the Java run-time typing
information to convert each invocation into a generic form
and let the layers in the stack do the rest. This makes stubs
so simple that they can easily be generated at run-time by
using introspection on the interfaces. However, protocol
stacks are more complex and include higher level func-
tions such as serialisation, replication, object management
etc.

Protocol stacks and layers. The layers of the FlexiNet
communication stack can be viewed as reflective objects
that manipulate the generic invocation in different ways
before it is invoked on the destination object. There is no
need for interface specific skeletons, just a generic func-
tion that converts a generic invocation object to specific
calls on target interfaces. Higher level transparency ob-
jects can also be regarded as layers in this architecture.
The generic form of the invocation allows simple inter-
faces to bind layers together. At the client side, layers
implement the CallDown interface which has one operation:

public void calldown (Invocation inv)

Server side layers implements the CallUp interface:

public void callup (Invocation inv)

Each layer forwards the generic call to next layer in the
stack by calling the calldown or callup method recursively.
The invocation object may be manipulated at each layer
until it reaches the point where the call either is converted
to messages to be transmitted over the network or to a call
to the target interface. Returns of the call carry result val-
ues with the invocation object in the opposite direction.
This model requires that the communication between lay-
ers are in form of request-reply pairs. Below the RPC pro-
tocol layer, we can only talk about unrelated messages go-
ing up or down, so at that level, each layer must imple-
ment two interfaces: MessageUp and MessageDown.

An example configuration. The first protocol configura-
tion that was realised in FlexiNet was named "green" (by
convention, FlexiNet protocols are named after colours).
and based on the REX-protocol [8]. This configuration il-
lustrates what a typical RPC configuration look like and is
shown in figure 4 below. Most of the layers shown sup-
ports both clients and servers at the same time, so most of
a protocol stack instance can be used both as client and as
server.

A generic call first goes from a stub to the client call
layer which acquires a session. The serial layer serialise

methods, their arguments and results. The name layer
takes the server interface identifier (which is a part of a
name of a remote object) and writes it to the output buffer.
At the server side, the name layer reads this identifier and
use it to look up the target object (name layer represents a
mapping from identifiers to target objects). The server call
layer use information from the generic invocation object to
generate a method call on the correct target object. The rex
layer (and the session layer) provides RPC semantics over
an unreliable message transfer service.

Stubs

Y

CallDown
ClientCallLayer

. C all*)wn

SerialLayer

*

Serialise/deserialise
method, arguments
and results

SerialLayer

‘.

atttip

CallDown Client: Put server inter-
face id in the buffer

Server: Restore id from | NameLayer
buffer and lookup the -

target object

NameLayer

..

atttp

‘.

CallDown
Map RPC calls onto

‘»

unreliable messages RexLayer
sgUp Up
— * Msggwn * Msg[#‘vvn
Session 7 Manage sessions
manager g
VISgUp VIsgUp
* Msg%m Transfer of UDP msgs * M-Y‘?*W"

UdpLayer UdpLayer

—

Figure 4. Example protocol in FlexiNet

Sessions. Many RPC protocols maintain state across a
number of invocations. For instance, an UDP based proto-
col (like REX), may need to keep track of unacknowl-
edged replies, and a TCP based protocol may need to
maintain a connection. FlexiNet provides sessions as an
abstraction for managing such information. Sessions are
also used to provide concurrency control in the protocol
stack, essentially by using per-session locking. A session
is typically related to a client thread’s association to a
server, i.e. at the client side there is typically one session
per server (per thread) and at the server side there is typi-
cally one session per client (thread).

When messages arrive from the network or invocations
arrive from stubs, to a protocol stack, they first need to be
associated to a session. In the above example, the client
call layer acquires a session object from a session man-
ager. For downgoing messages, the session layer writes a
session identifier to the output buffer which is read by the
receiving session layer and used to look up (or create) the
session object there. A session object typically contains
the RPC protocol state, but also a dictionary to be used by
higher layers to store session related information.

3.2. Protocols and binders

The concepts of names, protocols and binders are keys
to extensibility of FlexiNet. First the FlexiNet architecture
allows different types of names. Binding at the server side
means generating a name for the interface to be exported
(and registering a mapping between the name and the tar-
get). A name contains the information needed to allow cli-
ents to bind to the target. Names consists of a protocol
name and protocol specific information needed to locate
the target. This is typically a port address plus a identifier
for the interface, either a identifier relative to the server
port or a globally unique identifier.

To support different protocols, different binders can be
provided. At the client side binders resolve names of re-
mote objects into proxy-objects (stubs), together with the
proper communication stacks (which typically should be
shared between bindings). At the server side they generate
a name for a target interface. Thus, there are two types of
binders: Resolvers at the client side and generators at the

server side.
Delegate if not
cache hit

Delegate according

/ to protocol

Figure 5. Binder delegation hierarchy

FlexiNet allows many binders and protocols to exist
within the same process and there is therefore necessary to
select the correct binder to be used for binding. Each pro-
tocol stack instance therefore contains references to bind-
ers to be used for generating and resolving names or inter-
faces passed as arguments or results of invocations. Bind-
ers can also be arranged into hierarchies, to factor out
common functionality or to allow dynamic selection of a
binder to be used for a particular binding. Figure 5 shows a
simple (and static) example of a binder setup.

More dynamic selection is possible. In addition to the
protocol part of the name, applications may also use QoS
requirements as arguments to the binder to select the
binder which best matches the requirements. Delegating
binders can e.g. look up another binder to delegate to, or
even negotiate with the server to do the selection.

4. FlexiBind - an experimental framework

We have designed an experimental framework to dem-
onstrate some of the principles described in section 2. Our
framework extends the FlexiNet architecture. The Flexi-
Bind framework can further be extended to support a fam-
ily of protocols. Protocols and policies can be "plugged"”
into the middleware dynamically. The framework allows
late binding, explicit binding and dynamic adaptation of
protocol stacks.

In this section, we go through the most important as-
pects of the FlexiBind framework: The concept of activa-
tion (section 4.1), the concept of bindings and binding
proxies (section 4.2), the concepts of encapsulating the
environment (section 4.3) and the framework for plug-
gable binders and activators to add protocols, policies and
metapolicies (section 4.4). Section 4.5. shows an example
of a metapolicy.

4.1. Activations

A principle of the FlexiBind framework is the distinc-
tion between bindings and their activations. Binding can
then be done without knowing (yet) all about how the
binding should be activated. This distinction allows lazy
activation (wait until the first invocation is made), explicit
activation or even per-invocation activation.

The activation object. An activation object represents a
composition of layers to be used to carry out interactions.
Activation objects are (in principle) constructed at each
invocation and is carried with the generic call object
through the layers. Each activation object contains an or-
dered list of references to the layers of the activation.
When a call has gone through a layer, the activation object
is consulted to get to the next layer.

Client:

Resolve

Server:

Activation

Activation

Figure 6. Resolving activation objects

Figure 6 illustrates how the layer composition is deter-
mined by resolving to activation objects. At the client side,
the target name (on the invocation) is resolved to an acti-
vation object which is used to perform the invocation. At
the server side, a target name (passed over by the protocol)
is resolved to an activation-object that prepares and in-
vokes the operation at the target interface (which is the last
part of the resolved activation).

Channels. When a server exports an interface by generat-
ing a name for it, some protocol information must be
passed along with it such that clients know how to bind to
it. In our context, the purpose of the protocol part of a
FlexiNet name should then be to identify the minimum
protocol support needed to activate a binding to the ex-
ported interface.

This observation suggest that the activation (protocol
stack) should be divided into two parts: A protocol

dependent part which is identified in names generated by
servers, and a protocol independent part which can be
resolved/activated dynamically. At the server side, the pro-
tocol dependent part should normally be the minimum
needed to listen for incoming calls and to do dynamic acti-
vation. At the client side, this means that we know what
the protocol-dependent part of the activation should be at
binding time, but it doesn’t necessarily have to be acti-
vated before the rest of the stack is activated.

It is useful to encapsulate common protocol dependent
configurations as channel objects. The capsule environ-
ment (reflected by a PPI) should offer access to one or
more default shared channel objects and/or an interface to
instantiate channel objects.

Sharing. Layers (and associated resources) may be shared
between bindings. There can be per-binding layers or lay-
ers that are shared between all bindings for an interface,
object, capsule, cluster or session. Each layer of an activa-
tion can be shared differently. In a typical RPC configura-
tion, the channel is capsule-shared (except the RPC proto-
col state where we need one instance per session) and the
upper layers are per binding. How layers could be shared
depends on what kind of state they contain (including re-
sources like buffers).

4.2. Bindings

A binding-proxy represent a binding which is not nec-
essarily active. When activated, a binding proxy have an
activator object attached to it, which is responsible for
managing the layers and other resources forming the acti-
vation and return them as an activation object to each in-
vocation. The class of the activator represent the policy
(c.f. section 2.2.1) and activators may be installed or re-
placed dynamically. Each binding-proxy implements the
interface Binding which defines operations to explicitly ac-
tivate, passivate or to set or replace the policy (represented
by activator classes). Figure 7 shows the class design for
binding proxies:

TBinding |

e —|

implements

BindingBase O ActivarorJ
L —

extends
AN

Object

ﬁaﬁ 1 implements

—
Down | CBinding | | SBinding ‘CActivator‘ \SActivaror}
L /K -
|

Meta Policy

LPolicy CBinding

Figure 7. Class diagram for bindings

Client side bindings. Client side binding objects (CBind-
ing) implements the generic invocation interface (CallDown)
and can therefore be regarded as a layer. When a binding
is established, it is represented by a stub which contains a
CBinding, where the target is a name (Address).

(1) calldown

A(Z)
,,,,,,, 1 i >
T1 Binding (3) getActivation

-->[Ty, <ap, a >]

(4) calldown P
(Tl, <apy>) -

(5) calldown
(T, <>)

(Shared)
Channel

Figure 8. Client side binding - Activation, resolving
and call scenario

Figure 8 illustrates how the binding works (se also sec-
tion 4.2.3). When receiving a generic invocation from the
stub (1), the CBinding asks the activator by calling its getAc-
tivation method, for an activation object (3) which contains
references to the layers to which the generic invocation is
forwarded (4). If necessary (typically at the first invoca-
tion) the binding need to activate (2) by instantiating the
activator (this can also be done explicitly via the Binding
interface).

Each of the layers in the activation’s list, except the last
one, returns to a switch layer which forwards the invoca-
tion to the next layers in the list (5).

Policy bindings. The PolicyCBinding class is a subclass of
the CBinding class, which contains a reference to a replace-
able metapolicy object. Before and after its own activate
and passivate method, a PolicyCBinding object calls the
meta-object to policy specific processing. Each meta-
object implements the MetaPolicy interface which define
the pre_activate, post activate, pre_passivate and
post_passivate methods. Those methods can for instance
negotiate with the server to agree on the policy (the class
of the activator). Some policies may use one meta-object
per binding-proxy and others may share meta-objects be-
tween binding-proxies.

Server side bindings. A binding layer (c.f. FlexiNet name
layer) is always a part of a server channel. At each incom-
ing call, the binding layer read an interface-identifier from
the input buffer (the id is a part of a name) and use it to
look up an activation object. To do the lookup, the binding
layer consult a binding manager which contain mappings

from interface-id’s to binding-objects representing the tar-
gets. When exporting an interface, the server create a
binding-proxy, an identifier and a mapping between the
identifier and the binding-proxy.

Figure 9 illustrates the activation model, by a scenario
of how an incoming invocation is treated: When the bind-
ing layer asks the binding manager for an activation for a
given identifier, the binding manager looks up the binding
proxy and asks it for the activation (1). The activation for a
binding is managed by an activator object if its active. If a
binding is not active it needs to activate by instantiating
the activator object (2) before it asks it for the activation
by calling the getActivation method (3). Typically, the acti-
vator sets up the layers of the activation when instantiated
and return references to them through the return value of
the getActivation method. At the server side the getActivation
method has the following signature:

public ServerActivation getActivation
(Dictionary session, Object target)

The call which now contains a valid activation object
then goes to the a switch layer (4), which calls the first
layer on the activation object’s list of layers (5). The call
goes back to the switch which calls the next layer on the
list. Before a layer is called, the reference to it is removed
from the list. When the list is empty, the operation on the
target object is invoked (6).

(7) Ty.invoke_op(..)

(6) callup
(T, <>)

(5) callup
(T, <>)

(4) callup (T}, <a; >)
(3) getAct --> [T, < a; >]

- (1) getAct | Binding
Binding |j€—— Mgr

Figure 9. Server side binding - activation, resolving
and call scenario

(Shared)
Channel

Server side session management. Some servers may need
to allow different activations to the same target at the same
time and they may need to associate an activation to the
session that created it as figure 10 illustrates. The reason
for this is that different clients (or client threads) may need
to bind to the same server interface in different ways (us-
ing different policies). Different bindings to the same tar-
get may have different activators which creates different
activations. To facilitate this, we register session specific
bindings in separate dictionaries instead of in the binding
manager. All session-objects in FlexiNet contains a dic-
tionary and each invocation (callup) carries a reference to

the session object. Session specific bindings are put into
the session dictionary and session independent bindings
are placed in the binding manager’s dictionary. When the
binding-layer asks for a binding, the manager first looks in
the session dictionary (bindings registered here are visible
only by invocations belonging to the same session) and if
no binding is found there, the session independent diction-
ary is used (bindings registered here are visible by all in-
vocations).

Server. ~

client client

’ \

I

S f - ﬁ S,
Figure 10. Different activations (A4, Ao) for different
sessions (Sq, So)

When binding layer asks bindings (via the binding
manager) for activations, the session is always an argu-
ment. It is up to the attached policy if the session is used to
register session specific bindings.

4.3. Environment framework

To encapsulate nucleus services of middleware and to
offer API and PPI (c.f. section 2.3), we introduce environ-
ment objects. There is one instance per capsule. The
middleware is initialised by instantiating an environment
object. The instantiation code installs default binders and
other resources like shared channels or factories for creat-
ing channels.

As figure 11 illustrates, an environment class imple-
ments an APl and a PPl interface. The FlexiBind frame-
work provides Env, a base class for environment classes.
Env provides method for installing and initialising a de-
fault binder. Subclasses of Env add other services/access to
engineering objects.

Concrete environment

PPl interface
hierarchy classes hierarchy

Figure 11. Environment objects and their interfaces

A capsule is initialised by installing an environment.
This is done by calling the static method install of the envi-
ronment class to be used. Its signature is as follows:

public static void install
(String sbinder, FlexiProps s_args,
String cbinder, FlexiProps c_args)

As arguments, we use the name of the server binder
class (sbinder), the arguments (a property dictionary) to be
passed to the server binder (sb_args), the name of the client
binder class (cbinder) and the arguments to the client
binder (cb_args). The install method basically create an
instance of the environment class and keeps a static refer-
ence to it. The PPl or API interfaces of this object can be
reached by calling one of two static access methods:

public static PPI getPPI ()
public static API getAPI ()

4.4. Pluggable binder framework

A FlexiBind based ORB can dynamically be configured
for different policies and metapolicies by plugging in
binder- and activator- components. Those components are
implemented as relatively simple extensions of the binder-
framework:

Binders. A binder represents the metapolicy and it knows
a specific protocol (in the FlexiNet sense). In our context
this means both how to bind to the server and how to "ne-
gotiate" an activation policy between the client and the
server. The binder is responsible for instantiating and con-
figuring the binding-proxy with activators or activator se-
lection policies (and possibly connect it to a metapolicy
object). At the client side it will be connected to a stub and
at the server side it will be registered in the binding man-
ager.

In the FlexiNet framework, client binder classes imple-
ments the Resolver interface and server binder classes
implements the Generator interface. Our framework closely
follows this scheme. The framework provide abstract base
classes to allow sharing of (common parts of) implementa-
tion.

At the client side, a binder object is responsible for re-
solving names of remote interfaces to binding proxies that
can be used to invoke their operations. At the server side, a
binder object creates a name for the interface to be ex-
ported, and establishes an association between the name
and the target interface through a binding-proxy.

A concrete binder class is implemented as a subclass of
the binder base class (CBinderBase or SBinderBase). The
example below shows how a simple server binder can be
written. The constructor extracts the name of the activator
class from the argument and converts the type of the PPl
interface. The generateName method does the actual bind-
ing. It creates and configures a binding-proxy and it gener-
ates a name for the interface. A mapping between the iden-
tifier part of the name and the proxy is registered at the
binding manager. The PPl interface is used to get the iden-
tifier generator, the binding manager and the port address
of the shared channel.

public class Simple_SBinder
extends SBinderBase
{

String _act;

SharedChannelPPI ppi;
public Simple_SBinder

(FlexiProps arg, PPI ppi)
{

_act = arg.getProperty ("activator");

if (ppi instanceof SharedChannelPPI)
_ppi = (SharedChannelPPI) ppi;
else
throw new FlexiException
("Incompatible PPI");

public Name generateName
(Object o, Class cls, FlexiProps gos)
{

// Create binding proxy
SBinding p= new SBinding(_act, o);

// Get unique identifier
int id = ppi.getNameGenerator () .newlId();

// Register mapping
ppri.getBindMgr () .put (new Integer (id),p);

// Create and return the name

TrivName n = new TrivName (PROTOCOL,
_ppi.getAddr (), id);

return n;

}

A corresponding resolveName method could be as
simple as the example below. Note that the base class per-
forms the stub creation since this is common to all client
binders.

public CallDown resolveName
(Name name, FlexiProps qos) throws BadName
{

return new CBinding(name, _act);

}

Concrete binder classes need to provide a constructor
method with two parameters: (1) PPl interface. The con-
structor should test if this is of a the PPl type that the
binder required and do a type cast. (2) a property list (Flex-
iProps) containing parameters, for instance a default activa-
tor class name like in the example above.

As the example code above also shows, the name of the
activator class is simply passed to the binding proxy con-
structor. We could use a default value which is hardwired
into the code or set by the binder constructor. The resolve-
Name and generateName methods also take a property list
(FlexiProps) as argument. This could contain a activator
class name or more declarative QoS requirements which is
used to look up a suitable activator class. If policy
trading/negotiation is used (c.f. section 2.2), the QoS list
should contain the service profile and the user profile.

Activators. An activator object is responsible for allocat-
ing necessary resources and configuring the activation.
Server activators implements the SActivator interface and
client activators implements the CActivator interface.

Activator constructors have one parameter: A PPI interface,
which is treated the same way as in binder constructors.
The listing below shows a simple example of a server
activator. It adds a (stateful and non-shared) layer between
the channel and the target which logs information about
the invocations going through it. The logger layer is in-
stantiated when the activator is instantiated and a reference
to it is returned by the getActivation method. The logger is
initialised with a string describing the target and the layer
above which is the switch, provided by the environment

public class Log_SActivator
implements SActivator
{

private SharedChannelPPI _ppi;
private CallUp _layer;

public Log SActivator (PPI ppi, Object t)
{

// Create logger layer
_layer = new Logger (t.toString(), null,
_ppi.getSwitch());

public ServerActivation getActivation
(Dictionary session, Object t)
{

}

return new ServerActivation(t, _layer);

}

4.5. SimpleNeg - an example metapolicy

It is likely that an aspect of many metapolicies will be
that the client installs or negotiates a policy on the server
during binding. Here, we show the design of a metapolicy
where client activates the server (installs a policy). This
might be extended to a more sophisticated protocol for ne-
gotiating the policy to be used.

Server side. The server binder export the Binding interface
together with the target interface so that it can be invoked
remotely. This is done by generating names containing
two identifiers. One for the target itself (base) and one for
the Binding interface (control). These map to two binding
proxies (base-binding and control-binding). Client metapoli-
cies can use the control interface to activate the binding
for the target interface.

* base binding '

SOIONNC

(3) create session
binding for target

& (4) register
2) Ask fi iv-
(2) Ask for activ: Session
dict.

ation for base-
' channel

binding
control ' with
binding ' binding
(1) Ask for activ-| manager
ation for control-
binding

(5) Invoke control
binding (as a target)
to activate target

Figure 12. Server side support for remote binding
management

To allow different clients to activate their bindings dif-
ferently at the same time, there must be one base binding-
proxy per session. The control-binding’s activator creates
the session-specific binding-proxy the first time an invoca-
tion asks the control-binding for the activation for a given
session and register it in the session dictionary (c.f. section
4.2.4). Figure 12 shows what happens when a client in-
vokes the control interface to activate the binding to the
target.

Client side. At the client side the binder create instances
of the PolicyBinding class. Each binding proxy is connected
to a MetaPolicy object (c.f. section 4.2.2) which in the
pre_activate method invokes the activate operation on
server side control interface (Binding). The post_passivate
method calls the passivate operation at server. Both the cli-
ent side activator class and the server side activator class
are given to the binder constructor or the resolveName
method (c.f. section 4.4.1) as arguments. Figure 13 il-
lustrates how the client binding initiates activation at both

sides.
(1) calldown¢

(2) pre_activate

(4) activate

| 3) invoke |
| activate at \

server side v

(5) invoke target
at server side

Figure 13. Remote binding management (client)

4.6. Related research

Our work builds on the idea of extensibility via policy
bindings, which is not new. For instance the Open OODB
project [9] aims to develop an architecture for extensible
database middleware. Here, operations like object access

or selection may be associated with invariants (require-
ments), which can be satisfied by different policies. Poli-
cies are realised by policy-performers and managed by
policy managers (hides the choice of policy). Besides the
database research, we are also influenced by research on
extensible operating systems [10, 11], and Quality of Ser-
vice [12].

Other work on extensible ORB’s include the ANSA
DIMMA platform [13] which is the result of investigating
ORB support for multimedia. DIMMA was designed as a
"microkernel" ORB on which one could add personalities
(e.g. CORBA) at the top and where one could "plug in"
new protocols at the bottom. It was also designed with
flow interfaces and resource control in mind. The ANSA
FlexiNet platform (see section 3) is based on lessons
learned in the DIMMA project and both architectures are
heavily based on RM-ODP concepts. Jonathan [14] is a
Java implementation of the ReTina architecture and is a
"microkernel" ORB like DIMMA.

In the Open Implementation approach, Kiczales [2] pro-
poses that non-functional issues should be dealt with sepa-
rately from functional issues and exposed to programs in
separate interfaces (Meta Object Protocols). The QuO
(Quality objects) architecture [1] adopt this approach to
allow object designers to expose key design decisions that
affect Quality of Service. This makes it possible to alter
the non-functional behaviour of distributed applications by
choosing the implementation which is best suited for the
situation. QuO extend the functional interface definition
language (IDL) with a QoS description language (QDL)
which captures application’s expected usage patterns, QoS
requirements and resource usage, for bindings.

Blair et. al. [6], fully exploits the concept of reflection
[7] to provide configurability and openness. Here, the en-
gineering viewpoint is exposed as meta spaces which can
be associated with every object or interface. Meta-space
objects may also provide their own meta-spaces recur-
sively. A framework for components to populate the re-
flective architecture is being developed. Such components
will span from protocol layers to complete bindings or pre-
configured environment metaspaces.

5. Conclusions

In this paper we have investigated the design of middle-
ware to support dynamic binding configuration by plug-
gable and replaceable policies. An important aspect of our
approach is the distinction between bindings and their acti-
vations, which allows reasoning about bindings with
changing activations and activation policies (adaptation),
and policies for managing activations (metapolicies) as
separate entities. This leads to two types of dynamically
"pluggable” policy components: (1) Binders which repre-
sents the protocol and metapolicy and (2) activators
which represents the policy for how protocol stacks and
associated resources should be configured.

We have described the design of a prototype binding
framework (FlexiBind) which is an extension of the ANSA

FlexiNet framework. Here, bindings are represented by
binding-proxies which are attached to an activator and
(possibly) a metapolicy object. It also provides open inter-
faces for policy programmers to middleware engineering
through PPI’s (policy programmer interfaces). A proper
type/subtype hierarchy for PPI’s is a key to openness. A
policy which requires a PPI type can be plugged into a
platform that offers a compatible PPI. An environment
component is used to initialise the middleware, encapsu-
late the nucleus components, install initial binders and
channels, and provide two interfaces: The PPI for policy
programmers and API for application programmers.

To be really useful, the FlexiBind framework need to be
populated by metapolicies that involves mapping from
user requirements and environment parameters to suitable
policies. In some cases such information may be gathered
dynamically and used by dynamic adaptation policies. We
have introduced policy-trading to select suitable policies
plus a simple model for user- and service-profiles to re-
flect requirements and environment. In future research we
plan to investigate the use of policy-trading and client-
server negotiation with the FlexiBind framework, based on
our model of profiles and policies.

6. Acknowledgments

The work described here was partly performed when
the author was seconded by the University of Tromsg to
the ANSA FlexiNet project in Cambridge, UK in 1997.
This stay was supported by a NATO Science Fellowship
through the Norwegian Research Council grant no.
116590/410.

Thanks to Dr. Richard Hayton and Dr. Andrew Herbert
at APM (now Citrix), for valuable comments during this
stay. Also thanks to Gordon Blair, Geoff Coulson, Fabio
Costa, Katia Saikoski and the other researchers from the
universities in Lancaster, Oslo and Tromsg who was in-
volved in the CORBAng project.

7. References

[1] J.A. Zinky, D.E. Bakken, R.E. Shantz, "Architectural Sup-
port for Quality of Service for CORBA Objects", Theory
and Practice of Object Systems (Special issue in the OMG
and CORBA), January 1997.

[2] G. Kiczales, "Beyond the Black Box: Open Implementa-
tion", IEEE Software, 1996, 13(1), p. 8-11.

[3]1 . Hanssen, F. Eliassen, "Towards a QoS aware Binding
Model", Proc. SYBEN ’98, Zurich, May 1998.

[4] R. Hayton et. al. "FlexiNet Architecture Report", ANSA
Phase III report, February 1999.

[5] M. Y. Bearman, "ODP Trader", Proc. ICODP’93, Berlin
1993, pp. 19-33.

[6] G. Blair, G. Coulson, P. Robin, M. Papathomas, "An Ar-
chitecture for Next Generation Middleware", Proc. Middle-
ware "98, Springer Verlag, 1998.

[7]1 G. Kiczales, J.D. Riveres, D.G. Bobrov, "The Art of he
Metaobject Protocol", MIT-Press, 1991.

[8] D. Otway, E. Oskiewicz, "REX: a remote execution proto-
col for object-oriented distributed applications”, IEEE Press
1987.

[9] D.L. Wells, J.A. Blakeley, C.W. Thompson, "Architecture
of an Open Object-Oriented Database Management Sys-
tem", IEEE Computer, October 1992.

[10] C. Small and M. Seltzer, "Structuring the Kernel as a Tool-
kit of Extensible, Reusable Components", Proc. 4th Inter-
national Workshop on Object Orientation in Operating Sys-
tems, August 1995, IEEE press.

[111 Y. Li, SM. Tan, M.L. Sefika, R.H. Campbell, W.S. Liao,
"Dymamic Customization in the Choices Operating Sys-
tem", Proc. Reflection’96, April, 1996.

[12] C. Aurrecoechea, A.T. Campbell, L. Hauw, "A Survey of
QoS architectures”, Multimedia Systems Journal, special
issue on QoS architecture, 1996.

[13] D. Donaldson, et. al., DIMMA - A Multi-Media ORB,
Proc. Middleware *98, Springer Verlag, 1998.

[14] B. Dumant, F. Horn, F. Dang Tran, J.B. Stefani, "Jonathan:
an Open Distributed Processing Environment in Java'",
Proc. Middleware 98, Springer Verlag, 1998

QoS aware Binding for Distributed
Multimedia Systems

@yvind Hanssen, Frank Eliassen

Abstract

We investigate the design of extensible middleware that support dynamic binding configuring by plug-
gable and replaceable policies. We develop foundations for stating QoS requirements and environ-
mental properties which supports automatic mapping to binding policies.

1. Introduction

There is growing interest in distributed computing middleware that can adapt to different (and chang-
ing) non-functional application requirements as well as the service level and QoS from the environ-
ments applications are running in. Components of distributed applications are often hard to reuse in
different environments and code itself hard to maintain because code that tailors them to specific envi-
ronments is not clearly separated from application code.

Our hyphothesis is that there should be a clear separation of concerns between functional properties
and non-functional properties of component interfaces. Such separation of concerns has been pro-
posed by several authors e.g. Kiczales [1], Zinky et al. [2]. This could also be regarded as an applica-
tion of aspect oriented programming [3] to middleware, where we identify two aspects of binding to a
component; the functional and the non-functional.

Further, we suggest that non-functional properties should be related to bindings between components.
Our goal is to develop the foundations for a QoS-aware binding facility that can map from application
requirements plus a description of the available system properties to a suitable binding. We are also
interested in bindings that can adapt to changing system properties by changing its protocols, resource
policies etc. To address the question of how and to what extent this vision can be achieved, we aim to
investigate the following two problem areas:

e The design of middleware to support dynamic binding configuration by "plugging in" or replacing
policies. To achieve this, middleware need to be open, extensible and configurable. Related work
on extensible or reflective middleware include Blair et. al [6] and Hayton et. al. [7].

¢ Foundations for stating requirements and environment properties declaratively, for automated

mapping of these to suitable policies, and for specification and/or implementation of policies.

2. Approach

The first problem area is approached by introducing a distinction between bindings and their activa-
tions. Basically, the activation is the configuration of the protocol stack (and associated resources)
which manipulate invocations on their way to the target-object. A policy tells how an activation should
look like and is represented by a pluggable activator component. Bindings can be associated with
metapolicies (policies for how activations are managed) and represented by a binding proxy at each
side of the binding. Metapolicies may for instance involve late binding, adaptation or selection of

binding policies, either directly, by policy trading or negotiation. Bindings are set up by pluggable
binder components. We also introduce a way to open up middleware engineering through PPI’s (policy
programmer interfaces). A proper hierarchy for PPI’s supports pluggability of policies.

The distinction between bindings and their activations allows reasoning about bindings with changing
activations and activation policies and policies for managing activations as separate entities.

Our approach to the second problem area is to introduce a model for stating non-functional (QoS) re-
quirements and environmental properties. In essence this is a type/subtype model, i.e. a user requires a
specific type of QoS and the policy requires a specific type of service from the environment. A subtyp-
ing relationship ensures that the requirement can be met by a compatible offer, typically by using a
special trading service, possibly combined with client/server negotiation. Metapolicies which involves
policy-trading or negotiation can then map from declarative QoS descriptions to suitable policies.

3. Results and further work

We have developed a model for stating requirements/environmental properties and demonstrated how
this support automatic policy selection/negotiation (and admission control) when binding to object in-
terfaces. We demonstrated how the QoS model and policy-trading can be applied to an application [1].

We have designed and implemented middleware support (The FlexiBind framework) for flexible
bindings, based on a distinction between binding establishment and binding activation [2]. The proto-
type supports policy-governed binding, binders, activators and PPIs, and is realised as an extension of
the ANSA FlexiNet ORB framework [7].

Current work involves experiments with policy-trading and negotiation-protocols based on the QoS
model and the FlexiBind framework. Investigate how our model and framework meets the require-
ments of multimedia applications. This involves experiments using stream interfaces.

References

1. @. Hanssen, F. Eliassen, "Towards a QoS aware Binding Model", Proc. SYBEN’98, Spie Press,
May 1998.

2. (. Hanssen, F. Eliassen, "A Framework for Policy Bindings", To appear in proc. DOA’99, IEEE
Press, September 1999.

3. G. Kiczales, "Beyond the Black Box: Open Implementation", IEEE Software, 1996, 13(1), p. 8-11.

4. J.A. Zinky, D.E. Bakken, R.E. Shantz, "Architectural Support for Quality of Service for CORBA
Objects", Theory and Practice of Object Systems (Special Issue on OMG and CORBA), January
1997.

5. G. Kiczales et. al., Aspect-Oriented Programming", ACM Computing Surveys, 28 (4es)

6. G. Blair, G. Coulson, P. Robin, M. Papathomas, "An Architecture for Next Generation Middle-
ware", Proc. Middleware "98, Springer Verlag, 1998

7. R.Hayton et. al. "FlexiNet Architecture Report", ANSA Phase III report, February 1999

Policy Trading

@yvind Hanssen*, Frank Eliassen®

*Agder University College, Faculty of Engineering, Grimstad, Norway
TUniversity of Oslo, Department of Informatics, Oslo, Norway
ohanssen@acm.org, frank @ifi.uio.no

Abstract:

In this paper we investigate policy trading to address
the problem of how extensible and configurable middle-
ware could adapt to different non-functional requirements
and different properties of environments. Policies denotes
potential contracts between the system and the user, i.e. if
requirements for the environment is met, the policies guar-
antees that certain QoS will be provided.

Trading involves matching user requirements plus en-
vironmental properties with policies. In this paper we de-
fine policy trading and illustrates its principles and use.
Trading is based on profile expressions which are refer-
ences to statically defined profile graphs. Such expres-
sions can be combined through simple adding (sum) or
adding expressions which refers to different locations
(sidesums). We develop a set of rules to allow for testing
of compatibility relationships between profile expressions.

1. Introduction

There is much interest in middleware that support auto-
matic adaptation to different and changing non-functional
application requirements and environmental properties.
Much of the research in this area has been motivated by
the need for distributed multimedia support and much at-
tention has been paid to bindings between continuous me-
dia stream interfaces which need resource management to
meet different Quality of Service requirements. Many of
those concepts are also useful for operational services
where applications may have requirements for binding
(e.g. reliability, security and performance), especially in
the area of mobile client/server systems [1] where con-
nectivity and resource availability may change dramati-
cally over time.

An example of an type of application which may ben-
efit from adaptability to QoS requirements and environ-
mental properties, especially when dealing with mobility,
is command and control systems like described in [2]. For
military or emergency traffic, email messages could be
associated with QoS requirements (e.g. delivery time, se-
curity, reliability) and different delivery methods might be
selected according to the requirements and what the envi-
ronment and network is capable of [3].

Our goal is to develop the foundations of a QoS aware
binding facility that can automatically map from applica-
tion requirements plus a description of the available sys-
tem properties to a suitable binding. This binding should
also be able to adapt to changing system properties by
changing its protocols, resource policies etc. It is possible
to view the configuration of a binding as a result of a
policy. A policy is designed to meet application require-
ments for a given set of environmental properties (resource
availability, transport QoS etc.).

In previous work we outline and advocate the use of the
policy concept and a model for stating properties and se-
lecting suitable policies by policy trading [3]. In [7] we
design middleware support for adaptable policy governed
bindings. In this paper we focus at the foundations of the
automatic selection of policy components to be deployed
in heterogenous environments participating in a binding,
i.e. policy trading. To allow this we need a model which
allow stating requirements and environmental properties
clearly and which allow automatic checking if the environ-
ments (through the policy) satisfies the requirements. In
principle, policy trading should be regarded as a simple
function like illustrated in figure 1. A trading function se-
lects a policy that can meet the application requirement in
the given environment.

QoS
requirement ———_ i

. ——> polic
environment > potey

properties
Figure 1. Simple view of policy-trading

This is sufficient if we could view a binding as a single
entity, running in a single environment and with a single
QoS requirement. But in practise we deal with different
locations, with heterogeneous environments. For instance
the client and server side may be running on different plat-
forms offering different environmental properties which
are not known statically. The different sides may have dif-
ferent application QoS requirements for the same binding.
Here, policy trading seems to be useful, but we need to
combine the requirements and the environmental aspects
of the different sides and trade two (or more) matching
policy components instead of one like in the simple case.

To address the above issues we define a type model for
requirements and environmental properties. Such types are
called ’profiles’ and are used to describe the potential con-
tract offered by policies and to state application require-
ments and environmental properties when trading for suit-
able policies. A subtype relationship between profiles and
combinations of profiles are the foundations for the trading
of policies.

The rest of the paper is structured as follows: In section
2, we define the semantics of policy trading. We intro-
duce the idea of policies as mappings from environments
to the satisfaction of user requirements, as potential QoS
contracts, and as software components which establish
bindings. We define the meaning of locations, how to
combine requirements from different sides and how to
combine environmental descriptions at different locations.
We briefly define single side and composite (more than
one side) policy selection.

In section 3 we define a model of profiles as the ab-
straction we use to state user requirements and environ-
ments. In general profiles are expressions which are either
(1) basic profiles which are nodes in a type/subtype graph
where the subtype relationships are explicitly defined, (2)
sums of profiles which in essence are combination of basic
profiles at the same location, or (3) sidesums which in es-
sence are combination of basic profiles at different loca-
tions. We develop rules for testing if there is a satisfaction
relationship between two arbitrary expressions.

In section 4 we illustrate policy trading briefly by pro-
viding an example. Section 5 is a brief discussion on how
policy trading relates to extensible middleware and how
such middleware might use it for selecting and installing
policy components. We compare our work with related
research in section 6 and in section 7 we conclude.

2. Policy trading model

We introduce the concept of policy trading to facilitate
the selection of policies for creating bindings that match
user requirements and the capabilities of the environments
the bindings will run in. Policy trading is inspired by ODP
trading [8], but instead of functional interface references
we trade policy implementations to be used to set up bind-
ings. Instead of interface types and property sets, we use
user profiles (non-functional properties of resulting bind-
ings) and service profiles (requirements to environments
applications are running in). In practical ODP traders (c.f.
ANSA/CORBA) the use of type-graphs makes ODP trad-
ing effective, a similar approach to service- and user- pro-
files should work for policy trading.

2.1. Policy

A policy can be viewed as a mapping from a set of en-
vironmental properties S to a user level quality of service
(or satisfaction of an user requirement).

p:S—> U

The user profile U denotes the satisfaction of a non-
functional user requirement R. This is properties of the
binding as perceived by users or applications (Quality of
Service). An example may be that the binding guarantees a
certain level of confidentiality of the exchanged informa-
tion. A policy which satisfies such a requirement typically
involves encryption.

The service profile S denotes a predicate on the envi-
ronment E. If S is satisfied by E, the policy will deliver U
which satisfies R. Service profiles may be statements
about availability of services or resources which supports
the engineering of bindings. For instance, a policy may
require the ability to set up network connections with a
certain QoS level or the availability of the secure socket
layer (SSL) or a certain amount of available buffers.

A policy denotes a potential contract between the sys-
tem and potential users. If a requirement to the environ-
ment is satisfied, the policy guarantees that certain proper-
ties will be true. If P(x) is the predicate defining a profile
x, a policy states the following:

P(S) = P(U)

A policy also denotes a way to enforce its contract, i.e.
a configuration of resources and mechanisms. We refer to
this as the policy-implementation. In practise this could be
a software component which is executed to do the configu-
ration (activation of a binding), for instance a Java class.

2.2. Location and satisfaction relationships

Since we are considering bindings between components
in open, distributed systems it is necessary to consider
location in the sense that different sides of a binding may
have different application requirements and offer different
environments. For instance a server may require that all
bindings to it are transactional and the client may require a
certain minimum response time. A policy for the binding
must satisfy both of these requirements. On the other hand
the client and the server may run on different machines,
with different operating systems and/or middleware to
support the bindings. A policy may for instance require
access to stable storage at the client side and a certain
amount of free memory at the server side.

Here (and in the rest of this paper) we limit our discus-
sion to the client/server model but we envisage our ideas
should be applicable more generally too (for instance mul-
tiparty bindings). It is an issue for future research to see
how our trading model applies to non-client/server models.

satisfied b, satisfied b
Re -® Y “db - Ry

S A U
satisfied
by
binding by p
E satisfied E
c AS by . v S
satisfied ~ _ _ - satisfied
by S/ by

Figure 2. Client/server bindings and satisfaction
relationships

Combining requirements. Consider figure 2 above where
U is the user profile and § is the service profile of a policy
p. Furthermore R, and R denote the user requirements of
the client and server respectively. In order to use p as the
policy for the binding, U must satisfy the combination of
the requirements R, and R. In order to express combined
requirements like this we introduce the *+° operator such
that the combined requirement is expressed as R, + Rj.
The fact that U satisfies the combination R, and R, we
thus express as follows (the satisfaction relationship is de-
noted '<’):

Ug(RC+RS) & U<R,A U<R;

Combining environments at different locations. The
environment E is determined by the location of each com-
ponent to be bound. The environment for a potential bind-
ing is thus a combination of the environments of the loca-
tions of the participants. So, the service profile § of a
policy must be satisfied by both sides of a binding, i.e. it
must be mapped to requirements to the actual locations. S
holds if satisfied by a combination of E. and E; where E_
and E are the environment of the client and server respec-
tively (see figure 2). In order to express combined
environment-descriptions at different locations like this,
we introduce the @’ operator. The fact that the combina-
tion of E. and E satisfies S we thus express as follows:

(Ec®E) <S & E<S nEx<S,
where §=(S.® Sy)

Note that the '@’ operator is different from the *+° op-
erator in the sense that each side of it refer to different lo-
cations (or sides of the binding). Each side is treated inde-
pendently with respect to the satisfaction relationship. This
also means that a policy can consist of two parts where
one part is for the client side and one is for the server side.
Each of these has a separate requirement for the environ-
ment, hence we can split § into S, and S. The meaning of
the "+ and the '@’ operator in profile expressions is de-
fined further in section 3.

2.3. Trading architecture

Policy trading is the process of finding a policy whose
user profile and service profile matches the requirement R
and the environment E. Trading man be viewed as a map-
ping trade from a user requirement R and an environment
E to a policy P:

trade:RXE — p

Like in ODP trading, two kinds of operations are im-
portant in policy trading: (1) Export which registers a
policy with the trading service and (2) import which re-
turns a policy (maps directly to the trade primitive above).
Generally, policies for client/server bindings consists of
two components and we need to trade policy-components
for both sides of the binding. Those two components may
be traded separately or as a whole (as a single policy).
Therefore we distinguish between single side and com-
posite policy selection:

Single side policy selection. In some cases we trade at one
side only (typically the client side). The policy at the other
side is fixed and known (possibly traded separately at an
earlier stage). The result of the server side policy (e.g.
what protocols it supports) may be part of the environment
of the client (E;). We can describe single side policy se-
lection, Trade (U + U, E_) as follows:

Find a policy p:S — U such that E.<S A USSR +R,

Composite policy selection. Generally, we trade tuples
<pj - pp> where each p; is a policy to be used at a side i.
In the client/server model we can describe composite
policy selection, Trade(Ug + U, E, @ E;) as follows:

Find a policy pair (pC:S’ - U,p;:S" — U”)

such that

E.@E < S AU < R+R
Ec®Es < 8" AU < Re+Ry

P is interoperable with p

The last requirements (p. is interoperable with pg)
means that the policy components at each side must be
able to interoperate with each other to fulfil their task, i.e.
they use compatible protocols. In this paper we assume
that each such tuple (typically client/server pairs) is speci-
fied manually when exporting policies, i.e. a policy tuple
is treated as one single policy also at export time. It is an
issue for future research how to automatically match such
tuples at import time.

3. Profile model

In our proposed profile model, non-functional (QoS)
requirements are specified as user profiles while the com-
puting and networking environment are described as ser-
vice profiles. Policies are related to user profiles through a
satisfaction relationship, and to service profiles through a
requirement relationship. Hence a specific policy satisfies
an user profile (the qualities it provides) and requires a
service profile (the resources it requires from its environ-
ment). Furthermore, there is a compatibility relationship
between profiles (subprofiles). In this section we define
the semantics of basic profiles as nodes in a graph and
how we can state profiles as expressions by combining
basic profiles with the operators ’+’ and *@®’. Furthermore
we define subtype relationship between such expressions.
These will be used when developing rules for testing com-
patibility between arbitrary profile expressions.

3.1. Basic profiles

A basic profile X has a name and denotes a predicate
P(X) (which may be implicit). A requirement may then be
stated as a reference to the profile by name. Implicitly this
means that the requirement is that the predicate should
evaluate to true.

The predicates denoted by profiles are usually not di-
rectly evaluated or even stated explicitly at all. The idea is
to use profile names and subprofile relationships between
them to test if a profile offer matches a profile require-
ment. However, policy implementers may need to know
the exact meaning of profiles. Subprofile relationships are
established explicitly (c.f. types and subtype-relationships
in the ANSA trader).

Figure 3 below shows a simple example of a user pro-
file graph for an email application (see [3]). Users can
specify requirements for message delivery which are
mapped to this graph. For instance, ’Authenticated’ is a
subprofile of *Secure’, i.e. it includes the requirements of

9 2
Secure’.
Mail without QoS
requirements.

QoSMail

Check that content is
not changed during
delivery.

Message guaranteed to be
delivered . Use retry-
mechanisms if neccessary.
Delivery receipt to sender.

10 minutes or faster
(for example)

Reliable ~ Secure
Express
5 minutes or faster
.
Message guaranteed to be
delivered unchanged.
Delivery receipt to sender.
Super
Express
Content
Proof Ensure that the sender of a
) message really is who he
Authenticated says.

Figure 3. Example profile graph

We define a subprofile relationship as follows. A sub-
profile Y of X is compatible with X but may be a stronger
requirement. Thus a requirement stating a profile X is sat-
isfied by any profile which is subprofile of X:

v<x & (P(Y) = PX))

Since the implication relationship is transitive the sub-
profile relationship is transitive.

3.2. Profile sums

While profile graphs (explicitly defined profile-names
and subprofile relationships) should be statically defined
and standardised, it is also useful to allow anonymous pro-
files to be defined dynamically as sums of basic profiles
from profile graphs. We define an addition operation for
profiles as follows:

PX+Y) & P(X) A P(Y)

It should be clear that X+Y is subprofile of X and of Y
(c.f. section 2.2.1). Further, we make the following obser-
vation: Given a profile graph where C<A, D<B, E<C and
E<D. Then E is a subprofile of A+B. By the definition
above and the principle of transitivity it follows from the
subprofile relationships that:

P(E)= P(A) and P(E) = P(B)
From this it follows that:
P(E)= P(A) APB) & E<A+B

The observations above can be generalised into a rule
for testing subprofile relationship between sums. First, a
given basic profile is a subprofile of a sum if and only if it
is a subprofile of all elements of the sum:

n

y < in & Vxe {xl x”}: x;2y

i=1

and furthermore, a sum is a subprofile of a given pro-
file Y if we can find some part of the sum that is subprofile
of Y. If Y is restricted to be a basic profile the subprofile
relationship is satisfied if and only if at least one of the
sum’s elements are subprofile of Y:

n

y 2 in o Elxie{xl...x”}: X<y

i=1

From these two rules we can deduce a general rule for
subprofile relationship between sums of basic profiles:

n m
in < Zyj AL {y, y,,,}:(E!xie {X,... xn}: X; < xj)
i=1

J=1

3.3. Profile sidesums

If we are trading composite policies (c.f. section 2.3.2),
each exported composite policy should have a service pro-
file requirement that combines properties of local environ-
ments of both (all) sides participating in the binding.

In section 2.2.2. we introduced the *®’ operator (an ex-
pression constructed with *@®’ is called a ’sidesum’) to al-
low us to combine statements about different locations. To
see how this relates to graphs of basic profiles, consider
the service profile graph in figure 4: A composite policy
which requires a client environment E; and a server envi-
ronment E, is exported to the trader An import is at-
tempted with the client environment E, and server envi-
ronment E;. If client and server locations are identical, the
'+’ operator can be used to combine profiles, hence
S=E;+E, and E=E,+Ej3. In this case there will be a match
if E3<E; and E,<E, (c.f. figure 4). In this special case, a
sidesum is equivalent to a sum.

Eo
E; E,
AR 2 - Import:
R P 1. (client E, server Ej)
E1+E2 =
Ej3 A Ey4
(S w v Export:
: v " (client Ey4, server E3)
E3+E4

Figure 4. Sum for multisided environment

However, if we combine statements about different lo-
cations, this would be wrong. Figure 5 below illustrates
the meaning of the *®’ operator: The basic profile graph is
applied separately to each location involved such that
E,®E, & E’;+E’’,. We observe that now there will be
no match for the example used here.

’ Cll?l‘il‘ Esy server

: / \Iocatzon / ‘\locanon

. v 3
~ | e ; Import:
T T S i ’T T (client Ey, server Ey)
B @B, = i

E’; Ey i B3 E’y
[¥ P (R “__ Export:
‘ - (client Ey, server Ej)

Figure 5. Sum for multisided environment

The rule in section 3.2. that defined the subprofile rela-
tionship for sums could be modified for sidesums. It
should not be difficult to see from the discussion here and
in section 2.2.2. that a subprofile relationship between

two basic profiles can only exist if they are at the same
location: X<Y if and only if loc(X)=loc(Y).

Px<Py =

[j=t

VYe {Y, Y,,,}Z(HX[G {X,...X,,}: (loc(X) =loc(Y) AX; < Y/))

n

where Px;=x ®x,® .. ®x,

i=1

Now, we still need a way to determine if two elements
of two different sums refer to the same location. The sim-
plest approach is to assume that order of the elements of a
sidesum expression matters and that loc(X;)=loc(Y;) if and
only if i=j. This makes implementation simple, but we
have no way to determine which side i is referring to (cli-
ent or server). An ad. hoc. way to solve this problem is to
make one or more of the locations a node in the profile
graph. An expression can then look like for instance
(E;+’server’) @ E,. Now, it is easy to determine that E; is
about the server side and that £, is about the client side.

3.4. Practical testing of subprofile relationships

A practical implementation of a policy trading service
will be based on a way to determine subprofile relation-
ship between two arbitrary profile expressions, which each
may be a combination of sums and sidesums.

First, a trading service needs to store information about
profile graphs (c.f. type graphs in ANSA/ODP trader).
Such graphs can be regarded as static information. They
are typically agreed on within a domain and seldom
changed. The complexity and scalability of using such
graphs is a case for research, but a typical starting point is
that each application or application domain defines a pair
of graphs and that federations could be built between dif-
ferent domains (like in ODP trading). The hierarchical
structure naturally support federation and extensibility.

Policy traders must store two separate graphs: The user-
profile graph and the service profile graph. Furthermore,
the trader should store information about the policies.
Each policy contains a user-profile and a service-profile
which are profile expressions.

Those type-graphs will be referenced in profile expres-
sions, which denotes profiles as sums or sidesums of pro-
files which may be single references to nodes of the type-
graphs or sums/sidesums recursively. In practise, expres-
sions are represented as parse trees. Figure 6 illustrates
how we could represent a profile expression:

"A®B+C+D)"
Basic Sum
A"
Basic Basic Basic
"B "D" e

Figure 6. Parse tree for profile expression

Testing subprofile relationship between single nodes in
profile graphs is straightforward: It is a classic graph
search (DFS or BFS) for reachability between nodes. A
subprofile test between expressions is somewhat more
complicated. In section 3.2. we define a formula for test-
ing two sums and in section 3.3. we modify it for testing
two sidesums. We may also need to test expressions of
different types. Here we do the following observations:

® A sum and a basic profile expression are compared
by treating the simple expression as a sum contain-
ing only one element. The same can be done for
sidesums, but if super profile expression has only
one element, the sum test and the sidesum test are
equivalent.

¢ It follows from the formula from section 3.2. that a
subprofile sidesum must have at least as many ele-
ments as the superprofile sidesum. Therefore, a basic
profile can never be a subprofile of a sidesum, but
the opposite is possible.

e For the same reason, a sum can never be a subprofile
of a sidesum, but the opposite is possible. A sum
may be viewed as a node in a single graph instance.

This reflect the fact that a multisided policy need a
multisided environment. A policy containing n side-
components need an environment with at least n sides. We
summarise these observations in figure 7. Testing any ex-
pressions can be decomposed into simple tests (graph
search), sum tests or sidesum tests.

SUB
SUPER Simple Sum Sidesum
Simple| Simple Sum Sum
graph search test test
Sum Sum Sum Sum
test test test
Sidesum| FALSE FALSE tSidtesum
es

Figure 7. Profile expression subtype test

4. Example

In [3] we use a QoS aware email application as a case
to demonstrate the usability of policy trading. We can se-
lect from a set of delivery policies depending on what re-
quirements the user has for delivery (fast, reliable etc..)

and the capabilities of the channel to be used for delivery.
The trading process also include selection from alternative
channels. Trading is simple in this example. Service pro-
files describe channels and the application do not need to
take different sides into consideration.

Here, we illustrate multisided binding in a client/server
architecture by showing how we could select security poli-
cies. Note that this is not meant to show how we could
provide a good security architecture, but just to illustrate
our idea of policy trading.

First we have a user profile graph defining different
types and levels of security, for instance authenticity and
secrecy or combinations. Secondly, we have a service pro-
file graph defining if the client or server side environments
offer the secure socket layer (SSL), secure storage for
keys, high performance CPU or access to some kind of
certification authority.

Third we have a set of composite (double sided) poli-
cies, providing security of different types (by using differ-
ent encryption techniques and/or protocols for authentica-
tion or key exchange). Figure 8 shows a set of policies and
their relationships with profile graphs. Note that one side
in a sidesum may indicate that it is meant for the server
role by adding a node in the graph:

/
NoChange Pl: Secure hash (MD5)
(Content cannot
be changed on it way UP = NoChange
to you) Auth Secret SP = Normal
(Who are you?)
/ / P2: Encryption
UP = NoChange
AuthMsg Top Secret SP = Normal
(No one else could (strong security)

have written this)

P3: Strong encryption

Normal UP = TopSecret

SP = (Server + SecureStorage + HiPerf +
Certify @ HiPerf

7

Server HiPerf
(High performance
CPU)

P4: Strong encryption

UP = TopSecret
SP = SecureStorage ® SecureStorage

Certif

(Secure access
to certification
authority)

SecureStorage
(secure storage
of keys)

SuperPerf
(Extra High
performance CPU)

Figure 8. Example of profile graphs and policies

If the client wants a "Secret" binding, the server wants
an "Auth" binding, the client environment offer
"SuperPerf'and the server environment offer "Certif",
"SecureStorage" and "SuperPerf", the invocation of the
trader could go like this:

trade ("Secret + Auth”,
"(Server+Certif+SecureStorage+SuperPerf) @ SuperPerf")

The trader should now select only policy P;. "TopSe-
cret" is the only user profile offered, which is compatible
with both "Secret" and "Auth". Furthermore, the environ-
ments are compatible with what the policy requires. Policy

P, should not be selected because only one side has "Se-
cureStorage" and P, require "SecureStorage" at both
sides. Figure 8 below illustrates how policy P; satisfies
requirements of client plus server and how client and
server environments satisfies requirements of the policy.

Server + Certif +

HiPerf + SecureStorage HiPerf
SuperPerf
Server + Certif + Y
SuperPerf + SecureStorage
offer afﬂ'_]j,n"" (-E require
Server Client P3: Strong encryption

requiré.. require .. ! offer

Top Secret

Figure 9. Matching requirements and offers

5. Policy trading in middleware

Policy trading can be used in component based middle-
ware to select policy components for bindings. Many ap-
proaches is being developed for designing such middle-
ware: Authors has applied the concepts of reflection [19]
and aspect orientation [6] to middleware to address exten-
sibility and configurability (i.e. to open it up) without de-
stroying the benefits of object oriented abstraction. The
hypothesis is that there should be a separation of concerns
between functional and non-functional aspects of bindings.

In our context this means that the non-functional aspect
is dealt with by policies. A policy is in our approach repre-
sented by a software component, which can be plugged
into the middleware and which is responsible for configur-
ing the binding. In [7] we describe such a middleware
framework, based on Java and the ANSA FlexiNet frame-
work [20]. Here are some highlights:

® Bindings are configured (activated) by pluggable and
replaceable activator components. An activator repre-
sents a policy.

* Bindings are established (but not necessarily acti-
vated) by pluggable binder components. A binder rep-
resents a metapolicy which governs how policies are
managed, for instance how activators are selected and
how bindings could be adapted by replacing activa-
tors.

® Policy components are given access to the facilities of

the middleware platform through policy programmer
interfaces (PPI’s).

Different ORB’s (object request brokers) may offer
different PPI’s. There is a type/subtype hierarchy for
PPI’s. A policy component will require a PPI type and
if the ORB offers a subtype of it the policy can be
used.

Metapolicies may involve policy trading to select acti-
vator components. Furthermore PPI types should be
mapped more or less directly to service profiles when trad-
ing. PPI’s covers the static aspects of service profiles, but
not the dynamic aspects such as for instance resource
availability and QoS of the services offered. These could
be results of measurements and/or monitoring and given as
feedback to metapolicy objects to trigger adaptation.

5.1. Binding protocol issues

When different locations are involved in binding there
is a need for a protocol to collect requirements and envi-
ronmental descriptions and to safely install policy compo-
nents at each side participating. When looking at architec-
tures for binding, an issue is where to do the trading. This
could be done at the client side or at the server side. Here
we briefly discuss two possible architectures for binding
which are likely to be used.

Policy trading at client side. In this architecture there is
only one policy to select and it is selected (traded) at the
client side when binding to a (remote) interface. The
server has a policy installed statically. The policy of the
server interface limits what could be used at the client
side. For instance, a server policy may include concur-
rency control and logging (for recovery) and require bind-
ings to it to be transactional. Exported interface references
should if necessary indicate such server imposed limita-
tions, which must be taken into account when trading for a
policy. Le. it might be used as part of the environment
expression.

The traded policy may include (partly) configuration of
the server side, i.e. the policy installs a component at the
Server.

Policy trading at server side. An alternative is to do the
trading at the server side. In figure 10, we show how this
could be done by a scenario where composite policy-
trading (c.f. section 2.3.2.) is used. First (1), the client in-
vokes a bind operation where user- and service profile are
arguments, at the server. The result of this operation con-
tains the policy. The server may also have some require-
ment (user profile) and it finds a user profile which is a
subprofile of both user profiles (i.e. the sum). The server
then invokes the trading service (2) to find matching
policy pairs. It installs the server component of the result
(4) before it returns the client component to the client (5)
which then installs it (6).

(6) install P¢

(1) bind(U, E¢)

A
: (5) return P¢

(4) install Pg

(2) tradc(Uc+U5, Ec@ Es) (3) return <Ps, Pc>

A

@

Figure 6. Server trading binding scenario

6. Related research

Our work builds on the idea of QoS provision and con-
figurability of middleware via policies, which is not new.
For instance the Open OODB project [10] aims to develop
an architecture for extensible database middleware. Here,
operations like object access or selection may be associ-
ated with invariants (requirements), which can be satisfied
by different policies. Policies are realised by policy-
performers and managed by policy managers (hides the
choice of policy). Compatibility between policies and be-
tween the properties they require from the environment
was studied in [11], including composition of properties.
Our approach is a practical application of some these ideas
in a specific problem domain. However, we talk about
compatibility between the QoS they provide, not about
compatibility between the policies themselves.

Trading [8] is a well known approach to the selection of
services (or computing resources) to bind to. We adopt the
concept of trading, but in our context we do not trade the
services themselves, but we trade QoS contracts and
implementation policies to be used for bindings between
components (typically between services and their clients).
The ideas of types and subtypes [12] can successfully be
applied to QoS requirements and the properties of environ-
ments. Our notion of types do not capture operational (or
functional) behaviour, but non-functional properties like
QoS and/or resource availability in the engineering view-
point. Furthermore, the meaning of types are implicit and
the relationships are explicitly established like in the AN-
SAware trader [13]. An important difference from ODP
trading is that we use two different type graphs. One which
captures the provided QoS and one which captures what
the policy needs from the environment to be able to fulfil
its contract.

Much work has been done on QoS in the context of
Multimedia support in the RM-ODP [14] and QoS archi-
tectures (e.g. [15, 16, 17]) which look at models for de-
scribing QoS requirements, binding establishment which
include admission control, negotiation and adaptation. For
instance the QoS broker architecture [17] facilitates nego-
tiation between application and system, mapping of QoS

parameters and orchestration of resource management at
different levels (network, hosts, O.S. etc.). Our model of
policies capture the resource management which may in-
clude all aspects of a binding. The process of selecting and
installing policies can be related to the QoS brokerage
model but many of the mechanisms of the QoS broker en-
tity will be policy specific in our approach. We performed
a survey on QoS research in a separate report [18].

In our model, negotiation and admission control is all
done by policy-trading, i.e. multisided trading finds a QoS
contract which satisfies both (or all) parties. Trading will
only return contracts which are satisfied by the actual en-
vironmental properties, hence trading realises admission
control. Transparent adaptation or renegotiation may be
initiated if the environment changes its service profile.
Bindings may be associated with adaptation policies which
monitors the environment and initiates re-trading. If this
cannot return a contract which still meets the agreed user
profile, this must be renegotiated with the application.

Our contractual approach to QoS management is in-
spired by the QuO architecture [5]. QuO extends the func-
tional interface definition language (CORBA IDL) with a
QoS description language (QDL) which captures
application’s expected usage patterns, QoS requirements
and resource usage for bindings. Our profile concept is
inspired by the QuO project’s concept of negotiated and
reality regions (ranges of acceptable non-functional val-
ues), but it is more directed towards establishing compat-
ibility relationship graphs through the notion of type in-
heritance rather than specifying meaning of each region by
listing value ranges.

Much research is also done in the problem area of
(re)configurable and extensible middleware. There is cur-
rently a growing interest in aspect oriented or reflective
middleware. For instance, the Lancaster University looks
into at how to apply the concepts of reflection and compo-
nents to middleware [19] and especially at how to open up
the engineering of bindings [9] in a collaboration with
Norwegian researchers [21].

Our approach can be regarded as aspect oriented [6] in
the sense that we distinguish between functional and non-
functional aspects of a binding. This also follows from the
open implementation approach, [4] which proposes that
non-functional issues should be dealt with separately from
functional issues and exposed to programs in separate in-
terfaces (Meta Object Protocols). The non-functional as-
pect is programmed separately from functional interactions
and managed as policies. Aspect weaving should also be
done dynamically to support adaptability. The QuO archi-
tecture also adopts this approach to allow object designers
to expose key design decisions that affect Quality of Ser-
vice. This makes it possible to alter the non-functional be-
haviour of distributed applications by choosing the imple-
mentation which is best suited for the situation. Non-
functional aspects (contracts) are here specified in a spe-
cial contract definition language (CDL). In our approach,
potential contracts are defined by defining profile graphs
and exporting policies to the trader.

7. Conclusions

In this paper we apply the idea of trading to map from
QoS requirements and properties of environments to suit-
able policies for binding. The process of trading represents
both negotiation, admission control and mapping of QoS.
This is different from ODP trading in the sense that we do
not trade services to bind to, but rather how to bind to
achieve certain non-functional properties of bindings.

We have developed a model of policy trading as a way
of matching both user requirements and environmental
properties with policies. Policies are potential contracts
between the system and the user. If a requirement for the
environment (service profile) is met, a policy guarantees
that a certain QoS will be provided (user profile). Policies
also denotes a implementation and policy implementations
are typically small software components which can acti-
vate and configure the bindings such that the requirements
are met. The model also deals with the fact that the proper-
ties used for trading reflect the requirements and environ-
ments of both sides of the binding, thus we must be able to
combine such descriptions. For environmental properties,
each side must be treated separately with respect to the
satisfaction relationship.

We develop a model of profiles as a means to state re-
quirements and environmental properties. This model de-
fines basic profiles as nodes in statically defined directed
acyclic graphs where edges explicitly define subtype rela-
tionships. Hence, the meaning of the profiles could be im-
plicit. A simple notion of adding profiles (sum) allows us
to combine basic profiles, which represent different as-
pects of requirements or environments. Furthermore, a
notion of adding profiles at different locations (sidesum) is
developed. Basic profiles combined with sums and/or
sidesums form profile expressions. We also provide a
means for testing subtype relationships between such ex-
pressions.

We have shown how trading can be used to find the
correct policy for a binding and how it can be used to find
matching pairs of policies to be used in heterogeneous
client/server environments. We also discussed the how a
practical policy-trader works by documenting the es-
sentials of the trading and matching algorithms.

8. Acknowledgments

An early phase on the work described here was per-
formed when the author was seconded by the University of
Tromsg to the ANSA Phase III programme at APM Ltd.
(now Citrix) in Cambridge UK in 1997. This was sup-
ported by a NATO Science Fellowship through the Nor-
wegian Research Council grant no. 116590/410. Thanks to
Andrew Herbert, Richard Hayton and the rest of the
ANSA team for valuable comments. Also thanks to Gor-
don Blair and the other researchers from the universities in
Lancaster, Oslo and Troms¢g who was involved in the
CORBAng project in 1998 and 1999. Also thanks to

Gregor Kiczales and the other mentors and Ph.D. students
at OOPSLA’99 Doctoral Symposium.

9. References

[1] 1. Jing, A. Helal, A. Elmagarmid, "Client-Server Computing
in Mobile Environments", ACM Computing Surveys, Vol.
31, No. 2, June 1999.

[2] J1.@. Aagedal, Z. Milosevic, "Enterprise Modelling and QoS
for Command and Control Systems", 2nd International En-
terprise Distributed Computing Workshop (EDOC’98), No-
vember 1998. .

[3] . Hanssen, F. Eliassen, "Towards a QoS aware Binding
Model", Proc. SYBEN 98, Zurich, May 1998.

[4] G. Kiczales, "Beyond the Black Box: Open Implementa-
tion", IEEE Software, 1996, 13(1).

[5] J.A. Zinky, D.E. Bakken, R.E. Schantz, "Architectural sup-
port for Quality of Service for CORBA Objects", Theory
and Practise of Object Systems (Special issue on the OMG
and CORBA), January 1997.

[6] G. Kiczales, J. Irwin, J. Lamping, J-M. Loingtier, C.V.
Lopes, C. Meada, A. Mendhekar, "Aspect Oriented Pro-
gramming", ACM Computing Surveys, December 1996.

[71 . Hanssen, F. Eliassen, "A Framework for Policy Bind-
ing", Proc. DOA’99, Edinburgh, IEEE Press 1999.

[8] M. Y. Bearman, "ODP Trader", Proc. ICODP’93, Berlin
1993, pp. 19-33.

[9] T. Fitzpatrick, G.S. Blair, G. Coulson, N. Davies, P. Robin,
"Supporting adaptive multimedia applications through open
bindings", Proc. ICCDS’98, May 1998.

[10] D.L. Wells, J.A. Blakeley, C.W. Thompson, "Architecture
of an Open Object-Oriented Database Management Sys-
tem", IEEE Computer, October 1992.

[11] H.M. Hinton, E.S. Lee, "The Compatibility of policies",
Proc. 2nd. ACM Conference on Computer and com-
mmunications security, November 1994.

[12] J. Indulska, M. Bearman, K. Raymond, "A Type Manage-
ment System for an ODP Trader", Proc. ICODP’93, Berlin,
September 1993.

[13] R. van der Linden, J. Sventek, "The ANSA Trading Ser-
vice", IEEE Distributed Processing Technical Committee
Newsletter, Vol. 14, No. 1.

[14] G. Blair, J.B. Stefani, "Open Distributed processing and
Multimedia, Addison Wesley, 1997.

[15] C. Aurrecoechea, A.T. Campbell, L. Hauw, "A Survey of
QoS architectures", Multimedia Systems Journal, Special
issue on QoS architecture, 1996.

[16] C.A. Nicolaou, "A Distributed Architecture for Multimedia
Communication Systems", Ph.D. thesis, Computer Labora-
tory, University of Cambridge, 1991.

[17] K Nahrstedt, J. Smith, "The QoS Broker", IEEE Multime-
dia, spring 1995.

[18] @. Hanssen, "FlexiNet - QoS Investigation"”, ANSA Phase
IIT Technical Report 1977.01.00, June 1997.

[19] G. Blair, G. Coulson, P. Robin, M. Papathomas, "An Ar-
chitecture for Next Generation Middleware", Proc. Middle-
ware "98, Springer Verlag, 1998.

[20] R. Hayton et. al. "FlexiNet Architecture report”, ANSA
Phase III report, Feburary 1999

[21] F. Eliassen, A. Andersen, G.S. Blair, F. Costa, G. Coulson,
V. Goebel, @. Hanssen, T. Kristensen, T. Plagemann, H.O.
Rafaelsen, K.B. Saikoski, W. Yu, "Next Generation
Middleware: Requirements, Architecture, and Prototypes",
Proc. FTDCS’99, IEEE Press 1999.

Towards Declarative Characterisation

and Negotiation of Bindings

@yvind Hanssen
University of Tromsg
Department of Computer Science
9037 Tromsg
+47 95117457

ohanssen@acm.org

ABSTRACT

This paper addresses negotiation of bindings in open systems, and in
particular how to characterise the capabilities of heterogeneous platforms,
and communication channels. Based on a middleware architecture
supporting policy-governed binding, negotiation is about selecting
suitable policies for bindings at run-time. We propose a model for
declarative expressions based on a hybrid of declared and rule-based
conformance, and composition operators. We also propose a scheme for
how the middleware can support automatic characterisation of resources
or other relevant capabilities and composition of these, based on the
declarative expression model.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications --
languages. D.2.12 [Software Engineering]: Interoperability --
distributed objects.

General Terms
Experimentation, Languages.

Keywords
Quality of Service, Negotiation, Binding, Trading, Middleware.

1.LINTRODUCTION

In the last decade much attention has been turned towards
middleware which supports dynamic adaptation to non-functional
application requirements and varying environmental conditions.
This is motivated by requirements for e.g. multimedia
applications, mobility, dependability, etc. The capabilities of
platforms on which to build open and distributed applications are
also increasingly diverse. Platforms may offer different types and
amounts of resources for computing and communication, as well
as different mechanisms to manage them. The approach of
middleware providing one single abstraction, hiding
implementation details and differences between the various
platforms is recognized to be too limiting. Therefore, research has
been focusing on opening up and componentising the middleware,
to make it more configurable, but still without sacrificing
abstraction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

RM’05, November 28-December 2, 2005, Grenoble, France.

Copyright 2005 ACM 1-59593-270-4/05/11...$5.00.

Reflective middleware [1] explores the idea of using meta-
level architectures for exposing implementation details, and using
meta object protocols for programmatic access to these. It is
however less clear how to support automatic adaptation to various
QoS requirements and environmental properties. Binding between
components would involve a negotiation process, which involves
exchanging requirements and offers, to reach agreement on a
contract and to find a solution on how to configure the binding
accordingly. This means that we need not only platform
abstraction, but also platform awareness, which is the ability to
characterise and exchange the properties of the platform. Systems
which have such expression and negotiation capabilities with
respect to non-functional properties are often termed Quality of
Service Aware (c.f. [2]). However QoS research has mostly
focused on static specification or dynamic negotiation tied to
specific architectures.

This paper addresses how to expose varying platform
capabilities in a way that facilitates negotiation between
heterogeneous platforms on how to select suitable policies for
bindings. The main contributions are: (1) A proposed model for
declarative expressions. (2) A proposed scheme for how the
middleware can support characterisation of resources or other
relevant capabilities, as well as composition of these.

In section 2 we give an overview of the main ideas of our
approach: Policy bindings negotiation and the need for a language
for stating QoS requirements, and properties of the environment,
and which supports conformance checking and composition. In
section 3 we introduce our profile expression language. In section
4 we introduce our ideas for a negotiation support in our
experimental middleware architecture. This includes dynamic
profile expressions and a descriptor object framework. In section
5 we relate to current work in the area and in section 6 we
conclude.

2. OVERVIEW

The main ideas of our approach, and the basis of our
investigations are as follows:

» The concept of policy which define contract templates and
contract enforcement plans. The concept of metapolicy, which
define the management of bindings and associated policies
[3].

» Trading of policy as a principle of negotiation and the use of
declared conformance for matching property descriptions [4].
A language for profile-expressions used for exchanging
requirements and environmental properties, and which support
conformance checking and composition.

» Run-time expression support by the middleware.

Article 8

2.1 Negotiation

We are interested in how to find a contract and a
corresponding configuration when establishing a binding. We
refer to such a process as negotiation since an overall goal is to
reach agreement between possibly autonomous parties and since it
may involve exchange of statements (offers and requirements).

Figure 1 illustrates which roles profile expressions play in
negotiation based on policy trading. For a given service,
application or application domain, there would exist a set of
potential contracts, called policies, each stating an offer and an
expectation. A contract is a promise, that the properties offered
will be provided as long as the expectation is satistied. The goal
of negotiation is to find a policy whose offer (user profile)
satisfies the user requirement while its expectation (service-
profile) is satisfied by the environment properties (environment
descriptor).

The relationships between user requirements and offers, and
the relationships between the expectations and the capabilities of
the environment, are satisfaction relationships. To facilitate
conformance testing, a model should define a partial order on
such expressions with respect to satisfaction. Then, any pair of
expressions may be mechanically evaluated for conformance.

offer)
. = requirements
satisfaction
policy relationship
environment
expectation descriptors

components of environment

Figure 1. Statements and satisfaction relationships

2.1.1 Declared conformance

It looks appealing to adopt the technique typically used in
ODP trading [5, 6] where each requirement or offer is a reference
to a type name, and where a type conformance graph is declared a
priori. This way of using declared conformance was first proposed
in [7]. However, this is too limiting in general, since each declared
type will need to capture all aspects relevant for the application.
This may easily lead to conformance graphs which are too
complex and application specific. Therefore we propose a hybrid
model where conformance rules may also be based on simple
numeric parameters.

2.1.2 Dynamic composition of statements

Profile expressions and negotiation should support
composition, since statements from participants which do not
necessarily know each other, would need to be combined into one
describing the composed system. Given a set of expressions about
the behaviour of individual components of a system, it is not
obvious how to deduce the behaviour of the whole system. Three
different problems should be addressed when it comes to
expressing the total behaviour:

» Autonomous users may issue different requirements for the
same service and all users should be satistied.

» We may need to combine expressions regarding the same
component but in more than one dimension (e.g. performance
and security). We introduce an operator to construct
expressions from simpler sub-expressions, meaning that the
predicates stated by each part must be true in the same
environment (c.f. logical conjunction).

» Open systems are systems interacting with environments
neither they or their implementers controls [8]. Expectations
towards environments may need to characterise a number of
abstract components, for instance, client, server and
communication channel, with a separate expectation for each
of them. Our model should therefore support dynamic
composition of statements about separate components of the
environment. We address this problem by introducing an
additional composing operator.

The third problem is only partly addressed in QoS
specification models like [9], by allowing QoS-characteristics to
be defined with composition in mind. Work on formal models has
shown that with certain assumptions on the temporal relationships
[10] it is possible to make statements about the behaviour of
composite systems as conjunctions of statements about each
component.

2.2 Binding model

The negotiation scheme discussed above need to be supported
by a middleware architecture, it will be a part of the binding
establishment process, where an active binding would represent a
contract. The basis of our investigation is the family of binding
models of ANSA [12], FlexiBind [3], OpenORB [13, 14], etc.

We believe that [14] is suitable as a generic binding model
which regards binding-types as pluggable first-class entities. In
our current experimental work, we assume a client/server (RMI)
special case, and look at how client initiated binding would lead to
a session specific end-to-end configuration. We also limit the
scope of negotiation to the non-functional aspects. However we
believe that the ideas explored here are applicable to other binding
types as well.

2.2.1 Binding phases

We can decompose binding into four phases, where the
system can perform configuration of a service implementation and
where negotiation would be of interest:

» Service deployment (server side binding). A service is made
available for clients to bind to, by generating a name and
configuring a minimum of protocol stack such that client can
establish bindings and initiate negotiations.

» Client binding, i.e. a client associates to the service. This
would not necessarily lead to a complete configuration, since
there may still be parts which need to be negotiated.

» Activation, where binding configuration as a result of
negotiation is completed, and associated with necessary
resources such that invocation may take place.

» Run-time adaptation by re-activation. Existing activations may
be taken into account when re-negotiating the policy. It is also
possible to encapsulate some adaptation within a single policy,
if it does not violate the contract.

Note that we distinguish between component deployment (c.f.
CCM, or EJB) and service deployment. Component deployment
may involve service deployment.

2.2.2 Policy

A policy represents a potential contract, i.e. it can be viewed
as a mapping from some constraint on the environment S, to the
satisfaction of an user requirement U. We refer to U as the user
profile and S as the service profile. If P(x) is the predicate
defining a profile x, a policy states the following: P(S) = P(U)

Article 8

A policy also constrains how an activation is configured. The
configuration part of a policy will depend on the binding type. For
RMI bindings it will consist of a client and a server part.

A metapolicy represent a way to associate policies with a
given binding. A binding will always be associated with a
metapolicy which constrain how and when it is activated, how the
policy is negotiated, what scope a policy will have (e.g.
invocation, session, transaction etc), and how the binding is
adapted by re-activation in response to changing environmental
properties.

Our concept of metapolicy capture how services are set up in
the deployment phase as well as in the client binding phase. A
metapolicy may therefore involve implementation decisions
which constrain the later choice of policy.

3. PROFILE MODEL

In our approach statements about offers, expectations, etc. are
formulated as profile expressions which can be evaluated for
conformance. In this section we describe the idea of basic profile
models and how more complex expressions can be composed
from basic profiles by using sum or component-sum operators.

3.1 Defining basic profile models

A basic profile is an identifier and is associated with zero or
more numeric parameters (parameters are enclosed in square
brackets). A profile model define a set of rules for how basic
profiles are related by conformance. If a profile x (implicitly)
denotes a predicate P(x), a conformance relationship exist: x <y,
if P(x) = P().

Since profile models only need to state conformance
relationships, the actual meaning of a basic profile may be
implicit in a profile model. Profiles can be abstractions over
measurable properties like e.g. timing constraints, amounts of
memory, but also structure of implementations etc. A policy
programmer may however need a specification defining the actual
meaning. For instance that ModerateDelay means average delay
less than 500 milliseconds.

A concrete profile model is specified as a set of axioms. To
define axioms we propose a simple notation like shown in the
example below. Each axiom declares conformance between pairs
of basic profiles using the '<' operator. A predicate for when
conformance is true is placed after the 'if' keyword. Variables in
the predicates are bound to the parameters given inside brackets.
Omitting the predicate in a rule means 'true' (corresponds to
simple declared conformance).

NetGuaranteed < NetEstimated < Net;
LowLoad £ ModerateLoad < HighLoad;
LowDelay <

Delay[x] < Delayly]l, if x <= vy;

Delay[x] < LowDelay, if x <= 100;

XRes [x] £ XRes[y], if x <= y;

Disp[xl,yl] £ XRes[x], if x1 >= x;

Disp([xl,yl] < Disp([x2,y2], if x1>=x2 AND y2>=y2;

ModerateDelay < AnyDelay;

From the rules above, we can for instance infer that the
expression Delay[10] satisfy ModerateDelay and that Disp
[2000,1000] satisfy XRes[500].

As a proof of concept we have implemented a profile model
compiler which checks the correctness of the definition, computes
a set of additional rules which can be derived from the axioms. It
generates code which facilitates efficient testing of conformance
between any pair of basic profile expressions.

3.2 Composing expressions

3.2.1 Sum operator

Profile expressions can be combined using the '+' operator.
The semantics of this operator is logical conjunction. If a profile
expression x denotes (implicitly) a predicate P(x), A profile
expression x+y denotes a predicate P(x+y) = P(x) A P(y).

From this definition it is straightforward to infer conformance.
For instance (x+y) < x. Furthermore, z < (x+y), if z<x and z<).

3.2.2 Component sum operator

The '®' (component sum) operator is used to state expressions
regarding separate environments. To satisfy a component sum
x @y, both x and y must be satisfied, but x and y cannot be satisfied
by the same profile instance. For a profile z to conform to (x®y), z
must itself be a component sum (a ®@b) where a <x and b <y.

A profile expression (x®y) denotes a predicate P(x®y) =
Pi(x) A P>(y). where P is a composite of P; and P-.

3.2.3 Expressions in general

From the definitions above we have developed a complete
syntax and semantics of profile expressions formed by these
operators. Based on this, we have developed conformance rules
which can be used to match any expressions in this language. We
refer to [11] for a more complete set of definitions and proofs.

A conformance testing algorithm has been implemented as a
proof of concept. Conformance testing software (which will be
part of policy trading software) will link in code generated by the
profile model compiler.

3.3 Example

Consider an application for interactive browsing of graphics
representing large and complex models (e.g. GIS). Clients initiate
sessions to a server, and may have requirements for presentation
quality and average response-time. Network connectivity and
client device capabilities may vary, and the graphics rendering
may put a high load on servers. The choice of policies for
bindings will depend on user requirements and capabilities of
client devices, servers and network.

A policy, which offers to satisfy low response time and a
certain image quality may have the following expectation: A
certain a minimum size of the display on the client side, a network
connection satisfying an estimated “NormalBW” bandwith and
latency better than 20, and a server with a "fast" CPU and a
moderate load.

Client + ((Display[800, 400] + Colour)
@® (NetEstimated + NormalBW + Delay[20])
® (Server + FastCPU + Moderateload))

A client environment (e.g. a portable device) may for instance
express that it is capable of two display modes: One normal
colour mode and one monochrome mode with higher resolution,
by including a component sum of two display instances:

(Display[200, 100] + Colour)
® (Display[400, 800] + Mono)

4. MIDDLEWARE ARCHITECTURE

In this section we describe some highlights of our experimental
middleware platform and how such a platform can support the
run-time characterisation in the profile model described in section
3 above. The implementation is based on parts of FlexiBind [3].

Article 8

4.1 Basic binding framework

Binders are pluggable components responsible for establishing
bindings. Service deployment would mean associating objects
with a suitable generator (server side binder), which generate an
interface reference which can be resolved by a corresponding
client side binder. Binders creates bindings which are not
necessarily active. Bindings are associated with a metapolicy and
are represented by explicit objects both on client and server side,
or in all address spaces involved in the binding.

Activators are pluggable components responsible for
activating bindings according to some policy. Activating a
binding involves loading and instantiating an activator
component. This may (depending on the policy) allocate resources
needed by the activation, as well as setting up protocols,
transparency objects, or other aspect implementation components.
A policy will actually contain a reference to some activator
implementation (a Java class in our experiment).

4.1.1 Channels

When a server generates an interface reference for an
interface, some protocol information must be passed along with it
such that clients know how to negotiate and bind to it. This
observation suggest that the activation (protocol stack) should be
divided into two parts: (1) A protocol dependent part which is
identified in interface references, and a (2) protocol independent
part which is negotiable. On the server side, the protocol
dependent part should normally be the minimum needed to listen
for incoming calls and to perform negotiation. On the client side,
this means that we know what the protocol-dependent part of the
activation should be at binding time, but it doesn't necessarily
have to be activated before the rest of the stack is activated.

It is useful to encapsulate common protocol dependent
configurations in components called channels. An instance of a
middleware platform should offer access to one or more default
channel instances and/or an interface to instantiate channels.

4.2 Negotiation aware bindings

Negotiation is handled by negotiator metaobjects which can
be attached to bindings. They may intercept the methods for
activation/deactivation to modify their behaviour. This essentially
mean to add a mechanism for deciding on what activator to select.
On the server side, binder would set up a negotiation metaobject
which also export a special interface to be remotely invoked by
clients to perform the negotiation. In our experiments this
interface offer the following operations:

» get Activation. Start the binding process on the server. It takes
the user-requirement and the client side environment descriptor
as arguments. It creates a prioritised list of candidate policies,
and return the client part of the first policy which successfully
is activated on the server.

» retry Activation. Tell the server that the client part of the
policy failed and that the server should try another one.

» activation_OK. Tell the server that the binding process has
succeeded and that the server may now throw away the list of
candidate policies.

» release. Close the binding.

A policy-trading service is located on the server, and it is used
by the negotiation metaobject to compute a list of candidate
policies. The trader is loaded with policies, each containing a
reference to a client activator and a server activator. A
corresponding client side binder would set up a negotiation
metaobject (negotiator) which at first invocation or when

explicitly requested, computes the two profile expressions to be
sent with the get Activation message. Figure 2 illustrates the
binding setup where the farget represent the actual application
object on the server or a proxy object on the client.

The approach described here is one of several possible ways to
design a negotiation protocol. It assumes a client/server model and
that the probability of an activator failure is low. It can be
extended to involve more components, for instance a three tier
architecture with a backend server.

resolve |
channel - inspector
objects

4.2.1 Interface references

The name of the protocol is part of interface references and is
used to select a corresponding resolver component. In our initial
scheme, the channel would identify the protocol. However, a
server binder could also set up a negotiation scheme. Thererfore a
protocol-id would be composed from two parts: One determined
by the listening channel and one by the binder. Furthermore, the
negotiation scheme described here will require two target
identifiers, one for the actual target interface and one for the
negotiation interface.

4.2.2 Dynamic profile expressions

We claim that it is a metapolicy issue how the environment-
descriptors (c.f. section 2) are produced, since the relevance of
properties would depend on the application, the binding type, the
platform, the channel used, etc. As shown in figure 2, the binder
would set up per binding instance, the necessary structures to
produce such expressions.

Some parts of the descriptors may be static. This is the case
for platform properties like display resolution or the availability of
certain channels. However some properties may change due to
varying load etc. Some may depend on the location of the peer,
like for instance estimated end-to-end network delay. These
cannot be fully provided before the time of negotiation. Therefore
we propose a dynamic profile expression scheme: A binder will
set up a profile expression tree (corresponds to an abstract parse
tree). Parts of this may be dynamic, i.e. we use a special type of
tree node which must be evaluated at negotiation time to get a
complete expression. With this scheme we can easily set up the
composition and the static parts as expressions embedded in the
binder code.

4.2.3 Inspector objects

To support dynamic profiles we introduce inspector objects.
Their role is to generate profile expression fragments describing
platform specific facts or measurable properties of the system
when requested. Inspectors offer an interface with a method
getProfile() which returns an expression. A dynamic profile node
would refer to an inspector, and inspectors may be shared between
profile-expressions. Inspectors may be installed by platform
configuration to report properties of platform wide resources, they

may be configured by channels, or they may be configured by
binders to report properties of individual bindings.

Some of the inspectors would need to be configured with a
target object (a reference to a local implementation or a remote
interface reference). Other inspectors may not need to be
associated with a target, but rather with the platform or resources
available. Examples of what inspectors can do include:

» Estimate end-to-end invocation time by invoking probe-
operations on the remote system. An inspector could e.g. return
a profile "RTT [n] " (where # is a number denoting the round-
trip time in milliseconds). More sophisticated implementations
could use of policy specific interceptors or layers in the
invocation chain which monitors the time for real operations,
however requiring an existing activation.

» Determine by probing, if the remote system is reachable by the
UDP protocol (not always the case if endsystems are on
different IP-subnets). This can be useful if policies use UDP
based invocation protocols or RTP for continous media
streams.

» Estimate the load on the CPU, network interface or other
resources on the platform. Such an inspector may make use of
operating system specific services. For instance the CKRM
module [15] for the Linux kernel provides class based
reservation and monitoring of CPU, storage or listening
sockets. A class could for instance guarantee that its members
get a certain share of the resource. This can be used to
determine in which class it is possible to place the threads of a
session at a given time instance.

In the case of using class based resource management, actual
reservations would be encapsulated in policies. The negotiation
scheme cannot guarantee that reservation will succeed, unless the
middleware is given exclusive access to the classes of interest by
the O.S, and unless the negotiation protocol provides proper
concurrency control wrt. resources of interest.

4.2.4 Naming and scoping support

Binder components are meant to be pluggable into various
platform configurations. Hence, we want to abstract over how
inspector objects are implemented and installed. We observe that
(1) the platform might set up some, (2) channels might set up
some, (3) binders set up some, and (4) some are metapolicy
specific (set up by binders) but shared between the bindings
sharing a metapolicy. Binders should be allowed to use and
compose these objects.

This suggest that the middleware platform should support a
naming and scoping mechanism for inspectors. Scoping is
organised like in figure 3: The scope of a binding will also include
the scope of the platform. We may want override a name defined
in the platform scope. For instance, a metapolicy may wish to
specialise the behaviour of a display inspector to reflect that only
a part of the display could be used. It could then install a special
inspector which delegates to the platform level display inspector
but modifies its output.

4.2.5 Scripting

The use of a run-time naming and scoping mechanism leads
us to the idea of defining dynamic profiles as script fragments
embedded in binder code. It is convenient for a metapolicy
programmer to embed textual representations of expressions and
let the middleware evaluate it. In such expressions one could use
the '$' prefix to refer to parts which are expanded at negotiation
time. They would refer to installed inspectors by name.

‘ channel ‘ ‘melapolicy‘

‘\\\\

binding

4.2.6 Example

Recall the example in section 3.3. A client binder sets up an
inspector named 7pc-channel’ which returns the properties of an
available RPC channel. An inspector named 'display' is set up by
the platform and returns the properties of the display. The client
binder code would contain the following.

descriptor = “Client + ($display @ S$rpc-channel)"

During negotiation, this expression is evaluated, i.e. the
dynamic profile parts are replaced by expressions returned by the
inspectors, e.g. $rpc-channel estimates bandwidth and delay and
return e.g. "NetEstimated + HighBW + Delay[10]".
The resulting expression is sent to the server in the get_Activation
operation and the server adds its own expression (evaluated in a
similar way) by using the component sum operator. The resulting
expression is then used when searching for a policy.

4.3 Implementation

The ideas presented here has been partially implemented.
This includes binders, activators, a negotiator framework, an
example negotiator pair, a simple policy-trader, dynamic profile-
expression evaluation, an inspector framework and some example
inspector and naming spaces which can be linked to provide
proper scoping. Experiments using this implementation is
currently being carried out.

We observe that the idea of naming and scoping have a wider
application than only inspectors. In [3] we propose a extensible
interface hierarchy for the PPI (policy programmer interface),
which is used by policies to get access to services of the platform
and which facilities the pluggability check of policies by using the
dynamic type checking mechanism of the programming language.
This scheme does not scale well wrt. number of possible platform
configurations with different sets of services. It is not suitable for
handling a varying number of instances of the same type, e.g.
channels. This also indicates that one could benefit using
declarative scripting, not only for composing dynamic profile
expressions, but also for defining binders in general since
different binders often represent sligthly different ways to
configure and use a set of standard components.

5. RELATED WORK

Binding models in reflective middleware [1] is maturing. The
ANSA FlexiNet framework [12] allows dynamic pluggability and
selection of binders, [3] adds the concept of pluggable and
replaceable policies for binding activation. The OpenORB binding
model [14] focuses on extensibility wrt. binding types. Here, the
client/server model is one of many specialisations. Since the
concept of binding types includes a negotiation protocol, scope of
binding etc, it overlap with our concept of metapolicy. The
binding type will clearly constrain metapolicy, but it also seems
like metapolicy would need to contain different aspects, some of
them orthogonal to binding-type.

Much research has been done in QoS but is often tied to
specific application domains, technologies, components or layered
architectures (c.f. [16]). This includes QoS negotiation which is
typically based on parameters and explicit constraints on
parameter ranges, which may be computationally complex.

QuoO [17] focuses on adaptation, contractual QoS and aspect
languages. Contracts may be defined in a specific language, based
on regions, constraining values on measured properties. Contracts
are explicitly represented at run-time and closely tied to the server
implementation. Furthermore this model does not address
negotiation among autonomous components. QML [2] is mainly a
language for QoS contract specification. A run-time
representation is possible, however somewhat ad hoc. CQML [9]
extends and generalises over this model and add some support for
composition in the individual QoS characteristics. QML and
CQML connect contract-templates to the service interfaces by use
of so called profiles. We aim to make contracts more orthogonal
to service types. Also, our approach offer a hybrid of declared and
rule-based conformance instead of a strictly parameter based
approach. Furthermore it addresses composition which is weakly
supported in other approaches.

QuA [18] propose platform managed QoS as a general
solution to preserve the safe deployment property for
compositions of independently developed components. An
important part of QuA is a framework for service planning [19],
i.e. composing software components and resources to realise a
service according to a set of QoS constraints. This is not far from
the purpose of policy trading. QuA proposes to use a quality-loss
model and utility functions, which has a more limited scope than
our profile model but at the other hand, is suitable for maximising
satisfaction in addition to just finding satisfactory contracts.

6. CONCLUDING REMARKS

We propose a model for declarative expressions to be used in
negotiation of bindings in open systems. From application or
domain specific rule-bases, we can infer conformance between
pairs of expressions in this model. A compiler can derive a full set
of rules and generate code which facilitates efficient conformance
checking. Our model supports composition, i.e. conjoining of
expressions describing separate components.

We also propose a scheme for how middleware can support
automatic characterisation of resources or other relevant
properties as well as composition of these. Each binding instance
would be associated with a dynamic profile, i.e. a profile
expression with placeholders for parts to be determined by
querying at negotiation time. Such querying is done on inspector
objects which perform mapping from platform dependent
characteristics to the more abstract profile model. This means that
QoS mapping is highly configurable and set up or modified by
binder components. This scheme has the advantage of being
flexible but requires some conventions for naming of inspectors.
The profile model can simplify negotiation, and matching of
policies can be more efficient than with more traditional
parameter based negotiation, but requires careful design of profile
models as well as conventions for composing expressions. A
negotiation scheme strictly based on conformance does not
support finding an optimal solution. That is a disadvantage in
some cases.

Issues for future work in this area include validating this
approach by applying it to application scenarios and alternative
binding types. We observe that the metapolicy includes many
aspects and that binders to a large extent share code. One could
explore the use of declarative scripting languages for defining
platform setup, binders, negotiators and activators. Since various

applications or application domains may define their own profile
models it is interesting to see how we can provide interoperability
among autonomous domains by combining their models. Here, we
may benefit from work performed in the area of semantic web
with ontologies.

7. REFERENCES
[17 Kon, F., Costa, F., Blair, G and Campbell, R. H. The Case
for Reflective Middleware. CACM June 2002/Vol. 46, No. 6.

[2] Frelund, S., and Koistinen, J. Quality of Service Aware
Distributed Object Systems, Hewlett Packard Software
Technology lab. report: HPL-98-142. 1998.

[3] Hanssen, @. and Eliassen, F., A Framework for Policy
Bindings, In Proceedings of DOA'99, Edinburgh, IEEE press,

[4] Hanssen, . and Eliassen, F., Policy Trading, In Proceedings
of DOA'00, Antwerp, IEEE press, 2000.

[5] Bearman, M. Y., ODP Trader, In Proceedings of ICODP'93,
Berlin, 1993

[6] ODP Trading Function, Report, ITU-T X.950 — ISO/IEC
13235.

[7] Hanssen, @. and Eliassen, F., Towards a QoS aware Binding
Model, In Proceedings of SYBEN'98, Zurich, Spie press,
1998.

[8] Abadi, M., and Lamport, L. Open Systems in TLA, In
Proceedings of ACM Symposium on Principles of
Distributed Computing, August 1994.

[9] Aagedal, J. @., Quality of Service Support in development of
Distributed Systems, Ph.D. Thesis, University of Oslo, 2001.

[10] Abadi, M., and Lamport, L. Conjoining Specifications,
Digital Systems Research Center, Report 118.

[11] Hanssen, ©. A Declarative Profile Model for QoS
Negotiation. Technical report 2005-54, University of
Tromse, Computer Science Department, 2005.

[12] Hayton, R. and Herbert, A., FlexiNet: A Flexible,
Component-Oriented Middleware System, Lecture notes in
Computer Science, 1752, p. 497 {f, Springer Verlag, 2000.

[13] Blair, G.S., et al. The Design and implementation of Open
ORB 2, IEEE Distributed Systems Online, 2, (2001), no. 6.

[14] Parlavantzas, N., Coulson, G. and Blair, G.S., An extensible
Binding Framework for Component-Based Middleware, In
Proceedings of EDOC 2003.

[15] Nagar, S., et al., Improving Linux resource control using
CKRM, In Proceedings of the Linux Symposium, Vol two,
July, 2004.

[16] Ecklund, D., et al., QoS Management Middleware: A
Separable, Reusable Solution, In Proceedings of IDMS 2001,
LNCS 2158, pp. 124-137, Springer Verlag 2001.

[17] Loyall, D.E. et al. Specifying and Measuring Quality of
Service in Distributed Object Systems, In Proc. ISORC'98,
IEEE press 1998.

[18] Staehli, R. and Eliassen, F., 4 QoS Aware Component
Architecture, Simula Research Laboratory Research report,
2002 - 12.

[19] Solberg, A., Amundsen, S., Aagedal, J.O. and Eliassen, F., 4
Framework, for QoS-Aware Service Composition, In
Proceedings of 2™ ACM Intl. Conference on Service
Oriented computing, ICSOC 2004.

Article 8

