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Abstract

This thesis addresses negotiation of bindings in QoS aware open systems and in particular 
how to characterize possible contracts, requirements and capabilities of heterogeneous envi-
ronments. Our approach is (1) to use trading of policies as the principle for negotiation and 
(2) the use of declared or rule-based conformance for QoS statements to be used in negotia-
tion and (3) a middleware binding framework supporting negotiable bindings. 

A policy is an architectural entity which encapsulates a potential QoS contract plus a re-
source and implementation configuration to enforce the contract. The contract part (profile) 
consists of an obligation to be matched with requirements and an expectation to be matched 
with descriptions of the environment. A policy may encapsulate how implementation compo-
nents and properties of environments are combined to achieve a QoS level. Policy trading is 
the proposed principle for negotiation. Potential contracts may be orthogonal to interfaces 
and interface types, and are associated with some trading service. Negotiation is essentially 
to collect requirements and environment descriptions from participants and match these 
with policies. 

We investigate an approach to contract matching based on declared conformance. An impor-
tant contribution is the development of a declarative expression language for profiles, re-
quirement and environment descriptions used in negotiation at run-time. We propose to de-
fine conformance as rule bases. Such rule bases can be compiled to efficient conformance 
checking code. We propose two composition operators to combine expressions at run-time 
and develop the foundations of a generic conformance checking algorithm for profile expres-
sions.

A prototype binding framework is developed, supporting activation of bindings, pluggable 
binder and activator components. The framework is extended to support negotiation using 
policy trading and profile expressions. The approach is validated by examples and proof of 
concept implementations. A profile model compiler, a policy trader and the binding frame-
work are implemented and applied to example applications. 
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Chapter 1. 

Introduction

1.1.  Motivation

Open systems are, according to Abadi and Lamport [Abadi94], systems which are to be run in "en-

vironments neither they or their implementers control". Open systems are typically specified in 
terms of components and relationships between these; i.e. components use each other’s services, 
and reusable components (possibly produced by different implementers) can be added or replaced 
in a running system. As the complexity and size of computer applications grows, so does the im-
portance of being able to compose distributed applications from various reusable components. 
Principles like data abstraction and polymorphism, service oriented architectures and object tech-
nology like e.g. OMG CORBA [OMG96], represent significant contributions to interoperability. 
Middleware essentially realise distribution transparencies and abstracts over platform specific 
services and resources and is therefore helpful in overcoming heterogeneity and distribution. 

Furthermore, it may be desirable to re-use services in different contexts, which were not neces-
sarily foreseen in the first place. From a user’s point of view, it is desirable to have services which 
can adapt to varying needs, usage patterns or available computing and communication resources. 
However, it may be challenging to provide one implementation of a given abstract task or service 
which performs satisfactorily with more than a limited range of environments or usage patterns. 
Implementations often make implicit assumptions on the extra-functional behaviour (also termed 
quality of service) of the environment they run in. For instance, a component using the services 
from another may assume that interactions happen reliably or in bounded time. If such assump-
tions do not hold, the application may not work as expected. This may be particularly problematic 
when user requirements, resource availability and quality of service from the underlying platform 
may change dynamically.

Therefore, we need not only abstraction over platforms and implementations (as provided by tra-
ditional middleware), but also the ability to expose information about their extra-functional be-
haviour, not only at design time but at run-time as well since implementations and resource 
availability is not expected to be static. Systems having such expression and negotiation capabili-
ties are termed quality of service aware [Frølund98b]. A common and widely accepted approach is 
to specify extra-functional assumptions and promises as QoS contracts [Beugnard99]. In an open 
system we may need to validate or negotiate contracts at run-time as configurations change. 
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Research on contractual QoS (e.g. [Loyall98a, Frølund98a]) tends to associate QoS contracts with 
interfaces, implementations, or the deployment of components. In open systems, in particular in 
service oriented architectures where components are loosely coupled, we find it useful to focus on 
bindings when considering QoS contracts, since this represents a level of indirection between the 
use of a service and how to implement its behaviour. In the context of distributed object mid-
dleware, a binding has typically to locate the implementation of a service, set up communication 
protocols, allocate resources, etc. in order to enable interaction. All these choices can affect the 
extra functional behaviour of the service as observed by the users of the binding and therefore, a 
desirable property of a middleware infrastructure is the ability to configure bindings dynamically 
in order to adapt to the situation, including QoS requirements, resources etc., or simply decide if 
a contract is valid or not. There has been much progress in this area of middleware research and 
in particular in how to control QoS via bindings [Blair00, Kon02, Blair04], but it is still not very 
clear how to bridge this with contracts and negotiation. 

1.2. Problem and objectives

An overall theme of this thesis is how to design and configure components in open systems, such 
that the applications built from them are able to adapt to different and changing extra-functional 
requirements as well as different and changing environments. More specifically, our goal is to in-
vestigate how to support QoS aware binding to some abstract service at run-time. This includes 
how to define and negotiate contracts, certain aspects of how to enforce contracts, and how to ex-
pose varying platform capabilities and other environmental properties in a way that facilitates 
negotiation between heterogeneous components. This report describes work performed over a long 
time, where we have looked into various aspects of this problem area. In summary the following 
key questions have been driving our work: 

1. How and to what extent extra-functional aspects can be separated from service interfaces or 
implementations and made negotiable. 

2. How to characterise and negotiate (configurations of) such aspects, and how to do this in an 
efficient, scalable, interoperable, extensible and composable way.

3. How such characterisation and negotiation can be supported by an infrastructure.

1.2.1. Focus

QoS aware binding can involve several problem areas. This topic is related to the rather large 
area of Quality of Service management as well as flexible middleware. Our choice of focus in-
cludes the following: 

● We focus on QoS expression and contract evaluation at run-time rather than QoS modelling 
or specification of systems. However, it is relevant to consider certain aspects of QoS model-
ling in order to define potential contracts and meta-information for run-time expressions.

● We focus on satisfaction of requirements rather than on how to maximise QoS or how to opti-
mise resource utilisation. Our view on negotiation is limited in that we do not focus on how to 
agree about alternative QoS if the initial requirements cannot be met.



1This principle has been used for persistence [Atkinson87]; i.e. objects should be allowed to be 
made persistent, independently of their type. 

_________________________
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● We focus on static QoS management (establishment of bindings) rather than dynamic QoS 
management (maintenance of QoS). 

● We are interested in how a middleware level infrastructure can support the implementation 
and deployment of various techniques for enforcing or maintaining QoS, but we do not go 
deeply into the specific techniques themselves.

1.2.2. Key issues and requirements

Orthogonality and negotiability

Extra-functional behaviour should in principle be orthogonal to service interface type1. It should 
be possible to make such behaviour negotiable at run-time and ideally, the implementation of 
such behaviour would be a concern of the binding. A question is how and to what extent such ne-
gotiability can be supported. Furthermore, orthogonality with respect to implementation compo-
nents is a related issue but this seems to be more problematic. A service implementation may not 
always be a single software component but in some cases it is more of a composition of several as-
pects, and the composition of these is a result of negotiation. Here, we see a problem in that im-
plementation parts make implicit assumptions about how the others behave.

Negotiation and QoS statement

We are interested in efficient methods for finding and agreeing on how bindings should be config-
ured and what contracts they should be associated with. We refer to such a process as negotiation 
since the overall goal is to reach agreements between possibly autonomous parties and since it 
may involve exchanging statements (offers and requirements). Interoperability is an important 
issue; it is necessary to establish a common understanding of QoS statements and contracts 
amongst negotiating parties. These parties should be allowed to be heterogeneous and developed 
independently of each other.

First, we need to facilitate the search for policies. This may also involve making trade-offs be-
tween conflicting goals and may be a complex task since they may involve choices along many di-
mensions where the choices may interact. In theory, the search for policies may be viewed as a 
constraint satisfaction problem [Kumar92] which can be complex or even NP-hard. Furthermore, 
the mapping between the constraints in terms of QoS requirements and environment descriptions 
and constraints in terms of possible choices for each dimension is not necessarily straightforward. 

Second, to enable such negotiation, it is important that the QoS and resource information to be 
expressed and exchanged is in a form that supports efficient evaluation to see if constraints are 
satisfied. The amount of exchanged information should be limited to the minimum necessary to 
make the decisions. Furthermore, the complexity and the meta-information that needs to be 
agreed on in advance should clearly define the syntax and semantics of expressions in order to 
support evaluation. At the same time, the meta-information should be simple and generic enough 
to be extensible when applications evolve.



2 A system’s behaviour may be more than a simple sum of its component’s behaviour,  since the 
interaction might itself influence the total behaviour.

_________________________
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Composition

In open systems, services can be realised as compositions of other services or components. A con-
tract may include assumptions about components of the environment the binding is running in. 
Negotiation and QoS statements should support composition, since descriptions from participants 
which do not necessarily know each other, may need to be combined into one describing the com-
posed system. Given a set of statements about the behaviour of individual components of a sys-
tem, it is not obvious how to deduce the behaviour of a composed system in terms of its compo-
nents. We may need to be able to capture a holistic view on the system2.

Generality

An important issue is to what extent we can produce general solutions to the problems. A QoS 
aware binding facility and associated languages should be useful for a range of applications. It 
should not be restricted to particular QoS categories or application domains, and it should not be 
restricted to particular technologies or platforms. In particular, we are interested in supporting 
binding types beyond the simple client/server model; i.e. bindings may have multiple participants 
playing different roles.

1.3. Main results 

The main ideas of our approach to the problems are as follows: 

1. Policies as architectural entities which represent QoS contract templates and encapsulation 
of enforcement policy. 

2. Trading of policy as a principle of negotiation. 

3. Declared conformance for matching dynamic QoS statements. 

The research documented by this thesis has been done over a long time and contributions have 
been published in a series of papers [Hanssen98, Hanssen99, Hanssen00, Hanssen05a] and a 
technical report [Hanssen05b]. 

1.3.1. Overall binding architecture

Our approach to the complexity of finding contracts is that the set of possible end-to-end decisions 
are specified in advance and that negotiation is to select from this set. In our architecture, a 
policy is an entity which encapsulates both a contract template (a QoS specification) and a soft-
ware component which represents a particular way to configure the binding. A policy would rep-
resent a mapping between environmental properties and the resulting QoS. The policy concept 
can encapsulate non-trivial relationships like how various components of the implementation and 
the environment can interact to achieve a given result. It can encapsulate and abstract over ap-
plication- or technology specific solutions. Furthermore, our contract and policy concepts support 
the reasoning about extra-functional behaviour to be orthogonal to functional types, since it pro-
vides an extra level of indirection between negotiation and the implementation components.
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We propose a distinction between bindings and their activations. This may simplify the under-
standing of QoS contracts and adaptation (replacement of activation) as well as late binding, 
since contract negotiation is decoupled from binding management. We also introduce the 
metapolicy concept. A metapolicy is a specification of how a binding activates, de-activates, nego-
tiates contracts or adapts to changing environments or requirements.

Policy trading

We propose to use trading as a principle of negotiation. This can be seen as a generalisation of 
ODP trading [Bearman93, ISO97], which is to select a reference to a running service implementa-
tion from a (functional) type name and (possibly) an expression over a set of properties which may 
describe extra-functional behaviour. Service implementers register the available service refer-
ences in a trader’s database and clients search this database for matching offers. Instead of trad-
ing service references, we trade policies, i.e. predefined contracts along with policies for how to 
configure bindings to a service. Such trading should match both a QoS requirement expressions 
plus an expression describing the environmental capabilities. This means that contract templates 
are associated with a trading service instead of the components or interfaces to be bound. 

1.3.2. Profile model

We develop a language for expressions to be used in defining the contract part of policies (pro-
files), as well as expressions stating QoS requirements or descriptions of environments used in 
negotiation at run-time. It supports composition and run-time evaluation to match expressions 
against each other for conformance. 

The profile model is founded on declared conformance which was initially inspired by declared 
conformance graphs used for type matching in ODP trading. In its simplest form, a statement is 
simply a reference to a node in a predefined type graph (a name) and a conformance test is simply 
to check if two nodes are connected. The simple declared conformance is extended and generalised 
to allow simple numeric parameters to be associated with node names. This allows more generic 
expressions. Conformance is declared as rule-bases. Essentially, a set of axioms would be defined 
for an application domain, from which conformance between any pairs of simple expressions can 
be inferred. We find that it is convenient to derive a full set of conformance rules at the time of 
compiling a rule-set (which corresponds to computing a transitive closure) and generate efficient 
code for run-time evaluation.

The model is also founded on two composition operators: (1) simple addition which essentially cor-
responds to logical conjunction and (2) a special kind of addition which is a combination of state-
ments in separate contexts. We develop conformance rules for composed expressions, and we show 
that a conformance checking algorithm for any pair of expressions can be developed. 

The profile model has been shown to be useful in our experiments. It has a simple but effective 
support for composition through offering generic operators. The effect of non-trivial interaction is 
typically encapsulated in policies though, meaning that profile models should capture constraints 
on composition rather than what compositions result in. Furthermore, the declared conformance 
approach could allow QoS statement models which are less complex to agree about and evaluate 
expressions in than more traditional approaches comparing various parameter values, since pro-
file models allow a high level of abstraction. However, this also means that we may need to 
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specify meaning in terms of measurable characteristics elsewhere to aid component implementers 
and to avoid interoperability problems. 

1.3.3. Infrastructure support

The FlexiBind framework was designed in an early phase of our work to investigate policy bind-
ing in the context of reflective middleware. We identify two types of pluggable policy components: 
(1) Binders (generators and resolvers) which represent the binding protocol and aspects of 
metapolicy and (2) activators which define how negotiable aspects (protocols, resources etc.) are 
configured. Negotiable aspects are dynamically selected and applied to target objects. Bindings 
(also non-active) are represented by binding proxies which can resolve activations. 

In later work, we explore further how our binding framework can support profile expressions and 
policy trading. Binder and negotiator components define how environment descriptors and re-
quirements are collected and composed. Dynamic profile expressions can contain placeholders for 
subexpressions to be determined by querying the platform at negotiation time. Such querying 
would be supported by pluggable inspector components. In the evaluation of this framework we 
demonstrate how we can interface with (at least some aspects of) platform dependent resource 
management and how we can design and implement publish/subscribe bindings. 

1.4. Research method

According to [Denning89] the discipline of computing is a unique combination of theory, abstrac-

tion and design, which are rooted in mathematics, science and engineering respectively. The 
method used in this thesis is mostly based on the theory and design paradigms.  

Based on the more intuitive understanding of profile expression models, we develop a model for 
profile expressions formally in terms of a set of definitions and theorems. We use predicate logic 
as the main foundation of the model and for proving the theorems. The approach to defining con-
formance rules is also axiomatic. We use first order logic and (to some extent) graph theory to de-
fine how we specify conformance rules and how conformance in general can be derived from such 
rules. These foundations are also used to analyse the model with respect to possible consistency 
and completeness problems. 

Prototyping is important in different stages of the research to discover and explore issues and so-
lutions and to provide proofs of concept. This means that we design and implement important 
parts of our ideas to validate that they are feasible. Based on the theoretical foundations of the 
profile expression model we implemented a prototype profile model compiler in order to demon-
strate how rule derivation can be done and that this approach is feasible. We designed an imple-
mented a conformance checker and a policy trader demonstrator using the output from the com-
piler. These prototypes have also been used as tools in further exploring and validating our ap-
proach.

In an early phase, we were involved in the development of a reflective middleware framework. We 
designed and implemented our policy framework as an extension to this. It was revised at a later 
stage and extended with support for profile expressions and negotiation based on policy trading. 
Having prototyped the infrastructure support, we could evaluate our approach experimentally as 
well as analytically. We demonstrated how we could incorporate system level resource manage-
ment and how we could support publish/subscribe binding types. We also performed case studies 
where we applied aspects of our model and tools to application cases.  
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1.5.  Thesis organisation

The rest of this report is organised as follows: 

● In chapter 2 we give a overview of the main concepts of QoS aware open systems and the 
main problems of interest, and we survey some of the related work in these areas. 

● Chapter 3 defines the overall architectural concepts, including policy bindings, policies as con-
tracts and basic principles of policy trading. 

● In chapter 4 we define the core model and language for profile expressions. We define the se-
mantics of composition and develop conformance rules and a conformance checking algorithm 
for expressions. We define how rule-bases (concrete models) can be defined as axiom sets and 
how full sets of rules can be derived from these. We demonstrate this by implementing a pro-
file model compiler. The model is also evaluated with respect to performance, completeness 
and consistency, interoperability and composition.  

● In chapter 5 we study infrastructure support for policy bindings. It describes the FlexiBind 
prototype binding framework which is based on the ANSA FlexiNet framework. This is later 
extended to support profile expressions and policy trading. We also evaluate the framework 
by demonstrating how aspects of resource reservation (network bandwidth) can be incorpo-
rated and how to support binding types beyond simple RMI.   

● In chapter 6 we further validate our approach by applying it to two different application 
cases. First, we test how we can produce a profile model and policies for web servers. Second, 
we investigate how we can support multi-subscriber video-streaming where different quality 
aspects are split into different event-channels and where negotiation is mainly about how to 
manage and subscribe to such channels.  

● In chapter 7 we summarise and discuss our results, and in chapter 8 we conclude. 
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Chapter 2. 

Context and State-of-the-art

This chapter defines the context of this thesis. It gives an overview over relevant concepts, prob-
lems and related research in the area of quality of service (QoS) aware open systems. This in-
cludes QoS specification, QoS negotiation and QoS management. 

We are interested in how to support QoS aware binding to some abstract service at run-time. This 
involves negotiation of QoS contracts and configuration of the implementation of bindings (pos-
sibly including parts of service implementations). We focus on how to support QoS aware binding 
in the context of flexible middleware, and where the goal is some level of application- and plat-
form independence. We therefore study how QoS management can be supported at the mid-
dleware level and in particular, how QoS can be defined and composed for the purpose of negoti-
ating contracts. System level contracts or resource reservations can be important parts of QoS 
management and would be just consequences of middleware level negotiation. At that level we 
are more interested in abstractions than the details of QoS mechanisms. 

Quality of Service management is a rather large research area. We have tried to limit our analy-
sis to what is the most relevant. We start by giving an overview of important concepts and re-
quirements of QoS aware open systems and in particular, the role of bindings and contracts. Sec-
tion 2.2 discusses QoS modelling issues and issues related to dynamic QoS statement like con-
formance and run-time representation. Section 2.3 discusses some aspects of the infrastructure 
support, including system level and middleware level QoS management issues as well as config-
urability of middleware. In section 2.4 we summarise some of the most relevant related work in 
the area, in section 2.5 we do a comparative analysis of some selected relevant research, and in 
section 2.6 we conclude.

2.1. QoS aware open systems - concepts and requirements

In this section we discuss the most important concepts and requirements related to QoS aware 
binding in open systems, in particular the RM-ODP, the contract concept and how contracts are 
related to components and bindings. In this context, the relevant problem areas of QoS manage-
ment are how to establish contracts and how to maintain contracts.

By Quality of Service we mean extra-functional properties such as performance, reliability, avail-
ability or security. Such properties are related to implementations or implementation environ-
ments rather than the abstract service. Different implementations of the same abstract service, 
different properties of the environment the service implementation is deployed in, or the use of 
different protocols for interacting with the service may lead to different QoS as observed by the 
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user of the service. Open systems are typically specified in terms of components which use each 
other’s services. QoS may be taken explicitly into consideration in the specification and design of 
systems in order to extend reusability and flexibility. As well as describing functional interfaces, 
we may specify QoS requirements and expectations of components as QoS contracts between com-
ponents. 

2.1.1. Reference model for open distributed processing

The ISO reference model of open distributed processing, RM-ODP [ISO95b] is a meta standard 
which describes an architectural framework for open and distributed systems. Many of the RM-
ODP concepts are used in component middleware research.

Viewpoints

The RM-ODP introduces 5 viewpoints in which architectures of open distributed systems can be 
described. A viewpoint defines a model, i.e. a set of concepts, structures and rules. Viewpoints 
may be viewed as projections of a complex architecture to more comprehensible models, each 
which could be specified in some suitable language (may be specific for the viewpoint). The view-
points are:

● The enterprise viewpoint defines purpose, scope and overall policies of a system. 

● The information viewpoint defines the information which is processed by the system. Models 
include information entities, relationships and data flows. 

● The computational viewpoint defines functional decomposition. A system is described in terms 
of objects and interactions between them. Object behaviour is typically invoked through ab-
stract operations in abstract interfaces (one object may have one or more interfaces).  

● The engineering viewpoint defines the infrastructure, i.e. the mechanisms and resources used 
to realise interaction between objects, possibly in a distributed configuration. 

● The technology viewpoint defines the choice of platforms and other technologies for implemen-
tation.

Viewpoint descriptions should be consistent. In addition to models in each viewpoint one should 
also define relationships between viewpoints, for instance how a computational viewpoint concept 
is realised in the engineering viewpoint. There is not necessarily a one-to-one relationship be-
tween concepts in different viewpoints.

In our context, it is relevant to look at the computational and engineering viewpoints. The compu-

tational viewpoint is object based; i.e. objects encapsulate data-representation and behaviour. 
Each object offers one or more (abstract) interfaces for interaction with other objects. Interactions 
are defined in terms of signals (asynchronous notifications) operations (corresponds to methods) 
or streams. Computational objects are typically application specific. 

The engineering viewpoint describes how computational interactions and distribution are real-
ised. Models consist of basic engineering objects (corresponds to computational objects) and infra-

structure objects. Interactions are realised by channels which may be composed from protocol ob-

jects and transparency objects (for instance remote stubs etc.). Other concepts related to the struc-
ture of a system include: Nodes which typically model physical machines or clusters of machines 
(physical location), capsules which encapsulate processing and which typically correspond to 
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address spaces, threads and clusters (which are persistable memory units containing one or more 
basic engineering objects). A nucleus object controls the resources of a node and would typically 
correspond to the operating system. 

Transparencies

Distribution transparency is an important concept of the RM-ODP. The idea is to hide certain as-
pects of distribution from end-users or application programmers. The complexities of distribution 
can thus be dealt with separate from application logic. A computational model could be concerned 
with functional aspects only; the engineering model can deal with distribution issues like remote-
ness, heterogeneity or partial failure. The RM-ODP describes a set of possible distribution trans-
parencies (the set is not meant to be complete). For instance, access transparency means that ap-
plication programmers do not need to distinguish between local and remote invocations, and loca-

tion transparency means to hide the physical location of objects.

Binding

The concept of binding is important in this thesis. We typically view a binding as an association 
of a name in a client application program with an implementation of the service, such that the 
application is able to invoke it. In the RM-ODP, a binding is a coupling between two or more ob-
ject interfaces which enables interaction. This involves configuration of protocols and associated 
resources. Bindings can be implicit; i.e. binding operations occur transparently the first time a 
client attempts to invoke an operation using a remote interface reference. Binding can also be ex-

plicit; it can be established through explicit operations and the resulting binding is visible in the 
computational viewpoint as an object, possibly with its own interfaces. Explicit bindings may be 
primitive (two interfaces of compatible types) or compound, meaning that a set of interfaces may 
be bound and the binding is realised by a series of primitive binding actions.   

2.1.2. Component systems and contracts

Open systems are typically specified in terms of components and relationships between compo-
nents; i.e. components use each other’s services. According to [Abadi94], open systems are sys-
tems interacting with environments neither they or their implementers control. In [Szyperski98] 
a software component is defined as: 

"a unit of composition with contractually specified interfaces and explicit context dependen-

cies only. A software component can be deployed independently and is subject to composition 

by third parties."

An open system is composed from components which may be independently developed and de-
ployed in some running environment. It is specified in terms of contracts between components.  
Contractual design typically consider functional behaviour only. If extra-functional properties are 
not explicitly taken into consideration, this could lead to component implementations which are 
tied to specific environments, since the design includes implicit assumptions on the behaviour of 
the components or environment. QoS may be taken explicitly into consideration in the specifica-
tion and design of systems. As well as describing functional interfaces, we may specify QoS re-
quirements and expectations of components, i.e. QoS contracts between components. The result-
ing QoS properties of components may depend on the implementation of components, their archi-
tecture, interaction protocols, and how the resources used by implementations are managed. 



3Implementation may however be open and include components for dealing with such issues. 

_________________________
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QoS contracts and QoS aware systems

A QoS contract is equivalent to a logical implication: Exp ⇒ Obl. The service promises to meet its 

obligation (Obl) as long as the expectation (Exp) is satisfied by its environment (including the cli-
ent). The contract is enforced by the component implementation, and possibly, also by the deploy-
ment process and the binding process by proper configuration of resources and implementation 
aspects of the supporting infrastructure.  

Components may be deployed at run-time. User requirements and properties of environments 
may change dynamically. Therefore determining QoS properties and contracts at design time is 
not always sufficient. Components man need to be designed more independently of the environ-
ments they are going to interact with, and open systems need to be QoS aware to be able to dy-
namically adapt to changing usage and environmental properties. In QoS aware systems 
[Frølund98b], components know what QoS they require and provide, and they are able to com-
municate this knowledge among each other. This may involve explicit statements of how the be-
haviour of a component may depend on (abstract) properties of environments. In the following 
discussion, we use the term negotiation about the process of finding a contract and a way to con-
figure the system to enforce the contract. 

2.1.3. Scope of contracts

The scope of a contract negotiation is typically the binding to some service; i.e. one could specify 
QoS requirements when explicitly establishing a binding. Alternatively, we might specify QoS re-
quirements per invocation or when deploying a component. It can also be convenient if we could 
associate QoS requirements and contracts with some grouping of related invocations, possibly in-
volving multiple services. The transaction model may be suitable for this.  

Bindings 

In this thesis we focus on the binding as the unit of dynamic QoS provision. A binding has an as-
sociated QoS contract. In that sense, a binding is the association of a component/service with a 
specific environment as well as an obligation towards the client. According to e.g. [Li94], QoS 
offers/requirements associated with computational entities like objects or interfaces can be re-
garded as QoS templates which could be activated by establishing bindings at run-time. However, 
depending on the model of bindings, templates for QoS contracts may also be associated with 
bindings or binding templates. 

The RM-ODP allows explicit as well as implicit bindings. It is useful to analyse what this means 
for the contract establishment and how agents participate in the contract negotiation. In the case 
of implicit binding, contracts are negotiated directly between a client and a server component. All 
behaviour observed by the client is in principle realised by the object implementation bound to, 
hence this model does not capture the handling of distribution issues like failure or communica-
tion delays, separate from the implementation of the service3. All QoS offers or potential con-
tracts are associated with the service. Other components and resources which may help realising 
some QoS (including the communication channel) are modelled as part of the environment.  
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In the case of explicit binding, contracts may be negotiated between the components to interoper-
ate and a conceptual binding service as illustrated in figure 2.1 below. QoS offers and potential 
contracts (templates) may be associated with the binding service. This means that contracts can 
be specified more independently of the server object. Other components and resources which may 
help realising a QoS may be modelled as part of the binding object, and components that imple-
ment the service may be modelled as part of the environment. For instance, a contract may have 
an expectation including the existence of a particular service implementation. On the other hand, 
techniques like caching, compression or encryption, which can be applied to a existing service 
without changing its base implementation, can be modelled as separate from the service imple-
mentation, i.e. as properties of the binding object. 

contract

binding
service

client

server

client

contract

server

(1) (2)

Figure 2.1. Implicit and explicit binding

In the case of non-operational bindings and in particular, multi-party bindings, it may be desir-
able to let each client negotiate QoS at local interfaces (for instance in a video conferencing sce-
nario, different receivers may require different video streaming quality). Hence, one might argue 
that the binding is no longer a binding but a separate service available for clients to bind to, or 
that there are actually two levels of binding and QoS negotiation: One which is shared between 
all clients and one which is per client (local binding).   

Components, deployment and containers

In the discussion above, QoS negotiation is part of the binding process, and a binding is associ-
ated with a contract. Alternatively, negotiation could be a part of component deployment like in 
Enterprise Javabeans [J2EE] or Corba Component Model [OMG02]. A component is deployed in 
an environment represented by a container. The extra-functional behaviour of the component’s 
services may be a result of a contract between the component and its container. However, to sup-
port QoS awareness, there may be a need for more flexible and configurable containers than pro-
vided by typical EJB or CCM implementations as well as support for contract negotiation. Fur-
thermore, there may be a need to address situations where different clients of a given component 
may have different QoS requirements.   

[Beugnard99] argues that it is necessary to make components contract aware to be able to trust 
components deployed in mission critical systems and outlines how traditional components could 
be made contract aware. The contract concept has been evolved to involve dynamic QoS. Jamus 
[Sommer02, Sommer04] proposes a framework for dynamic negotiation of resource contracts be-
tween deployed components and their environments. The Arctic Beans project [Andersen01] in-
vestigates flexible container architectures, and the QuA project [Staehli04a], investigates dy-
namic service composition based on QoS negotiation. Other work on QoS aware component archi-
tectures includes [Wang00] and [Miguel02]. 
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Transactions

In some cases it may be desirable to specify extra-functional requirements for a sequence of re-
lated operation invocations, possibly on different targets. Hence, an alternative model could be 
transactions. Traditionally, a transaction is associated with certain requirements (atomicity, con-
sistency, isolation and durability). The traditional transaction model is questioned by several re-
searchers, and some work suggests that transactional properties should be flexible and negotiable 
(e.g. [Karlsen03, Arntsen05]). We may take this idea further and view transactions as a unit of 
computation for which several QoS dimensions could be negotiable. It may be useful to associate 
transactions with e.g. security or timing constraints in addition to the usual atomicity and isola-
tion constraints. These properties could be negotiated either by binding to a transaction service or 
to a certain transaction instance. A transaction service would need to ensure that each individual 
operation is performed such that the transaction as a whole conforms to a negotiated contract.

2.1.4. Contract establishment (negotiation)

The establishment of a binding involves agreeing on a QoS contract, establishing an enforcement 
policy (configuration of implementation and infrastructure) and making sure that sufficient re-
sources are available for the enforcement to succeed. 

Negotiation and resource orchestration

The negotiation of a contract involves the search for a combination of choices over many applica-
tion and system level dimensions. It involves the choice of implementation components, protocols, 
or allocation of hardware resources like CPU time or network bandwidth. In other words, negotia-
tion is also about orchestrating a set of resources, such that they together contributes to reaching 
end-to-end goals. The search for solutions would involve making trade-offs between possibly con-
flicting goals; i.e. a choice leading to the satisfaction of required QoS in one dimension may influ-
ence the QoS in another as well. For instance, if low jitter end-to-end is a goal, higher jitter in the 
network component may be compensated by buffering at the receiving side, having the cost of a 
longer end-to-end latency.  

In addition, there may be global goals; i.e. the collective behaviour of all bindings should satisfy 
certain constraints. These may conflict with local goals, for instance providing the best possible 
end-to-end QoS for single bindings, while at the same time trying to achieve good resource 
economy or a highest possible success rate. 

In principle, resource orchestration corresponds to a constraint satisfaction problem [Kumar92, 
Ruttkay88] or a constraint optimisation problem (if goals include optimisation). Finding optimal 
solutions is known to be NP-complete. Therefore, the computational cost may be high and the 
scalability may be limited. Some research has been done in algorithms and protocols for finding 
solutions. For instance, [Lee99] shows that approximation algorithms giving close to optimal solu-
tions are much faster than algorithms giving fully optimal solutions. However this work is mostly 
theoretical and assumes a single service component and a static set of applications to be executed 
on the same time. [Xu01] proposes an algorithm based on graphs representing end-to-end re-
source requirements and availability and a heuristics based on identifying and focusing at bot-
tleneck resources in reservation plans. Also, the priority is on resolving contention rather than 
maximising overall utilisation.
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Trading

The concept of trading has emerged in the context of the RM-ODP [Bearman93, ISO97, 
Vasud98a]. Trading is used for servers to advertise (export) their services and for clients to find 
(import) instances of some service type at binding-time. Thus, a trading service can be said to act 
as a matchmaker between service offers and requests. Trading was prototyped by the ANSA 
Phase III project [Deschrevel93] and later adopted by OMG for the CORBA architecture 
[OMG00]. 

A trading service stores service references, where each of these is associated with a service type 
(functional type) and a set of properties (name-value pairs), which may describe extra-functional 
aspects. An import request names the type and provides a boolean expression over the properties. 
Matching is done by evaluating the expression with the property values of exported offers and by 
testing if the requested type is satisfied by the type of the exported service offer. This would typi-
cally be done using a type-conformance graph stored in the trader. The trading architecture also 
includes naming contexts and the possibility of federating trader instances. 

Traditional ODP trading can be seen as simply selecting a suitable implementation of a given 
service type, but one may also involve parameters representing extra-functional properties, and 
the simple model of trading service references may be extended. For example, [Vasud98b] dis-
cusses the possibility of trading dynamic compositions of objects (acting as adapters and adapter 
chains), to produce bindings such that property constraints given by the clients are satisfied. This 
means that each adapter component needs to be traded and that the property model must be aug-
mented with constraints on how adapters can be placed in relation to each other. Also, 
[Rafaelsen00] considers using trading to select templates for multi-party stream bindings. In 
[Rafaelsen02] a trading service for media gateways (which may be part streaming bindings) is de-
signed and implemented. It has many similarities with CORBA trading, but needs a more expres-
sive language for specifying offers and constraints.

Admission control and resource reservation

Admission control is the process of determining if the system is able to deliver a particular QoS at 
a particular point in time. This includes checking if there are sufficient resources available to 
support a contract, possibly by attempting to reserve the needed resources. Admission control and 
reservation is necessary if the QoS resulting from a negotiation includes timing constraints which 
are to be guaranteed, since shared use of resources combined with failures may lead to unpredict-
able fluctuations of QoS from the underlying system. 

Reservations must be enforced by control techniques like scheduling of shared resources, shaping 
or policing of traffic. It is challenging to provide guarantees in a system with shared resources 
while preserving a high utilisation of the resources, and while allowing bursty traffic. Most trans-
port (networking) related research and development on admission control and reservation has 
been done in the context of ATM networks and the internet, and this is typically motivated by a 
demand for distributed multimedia support. This includes the XRM/XBind architecture 
[Lazar94], ST-II [Topolcic90], SRP [Anderson91], RSVP [Zhang93] and more general measure-
ment and probe based admission control [Kelly00]. Furthermore, a fair amount of research is be-
ing done in the context of operating systems, in particular in the area of CPU scheduling. System 
level QoS is further discussed in section 2.3.1.
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2.1.5. Contract maintenance (adaptation and renegotiation)

A contract should be maintained during its lifetime. This could involve adjustments (adaptation) 
to changes in environmental properties. In principle, a system could detect when contracts are 
violated and initiate renegotiation, leading to a contract change. There are two types of contract 
change: (1) Transition to a contract which has a compatible obligation to the client and (2) transi-
tion to a contract which has not (the client requirement can no longer be satisfied). Typically, only 
the second type is referred to as renegotiation from the application point of view. Alternatively, 
one could adapt just to find a more efficient way of using the available resources. The first type is 
something close to the concept of application transparent adaptation [Jing99]. Environmental 
changes are masked by the contract and its enforcement policy. Alternatively, the application 
must adapt as well. Figure 2.2 below illustrates this distinction. If the change of contract leads to 
QoS inside the agreed region, adaptation is transparent, otherwise, a new agreement and a new 
region of acceptable behaviour must be established. Thus, adaptation can be application transpar-
ent within certain limits. 

re-negotiateRegion 1 Region 2
transparent

Figure 2.2. Application transparent and non-transparent adaptation

Contracts may be viewed as mappings from a resource space (environmental properties) to a re-

quirement space (delivered QoS). A contract promises that the QoS of a binding will be inside a 
certain region of the requirement space as long as the environmental properties stay inside a cer-
tain region in the resource space. When adapting, a system should if possible select mappings 
that map to a point inside of the required region. If not, some mapping may still exist, but which 
operates outside the current user requirement. Then the application itself needs to adapt. Figure 
2.3 illustrates how movement in the resource space lead to replacement of mappings and thus 
movement in the requirement space. This may be transparent (when mapping m2 replaces m1) or 
it may result in application adaptation (when mapping m3 replaces m2).

application
adaptation requirement space

resource space

transparent adaptation

m1
m2 m3

Figure 2.3. Contracts as mappings 

Figure 2.4 shows an example of how contracts could be replaced for a video streaming binding 
caused by a reduction of available network bandwidth (degradation path). At a certain point, this 
path leads to a change in the requirement space from the agreed region called "high quality video" 
to "video". The "high quality video" region is compatible with "video" but implies stronger require-
ments. When the video is not "high quality", colours and resolution may be reduced and frames 
may be dropped. Also, adaptation and renegotiation can be done according to a policy. Such poli-
cies may specify transitions between contracts, and how to select alternative contracts in the case 
of a transition.



4We are not talking about a full semantic specification though. 

_________________________

- 17 - 

Normal

Comression
(needs more
computing
resources

Reduction of
colour/

resolution

Add frame
dropping

"High Quality Video"

"Video"

"High bandwidth" "Medium bandwidth" "Low bandwidth" "Very low bandwidth"

Figure 2.4. Adaptation scenario

2.2. QoS statement 

If we look at QoS management from the information viewpoint (RM-ODP) we are interested in 
how QoS is described and what information is flowing between the parties which are negotiating 
contracts. QoS statements would be used for specification of QoS contracts and are eventually 
used in negotiation and configuration of the infrastructure (e.g. for requests to operating system 
or middleware services). In this section we give an overview of concepts for QoS statements, and 
we discuss dynamic (run-time) QoS statements.

2.2.1. Basic concepts

QoS characteristics and statements

According to [ISO95]¸ a QoS characteristic represents some identifiable and quantifiable aspect of 
the QoS of a system, service or resource, and it is a basic building block of QoS specification. Ex-
amples of characteristics include latency time, throughput or availability. A QoS characteristic 
defines a value domain and a constraint over that domain. One could also specify some 
interpretation4 of the values, for instance that a positive integer represents latency time in mil-
liseconds. Ordering may be defined in the sense that smaller values represent stronger QoS than 
higher values etc. Numeric value domains are not the only possible form of quantification. For in-
stance, set or enumeration domains could be used. 

QoS characteristics may be grouped into QoS categories where a QoS category represents a type 
of user or application requirement. QoS statements are predicates representing constraints on 
QoS characteristics. Complex QoS statements may be built from simple predicates using the op-
erators of predicate logic, typically, conjunctions or disjunction. An example of a statement is:  
’Latency < 10 and Throughput > 100’.

QoS relation

The QoS relation is a fundamental concept for understanding QoS statements. Formally, QoS re-
lations are assumption/guarantee formulas [Jones83]. A QoS relation is related to a given object o 
and it is expressed

Exp(o) → Obl(o)

This is a stronger version of logical implication: If the behaviour of the environment of o (other ob-
jects o is interacting with) satisfies the constraint Exp(o), the behaviour of o will satisfy the con-
straint Obl(o) (the obligation of o). [Abadi93] has shown that to simplify reasoning about 
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composition, the implication could be restricted with respect to the time ordering of the satisfac-
tion or dissatisfaction of Exp(o) and Obl(o). In essence, violation of Obl(o), must occur after the 
violation of Exp(o), not before or at the same time instant. Exp(o) and Obl(o) are safety properties; 
i.e. properties that can only be violated at a particular time instant. With this version of implica-
tion, QoS relations can be composed to be applicable to a composition of objects or components; i.e. 
with a proper formalism and the composition theorem it is straightforward to reason about open 
systems using well-established methods for reasoning about complete systems. The composition 
theorem gives rules for proving properties of the composed system S from a conjunction of compo-
nent statements like e.g. the following: 

Exp(o1)→Obl(o1)  ∧  Exp(o2) →Obl(o2)   ⇒   S

Types of QoS statement

In the ISO QoS framework [ISO95, ISO98] 5 categories of QoS statements are identified: (1) QoS 

requirements which are constraints users of the system (or its components) have on the system (or 
its components), (2) QoS capabilities which are the actual abilities of the system (or its compo-
nents) with regard to QoS, (3) QoS offers which are advertised QoS, which are not necessarily 
identical to QoS capabilities, because of uncertainty, (4) QoS contracts which represent agree-
ments between components of what QoS to provide to each other and (5) QoS observations which 
are values resulting from measurements.

Contracts are QoS relations with an obligation and an expectation. Requirements corresponds to 
expectations (could be viewed as QoS relations where obligation is set to ’true’), Capabilities or 
offers corresponds to obligations (could be viewed as QoS relations where expectation is set to 
’true’). Observations are values which could be used to derive QoS capability statements.

2.2.2. QoS statement abstraction

A QoS relation for an application service involves an expectation towards the underlying infra-
structure, while offering QoS to users (clients). The infrastructure can be a set of systems in their 
own rights, with their own QoS specifications containing obligations and expectations. QoS speci-
fications may be nested recursively. Figure 2.6 illustrates how a QoS specification may depend on 
QoS specifications of other components, possibly at a lower abstraction level. For instance, the 
system may satisfy certain frame-rate and jitter constraints, and this will depend on both proper-
ties of scheduling of resources in the operating system and the properties of the transport. A 
transport QoS again depends on properties of the network links and routers. 

User Application
component

System 
componentSystem 

component

.

.

.

.

.

.

Figure 2.6. Nested QoS relations

Figure 2.7 (derived from [Aagedal01], figure 4) illustrates how system components and nesting 
levels could be classified. The operating system abstracts over hardware, and all software compo-
nents may depend on properties of the operating system. Also, the user interface and business 
logic may be regarded as separate components as well as the transport and networking subsys-
tems. 
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Figure 2.7. Typical nesting level classification

From this figure we also see that different QoS characteristics are used to describe the different 
components and abstraction levels and that characteristics could be classified according to the dif-
ferent nesting levels. 

In the context of middleware, it makes sense to focus on, and distinguish between, application ori-
ented and system oriented QoS. Application QoS metrics should be related to user perception or 
the abstractions application programmers deal with, like for instance invocation- or frame-rate, or 
CD-Quality versus Phone-Quality. System oriented metrics are related to properties of system re-
sources. This can for instance be bandwidth in terms of bit per second rate, or a choice between 
the internet versus a dedicated ATM connection, or between service classes of a given transport 
service. In the context of middleware, system QoS will typically mean operating system QoS or 
transport QoS. 

There are various ways to define the nesting levels. For instance, the TINA QoS negotiation ar-
chitecture [Rajahalme97] defines a mapping between various QoS contexts in a 5-layer hierarchy, 
where the layers are: (1) The user-service level, (2) the media level, (3) the encoding level, (4) the 
middleware level and (5) the connectivity level (transport QoS). 

2.2.3. Dynamic QoS statement 

QoS should first be considered at design time, since QoS properties of components may influence 
architecture and how components are implemented. This is much like extending the traditional 
notion of interface with extra-functional properties. We refer to this as QoS modelling or static 

QoS statement. This is however not always sufficient for open systems where components are to 
be deployed or replaced at run-time, or where the system are to dynamically adapt to changing 
conditions or user requirements. As discussed in section 2.1, QoS-aware open systems should be 
able to dynamically negotiate QoS contracts between services and their clients. Hence, there is a 
need for a run-time representation of certain aspects of QoS specifications. We refer to this as dy-

namic QoS statement.

Dynamic and static QoS statements will serve different purposes. Static statements should pro-
vide complete and precise information of the meaning of QoS contracts to support design and im-
plementation. This is the main purpose of QoS modelling languages (see section 2.4.1). Static 
statements could be used to specify the semantics of QoS values to be referenced at a later time. 
Dynamic statements should mainly support automatic conformance checking, composition and 
(possibly) prioritisation of alternative conformant candidate contracts during negotiation. 
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Conformance 

A negotiation process needs information about the expectations and obligations of possible con-
tracts. This information is needed for checking if the expectation is satisfied by the environment 
and if the obligation (offer) satisfies the requirement. If QoS statements are formulated as predi-

cates, a statement p1 satisfies a statement p2 if  p1⇒p2  is true. Conformance is a partial ordering 

on QoS statements and is typically denoted by the operator ’≤’. I.e. if a ≤ b, a is equivalent to or 

stronger than b. 

There are two approaches to dynamic conformance checking: The first approach involves run-time 
evaluation of the constraints against other constraints or parameter values. In this case, some 
representation of the constraints (or parameters) should be available at run-time. Alternatively, 
conformance relationships could be defined a priori (manually or by static analysis of specifica-
tions) between predefined qualities, resulting in a graph of such relationships. Declared conform-
ance has been limited to operational interface types in ODP trading (section 2.1.4). Rules for de-
termining conformance have been proposed for signature based specifications [Black87] and to 
some extent, for specifications where semantics are to be taken into consideration. Conformance 
rules for stream interface specifications have been proposed in [Eliassen98], and [Rafaelsen00] 
discuss conformance checking of binding types for trading. An advantage of declared conformance 
may be lower computational complexity in evaluating statements. However, a disadvantage is 
that it will only work with pre-registered conformance relationships and that conformance check-
ing must be done by consulting a service like e.g. a trader where the graph is stored. 

Ordering

The goal of negotiation is to reach an agreement on a contract. An additional goal might be to find 
the best possible contract, according to some ordering policy. For instance, one could try to max-
imise the QoS in particular dimensions or minimise the cost with respect to resource consump-
tion. Such goals could be conflicting. Furthermore, a given goal is not necessarily equally impor-
tant everywhere. Therefore, some trade-off policy may be needed. This cannot always be deter-
mined statically, ordering criteria may be different for different components and may change over 
time, due to varying resource availability.

Conformance defines a partial ordering on QoS statements. Negotiation eventually needs a total 
order to do the actual selection. Each component, c, which takes part in negotiation may have a 
different ordering function which could be stated as Wc(Q), where Q is the domain of QoS state-
ments. Wc defines a total order. It is however impractical to require participants to specify a total 
order, so in practise they specify a partial order wc(Q).  Wc(Q) could then be said to do random or-
dering where wc(Q) does not define an order. 

[Koistinen98] proposes to apply worth calculation to negotiation; i.e. one may specify the relative 
importance of values of QoS dimensions, different contract types and different operations of an 
interface. The main idea is to have a worth function which computes the worth of an offer, based 
on the current preferences of a client (cf. wc(Q) above). A client could specify a worth profile which 
defines weights and functions, in order to compute worth values from offers. [Aagedal01] sketches 
a scheme where one can specify a worth function for each QoS characteristic; i.e. wc operates on 
characteristic-values. The worth of a QoS statement is then computed as a product of the indi-
vidual worths (based on the strongest possible characteristic value) if combined by conjunction or 
as the maximum of the individual worths if combined by disjunction. Utility functions [Capra03] 



- 21 - 

is a similar concept to be used in QoS statements. Such functions are provided by clients and are 
used to compute the utility (a value between 0 and 1) of the offered QoS. 

Composition

Service implementations or environments may be compositions of components. Hence, their re-
sulting QoS may need to be derived by combining the QoS of each part. In particular, an expecta-
tion part of a contract could be satisfied by a combination of offers from different components of 
the environment. This may include components of the client environment, the server environment 
and other components in the connection path between them. 

In open systems, one cannot always know statically what actual components the environment will 
consist of. Therefore it is important that QoS statements can be composed, not only at specifica-
tion time, but also dynamically during negotiation. The semantics of composing QoS statements 
should be clearly defined, and here, it may matter what components QoS statements are about 
and how they are combined. For instance, an expectation may state that certain resources need to 
be available on the client side, which means that a component on the server side cannot satisfy it. 

Composition seems to be weakly supported in most related work. Currently, there is no general 
solution to QoS composition. [Aagedal01] allows the specification of composition semantics of indi-
vidual QoS characteristics. It is possible to define how to combine values of the same characteris-
tic from different components into a single value, for three different composition patterns. To 
some extent, QoS composition is investigated in the context of composing web-services and work-
flow management. The AgFlow middleware system [Zeng04] specifies service compositions as 
task graphs and selects service compositions, or it performs adaptation through re-planning, 
based on some QoS criteria. The selection is mainly calculation of utility value, based on values 
on a fixed set of QoS parameters. The focus is on efficient searching for optimal plans, using e.g. 
integer programming. [Jaeger04] studies QoS parameter aggregation for web service composition 
and uses known workflow patterns to derive a set of aggregation patterns which can be used on 
QoS statements. Two patterns are identified for sequential composition and five patterns are 
identified for parallel composition. An aggregation function must be given per-pattern and per 
characteristic. This scheme can be seen as a generalisation of the composition construct in 
[Aagedal01]. 

Dynamic statement representation

Dynamic QoS statements need some form of representation to allow the exchange of values be-
tween components of an open system. For instance, we have a choice of using parameters and 
APIs to specify them and a more general language approach. For the language approach, expres-
sions can be compiled or interpreted. A related issue is to what extent meta-information should be 
carried with dynamic statement representation to tell the parties how to interpret the values. 

A simple approach is to use tuples of parameters. A tuple may specify specific values, ranges (or 
sets) for a set of QoS characteristics. A common matching function defines the semantics of the 
values a priori. One may define different tuples for different application domains or QoS catego-
ries. This is the typical approach of early QoS architectures which focus on end-to-end guarantees 
for multimedia streams, like e.g. QoS-A [Campbell96] where QoS statements are instances of pre-
defined C-language structures. 
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More generally a QoS statement might be represented as a list of tuples, where each tuple repre-
sents a constraint on a QoS characteristic. Dini and Hafid [Dini97] propose a model of service pa-
rameters for negotiation between consumer and provider components. Here, parameters are tu-
ples which carry the necessary information and meta-information to carry out a generic matching 
algorithm. The essential parts of such tuples are the parameter name, the value type, the request 
value for consumers, which can be a single value, an interval or a set, or alternatively, a value 
space which is used by providers to define the space in which the value can vary, the measure 
unit which allows the matching algorithm to convert values when matching values using different 
units, plus some fields indicating to what extent the requested values are negotiable. In this 
model, tuples represent QoS offers or requirements, and they contain the definition of the charac-
teristics they constrain.

QoS statement types may be defined statically by the application designer in some QoS modelling 

language, which could be compiled into data-structures or classes which can represent actual val-
ues at run-time. The generated code may include methods for evaluation (for instance conform-
ance checking), as well as for marshalling of the data structures since they are meant to be ex-
changed between different nodes of heterogeneous systems. QoS modelling languages like QML or 
CQML (section 2.4.1) are mostly focused on specification at design time to aid decisions on archi-
tecture and component design. However, it is recognised that to support open systems, run-time 
representations should be supported as well. Therefore, these languages support compilation into 
CORBA IDL type definitions to represent QoS statements, code in a programming language to 
instantiate such structures, as well as code for conformance checking. This means that some of 
the generated code must be statically linked in negotiating components. To allow full flexibility, 
QML also offers structures that contain all necessary meta-information to create and manipulate 
QML definitions at run-time, but at the cost of efficiency. 

2.3. Infrastructure support 

Application objects (or components) would be designed to run on some infrastructure. An infra-
structure provides the services necessary to run and to interact. To support the composition of ob-
jects in a QoS aware open system, an infrastructure should support the enforcement (or engineer-
ing of) QoS contracts. This requires some level of flexibility and configurability of the infrastruc-
ture itself.

According to [Blair97] the distinction between application and infrastructure is mainly the same 
as the distinction between the computational and the engineering viewpoints of the RM-ODP (see 
section 2.1.1). The engineering viewpoint offers the means to explicitly engineer the infrastruc-
ture in order to realise selected distribution transparencies and QoS contracts. In the case of run-
time adaptation there should also be some support for infrastructure engineering at run-time, as 
well as negotiation to find and agree about the contracts. 

The enforcement support should also include system level QoS contracts (see section 2.2.2) and 
some inspection/reporting of system level QoS, since (as observed in section 2.2.2) QoS contracts 
can be nested in the sense that application level QoS is based on system level QoS etc. In this con-
text we discuss QoS management in terms of three distinct nesting levels, or layers: (1) The ap-

plication layer in which application components and application requirements are defined, (2) the 

system layer in which hardware and operating system resources are defined, and (3) the mid-

dleware layer in which the distribution infrastructure is defined. 
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Middleware realises distribution transparencies and abstracts over platform specific services and 
resources. Ideally, a middleware could define a single platform on which applications are run, and 
where differences between system level platforms are hidden. However, we need a more flexible 
notion of a middleware platform. According to [Almeida04], there would be a trade-off between (1) 
designing with particular middleware platforms in mind leading to reusability of middleware but 
also platform dependency, and (2) designing with abstract platform requirements in mind, leading 
to the opposite. A realistic compromise may be to specify for an abstract platform which could be 
mapped to specific platform implementations. The term ’infrastructure’ could then mean an ab-
stract platform which is specified in terms of the bindings, transparencies and QoS constraints 
which are supported. Variations in both system level capabilities and application requirements 
would lead to concrete platforms which are differently configured at different nodes and which 
should support some level of dynamic reconfigurability. 

In section 2.3.1 below, we first discuss system layer QoS mechanisms since this is to some extent 
relevant for how we understand the middleware level. In section 2.3.2, we discuss middleware 
layer QoS management mechanisms. In the last section, we discuss principles of how middleware 
implementations could be opened up for explicit engineering at run-time. 

2.3.1. QoS mechanisms in the system layer

QoS contracts would eventually involve assumptions on how resources at the operating system or 
transport level, are to be associated with implementations. This is particularly important if con-
tracts include guarantees on real-time behaviour. For example, if service invocations are to be 
performed within time constraints, the CPU would need to be scheduled to the application within 
certain deadlines, network bandwidth and delay would need to be within certain bounds etc. In 
particular, distributed multimedia applications like video conferencing have been shown to be 
sensitive to the QoS of the networking and how the CPU, memory and I/O devices on each plat-
form are scheduled. In the following we discuss the concept of reservation, network QoS and oper-
ating system resource management. 

Reservation

To provide "performance isolation" between concurrent applications or to provide real-time guar-
antees beyond statistical estimates, it may be necessary to reserve some portion of computing re-
sources at the time of establishing a contract. A reservation can be viewed as a QoS contract; as 
long as the resource consumption of the application stays within certain limits, some behaviour is 
guaranteed. Reservation can be specified in various dimensions, for instance that the resource is 
available within certain time-limits, periods etc. The first phase of a reservation would be to per-
form an admission test to determine if the system is able to enforce the reservation with the cur-
rent load. If successful, the system should enforce the reservations by proper scheduling, account-
ing, traffic shaping, policing, etc., until the reservation is released. 

Network QoS

In the discussion of transport QoS, it makes sense to focus on internet technologies, since this is 
the most common transport service used (regardless of what technology is used underneath the IP 
layer). At this level, we are interested in how end-systems can observe and manipulate internet-
working QoS, rather than the network specific protocols for signalling etc. 
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Two architectures for internet QoS management are dominant: Integrated Services (IntServ) and 
Differentiated Services (DiffServ). IntServ [RFC1633] can support end-to-end guarantees for indi-
vidual data flows and is typically used along with a resource reservation protocol, RSVP 
[Zhang93], to negotiate QoS with the other end and to perform admission control and reservation 
in each router along the data path. IntServ requires per-dataflow state to be maintained in each 
router, which is not very scalable. We do not expect IntServ to be widely deployed all over the in-
ternet; it is more likely to be used within organisations. 

Reservation requests to RSVP essentially consist of two parts: (1) A characterisation of the traffic 
to be generated by the application (TSpec) and (2) what QoS reservation is required (RSpec). A 

TSpec essentially describes the expected load (and is formulated in terms of a token bucket 
model). A RSpec describes constraints on the network delay. These two parts can be regarded as a 
contract proposal. Two traffic classes are supported: (1) Controlled Load which represents a sta-
tistical guarantee that the dataflow behaves like a best effort service under light load, regardless 
of actual load and (2) guaranteed service which assures that packets arrive within the specified 
time.

DiffServ [RFC2475] is designed to be more scalable. It does not support per-flow reservation but 
rather a fixed set of routing behaviours which may be requested using the DiffServ field in the IP 
header (former TOS byte). DiffServ implies making service level agreements (SLA), i.e. a kind of 
contracts between network providers and customers (and between different network providers). A 
SLA consists of a QoS obligation and traffic rate expectation. It should also be associated with 
rules for classifying packets belonging to it. As exemplified in [Evans04], one can define a set of 
service classes, for each of which a SLA can be defined, for instance a VoIP class or a throughput-
optimised class. Routers at the edges of networks must shape or police the traffic according to the 
SLAs and classify packets entering the network. Since DiffServ supports contracts for aggregated 
flows, it should be possible to provide guarantees per application flow, by keeping track of how 
individual flows share an aggregated one, by doing admission control and proper queue schedul-
ing in each end-system for packets entering the network.

Operating system resource management

Real-time QoS (guarantees in particular) depends on how the operating system schedules concur-
rent access to hardware resources like the CPU, memory, disk or network I/O, not only the char-
acteristics of the devices themselves.

Common general purpose operating systems have rather limited support for QoS. They es-
sentially offer timesharing CPU scheduling of processes or threads with priorities. Priority sched-
uling can be used to implement for instance Rate Monotonic (RM) or Earliest Deadline First 
(EDF) scheduling, and it is possible to provide soft real-time guarantees and reservation at the 
middleware level, as demonstrated by the DSRT project [Chu99]. Since Linux or BSD Unix dia-
lects are often used in routers or large servers, they offer advanced network queue management 
(possibly supporting DiffServ), making it possible to reserve a bandwidth for certain classes of 
packets. 

A fair amount of research has been performed in operating system resource management. In par-
ticular on CPU scheduling since the CPU is what actually executes any program or device driver 
code. The Processor Capacity Reserves framework [Mercer94] allows processes to make periodic 
reservations of CPU. It was implemented in Real-time Mach using EDF scheduling. A kernel 
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reserve abstraction was introduced to keep track of CPU usage. Other work which further investi-
gates CPU reservation includes Nemesis [Roscoe95], Rialto [Jones96] and Eclipse [Bruno98]. 

Supporting guarantees in general purpose operating systems can be challenging due to the differ-
ent behaviours and requirements of applications to be run concurrently. As with QoS in general, 
reservations for a resource can be characterised along several dimensions. For CPU resources, 
one may for instance require a minimum, maximum or average percentage of the CPU cycles, but 
one may also want to be scheduled periodically within certain time frames, possibly with dead-
lines. In summary there may be different kinds of reservation requests for the same resource, and 
they are not necessarily trivial to accommodate at the same time. To handle different type of CPU 
guarantees, multiple service classes are proposed, for instance in DSRT [Chu99] or HLS 
[Regehr01]. Furthermore, one single scheduler (or scheduling policy) may not cover all behav-
iours. Therefore, one may allow multiple schedulers which are hierarchically composed. For ex-
ample, one of the shares managed by a top-level scheduler may be further subdivided by another 
scheduler using a different policy. In e.g. Vassal [Candea98], schedulers are treated as pluggable 
components. The HLS project investigates service classes along with hierarchical composition of 
schedulers and proposes a way to specify schedulers as mappings between guarantees; i.e. a 
scheduler can provide certain guarantees (to its clients). To be able to do so, it requires a certain 
guarantee from its parent scheduler. Clearly, the properties of a given scheduler also depend on 
the properties of the parent scheduler, and not all compositions are meaningful.

Resource contexts

An activity may need a combination of "guarantees" from a set of different resources, to function 
as required. Furthermore, an activity can be composed from different sub-activities, both in user-
space and kernel-space. In the general case, it may even span different nodes. For instance, to 
provide a network throughput or latency, it is (strictly speaking) not sufficient to acquire a net-
work QoS guarantee (e.g. by using RSVP), but one also needs to ensure that kernel threads 
processing data transfer are scheduled by the CPU sufficiently often. Also, queues of IP packets 
to/from network interface should be scheduled accordingly for sending or receiving on the wire. 

In the design of an operating system there is a need to decide what entity (resource principal) res-
ervations should be associated with; it could be applications, processes, threads, or network con-
nections. If for instance resources are associated with threads, these threads do not necessarily 
map directly to the actual activities for which we want to guarantee a behaviour. An I/O bound 
user level thread may be idle most of the time, while waiting for interrupts from the device and 
while a larger part of the CPU work is performed by kernel threads running I/O driver code.

A fair amount of research on operating systems has therefore proposed a separation of concerns 
between some resource principal requesting a set of resources and the set of entities consuming 
them, like processes, threads or applications. This approach supports resource isolation, allows 
applications unaware of the resource management to take advantage of reservations. Further-
more, it avoids the NP-hard problem [Blazevicz86] of scheduling multiple resources with timing 
constraints. The Resource Kernels approach [Rajkumar98] decouples reservation and resource us-
age and proposes a resource context independent of the process abstraction. Nemesis [Roscoe95] 
and Eclipse [Bruno98] propose a concept of reservation domains. Processes and resource reserva-
tions can be put into such domains. A domain is like a virtual machine providing protection from 
other domains. This idea is also implemented in CKRM [Nagar04], an extension to the Linux ker-
nel. Here, a domain is called a class, a class can be further subdivided into a hierarchy, and the 
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properties of classes can be easily accessed through a virtual file system. CKRM can manage 
CPU, disk, memory and listening sockets, by use of fair share scheduling (can reserve percentages 
of a resource). New resource managers can be added as extensions. Threads or sockets can be put 
into classes or moved between them. Resource containers [Banga99] function as resource princi-
pals like in the other frameworks above. However, this abstraction allows a more flexible notion 
of what constitutes an independent activity. Essentially each thread can establish and change re-
source bindings to a container to charge resource consumption to it. However, this approach can 
lead to extra context switches which have some overhead.

2.3.2. QoS mechanisms in the middleware layer

The middleware provides the infrastructure to the application components. It abstracts over vari-
ous hardware and operating system platforms and implements distribution transparencies. In 
this section, we look at how QoS contracts can be supported by middleware mechanisms. QoS en-
forcement is mainly supported in two ways: (1) By mapping application level QoS requirements to 
system level requirements (which are used to negotiate contracts with the system level), and (2) 
implementing mechanisms and protocols in the middleware itself.

QoS mapping

Resource reservation protocols operate at low levels of abstraction which are not straightforward 
for programmers (or users) to understand. Many different reservation models and protocols exist, 
using different parameters. In addition, different applications or application domains may use dif-
ferent sets of parameters. One role of middleware would therefore be to mask differences in un-
derlying resource management and to support QoS by mapping between application level param-
eters and system level parameters.

QoS architectures aim to integrate QoS mechanisms in various subsystems, in order to provide 
end-to-end "user-level" QoS. Classical work [Aurre96] typically depends on particular platforms or 
application domains, or lack of transparency from system level (e.g. like QoS-A [Campbell96] or 
XRM [Lazar94]). The QoS broker/Omega architecture [Narhstedt95] introduces mapping, but in a 
centralised manner which (as pointed out by e.g. [Waddington97]) may require a huge amount of 
mapping information and have limitations with respect to flexibility. 

Quartz [Sigueira00] introduces pluggable translator components to/from application- and system- 
level QoS parameters. Quartz is an open architecture where pluggable translators map from ap-
plication specific to a generic application level parameters, or from a generic system level to a spe-
cific system level. Thus, the mapping from application level to a system level, which is the most 
complex part, can be handled by a single generic translator component. In the 2KQ+ architecture 
[Nahrstedt00] the mapping is performed by a compiler translating a QoS specifications (contain-
ing user- and application level QoS) to QoS profiles which also contains system level require-
ments. This process may use probing (testing the profiles on the running platform) to find proper 
system level parameters. 
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Reservation vs. adaptation

It is common to distinguish between static and dynamic QoS management approaches (cf. e.g. 
[Aurre96]). Static QoS management is done at the time of establishing a contract. It typically in-
volves admission tests and reservation of resources to enforce the contract. A reservation based 
approach has the advantage of providing guarantees, and it is effective in the case of resource 
contention. However, there are some serious issues: 

First, existing system level infrastructures are often best effort. As discussed in section 2.3.1, 
models and mechanisms are being developed, but are not widely deployed. End-to-end reservation 
based QoS management requires the deployment and integration of many different system level 
QoS aware components. This is a rather challenging task. Furthermore, the actual QoS require-
ments and resource usage of an application will vary over time, and it may be difficult to make 
precise estimates of the required resources a priori. It may be necessary to base reservations on 
predictions on worst case needs of a contract, which may lead to a waste of resources.

Alternatively, dynamic QoS management involves adapting configurations in response to some 
feedback. This is proposed in e.g. [Beaton97]. Implementations may contain run-time monitoring 
of system level QoS parameters or measurements to discover if QoS contracts are violated. Analy-
sis of such measurements may trigger compensating actions or re-negotiation. Requirements can 
be specified as rules, contracts or policies. According to [Molenkamp02] a policy is in this context 
defined as "a rule that describes the action(s) to occur when specific conditions occur". Here, one 
typically specifies events and associated actions. Adaptation mechanisms may be used instead of 
(or in addition to) reservation to enforce QoS contracts by adjusting the implementations and re-
source allocations until the requirements are satisfied. 

A fair amount of research investigates QoS provision through adaptation techniques in the mid-
dleware layer. Often, adaptation is modelled as feedback control loops like in e.g. SWiFT [Goel99] 
or AMIDST [Bergmans00a]. In QuO [Zinky97] object implementations are defined through aspect 
languages and adapted by explicit contract replacement (see also section 2.4.3). Agilos [Li99] 
takes the approach of adapting the application (as opposed to adapting mechanisms in the mid-
dleware). This adaptation is however controlled by the middleware. The reservation approach and 
the adaptation approach are not mutually exclusive as demonstrated in e.g. [Foster00]. 

2.3.3. Open engineering and reflection

In this section we discuss principles of how middleware implementations could be opened up for 
explicit engineering at run-time. The ability to inspect and modify the way programs are inter-
preted is often referred to as reflection. This concept was first introduced in [Smith82], where the 
reflection hypothesis is stated as follows: 

"In as much as a computational process can be constructed to reason about an external world in 

virtue of comprising an ingredient process (interpreter) formally manipulating representations 

of that world, so too a computational process could be made to reason about itself in virtue of 

comprising an ingredient process (interpreter) formally manipulating representations of its own 

operations and structures"

This means that a program can inspect and alter its own interpretation. Access to the interpreter 
(virtual machine) is provided through a meta object protocol (MOP) which defines the services 
available at the meta level. A much cited work on applying the idea of reflection to programming 
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language is [Kiczales91]. This is related to object orientation and the approach of Open Imple-
mentation [Kiczales96a]. By using meta object protocols one could expose implementation issues 
in an orderly manner without sacrificing the benefits of abstraction. According to Kiczales, all im-
plementation issues cannot be hidden, because some of them are not just details but decisions 
which affect the behaviour of the application significantly. The approach to this complexity is to 
deal with such issues separately rather than hiding them (the principle of separation of concerns).

Much research is based on these insights. Reflection is investigated in the context of operating 
systems like e.g. Apertos [Yokote92], and since about 1997, there has been significant research on 
reflection in middleware for distributed systems, starting with [McAffer96]. Follow-ups include 
FlexiNet and OpenORB (see section 2.4.4). 

Principles of reflective middleware

According to [Kon02], a reflective middleware is implemented as a collection of (engineering view-
point) components that can be configured and reconfigured by the application level code. The 
APIs could be like in traditional middleware, but in addition, system and application code may be 
given the ability to inspect or reconfigure the internal configuration through meta interfaces. In 
[Blair98, Blair01], some general principles of reflective middleware are identified. This includes 
the concept of getting access to implementation aspects through per-object or per-interface meta-

spaces. Access to meta-level objects is provided through reification, which makes some aspect of 
the internal representation visible from the program, where it can be inspected or modified. It is 
distinguished between structural and behavioural reflection and two meta-models for each type 
are identified: First, structural reflection deals with content and structure of a component. The 
following two meta-models are identified: 

• The Interface meta-model which represents the functional aspect, i.e. properties of interfaces 

like operations, types or inheritance structures. This corresponds to the traditional view on 
meta-information in programming languages, for instance reflection in Java.

• The Architecture meta-model which represents the structural aspect; i.e. it offers access to an 

objects in terms of its constituent objects. This is essentially a graph of objects interconnected 
by local bindings.

Second, behavioural reflection deals with activity in the underlying system, i.e. the environment 
the components are running in. Two meta-models are identified: 

• The interception meta-model which represents the execution environment for interactions be-

tween interfaces, as traditionally provided by the middleware platform. This includes trans-
parency mechanisms like stubs, marshalling and message passing, but also QoS monitors can 
be addressed here. The focus is the dynamic insertion of interceptors.  

• The resources meta-model which addresses management and scheduling of shared resources 

like memory, network bandwidth or CPU time. 

The interface and interception meta-models are related to interfaces (since each object may have 
more than one interface). Architecture meta-spaces are related to objects, and resource manage-
ment is relevant for both, since both object and interaction implementation may consume re-
sources. Furthermore, resources are shared between entities. Therefore, it is proposed to have one 
resource meta-space per address space. Meta-spaces are (at least conceptually) reified through 
four corresponding operations available at each interface. Since meta-spaces and their constituent 
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objects are first class objects, they may as well have meta-spaces; i.e. reification may be done re-
cursively, revealing meta-meta-spaces etc.  

Open bindings

Reflective middleware research has mostly focused on bindings as a means to connect multiple 
interface in a distributed environment. An open binding [Fitzpatrick98] provides access to its ar-
chitectural meta-model. This composite distributed object is typically nested in multiple levels; i.e. 
a binding can be composed from other lower level bindings. Figure 2.8 illustrates how a binding 
can be composed from an inner binding plus other objects, interconnected by local bindings. The 
inner binding may be opened up similarly, recursively, allowing us to view bindings at different 
abstraction levels.  

nested 
binding

component
object

binding

 

Figure 2.8. Open binding

The nesting stops at primitive and closed inner bindings, which could for instance be basic trans-
port services that interconnect end-systems. An open binding corresponds to a channel in the RM-
ODP Engineering Viewpoint terminology. Nesting levels may correspond to layers of a protocol 
stack, in the sense that objects of a binding use the services of a nested binding to interact.  

To allow automatic configuration and reconfiguration of bindings, one would define meta-models 
of bindings representing important parts of bindings as well as rules for how bindings can be con-
figured. In addition, bindings may for instance be created by a corresponding set of nested bind-

ing factories, or changed by binding-mutators. Since binding-factories need to coordinate actions 
across inner bindings there may also be a need for nested binding-protocols [Eliassen99] which 
might subsume QoS negotiation and nested QoS statements (section 2.2.2).

2.4. Related work 

The above sections discuss requirements and to some extent the different approaches to QoS 
aware binding, QoS statement and infrastructure support. In this section we survey some of the 
most significant projects in the area of QoS middleware. First we look at QoS modelling lan-
guages, since it is important to know how QoS is specified and expressed in negotiations. Then we 
look at some middleware approaches: (1) QoS management research in middleware architectures, 
(2) approaches which apply the idea of aspect oriented programming to QoS and middleware, and 
(3) approaches which primarily study flexibility, componentisation and reflection as means to 
make middleware flexible and to support QoS management. 

2.4.1. QoS modelling languages

Researchers have considered languages for QoS specification or modelling, but usually such ap-
proaches are based on a specific QoS category. Tina ODL [Tina94, Tina96] and MAQS [Becker97] 
propose IDL extensions to annotate interface definitions, thus tying QoS properties to interface 
types. The QuO (see section 2.4.3) contract definition language specifies contracts and adapta-
tions in terms of QoS regions but does not support refinement, conformance or fine grained char-
acterisations. QDL [Daniel99], allows the specification of QoS objects, each consisting of a QoS 
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expectation and an obligation specified in OCL (UML Object Constraint Language). The con-
straints are expressed in terms of simple properties or other QoS objects.

QoS specification languages are surveyed e.g. in [Jin04]. In this section we look at attempts to de-
fine more generic QoS modelling languages focusing on the middleware and application layer. 
Such languages are meant to complement modelling languages like UML. Hence, precise QoS 
specifications would aid the design of architectures and component implementations. QoS model-
ling languages allow definition types or characteristics for any domain. Furthermore, they aim to 
support abstraction and refinement in an object-oriented style. QoS modelling languages can be 
useful in defining (by compiling specifications) data-structures, constructors and conformance 
checkers to be used at run-time in QoS negotiation. 

Quality Modelling Language (QML)

QML [Frølund98a, Frølund98b] is a QoS modelling language for distributed object systems and 
offers the following main abstractions: (1) Contract type, (2) contract and (3) profile. 

A contract type consists of a set of dimensions that can be used to characterise a particular QoS 
aspect. A dimension has a domain of values which can either be numeric, enumerated or set. For 
numeric and enumerated domains, one can define ordering in the sense that either higher or 
lower numbers mean stronger QoS. A contract type corresponds to a characteristic or a set of 
characteristics, grouped as a QoS-category. A contract is an instance of a contract type in the 
sense that it constrains the values of its dimensions. Hence, QML contracts correspond to QoS 
statements (offers or requirements). A constraint can be a <name, operator, value> triple where 
operators are either ’==’, ’<’, ’>’, ’<=’ or ’>=’ Alternatively, a constraint can be a set of statistical 
characterisations. A profile associates contracts with an interface type and its operations or at-
tributes. There is a one to many relationship between interfaces and profiles. A profile may apply 
contracts to the elements of its interface. Profiles may be bound to actual entities. If bound to a 
client side reference, it represents a requirement and if bound to a service implementation it rep-
resents an offer. The binding could be done either statically or dynamically. The focus is on static 
binding, and an extension to UML to specify such bindings is proposed.  

QML supports refinement of contracts in the sense that a new contract may be defined in terms of 
another plus a delta. The deltas are restricted to constraining unconstrained dimensions or mak-
ing stronger constraints than existing ones. Hence refinement also implies a conformance rela-
tionship. 

The QML team recognizes the need for dynamic QoS statement to support open systems and ne-
gotiation. QRR, a run-time representation is proposed, which can express all parts of QML. There 
are two alternatives with respect to contracts or contract types: (1) All expressions are formulated 
in terms of generic structure definitions, which carry all necessary meta-information. A QML 
compiler may generate constructors for such structures or they may be built manually by using 
library functions. (2) A QML compiler generates IDL types for each contract type plus C++ code 
for instantiating such structures. It may also generate conformance checking code statically. The 
second approach is more efficient but requires the meta-information to be linked statically in each 
process participating. 
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Component Quality Modelling Language (CQML)

[Aagedal01] proposes a modelling language for QoS, CQML, where the focus is mostly QoS speci-
fication in modelling and design based on UML. CQML is a more precise and general purpose lan-
guage than QML (at the cost of being more complicated). Like QML, it is orthogonal to functional 
interface definition. CQML offers four main abstractions: (1) QoS characteristics, (2) QoS catego-

ries, (3) QoS statements and (4) QoS profiles. 

A QoS characteristic definition consists of a name and a value domain which are similar to di-
mensions of QML contract types (numeric, set, enum). One can also constrain numeric domains, 
and one can further constrain the semantics of the characteristics using OCL. Characteristics 
may be specialised (subtyping) or derived from other characteristics (used for statistical aspects). 
Furthermore, characteristics may be grouped into QoS-categories, representing types of require-
ments. To allow composition of characteristic values, one can specify the semantics of composition 

operators for the characteristic in question (parallel-and, parallel-or, or sequential) by using OCL 
operators like e.g. ’+’. This makes it possible to combine characteristic values from different com-
ponents. Composition can however only be specified in terms of the same characteristic, meaning 
that CQML cannot express feature interaction this way. 

A QoS statement is a user defined quality region with a name. It defines constraints on a set of 
characteristics by using the logical and relational operators of OCL. QoS statements may be fur-
ther qualified using the ’guaranteed’ or ’best-effort’ keywords. Specialisation is supported in the 
sense that more constraints may be added (implies conformance relationship). A QoS profile as-
sociates QoS statements with component specifications, typically, CCM IDL definitions. Unlike 
QML, a profile specifies both an expectation and an offer (QoS relation). Hence, it is a more com-
plete contract template. A contract is a set of chosen profiles. For instance, between two cooperat-
ing components a contract is the choice of a profile at each side. To establish a contract there 
must be a match between the expectation of each side with a combination of offers from the envi-
ronment. The expectation may be satisfied by a composition of offers from different components. 
The composition theorem of Abadi/Lamport (see section 2.2.1) states that the QoS statements 
must be safety properties, which means a small restriction on how QoS statements are defined. 

QoS profiles support adaptation and negotiation in the sense that one can specify alternative pro-
files plus their internal ordering. If environmental properties change, this may trigger a new 
matching attempt, where the first profile in the specified order which matches would be selected. 
Such matching is generally a constraint satisfaction problem [Kumar92]. Adaptation policies to 
address the case where no satisfactory match is found as well as worth based negotiation, is not 
within scope of CQML. 

2.4.2. QoS (middleware) architectures

In the context of distributed multimedia, several architectures and schemes have been proposed 
for negotiating and mapping between application QoS, orchestration of system level QoS and res-
ervation, in order to provide end-to-end QoS guarantees. Some historical work on QoS architec-
tures was surveyed by [Aurre96]. For instance, a QoS brokerage model is introduced by 
[Nahrstedt95]. The QoS broker is essentially an architecture for handling QoS negotiation be-
tween logical entities called "buyers" and "sellers". A broker also coordinates resource reservation 
on both end-systems and communication links in between. Other early work includes NRP/XNRP 
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[Rothermel97] which proposes a three-phase reservation and negotiation protocol which also in-
volves a central resource orchestrator.

In the next sections we present some middleware level architectures for QoS management: 
Quartz which focuses on reservation and mapping of QoS parameters, Agilos which focuses on ad-
aptation and OMODIS which focuses on hierarchical composition of various QoS management 
schemes. 

Quartz

The Quartz architecture [Sigueira00] aims to offer flexible, extensible, platform independent QoS 
enforcement through mapping of QoS parameters. Quartz supports different application areas 
and different reservation protocols through pluggable components.

Quartz focuses on mapping between application level QoS parameters and system level param-
eters. A layered architecture with three tiers (application, middleware and system) is proposed. 
Application specific parameters are first mapped to generic application level parameters by plug-
gable application filter components. Generic application parameters are mapped to generic system 

level parameters which are again translated to specific system level parameters by pluggable sys-

tem filter components. Translating between application and system level is a complex process 
which may involve trade-offs and resource balancing, and it is performed on generic parameters 
defined by the Quartz architecture. This translation (which is still a rather complex task) is han-
dled in the middleware layer by an interpreter component. 

Resource agent components encapsulate access to the actual reservation protocols (using system 
specific APIs). Quartz supports adaptation in the sense that the system level may choose to 
change contracts after a while. This may trigger either application transparent adaptation 
through finding new mappings, or non-transparent adaptation which involve notifications to ap-
plication code. Therefore Quartz supports reverse mapping as well. The figure below illustrates 
this architecture. Quartz is prototyped on top of the CORBA architecture and validated with 
RSVP, ATM and Windows NT thread priority and memory management at the system level.  
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Figure 2.9: Quartz architecture
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2KQ+ and Agilos

[Nahrstedt01] proposes a QoS aware architecture for ubiquitous and heterogeneous environ-
ments. This includes experiments on 2KQ+ - a unified QoS framework focused on static QoS man-
agement [Nahrstedt00, Wichadakul01], and Agilos - a middleware framework focused on dynamic 
QoS management [Li99]. Agilos also focuses on middleware controlled adaptation of applications 
rather than of middleware. A architecture is proposed, having three layers: (1) QoS-aware re-

source management layer, which is application independent and consists of resource specific bro-

kers, adapters and observers which are responsible for handling admission control, reservation, 
enforcement, monitoring and adaptation of system level resources. (2) QoS-aware service manage-

ment layer, dealing with configurations of application services and resources and (3) application 
layer running application level components. Figure 2.10 illustrates this.
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Figure 2.10: QoS aware middleware architecture

Three distinct phases of QoS management are considered: (1) the application development phase, 
(2) the QoS setup phase and (3) the adaptation phase. In the first phase, QoS is specified relating 
to target applications. Specifications also include functional dependency graphs constraining com-
position and translation templates defining QoS levels in terms of application level QoS dimen-
sions. Specifications are compiled to generate QoS profiles (run-time representations), consisting 
of candidate application component configurations along with adaptation policies and application 
state templates. The compilation process includes the complex task of mapping application QoS 
parameters to resource requirements either by analytical translations or by using probes running 
in a real system to gather information. 

In the second phase, a QoS profile is first stored in the QoS proxy on the application server, and 
clients may establish bindings. This is done by service discovery and by selecting an end-to-end 
application configuration from the profile. First, resource brokers on each participating platform 
are queried for the current resource condition. The result is matched with the candidate configu-
rations in the profile, in order to select one. After selecting the configuration and locating servers, 
an end-to-end resource allocation plan will be generated from the QoS profile. This is fragmented 
and sent to QoS proxies on each participating system which then call resource brokers to allocate 
resources. 

In the third phase, QoS would be adjusted according to actual resource availability: This can in-
volve resource adaptations in the lowest layer and adaptation of application components in the 
second layer. Here, QoS proxies can adapt application components and configurations according 
to adaptation policies stored in profiles. All this can be modelled as a control loop. Here, 
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QualProbes do application specific QoS measurement and profiling (using values from observers 
and resource adapters) Component configurators make decisions on how to adapt the application. 
Configurators are specified as rule-bases and uses a fuzzy inference engine to decide on actions to 
be invoked on third layer objects or the application itself. The use of such rule-bases makes the 
middleware quite configurable. 

2KQ and Agilos is prototyped on top of DynamicTAO [Kon00] and the 2K [Kon98] system and 
validated by applying it to a visual tracker application (OmniTrack).

OMODIS QoS architecture

The OMODIS QoS architecture [Ecklund02] aims to be more general than its predecessor. It is 
designed to combine various existing QoS management schemes like e.g. QuO (section 2.4.3) and 
to support both the adaptation and reservation approaches in combination. Important concepts 
are hierarchically composed policy domains and QoS managers. In OMODIS, QoS management 
services and managed components are separate entities, the management structures are dynami-
cally configured based on client sessions as well as the set of (possibly nested) policy domains gov-
erning the components. The management structure can be adapted dynamically. 

A policy domain contains a set of services governed by some common QoS policy and typically cor-
responds to an administrative domain. A domain can be nested and can typically have a long 
term existence. Each policy is independently updateable. QoS managers coordinate QoS contract 
negotiation and adaptation among managed components. QoS managers are organised in hierar-

chies corresponding to their domains. There are two types of managers: (1) tactical managers 
which controls application- and system-specific components (managed components), ( 2) strategic 

managers which enforces policy of a domain. A strategic manager coordinates the tactical manag-
ers within the domain and/or strategic managers of subdomains. A session domain exists for the 
duration of a client session. The initiation of a client session would trigger the creation of a ses-
sion specific tree of QoS management connections among strategic managers. A session domain 
would be associated with a special strategic manager (session manager) which is the root of the 
tree. 

An architecture for QoS managers is proposed [Ecklund01]. It is based on a classical feedback 
controller architecture, but extended to be effective in non-deterministic environments. The fol-
lowing extensions are proposed: (1) Negotiation Agent (QNA) to implement contract negotiation 
between clients and servers, (2) Adaptation Agent (QAA) to manage configurations of components 
and adaptations of such configurations, (3) Admission and Reservation Agent (ACRA) to interface 
with resource management functions. The QNA could use QoS negotiation protocols like e.g. 
[Koistinen98].

The QuA project

The QuA project [Staehli04a] investigates the idea that an open component architecture platform 
can effectively assume all responsibility for QoS management. Platform-managed QoS is proposed 
as a general solution to preserve the safe deployment property; i.e. applications assembled from 
independently developed components should function correctly when deployed on a platform with 
sufficient resources and services. This is meant to contribute to realising the vision that applica-
tion software components could be written without dependencies on physical resources or knowl-
edge of platform service implementations. 
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An important part of QuA is a framework for implementation planning [Solberg04, Eliassen06]. 
Planning is to compose a set of available software entities (components, services, resources) such 
that they implement a service which behaves according to a set of QoS constraints. A planner 
(which also may be a pluggable component) is responsible for discovering resources and imple-
mentation alternatives, and for planning the optimal configuration of components, in order to sat-
isfy requirements. The result of planning is a plan, which is associated with a set of platform as-
sumptions, a blueprint which represents a realisation of the service in terms of a set of compo-
nents or other blueprints, a composition plan which specifies composition of the service from blue-
prints and the QoS properties the composition would result in. QoS is specified in terms of quality 
loss (QL) characteristics, which represent deltas of perfect (ideal) QoS. Domain specific semantics 
are defined as error models [Staehli04b]. User QoS constraints are specified as minimum and 
maximum QL values. It is proposed to use utility functions, which compute the utility of a pos-
sible service plan from the set of QL values. 

2.4.3. Aspect oriented approaches

Aspect oriented programming (AOP) [Kiczales96b] is a programming paradigm supporting sepa-
ration of concerns in the sense that various aspects of a program can be defined separately. This 
is related to the open implementation approach [Kiczales96a] as well as reflection (see section 
2.3.3). Aspects are typically crosscutting in the sense that they involve many different parts of the 
base program design. Programs can be simplified by programming aspects in separate modules. A 
crosscutting concern can for instance be error handling, debugging, or distribution aspects. Han-
dling extra-functional concerns would often be crosscutting and the AOP paradigm may be suit-
able for this. 

Aspects may be defined in different languages (each suitable for the aspect in question). By using 
appropriate tools, aspects are woven into runnable programs. Aspect weaving can be done either 
at compile time, at deploy time or at run-time. Run-time weaving has some overhead with respect 
to performance and is still a research issue. Many implementations and prototypes have emerged, 
usually based on specific programming languages or middleware architectures. We refer to 
[Loughran05] for a survey of middleware exploring aspect oriented programming models like the 
one provided by AspectJ [ASJ]. Significant progress is being made in this area, for instance in 
treating aspects as pluggable components and in efficient dynamic aspect weaving. In the rest of 
this section we describe some projects which claim to address contractual QoS management with 
an aspect oriented approach. 

The QuO project

The QuO project [Zinky97, Loyall98a, Loyall98b etc.] is motivated by a demand for distributed 
applications that can deal with QoS requirements, changing usage patterns and underlying re-
sources and thereby support adaptive behaviour. The QuO architecture (QoS for CORBA objects) 
has been developed to support dynamic QoS management in the CORBA object layer by adapting 
object implementations. It extends the functional interface definition language (IDL) with a sepa-
rate QoS description language suite (QDL) which capture expected usage patterns and QoS re-
quirements for clients binding to objects. 

To provide end-to-end QoS for distributed applications, system information from the server, the 
communication infrastructure and the client must be reconciled. The approach of the QuO project 
is to do this in the service object in the sense that the boundary of the object’s implementation is 
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moved into the client’s address space. The connection boundary, where the contracts are agreed 
upon, is located in the clients address space. Advantages of this are that delay between client and 
the connection object can be ignored, and that client side parts of the object implementations 
never fail independently of the client. 

Since the object implementations deal with distribution issues and QoS management like moni-
toring and adaptation etc., the QuO contract model can be understood as implicit (see section 
2.1.3). Object implementations should therefore be opened up to some extent; i.e. one needs to 
identify certain component types and interfaces, to allow adaptation of those at run-time. QuO 
defines a model of object implementation components. In addition to the base implementation 
there are delegate objects representing remote objects. Delegate behaviour is controlled by QoS 

contract objects.

A contract object in QuO defines a set of nested regions, a set of references to system condition ob-
jects (which are responsible for measurement and control) and a set of adaptation actions, pos-
sibly with callbacks to clients (in the case of non-transparent adaptation). Regions model relevant 
states of the system QoS and are defined as predicates on values of system condition objects. To 
handle divergence between expected and provided system conditions, QuO allows specification of 
two levels of system conditions (regions): (1) Negotiated regions are regions of the requirement 
space (section 2.1.5) and represent QoS obligations to client. (2) Reality regions are regions of the 
resource space and represent measured QoS properties of the implementation or system re-
sources. Contracts define mappings between reality and negotiated regions as well as transition 
rules. Contract evaluation determines which regions are active and is triggered by delegate ob-
jects or by changes in system condition objects which are observed by the contract. Delegates are 
informed about the resulting region and may adapt their behaviour according to this.   

MAQS

MAQS [Becker97] also claims to adopt an aspect oriented approach to QoS. QIDL is the proposed 
extension to CORBA IDL which allows QoS annotations to interfaces. In QoS-enabled interface 
specifications one may define QoS characteristics using IDL types, and one may define operations 
for QoS management. Aspect weaving is realised by generating QoS code skeletons and mediators 
from QIDL. These may be completed by QoS implementers. Such components and other parts of 
QoS implementation are connected to stubs and skeletons which intercept requests on their way 
from the client to the (functional) server implementation. In this approach QoS is tied to inter-
faces, not components that implement them. Hence, new interfaces must be defined (by speciali-
sation) in order to support different QoS for different implementations of the same interface. 

AspectIX

AspectIX [Hauck01] (formerly LegORB) adopts a similar fragmented object model in the sense 
that objects may be decomposed into fragments to be distributed over multiple hosts, and where 
functional and extra-functional code may be separated into different fragments. A client binding 
to an object involves the loading of code fragments like stubs or delegates into the client address 
space. AspectIX provides tools for statically generating fragments which could be dynamically 
composed. Functional code written without QoS in mind can be converted to an AspectIX frag-
ment which has the necessary hooks to be dynamically linked with other AspectIX fragments. 
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An aspect typically corresponds to a QoS category (or sub-category), it is described in CORBA IDL 
and represented at run-time by configuration objects; i.e. a configuration instance contains a set 
of QoS parameters representing a requirement statement. Clients may associate configuration 
objects with object delegates (fragments), which can evaluate configuration objects. Delegates can 
decide that the configuration is invalid when the requirement cannot be fulfilled, and they may 
decide to adapt transparently by replacing themselves. 

Composition filters 

[Bergmans01] introduces composition filters as a model of how crosscutting concerns (aspects) can 
be realised in a dynamic manner in object oriented designs. Method invocations are reified (repre-
sented as explicit objects) and matched with a set of filters when going to or from a given service 
implementation. Filters may for instance route invocations to alternative implementations, en-
capsulate invocations into other method invocations, or manipulate resource management poli-
cies. A declarative filter expression language is proposed. Some experimental work has also been 
carried out in applying composition filters on CORBA middleware [Bergmans00b], for instance by 
intercepting invocations between the IOP and the transport service, but some investigation has 
also been done on aspects that vertically crosscut multiple layers. 

2.4.4. Flexible middleware 

A fair amount of research has been carried out in developing flexible middleware architectures, 
motivated by the demand for distributed multimedia, mobile and ubiquitous computing, and a de-
sire to adapt applications to a wider range of devices, environments, and usage patterns 
[Geihs01]. As also seen in operating system research, one has been looking at alternatives to the 
monolithic structure of middleware to make it more configurable. The study of reflection as a 
means to open up middleware [Kon02] has been particularly important. Research has also fo-
cused on structuring middleware using component frameworks [Clarke01]. 

Microkernel ORB architectures

Many research projects are motivated from the need to control dynamically which protocols are 
used for binding, as well as the management of resources, to be able to accommodate real-time 
requirements and a flexibility from the application programmer’s point of view. Projects like 
ANSA DIMMA and ReTina aim to specify middleware architectures which are flexible enough to 
accommodate multimedia applications, based on a minimal ORB kernel where different protocols 
as well as API personalities may be plugged in or replaced. 

DIMMA [Donaldson98] builds on a small nucleus and a generic API module supporting an API 
following the RM-ODP computational concepts. This can be specialised with a CORBA personal-
ity module or other personalities. Protocols (like IIOP or a RTP based flow protocol) may be 
plugged in at the bottom. However, the individual layers of protocols are not explicitly componen-
tised. Resource management (buffers threads or scheduling policies) and protocol parameters may 
be controlled through simple QoS parameters which can be given by application components at 
binding time. However mapping of application oriented QoS to resource parameters is not sup-
ported by the platform. Bindings are supported by a hierarchy of binder components. 

The Jonathan ORB [Dumant98] is a Java prototype implementation of the ReTina architecture, it 
aims to support pluggable binding policies and follows a microkernel architecture like DIMMA. 
However, protocol layers are componentised in terms of an architecture similar to the x-kernel 
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[Hutchinson88]. ReTina and Jonathan introduce the concepts of binding objects (explicit bind-
ings) and binding factories (interfaces to create bindings). Jonathan supports extensibility with 
respect to binding types. Interface references may contain a binding type identifier used to select 
a suitable binding factory instance on the client side. 

FlexiNet

The ANSA FlexiNet project [Hayton00] is a Java based toolkit for creating and (re) configuring 
ORB’s. It allows programmers to tailor the platform for a particular application domain or deploy-
ment scenario. It provides a generic binding framework plus a set of basic engineering compo-
nents (protocol layers etc. binding factories etc.) to populate the framework. FlexiNet is focused at 
operational interaction (RMI). Generic invocations are passed through a composition of objects 
that may transform them in various ways before they reach the destination object. The graph cor-
responds to a stack of "layers" at each side, where the lowest layer typically encapsulates com-
munication sockets. 

FlexiNet differs from protocol composition approaches like e.g. Ensemble [Hayden97] in that it 
focuses at flexibility on a higher level as well as the management of distribution transparency 
mechanisms like transaction, replication, security, mobility etc. To support transparencies like 
migration, relocation, persistence and to some degree security and transaction, the cluster ab-
straction (cf. clusters in RM-ODP engineering model) is introduced. The framework defines inter-
faces to the binder and generic call interfaces between layers as well as resource-pools used by the 
reflective layers for managing buffers and threads. 

Configuration of stacks is done at binding time by pluggable binding factories (binders). A binder 
component implements a Generator or a Resolver interface, or both. The generator produces inter-
face references (for interfaces to be made remotely invocable), which are associated with a server-
side stack. The resolver produces client-side proxies from such interface references, associated 
with a client-side stack. In FlexiNet, binders can be composed and organised into 
hierarchies/graphs of binders, where each may take care of part of the job, or delegate to other 
binders according to some rules. This architecture enables dynamic choice of binders, as well as 
nested binding.  

OpenORB/OpenCom

Influenced by the early Sumo work [Blair97] and RM-ODP [ISO95b] researchers at Lancaster and 
Tromsø universities explored the use of reflection and component technology in middleware in the 
OpenORB project [Blair01]. In principle, every application level component will offer a meta-
interface that provides access to the underlying meta-spaces. This may reveal a set of meta-
components which again may offer meta-interfaces to give access to meta-meta-spaces and so 
forth, recursively. Meta-components are not necessarily instantiated before they are needed. 

The OpenORB architecture supports dynamic QoS management components [Blair00], i.e. moni-
toring, policing, maintenance and adaptation of QoS. The architecture identifies three types of 
management components: (1) monitor, (2) strategy selector and (3) strategy activator. A monitor 
collects information from the activities of components participating in a binding. It may attach to 
such components using reflection (for instance by inserting pre- and/or post methods). A strategy 
selector receives events from monitors and makes decisions based on this information. The deci-
sions are carried out by strategy activators by manipulating the meta-spaces of each side of the 
binding. Strategy activators and selectors represent policies for QoS enforcement and adaptation.  
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Prototype implementations of OpenORB have been made using the Python language in e.g. OOPP 
[Andersen02]. Furthermore, a component model [Clarke01] has been developed, partially based 
on Microsoft COM. This is part of a middleware architecture which consists of frameworks for 
pluggable resource managers, protocols and binding types [Parlav03]. In summary, 
OpenORB/OpenCom is very customisable and adaptable. The disadvantage is that customisation 
requires a large amount of effort, since the mechanisms and programming interfaces are rather 
generic and low level.  

DynamicTAO

TAO [Schmidt97] is a CORBA ORB known to deal with real time issues. DynamicTAO [Kon00] 
extends TAO to be a reflective middleware platform. In early releases, it supports dynamic inter-
cepting of remote method invocations. This has recently been standardised by OMG and incorpo-
rated into TAO. DynamicTAO allows on-the-fly reconfiguration of the internals of the ORB and 
application components. The meta-space is reified through component configurators which repre-
sent the dependence relationships between ORB components and may include methods for pre-
serving consistent configurations.  

Multe

The MULTE project shares many ideas with OpenORB. Some collaborative work was made in the 
CORBAng project in Tromsø, Oslo and Lancaster [Eliassen99]. Much focus is on multi-party bind-
ing objects for multimedia, and the MULTE binding framework is based on the concept of open 

bindings (section 2.3.3). The architecture includes explicit bindings, binding factories, and bind-
ing mutators.

A conformance model of stream interfaces is developed, based on functional aspects [Eliassen98]. 
The project investigates trading as a mechanism to select amongst binding factories 
[Rafaelsen00]. A QoS management model is also outlined [Plagemann00] where binding factories 
may map application level QoS statements to parameters more appropriate for describing re-
sources, which again may be mapped by pluggable middleware components to resource specific 
parameters and reservations. Resource adaptation is supported by the Da Capo monitoring com-
ponent (where changes in underlying QoS may trigger renegotiation). Bindings may also incorpo-
rate media gateways which convert the format or QoS of a media stream, which is especially use-
ful for multi-party streams. Prototype implementations of the MULTE ORB have been based on 
the COOL ORB (which is a CORBA 2.0 implementation) and the flexible protocol framework Da 
Capo [Plagemann94]. Da Capo allows dynamic selection, configuration and reconfiguration of pro-
tocol modules to dynamically shape the functionality of a protocol.

2.5. Discussion

Our interest is mainly how to support QoS aware binding at run-time. This involves negotiation 
of QoS contracts and configuration of the implementation of bindings. A large amount of research 
has been performed in the area of QoS, and we observe that much work sacrifice generality. As 
pointed out by [Ecklund02], many approaches are: 

● Domain specific. Much work has been done in the context of specific networking technologies, 
or with certain application domains in mind, like e.g. multimedia. Domain specific solutions 
may increase the heterogeneity problem in distributed systems. 
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● Embedded in particular technologies or components, for instance in the handling of resources 
in the operating systems,  in communication protocols or in application components. Type- or 
component specific QoS management techniques may not be easily reusable. 

● Based on traditional layered architectures. This is not as flexible as required by open systems 
with components.  

We focus on QoS contract negotiation in the context of flexible middleware, where the goal is some 
level of application and platform independence. In the following, we discuss related work with re-
spect to two subtopics: (1) Contractual QoS statement and negotiation support and (2) QoS man-
agement. We also briefly compare them with our own approach (to be presented in the next chap-
ters).

2.5.1. Contractual QoS statement and negotiation

To define and negotiate contracts, some commonly understood vocabulary and model (defining 
syntax and semantics of QoS statements) are needed. Rather than having one single defined 
model (categories, characteristics etc.), a trend is to define application specific models in which 
QoS statements (offers, requirements, contracts) are formulated. This is good if they can be sup-
ported by generic infrastructures based on a common meta-model. In table 2.1 below, we compare 
some work including QoS languages for declarative QoS statements. While QuO (section 2.4.3) 
and 2KQ+ (section 2.4.2) supports aspects of specification, QML and CQML (section 2.4.1) aims to 
be more general purpose modelling languages. Quartz supports pluggable application models but 
focuses on how parameters are defined. However, as pointed out in [Siqueira99], a QoS language 
could be used to define application parameters and filter components.  

QuO QML CQML 2KQ+ Our approach
Contract Required QoS, usage Contracts (constraints) QoS statements (constr) Component descriptions: Profiles of
specification patterns, adaptations Profiles (offers or Profiles (complete QoS supported levels + policies

regions (neg/reality) requirements) relations: Exp->obl)) hardware requirements
Contract local only Match client/server Client/server + composite Compiler generation Policy trading
negotiation (can use negotiation environment (multiple profiles) of QoS levels. 

protocol) (and possible configurations)
Dynamic QoS N/A QRR: compile to IDL types QRR similar to QML limited Profile expressions
statement and C++ code, generic (compiled QoS profiles)

structures.
Adaptation Regions with transition Not directly Composite profiles Compiler generation (policy/metapolicy

rules  alternatives + transition rules of alternative configurations issue)

Runtime N/A Yes (QRR) Yes (QRR) simple parameter matching Yes (conformance
evaluation (candidate configurations) matching)

Semantics no operators, operators, not discussed Conformance 
definition decreasing/increasing decreasing/increasing rulebases

keyword on numeric char. OCL constraints! 
Composition N/A no simple conjoining not discussed Composition 
support define 3 operators operators

on characteristics

Table 2.1. QoS contract specification and negotiation

Contract definition and establishment

A typical approach is to define a set of contract fragments (QoS statements) at design time. These 
could later be composed and instantiated into contracts. Such fragments (offers or requirements) 
could be associated with components or interfaces to support QoS aware binding. The approach of 
QuO is to specify contracts as constraints on condition objects. Such constraints 
(negotiated/reality regions) may be seen as QoS relations, and adaptation is supported as prede-
fined transitions between regions, which is useful. The reusability, extensibility and compos-
ability of contracts are limited due to how contracts are tied to object implementations, and since 



5Since QoS aspects can be crosscutting concerns (with respect to type- and implementation hier-
archies), it can be useful to support such sharing and re-use. This can reduce work of developers 
and reduce redundant code. 

_________________________
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only simple numerical parameters are used. In 2KQ+, one can specify expectations (hardware re-
quirements) and possible obligations (QoS levels) for components or component types, and a com-
piler can generate QoS mappings, candidate contracts and configurations of components. Also 
here, the reusability5 of QoS specifications may be limited since specifications are tied to imple-
mentations (components).    

QML offers abstractions for defining QoS statements, combining multiple dimensions of various 
types. Furthermore, it supports contract types, contract instances and refinement. A profile as-
sociates QoS constraints to elements of interfaces and can be used to represent either offers or re-
quirements. QML does not consider the expectation part of QoS relations. In CQML, profiles are 
typically specified for component types and represent more complete QoS relations. A profile de-
fines a possible contract between a component and its environment. Negotiation can involve find-
ing a transitive closure of QoS profiles, whose expectations are met by a (conjunctive) composition 
of other profile’s obligations. CQML supports adaptation in the sense that a profile can be com-
posed of an ordered set of simpler profiles, along with transition rules which specify callback op-
erations. This is similar to QuO regions but more implementation independent. 

Dynamic QoS and contract evaluation

Contract negotiation involves the evaluation of QoS statements at run-time, for instance to see if 
a server offer satisfies a client requirement, or if the expectation of a possible contract is satisfied 
by a given environment. One approach to the evaluation of contract templates is to compile speci-
fications into software components which can perform the evaluation. In QuO there is one such 
component per client binding, in 2KQ+ there is one per middleware instance (node or capsule), 
which takes part in the application. In QML and CQML, more generally available run-time repre-
sentations (QRR) can be generated. QRRs are not tied to a particular architecture or negotiation 
protocol. 

Remote QoS negotiation protocols typically exchange parameters, and constraints are often ex-
pressed as boolean expressions, parameter values, value sets or value ranges. In QML and 
CQML, constraints can be defined (at design time) as expressions over characteristics, using com-
parison operators. The meaning of such operators depends on the characteristic type. If a lan-
guage supports the definition of characteristics, it may also be necessary to define some semantic 
aspects, for instance if a larger numeric value is stronger or weaker than a smaller one. The abil-
ity to define semantics of characteristics or contract types is typically rather limited. QML allow 
the use of an increasing/decreasing keyword on numeric characteristics. CQML has a richer sup-
port for defining semantics of QoS characteristics (OCL constraints) in addition to the 
increasing/decreasing keywords. The specification and matching of constraints can be a compli-
cated task, and contract matching would be an instance of the constraint satisfaction problem 
which can be complex.  

Composition

In open systems, a service or an environment would consist of different cooperating components. 
We may therefore be interested in deriving the resulting QoS in terms of QoS of each individual 



- 42 - 

component. Composition seems to be little supported in most QoS work. CQML however, ad-
dresses the composition issue in the context of contracts in some interesting ways. First, composi-
tion operators on individual characteristics can be defined. Here, and in [Jaeger04], the semantics 
for each characteristic could be specified for each composition pattern. This may not be an easy 
task. Furthermore, an expectation of one profile would be matched against a composition of other 
profiles. Such conjoining is well founded theoretically. However, this model implies that pairs of 
profiles (e.g. client and server) would require a partial match, which is not clearly defined. 
Though an expectation could be satisfied by offers from various components, it may be necessary 
to specify additional constraints on what components offers may come from. For instance, a con-
tract for a service may expect certain behaviour from the client component in particular, or it may 
require different parts of the expectation to be satisfied by components on separate nodes. Hence, 
simple conjoining alone is not always sufficient. CQML allows additional invariants in profiles, 
which deals with some notion of component identity. It is left to a QoS framework (middleware) to 
define component identity. It seems to be an issue for further research how composed QoS state-
ment could express location constraints in an abstract and re-usable way. There is currently no 
generic solution to QoS composition, and support is typically limited to additative characteristics.   

Other issues

There are some additional issues of QoS contract negotiation and modelling which are not much 
addressed by previous research. These issues include:

Extensibility, i.e. how the space of possible contracts and adaptations of an existing and running 
application can be extended. The compiler approach of QuO and 2KQ+ means that possible con-
tracts and corresponding configurations are produced in advance. One can thus avoid some com-
plexity at run-time, but choices and adaptations are limited and not easily extensible, since one 
may need to re-compile or extend agents at each middleware instance. In CQML, profiles can be 
replaced locally. But since profiles describe application components, the components themselves 
may need to be replaced. Alternatively, running implementation components could be altered e.g. 
by dynamic aspect weaving, or the infrastructure may change, but this is outside the scope of QoS 
modelling languages.

Interoperability. Components in independently developed applications could negotiate QoS con-
tracts. To support this, a common understanding of the meaning of QoS statements is necessary. 
Components using the same application model (e.g. defined in CQML) are interoperable, but it is 
not that clear how to integrate different preexisting application models.  

Consistency of QoS models. Inconsistency would mean that it is possible to derive contradicting or 
conflicting results from same model. This becomes an issue when languages support aspects of 
semantics specification and, in particular, when models are composed or integrated to support in-
teroperability between pre-existing or otherwise autonomous applications.   

Our approach

In our approach potential contracts are pre-defined as policies and negotiation is essentially to 
trade a policy for a binding. This model is extensible with respect to contracts. We propose an ex-
pression language in which contracts and other QoS statements can be formulated, composed and 
evaluated at run-time. Expressions are matched against each other for conformance. This can 
simplify contract evaluation. A basic idea is to define semantics as rule-bases from which con-
formance between any pair of expressions can be inferred. Our rule-base scheme supports 
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checking for certain consistency and completeness problems. Rule-bases can also be designed to 
address some aspects of interoperability. Composition is addressed by proposing generic composi-
tion operators.

2.5.2. QoS management

An infrastructure is needed to support the establishment and the enforcement of QoS contracts. 
As discussed in section 2.1.4, QoS management involves the configuration of multiple components 
and resources (resource orchestration), which is generally a complex problem. There has been 
much research in this area, where most approaches limit the scope to particular application do-
mains, technologies or parts of the architecture. We focus on middleware level QoS management 
frameworks which aim to abstract over various system level platforms and to support a range of 
applications. Table 2.2 below summarises some characteristics of some relevant QoS middleware 
work: QuO (section 2.4.3) and 2KQ+, Agilos, Quarz and OMODIS (section 2.4.2).

QoS enforcement QoS adaptation Configuration scope Configuration time
QuO Application specific Application specific App. specific implementations Design time.

implementation implementation
Contract objects (defined by QDL)

2KQ Minimum-amount Intraconfiguration adaptation Reservation parameters Compile time
reservations Dynamic reconfiguration Application components

Agilos Best-effort (with control-based Appl. specific measurements Component parameters Design time/compile time
adaptation) by pluggable QualProbes. Application component (see 2KQ)

Fuzzy inference engine Middleware services

Quarz System level QoS Replace mappings Reservation parameters Run-time
mechanisms Requires reverse mappings
(pluggable components) (notifications to applications

is possible)
OMODIS Control-based adaptation. Classical feedback controller App components, middleware Run-time

Extended with reservation agent. Extended with adaptation agent for reservations, QoS managers
Per domain QoS policy component configuration + negotiation (tactical/strategic)

Our (policy issue) (policy issue) Bindings Run-time
approach (policies are

defined at design time/
compile time)

Table 2.2. QoS management frameworks

Static and dynamic QoS management

Static QoS management is about establishing a contract. Dynamic QoS management is about 
maintaining a contract during its lifetime. Some QoS frameworks perform mapping of application 
level QoS parameters to system level parameters (to be used for resource reservation) which is 
problematic with respect to complexity and flexibility. The Quartz architecture attempts to sim-
plify the mapping and to provide a generic architecture by proposing three levels of translations, 
such that application to system level mapping can operate on a generic set of parameters. 

Much research focuses on adaptation as a QoS enforcement technique. Adaptation is important 
for several reasons: It is for example known that reservation has significant issues with respect to 
resource efficiency (since it is based on predicted future resource usage). By adjusting the behav-
iour of middleware and applications dynamically, for example based on measuring the resulting 
behaviour or observing the actual resource availability, some end-to-end QoS could be main-
tained, even if the environment is best effort; however, strong guarantees are hard to achieve 
still. Both with static and dynamic QoS management, it may be a challenging task to find suit-
able end-to-end configurations. Adaptation may however be limited to adjustments of existing 
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configurations in some cases and may use measurements which are not available at binding time 
(like e.g. measurements of resulting QoS). 

Scope of configuration

The configuration (to enforce QoS contracts) can have different scopes. The simplest is to set or 
adjust parameters on fixed components, like time delays, buffer sizes, frame sizes, frame rates, 
etc. QoS management can also be supported by mechanisms in the infrastructure (middleware) 
itself, like interaction protocols, buffering or caching strategies, coding and encryption, etc. This 
requires configurable middleware (see section 2.3.3 and 2.4.4).  

One may configure application implementations as well. Approaches to this include dynamic 
weaving of various aspects (implementation fragments) which define parts of the applications be-
haviour (see section 2.4.3), or composition of service components into complete service implemen-
tations. This is investigated for instance in limited contexts of web-services and workflow pat-
terns [Zeng04, Jaeger04]. We often use the term ’planning’ about the task of composing and con-
figuring service implementations. Automated planning in a distributed system, based on avail-
able components, resources and QoS requirements is attractive, but may be very complex in the 
general case. The QuA project investigates an architecture for pluggable service planners and 
specification of plans. The 2KQ+/Agilos allows QoS proxies at each node to select amongst com-
piler generated local configurations. The OMODIS architecture allows dynamic configuration of 
QoS managers as well as service components. QoS managers are defined for nested domains. A 
special domain and QoS manager is created for each client session. Each domain has a QoS policy 
which defines plans within that domain. The approach to end-to-end configuration and adapta-
tion is to first try to adapt/plan within the local domain and push the responsibility for decisions 
upwards in the hierarchy when necessary. 

Time of configuration

Configurations could be determined (1) statically (manually defined by the designer or program-
mer), (2) at compile time, or (3) at run-time. The advantage of the first approach is that a skilled 
designer can easily see solutions which are hard to find algorithmically. However, it may be hard 
(depending on the application) to manually produce and manage a potentially large numbers of 
configurations to cover all possible situations. 

Run-time configuration can handle situations not foreseen in advance, but the computational 
complexity can be problematic. Even if the parameter mappings are done on generic parameters 
(like in Quartz), it is still a complex problem and it is hard to envision one single mapper or rule-
set which generates good solutions in all situations. A compiler approach can be a reasonable 
compromise. The 2KQ+ approach demonstrates this, and also how this can be used to automate 
testing candidate configurations on a real system, which could be a tedious task for a system de-
signer. Even if defining solution candidates in advance, one may still need to negotiate, in order 
to select from the precomputed candidates. This may involve conformance checking etc. which 
could have some complexity. In distributed systems with autonomous components, it will be a 
trade-off between predefining end-to-end configurations and predefining part-solutions (and com-
posing these parts later).
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Our approach

We do not propose a complete solution for QoS management but rather a framwork where policies 
could encapsulate many QoS management issues. Bindings is the scope of configuration. This is 
flexible in the sense that it can capture most issues. Furthermore bindings make it straightfor-
ward to associate configurations with contracts. 

2.6. Concluding remarks

In this chapter we gave an overview over some relevant concepts, problems and relevant research 
in the area of QoS aware open systems. This includes QoS specification, negotiation and QoS 
management. Our main focus is on how QoS aware binding can be supported at the middleware 
level and, in particular, how QoS can be defined and composed for the purpose of negotiating con-
tracts. 

We first gave an overview of the concepts and requirements of QoS aware open systems and in 
particular, the role of bindings and contracts. A contract states that a given obligation will be sat-
isfied as long as the environment satisfies a given expectation. Binding establishment means to 
negotiate a contract and establish and configure the system such that the contract is enforced. 
With our focus it is relevant to look closer at two problem areas: (1) contractual QoS statement 
and (2) QoS management by infrastructure. First, we need to define the syntax and semantics of 
QoS statements, including contracts and run-time statements used in negotiation. Many previous 
QoS architectures focus on particular application domains or technologies, and they are based on 
a priori defined models with fixed sets of parameters. Proposed QoS modelling languages allow 
more generic QoS frameworks to be specialised for specific applications. A QoS model should sup-
port effective and efficient evaluation of dynamic  QoS statements, it should support conformance 
checking (or other criteria for ordering), and it should support composition. 

There are still unresolved issues in defining the semantics of QoS statements. Semantic specifica-
tion is to some extent addressed in QoS modelling languages but mostly on individual QoS char-
acteristics. We are interested in how to describe compositions (possibly made at run-time) in 
terms of participating components. We may also need composition for dynamic QoS statements, 
since bindings may be supported by compositions not foreseen in advance. The typical approach is 
to specify composition semantics for additive characteristics, possibly with alternatives for a set of 
different composition patterns. Simple conjoining of QoS statements and additive characteristics 
may not always be sufficient and how to handle composition in general is still an open issue. 
Other issues in the area of contractual QoS statement include interoperability of different ap-
plication models, consistency of models and how to extend the adaptation space of a QoS models. 

Contract negotiation also needs QoS management support from an infrastructure. We discussed 
some aspects of infrastructure support, including system level and middleware level QoS manage-
ment issues as well as configurable middleware, and we looked more closely at some concrete re-
lated work projects on QoS-languages and QoS-middleware. We distinguish between static and 
dynamic QoS management which corresponds to establishing and maintaining contracts. Fur-
thermore, there are two fundamentally different approaches to QoS enforcement: (1) mapping ap-
plication QoS to system level QoS contracts which can involve reservation of resources and (2) dy-
namically adjusting behaviour by observing resource availability and resulting QoS. Both ap-
proaches have limitations and advantages. 
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Determining end-to-end configurations is still a challenging task. There is a trade-off between 
predefining end-to-end solutions manually (which may not be flexible enough) and searching for 
solutions at run-time (which may be computationally hard). Approaches to this problem include to 
specify a set of alternative contracts (along with enforcement policies) at each participant, to be 
matched at run-time, and to generate candidate configurations from specifications by using a 
compiler.

The next chapters present our own approach which addresses some of the issues discussed here.  
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Chapter 3. 

Overall Architecture

In this chapter we give an overview of our proposed architecture for binding in QoS aware open 
systems. We introduce the concept of policy trading to facilitate the selection of policies. Policy 
trading is based on the idea of ODP trading [ISO97], but rather than functional interface refer-
ences we trade policies. Policies encapsulate contract templates and instructions on how to set up 
bindings (possibly including aspects of the implementation). Rather than matching interface 
types, we match user requirements with user profiles (extra-functional properties of resulting 
bindings) and environmental descriptions with service profiles (requirements to environments ap-
plications are running in). 

Section 3.1 outlines and motivates how we understand binding, contract and policy. Section 3.2 
defines more precisely the concept of policy. Section 3.3 discusses briefly the concept of metapolicy 
which tells how to negotiate and/or adapt. Section 3.4 introduces the idea of policy trading and 
discusses how this can be used in negotiation. In section 3.5 we conclude. 

3.1. Architecture overview

The architecture described in this chapter represents our approach to QoS aware binding. Our 
architecture is based on some of the concepts in the RM-ODP model (see section 2.1.1), in particu-
lar the concepts of interfaces and binding. We also assume that the reader has some knowledge of 
the most important concepts of component models.

3.1.1. Binding concept

Extra-functional behaviour should be allowed to be negotiable, and negotiable behaviour should 
in principle be orthogonal to service types. Our approach to this requirement is to place the re-
sponsibility for negotiable behaviour in the binding, which (at least conceptually) is an entity 
separate from the service itself. A binding can be viewed as an association of a service implemen-
tation and its associated state, with a client using that service. More generally, a binding can in-
volve multiple participants (service implementations, clients, senders, receivers, etc.), sharing the 
properties of the binding. Furthermore, a binding should represent a contract (in the extra-

functional sense); i.e. the service behaves according to certain constraints if its environment be-
haves according to certain constraints. In our architecture, the QoS is activated by the binding; 
i.e. the process of establishing a binding may configure the implementation, communication path 
and associated resources, according to the contract.
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Binding types 

The type of an interface captures the functional behaviour of a single interface instance of a sin-
gle component. This is not enough to capture the behaviour of a binding, since that may involve 
multiple interfaces (at least two sides), and since there may be more than one way to interact 
with an abstract service. To capture various patterns of interactions in open and distributed sys-
tems, we adopt the concept of binding type [Parlav03]. A binding type is defined in terms of con-
straints on type and number of participants and what roles they play in the binding, but also how 
bindings are established and controlled. An obvious example of a binding type is the RMI binding 
which defines two participant roles: Client and server, and where interactions of interest are indi-
vidual method invocations. Note that even if a RMI binding type may have participants of differ-
ent types (different operations in service interfaces), we could describe it as one single binding 
type. A more restrictive view on binding types would be to include the exact service type as well. 
A more pragmatic approach may be to define a binding type for a range or a set of service types, 
for instance all types which include certain operations. This supports viewing the concerns of 
bindings as crosscutting concerns (see section 2.4.3).

Service deployment vs. client binding

We distinguish between the deployment of a service and client binding to it. Service deployment 
means to make an abstract service available for clients to bind to, by generating a name (interface 
reference) and configuring a minimum of protocol stack, such that clients can initiate negotiations 
and establish bindings. Since service deployment would involve binding a name to some imple-
mentation, it would also make sense to refer to it as ’server side binding’. 

There will exist some entities in the binding architecture which are not negotiable at the time of 
client binding, since they are set up at deployment time or earlier: (1) the interface, (2) object 
identity and shared or persistent state, and (3) the platform whose capabilities would influence 
what could be negotiated. In many cases there will (4) exist a non-negotiable base implementa-

tion, for instance in the form of a deployed component. Negotiation can however result in changes 
or additions to implementations or platforms. The first two entities plus (possibly) an active base 
implementation are (in ODP systems) typically identified by interface references. 

base implementation

shared/persistent
state

interface

platform

Figure 3.1. Non-negotiable architecture components

3.1.2. Contracts and policies 

In related work (see section 2.4.1), QoS profiles (contract templates) are typically specified for 
service interface type, or component types. This allows QoS constraints to be associated with the 
individual interaction types specified by the interfaces. Furthermore, instances of service inter-
faces or components could be associated with profiles which can be used to compose a QoS con-
tract when performing binding or deployment. Our approach to contracts is that QoS profiles are 



6This is strictly from the negotiation point of view. Policies may still be implemented using an 
open component arcitecture, to support re-use of implementation components. 

7Policy management issues include how and when policies are selected, installed, removed and 
replaced. This is further discussed in section 3.3.
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specified with respect to binding types rather than interface or component types. This allows a 
more explicit contract model (cf. figure 2.1). Besides supporting non-operational types of bindings 
more directly, this approach allows contract templates to be separated from application compo-
nents and managed by a binding facility. This directly supports the idea that QoS is a crosscut-
ting concern (since binding-types do not have to be strongly tied to interface types), and it has a 
potential to simplify QoS management and extensibility with respect to possible QoS contracts.

Figure 3.2 below illustrates the exchange of QoS statements between binding participants during 
negotiation: The application requirements and the environmental descriptions are in principle 
collected and composed by a binding facility and could be directly matched with policies to be in-
troduced next.   

 

application
requirement

Environment
capabilities

server 
environment

client
environment

client service

binding
facility

Figure 3.2. Flow and composition of dynamic QoS statements

Policy

A policy is an entity which consists of two parts: (1) a contract template, which is a QoS relation, 
i.e. a potential obligation (offer) and an expectation towards the behaviour of the environment, 
and (2) an entity representing a configuration of implementations and/or a set of system level re-
source requirements, to enforce the contract. The policy concept combines a contract template 
with a particular implementation into a single entity. Also, policies are specified statically and 
their implementations are closed6 as seen from the negotiation’s point of view. This approach 
could simplify the negotiation process in the sense that searching for a contract and searching for 
an enforcement policy are done in the same operation. In section 3.2 we define the policy concept 
more precisely. In section 3.4 we discuss the concept of policy trading and how this could be used 
for negotiation. 

3.1.3. Activation and adaptation

To clarify the difference between policy and policy management7, we propose a distinction be-
tween bindings and activations of bindings. A binding can either be active or passive. Passive 
bindings need to be activated before interactions may be carried out. Activation means allocating 
resources to a binding according to a policy. This may involve activating the service object itself, 
i.e. loading it (and its class) into memory, setting up protocol stacks, transparency objects, buffers 
and other resources needed to carry out interactions. Activations may be replaced during the 



8Feedback loops as an adaptation technique is not our main focus though. 
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lifetime of the binding. When a binding is established, it is not necessarily active but it is associ-
ated with a metapolicy which knows how to negotiate what policy to use for activation.

Adaptation involves re-negotiation and re-activation. Note that this does not necessarily mean 
that policy replacement will replace the whole activation at each re-negotiation. Policy imple-
menters could inspect and re-use parts of existing activations, but that is mainly an implementa-
tion issue.

Figure 3.3 below summarises the ideas of binding and binding management. The binding is man-
aged by a metapolicy. A metapolicy decides how and when to activate (or deactivate), how policies 
are selected and (possibly) how to react to changes of the environment (adaptation). The 
metapolicy uses information from applications and environment and governs selection and in-
stalling of policies. Objects representing policies can be viewed as activation factories since they 
are responsible for setting up activations for the binding. The binding uses the activation to carry 
out invocations. Running activations may give feedback8 to the metapolicy which can use this in-
formation to decide on adaptation actions. 

Meta
policy Policy

Acti-
vation

Binding

Select/install

Install
configureFeedback/

monitoring

Application +
Environment

has
has

has

Figure 3.3. Adaptable binding model

3.2. Policy

In this section we give a definition of the policy concept. A policy is an entity which consists of (1) 
a QoS contract template and (2) a corresponding enforcement policy (policy implementation) which 
defines the composition and behaviour of a potential activation of a binding and (possibly) system 
level QoS requirements. A binding is responsible for selecting a policy during its establishment or 
when the binding is first used and for re-selecting the policy due to adaptation. 

3.2.1. Contract template part

A policy p can be viewed as a mapping from some constraint on the environment, S, to the satis-
faction of an user requirement, U.

p:S → U

We refer to U as the user profile and to S as the service profile. p denotes a potential contract be-
tween the potential binding and potential users. p can be understood as a logical implication say-
ing that if a requirement to the environment is satisfied, the policy will satisfy certain require-
ments.



9In the simplified description here, we assume that the communication channel is part of either 
the client side or server side environment. 
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P(S) ⇒ P(U)

Here, P is a predicate which represents some interpretation of S and U such that the implication 
is equivalent to a QoS relation (section 2.2.1). In chapter 4 we use the definition of P in the formal 
definition of the semantics of a language for dynamic QoS statements. 

User and service profiles

The user profile U denotes the willingness to satisfy a requirement for extra-functional properties 
of the binding as perceived by users or applications. For example, it may state that the binding 
can guarantee a certain level of confidentiality and/or integrity of the exchanged information, or 
that messages are delivered within certain time-limits.

The service profile S represents an assumption on how the environment E behaves. If S is satis-
fied by E, the policy will enforce U. Service profiles may be statements about availability of serv-
ices, the availability of resources which supports the engineering of bindings or other QoS proper-
ties of environment services. For instance, a policy may require the availability of a secure com-
munication channel or a certain amount of available buffer space. 

Contract establishment

The clients of a binding (which in a RMI setting is the client of the service as well as the server 
component to be bound to), has a requirement, R, for the binding. The environment (which may 
consist of multiple platform components) has some properties expressed as an environment de-

scriptor, E. The process of negotiation is the process of establishing an agreement on a policy p 
such that

U ≤ R  ∧  E ≤ S     where ’≤’ denotes the satisfaction relationship. 

Simple requirement composition

Consider a client/server scenario (figure 3.4 below) where U is the user profile and S is the service 
profile of a policy p. Rc and Rs denote the (user or application level) requirements from the client 
and server respectively. For instance, the client may require a low latency time for its requests 
and the server may require that the communication preserves confidentiality. In order to use p as 
the policy for the binding, U must satisfy the combination of the requirements Rc and Rs. In order 
to express such combined requirements, we introduce the ’+’ operator such that the combined re-
quirement is expressed as Rc + Rs. The fact that U satisfies the combination Rc and Rs, we ex-
press as follows:   

U ≤( )RC+ RS ⇔ U ≤ RC ∧ U≤ RS

Combining environments at different locations

The environment of a binding is a combination of the environments of the locations of the partici-
pants, including communication services which connect them9. The service profile, S, of a policy 
must be satisfied by environments at both sides of a binding; i.e. it must be mapped to require-
ments which are valid at each location. S holds if satisfied by a composition of Ec and Es where 
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Ec and Es are the environment of the client and server respectively (see figure 3.4 below). In or-
der to express composition (cf. section 2.2.1 and 2.2.3) of different locations like this, we introduce 

a special operator, ’⊕’. The fact that the combination of Ec and Es satisfies S we thus express as 

follows: 

( )EC ⊕ ES ≤ S ⇔ EC≤ SC ∧ ES ≤ SS

where S = (SC ⊕ SS)

Note that using the ’⊕’ operator has a different meaning than using the ’+’ operator in the sense 

that each side of it apply to different components locations. Each side is treated separately with 
respect to the satisfaction relationship. In essence, this means that a composite service profile 
must be satisfied by a composite environment descriptor where each component’s constraint is 
satisfied separately. This also means that a policy for a typical client/server setting can consist of 
at least two parts where one part is for the client side and one is for the server side. Each of these 
has a separate requirement for the environment, hence we can split S into Sc and Ss. The ’+’ and 

’⊕’ operators are used in the definition of a general profile expression language in chapter 4.  

Ec Es

U

S

Rc Rs

binding by p

satisfied
by

satisfied
by

satisfied bysatisfied by

satisfied 
by

satisfied 
by

ServerClient

Figure 3.4. Satisfaction relationships and composition

3.2.2. Enforcement policy part

In addition to the contract itself, a policy also denotes a way to enforce its contract, i.e. a configu-
ration of resources and mechanisms. We refer to this as the policy implementation. In practise, 
this could be a software component (for instance a script or a pre-compiled program fragment). 
This is executed to do the configuration (activation) of a binding.

Binders and activators

As a consequence of the distinction between bindings and their activations (cf. section 3.1.4 
above), we identify two types of pluggable software components for binding management: (1) 
Binders which establish bindings and (2) activators which activate them according to some policy. 
Typically, a binder generates names for a service on the server side (service deployment) and re-
solves such names to proxy objects on the client side, as well as associating these proxies with 
communication and negotiation support needed to activate the binding. Activating bindings in-
volves loading and instantiating of activator components.
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Component frameworks

To support the goal of orthogonal and negotiable extra-functional behaviour, policies should to 
some extent be portable across different platforms or platform instances, and the platform should 
provide the necessary information to decide if a policy can be used there or not. The platform 
should therefore provide a component framework in which policy-implementation components can 
be plugged. This framework should give the policy implementers the tools necessary to enforce 
contracts by instantiating and configuring implementation aspects. A concrete middleware plat-
form and component framework supporting pluggable policies, is presented in detail in chapter 5.

3.2.3. Meta policy

Metapolicies (policies for policy management) specify how binding policies should be selected, 
when activation should happen, and (possibly) how bindings may be reactivated using replace-
ment policies, in response to changing system properties. The metapolicy concept capture parts of 
binding establishment and binding management aspects of the binding type (see section 3.1.1 
above). A given binding type may allow more than one metapolicy, but the binding type would 
constrain what metapolicies are suitable. A metapolicy is installed at the time of service deploy-
ment and involves implementation decisions which constrain the later choice of policy. Aspects of 
metapolicy include: 

• Passivation of the binding after a certain time of inactivity. 

• Pre-activation of bindings which are likely to be used in the near future. 

• Changing policies dynamically to adapt to changing resource availability, usage patterns and 
Quality of Service from the network. This may also include policies for degradation of the QoS 
delivered to the application. 

• Negotiation between clients and servers of what policy to use.

• How to prioritise between candidate policies during negotiation. 

An important metapolicy issue is how to decide or negotiate what policy to use for activation. A 
principle which metapolicies (or more specifically, negotiation protocols) can be based on, is policy 

trading. This is further discussed in section 3.3 below. 

A metapolicy is implemented by a pluggable binder component, which enforces certain decisions 
on how to set up a binding. It may associate proxies or other transparency objects with meta-level 
components like monitors, strategy selectors or negotiation protocols. In this thesis we do not fo-
cus on dynamic selection of metapolicies, instead we adopt an approach (cf. chapter 5) where 
binder components are specified by the programmer or selected from protocol information in the 
interface reference.

3.3. Policy trading

We propose an architecture where policy implementers offer their policies to potential binders 
through a trading service. In this section we define policy trading and discuss how it can be ap-
plied to the negotiation problem. Policy trading is the process of finding a policy whose user pro-
file and service profile matches the requirement R and the environment E. Trading may be 
viewed as a mapping, trade from a user requirement R and an environment E to a policy P: 

Trade:R× E → p 
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Like in ODP trading, two operations are important: (1) export which registers a policy with the 
trading service and (2) import which returns a policy (maps directly to the trade primitive above). 
ODP trading is however limited to the locating of service implementations, and it does not incor-
porate expectations towards environments. Policy trading can be considered a generalisation in 
the sense that it can deal with all parts of the binding and that it can explicitly include the expec-
tation part of contracts. 

3.3.1. Policy trading and composition

In the simplest model, one single policy entity bundles all activator components necessary to acti-
vate a binding end-to-end, and these components are associated with one single contract tem-
plate. We can define the policy selection function Trade (R, E) as follows: 

Find a policy p:S → U such that E≤ S ∧ U ≤ R

An open and distributed environment is a composition of environments, having different proper-
ties. Also the participants of a binding may have different requirements. Hence, it is useful to 
analyse how policies and the expressions used to describe them can be composed. A simple ap-
proach is to select a policy only at one side, which can be useful if for example the server side is 
non-negotiable with respect to client sessions.

Single side policy selection

In some cases we trade on one side only (typically the client side). The policy at the other side is 
shared between client sessions, fixed and known (possibly decided at service deployment time). 
Aspects of the server side policy (e.g. what protocols it supports) may be part of the environment 
of the client (Ec). We can describe single side policy selection, Trade (Rc + Rs ,  Ec) as follows: 

 Find a policy p:S → U such that EC ≤S ∧ U≤ RC + RS

Composite policy selection

Generally, we could trade tuples <p1, .. pn> where each pi is an a policy to be used by a partici-
pant i, of the binding. If we assume that there are two participants, e.g. a client and a server we 

can describe composite policy selection, Trade( Rc + Rs , Ec ⊕ Es ) as follows: 

Find a policy pair ( )pc:S′ → U′, ps:S′′ → U ′′

such that 

EC ≤ S′ ∧ U′ ≤ RC + RS

ES ≤ S′′ ∧ U′′ ≤ RC + RS

pc is interoperable with ps 

The last requirement (pc is interoperable with ps) means that the policy components at each side 
must be able to interoperate with each other to fulfil their task, i.e. they use compatible protocols. 
It may be tempting to realise composite policy selection by automatic matching of such tuples at 
import time. One possible approach is to include the requirement for the policy of the opposite 
side in the service profile, i.e. it is regarded as part of the environment. However this implies a 
complex search problem. Obviously, the worst case complexity would be O(n2) for matching 
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policies for two-party bindings and O(nm) for bindings with m parties (if we also assume that con-
formance checking is of complexity O(1)). 

For most of the examples, we adopt a the simple approach where each traded policy p is one sin-
gle profile pair associated with a bundle of activator components. It may also be convenient in 
some cases to trade repeatedly for each joining participant (section 6.2). The contract specification 
and search for end-to-end solutions are now less complex, but we still have to deal with problems 
like mapping activators to participants. Given a client/server model we now have: 

Find a policy p:S → U such that EC ⊕ ES ≤ S ∧ U≤ RC + RS

3.3.2. Binding protocol issues

When different locations are involved in binding there is a need for a protocol to collect require-
ments and environmental descriptions from participants of the binding and to safely install and 
activate policy components in the participant’s capsules. When looking at architectures for bind-
ing, an issue is where to locate the trading service, for instance on the client side or on the server 
side. The binding protocol depends on the structure of the binding and the metapolicy, so there is 
not one single solution to this. In the following we briefly discuss two client/server scenarios. In 
chapter 5 we further evaluate how a middleware architecture could support the policy trading ap-
proach as well as how binding-types with multiple participants (dynamically changing number of 
participants) may be supported.  

Single side policy trading at client side

In some cases, the configuration of implementation on the server side can be regarded as fixed 
(decided at deployment time) and consequently, all configuration must be done on the client side. 
In this case, there is one policy component (one activator) to select, and it is selected (traded) on 
the client side when binding to a (remote) interface. The server has a policy component installed 
statically; i.e. this architecture implies single side trading (cf. section 3.3.1). The policy of the 
server side limits what could be used on the client side. For instance, a server policy may include 
concurrency control and logging (for recovery) and require bindings to it to be transactional. Ex-
ported interface references could if necessary indicate such server imposed requirements, which 
must be taken into account when trading for a policy.  

The traded policy may include (partly) configuration of the server side: i.e. the policy on the client 
side may invoke an operation on the server to set some session parameters. However, the limita-
tion of this architecture is that it does not take the server side environmental properties into con-
sideration in negotiation or re-negotiation. 

(1) trade(Rc+Rs,  Ec)

(2) return Pc

client
  C

server
  S

trader

(3) set parms

Figure 3.5. Single side trading scenario
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Policy trading for two sides (simple negotiation)

To realise negotiation which allows the environments of both sides to be taken into account, we 
need at least one request and response to be sent between the client and the server. In figure 3.6 
below, we show how this could be done by using policy-trading on the server side. First (1), the cli-
ent requests a bind operation where the requirements and the environment descriptor are argu-
ments, at the server. The response contains the policy. The server may also have some require-
ment Rs and it composes a requirement which satisfies both user profiles (the sum Rc + Rs). The 
server then invokes the trading service (2) to find a matching policy. It installs the server activa-
tor component of the result (4) before it returns the client component to the client (5) which then 
installs it (6).

(1) bind(Rc, Ec)

(2) trade(Rc+Rs,  Ec⊕ Es)

(5) return Pc

(3) return <Ps, Pc>

client
  C

server
  S

trader

(4) install Ps

(6) install Pc

Figure 3.6. Double side trading scenario (negotiation)

Doing trading on the client side will require another invocation to be made after the negotiation 
phase, to install the server side policy component. It is therefore not the most efficient approach 
in the simple client/server scenario. However, when issues like resource reservation, admission 
control or worth based selection from a set of conformant candidate policies is to be taken into 
consideration, the picture would more complicated. This is further investigated in chapter 5. 

3.3.3. Dynamic QoS expression

An important part of policy trading is the evaluation of dynamic QoS expressions with respect to 
conformance. As pointed out in section 2.2, dynamic expressions need to carry the information 
necessary to perform automatic conformance checking and should be composable as well. 

A possible prioritisation of conformant policies, for instance to optimise resource consumption or 
to maximise the user QoS, is outside the scope of our trading model. The main requirements of 
our dynamic QoS expression language can be summarised as follows: 

1. That expressions can be efficiently compared at run-time for conformance; i.e. we want to 
check if one expression satisfies another. 

2. That expressions, describing different components, or coming from different participants, can 
be composed at run-time to represent the behaviour of the resulting system. This is also a 

consequence of the discussion in section 3.2.1, where composition operators (’+’ and ’⊕’) are 

suggested. 
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An additional goal is to minimise the amount of exchanged information at run-time as well as the 
model needed to be agreed upon in advance by the negotiating participants. Other issues are how 
to compile and check the consistency of models and how independently defined models can be in-
tegrated (interoperability).

3.4. Concluding remarks

In this chapter we propose a model of QoS aware binding and negotiation: The main parts of our 
approach are as follows: (1) to associate contracts directly with bindings, (2) policies as contract 
templates, (3) policies as QoS enforcement policies and their implementations as pluggable soft-
ware components, (4) distinction between binding and their activation and accordingly, distinc-
tion between policies and metapolicies, (5) policy trading as a basis for negotiation protocols, (6) 
the requirements for a dynamic QoS expression language with support for conformance checking 
and composition operators. 

We propose a distinction between bindings and their activations. Extra-functional behaviour is 
enforced by possibly replaceable activations. A binding uses a metapolicy which dictate how to ne-
gotiate and adapt. This distinction may simplify the understanding of a QoS contract and adapta-
tion. The ideas of explicit binding, binding types and the direct association of contract templates 
with binding types rather than with components or service interfaces, support the view that QoS 
contracts can be realised as a crosscutting concern.

One of the typical problems of QoS negotiation in related work is how to deal with the complexity 
of defining and finding contracts. Our approach is to allow end-to-end solutions to be specified in 
advance as policies. Enforcement policies can be pre-implemented with one or more contract tem-
plates in mind. The set of available policies can be registered in a trader (database) as well as 
conformance relationships which are statically defined. A policy encapsulates a contract template 
as well as an enforcement policy, and it can therefore be viewed as a complete binding template. 
To establish a binding is simply to find a suitable policy and install it. Policy trading is our ap-
proach to negotiation and is based on determining conformance relationships between dynamic 
QoS statements (service profile vs environment descriptor and user profile vs. user requirements). 
However, there are issues in how to compose a policy from activator components to be distributed 
to distributed nodes participating in a binding. How this is solved, depends somewhat on the in-
frastructure and the binding type of interest. 

This chapter has mainly given an overview of our architecture and leaves open some issues on 
how to design infrastructure support and how to design models for QoS statements to be used in 
negotiation. In chapter 5 we show how to support negotiability and adaptability in a reflective 
middleware platform and component framework supporting pluggable policy components as well 
as bindings which represent negotiable behaviour. But first, we investigate the problem of dy-
namic and composable declarative QoS statement. In chapter 4 we define a core model for such 
statements.
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Chapter 4. 

Core Profile Model

In this chapter, we propose a core model and an expression language for QoS statements (descrip-
tions of requirements, offers, contracts etc.), mainly to be exchanged during negotiation. Any pair 
of expressions in this language can be evaluated at run-time for conformance (if one expression 
satisfies the other). Our model is partly based on declared conformance, meaning that conform-
ance can be defined explicitly between identifiers, rather than doing complex comparison of pa-
rameter values or value ranges. 

Our model also addresses dynamic composition; i.e. expressions can be composed from simpler 
ones, possibly originating from different components of a system. Complex expressions are con-
structed from atomic expressions (termed basic profiles), using composition operators. Basic pro-
files and rules for conformance are expressed by domain experts as concrete models, which are de-
fined for specific application domains. Our focus here is on an abstract core profile model, which 
defines how concrete profile models are defined and how conformance can be inferred from con-
crete models. We also define how expressions that combine basic profiles relate to each other, 
thus allowing complex QoS statements to be formulated and compared at run-time.

The rest of this chapter is structured as follows: Section 4.1 gives some overall definitions and mo-
tivation, and section 4.2 defines the fundamentals of profile models. In section 4.3, we define how 
complex expressions are built from simpler ones, by using two composition operators: ’+’ (sum) 
and ’⊕’ (component-sum). We develop conformance rules and a conformance evaluation algorithm 
for expressions. In section 4.4, we describe how concrete models can be defined as rule-bases. We 
also develop an experimental compiler which converts rule-base descriptions to testing-code, and 
we show how this involves computing derived rules from axiom rules. In section 4.5, we analyse 
our model with respect to how we can check profile models for consistency problems, as well as 
how interoperability and composition can be addressed.

4.1. Background

A main motivation for our approach is the need for negotiation of extra-functional behaviour re-
sulting from composition in open systems. Composition may involve deployment of components in 
some environment, binding between components, etc. Either case would involve a decision on a 

contract and a corresponding configuration of implementation aspects, interaction protocols and 
resource management, in order to realise the composition. A goal of negotiation would be to reach 
agreements between possibly autonomous parties, on contract and configuration. The negotiation 
process may involve exchange of statements (offers and requirements). 
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In chapter 3, we introduce the concept of ’policy’ as an encapsulation of a potential contract and a 
corresponding implementation or enforcement policy [Hanssen99]. Furthermore, we propose to use 
trading of policies as a principle of negotiation [Hanssen00]. For a given service, there would exist 
a set of policies, each stating an offer and an expectation. The goal of negotiation is to find a policy 
whose offer satisfies the user requirement while its expectation is satisfied by the environment 
properties. 

Our proposed language is meant to be used for the following: (1) Expressions representing user or 
application requirements, (2) ’environment descriptors’, which are expressions describing environ-
ments, (3) ’user profiles’, which are expressions representing offers of policies, and (4) ’service pro-

files’, which are expressions representing expectations of policies. All such expressions are termed 
’profile expressions’.

Environment

 expectations

Components of 
environment

policy
(contract)

QoS offer
QoS requirements

Environment
descriptions

satisfaction
relationship

Figure 4.1. QoS statements and satisfaction relationships 

The relationships between user requirements and offers, as well as the relationships between the 
QoS expectation and the capabilities of the environment, are satisfaction relationships. To facili-
tate conformance testing, our language should define a partial order on such expressions with re-
spect to satisfaction. Thus, any statements could be mechanically evaluated for conformance. Fig-
ure 4.1 illustrates which roles profile expressions play in negotiation based on policy trading. 

4.1.1. Profile models and declared conformance

Profile expressions are formulated according to a profile model which defines the vocabulary of 
expressions and rules for how expressions relate to each other with respect to conformance. A pro-
file model would typically be defined for an application or application domain, but parts of it may 
also be shared between application domains. Traditionally (cf. e.g. [ISO95]), QoS statements are 
typically predicates formulated explicitly as constraints on parameter values. Models are typi-
cally defined (for instance in QML [Frølund98a] or CQML [Aagedal01]) as sets of QoS characteris-
tics, and contract-templates. Negotiation can be a complex task of matching parameter values, 
and possibly mapping between different abstraction levels. 

To reduce the computational complexity of matching QoS statements, it looks appealing to adopt 
the technique typically used in ODP trading [Bearman93, ISO97] where each requirement or of-
fer is a reference to a type name, and where type conformance is declared a priori. This way of us-
ing declared conformance for negotiation was proposed in [Hanssen98]. Here, a profile model is 
defined as a set of simple names (profiles). Conformance relationships are declared explicitly. 
Conformance checking at run-time is thus very simple, compared to evaluating a potentially com-
plex set of QoS parameter values and constraints against each other. Figure 4.2 shows a simple 
example of a profile graph for an e-mail application. Users can specify requirements for message 
delivery which are mapped to this graph. For instance, ’Authenticated’ is a subprofile of ’Secure’, 
i.e. it satisfies the requirements of ’Secure’. 
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We consider this simple scheme to be too limiting since each declared type would need to capture 
all aspects relevant for the application. This may lead to conformance graphs which are too com-
plex and application specific. Obviously, profiles would need to capture all relevant QoS dimen-
sions, and in some cases, one may need to define a large number of profiles, for instance to cover 
all relevant values of a variable. Examples of this include bandwidth or latency time constraints 
where the differences within a group of profiles are just a numeric value, and it would be more 
efficient and readable to use numeric metrics. 

To address these problems, we propose a compromise between simple declared conformance and 
parameter-based conformance. First, we propose a scheme for dynamic composition (see section 
4.1.3 below). Second, we propose to allow profiles with simple numeric parameters. We may intro-
duce profiles which takes one or more parameters from totally ordered domains (numbers) along 
with predicates denoting rules for how conformance relates to the parameters. 

Reliable Secure
Express

QoSMail

Content
Proof

Authenticated

Super
Express

10 minutes or faster
(for example)

Mail without QoS
requirements.

Check that content is
not changed during
delivery. Message guaranteed to be

delivered . Use retry-
mechanisms if neccessary.
Delivery receipt to sender.

5 minutes or faster
(for example)

Also ensure that the sender 
of a message really is who 
he says.

Message guaranteed to be
delivered unchanged.
Delivery receipt to sender.

Figure 4.2. Example profile graph

4.1.2. Dynamic composition

QoS expressions and QoS negotiation should support composition, in the sense that expressions 
from components of a system which do not necessarily know each other can be combined into one, 
describing the composed system. Given statements about the behaviour of individual components, 
it is not obvious how to infer the behaviour of the total system. There are three different problems 
to be addressed when it comes to expressing the total behaviour: 

● Autonomous users may issue different requirements for the same object and all users should 
be satisfied. For instance, the participants in a binding may have separate requirements for 
its QoS.

● We may need to combine expressions regarding the same component but in more than one di-
mension.

● Open systems are systems interacting with environments neither they or their implementers 
control [Abadi94]. Expectations may need to characterise a number of abstract components, 
for instance client, server and communication channel (with a separate QoS expectation for 
each). Our model should thus support dynamic composition of statements about different com-
ponents of the environment.

To address the first and the second problem, we introduce an operator to construct statements 
from simpler sub-expressions meaning that the predicates stated by each part must be true in the 
same environment (cf. logical conjunction). We address the third problem by introducing an ad-
ditional composing operator. It is partly addressed in QoS specification models like [Aagedal01], 
by allowing QoS-characteristics to be defined with such composition in mind. Work on formal 



10In this section we use the symbols a, b, c for profile expressions assumed to be restricted, for 
instance to basic (atomic) or sum profiles only. For other profiles we use the symbols x, y, z, u, v 
and w.   

11We use the notation of placing parameters inside brackets following the profile symbol. 

_________________________
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models has shown that with certain assumptions on the temporal relationships [Abadi93], it is 
possible to make statements about the behaviour of composite systems as conjunctions of state-
ments about each component. 

4.2. Fundamentals

We are interested in defining models that let us state QoS and resource requirements as simple 
expressions. In addition, we will introduce operators for combining simple statements into com-
plex expressions. Profile models define a (possibly infinite) set of values called basic profiles and 
how these values are related to each other by conformance. In this section we introduce basic pro-
files. 

Definition 1 (profile expression and environment): A profile expression10 x denotes a predi-
cate σ(x). σ represents the interpretation of the profile expression x in a specific environment.  o
In the following definitions we use the term ’environment’ about σ. A requirement or offer may be 
stated as a reference to the profile by name, for instance by saying ’HighBW’. The actual defini-
tion of σ is implicit in negotiation, but may be needed by the implementers of application compo-
nents. For instance, ’HighBW’ may be defined as "(bandwidth >= 10)" in a particular environ-
ment, meaning that a measured bandwidth of a communication channel should be higher than 
100 MB/s. 

Definition 2 (basic profile expression): A basic profile a is either a symbol sa or a pair consist-
ing of a symbol sa ∈ Identifier and a parameter ta ∈ Da where Da is a tuple domain [T1, ... Tn]. o
A profile may have parameters11, which would be given some interpretation in the context of the 
profile symbol. For instance, ’Rtt[100]’ may denote a mean round-trip delay of 100 milliseconds. 
For the rest of this discussion, we limit the domain of parameters to integer numbers.

Definition 3 (Direct conformance relationship): A basic profile a is satisfied by (it is a sub-

profile of) a basic profile b iff for all possible environments σ, the predicate of a implies the predi-
cate of b.

a ≤ b  ⇔  ∀σ:  ( σ(a) ⇒ σ(b) ).  o
Definition 4 (profile model): A profile model defines the domain of basic profiles, F, and a map-
ping C(F, F) → boolean, defining conformance directly. A conformance relationship between a and 

b exist iff C(a,b)=true or if there exist a set of conformance relationships which lead to this transi-
tively. 

( )C(a,b) ∨ ∃c∈ F: (a ≤c ∧ c≤b) ⇔ a≤ b. o
   

A concrete profile model will define a set of basic profiles plus a set of rules defining conformance 
relationships between them. For conformance testing, the actual meaning of a profile, σ(a) is not 
used directly, since we use conformance rules to test if one basic profile satisfies another. How-
ever, policy implementers and implementers of certain local middleware components, may need to 
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know the exact meaning of a basic profile, for instance that a profile ’HighBW’ means a band-
width higher than e.g. 100 MB/s. A concrete environment represented by for instance a mid-
dleware platform running on a node, may incorporate software fragments which evaluate or gen-
erate simple expressions by evaluating the current situation. Thus, implementers of such compo-
nents would need to know the definition of σ for basic profiles of interest. Policy implementers de-
fine and implement configurations representing mappings between a current situation and a par-
ticular QoS to be observed by the client. Thus, policy implementers would also need to know the 
definition of σ. In contrast, a policy trading service only needs to know that for instance ’Super-

HighBW’ is a subprofile of ’HighBW’.

4.3. Profile expression composition

The simplest possible expression (except the empty one) is the reference of a single basic profile. 
However, if we were to cover all possible situations by single references to a priori defined pro-
files, basic profile models would need to be complex and domain specific, since an expression typi-
cally needs to describe many different dimensions, and possibly the properties of more than one 
component of the system. If models could be made as simple and generic as possible, this could 
allow higher degrees of interoperability across different components and domains. We therefore 
allow profiles to be stated as combinations of basic profiles.

We introduce two operators, ’+’ (sum) and ’⊕’ (component-sum) to form expressions combining 
profiles, and we deduce a set of rules defining the semantics of expressions (conformance rules). 
Hence, we develop an algebra of profiles. These ideas were first introduced in [Hanssen00] and 
they are generalised and formalised here.

4.3.1. Sum operator

The ’+’ operator is used to combine requirements (or offers) to be applied to the same environ-
ment. To satisfy a sum x+y both x and y must be satisfied. 

Definition 5 (sum): For any environment σ, for the predicate of a sum to be true, the predicate 
of both operands must be true:

σ(x+y) ⇔ σ(x) ∧ σ(y).  o
Note that our model does not assume that x and y are orthogonal to each other. It is also obvious 
from the rules of logic, that x + x = x.

Theorem 1 (associativity and commutativity): Sums follows the associative law: x+(y+z) = 

(x+y)+z  =  x+y+z and the commutative law:  x+y = y+x.  o
This can be proved by writing profiles as predicates using definition 1 and the associative and 
commutative laws for logic. 

σ(x+(y+z))  ⇔  σ(x)  ∧ σ(y+z)   ⇔   σ(x)  ∧  σ(y)  ∧  σ(z)

σ((x+y)+z)  ⇔  σ(x+y) ∧  σ(z)   ⇔   σ(x)  ∧  σ(y)  ∧  σ(z)

Theorem 2 (satisfaction by sum): A basic profile is satisfied by a sum, if and only if it is satis-
fied by at least one of the operands of the sum. 

(x+y) ≤ a   ⇔   x ≤ a   ∨  y ≤ a   o
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Proof: From definition 3 and definition 5 we can see that the property holds where x and y are as-
sumed to be basic profiles only: 

(a + b)≤ c ⇔ ( )( )σ(a)∧σ(b) ⇒ σ(c) ⇔ ¬( )σ(a) ∧ σ(b) ∨ σ(c)

⇔ ( )¬σ(a) ∨ σ(c) ∨ ¬σ(b) ∨ σ(c) ⇔ ( )( )σ(a) ⇒ σ(c) ∨ ( )σ(b) ⇒ σ(c) ⇔ a≤ c ∨ b≤ c

Let us now assume that the theorem is true also where x and y can be sums of length m and n op-
erands (induction hypothesis). If we substitute x with (x+a) or y with (y+a), where a is a basic pro-
file, we observe that the theorem is still true for sums of length m+1 and n+1; hence, it is true 
where x and/or y are sums of any length:

((x+a) + b) ≤ c   ⇔   (x+a) ≤ c  ∨  b ≤ c    ⇔   (x≤c ∨ a≤c) ∨ b ≤ c

Theorem 3 (satisfaction of sum): A profile x satisfies a sum if and only if it satisfies both sides 
of the sum. Here, x, y and z may be any sum or basic profile. 

x ≤ (y+z)   ⇔   x ≤ y  ∧  x ≤ z    o
We can prove this by first proving from definition 1 and definition 3 that the property holds for 
basic profiles. 

a≤ (b+ c) ⇔ ( )σ(a) ⇒ ( )σ(b) ∧ σ(c) ⇔ ¬σ(a) ∨ ( )σ(b) ∧ σ(c)

⇔ ( )¬σ(a) ∨ σ(b) ∧ ( )¬σ(a) ∨ σ(c) ⇔ ( )σ(a) ⇒ σ(b) ∧ ( )σ(a) ⇒ σ(c ⇔ a≤ b ∧ a≤ c

To show that x can be any sum, let us now assume that the theorem is true for sum x which has a 
length of n operands (induction hypothesis). We then show that it is true for a sum of length n+1, 
i.e. where x is substituted with a+x. By using theorem 2 and the induction hypothesis we get:  

a≤ (b+ c) ⇔ a ≤ (b+ c) ∧ x ≤ (b +c)
⇔ (a≤ b ∧ a ≤ c) ∨ (x ≤ b ∧ x≤ c) ⇔ (a≤ b ∨ x ≤ b) ∧ (a≤ c ∨ x≤ b) ∧ (a≤ b ∨ x ≤ c) ∧ (a ≤ c ∨ x ≤ c)
⇔ (a≤ b ∨ x ≤ b) ∧ (a≤ b ∨ x ≤ b) ⇔ (a +x) ≤ b ∧ (a+ x) ≤ c

The sub-expressions (a≤c ∨ x≤b) and (a≤b ∨ x≤c) are always true due to the induction hypothesis 
and can then be eliminated. To show that y and z can be any sum, let us assume that the theorem 
is true for any sums y and z. We observe that it is also valid where y or z is substituted with y+a 
(or z+a). 

(x ≤ ((y+a) + z)  ⇔  x ≤ (y+a) ∧ x≤z   ⇔   (x≤y ∧ x≤a) ∧  x≤ z

Theorem 4 (comparison of sums): For any pair of sums x and y of basic profiles,  a sum x satis-
fies the sum y iff there for all components of x exist a component of y that satisfies it. 

∑
n

ai

i = 1

≤ ∑
m

bj

j = 1

⇔ ∀aj ∈ { }b1 ... bm :( )∃ai ∈ { }a1...an : ai ≤ bj . o
This follows from theorem 2 and theorem 3. To prove this we first show that it is true for the base 
case where each sum contains only one element (i.e. they are simply basic profiles): 

a ≤ b  ⇔   a ≤ b



12By a ’sum profile’ we mean a sum of basic profiles, or a single basic profile, i.e. a sum of only 
one element, c.f. the identity law (theorem 9).

_________________________
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We assume that the theorem is true where x is a sum of length n (induction hypothesis). We then 
observe that this is also true where x is of length n+1, i.e. it is substituted with x+a (where a is a 
basic profile): 

x+a ≤ y   ⇔   ∃u ∈ {x, a} :  u≤y     ⇔    x ≤ y  ∨  a ≤ y

which obviously follows from theorem 2. This is valid where y is a basic profile. It will also be 
valid if we assume that y is any sum profile. 

Furthermore, we assume that the theorem is also true where y can be a sum of length n (induc-
tion hypothesis). If y is substituted with y+a we get: 

x ≤ y+a   ⇔  ∀v ∈ {y, a} : x≤v    ⇔     x≤y  ∧  x ≤ a

which obviously follows from theorem 3. This is valid where x is a basic profile. It will also be 
valid if we assume that x is any sum profile.

4.3.2. Component-sum operator

Basic profiles or sums (of basic profiles) describe properties of single environments. However, we  
need to describe open component systems where each component represents a separate environ-
ment with separate properties. For instance, we may need to characterise the client side and the 
server side of remote bindings separately.

The ’⊕’ (component-sum) operator is used to state expressions regarding separate environments. 
These environments represent separate contexts. The main idea is that to satisfy a component-
sum x⊕y both x and y must be satisfied, but unlike sums, x and y cannot be satisfied by the same 
profile. The satisfying expression must be a component-sum with separate operands satisfying 
each x and y. To define the semantics of this operator, we start with the definition of composite 
environments.

Definition 6 (composite environments): A composite environment σ is a collection of compo-

nents σ1, σ2 , ... σn such that any given sum12 profile a which is true with σ, is true with at least 

one of σi. No satisfaction relationship exist between profiles if they are applied to different compo-
nent environments.

σ(a)  ⇔  σ1(a) ∨ σ2(a)  ∨ ... ∨ σn(a) 

∀ i,j ∈ {1..n}  :  ( σi(a) ⇒ σj(b) )   ⇒     i=j    o
This reflects that component environments are to be treated as separate; a statement about one 
environment cannot be satisfied by a statement about another. For instance, a requirement for 
processing on the server side cannot be satisfied by processing capacity on the client side. 

Definition 7 (component-sum): The ’⊕’ (component-sum) operator denotes that each operand is 
applied to different components of the environment. As for sums, for the predicate of a 
component-sum to be true, both component predicates must be true, but in separate component 
environments. Observe that order of operands is not significant. 

σ(a⊕b) ⇔  ∃σi ,σj ∈{σ1 ... σn}:  σi(a) ∧ σj(b)  

where a and b are sum profiles and σ is a composition of σ1 ... σn.  o
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Theorem 5 (associativity and commutativity): component-sums follows the associative law: 
x⊕(y⊕z) = (x⊕y)⊕z  =  x⊕y⊕z, and the commutative law: x⊕y = y⊕x.   o
The proof is similar to the proof of associativity and commutativity for sums (theorem 1).  

Theorem 6 (satisfaction of component-sum): A profile x satisfies a component-sum y iff x is a 
component-sum and each operand of y is satisfied by a unique operand of x: 

Let Perm[1..n] be the set of all possible permutations of the numbers 1..n. 

x ≤ (b⊕c)   ⇔  ∃s ∈ Perm[1..n]: ( xs(1) ≤  b  ∧  xs(2) ≤ c )   where   x = (a1 ⊕ ... ⊕ an).   o
To prove this, we first show that (b⊕c) can not be satisfied by a simple sum profile, by using defi-
nition 6 and definition 7 to rewrite the proposition to a conjunction where the second and third 
part are always false due to the second part of definition 6. 

a≤( )b ⊕ c ⇔ ( )σ1(a)∨σ2(a) ⇒ σ1(b) ∧ ( )σ1(a)∨σ2(a) ⇒ σ2(c)

⇔ ( )σ1(a) ⇒ σ1(b) ∧ ( )σ2(a) ⇒ σ1(b) ∧ ( )σ1(a) ⇒ σ2(c) ∧ ( )σ2(a) ⇒ σ2(c) ⇔ false

Now, replace a with a component-sum with n operands x = (a1 ⊕ ... ⊕ an). If we can show that 

(1) If there exist two component-sum operands of x: ai and aj such that (ai⊕aj) ≤ (b⊕c), 

then x ≤ (b⊕c)

(2) (c⊕d) ≤ (a⊕b)  ⇔  (c ≤ a  ∧  d ≤ b)   ∨  (c ≤ a  ∧  d ≤ b)

Then it is straightforward to prove the theorem. (1) follows from the fact that if x satisfies a pro-
file expression y, x⊕a also does. Using definition 7 this is equivalent to (σ1(x) ∧ σ2(a)) ⇒ σ1(y) 

which is obviously true if σ1(x) ⇒ σ1(y). (2) follows from definition 6 and definition 7: 

σ( )c ⊕ d ⇒ σ( )a ⊕ b ⇔ ( )σ1(c)∧σ2(d) ⇒ σA(a)∧σB(b)

⇔ ( )σ1(c)∧σ2(d) ⇒ σA(a) ∧ ( )σ1(c)∧σ2(d) ⇒ σB(b)

⇔ ( )( )σ1(c) ⇒ σA(a) ∨ ( )σ2(d) ⇒ σA(a) ∧ ( )( )σ1(c) ⇒ σB(b) ∨ ( )σ2(d) ⇒ σB(b)

There are two possibilities for matching environment functions, either by setting index numbers:  
A=1 and B=2, or A=2 and B=1 respectively. In each case one of the implications in each of the two 
disjunctions will be always be false due to the second part of definition 6. Thus the expression can 
be rewritten as follows: 

( )( )σ1(c) ⇒ σ1(a) ∧ ( )σ2(d) ⇒ σ 2(b) ∨ ( )( )σ2(d) ⇒ σ2(a) ∧ ( )σ1(c) ⇒ σ1(b)

⇔ ( )c≤ a ∧ d ≤ b ∨ ( )d≤ a ∧ c ≤ b

Theorem 7 (satisfaction by component-sum): A basic profile (or a simple sum) is satisfied by a 
component-sum, iff it is satisfied by at least one of the operands of the component sum.   

(a⊕b) ≤ c   ⇔   a ≤ c   ∨  b ≤ c.   o
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The proof is an application of the definitions and elimination of implications with different envi-
ronments: 

( )a ⊕ b ≤ c ⇔ ( )σ1(a) ∧ σ2(b) ⇒ σ(c)

⇔ σ1(a) ⇒ σ(c) ∨ σ2(b) ⇒ σ(c) ⇔ σ1(a) ⇒ ( )σ1(c)∨σ2(c) ∨ σ2(b) ⇒ ( )σ1(c)∨σ 2(c)
⇔ σ1(a) ⇒ σ1(c) ∨ σ2(b) ⇒ σ2(c) ⇔ a ≤ c ∨ b ≤c

Theorem 8 (rule for comparing component-sums): A component-sum x satisfies a component-
sum y iff every operand of y is satisfied by a unique operand of x. Formally (we use the symbol ’Φ’ 
to denote a component-sum):

n

Φ
i = 1

ai ≤

m

Φ bj

j = 1

⇔ ∃s∈ Perm[1..n]:( )∀bj ∈ { }b1 ... bm :( )as( j) ≤ bj

where

n

Φ
i = 1

ai = a1 ⊕ a2 ⊕ ... ⊕ an o
This follows from theorem 6 and theorem 7. The proof is similar to the proof of theorem 4: We 
first show that it is true for the base case where each component-sum contains only one element 
(i.e. they are basic profiles or simple sums): 

a ≤ b  ⇔   a ≤ b

We assume that the theorem is true where x can be a component-sum of length n (induction hy-
pothesis). We then observe that this is also true for component-sums of length n+1, i.e. if x is sub-
stituted with u = x⊕a (where a is a basic profile). Since u here has two elements and b only one, 
this is equivalent to saying that either the first or second element of u should satisfy b.  

x⊕a ≤ b      ⇔    x ≤ b  ∨ a ≤ b

This obviously follows from theorem 7. Furthermore, we assume that the theorem is also true 
where y can be a component-sum of length m (induction hypothesis) and see if this still holds 
where y is substituted with v = y⊕a. Here, x must be a component-sum of n elements and there 
must exist a permutation s(i) of these elements, such that both y and a are satisfied by a separate 
element of v.  

x ≤ y⊕a   ⇔     xs(1) ≤ y  ∧  xs(2) ≤ a   where x = (a1 ⊕ ... ⊕ an)

Which obviously follows from theorem 6. 

4.3.3. General expressions and the normal form

Until now we have defined the semantics of expressions which are either basic profiles, sums of 
basic profiles or component-sums of sums. In the following define the semantics of expressions 
which may be compositions of sums and component-sums. Essentially, any profile expression can 
be represented in a normal form. We can then use theorem 4 and theorem 8 to test conformance 
between any pair of expressions. 

Definition 8 (null profile): There exist a special basic profile named ’null’ such that for all σ: 

σ(null) = true    o
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Theorem 9 (identity law): 

x + null = x

x ⊕ null = x    o
Proof:  σ(x+null) ⇔ σ(x) ∧ σ(null) ⇔ σ(x) ∧ true ⇔ σ(x) 

Definition 9 (composite expressions): Expressions may be constructed by using basic profiles, 
the sum and component-sum operators according to operator precedence grammar where the ’+’ 
operator has precedence over the ’⊕’ operator: 

E ::= E + E | E ⊕ E | (E) | basic-profile    o
Definition 10 (distributive law): The + operator distributes over the ’⊕’ operator: 

x + (y⊕z)  =  (x+y) ⊕ (x+z)    o
A consequence of this is that for expressions of the form x+(y⊕z) the profile x applies to both envi-
ronments of y and z. 

The rules we have developed above define the semantics of profile-expressions which are either 
basic profiles, sums of basic profiles or component-sums of sums of basic profiles. Sums containing 
component-sums can here be regarded as short-cuts for component-sums containing (shared) re-
quirements. Now we have a complete semantics for general profile expressions. 

Definition 11 (normal form): A profile expression is in normal form if and only if it is a 
component-sum a1⊕...⊕am of sums ai = bi1

+...+bin
 of basic profiles.   o

Using the distribution law and the associative law, we can rewrite any expressions containing 
component-sums, to the normal form, i.e. component-sums of sums of basic profiles. For instance: 

x + (y ⊕ (z + (u ⊕ v)))  =  (x+y)  ⊕  (x + z + u) ⊕ (x + z + v)

Note that basic profiles or simple sums (of basic profiles) or component-sums of simple basic pro-
files are also in the normal form. In such cases, some component-sums or sums have only one ele-
ment. This follows from the identity law (theorem 9). We can now conclude that any pair of 
profile-expressions can be algorithmically tested for conformance, using the rule of theorem 4 and 
theorem 8 and the set of rules defining conformance between basic profile defined in the concrete 
model of use.

4.3.4. Conformance testing algorithm

From the conformance rules defined above, we can develop an algorithm to test any pair of profile 
expressions for conformance. We assume that profile expressions are first transformed into nor-

mal form. Expressions can then be evaluated against each other, using a mix of (1) a component-
sum test, (2) a sum test and the (3) a basic profile test evaluating rules of a basic profile model. In 
the following we assume that x and y are profile expressions and that the goal is to determine if x 

≤ y. 

Component-sum test

If all expressions to be compared are in normal form, we can start by using a test based on theo-
rem 8 for comparing component-sums. A simple and naive algorithm can be formulated like this 
(the outermost call to the recursive function isSubR starts with i=1) :
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boolean isSubR(Compsum x, Compsum y, int i)
{
    for (each p in x) { 
        if (p ≤ y[i]) {
            remove p from x; 
            if (isSubR(x, y, i+1))
               return true; 
            re-insert p in x; // Backtrack
        } 
    } 
    return false; 
}

The worst case complexity of this simple algorithm is O(N!) where N is the size of x or y (depend-
ing on which is smallest). Therefore we should look for a better algorithms if the sizes of expres-
sions are not expected to be small. For instance, dynamic programming techniques could be used 
to eliminate repeated recursions on the same sub-expressions, possibly reducing the complexity 
significantly. Instead of investigating further how to improve our naive algorithm, we observe 
that the problem of testing component-sums for conformance corresponds (under certain restric-
tions) to the problem of determining the existence of a maximum matching in a bipartite graph. 
Each expression (x and y) corresponds to a partition, each component of a component-sum of a 
node in this graph and conformance relationships (from components of y to components of x), to 
edges. If a maximum matching involves all nodes in y, this means that expression x satisfies ex-
pression y. It is known from literature that this problem can be solved with algorithms of com-
plexity O(N·E) where N is the number of nodes and E is the number of edges. However, in our 
case, to find the edges, we first need to use the conformance rules to determine conformance for 
up to every possible pair of nodes which is a O(N2) problem. This means that it is possible to do 
the matching with a worst case performance of O(N3). 

Sum test

This component-sum test makes use of the test for sums of basic profiles which follows from theo-
rem 4. A simple test with a worst case complexity of O(N2) can (in pseudocode) be formulated like 
this:

boolean isSubR(Sum x, Sum y) 
{
    for (each p in y) {
        for (each q in x) {  

           if (p≤q) 
              return true;
    }
}
return false;

General algorithm

If expressions are in the normal form, a sum cannot contain component-sum components, i.e. x 
and y can be either component-sums (of sums or basic profiles), sums of basic profiles of just basic 
profiles. Furthermore, theorem 8 and the corresponding algorithm above allows component-sum 
components to be either sums or basic profiles. Therefore we can formulate a testing algorithm for 
any pair of profile expressions in the normal form. This would be a recursive function, using one 
of three different tests (basic profile, sum or component-sum test respectively) depending on the 
type of x and y. If x and y are of different types, this is resolved as follows. 



13In this section we use the symbols a, b and c for basic profile types, x, y, z, u, v and t for param-
eters, P, Q and R for rules, and p, q and r for predicates. 

_________________________
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• A basic profile and a sum: Use the sum test where one of the sums contains only one element.  

• A basic profile and a component-sum: Use the component-sum test where one of the 

component-sums contains only one element. Note that a basic profile cannot be a subprofile of 
a component-sum. 

• A sum and a component-sum: Use the component-sum test where one of the component-sums 

contains only one element; the sum. Note that a simple sum cannot be a subprofile of a 
component-sum with more than one element. The normal form ensures that a sum will al-
ways be of basic profiles. 

It follows from theorem 9 that sums or component-sums with only one element can exist. 

4.4. Definition of profile models

A profile model would be defined for an application or application domain. It can be defined as a 
rule-base, i.e a set of rules each which states a predicate for when there is conformance between 
two given basic profiles. A full formal analysis of how we can use rule-bases for this purpose, is 
outside the scope of this thesis. Here, we describe a relatively simple approach to model definition 
and our experimental prototype which demonstrates it. We show how model definition and rule 
derivation works using an example. 

4.4.1. Foundations

A profile model defines a partial order, i.e. a set of binary, reflexive and antisymmetric relations 
between points in a profile value space. Our profile model definition language is founded on the 
definitions in section 4.2. In addition we need to define how conformance rules form axioms of a 
model, and how transitive conformance relationships can be inferred from such axioms. 

Definition 12 (profile type): A profile type is a pair consisting of an identifier13, a and a tuple 
domain D = [T1, .. Tn] and where Ti ∈ Integer. A profile type is identified by a. o 

Definition 13 (conformance rule): A conformance rule is a predicate p (t1, t2) defining a con-
formance relationship between two basic profile types (a1, D1) and (a2, D2). We use square brack-
ets to apply parameters to a profile type instance.  

∀t1∈D1, t2∈D2:   ( p (t1, t2)   ⇒   x1 [t1] ≤ x2 [t2] ).   o 

The implication is the minimum requirement for the predicate. It can be viewed as a safety re-
quirement in the sense that the rule set should at least not produce false positives. Note also that 
in first order logic, the conformance operator ’≤’ should be understood as a predicate taking two 
basic profile types (a1 and a2) as arguments.  

Computing derived rule set

The set of axioms should be the minimum needed to define all conformance relationships in the 
model. Some conformance relationships can be inferred directly from some axiom, others can be 
inferred from a combination of axioms. It is possible to derive an additional set of rules from axi-
oms and it is convenient to do this statically since the axioms do not change at run-time. By 
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precomputing inference which involves more than one axiom rule, conformance checking at run-
time becomes equally simple and efficient for any pair of basic profiles. We may view a profile 
model as a directed graph where nodes correspond to profile types, and where edges correspond to 
predicates of axioms. The derived rules correspond to paths in the graph, and the set of all rules 
which can be derived corresponds to a transitive closure of the graph.   

We compute derived rules from axioms by using the principle of transitivity. Given two rules 
which share a common profile identifier b: 

∀x,y:  p(x, y)  ⇒  a[x] ≤ b[y]

∀u,v:  q(u, v)  ⇒  b[u] ≤ c[v]

we want to derive a rule like this:  

∀x,v:  p(x, y)  ∧  q(u, v)   ⇒  a[x] ≤ c[v].

This derivation is possible if y and u are empty. If not, the new predicate expression would refer 
to unbound variables y and u. Therefore, simply creating a conjunction would not be a general so-
lution. We need to eliminate y and u. If we assume that parameters y and u have the same do-
main and have the same value in all instances, such that they both can be re-labelled y, we can 
try to find a predicate r such that:

∀x,y,z :  (  r(x, z)  ⇒  a[x] ≤ b[y]  ∧  b[y] ≤ c[z]  )  ∧
  ( p(x, y) ∧ q(y, z)   ⇒  r(x, z)  )

We can then derive a new rule

∀x,z:  r(x, z)  ⇒  a[x] ≤ c[z].

Alternative paths and disjunctions

There may be more than one rule for a given pair of profile types. In particular, this may be the 
case after computing the transitive closure, since there may be more than one path between two 
nodes in the graph representing the rule-base. Alternative rules may correspond to disjunctions 
in the sense that conformance means satisfying at least one of them. They should be combined to 
one rule to facilitate efficient conformance checking at run-time. For instance, from

p(x,y)  ⇒  a[x] ≤ b[y]  and

q(x,y)  ⇒  a[x] ≤ b[y].

we would derive

p(x,y) ∨ q(x,y)  ⇒  a[x] ≤ b[y].

4.4.2. Rule definition language

In this subsection we define a language for defining profile models as axioms on the form given by 
definition 13. As a proof of concept and a tool for further exploration, we have made a compiler 
which takes a set of such axioms and generates conformance testing code for basic profiles. This 
code is used by the conformance-tester described in section 4.3.4.
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A profile model is specified as a set of axioms, each stating a conformance rule. There are two 
kinds of rules: (1) simple conformance and (2) parametric conformance. Semantically, a simple 
conformance rule can be seen as a special case of definition 13 where t1 and t2 are empty and p= 

true. 

Simple conformance

Simple conformance rules are on the form (EBNF): 

conformance ::= profile-name  [ "<" profile-name ] + ";"

One can state conformance between pairs of profile-names, or one can chain several statements. 
For instance, the statement: 

a < b < c;

is a short form for the following two axioms: 

a < b; 
b < c; 

Parametric conformance rules

In general, profiles may have parameters, and one may specify rules for how the conformance re-
lationship depends on the value of the parameters. 

conformance ::= bprofile "<" bprofile  ","  "if"  boolexpr ";"
bprofile    ::= IDENT "[" parameterlist "]"

The boolean expressions (boolexpr) would specify comparisons of numeric values and/or identi-
fiers. Identifiers referenced in expressions must be found in the parameter lists of the profile dec-
laration part. For example: 

Res[x1, y1] < Res[x2, y2], if x1 >= x2 AND y2 >= 23;

Our experimental prototype supports the "<", ">", "<=", ">=" and "=" comparison operators. Only 
one value type is allowed: integer numbers. The boolean operators: AND, OR and NOT can be 
used to compose more complex expressions.

4.4.3. Profile model compiler

Our experimental profile model compiler is constructed using Java tools like jflex, cup and class-

gen [Cup] and does its work in the following distinct phases: 

1. Transform source text into an abstract syntax tree (lexical and syntax analysis), which can be 
traversed and transformed using the visitor pattern [Gamma95]. 

2. Semantic analysis: consistency checking, computing of parameter indices, transforming the 
AST to list of ASTs (representing rules) and transforming boolean expressions to the conjunc-

tive normal form. 

3. Compute derived rules representing the transitive closure of the initial rule set.  

4. If there are alternative rules for any pair of profile-types, combine by disjunction as suggested 
above. 

5. Generate conformance testing code representing the derived rule set.  



14The abstract syntax tree will have nodes for NOT, AND, OR and COMPARE (which cor-
responds to the grammar production expr → expr RELOP expr, where RELOP is a comparison op-
erator).

15It is straightforward to use a DFS based algorithm, for instance the one in [Sedgewick] p. 178. 
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Semantic analyser

The semantic analyser check that all variable names used in the boolean expression exists in the 
’bprofile’ part (see section 4.4.2), and it assigns an index to each of them which corresponds to 
where it was declared. It would then normalise the predicate expressions by applying the follow-
ing transformations:

¬(x < y)     →  x ≥ y
¬(x > y)     →  x ≤ y
¬(x ≤ y)     →  x > y
¬(x ≥ y)     →  x < y
¬(p ∨ q)     →  ¬p ∧ ¬q
¬(¬(p))      →  p

Now the AST14 for the predicate expressions will be in a conjunctive normal form, having the fol-
lowing properties: (1) The operands of an AND node can be AND, OR, or COMPARE nodes, (2) 
the operands of an OR node can only be COMPARE nodes.Computing the transitive closure
We use an adapted version of a well known algorithm for computing the transitive closure of a 
directed graph15. The transitive closure algorithm inserts new edges where it finds a path of two 
edges between pairs of nodes. In our case, we operate on rules instead of simple edges; we try to 
create derived rules. Figure 4.3 illustrates this. 

P Q

Derived rule, R

P.left P.right
  =
Q.left

Q.right

Figure 4.3. Rule derivation step

Given a pair of rules P, Q and where p and q denotes the predicates of P and Q respectively, the 
method for deriving a new rule R is as follows: 

1. If P is a simple rule (p just returns true), just return r = q. Similarly return r = p if Q is a sim-
ple rule. 

2. Let P.left denote the left ’bprofile’ node of a rule P, Let P.right denote the right side etc. If the 
identifier of P.right equals the identifier of Q.left, continue. If not, return no match. 

3. Combine two expressions p and q by first constructing a conjunction node: AND (p, q). Then 
we flatten AND-trees to a list, For instance, AND(AND(p, q), r) would be transformed to 

ANDLIST(p, q, r).  
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4. For any possible pair (p, q) of conjuncts of this list, if p and q originate from different rules, 
we try to combine them using the subexpression matching rules described below. If matching 
is successful, the result is added to the resulting expression (by conjunction). 

5. The remaining conjuncts (those which were not matched in step 4) are added to the resulting 
expression. Remaining subexpressions with unbound operands are removed since they are not 
transitively related to any other subexpression, and thus have no meaning in the derived 
rule. 

6. Construct a new rule node R setting R.left = P.left, R.right = Q.right and using the predicate 
rule resulting from step 4. Use the semantic analyser to check that all variables in the predi-
cate are defined in either R.left or R.right. If true, return R, otherwise return no match. 

Subxpression combination rules

Assume that we have a conjunction (p ∧ q) of subexpressions each of which is either an arithmetic 
comparison expression (e.g. x < y), or a disjunction of arithmetic comparison expressions. 

1. If p and q are comparison expressions, and the right operand of p is identical with the left op-
erand of q, there is a transitive relationship between the two expressions. It is necessary to 
rewrite as follows when deriving a rule where the operand y is unbound:  

   x < y  ∧  y < z    →  x < z
x ≤ y  ∧  y ≤ c    →  x ≤ z
x < y  ∧  y ≤ z    →  x < z
x ≤ y  ∧  y < z    →  x < z
x > y  ∧  y ≥ z    →  x > z
x = y  ∧  y = z    →  x = z

x = y  ∧  y < z    →  x < z
x < y  ∧  y = z    →  x < z
x = y  ∧  y ≤ z    →  x ≤ z
x ≤ y  ∧  y = z    →  x ≤ z

etc. 2. If p is a comparison expression and q is a disjunction, we can use the distributive law to 
transform it such that we can apply step 1 above, for conjunctions of compare nodes. 

p  ∧ (q1 ∨ q2 ∨ ... qn)  →  (p ∧ q1) ∨ (p ∧ q2) ... ∨ (p ∧ qn).4.4.4. Example
The following example capture delay and display resolution. We illustrate the simple form of 
parametric profile (rule 2 below), meaning that a smaller number satisfies a higher number. We 
also illustrate various ways to state resolution in one, two or three dimensions (typically for dis-
play resolutions) where obviously higher numbers satisfy smaller numbers. We include examples 
of profile declarations for one dimension (rule 5 and 8), two dimensions (rule 7) and three dimen-
sions (rule 9), as well as rules for comparing profiles of different dimensions (rule 6 and 10).
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LowDelay < ModerateDelay < AnyDelay;  (1)
Delay[x] < Delay[y], if x <= y;  (2)
Delay[x] < LowDelay, if x <= 100;  (3)
Delay[x] < ModerateDelay, if <= 200;  (4)

XRes[x]  < HiRes, if x < 1000;  (5)
Res[x1, y1] < XRes[x2], if x1 >= x2;  (6)
Res[x1, y1] < Res[x2, y2], if x1 >= x2 AND y1 >= y2;   (7)

XRes[x] < XRes[y], if x <= y;  (8)
3Res[x1, y1, z1] < 3Res[x2, y2, z2], 
    if x1 > x2 AND y1 > y2 AND z1 > z2;  (9)
3Res[x1, y1, z1] < Res[x2, y2], if x1 > x2 AND y1 > y2; (10)

From the above axioms we can for instance infer that Delay[10] satisfies ModerateDelay and 
that Res[2000, 1000] satisfies XRes[500]. In the following we give some examples of how 
rules are derived from other rules.

Example 1: 

From rule 5 and 6 above we can derive 

Res[x, y] < HiRes, if x < 1000;

When explaining how the rules are derived we use a slightly different notation where parameters 
are relabelled using the profile identifier with an index.  

XRes ≤ HiRes ⇐ (XRes0 > 1000)

Res ≤ XRes  ⇐ (Res0 ≥ XRes0)

The predicates can be be conjoined: 

(XRes0 > 1000)  ∧ (XRes0 > Res0)  

The two comparison nodes are transitively related and we can eliminate XRes0 when deriving a 
rule:

Res ≤ HiRes  ⇐ (Res0  > 1000).  

Example 2: 

From rule 6 and 10 we can derive

3Res[x1, y1, z1] < Res[x2, y2], if (x1 > x2); 

Rule 6 and 10 are: 

Res ≤ XRes  ⇐  (Res0 ≥ XRes0)

3Res ≤ Res  ⇐  (3Res0 > Res0) ∧ (3Res1 > Res1) 

The predicates are conjoined: 

(Res0 ≥ XRes0) ∧ (3Res0 > Res0)  ∧  (3Res1 > Res1)

We combine the first and the second comparison node by transitivity. The third node still has an 
unbound variable and is removed. We derive: 

3Res ≤ XRes  ⇐  (3Res0 > XRes0)
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Example 3:

We can derive a rule for Delay[x] ≤ AnyDelay. From rule 1, 3 and 4, we see that there are two 
paths. Either via LowDelay or ModerateDelay: 

Delay ≤ AnyDelay   ⇐  (Delay0 < 100) 

Delay ≤ AnyDelay   ⇐  (Delay0 < 200)

The second alternative is widest in the sense that it returns true for a larger set of values for x, so 
it should be chosen. If combined by using a disjunction, the first case has no effect, since it is fully 
covered by the second case. Figure 4.4 below illustrates the relationships as a graph.

Delay ≤ AnyDelay    ⇐    (Delay0 < 100)  ∨  (Delay0 < 200).

LowDelay

Delay[x]

ModerateDelay

x <= 200x <= 100

(x <= 100) ∨ (x <= 200)

AnyDelay

Figure 4.4. Rule derivation

Example 4: 

Assume that we remove rule 5 and add some rules stating a resolution requirement in either the 
x or y dimension.

1Res[x]  < HiRes,   if x > 1000; (11)
Res[x,y] < 1Res[n], if x > n OR y > n; (12)

From these two we can conjoin the predicate expressions like we did for the examples above: 

(1Res0 > 1000)  ∧  ( (Res0 > 1Res0)  ∨  (Res1 > 1Res0) )

If we use the distributive law to transform the expression to a disjunction of two conjunctions, 
and if we use the transitivity combination rules for each of these, we get a derived rule: 

Res ≤ HiRes   ⇐   (Res0 > 1000)   ∨   ( Res1 > 1000) 

4.5. Evaluation and analysis

In this section we analyse the profile model with respect consistency and completeness in concrete 
model definitions, to interoperability between autonomous applications, and to how composition 
can be adressed using the model. But first, we briefly discuss the performance issues of evaluat-
ing profile expressions. 

4.5.1. Performance 

The complexity of evaluating profile expressions against each other to test for conformance is dis-
cussed in section 4.3.4. The matching of component-sums is equivalent to a bipartite graph 
matching problem. Therefore, it is possible to implement this with a worst case performance of 
O(M3) where M denotes the number of components of the component-sum in the normal form of 



16Algorithms with complexity O(EV) may at first sight seem to be better, but finding all edges 
(conformance relationships) is a O(N2) problem. So, in sum it is a O(N3). 
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the expressions16. Our naive but simple implementation has an exponential worst case complex-
ity. The matching of sums is O(M2) worst case (where M is the number of components of the sum).

It is generally harder to analyse the practical performance of expression matching independently 
of applications. First, performance is highly influenced by the structure of the expressions to be 
compared, not only their length. Furthermore, this analysis is based on the fact that M denotes 
the length of both expressions. Often, the lengths are different. The performance is also influ-
enced on how often there exist conformance relationships between basic profiles used; i.e. the size 
and the structure of the profile conformance rule-base are also relevant. 

We have implemented a prototype policy trader, using the algorithm as described above. This is a 
tool for experimenting on different application scenarios. The prototype is implemented in Java 
and contains an expression parser, conformance testing code, as well as a trading service inter-
face. To get an indication of how comparison behaves, we run the comparison algorithm on exam-
ples believed to be realistic (see also section 6.3). In the following case we have two service profile 
expressions and two environments to match. We assume that there is a parametric rule for ’Lat’ 
(which represents latency) and that we have a rule saying that ’Storage’ satisfies ’LimitedStor-

age’:  

SP1="(Channel+Lat[30])⊕(Server+LimitedStorage+Lat[10])"

SP2="(Channel+Lat[39])⊕(Server+LimitedStorage+Lat[1])"

E1 = "Server+((Channel+Lat[35])⊕(Storage+Lat[10])
        ⊕(LimitedStorage+(Lat[0.5]))" 

E2 = "Server+((Channel+Lat[30])⊕(Storage+Lat[10])
         ⊕(LimitedStorage+Lat[0.8]))"

The number of basic profile comparisons lies between 9 and 16 in this example (the number basic 
components is 5 and 7 in the expressions to compare, respectively). If we use the component-sum 
operator to add a component to the service profiles, the number of basic comparisons rise to 25, at 
most. This and other experiments indicate that the number of basic comparisons would typically 
be lower than M2 (where M is the number of basic components in the longest expression), though 
theoretically the worst case complexity would lie between N2 and N3 depending on the expression 
structure. This analysis suggests that if the length of profile expressions are kept within manage-
able bounds, the comparison cost would be reasonably small.    

Test Result Comparisons
E1 ≤ SP1 FALSE 10 
E1 ≤ SP2 TRUE 16 
E2 ≤ SP1 TRUE 9 
E2 ≤ SP2 TRUE 16 

Table 4.1. Basic comparisons of expressions

We have been able to produce a worst case behaviour for component-sums. Our experiments with 
application cases (see chapter 6) indicate however, that the probability of such scenarios is small. 
The average performance is expected to be significantly better than the worst case performance. 
We also observe that a critical operation in our algorithms is the comparison of basic profiles, 
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which is expected to be cheap (see section 4.4). We believe that in most cases, the length of profile 
expressions would be reasonably low, and probably lower than the number of QoS characteristics 
in parameter-based negotiation schemes, since our declared conformance approach allows profiles 
which abstract over detailed characteristics. It is therefore likely that scalability issues would be 
related to the number of candidate policies to search in the trading process rather than the length 
of profile expressions.  

4.5.2. Model consistency and completeness

When defining concrete models as described in section 4.4, it is possible to mistakenly define mod-
els which do not work as intended. One might make models with inconsistencies, or one may fail 
to completely cover the range of conformance relationships needed for the application in question. 
Therefore, additional guidelines and tools for checking can help to avoid or discover such prob-
lems.

In this section we propose a consistency criterion which let us detect some problems by systematic 
analysis. We look at some relevant cases, to discover what we can expect to be typical patterns of 
rule-derivation or sources of problems. We also observe that it can be useful to extend the model 
definition language with higher order constructs like equivalence. 

Completeness

A model is complete if all possible conformance relationships may be inferred from the rule-set; 
i.e. if complete, the implication in definition 13 is also an equivalence. Definition 13 means that 
models do not need to be complete, but one should strive to define models which are sufficiently 
complete, meaning that the conformance relationships needed by the applications are covered.

Consistency

Consistency means that we would not infer contradicting results from a set of axioms. However, 
two rules returning different truth values for a given set of parameters are not necessarily incon-
sistent rules. Instead we base the notion of consistency on which range of profile values evaluate 
to true. To help finding inconsistencies we propose a simple rule which can be applied to the axi-
oms of a model.

Proposition (consistency): The predicate p of any axiom, a ≤ b, would be implied by any derived 

predicates q, for a ≤ b. We say that p covers q in the sense that the set of values which satisfy q is 
a subset of the values which satisfy p. 

∀x: q(x) ⇒ p(x).  o
A derived rule will involve another profile type, c and a rule c ≤ b such that all profile values 
which satisfy c also satisfy b. If we assume we have a complete and consistent model, the set of 
profile values which (when applied to a and b) satisfy a ≤ c  ∧  c ≤ b, is a subset of the values 

which satisfy a ≤ b directly. This follows from the definition of conformance relationship (defini-
tion 3) and the definition of transitivity: 

( σ(a) ⇒ σ(c)  ∧  σ(c) ⇒ σ(b) )   ⇒   ( σ(a) ⇒ σ(b) )
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We cannot prove consistency since our models are not complete. However, we can prove that 
inconsistencies exist. Given the argument above about consistent models, and definition 13, it 
can be proven that if the above proposition does not hold for a set of rules, the model is incon-
sistent: It is straightforward to prove that the following is true (p,q,r,x,y and z are logic expres-
sions):

( ¬( p ∧ q  ⇒ r)  ∧ x⇒p ∧ y⇒q ∧ z ⇒r )   ⇒   ¬(x ∧ y ⇒z).    

By definition 13 and transitivity we have 

p ⇒  a≤b, q ⇒ (a≤c ∧ c≤b) ⇒ a≤b. 

From this we can show that

¬( q ⇒ p)   ⇒   ¬(a≤c ∧ c≤b  ⇒  a≤b).   

Examples

In the following we discuss some cases where this rule may help us detect problems. We also con-
sider cyclic rule-sets and two patterns for rules which go in the opposite direction: Symmetry (to 
address completeness) and equivalence (to realise synonym profiles). We also consider the pattern 
of parallel paths. 

Example 1 (inconsistent rules): Consider the following rules:

LowDelay < ModerateDelay; (1)
Delay[x] < LowDelay, if x <= 100; (2)
Delay[x] < ModerateDelay, if x <= 50; (3)

Since LowDelay ≤ ModerateDelay, the requirement for a Delay profile to satisfy LowDelay should 
be at least as strict as for ModerateDelay. There is an inconsistency here in the sense that rule 3 
does not cover the rule derived from rule 1 and 2. In this case, the result of combining alternative 
rules by disjunction is that rule 3 will have no effect. Figure 4.5 illustrates this by representing 
profile types as nodes and predicates as edges. We show derived rules by using dashed lines.

LowDelay

Delay[x]

ModerateDelay

x <= 50
x <= 100

(x <= 100), 
(x <= 50)

Figure 4.5: Derived rule

Example 2 (cycle): Consider the following rules: 

LowDelay < ModerateDelay; (1)
Delay[x] < LowDelay, if x <= 100; (2)
ModerateDelay < Delay[x], if  x > 200; (3)

This results in a cycle in the conformance graph. A cycle is not necessarily an error, but may be 
problematic because of the derived rules it produces.   
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LowDelay

Delay[x]

ModerateDelay

x > 200

x <= 100

(x > 200)  ∧  (x <= 100) = false

(x > 200)

(x <= 100)

Figure 4.6: Conformance cycle

No new rule will be derived for ModerateDelay ≤ Lowdelay (conformance is false) since x is not 
bound by any of the profile types. In this case, there should not be any conformance in this direc-
tion anyway. The derived rules for Lowdelay ≤ Delay and Delay ≤ ModerateDelay are not wrong, 
but imprecise in the sense that they do not cover all cases where we expect conformance. Here, we 
would expect conformance to be true for exactly the set of values for which conformance is false in 
the opposite direction.

These observations suggest that cycles may lead to derivations which are not intuitively foreseen, 
and that some of those are not necessarily as complete as we may wish. They may still be useful, 
but somewhat complicated to analyse by a programmer. Therefore, we believe that a profile model 
compiler should warn or inform about cycles, except when introduced by symmetric rules in op-
posite directions (directly between two nodes), or by defining equivalence. We illustrate the use-
fulness of this case in example 3 and example 5 below. 

Example 3 (symmetry): Consider the following rules:

LowDelay < ModerateDelay; (1)
Delay[x1] < Delay[x2], if x1 <= x2; (2)
Delay[x] < LowDelay, if x <= 100; (3)
LowDelay < Delay[x], if x > 100; (4)
ModerateDelay < Delay[x], if x > 200; (5)
Delay[x] < ModerateDelay, if x <= 200; (6)

Here, we want to represent the fact that LowDelay satisfies Delay[x] if x is smaller than 100 (rule 
2), while also Delay[x] satisfies LowDelay if x is bigger than 100 (rule 3 and 4). This realises a 
more complete connection between the two profile types than the previous example. A similar rule 
is made to connect Delay with ModerateDelay (rule 5 and 6). These rules are consistent with the 
rule for two Delay[x] profiles in the sense that derived rules for Delay ≤ ModerateDelay and Delay 

≤ Delay are covered by axioms 

LowDelay

Delay[x]

ModerateDelay

x > 200

x <= 100

(x1 <= 100)  & (x2 > 200)
  Covered by axiom:  x1 < x2. 

x > 100
x <= 200

x <= 100
  Covered by axiom

Figure 4.7. Symmetric rules
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Example 4 (Conflicting rules): Assume that we make a mistake in example 3 above and define 
conformance between ModerateDelay ≤ LowDelay in the wrong direction. Now, there will be a de-

rived rule for Delay ≤ LowDelay which is not covered by the axiom. In fact, the comparison rules 

go in the opposite direction. Observe that the derived rule for Delay ≤ Delay is not covered by the 
axiom as well. We have two indications that the model has inconsistencies.  

LowDelay

Delay[x]

ModerateDelay

x > 200

x <= 100

(x1 > 100  & x2 <= 100) 
   Not covered by axiom! 

x > 100
x >= 200

x >= 200
  Not covered
  by axiom!

Figure 4.8. Conflicting rules

Example  5 (Equivalence): Consider the following rules:

LowDelay < LowLatency < LowDelay; (1)
Delay[x] < Latency[y]; (2)
Latency[x] < Delay[y]; (3)
Delay[x] < LowDelay, if x <= 100; (4)
LowDelay < Delay[x], if x > 100; (5)

In some cases, we may want to define equivalence between pairs of profiles, meaning that there is 
a conformance relationship in both directions at the same time. We limit the discussion to the 
cases where there is equivalence for all possible parameter values. In figure 4.9 below, we indi-
cate equivalence by thicker, double arrowed lines. It illustrates how equivalence and rule deriva-
tion effectively mirrors the conformance rules to synonym profile types. 

LowDelay

Delay[x]

LowLatency

x > 100

x <= 100

x > 100

x >= 100

Latency[x]

x > 100

x <= 100

x <= 100

x > 100

Figure 4.9. Equivalence

Example 6 (parallel paths): Consider the following rules:

XRes[x] < HiRes, if x >= 1000; (1)
YRes[y] < HiRes, if y >= 700; (2)
Res[x,y] < XRes[x], if x1 >= x2; (3)
Res[x,y] < YRes[y], if y1 >= y2; (4)

Rules 3 and 4 define the relationship between one-dimensional and two-dimensional profiles de-
scribing (display) resolution. But they will also define a relationship between Res and HiRes; i.e. 
it represents a composition of two rules into one. If we follow the simple rule of composing alter-
native rules to disjunctions, we get 

Res[x,y] < HiRes, if (x >= 1000) or (y >= 700); 
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Figure 4.10 illustrates how rules are composed. We have two parallel derived rules which do not 
cover each other in any way. In this case they cannot, since they are based on different param-
eters in the Res profile. Intuitively, it looks like it is possible to define conflicting parallel rules, 
but to be able to detect or prove the existence of such conflicts, we need to add further constraints 
to the model. This may be a topic for further investigation. 

   Res

YRes

HiRes

x >= 700x >= 1000

y1 >= y2

(x >= 1000), 
(y >= 700)

XRes

x1 >= x2

Figure 4.10. Parallel rules

Another possible problem of this pattern may occur if we actually want to compose the two rules 
(between XRes/YRes and HiRes) by conjunction instead of disjunction. Note that we may express 
conjunctive composition in an expression by using the ’+’ operator (cf. section 4.3.1). To build con-
junctive composition into the model we may be tempted to define a rule explicitly between Res 
and HiRes, using conjunction. However the explicit rule would then clearly be inconsistent with 
the two derived rules (a conjunction does not cover a disjunction or any of the individual con-
juncts). In addition, it is somewhat redundant. A possible resolution is to recognise this particular 
pattern, and simply override any derived rules, or we may add a keyword to the profile definition 
language to explicitly request such overriding.  

Discussion

It is possible to develop a notion of consistency for profile models. We have seen that there is a set 
of inconsistencies which can be detected and reported by a profile model compiler, to the extent it 
can detect if one predicate imply another. 

Cycles in the conformance graph are legal, but may lead to derived rules which are not easily 
foreseen by the model designer and which may be imprecise. Therefore cycles are likely to be 
problematic, except when introduced by (1) symmetric rules, i.e. rules which go in the opposite di-
rection and where one rule is a negation of the other, or (2) equivalence, i.e. rules which evaluate 
to true in both directions at the same time. It is useful to restrict equivalence to simple rules (al-
ways true). It is possible for a compiler to warn about cycles which do not follow these constraints. 
It would also be useful to extend the profile definition language with higher order constructs like 
an equivalence operator and an operator to define symmetric rules automatically. 

Example 5 shows that there exists a type of inconsistency which we may want to resolve by let-
ting the axiom override (disable) the derived rules. We observe that the pattern of parallel paths 
can be a source of some problems and it may be helpful for a profile model programmer, if a com-
piler could detect and report this case. 
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4.5.3. Interoperability

Components participating in a binding may be heterogeneous and not necessarily designed for 
one single purpose. Still, there is a need to express and convey QoS and resource information 
among the participants. In this context, interoperability is about establishing a common under-
standing across different subdomains and component applications, of profile expressions to be ex-
changed during negotiation, and consequently, of the resulting contracts. We may distinguish be-
tween two levels of interoperability: (1) Interoperability among components in a single application 
sharing a single profile model. (2) Interoperability among applications using different profile mod-
els. 

We assume that participants have agreed on a shared profile model which defines the syntax and 
semantics of profile expressions to be exchanged. However, the semantics of profile identifiers and 
parameters are not completely defined, since a profile model is limited to conformance relation-
ships. Each participant needs to interpret profiles in terms of measurable characteristics or plat-
form properties, and they should do it in a consistent way. For instance, the parameter in a pro-
file Delay[x] may mean the maximum end-to-end execution time for empty operation invocations 
measured in milliseconds. It is obviously a problem if the other participant understands it as a 
mean estimate, or is using microseconds as the unit. It is also important that programmers of 
policies or platform components have precise information about the meaning of basic profiles, in 
addition to the profile model itself, to be able to implement the components correctly. The conse-
quence of making the wrong assumptions could be that the wrong policies are selected. This could 
lead to failure of policies or that they violate the contracts. 

Integrating models

Applications may want to interoperate and negotiate, even if they use different profile models lo-
cally. This problem is comparable with the problem of integrating schemas for federated data-
bases [ShLa90] or different data-sources described by ontologies [Wache01] (for instance in the 
context of the semantic web).

We can distinguish between (1) loose coupling strategies where mappings between applications to 
cooperate are defined in an ad. hoc. way and (2) tight coupling strategies where one would stati-
cally define one or more federated (global) schemas based on local schemas. [Wache01] also clas-
sify the approaches to mapping based on ontologies as follows

1. Defining one shared ontology (or merging local ontologies into one) for all data-sources to in-
teroperate. This approach limits the diversity of local applications. 

2. Multiple ontologies which is somewhat similar to a loose coupling strategy, but this makes it 
more difficult to compare local ontologies. 

3. Hybrid approaches allowing local ontologies which share a common vocabulary. Local ontolo-
gies may be defined in terms of this vocabulary, and this supports easier comparison and 
mapping. However, with this approach it is harder to integrate existing ontologies which are 
not based on the common vocabulary.
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In the following discussion, we assume that all local models to be integrated follow the core profile 
model defined in this chapter. This simplifies the problem compared to a more general case. We 
also assume a tight coupling strategy and that the integration is done by merging relevant parts 
of profile models (termed local models) into one global model. We may also define new profiles at 
the global level to generalise over local concepts. We may provide mappings such that expressions 
in terms of one local model can be understood in terms of global model (or another local model). 
Mappings should preserve autonomy in the sense that existing negotiations within a single ap-
plication do not need to be affected by the integration. Each application would use their own pro-
file models in platform implementations and policy implementations. 

In our case, relationships between local and global profile types can be defined as conformance 

rules (see section 4.4). This means that a policy trading service (chapter 3) would automatically 
perform the necessary mappings if it knows the complete integrated model (including the map-
ping rules). Alternatively, one may add run-time interception and translation of expressions 
which cross application boundaries.

Heterogeneity and conflict types

The problems arising from data heterogeneity are well known within e.g. the federated database 
community [ShLa90]. In our context we are mostly concerned about semantic heterogeneity 
[Kim91]. Integration of models will need to resolve conflicts. According to a taxonomy of [Goh97], 
data heterogeneity leads to three main types of semantic conflicts: Naming conflicts, scaling con-
flicts and confounding conflicts. Because of the strong limitations of exchanged data types in our 
model, the schematic and intensional conflicts (except generalization conflicts), are not directly 
relevant for us. The taxonomy is shown in figure 4.11 below. 

data
conflicts

Schematic

Semantic

Intensional

Data type

Labelling

Aggregation

Generalization

Naming

Scaling

Confounding

Domain

Integrity constraint

Figure 4.11: Conflict taxonomy

Naming conflicts stem from differing naming of values, typically synonyms and homonyms. In 
our model, this is also similar to what [Goh97] refers to as labelling conflicts since the labels of 
profile types also denote possible profile identifier values. Synonyms are handled by defining 
equivalence (cf. section 4.5.2). Homonyms can be resolved for instance by prefixing names, such 
that they are recognised as distinct. 

Scaling conflicts stem from the use of different units for values. This includes using different 
currencies, or expressing delay in milliseconds in one place and microseconds in another. Our 
models do not state units and scaling explicitly. It is possible to resolve such conflicts by defining 
rules which do the necessary conversions. However, this will require that the language in section 
4.4 is extended with arithmetic operators. For example, if delay is given in both milliseconds and 
microseconds: 
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Delay[x] < us_Delay[y], if  x <= y * 1000;
us_Delay[x] < Delay[y], if  x * 1000 <= y;    

Given the idea of extending with an equivalence operator (section 4.5.1), we may add scaling. 
From such a rule, proper conformance rules may be derived. For instance: 

Delay[x] = us_Delay[x * 1000]; 

Confounding conflicts occur when information items seem to have the same meaning but have 
not, because they are defined in different contexts. For instance it is a conflict if a Delay param-
eter denote a maximum delay in one instance and a mean delay in another. It is not trivial to 
map between various interpretations for this type of conflict. Note that profiles like e.g. Delay 

may be used in different contexts, and a rule-set for Delay can have different contextual interpre-
tations. Recall that the component-sum operator (section 4.3) can be used to express constraints 
in different contexts. It is possible to use the sum operator to relate a constraint to a context. For 
instance:

( Mean + Delay[40] ) ⊕ ( Maximum + Delay[100] )

state requirements for both mean and maximum delay (the Mean and Maximum profiles repre-
sent contexts for delay expressions). Expressions in different contexts are not comparable unless 
we define an additional rule defining that one context is subsumed by another. For instance, we 

may also specify a rule Maximum ≤ Mean meaning that a maximum delay offer will satisfy a 

mean delay requirement, from which we can infer that (Maximum + Delay[40]) satisfy (Mean + 

Delay[40]). Note however that this example reveals a dangerous trap. Consider a parametric pro-
file Bandwidth[x] instead, where the higher parameter value satisfies a lower. Here, it will be 

wrong to use it with the Maximum ≤ Mean contexts, since they were meant for use with a para-

metric profile where the smaller value would satisfy a higher. In this case, it would be better to 
relate the context profiles to the more abstract notion of conformance relationships. For instance 

to define: Best ≤ Mean ≤ Worst.

Model consistency

In section 4.5.2 above, we discuss consistency with respect to conformance rules and transitivity. 
The types of conflicts discussed there can also arise from heterogeneity in conformance rules. It 
can be viewed as a generalisation conflict [Goh97] in the sense that profile expressions subsumes 
each other by conformance relationships. Integrating models may create new paths of transitive 
conformance, and conflicting derived rules if conflicts between models are not properly resolved. 
The following example illustrates how inconsistency can arise from wrongly assuming that two 
profile types are equivalent (we assume that we can define equivalence using the ’=’ operator). 

Delay[x] < LowDelay, if x <= 100;  (model 1)
Latency[x] < GoodLatency, if x <= 50; (model 2)
Delay[x] = Latency[x]; (mapping 1)
LowDelay = GoodLatency; (mapping 2)

The error here is that GoodLatency is assumed to be equivalent with LowDelay. It is not. This 
problem can be detected using the consistency test from section 4.5.2, i.e. the derived rule for De-

lay ≤ LowDelay should not be covered by the axiom (from model 1). This problem is easily resolved 

by changing mapping rule 2 to a one way conformance: 

LowDelay < GoodLatency; (mapping 2)
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4.5.4. Composition

We want to support composition of profile expressions. The profile model can capture basic con-
junctive composition using the sum operator and composition of separate contexts using the 
component-sum operator. In this section, we look into the pragmatics of expressing composition 
using these operators, and discuss certain limitations of our model in addressing composition. 

First, it is important to observe that it is not within the scope of profile expressions themselves, to 
define how components are combined and what a composition actually results in, but rather con-

straints on how policies can combine the resources. Our approach of policy trading implies that 
the effect of composition, i.e. the relationship between the expectation (service profile) and the ob-
ligation (user profile), is encapsulated in the policy. It is the concern of policy implementers how 
available resources should be used in combination to reach a goal. Given the same environmental 
properties, making different choices with respect to protocols and other parts of policy implemen-
tations, could result in different interactions between the resources. This could again lead to dif-
ferent resulting QoS. 

This is somewhat different from CQML [Aagedal01] where the result of composition may be speci-
fied per QoS characteristic. Three types of composition are considered: ’parallel-or’, ’parallel-and’ 
and ’sequential’, and an application specific model may define functions defining characteristic 
specific meaning for each of them. As an example, Aagedal considers (as an example), the start-up 
time for a composition of two components. The total start-up time could either be the quickest one 
if the policy is to select the best one (parallel-or composition), the latest one if both are needed 
(parallel-and composition), or a sum of the start-up times if the second one cannot be started be-
fore the first is ready (sequential composition). For instance, the sequential composition of startup 
times would be the sum of the component startup times.

In the following, we discuss how the patterns of composition in [Aagedal01] (parallel-or, parallel-

and and sequential) can be captured by our profile model. We also discuss how to address nested 
composition. But first we briefly discuss some pragmatics in describing entities. 

Entity descriptors 

Environmental expressions (in normal form) will typically be component sums, where each ele-
ment is a sum of some entity name, defining the context, plus a set of constraints to be associated 
with it. We refer to such subexpressions as ’entity descriptors’. Note that the term ’entity’ is not a 
syntactic category of our expression language; it is rather a way to describe pragmatics of struc-
turing expressions.  

entity + property1 + ... + propertyn  

Expressions may be composed from a set of entity descriptors. We should normally use the 
component-sum operator to separate entity descriptors, like this: 

(entity1 + properties) ⊕ ... ⊕ (entityn + properties)

The entity name may be skipped if there are no ambiguity with respect to what entity the prop-
erty refer to, for instance when the expressions describe only one entity. Furthermore, expres-
sions can be sums of entity names only, meaning that all entities are (or is required to be) avail-
able. For instance, one could say "network + CPU + memory". The existence of entities may be 
viewed as properties, but observe that the choice of this form must be consistent amongst the 



17This particular case could be viewed as a possible conflict which  to be resolved to provide inter-
operability (cf. section 4.5.3).

_________________________
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negotiating participants17. For instance, there will be no conformance relationship between "A + 

B + C" and "A ⊕ B ⊕ C". If other properties are to be associated with any of the entities, they 

must be separated by using a component-sum like in following expression: 

(Network + HighBW) ⊕ CPU ⊕ (Memory + HighCapacity) 

In contrast, the expression 

Network + HighBW + CPU + Memory + HighCapacity

would not express the same fact. In this example we can no longer tell which entity properties 
like ’HighBW’ are associated with, i.e. what context they appear in. 

Parallel-or composition

If there exist no dependencies between (possibly equivalent) components, the composition can be 
classified as parallel. Parallel-or composition corresponds to the case where one of the compo-
nents is selected for use.  

In the context of policy trading where SP denotes the service profile of a potential policy, and 
where E denotes the description of the environment, consider the example of combining proper-

ties of communication channels (assume that SuperHighBW ≤ HighBW). 

SP =  Channel + SuperHighBW,    E =  Channel + (HighBW ⊕ SuperHighBW)

The policy requires one SuperHighBW channel. The environment offers two channels, one of them 
satisfy the requirement, which is sufficient to result in a match. Note that if a policy implementa-
tion uses one channel, and the environment supports two or more channels, the implementation 
must be able to select a suitable channel from the available ones.  

Parallel-and or sequential composition

Parallel-and composition means that components are unrelated but all are used in combination. 
For the example of startup time, this may mean that the longest time must be used as the result, 
since the components can startup in parallel, but we need all to finish. For certain capacity char-
acteristics, parallel-and may mean that the result is the sum of the component capacities, e.g. for 
processors that can run in parallel without need for synchronisation. Sequential composition 
means that there are dependencies between constituent components, for instance that one cannot 
run before the other has finished. For the case of startup time this would typically mean to return 
the sum of component times. 

Consider the following expressions. 

SP = Channel + (HighBW ⊕ HighBW),   E = Channel + (SuperHighBW ⊕ HighBW)

The policy expresses the need for the satisfaction of two separate channel entities by using the 
component-sum operator, and only environments with at least two channels will satisfy it. This is 
the way to express parallel-and or sequential composition. Observe that the expression pattern is 
the same for these two cases. In essence, policies express the need for multiple resources. How 
these are combined (parallel, sequential or something in between) is an implementation issue. 
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However, environment descriptors may need to include additional constraints on how components 
can be combined by policy implementations; for instance, they may explicitly disallow parallel 
composition. Such constraints may be specific to component types or application domains. The 
only way to express them, is to define basic profile types denoting composition constraints or loca-
tion, and to use these in profile expressions. Figure 4.12 illustrates how we may define a profile 
model for channel entity profiles: 

RestrictedChannel
(disallow all compositions)

SequentialChannel ParallelChannel

Channel
(allow all)

Figure 4.12. Constraints on composition

For instance, a pair of channels which can only be combined sequentially may be described like 
this: 

E = SequentialChannel + (SuperHighBW ⊕ HighBW)

Observe that a profile which denotes a restriction of composition compared with another profile, 
would be a superprofile of that other profile (a requirement for a more capable channel is a 
stronger constraint on the environment). A requirement for a resource which can be used in any 
way, is a stronger requirement than a resource with restrictions on the use. 

It may also be necessary to state the roles of each component or the context they are expected to 
be used in, as additional constraints. Consider the following expression: 

E = (SeqSourceChannel+ SuperHighBW) ⊕ (SeqSinkChannel + HighBW) 

Here, the basic profile types ’SeqSourceChannel’ and ’SeqSinkChannel’ describe channels which 
could only be used with the source and the sink of some stream when used in sequential composi-
tion.

Nested composition

An entity descriptor may be a property of another entity. For instance, we could have a 
component-sum of two entity descriptors describing the client and the server respectively. Each of 
these could contain a set of sub-entities to describe local services and resources at each side. 
Given an entity e with properties p1, p2, ... pn, if at least one property pi is a entity descriptor f 

with its own properties q1, q2, ..., qm, it is necessary to separate this part from the other proper-
ties of e by using the component-sum operator. Expressions should be on the form: 

e + ( (p1 + ... + pn) ⊕ (f + q1 + ... + qm) )

For instance, if we have a channel with the property ’HighBW’, which also has a special sub-
channel with the property ’SuperHighBW’, it cannot simply be expressed: 

Channel + HighBW + (SubChannel + SuperHighBW) 



18If we assume that SuperHighBW ≤ HighBW ≤ NormalBW. 

_________________________
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According to the associative law, the parentheses do not mean anything, and the sum ’HighBW + 

SuperHighBW’ is actually equivalent to just saying ’SuperHighBW’18. Therefore, this expression 
does not capture that the outer and inner components have different bandwidth constraints. In-
stead we need to express this as a component-sum of the outer and the inner components: 

Channel + ( HighBW  ⊕  (SubChannel + SuperHighBW) ) 

for which the normal form is: 

(Channel + HighBW)  ⊕  (Channel + SubChannel + SuperHighBW)  

Limitation of nested composition  

Consider the example: 

E = (Server + ((Disk + LowLatency) ⊕ HighPerformanceCPU))  ⊕ 

       (Client + LowPerformanceCPU)

It may seem that expressions can express nested (or hierarchical) composition. In this example a 
disk and a CPU component appear in the context of a server. Observe that the nesting hierarchy 
is flattened when transforming to the normal form. However, we do not lose all nesting informa-

tion this way. For instance, ’(a+(b⊕c)) ⊕ d’  is equivalent to ’(a+b) ⊕ (a+c) ⊕ d’. If any constraints 

are associated with a containing context, any subcontexts would inherit those constraints. This 
follows from the distributive law. An identification of the context (i.e. an entity name) should also 
be viewed as nothing more than a constraint. One could view normalisation as writing the expres-
sion as a component-sum of leaf constraints along with (the constraints of) the contexts they ap-
pear in. The top level context would appear repeatedly for each operand. This means that our 
model captures nested composition only in a limited sense; i.e. the component-sum separation 
cannot actually be nested. To see this clearer, consider the following example: 

SP = (Server + ( (Disk+LowLatency) ⊕ HighPerformanceCPU)

E = (ServerA + Disk + LowLatency) ⊕ (ServerB + HighPerformanceCPU)

In SP, the profile ’Server’ seems to occur once as a shared context for the two sides of the compo-
nent sum, and it may look like the SP expression describes one single server instance. This is not 
necessarily true; it may be two as well. If ’ServerA’ and ’ServerB’ are subprofiles of ’Server’, E will 
satisfy SP. Strictly speaking, we cannot tell from this expression if ’ServerA’ and ’ServerB’ de-
scribe separate containing server instances or just two components (disk, CPU) sharing the same 
server instance. 

We may want to express that the separate components describe the same instance or separate in-
stances. With our current profile model, the way to do this is to use basic profiles which identify 
particular instances. This is obviously not a flexible or scalable solution, since the instances must 
be known a priori. 

We see from this that our model has significant limitations in expressing nested composition. 
This should be a case for further work in extending the profile model. A possible approach is to 
introduce labels to indicate instances. If we for instance want to describe an environment with 
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two separate environments and where there should be separate instances of the entity ’Server’ 
associated with each component, we might say: 

SP1 = (x:Server + some-cpu) ⊕ (y:Server + some-storage)

SP2 = x:Server + (some-cpu ⊕ some-storage)

E = (a:Server + some-cpu) ⊕ (b:Server + some-storage) 

Here, E would satisfy SP1 but not SP2. If we say ’x:Server (some-cpu ⊕ some-storage)’ we clearly 

state that the CPU and the storage must be associated the same server instance. Note that we 
suspect that this approach may increase the computational complexity of conformance checking 
and should be carefully evaluated before making any conclusion. 

4.6. Concluding remarks

In this chapter, we define a language for dynamic QoS expressions which can be evaluated at 
run-time for conformance. We define how expressions can be constructed from atomic QoS state-
ments termed ’basic profiles’, using composition operators. Two such operators are defined: The 

sum ( ’+’ ) which corresponds to simple conjunction and component-sum (’⊕’) which assumes that 

the operands denote properties of separate environments and therefore must be satisfied sepa-
rately. To define the semantics of expressions using both operators, we define a distributive law 
and a normal form. Based on these rules, as well as conformance rules for pairs of component-
sums or sums, algorithms for conformance checking any pair of expressions can be developed. 

Concrete models define the basic profile space and explicitly establish conformance relationships 
between basic profiles. They are typically defined for specific application domains and can be de-
fined as rule-bases. They are essentially sets of axioms from which we can infer conformance be-
tween any pair of basic profiles. From an axiom set, we may derive a full rule set, covering any 
pair of profile-types for which there may be conformance. Such a rule set can be directly mapped 
to executable code which allows efficient conformance checking at run-time. As a proof of concept 
we implemented a profile model compiler (which also has been useful in analysing consistency 
and performance issues). The compiler performs a basic semantic check of rules, computes a de-
rived rule-set by using a transitive closure algorithm and outputs conformance checking code.  

Our analysis shows that there exist some types of inconsistencies which are detectable by a pro-
file model compiler. It follows from the model that an axiom should cover (its predicate should be 
implied by predicates of) any derived rules between the same pair of profile types. Furthermore, 
some problems can be detected if additional constraints are introduced. We also observe that the 
pattern of parallel paths can be a source of some consistency problems. In that case, it would be 
useful if an axiom could be set to override any parallel derived rules. Cycles in a conformance 
graph may lead to derived rules which are not easily foreseen by the model designer.   

The problem of supporting interoperability between applications using different profile models is 
comparable with the problem of integrating data-sources described by different ontologies. In 
analysing interoperability we see that certain conflict types are relevant when integrating profile 
models from different sources. Domain specific models define profile names and semantics only. 
Therefore, conflict resolution is mostly limited to semantic conflicts. The sources of problems 
comes from differences in how expressions are interpreted locally (scaling and confounding con-
flicts), and in how names and rules are defined (naming, and generalisation conflicts). The latter 
is partly detectable. In our context, it is possible to define mappings and possibly merge models 
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by defining additional conformance rules. In particular, we can use equivalence to handle syno-
nyms.

When discussing composition, it is important to note that profile expressions are used to express 
requirements or constraints on composition rather than what composition results in. It is up to a 
policy implementation how available resources are combined. We observe that we may need to 
add profile types to represent constraints on how resources can be composed. We also observe that 
the ability to express nested composition is limited because of the distributive law. A problem 
which results from this is that it can be hard to express properties which apply to different in-
stances of a profile type. 

4.6.1. Cases for further work

Our analysis suggests that we further investigate some possible extensions to the model. Some 
are higher order constructs which can be defined in terms of the core model. Others may be more 
fundamental. We believe that the following issues should be cases for further investigation: 

● An equivalence operator ’=’ which is straightforward to define in terms of two conformance 
rules. We have shown some cases where this is obviously useful.  

● A symmetry operator where one conformance rule can be defined in relation to another, 
meaning that there is conformance exactly for the parameter values where it is not conform-
ance in the opposite direction.  

● Overriding of any derived rules (in the case of parallel paths). 

● Arithmetic operators in rules to support scaling. 

● The core profile model is designed with conformance checking and composition in mind. This 
is however not necessarily easy to read by humans and we may need some composition prag-
matics in addition to the model. We may benefit from defining some higher order syntax, for 
instance to simplify expressing entity descriptors with constraints like discussed in section 
4.5.3.

● Variables (labels) in expressions to distinguish between separate instances as discussed in 
section 4.5.3.
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Chapter 5. 

Infrastructure Support

In chapter 3 we gave an overview of our approach to QoS aware binding in open systems. In chap-
ter 4 we mostly focus an expression language to be used in the negotiation process. In this chap-
ter, we describe our experimental work on a middleware level component framework which ex-
plores the idea of negotiable policies for bindings. Our experimental work is based on the FlexiB-
ind binding framework, which was originally developed as an extension to the FlexiNet mid-
dleware framework developed in the context of the ANSA Phase III programme. The 
FlexiNet/FlexiBind experiment can be regarded as an early contribution to reflective middleware 
research (cf. section 2.4.4) and also a background for the research conducted in this thesis. Many 
of the ideas in this chapter were published in [Hanssen99] and in [Hanssen05a].

The rest of this chapter is structured as follows: In section 5.1, we motivate and give an overview 
of our approach; in section 5.2, we introduce the FlexiNet framework, in section 5.3, we describe 
the FlexiBind framework in detail. In section 5.4, we describe how our framework can support ne-
gotiation using policy trading and in particular how we can support profile expressions. In section 
5.5 we evaluate how our framework can support resource reservation and binding types beyond 
simple client/server interaction. 

5.1. Architectural principles

As indicated in chapter 2, a middleware platform for QoS aware open systems should (1) support 
negotiable and adaptable behaviour (it should be able to reconfigure itself at run-time to change 
its internal behaviour) and (2) support the process of negotiating such behaviour. In particular, it 
should offer inspection of platform properties as well as composition of them. The architecture de-
scribed in this chapter is founded on the architectural principles of chapter 3.

5.1.1. Binding type

The basis of our investigation is the family of binding models of ANSA [Hayton00], FlexiBind 
[Hanssen99], OpenORB/OpenCom [Blair01, Parlav03], etc. We believe that these models defines a 
set of concepts which are useful in an overall binding model. [Parlav03] in particular, focuses on 
binding types which capture various forms of interaction between components in an open system. 
For example, a binding for multi-party media streaming may need to be handled differently from 
a binding for remote method invocations between one client and one server. A specification of a 
binding type would define collaborations with (1) binding participants (the application 
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components that interact through the binding) and (2) binding managers (components that estab-
lish and control bindings). Four kinds of collaborations are defined:

1. What kind of interaction (between participants) is supported, i.e. the main purpose of a bind-
ing type.

2. How remote interface references are generated and managed. 

3. How bindings are established through use of binding manager components and negotiation 
protocols. 

4. How already established bindings are managed (e.g. monitoring and adaptation). 

A typical binding type is one that supports remote method invocation (RMI) between a single cli-
ent and a single server. Other examples include continuous media streaming, group communica-
tion, and the publish subscribe pattern. In our experimental work, we start by focusing on the 
client/server (RMI) case, and how client initiated binding would lead to a session specific end-to-
end configuration. However, we believe that the ideas explored here are applicable to other bind-
ing types as well (see section 5.5.3).

5.1.2. Flexible bindings

We can summarise the requirements for flexible bindings as follows: Extra-functional behaviour 
should be negotiable. Such negotiable behaviour should (ideally) be orthogonal to the functional 
type, and the negotiable behaviour should be adaptable at run-time. In our architecture, such be-
haviour is the responsibility of the binding. A middleware platform should be able to support 
bindings which realise negotiable and adaptable behaviour. 

To address some of these issues, we propose a distinction between bindings and their activations. 
When a binding is established, it is not necessarily active. Activation typically involves loading 
the object (and its class) into memory, setting up protocol stacks, transparency objects, buffers 
and other resources. This distinction is useful, since it provides a separation of concerns between 
issues relevant for the whole lifetime and scope of a binding and more resource and implementa-
tion related issues which can change or be decided at a later stage. It allows bindings where the 
configuration of protocols and resources is not done yet or even where the policy is not known yet. 
It also allows adaptation of a given binding (or parts of it) through re-activation. 

A binding to an object is represented (on the client side) by a proxy object which knows how to 
reach the object’s implementation if it is active (typically a name/address if it is remote). A pas-
sive binding does not have all resources necessary to interact, but it has knowledge of how the 
binding should be activated.  

5.1.3. Binding phases

We can decompose the process of binding into four distinct phases, where the system can perform 
configuration of a service implementation and where negotiation would be of interest:

1. Service deployment (server side binding). An abstract service is made available for clients to 
bind to, by generating a name and configuring a minimum of protocol stack, such that client 
can establish bindings and initiate negotiation. 

2. Client binding. A client is associated with the service. This would not necessarily lead to a 
complete configuration, since there may still be parts which need to be negotiated.
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3. Activation. As a result of negotiation, the binding configuration is completed and associated 
with necessary resources, such that invocations of the service may be carried out.

4. Run-time adaptation by re-activation. Existing activations may be taken into account when 
re-negotiating the policy. It is also possible to encapsulate some adaptation within a single 
policy if it does not violate the contract. 

Note that we distinguish between component deployment (cf. CCM, or EJB) which means install-
ing an implementation of an application service, and service deployment which means making 
some abstract service available for remote binding. Component deployment may include service 
deployment.

5.1.4. Policy and metapolicy

Along with the distinction between binding and activation, we propose a distinction between 
policy and metapolicy. A policy (cf. section 3.2.2) dictates the behaviour of activations, while a 
metapolicy (cf. section 3.3) dictates the behaviour of bindings. Metapolicy components are de-
ployed during binding establishment, and policy components are deployed during activation or re-
activation. Note that the concept of metapolicy would capture (parts of) binding establishment 
and binding management aspects of the binding type. A given binding type may allow more than 
one metapolicy, but the choice of binding type would constrain what metapolicies are suitable. For 
instance, certain negotiation protocols may be suitable for client/server interactions only. 

A binding will be associated with a metapolicy which constrains how and when it is activated, 
how the policy is negotiated, what scope a policy will have (e.g. invocation, session, transaction 
etc.), and how the binding is adapted by re-activation in response to changing environmental 
properties. Our concept of metapolicy captures how services are set up in the service deployment 
phase, as well as in the client binding phase. A metapolicy may therefore involve implementation 
decisions constraining the later choice of policy.

Our approach to implementing policies is that each policy is represented by a pluggable piece of 
code (for instance a Java class). Sometimes multiple policies may share the implementation (or 
parts of it); for instance, a particular implementation may deliver different QoS, depending on the 
environmental properties, or it may be instantiated with different resource reservations (as dis-
cussed in section 5.5.2) of the operating system, leading to variations in behaviour. 

5.2. The ANSA FlexiNet framework

The ANSA FlexiNet framework [Hayton99, Hayton00] is a Java middleware system built to ad-
dress some issues of configurable and extensible middleware. It allows programmers to tailor the 
platform for a particular application domain or deployment scenario. The FlexiNet framework can 
be viewed as a flexible toolkit for creating and (re) configuring ORBs, and stands out as an early 
contribution to reflective middleware research. It provides a generic binding framework plus a set 
of engineering components to populate the framework. By appropriate configuration of compo-
nents, one can achieve many different middleware facilities, e.g. mobile objects, transactions, se-
curity, persistence etc. FlexiNet is focused at operational interaction but other interaction types 
(for instance flows) are possible as extensions.



19The dynamic proxy construct was introduced in Java 1.3. 

_________________________
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5.2.1. Reflective interaction framework 

An interface on a remote object is represented by a local proxy object, typically a stub that con-
verts a typed invocation (method call) into a generic form and passes it through a series of reflec-
tive layers (which include a protocol stack) before it reaches its target in the server capsule. Com-
pared with traditional architectures such as CORBA, FlexiNet puts more of the stub functionality 
into the layer stack instead of in the stubs. FlexiNet stubs use the Java run-time typing informa-
tion to convert each invocation into a generic form and let the layers in the stack do the rest. This 
makes stubs so simple that they can easily be generated at run-time by using introspection on the 
interfaces. This technique has later been adopted by the Java 2 platform19. When stubs are sim-
plified, more responsibility is moved to layer stacks which must include higher level functions 
such as serialisation, replication, object management etc. 

Protocol stacks and layers

The layers of the FlexiNet communication stack can be viewed as reflective objects that manipu-
late the generic invocation in different ways before it is invoked on the destination object. There is 
no need for interface specific skeletons, just a generic function that converts a generic invocation 
object to specific calls on target interfaces. Higher level transparency objects can also be regarded 
as layers in this architecture.

The generic form of the invocation allows simple interfaces to bind layers together. On the client 
side, layers implement the CallDown interface which has one operation: 

public void calldown (Invocation inv)

Server side layers implement the CallUp interface: 

public void callup (Invocation inv)

After doing its own part of the work, each layer forwards the generic call to next layer in the 
stack by calling the calldown or callup method recursively. The invocation object may be manipulated 
by each layer until it reaches the point where the call is converted either to messages to be trans-
mitted over the network or to a call to the target interface. Returns of the call carry result values 
with the invocation object in the opposite direction. This model requires that the communication 
between layers are in form of request/reply pairs. Below the RMI protocol layer, we can only talk 
about unrelated messages going up or down; thus, at that level and below, each layer must imple-
ment two interfaces: MessageUp and MessageDown.

An example configuration. 

The first protocol configuration that was realised in FlexiNet was named "green" (by convention, 
early FlexiNet protocols were named after colours) and based on the REX-protocol [Otway87]. 
This configuration illustrates what a typical RMI configuration looks like, and it is shown in fig-
ure 5.1 below. Most of the layers shown support both clients and servers at the same time; thus, 
much of the protocol stack instance can be used both as client and as server. 
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Figure 5.1. Example protocol in FlexiNet

A generic call first goes from a stub to the client call layer which acquires a session (explained be-
low). The serial layer serialise methods, their arguments and results. The name layer takes the 
server interface identifier (which is a part of an interface reference) and writes it to the output 
buffer. On the server side, the name layer reads this identifier from the input buffer and uses it to 
look up the target object (name layer represents a mapping from identifiers to target objects). The 
server call layer uses information from the generic invocation object to generate a method call on 
the correct target object. The rex layer (and the session layer) provides RMI semantics over an un-
reliable message transfer service.

Sessions

Many RMI protocols maintain state across a number of invocations or messages. For instance, an 
UDP based protocol (like REX) may need to keep track of unacknowledged replies, and a TCP 
based protocol may need to maintain a connection. FlexiNet provides sessions as an abstraction 
for managing such information. Sessions are also used to provide concurrency control in the pro-
tocol stack, essentially by using per-session locking. A session is typically related to a client 
thread’s association to a server; i.e. on the client side, there is typically one session per server (per 
thread), and on the server side, there is typically one session per client (thread). When messages 
arrive from the network or invocations arrive from stubs to a protocol stack, they first need to be 
associated to a session. In the above example, the client call layer acquires a session object from a 
session manager. For downgoing messages, the session layer writes a session identifier to the out-
put buffer which is read by the receiving session layer and used to look up (or create) the session 
object there. A session object typically contains the RMI protocol state, but also a dictionary to be 
used by higher layers to store session related information. 
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5.2.2. Protocols, names and binders

The concepts of names, protocols and binders are keys to extensibility of FlexiNet. The FlexiNet 
architecture allows different types of names (interface references to possibly remote objects). 
Binding on the server side involves generating a name for the interface to be exported (and regis-
tering a mapping between the name and the target). A name contains the information clients 
need to bind to the target. A name consists of a protocol name and protocol specific information 
needed to locate the target. This is typically a port address plus an identifier for the interface in-
stance.

To support different protocols, different binders can be provided. On the client side, binders re-
solve names of remote objects to proxy objects (stubs), together with the proper communication 
stacks (which typically should be shared between bindings). On the server side, they generate a 
name for a target interface plus the necessary means to be able to receive invocations. Thus, there 
are two types of binders: Resolvers on the client side and generators on the server side. FlexiNet 
allows many binders and protocols to coexist within the same process; hence, there is a need for a 
means to dynamically select the correct binder to be used for binding. Each layer stack instance 
would therefore contain references to binders to be used for generating and resolving names or 
interfaces passed as arguments or results of invocations. It would typically be the responsibility of 
the serial layer (section 5.2.1) to call the resolver or generator, respectively, when attempting to 
serialise or deserialise remotely invocable interface references. 

choice

"red"

Delegate if not
cache hit

Delegate according
to protocol

"green"

cache

Figure 5.2. Binder delegation hierarchy

Binders can also be arranged into hierarchies, in order to factor out common functionality or to 
allow dynamic selection of a binder to be used for a particular binding. An actual binder could be 
a composition of simpler binder components. Figure 5.2 shows a simple (and static) example of a 
binder setup. There would typically be a cache at the top, which keeps track of recently resolved 
bindings. More dynamic selection is possible. In addition to the protocol part of the name, applica-
tions may also use QoS requirements as arguments to the binder, in order to select the binder 
which best matches the requirements. Delegating binders can for instance look up another binder 
to delegate to, or they can negotiate with the server to do the selection.

5.3. FlexiBind - an experimental binding framework

We have designed an experimental framework to demonstrate binding using pluggable enforce-
ment policies and metapolicies (cf. section 3.1, 3.2.2 and 3.3). The prototype implementation of 
our framework is built upon the FlexiNet architecture. The FlexiBind framework can further be 
extended to support a family of protocols. Protocols, policies and metapolicies can be "plugged" 
into the middleware. FlexiBind allows late binding, explicit binding and dynamic adaptation of 
layer stacks.  



20This corresponds to the inner binding (nested binding) discussed in section 2.3.1. 

_________________________
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5.3.1. Activations 

An important principle of the FlexiBind framework is the distinction between bindings and their 
activations. Binding can then be done without knowing (yet) all about how the binding should be 
activated. This distinction allows late activation (wait until the first invocation is made), explicit 
activation or even per-invocation activation. Adaptation can be supported by allowing changes to 
activation during the lifetime of a binding.

The activation object 

To reify meta-level objects involved in carrying out invocations, and to simplify the reasoning 
about activations in relation to bindings, we introduce the activation object. It represents a con-
figuration of layers. Activation objects are in principle constructed at each invocation and is car-
ried with the generic invocation object through the layers. In practise, invocations typically share 
activations created explicitly or at the first of a series of invocations. Each activation object con-
tains an ordered list of references to the layers of the activation.  

Resolve

Resolve

Client: Server:

Activation

Activation

Target

Figure 5.3. Resolving activation objects

Figure 5.3 illustrates how the layer configuration is determined by resolving to activation objects. 
On the client side, the target name (on the invocation) is resolved to an activation object which is 
used to perform the invocation. On the server side, a target name (passed over by the protocol) is 
resolved to an activation object that prepares and invokes the target method.

Channels 

When a server exports an interface by generating a name for it, some protocol information must 
be passed along with the name, such that clients know how to establish bindings. Therefore, the 
purpose of the protocol part of a name would be to identify the minimum protocol support needed 
to activate a binding to the exported interface. 

This observation also suggests that the activation (layer stack) could be divided into two parts at 
each endpoint: (1) A protocol dependent part20 which is identified in names generated by servers, 
and (2) a protocol independent part which can be resolved/activated dynamically. On the server 
side, the protocol dependent part would normally be the minimum setup needed to listen for in-
coming invocations and to initiate dynamic activation. On the client side, this means that we 
know at binding time what the protocol-dependent part of the activation should look like. How-
ever, it does not necessarily have to be activated before the rest of the stack is activated. 
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There will typically be a small set of such configurations, corresponding to typical protocols and in 
many cases, listening to specific addresses for incoming connections. They are often installed 
early, re-used and shared. Therefore, it is useful to encapsulate common protocol dependent con-
figurations as channel objects. A middleware platform should offer access to one or more default 
shared channel objects and/or an interface to instantiate channel objects.

5.3.2. Bindings

A binding proxy represents a binding which is not necessarily active. When activated, a binding 
proxy has an activator object attached to it. This activator is responsible for managing the layers 
and other resources forming the activation. It is useful to have activators as separate objects (and 
components), in order to encapsulate various ways to manage activations and to support adapta-
tion of bindings by installing or replacing the activator. In this way, a policy is represented by an 
activator component. Each binding proxy implements the interface Binding which defines opera-
tions to explicitly activate, passivate, or to set or replace the activator. Figure 5.4 shows an UML 
class diagram for the binding framework.

Policy
CBinding

SBinding
Impl

CBinding

BindingBase
targetObject

<<interface>>
Activator

Session
Sbinding

<<interface>>
CActivator

<<interface>>
SActivator

<<interface>>
CallDown

<<interface>>
MetaPolicy

<<interface>>
Binding

<<interface>>
SBinding

Sbinding
Delegate

1 1

1
1

1

1

<<interface>>
BindingFactory

1

1

1

1

Figure 5.4. Class diagram for binding framework

Client side bindings 

Figure 5.5. below illustrates how client side bindings activate and invoke operations. When a re-
mote name is resolved on the client side, it results in a proxy object which can be used in place of 
the real target object. Proxies automatically generated from interface types are just stubs convert-
ing typed invocations to generic invocations. Therefore, the rest of the proxy object containing re-
mote addresses, activation information etc., is placed in a separate object, i.e. the binding object 
(CBinding). This object implements the generic invocation interface (CallDown) and can therefore be 
regarded as a layer as well.

The scenario of figure 5.5, is as follows: When receiving a generic invocation from a stub (1), the 
CBinding asks the activator for an activation object (3) by calling its getActivation method. The activa-
tion object contains references to the layers to which the invocation is sent (4). If necessary (typi-
cally at the first invocation), the binding needs to activate (2), which means to instantiate the ac-
tivator. Layers in the activation’s list, except the last one, may return to a special switch layer 
which determines to what layer the invocation is sent next (5). Layers may be linked directly 
which is slightly more efficient but also slightly less flexible.
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Figure 5.5. Client side binding - Activation, resolving and call scenario

 Policy bindings 

To support pluggable metapolicies, we introduce the PolicyCBinding class, which is a subclass of the 
CBinding class. Each instance of this class may contain a reference to a metapolicy object. Each 
metapolicy object implements the MetaPolicy interface which defines the pre_activate, post_activate, 
pre_passivate and post_activate methods. The PolicyCBinding object will call those methods before and af-
ter calling the activate and passivate method. These methods modify the behaviour of activate and pas-

sivate, for instance by negotiating with the server to find and install a suitable policy.

Server side bindings

Server side binding objects (SBinding, etc.) are associated with activators and real target objects. 
Here, we explain the basic design. A binding layer (corresponds to the FlexiNet name layer) is al-
ways a part of a server channel. At each incoming invocation, the binding layer reads an interface 
identifier from the input buffer (the id is a part of a name) and uses it to look up an activation ob-
ject. To do the lookup, the binding layer consults a binding manager which maintains mappings 
from interface identifiers to binding objects representing the targets. When exporting an interface 
(service deployment), the server creates a binding proxy, an identifier and a mapping between the 
identifier and the binding proxy (cf. the object adapter in CORBA). 

Figure 5.6 below illustrates server activation, by showing a scenario of what happens with an in-
coming invocation: The binding manager is asked for an activation for a given identifier, the bind-
ing manager looks up the binding proxy and asks it for the activation (1). A binding has an activa-
tor object if it is active. If not, it needs to be activated (2), before the getActivation method can be 
used (3). Typically, the activator sets up the layers of the activation when instantiated and return 
references to them through the return value of the getActivation method. On the server side, the 
getActivation method has the following signature: 

public ServerActivation getActivation 
         (Dictionary session, Object target)

The invocation which now contains a valid activation object then goes to the a switch layer (4), 
which calls the first layer in the activation object’s list of layers (5). The call goes back to the 
switch layer which calls the next layer in the list. Before a layer is called, the reference to it is re-
moved from the list. When the list is empty, the operation is finally invoked on the target object 
(6).  
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5.3.3. Binder framework

A FlexiBind based ORB can dynamically be configured for different policies and metapolicies by 
plugging in binder and activator components. These components are implemented as relatively 
simple extensions of the binder framework.
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Channel(1) getAct Binding

Mgr
Binding

Act. SW
(2)
activate

(3) getAct --> [T1, < a1 >]
(4) callup (T1, < a1 > )

a1

(5) callup 
        (T1, < > )

(6) callup 
        (T1, < > )

(7) T1.invoke_op(..)

T1
Target

Figure 5.6. Server side binding - activation, resolving and call scenario

Binder components

A binder knows the metapolicy and a specific protocol (in the FlexiNet sense). In our context this 
means both how clients bind to the server and how to negotiate an activation policy between cli-
ents and servers. A binder is responsible for instantiating and configuring binding proxies, in-
cluding associated activators or activator selection policies. On the client side, they are usually 
connected to stubs, and on the server side, it will be registered in the binding manager. Binders 
act as resolvers or generators (like in e.g. FlexiNet and OpenORB). Generators are involved in 
service deployment and resolvers in client binding. Client binder classes implement the Resolver 
interface, and server binder classes implement the Generator interface.  

On the client side, a resolver is responsible for resolving names of remote interfaces to binding 
proxies (and stub objects) that can be used to invoke their operations and possibly before that, to 
perform negotiation of policy. On the server side, a generator creates names for interfaces to be 
exported, and it establishes associations between the names and the target interfaces (through 
binding proxies). A binder component (generator) implements the generateName method. It takes 
the target object and class as arguments, it creates and configures binding proxies and it gener-
ates names for the interfaces. Mappings between the identifier part of names and binding proxies 
are registered in the binding manager. 

public Name generateName 
(Object target, Class target_cls, FlexiProps qos)

A corresponding resolveName method takes a name as an argument and returns the top layer of the 
invocation stack (a binding proxy). Note that our framework provides a common base class for re-
solvers which in addition performs the stub generation, since this is common to all client binders.

public CallDown resolveName 
(Name name, FlexiProps qos) throws BadName
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Activators 

An activator object is responsible for allocating necessary resources and configuring the activa-
tion. A very simple binder could just have the activator set as an object property. More advanced 
binders may decide more dynamically what activator component to use, or they may set up a 
binding proxy with a metapolicy. When handling invocations, the binding proxy would invoke the 
getActivation method of its current activator object to get a reference to the activation (see section 
5.3.1). Activator components may configure the activation (layer stack, resources etc.) when in-
stantiated, but it may also change it later. This allows activators to perform a limited kind of ad-
aptation. Adaptation which involves re-negotiation is done by replacing the activator. An activa-
tor implementation may choose to re-use some of the configuration of a former activator.  

5.3.4. Session management

Given some shared service, different clients or client threads may need to negotiate separate poli-
cies for their bindings to it. Furthermore, a client thread may want to share such a policy among 
a series of subsequent bindings. For instance, objects which are returned from method invocations 
to an object bound to some moments earlier should often just inherit its policy.  

A session is a series of invocations originating from the same client or client thread. In this sec-
tion, we provide a more detailed discussion of how our middleware is engineered, with focus on 
how it supports per-session state and per-session negotiation. For a given service, we may want to 
use separate activations for separate sessions. In some cases, we may want bindings to be estab-
lished within the same session, in order to share a policy negotiated when opening the session. 
Therefore our middleware architecture should support management of session specific state on 
the server side.  

Session specific bindings and activations

We may want some binding information to only be visible in the context of a session. To keep 
track of session specific state on the server side, a session layer keeps track of active sessions. For 
each active session there is a session object containing naming context (a dictionary). The session 
object is used by the RMI protocol layer, but is also carried with each invocation object to be avail-
able for higher level layers as well. Session specific bindings are registered in a session dictionary 
instead of in the binding manager (from figure 5.6). When the binding layer asks for the binding-
proxy corresponding to some name, the binding manager first looks in the session dictionary 
(bindings registered here would therefore be visible only by invocations belonging to the same ses-
sion) and if no binding is found there, the binding manager’s global naming context is searched 
(bindings registered here are visible by all invocations).

When the binding layer asks binding proxies (via the binding manager) for activations, the ses-
sion object is always an argument. It is up to the attached policy to register session specific bind-
ings. Figure 5.7 illustrates how some bindings can be registered in the session dictionary and 
therefore are visible only by invocations belonging to the same session, while other bindings are 
global (visible by all invocations). Different bindings to the same target may have different activa-
tors which creates different activations. In a typical RMI setup, a session manager manages ses-
sion specific state in the RMI layer, but session objects also contain a generic dictionary which 
could be used by the binding layer. 
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Remote binding management

To demonstrate certain aspects of negotiation with our framework, we now describe a simple 
scheme for client-initiated activation on a server, using sessions and a special control interface. 
This implies a metapolicy where the client session just selects a policy and installs it on the 
server. We observe that more sophisticated protocols for negotiating and installing policies follow 
some of the same patterns.  
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Figure 5.8. Remote binding management sequence diagram

During service deployment, the server side generator will in addition to the target interface itself, 
export the Binding interface (the binding proxy), such that it can be invoked remotely. Generated 
names contain two identifiers. One for the target itself (base) and one for the Binding interface (con-

trol). These two identifiers map to two binding proxies (base-binding and control-binding). Client 
metapolicies can then invoke the control interface to activate the binding for the target interface. 
On the client side, the resolver creates instances of the PolicyCBinding class (which is a subclass of 
Binding). Each such binding proxy is connected to a MetaPolicy object (section 5.3.2) which in the 
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pre_activate method remotely invokes the activate operation on the server side control interface (Bind-

ing). Base binding proxies are session specific (one per session). The control binding’s activator cre-
ates such a base binding proxy the first time an invocation asks the control binding for the activa-
tion for a given session. This is registered in the session dictionary, and the remote invocation re-
turns. Then, the client side activates and can carry on with the invocation to the actual target. 
Figure 5.8 summarises this in a UML sequence diagram. 

Generators and binding factories

A control binding is a separate binding to an interface which can be used to control or negotiate 
the behaviour of another binding. In the remote installation scheme described above, there are no 
session specific instances of the control binding proxy. Therefore the scheme is limited to cases 
where the client side decides on the policy and performs server side configuration in a single invo-
cation on the server control interface. In general, we may need session state also for the negotia-
tion process itself. To support this, we extend the simple scheme above to one that can produce 
session specific control bindings. 

The idea is to distinguish between generators (which are used in service deployment) and binding 
factories (which are used for client binding) and let the generator instantiate a special control 
binding, which contains a binding factory. This can be used later to create session specific bind-
ings. Note that this scheme still operates with two identifiers in the name and the session specific 
bindings are handled mainly as described above.
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Figure 5.9. Generator vs. binding factory

Figure 5.10 below illustrates this in more detail. At the beginning of the session, the activation of 
the incoming invocation is looked up (1). The special control binding proxy (created by the genera-
tor) asks its binding factory to create a new session binding (2 and 3). The resulting binding prox-
ies (base and control) are registered in the session dictionary (4), using the identifiers produced 
by the generator. The getActivation call can now be forwarded (5) to the session specific control bind-
ing proxy. 
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meta
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Figure 5.10. Session specific binding scenario
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Session shared policy

In many cases, we do not want to negotiate the policy for every binding in a session. We rather 
want to do this only for the interface initially bound to in a session and let the objects reachable 
from it share both the metapolicy and the policy. This is consistent with the principle of reach-
ability persistence [Atkinson87].

A simple approach to implementing this is to introduce yet another type of binding proxy 
(BindingDelegate). This proxy simply delegates policy related operations to another binding proxy. 
The binder (generator or resolver) for the initial binding can do an extra registration in the ses-
sion dictionary for the resulting binding, using a distinguished identifier value. Subsequent bind-
ing activity (serialising and deserialising interfaces in operation results) within the session will 
use another generator or resolver which simply looks up the initial binding in the session diction-
ary (using the distinguished identifier) and re-uses its policy.

5.4. Negotiation aware bindings

Section 5.3 presents the design of our middleware framework and discusses some issues related to 
session management on the server side. In this section, we discuss how we can support negotia-
tion based on policy trading and profile expressions. Negotiation support will be by extensions to 
the framework described above.

A main problem addressed here is how to generate environmental descriptions describing various 
parts of a system and compose them to environment-descriptors. These expressions could be 
matched with service profiles of candidate policies, using a trading service (as described in section 
3.3). The openness of the architecture implies that we can not always know in advance what com-
ponents are involved and how the components and the platforms are configured. To address this, 
we propose the use of dynamic profiles and inspector objects, and that these are configured 
mainly by binder components. We demonstrate how negotiation can be realised using metapolicy 
objects and an example RMI based protocol. 

5.4.1. Architecture overview

Negotiation is performed by negotiator metaobjects that can be attached to bindings (cf. PolicyBind-

ing framework in section 5.3.2). They implement the pre_activate, post_activate, pre_passivate and 
post_passivate methods to add negotiation of policy to activation/deactivation. On the server side, a 
binder would set up a negotiator metaobject. This object offers a special interface to be remotely 
invoked by client sessions, in order to perform the negotiation (like the control interface in section 
5.3.4). Figure 5.11 below illustrates the binding setup where the target represents the actual ap-
plication object at the server, or a stub object on the client side. This is attached to the binding 
proxy which again is attached to a negotiator, a channel and a dynamic profile (which is es-
sentially an abstract syntax tree of a profile expression). Parts of this tree can refer to inspector 

objects that can generate sub-expressions by inspecting various properties of the platform (for ex-
ample channels). The dynamic profile can be evaluated at run-time to return complete profile ex-
pressions.  



21All the thin lines in the figure represent references between objects. The thick arrow represents 
instantiation of objects. 

22For multiparty bindings with a non-fixed number of participants it may be appropriate to add 
another level of indirection; i.e. we may reference types or groups of activators instead of referenc-
ing activators directly.  

_________________________
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Figure 5.11. Architecture of bindings supporting negotiation21

Example protocol and setup

To demonstrate how negotiation can be supported, we provide a relatively simple setup. We as-
sume a client/server model for simplicity. This is an example of an optimistic protocol in the sense 
that it assumes a low probability of an activation failing due to, for example, insufficient re-
sources (failure will require a recovery procedure which is relatively costly).  

A policy-trading service is located on the server side. It is used by the server side negotiator meta 
object to find a set of candidate policies. The trader database contains a set of policies, each hav-
ing a reference to a client activator and a server activator component (in our prototype we simply 
reference the corresponding Java classes)22. The server side negotiator offers a remote interface 
to client negotiators where the following operations are offered:

● get_Activation. Start the binding process at the server. It takes the user-requirement and the cli-
ent side environment description as arguments. It creates a prioritised list of candidate poli-
cies, and it returns the client part of the first policy to be successfully activated on the server.

● retry_Activation. Tell the server that the client part of the policy failed and that the server should 
try another one.

● activation_OK. Tell the server that the binding process has succeeded and that the server may 
now throw away the list of candidate policies.

● release. Close the binding.

Note that this is a stateful protocol, meaning that a server must keep a per-client record of the 
negotiation until the activation_OK  or release operation is invoked. Figure 5.12 shows a trace of a 
successful negotiation. A corresponding client side binder would set up a negotiation metaobject 
(negotiator) which at the first invocation, or when explicitly requested, computes the two profile 
expressions (application requirements, environment descriptor). These expressions are used as 
arguments to the get_Activation method. The server will then add its own requirement and environ-
ment descriptor and call the trading service which returns a (possibly prioritised) list of policies. 
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The server attempts to install the first policy on that list. If this activation fails, the next policy 
from the list is selected, etc. When activation succeeds, the invocation returns with the cor-
responding client side activator component. The client attempts to activate and if this succeeds, 
the activation_OK operation is invoked to confirm that the negotiation can be finalised, resources can 
be released, committed, etc. If client activation fails, the retry_Activation can be invoked to proceed 
with the next possible policy. 

client server trader

get-activation

trade

select one policy from list
activate

activate

activation-OK

finalise negotiation

(return activator
 to client)

get requirement
get environment descriptor

get requirement
get environment descriptor
compose expressions

Figure 5.12. Example of successful negotiation

5.4.2.  Dynamic profile expressions

As indicated above, the negotiator metaobjects would need to produce and exchange requirements 
and environment descriptors. The requirement part comes from the application program which 
deploys services or binds to services. A problem is how to produce the environment descriptors, 
and we believe that this is a metapolicy issue, since the relevance of the various properties would 
depend on the application, the binding type, the platform, the channel used, etc. As a conse-
quence, the binder would set up the necessary structures to produce such expressions (see figure 
5.13 below) per binding instance (each service deployment or client binding).
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 "(Display[1024, 768] + Colour) ⊕
 (NetEstimated + HighBW + Delay[10])"

Figure 5.13. Evaluation of dynamic profile expressions

Some parts of the descriptors may be static since they do not change during the lifetime of a bind-
ing. This may be the case for platform properties like display resolution or the availability of cer-
tain resources or channels. However some properties may change due to varying load etc. Some 
may also depend on the location of the peer, like for instance estimated end-to-end network delay. 
Such descriptors cannot be fully provided before the time of negotiation. Therefore, we propose a 
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dynamic profile expression scheme: A binder will set up a profile expression tree (corresponds to 
an abstract syntax tree). Parts of it may be dynamic; i.e. we use a special type of tree node which 
must be evaluated at negotiation time to get a complete expression.

With this scheme we can set up the composition of expressions from different parts of the system 
as expressions embedded in the binder code. The construction of a dynamic profile can be done by 
parsing a textual representation, or by explicitly invoking constructor methods corresponding to 
either leaf nodes, sum or component sum operators. For instance, an expression may be con-
structed like this in our prototype: 

Expr disp = 
   Expr.parse("$display ⊕ (NetEstimated + $channel)");

We use the special prefix ’$’ to denote dynamic nodes. In this example we assume that there exist 
a dictionary where inspector objects are registered. The name following the ’$’ symbol is used to 
look up such objects. We further discuss scripting and namespaces in section 5.4.4 below. Other 
prefixes are possible as well (for example, our prototype implementation offer the prefix ’@’ for 
Java classes to be instantiated). 

In our prototype implementation, the abstract class Expr represents expression trees and offers 
much of the functionality related to constructing, composing and resolving dynamic profile ex-
pressions. Note that the conformance checker code also operates on Expr objects. The most impor-
tant methods are : 

● parse(String) → Expr. Generate an Expr implementation (essentially an abstract syntax tree) from 
a textual representation of the expression. 

● evaluate(Expr) → Expr. Resolve dynamic nodes and normalise expression. 

● SUM(Expr, Expr) → Expr. Construct a sum expression from the two arguments.

● COMPSUM(Expr, Expr) → Expr. Construct a component sum expression.

5.4.3. Inspector objects

To support dynamic profiles, we introduce inspector components. Their role is to generate profile 
expression fragments describing platform specific facts or measurable properties of the system, 
when requested. They can be viewed as a generalisation of e.g. QuO condition objects. Inspectors 
offer an interface with a method getProfile which returns expressions. A dynamic profile node con-
tains a reference to an inspector, and inspectors may be shared between profile-expressions. In-
spectors may be installed by platform configuration to report properties of platform wide re-
sources, they may be installed by channels, or they may be installed by binders to report proper-
ties of individual bindings. 

Some inspectors would need to be configured with a target object (a reference to a local implemen-
tation or to a remote interface reference), since they may produce measured properties which de-
pend on the location of the target. Other inspectors may not need to be associated with a target, 
but rather with the platform or resources available. Examples of what inspectors can do include:

● Return the actual size of an application window on the screen. 

● Estimate end-to-end invocation time by invoking probe operations on the remote system. An 
inspector could for instance return a profile "RTT[n]" (where n is a number denoting the 
round-trip delay time in milliseconds). More sophisticated implementations could use policy 
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specific interceptors or layers in the invocation chain which monitor the time for real opera-
tions, however requiring access to an existing activation.

● Determine by probing, if the remote system is reachable by the UDP protocol (not always the 
case if end-systems are on different IP-subnets). This can be useful if policies use UDP based 
invocation protocols or RTP for continuous media streams.

● Estimate the amount of a resource (e.g. network bandwidth) to be available for reservation. 
This would obviously require some operating system resource management service and a mid-
dleware level extension to interface it (see also section 5.5.2). A reservation could for instance 
be implemented as a scheduling class which guarantees that its members (e.g. threads) get a 
certain share of the resource.

● Estimate the load on the CPU, network interface or other resources on the platform. This 
could be combined with (more static) operating system level resource management, imple-
menting performance isolation.

When considering resource reservation, for instance class based resource management, observe 
that the negotiation scheme cannot guarantee that reservation will succeed, unless the mid-
dleware is given exclusive access to the classes of interest by the operating system, and unless the 
negotiation protocol provides proper concurrency control with respect to resources of interest. Re-
source management is a large area, mostly outside the scope of this thesis. However, we evaluate 
to some extent how to interface with resource reservation in section 5.5.1. 

Inspector composition

Inspectors can be composed in the sense that one inspector may use the result of other inspectors, 
and possibly modify or add its own subexpressions. For instance, a metapolicy may wish to spe-
cialise the behaviour of the platform’s display inspector, to reflect that only a certain part of the 
display could be used. A binder could for instance install a special inspector which delegates to 
the platform level display inspector but modifies its output. 

5.4.4. Middleware configuration

Different instances of a middleware platform may be configured differently with respect to inspec-
tors, channels and other resources. A binder may add configurations to the platform as well; in 
particular, it may instantiate inspectors to be used when activating its bindings. A policy compo-
nent should be written with a range of configurations in mind, rather than a specific one. We 
therefore need middleware abstractions to represent configurations. The policy programmer inter-

face scheme proposed in [Hanssen99] can be used to offer platform services and to check if a 
policy component can be used on a given platform. Different configurations are expressed as dif-
ferent interface types. Type conformance is used to check if a policy can be used with a particular 
environment. This is however a rather static scheme which does not easily support components 
which are dynamically installed by policies, and it does not easily support an arbitrary number of 
instances of the same type (which would be the case for inspectors). This is addressed by another 
(complementary) approach, which is to let platform and policy components provide nested name-
spaces (dictionaries) for objects.



23Scripting using the scoping scheme described here is apparently a useful tool for configuring 
platform and policies in general. 

_________________________
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Naming and scoping 

Binder components are meant to be pluggable into various platform configurations. Hence, we 
want to abstract over how inspector objects are implemented and installed. We observe that (1) 
the platform may set up some, (2) channels may set up some, (3) binders set up some, and (4) 
some can be metapolicy specific (set up by binders) but shared between the bindings sharing a 
metapolicy. Binders should be allowed to discover, use and compose such objects. This can be sup-
ported by using naming mechanism as suggested above. We also need scoping, meaning that a 
mapping may be defined to work in the context of a policy, metapolicy, binding etc. If a name is 
not resolved in a local scope, we try a wider scope, etc. Scoping is organised as in figure 5.14. The 
scope of a binding will also include the scope of the platform. We may want to override a name de-
fined in the platform scope. For instance, a metapolicy may wish to specialise and replace the be-
haviour of a (platform scope) display inspector. An inspector object may be placed in the scope of a 
binding and this may again use or modify the behaviour of a platform inspector using the same 
name. This corresponds to overloading a name in a typical programming language.   

This means that a naming context would be associated with each binder, binding, channel and 
platform and that they are appropriately linked with each other. Note that naming contexts can 
also be used for other components or resources than just inspectors. 

platform

channel metapolicy

binding

Figure 5.14. Naming contexts (arrows mean inclusion)

Scripting

The use of a run-time naming and scoping mechanism leads us to the idea of defining dynamic 
profiles as script fragments embedded in binder code23. It is convenient for a metapolicy pro-
grammer to embed textual representations of expressions and let the middleware evaluate them. 
In such expressions one could use prefixing to distinguish parts which are expanded at negotia-
tion time, from profile model names. Names with the ’$’ prefix refer to installed inspectors which 
are looked up like described above. For example, a client binder sets up an inspector named ’rmi-

channel’ which returns the properties of an available RMI channel. An inspector named ’display’ 
is set up by the platform and returns the properties of the display. The client binder code could 
contain the following.

descriptor = "Client + ($display ⊕ $rmi-channel)"

During negotiation, this expression is evaluated: The dynamic profile parts are replaced by ex-
pressions returned by the corresponding inspectors, e.g. $rmi-channel estimates bandwidth and 
delay and returns e.g. "NetEstimated + HighBW + Delay[10]".
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5.5. Evaluation

In this section, we experimentally evaluate our framework with respect to two selected topics. 
First, we investigate how resource reservation in the operating system or network can be incorpo-
rated into policy. We sketch some middleware abstractions and validate our approach with a 
proof of concept experiment. In section 5.5.2, we evaluate how our framework can support binding 
types beyond simple client/server interaction. We design and implement a simple framework for 
publish/subscribe bindings to demonstrate how to realise negotiable publish/subscribe bindings 
with our framework.  

5.5.1. Resource management 

QoS contracts may include assumptions on how resources at the operating system or network 
level are scheduled to the activities of the binding. This is important if contracts include guaran-
tees on real-time behaviour. For instance, if service invocations are to be performed within time-
limits, the CPU must be scheduled to the application threads within certain deadlines, network 
bandwidth and delay must be within certain bounds etc. In particular, distributed multimedia 
applications like video conferencing are known to be sensitive to the QoS of the networking and 
how the CPU, memory and I/O devices on each platform are scheduled. 

It is beyond the scope of this thesis to fully analyse resource management at the system level, but 
we should clarify what overall assumptions we make about that level. We want to test if resource 
reservations (enforced by various underlying platforms) can be used by our policy concept through 
a little set of middleware abstractions and plugins. We design and implement some such abstrac-
tions on top of our middleware framework. Based on this, we demonstrate how to bound invoca-
tion delay by reserving network bandwidth in a situation of heavy load.

Middleware abstractions for resource management

A platform instance is a running configuration of our middleware architecture, deployed on a spe-
cific machine, running a specific operating system. A problem is that the underlying operating 
systems and supporting middleware components are rather different with respect to what can be 
reserved, what abstractions are offered to request reservations, and what characteristics are used 
to describe such requests. This heterogeneity is hard to abstract away from, due to the wide range 
of hardware and application QoS requirements. Therefore, we believe that operations for resource 
reservation should be provided by pluggable extensions to the core middleware architecture.

The following conceptual model seems to be reasonable with respect to how it can be mapped to 
various resource management implementations. The highlights are: 

● Resource manager components encapsulate particular resources or resource groups. 

● Reservation domain objects are instantiated by a resource manager when admitting a reser-
vation request. They represent abstract reservations. 

● The concept of resource consumers to which resources can be scheduled. In the context of oper-
ating systems this could for instance mean processes, threads or communication sockets.

Resource managers and corresponding sets of reservation domains encapsulate and abstract over 
platform dependent O.S. and network level resource management. Alternatively, they could use 
middleware level resource brokers (like for instance in [Chu97]). Conceptually, they have some 
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similarities with e.g. resource groups in RT-Java [RTJ], resource containers or reservation do-
mains in Eclipse or Nemesis (cf. section 2.3.1). In principle, this model could be realised as a 
meta-space [Blair01], where underlying resource properties of platforms, applications or bindings 
can be reified as these three types of programmatic objects.  

Resource managers and reservation domains

Our architecture is designed to allow pluggable inspector components (section 5.4.3). Such compo-
nents could also abstract over resource reservation and act as resource managers. The idea is to 
extend the inspector interface with an admission test operation. This operation takes a variable 
set of parameters (the actual parameters are specific for the resource manager class) and returns 
a reservation domain object if admission is successful. 

ResDomain canReserve(Object ... parameters);

The reservation domain object offers operations to associate resource consumer objects to it, 
meaning that resource consumption by these objects would be charged to the reservation domain. 
Assuming that all resource consumers implement an interface ResConsumer, the reservation do-
main interface could offer: 

boolean addObject (ResConsumer x);
boolean commit(); 
void release();

The commit operation actually performs the reservation. With this framework, one could do admis-
sion testing on a set of resource managers before deciding to actually reserve or not. We should 
also offer an operation to release reservations.

A resource manager and its corresponding reservation domains may encapsulate one single re-
source or a combination of multiple resources (e.g. CPU and network). They can be directly 
mapped to e.g. operating system level resource contexts or resource containers like e.g. CKRM 
classes, DSRT or RSVP service classes (section 2.3.1) or RT-Java [RTJ] processing groups. It is 
also possible to implement a resource manager as a composition of other resource managers. Note 
that the inspector operation can be used to describe the resource manager and what it can do. A 
policy specification may state the requirement for a certain type of resource, and policy trading 
ensures that a selected policy would have compatible resource managers in the platform where it 
is deployed. For certain types of resources (but not necessarily all), inspection may also include 
the amount of the resource available for reservation.  

Usage in policies

It would mainly be the responsibility of the policies to specify reservations used for the various 
parts of the binding (if such are needed). A separation of concerns between the policy implementa-
tion component (activator) and the resource management policy is also desirable, to allow the re-
use of an activator component with alternative reservation policies. The framework sketched here 
allows some separation of concerns between activator and resource reservation policy. The figure 
below illustrates how a policy consists of four aspects: User profile (contract obligation), service 

profile (environment assumptions), implementation (represented by an activator) and resource re-

quirements. Resource requirements can be formulated as a set of references to resource manager 
objects, each with a list of parameters to be used with the canReserve operation. The activator does 
not need to know much about resource manager objects; it can be given the resulting resource 



24A similar result could also be achieved using a composition of priority queueing dicipline and 
traffic shapers based on the token bucket model. 
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domain interfaces to pass to the relevant resource consumers without needing to know their im-
plementations. 

user
profile

service
profile

implemen
tation

resources

policy reservation
domain
interfaces

Figure 5.17. Aspects of policy

Resource consumer objects

Resource reservations need to be associated with the activities or data traffic which consume the 
resources. Operating system reservation services typically use process identifiers (or thread iden-
tifiers) for CPU reservations, or file-descriptors (network sockets or files) for network or file sys-
tem reservations. For network reservations, it may as well be necessary to use IP-addresses and 
port-numbers to identify a stream. An implementation of a reservation domain could for instance 
pass such information to a RSVP daemon.  

It would depend on the reservation domain type, if and how objects are to be associated with the 
reservation. Conceptually, reservation domains may offer a method addObject. An activator may 
call that method for each relevant resource consumer object belonging to the activation or session. 
Those resource consumer objects would be middleware engineering objects like threads, buffers, 
certain types of layers, sessions, or channels. The addObject method of each reservation domain 
would inspect the objects and, if needed, extract the more platform specific information, like 
thread identifiers, file descriptors or IP addresses. This approach has the advantage of encapsu-
lating platform and resource specific decisions in pluggable resource manager components, while 
the policy may be written to be portable across some range of platforms. However, activator im-
plementers would need to know how objects are used by activations and may also choose not to 
call the addObject method for a given resource consumer if it knows that it would not be used.

Implementation and experimental results

To prove the feasibility of the concepts and abstractions (using resource managers with policies) 
described here, we did an experiment. The Linux operating system offer advanced management of 
the scheduling of packets going in or out of network interfaces. We use this to reserve bandwidth 
for outbound traffic, which in our case let us test the idea of reserving network bandwidth for in-
dividual streams without relying on an IntServ or a DiffServ architecture. Proper reservations, 
shaping and policing at each endpoint, possibly combined with SLAs and a DiffServ architecture, 
could provide reasonable network QoS for some cases.  

We establish a scheduling class hierarchy based on the HTB (Hierarchical Token bucket) schedul-
ing discipline available in the standard Linux 2.6 kernel [Devara02]. Figure 5.18 shows our 
scheduler hierarchy24. The total bandwidth (2 Mbit/s in this case) available at the root is shared 
between two classes: The first class reserves all available bandwidth to our middleware resource 
manager. Packets are placed in the best effort class by default, which gets bandwidth not used by 
the other class (possibly, a minimum amount can be reserved for it to prevent starvation). The 
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resource manager can, as a response to reservation requests, dynamically add subclasses to its 
class, reserving a fraction of its total available bandwidth. It keeps track of the sum of such reser-
vations to prevent overbooking, in order to perform admission testing and to report bandwidth 
left available (through the inspector interface).  

In our implementation, the session object is used as a resource consumer object (see above), The 
session object (see also section 5.3.4) contains information about the network connection (IP and 
port of client) and may carry a range of session specific information from the various parts of the 
layer stack. Just using the session seems to be sufficient for some cases. In general, the imple-
mentation of resource managers may need to make assumptions on how middleware abstractions 
are implemented or mapped to operating system abstractions in addition to how the operating 
system schedules resources. For instance, there is not an implied one-to-one mapping between 
Java threads and O.S. kernel threads, and information about such mappings is not available from 
the Java virtual machine in a standard way. 

HTB scheduling 
discipline

root class: 
rate: 2MB/s
ceil: 2MB/s

best effort class: 
rate: 0kB/s
ceil: 2MB/s

reservable class: 
rate: 2MB/s
ceil: 2MB/s

reservation: 
rate: as requested
ceil: 2MB/s

. . . 

Priority scheduling
discipline (Linux default)

Stochastic fair queuing
scheduling discipline

Figure 5.18. Scheduling hierarchy for network output

Our reservation domain has a method addSession (instead of the more generic addObject method), 
which takes a session object, extracts the destination IP address and port of the binding and uses 
this to add a packet filter to the kernel which places all packets with that destination in the cor-
responding scheduling class.

Figure 5.19 shows the result of measuring end-to-end invocation delay with and without reserva-
tion. We performed 200 invocations which read data blocks of 40 kbytes each, periodically. The 
server was connected to the internet via a 2MB/s line. We placed an additional 90% load on that 
line (by continuously requesting large images from a web server), and did the experiment twice: 
First without any reservation (dotted line) and thereafter with a policy that reserved 200 KB/s of 
bandwidth to the binding (solid line). The graph confirms that under such heavy load where 
queuing of packets on network interfaces is significant, bandwidth reservation can effectively 
bound invocation delay. 
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Figure 5.19. Invocation delay with and without bandwidth reservation

5.5.2. Alternative binding types

In our experimental work, we have mostly focused on the client/server architecture and bindings 
which enable remote method invocations from one client to one server. However, we claim that 
the proposed architecture is applicable to other binding types as well. The concept of binding 
types is defined and explored in [Parlav03] where the ideas are validated by applying them to a 
set of different binding types: The RMI binding type, a binding type representing the 
publish/subscribe pattern, and an auction binding type.  

In this section we investigate how we can support the publish/subscribe binding type. Here, we 
have two main roles of participants: Publishers, which post asynchronous events (or notifications) 
and subscribers which receive events. Publish/subscribe has a relationship with streaming (e.g. 
media streaming), and can have a wide range of QoS issues, architectures and implementation 
options. It is more than the observer pattern [Gamma95]. The main strength is the full decou-

pling in time, space and synchronisation. Much research is being performed in the area, and we 
refer to [Eugster03] for a survey 

The figure below illustrates the overall idea of a publish/subscribe service. Publishers and sub-
scribers can also be viewed as clients to a publish/subscribe service. Subscribers invoke it to re-
quest subscriptions to event streams, possibly with requirements with respect to content filtering. 
Similarly, publishers post events.  

event stream

pub/sub service

publisher

subscribers

Figure 5.20. Publish/subscribe service



25C.f. the Observer pattern [Gamma95]. An observer is an interface for notifications or events. 
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Publish/subscribe as a binding type

Publish/subscribe (pub/sub) interaction can be viewed as a binding type that allows multiple par-
ticipants, each playing the role of either publisher or subscriber. Different instances of this bind-
ing type would represent different event streams, and different QoS properties could be negoti-
ated for each of them. This does not exclude the possibility of negotiating content based filtering 
or QoS local to individual subscribers. It is useful to also model publishers and subscribers as cli-

ents to an abstract pub/sub service. Subscribers would use this service to request subscriptions to 
event streams, possibly with QoS requirements. Similarly, publishers would request interfaces to 
post events. Realisations of the pub/sub binding type may use the mechanisms of the simpler RMI 
binding type. Figure 5.21 illustrates how we can model a pub/sub service in the ODP computa-
tional viewpoint. The interfaces are as follows: 

● The notify interface, offering a notify method, to deliver events. 

● The pub/sub interface, offering methods to publish (request a notify interface), and to sub-

scribe (give the service a notify interface for callback).

Subscribers may want to implement the notify interface25, and publishers may want to invoke it. 
The pub/sub service would implement notify interfaces on behalf of subscribers and invoke the 
notify interfaces on behalf of publishers. The interfaces could be implemented in different ways, 
depending on requirements, architecture, resource availability, etc.
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notify

abstract 
pubsub
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This operation returns
an instance of the notify
interface. 

Called with an instance of the 
notification interface as argument
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publisher

?

Figure 5.22. Computational model

Engineering of binding infrastructure

It is relatively straightforward to engineer this model with our framework. A generator would 
deploy an abstract pub/sub service by generating a binding proxy and a interface reference for it 
(see figure 5.23). The setup is rather similar to the simpler client/server case discussed earlier in 
this chapter. However, there will be no base-implementation of the pub/sub service or the event-
stream at this point. This implementation would be completely negotiable at the time of activat-

ing the binding. 

A binding protocol should be supported, for instance as a RMI interface. Publishers and subscrib-
ers invoke operations on that interface to join or leave the binding. These operations are imple-
mented by the negotiator object, which may consult a policy trader to find a policy. Information 
necessary for activation (activator, network addresses etc.) would be returned to the participants. 

Given an active binding, the publisher would call a local notify interface proxy to post notifica-
tions. Subscribers would implement the same interface. How events from publishers are conveyed 
to subscribers is however transparent and completely up to the policy. 
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Figure 5.23. Server side binding

Figure 5.24 illustrates the client side (publisher or subscriber). Like in the simpler RMI case, a 
resolver would set up a binding. This is associated with a negotiator object that is able to contact 
the negotiation interface of the server. This negotiation may result in activation on both sides. Ac-
tivations provide implementations of both the pub/sub service interface and the event stream. It 
should be transparent for the application code if the interfaces are remotely or locally imple-
mented. The FlexiBind framework lets us bind to a service before it is decided how to implement 
it. Note that we may need to install more than one generator and resolver. In addition to one 
generator/resolver set for the abstract pub/sub interface, we would need one extra generator for 
deploying notify interfaces at subscribers and one extra resolver at publishers for binding to no-
tify interfaces. 
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Figure 5.24. Client side binding

Implementation

We implemented a prototype framework for pub/sub bindings as described above, and we tested it 
with some example policies to validate that our concepts are feasible. The implementation in-
cludes a generator for the abstract pub/sub service as well as a resolver for publishers and sub-
scribers. A negotiator pair realises a simple negotiation protocol (see section 5.4.1). For testing, 
we provide a simple implementation of a pub/sub interface and an associated notify interface. It 
mainly keeps track of subscribers and copies incoming notifications to notifications on subscrib-
ers. This implementation can (by policies) be instantiated in different configurations: 

● A simple policy is to install the pub/sub service implementation on a separate server and let 
publishers and subscribers interact with it via RMI. The server activator would instantiate 
the service and update the binding between the identifier-part of the interface reference and 
the implementation target. Publisher and subscriber activators can be empty (except for what 
is needed for basic RMI interaction). 
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● An alternative is to install the service implementation in the publisher capsule, where the 
publisher application invokes it locally. Subscribers invoke it remotely. The publisher activa-
tor instantiates the service implementations and updates binding between identifier and im-
plementation. The subscriber activator must update the target address in the binding proxy 
(must be conveyed from the server during negotiation). Obviously, this policy limits the 
number of publishers to at most one.

● Similarly, we could place the implementation on the subscriber side, which is not very practi-
cal since there can then be at most one subscriber.

Discussion 

This demonstration shows how pub/sub bindings can be made highly negotiable. We may locate 
service implementations at publishers, subscribers, servers or combinations. Instead of just dupli-
cating and forwarding RMI invocations, we could use more advanced event stream implementa-
tions instead. For example, activations may be based on multicast protocols.

An important issue with pub/sub bindings and multi-party bindings in general is that all partici-
pants are not necessarily in the binding at the same time; they should be allowed to come and go 
over time, without disturbing the operation of other participants. This means that there may be 
negotiations and resulting policies involving only subsets of participants. Even if we may want to 
(conceptually) model a multi-party binding as having one single contract, the realisation of a 
given negotiation should be allowed to be limited to as few participants as necessary. This is obvi-
ously important for scalability. In the architecture described here, the arrival of a participant 
means initiating negotiation with just that participant.  

When a participant joins a binding having existing activations, it should (if possible) use a policy 
consistent with the rest of the binding, both in the contractual sense, and in the sense that the 
different parts of implementation can interoperate and work correctly. If that is not possible, we 
may need to change other parts of the binding in order to accommodate the new participant. This 
raises issues of adaptation and metapolicies. In any case, it is necessary to manage the different 
parts of binding-implementation. We must for instance ensure that shared state is not ac-
cidentally duplicated. There are two alternative ways of joining existing bindings that have 
shared implementations: 

● To define alternative policies. One policy implementation has an extra piece of code which in-
stantiates the shared implementation (and shared state). The other has code to hook into ex-
isting implementations instead. Service profiles must state assumptions on existing imple-
mentation components to ensure that the right alternative is selected. In our experiments (see 
also section 6.2), a special inspector component (the channel manager) reports the existence of 
event channels (and their QoS properties) which could be re-used by joining participants. The 
disadvantage of this approach is that we may need to register a number of policies having the 
same obligations. The advantage is that activator implementations are simpler. 

● To use the same policy for both cases, but the activator implementation can detect if it needs 
to install shared implementations or just connect to one. In our experiments a server activa-
tor checks if a pub/sub implementation exists on a predefined name (see section 5.4.4), and 
instantiates one if not. This approach has the advantage of reducing the number of policies 
but implementations may be more specialised and may thus be less reusable. 
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5.6. Concluding remarks

In this chapter, we describe our middleware framework and how it supports dynamic binding con-
figuration by using pluggable and replaceable policies. The distinction between bindings and 
their activations represent an extra level of indirection to decouple policy and application pro-
gramming which may simplify how we understand adaptive bindings. Consequently, we identify 
two types of pluggable policy components: (1) Binders, which represent protocols and metapolicy 
and (2) activators, which dictate how protocol stacks and associated resources would be config-
ured. An activation would essentially be a configuration of layers which represent aspect imple-
mentations. This is an untyped approach to reflective interception of invocations in the sense that 
layers conform to an interface containing a generic invocation method. Bindings are represented 
by binding-proxies which are attached to an activator (when active) and (possibly) a metapolicy 
object which defines how activators are selected.  

Negotiation is performed by negotiator metaobjects which can be attached to bindings. Negotia-
tion mainly involves collecting environmental properties from the platform, requirements from 
the applications and that binding participants exchange information with each other to reach a 
decision on which activator to select for a given binding. It would be up to the metapolicy (bind-
ers, negotiators) how system information is reflected as environment descriptors. Each binding 
instance would be associated with a dynamic profile; i.e. a profile expression with placeholders for 
parts to be determined by querying at negotiation time. Such querying is done on inspector ob-
jects which map from platform dependent characteristics to the more abstract profile model. This 
means that QoS mapping is highly configurable and set up or modified by binder components. 
This scheme has the advantage of being flexible but requires some conventions for naming of in-
spectors. 

Middleware frameworks should abstract over rather different resource models in operating sys-
tems. A simple model is sketched: resource managers, reservation domains, and resource consum-
ers. We demonstrate how this approach can be used for bandwidth reservation to bound invoca-
tion delay. Our approach seems to support some level of separation of concerns between activators 
and resource reservation requirements, which is good for activator code reusability.  

Though our framework design has been mostly focused on client/server RMI interactions, we 
claim it can be used to realise other binding types as well. This can be validated by investigating 
how alternative binding types, in particular those involving more than two participants. We did 
this for publish/subscribe bindings. By designing and implementing a framework for this binding 
type (resolvers, generators, simple negotiators and some simple test policies), we produced some 
evidence that it is feasible to realise negotiable pub/sub bindings using policy trading and our 
middleware framework. However, this experiment did not focus on how to design the policies and 
metapolicies beyond simple negotiation. The design space is so large that we should investigate a 
particular application domain as well. We do that in the next chapter. 
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Chapter 6. 

Application case studies

In this chapter we apply the policy trading scheme and profile model to two application scenarios 
in order to test the feasibility of our approach. In section 6.1, we investigate how web applications 
can exploit policy trading to automatically accommodate varying conditions and requirements. A 
combination of user requirements and characterisations of the client browser and the web-server 
(including e.g. display size or server load), lead to the selection among various pre-defined con-
figurations of server components (policies). This experiment indicates for instance that profile ex-
pressions may be more compact and composable than e.g. CC/PP profiles [W3C-04a] and that 
there may be a need for extensions to the core profile model to better support interoperability. 

In section 6.2, we investigate how to realise a publish/subscribe binding type and how to make 
their implementations negotiable. We focus on how to provide a high level of negotiability 
through partitioning an event stream into a set of event-channels (possibly realised by multicast 
IP) that subscribers can select from. With this approach, it is for instance possible to stream video 
to multiple subscribers having different requirements. Here, the main interest is in how we ex-
ploit policy trading to manage event-channels. 

In section 6.3 we do some performance measurements on some of the policy matchings used in the 
two cases in this chapter.  

6.1.  Web application case 

The increasing use of web technology for public services, users with various needs, mobility, 
browsers with varying capabilities, and the use of portable devices, motivate web applications 
which are able to automatically adapt their behaviour or presentation. A current approach is to 
promote the separation of concerns between content and presentation aspects. The use of cascad-
ing style sheets (CSS) and scripting can help in adaptation of web content on the client side. Some 
earlier research, propose techniques for filtering content in proxy servers, for instance to better fit 
into smaller screens [Bickmore97], or to give better response times in low bandwidth situations 
[Fox96]. 

In some cases, it may be more efficient to adapt the behaviour and presentation on the server side 
as well. This may also enable a wider range of adaptations, and both client and server properties 
may be taken into consideration. This implies negotiation in the sense that client sends its prefer-
ences and description of browser capabilities to the server. The server uses these to make deci-
sions on how to adapt the content. W3C standards (CC/PP) for user agent characterisation exist 
[W3C-04a], which illustrates that this is not a new idea. However, the current standard has some 



26Client scripts can for instance adapt by replacing stylesheets or programmatically manipulat-
ing the abstract syntax tree of the document or other properties of the browser.

27Though the HTTP protocol is stateless, it is often desirable to establish client sessions, in order 
to maintain application specific state shared between subsequent requests. Sessions are typically 
implemented by using cookies. A session can be started when a user logs in or (more transpar-
ently) at the first request (use timeout to end sessions).  

_________________________
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problems and has not yet reached a wide acceptance. For instance, it is complicated to implement 
and has weak support for composition of profiles (see section 6.1.5).

Examples of issues which could be negotiated and handled by policies include: 

● Scaling of images or other media content on servers, e.g. resizing or reducing quality, to save 
bandwidth. There is a trade-off between media-quality and response time when bandwidth is 
limited. 

● Converting formats (or scale) of media content to be compatible with client capabilities, such 
as supported formats, display resolutions etc. 

● Reorganising of layout and behaviour due to different display sizes. For small displays, one 
may use more pages/requests with less information on each, and unnecessary illustrations 
may be removed.

● Skipping unnecessary navigational information and offering short-cuts and advanced options 
for experienced users. 

● Adapt behaviour (degrade quality of service) due to server overload. This can be combined 
with admission control on client sessions as discussed in [Cherka02]. 

6.1.1. Architecture

We focus on how to decide on adaptations mainly on servers. This does not exclude the possibility 
of adapting web-applications on clients or proxy-servers as well26. Figure 6.1 illustrates how we 
may exploit policy trading in a web server context. Negotiation can happen at each request or 
when initiating a client session27. Negotiation results in a decision on how to present the content 
components (software components, document fragments) and (possibly) how to configure imple-
mentation resources, backend-services etc. We may associate a server or a server application with 
a set of policies, each which dictates a possible configuration.

request
select 
policy

policies

application 
componentsclient

browser Proxy

request

Backend
server(s)

web server

Figure 6.1. Web server architectural model



- 123 - 

Exchange and composition of profile expressions

At each request, or at the start of each client session, the browser would need to pass two profile 
expressions over to the server: One which represents user requirements (resulting from user pref-
erence choices) and one characterising the browser’s capabilities and possibly other environmen-
tal properties like network QoS. These can for instance be conveyed by using HTTP request head-
ers (in an extended version of the HTTP protocol), or by using request parameters. The easiest 
way to do that, is to add the expressions as extra (hidden) parameters in a HTML form (e.g. 
login). This approach is limited to session negotiation and is not completely transparent, but it is 
sufficient for testing our ideas.

The profile expressions can be composed as discussed in chapter 3 and 4; i.e. the proxy and the 
server may add their own environment descriptors by using the component sum operator. 

Implementation 

We use the implementation of a profile model compiler, a conformance checker (described in chap-
ter 4) and a policy trader demonstrator to evaluate the example described in this section. In addi-
tion, based on the Java Servlet architecture [JSR154] and on the experiences from reflective mid-
dleware (chapter 5), we are able to compose and configure web content components and compo-
nents which can intercept requests and responses, in order to modify the behaviour of the applica-
tion. In [WComp] we develop a component framework and a scripting language for such composi-
tion. An interceptor for HTTP requests can collect profile expressions coming from clients, and 
(possibly) consult a policy trader to select a policy which is then invoked. A policy would denote a 
particular configuration of components; it may be represented by a script fragment, and it may 
present an interface to be called to serve the request. Different policies may for instance share ap-
plication components, but do the composition differently. 

6.1.2. User profile expressions

User profile expressions represent application or user requirements (or preferences) which should 
be understood as constraints (or offers to satisfy constraints). If a profile model for the web ap-
plication domain is defined, such expressions could be generated by a web browser (based on user 
preference selections). Sometimes, it can be useful to extend a generic web browsing profile model 
with more application specific parts (for example for e-commerce or telemedicine applications). In 
that case, the user preference selections and negotiations could be better supported by the ap-
plication specific forms and/or scripts. Examples of profile-names include: 

● ’Inexperienced’ - Suited for inexperienced users. This may be interpreted as if generated con-
tent should contain more explanations, or simplify certain choices/questions. 

● "Advanced" - Give access to advanced features (for advanced/experienced users). 

● "Frame" - Navigational information, headings and footings or similar should be removed, such 
that the content is suitable for presentation in a frame. A subprofile of this cold be "Frame-

Noimg". This means that images should be removed from the content as well. 

● "Accessible" - The content should be strictly conformant with the W3C accessibility guidelines, 
such that it is possible for browsers to extract the essential information. Note that "Frame" 

also may serve such a purpose and may be subprofile of "Accessible".



28The current HTTP standard allows a request header for conveying the client display size but 
this is seldom used in practise. 

29The current HTTP standard defines a request header containing a list of supported Mime 
types. 

_________________________
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● "HighQuality" - Client requires high quality images (or possibly other aspects). In our exam-
ple, this means that images should be high resolution and high colour which could be particu-
larly useful in a scientific/medical image browsing/rendering scenario. It could be up to the 
application to put a specific meaning into this. 

● "QuickResponse" - The user should not have to wait too long for responses. This could mean 
that most responses come within a second and/or that the average round trip time is better 
than e.g. 0.5 s. 

6.1.3. Service profile expressions

Environment descriptors from clients would mostly denote browser capabilities. A typical issue is 
the display size28, the actual window size or other display characteristics. A related issue is im-
age or multimedia viewing capabilities29. A browser environment descriptor could also include 
other relevant characteristics like network QoS or the presence of special interfaces, protocols or 
the existence and properties of plugins. Server side environment descriptors could for instance de-
scribe resources (including availability of certain software components) used to convert/re-scale 
multimedia content.

Other components like proxies between the client and the server may as well add sub-expressions 
to the environment descriptor, for instance the capability to transform or re-scale media content 
to different formats, size, colour etc. Such components may compute the environment descriptor 
string dynamically, by looking at the supported media types and formats from the client and in-
cluding the types/formats which it is able to transform. A simple example of this is policy #11 of 
table 6.1 where the proxy announces its ability to convert HTML into WML by adding an expres-
sion which satisfies "(Proxy + WML-Filter)". 

Media support in browser

Browsers may have different capabilities with respect to displaying different media formats (e.g. 
images). If this is reflected in a browser service profile, a server could decide to convert or omit 
images if the format is unsupported by a browser. Figure 6.2 below shows a possible profile 
graphs for some typical image formats.

GIF PNG JPEG

Std-Still-Image

Std-Image

Anim-GIF MNG

Figure 6.2. Image format support profiles
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In our model, we can define subprofiles which represent certain combinations, thus allowing sim-
pler expressions for common situations. For instance, most browsers could simply say "Std-

Image" instead of listing all supported Mime types. Note that if we have established that "Std-

Still-Image" satisfies "GIF+PNG+JPEG", the model does not say that the opposite is true as well. 
If the browser states: "GIF+PNG+JPEG" while the service profile of a policy states "Std-Still-

Image", we may want these to match. Unfortunately, the core profile model does not allow sums 
in conformance rules (see also the next paragraph). The rules are: 

Std-Image ≤ Anim-Gif ≤ GIF (rule 1)
Std-Image ≤ MNG ≤ PNG (rule 2)
Std-Image ≤ Std-Still-Image ≤ PNG (rule 3)
Std-Still-Image ≤ JPEG (rule 4)

Display properties

One could also express if the display is capable of colour. We may use subprofiles to reflect that a 
display which is capable of displaying full colour would also satisfy requirement for greytones or 
monochrome, etc. It is also straightforward to express display resolution as parametrised profiles. 
Note that we want to describe the size actually available for the application, which often would be 
the window size rather than the display size. The rules are: 

Colour ≤ GreyTones ≤ Monochrome;  (rule 5)
Res[x1, y1] ≤ Res[x2, y2], if x1 ≥ x2 and y1 ≥ y2; (rule 6)

It is more flexible but somewhat more space consuming to define separate profiles for each dimen-
sion: E.g., XRes[x] and YRes[y]. This illustrates how our model can address the problem that dif-
ferent communities may use different notions for the same phenomenon (see also section 4.5). De-
fining a proper set of mapping rules allows the trader to resolve the differences automatically. For 
instance, one may use a profile definition using both dimensions, while another may use separate 
profiles for each dimension. We may define rules for that: 

Res[x1, y1] ≤ XRes[x2], if  x1 ≥ x2; (rule 7a)
Res[x1, y1] ≤ YRes[y2], if  y1 ≥ y2; (rule 7b)

With these rules, the expression "Res[100,100]  ≤ XRes[100] + YRes[100]" will evaluate to true. 

However we may also want "XRes[100] + YRes[100] ≤ Res[100,100]" to be true as well, which is 

not the case. This means that it would have been useful if our profile model could be extended to 
allow rules to be defined for sums: 

XRes[x1] + YRes[y1] ≤ Res[x2, y2], if x1 ≥ x2 and y1 ≥ y2;  (rule 7c)

Network QoS

Network QoS characteristics are typically latency and bandwidth, and it is straightforward to de-
fine rules for those. However, profiles would need to be used in some context to define their mean-
ings more completely, for instance if a latency is estimated or guaranteed. One could define com-
pletely different profile names with similar rules, but it may be better to define different contexts 
as separate profile names. In this example, we define the following basic profiles representing 



30In some cases, it can be useful just to able to distinguish between users with a normal broad-
band internet connection and those using a slow and expensive mobile phone link. 

31It is outside the scope of our model to define or manage such meanings, but contractual QoS 
languages like CQML seem to be suitable for that. 

_________________________
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network entity descriptors. They are meant to be used with a latency and/or a throughput basic 
profile: 

● "NetConnection": Characteristics of the connection to the internet. We cannot really deduce 
the end-to-end QoS from this kind of description. However, it can give some indication30 of 
what can be expected under normal load and it can be provided without knowing the address 
of the opposite end.  

● "NetEstimated": The QoS is estimated end-to-end. It could be estimated by measuring the 
round trip delay or the actual throughput. One could also deduce an estimated QoS from 
knowledge of the path to the other end or the type of network in between, for instance if both 
ends are on the same LAN. "NetEstimated" could be defined to be a subprofile of "NetConnec-

tion". Observe that while latency would be partly meaningless for "NetConnection", it would 
make sense for "NetEstimated". 

● "NetGuaranteed": The QoS is pre-negotiated or reserved end-to-end (it represents certain 
guarantees). This would be a subprofile of "NetEstimated". 

For this example we simplify somewhat and define three classes of latency and bandwidth respec-
tively. This should be sufficient for many web applications. The network related rules are: 

NetGuaranteed ≤ NetEstimated ≤ NetConnection ; (rule 8)
VeryLowLatency ≤  LowLatency ≤ NormalLatency ; (rule 9)
VeryHighBW ≤ HighBW ≤ NormalBW ; (rule 10)

In this example, "Normal" may mean what normally can be expected for internet connections (for 
instance max 1s latency or min 100Kb/s bandwidth). "High" may mean QoS normally only found 
in LANs or shorter paths (e.g. max 0.50ms latency or min 5Mb/s bandwidth), "VeryHigh" could 
mean quality found only in dedicated networks or LANs (max 1ms latency or min 100Mb/s band-
width). This example illustrates that a profile name may be given different interpretations (what 
they mean in terms of measurable characteristics) in different contexts31, i.e. it may make sense 
to interpret for instance the bandwidth profile "HighBW" differently in the context of "NetConnec-

tion" than in the context of "NetNegotiable". Also observe that such abstract profiles allow for 
changing interpretations over time as technology changes without changing the profile models. 

Other properties

It could be useful (when related to sessions rather than single requests) if we could report and use 
dynamic properties like server load. This could be reported by some application-specific inspector 
component (section 5.4.3). It is of course not trivial how to use such measurements in general to 
guarantee QoS while being resource efficient. A simpler approach is that certain policies require 
that a system is moderately loaded or better in order to reduce the probability of overloading the 
system. 

LowLoad ≤ ModerateLoad ≤ HighLoad ; (rule 11)
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Expression examples: 

A browser which can only display still images, except for animated PNG, and 200x100 display: 

Std-Still-Image + MNG + XRes[200] + YRes[100]

A browser like in the first example, but with a high bandwidth network connection. If the server 
is detected to be in the same high quality LAN this will lead to an estimated QoS: 

(Std-Image + Res[200, 100]) ⊕ (NetConnection + VeryHighBW) 
  ⊕  (NetEstimated + VeryHighBW + VeryLowLatency)

To characterise a device which is capable of 200x100 display in colour mode or 400x800 in mono-
chrome mode an environment descriptor can be like the following. This corresponds to parallel-or 
composition (section 4.5.4). It can be hard to express such composition in CC/PP (section 6.1.5).

(Res[200, 100] + Colour) ⊕ (Res[400, 800] + Mono)

It is possible to use component-sums to express more than one type of capability in the same ex-
pression, for example that the connection has certain properties and that the end-to-end QoS is 
estimated (statistically from round-trip measurements) to be of a certain level.  

(NetConnection + ModerateBW) ⊕ (NetEstimated + LowLatency )

6.1.4. Negotiation scenarios 

In this section, we sketch a set of example policies and how a trader may select from these, based 
on a request from a client.  

Policy examples

Table 6.1 below shows some examples of policies. We assume that the resulting web pages contain 
text, images and typically some navigational information.  

# Policy description User profile Service profile

1 "Standard configuration": normal size 
images, full colours, navigation menus.  

HTML + Res[800, 400] + Std-Image + Colour

2 "High quality configuration": high reso-
lution and high quality images (e.g. for 
medical/scientific use). Higher level of 
configurability.

Experienced + 
HiQuality

(HTML + Res[1200, 900] + Std-Image +  Colour)
⊕ (NetConnection + NormalBW)

3 Scale down images (to JPEG format), 
remove unnecessary parts of lay-out. 

HTML + Res[600, 300] + JPEG + Colour

4 Convert all images to medium quality 
JPEG (high level of compression)

HTML + Res[800, 400] + JPEG + Colour 

5 Same as P#4, but with a certain level of 
network and server QoS, it can satisfy a 
requirement for quick response times. 

QuickResponse (HTML + Res[800, 400] + JPEG + Colour) 
⊕ (NetEstimated + NormalBW + LowLatency) 
⊕ (Server + ModerateLoad)

6 Like P#4 but for smaller display. Im-
ages are not scaled down but the re-
moval of explanations and parts of navi-
gation structure will free some space 
which may leave some more space to 
other parts of the layout.

Experienced HTML + Res[400, 200] + JPEG   +  Colour

7 Like P#1 but skip explanations, sim-
plify navigation structure, add some 
advanced option to the menu. 

Experienced HTML + Res[800, 400] + Std-Still-Image   + Colour

8 Show only text part (and possibly im-
ages in the text). 

Frame HTML + Res[800, 400] + Std-Still-Image + Colour

9 Show only text part. Frame-noimg HTML
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# Policy description User profile Service profile

10 Suitable for very small displays, remove 
most images, remove (or minimise) 
navigation part of page and place them 
in separate pages. 

 HTML + Res[200, 100] + JPEG + Colour

11 Same implementation as P#6 on the 
server, but in addition tell proxy to do 
translate into WML.

(WML + Res[200, 100] + Std-Still-Image  + Colour) 
⊕ (Proxy + WML-Filter)

Table 6.1. Policy examples

Negotiation examples

Example 1: The client is a PDA connected via a wireless LAN having a 500x250 pixel display, and 
which supports HTML and still images. The corresponding environment descriptor isEc = (HTML + Std-Still-Image + Res[500, 250] + Colour) ⊕ 

    (NetConnection + NormalBW + NormalLatency)

This would satisfy P#6, P#9 and P#10. P#6 should probably be preferred since it better utilises 
the display (more information in one page, fewer clicks to navigate). Note that the list of policies 
is ordered such that the trader would select it first. 

Example 2: The client requires QuickResponse and has a 1000x800 pixel display, and it supports 
the standard set of image formats. The client is close to the server, such that the network QoS 
would be estimated to be very high bandwidth and low latency. The client sends the request to 
the server which has a low load at the moment of negotiation. The client and server environment 

descriptors are combined: E = Ec ⊕ (’Server’ + Es). The resulting expressions would match P#5. R = QuickResponseEc = (HTML + Std-Image + Res[1000, 800] + Colour) ⊕ 
    (NetEstimated + VeryHighBW + VeryLowLatency)Es = LowLoad

Example 3: If R is set to empty in example 2, the request would match all policies, except P#2 and 
P#11. A policy trader could for instance select the first found, i.e. P#1, and also here, it is neces-
sary to order the set of policies according to what we want to be preferred. However, different or-
derings may be suitable for different clients. For instance, if resource economy is important, we 
may prefer P#1. If user-QoS is more important, we may prefer P#5 instead. This example il-
lustrates that though a single ordering may be satisfactory in many cases, there may be cases 
where the ordering is dependent on the client.

6.1.5. Related standardisation

CC/PP (composite capabilities/preference profiles) is a W3C standard [W3C-04a], defining ab-
stract syntax and transfer syntax for exchange of client device characteristics and user require-
ments, to support context aware or adaptable web-applications. CC/PP is based on RDF [W3C-
04b] which constitutes a metalanguage (with at least one corresponding XML encoding) in which 
CC/PP profiles can be defined. In CC/PP, profiles are essentially name/value pairs. A profile is 
structured as a set of components, each of which can be described by a set of attributes. The types 
for attribute values can be simple or complex; i.e. they can be declared as sets or sequences as 
well as atomic types. 



32The UaProf [OMA03] also includes a software-platform (operating system) component type, but 
this is not needed in our exampe. 

33The profile resolution in particular, may lead to interoperability problems since it is not stand-
ardised how this is done. Profile resolution is necessary since profiles may be split into fragments, 
possibly describing the same concepts. 
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A CC/PP vocabulary is a defined as a set of allowed names and types for attributes plus their as-
sociated meanings. Vocabularies are meant to be application- or application domain specific. How-
ever, the W3C recognise the interoperability problem (section 4.5.3). Vocabularies correspond in 
some sense to concrete profile models. However, a CC/PP vocabulary does not formally define se-
mantics to facilitate conformance checking or profile validation. Semantics may be defined infor-

mally within vocabularies, but this is not required or encouraged by the standard. In essence 
CC/PP leaves the interpretation of the values used to the processing application. 

Figure 6.3 below shows a simplified picture of a CC/PP profile corresponding somewhat to the en-
vironment descriptor in example 1 (A full representation of the CC/PP profile would be too big 
and complicated to be illustrative here). We assume that we are allowed to define our own vo-
cabulary, but our choice of component types is similar to UaProf32. Note that we can use the col-
lection type (BAG) to represent the supported image formats and languages. It is possible to use 
references to e.g. service-level names, but the definition of such names would be outside the scope 
of CC/PP. 

Profile

Component: HardwarePlatform

              ScreenSize: "500x250"
              Colour: "true"

Component: Browser

              SupportedImgFormats: BAG
                      "JPEG"
                      "GIF"
                      "PNG"

              LangSupport: BAG
                       "HTML"
                       "WML"

Component: NetworkConnection

               Bandwidth: "Normal"
               Latency: "Normal"

Figure 6.3. CC/PP example (simplified)

Matching cannot be facilitated by just associating profiles with policies. In general, it is necessary 
to specify rules for how parameter values are matched with policies.   

This illustration shows how our model can simplify the expression of capability and preference 
expressions to be exchanged between negotiation partners. A core model defining conformance 
matching rules, along with concrete defining conformance rules, contributes to this. CC/PP is on 
its side criticised (cf. e.g. [Butler02]) for being complex, but also for its limited expressiveness and 
potential interoperability problems33. It is difficult to combine profiles from independent actors, 
in particular if those profiles describe the same types of components (for instance, it is not clear 
how to merge two profiles each with a hardware platform component). This is also one of the rea-
sons why it is hard to express certain types of composition.
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6.1.6. Discussion

In this section, we investigate how policy trading and our profile model can be applied to web ap-
plications, such that they can be made adaptable to different user requirements, different browser 
capabilities, network connections and dynamic properties like server load. Browsers may add re-
quirements and environment descriptors to each request or at the initiation of a session.  

Policies may share implementations; i.e. in some cases, the only differences between policies are 
their profile expressions. For instance, the implementation of policy #4 above may satisfy a 
"QuickResponse" requirement if its environment satisfies a service profile with additional con-
straints on network QoS and server load. Another example is that low or expensive network 
bandwidth may be another reason (in addition to small browsing devices) to select policy #3 or #4 
instead of policy #1. For simplicity, this is not reflected in table 6.1, but is possible. 

We observe that more than one policy may match during a given negotiation, but only one of them 
should be selected. We do not focus on how to order the alternatives to maximise user satisfaction, 
cost, resource utilisation, or some combination. We adopt a simple (but somewhat ad. hoc.) ap-
proach which is to order the policies in the trader repository according to the policy designer’s 
knowledge on what should usually be preferred. This is satisfactory in many applications but not 
necessarily all. As indicated in example 3 above, goals may be conflicting and different situations 
may require different orderings. Approaches like worth based negotiation or utility functions (see 
section 2.2.3), would not be easily adaptable to our profile mode since they are based on param-
eter values. 

A related issue is that negotiation will fail if no matching policy is found (our model implies full 
satisfaction or failure). In many cases, there are acceptable alternatives. For instance, if a user 
requires ’Experienced’, policies which cannot satisfy it would not be selected. It may however be 
acceptable for the user to select an alternative, if no such policies are found. A simple and effec-
tive solution is that clients can provide an ordered list of requirement expressions instead on a 
single one. This also illustrates that when designing profile models, we should keep in mind that 
an user-profile describes requirements to the policy rather than characteristics of the user. The 
profile ’Experienced’ illustrates this, and is problematic. For example, users not requiring ’Experi-

enced’ can get policies for experienced users, which may not be what we intended. It may be bet-
ter to use a profile ’Inexperienced’ which requires that the service should be suitable for inexperi-
enced users.  

We have also seen that declared conformance rules are limited to pairs of basic profile types. We 
may want to extend our profile definition language to allow rules involving a basic profile and a 
sum. Our model should be extended to accommodate this. 

6.2. Multi-subscriber streaming

In section 5.5.2, we discussed how to support publish/subscribe bindings with our middleware ar-
chitecture. Here, we have two main roles of participants: Publishers which post asynchronous 
events (or notifications) and subscribers which receive events. Publish/subscribe can be used for 
streaming (e.g. media streaming) and can have many QoS issues, architectures and implementa-
tion options. A publish/subscribe binding type could for example be used to stream video to multi-
ple subscribers, each having different capabilities and requirements. The transport and filtering 
of events representing video frames could be done by negotiable components. In this section, we 
apply our policy trading approach to such a case where the main problem is to manage a set of 
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shared event channels. By analysis and a proof-of-concept experiment, we find that the most obvi-
ous way of using policy trading is not generally feasible with multiple event-channels. However, 
the architecture can be extended to better support scalability. In particular, a two-level trading 
approach is investigated.

6.2.1. Introduction

In Eide et. al. [Eide03, Eide05], it is demonstrated how to exploit content based publish/subscribe 
networking to address the challenge of providing video streaming clients with fine grained selec-
tivity along different quality dimensions, while maintaining efficiency with respect to resource 
consumption. This approach is claimed to allow a more dynamic and flexible streaming solution 
compared to more traditional approaches. A prototype is implemented as a proof of concept. 

A video stream can be modelled a number of events representing different layers or aspects of the 
stream. Receivers can subscribe to subsets of the stream, and they are thereby allowed to inde-
pendently trade-off between video quality characteristics and resource requirements. For exam-
ple, it is possible to subscribe to a lower frame-rate than available from the publisher by filtering 
out the wanted frames. For scalability and resource efficiency, it is important to do most of the 
filtering close to the source, exploit multicast networking, and to share multicast channels when 
possible. Figure 6.4 illustrates how this may look like. A video server publishes events which are 
mapped to different multicast channels. Clients would select channels for subscriptions based on 
attributes of the events they carry. For example, client #2 subscribes to a reduced quality while 
client #2 subscribes to full quality. It can use the reduced quality channel (share it with client #1), 
but it needs an additional channel for the remaining notifications. The filtering and mapping to 
channels are based on attributes attached to each notification. 

Multicast 
event channels

filter,
map

filter,
map

filter,
map

publish

notify

notify

Video server

Video client 2
(full quality)

Video client 1
(reduced quality)

sid=1, tl=2, ql=3, f=1, row=1, col=1, data={...}

ql<2

ql≥3

Attributes: 

Figure 6.4. Video subscription case

Dimensions and complexity of mapping

The video stream encoding scheme allows the stream to be split into "layers", according to a set of 
dimensions: time, quality, colour and picture-blocks (to select sub-areas of the frames). Each 
frame can be represented as a series of notifications; one per layer. The dimensions are as follows 
(we refer to [Eide03] for a detailed explanation): 

As discussed in [Opyrchal], exploiting multicast in content-based publish/subscribe systems can 
in general be a rather complex problem. The number of possible event-channels may grow expo-
nentially with the number of participants or dimensions (depending on the application). With n 
channels, there are 2n-1 possible ways to subscribe to a selection of those channels. However, due 
to application specific semantics, only a subset of the possible subscriptions are meaningful. For 



34This is strictly for the purpose of negotiation. The actual notifications may go directly between 
publishers and subscribers or via multicast channels (depending on the policy).  
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example, we would not subscribe to quality layer 3 without also subscribing to layer 1 and 2. With 
the dimensions in table 6.2, and if we set x and y to 3, there can be up to 72 notifications per 
frame. If we add the time dimension, there are 4´72=288 different types of notifications, and we 

may need up to 288 event channels to support full selectivity without redundancy (some events 
are filtered out on the subscriber side, or some events are transmitted on more than one channel). 
There will be up to 25´4´4´2=800 different meaningful ways to subscribe if selected blocks are 

limited to rectangular sub-areas of the picture (without that constraint the number is higher). In 
practise, we would need fewer channels if channels could carry more than one event-type. Fur-
thermore, we can use heuristics or manually defined mappings (to cover expected typical cases). 
This means that we may accept some redundancy.

Name Range Description

tl 0-3 Time dimension. Adding a higher layer corresponds to a doubling of the frame rate

ql 0-3 Quality dimension. Adding a higher layer increases the quality (signal/noise ratio).

f 0-1 Luminance (0) and chrominance layers (1) are separated. f>= 1 means full colour.

col 0-x coloumns (we choose x = 3).

row 0-y rows (we choose y = 3).

Table 6.2. Dimensions

6.2.2. Our approach

We now investigate how we can address a similar problem using our policy trading approach 
(chapter 3), profile model (chapter 4) and some of the concepts of chapter 5. Like in [Eide03], we 
assume that the application is run within a local area network. In our design, publishers and sub-
scribers would need to contact a pub/sub service located at a server34 in order to establish bind-
ings. This server keeps track of the channels (using a channel manager), and uses a policy trader 
to pre-register and select suitable policies for each case. A policy would subscribe to existing chan-
nels and/or create new ones. Figure 6.5 illustrates this.

publisher subscriber

channel
manager

policy
trader

server

negotiate
binding

negotiate
binding

send
events receive

events
event channels

result
of trading

Figure 6.5. Publisher/server/subscriber architecture

Focus and assumptions

We make some assumptions and simplifications: First, we assume that there is at most one pub-
lisher per binding. In many cases, it is reasonable that different publishers require different bind-
ings if the content differs and the subscribers would want to distinguish between them. Second, 
we do not support the row/coloumn dimension. Adding the row and coloumn dimensions (for 



35Instance of channel config corresponds to mapping specification in [Eide03]. 
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selection of a sub-area of interest) would be straightforward, if we assume that the areas are con-
tinuous. It can also be argued that sub-picture selection is not a QoS issue. Like [Eide03] we oper-
ate within a single LAN. We also assume that there exists a single server per LAN. We also focus 
on the QoS dimensions that are directly associated with events (like those shown above), though 
it is relevant to at least discuss how other dimensions can be added. For instance, network band-
width, delay and jitter could be associated with multicast channels.

Characterising subscriptions and event-channels

Our profile expression model (chapter 4) can be used to characterise subscriptions and event 
channels. This is used in policy trading and in the channel manager. We first define a simplified 
model for the user level requirements (to characterise subscriptions). The profile type ’TQ’ has 
two parameters: an upper constraint of the time dimension and the quality dimensions of table 
6.2. ’TQ[3,3]’ would for instance imply time and quality layers from 0 to 3. In addition the profile 
’Colour’ indicates that the video stream carries colour information. The rule is: 

TQ[t1, q1] ≤ TQ[t2, q2], if  t1 >= t2 AND q1 >= q2; (rule 1)

For describing event channels, we define separate profile types for the time and the quality di-
mension, and we use two parameters for each: A lower and an upper limit. This is reasonable 
since an event channel may carry any sub-interval of the available layers. For user level subscrip-
tions, we need only the upper limit (we use all layers up to a certain level). The profile name 
’VChan’ is used to indicate that we describe event channels, ’Chrom’ denotes the presence of a 
chrominance (colour) layer and ’Lum’ denotes the presence of a luminance layer. The rules are: 

tl[x1, y1] ≤ tl[x2, y2], if  x1 >= x2 AND y1 >= y2; (rule 2)
ql[x1, y2] ≤ ql[x2, y2], if  x1 >= x2 AND y1 >= y2; (rule 3)

Channel configurations

Now, it is an issue how to partition the event stream into event channels (preferably multicast), 
each carrying a subset of the events. We refer to a particular way of partitioning the stream into 
event-channels as a channel configuration35. Given such a configuration having n channels, there 
are 2n-1 ways (in theory) to subscribe to (subsets of ) those channels. In practise, only a subset of 
the possible subscriptions would be useful (as discussed above). If we focus on a subset of the di-
mensions introduced above; tl, ql and f, there are 4´4´2=16 different types of notifications. This is 

also the size of the largest reasonable channel configuration. 

Based on assumptions about usage and the resource consumption of events, we may find accept-
able configurations having fewer channels. For instance, let us assume that most clients would 
request at least tl and ql layer 0-2, and that some clients request tl and ql layer 3 in addition. 
Furthermore, assume that it is common to request video without colour (the degradation policy 
may be to trade off the colour layer first when there is lack of resources). Then the configuration 
shown in table 6.3 below is sufficient most of the time. It has four channels. Observe that there 
are dependencies between channels. For instance, we do not use channel 2  if not also subscribing 
to channel 1, etc. (the chrominance layer is not useful without the luminance layer and tl and ql 
layer 3 are not useful without layer 1-2). Profile expressions of table 6.3 are used to describe the 
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channels. In the following we will use such descriptions in different ways, for example as part of 
service profiles or environment descriptors.  

# Event channel description Profile expression

1 Time layer up to 2, quality layer up to 2, luminance 
only (intensity information, no colours)

VChan + tl[0,2] + ql[0,2] + Lum

2 Time layer up to 2, quality layer up to 2, chromi-
nance only (colour information)

VChan + tl[0,2] + ql[0,2] + Chrom

3 Time layer 3, quality layer 3, luminance. VChan + tl[3,3] + ql[3,3] + Lum 

4 Time layer 3, quality layer 3, chrominance. Vchan + tl[3,3] + ql[3,3] + Chrom

Table 6.3. Channel examples

Channels of a configuration are not necessarily all active at a time in the sense that resources (in-
cluding network addresses, sockets, etc.) are allocated to them. This may be more important with 
configurations having a high number of channels, and where it is not feasible to activate all at the 
same time. A related issue is how and when to activate (or de-activate) the channels. The simplest 
approach is to define and activate at the time of deploying a service. However, a given channel-
configuration may have a high number of possible channels, and it may not be desirable (or even 
possible) to activate all at startup time (or at any time). We may want to activate and deactivate 
event-channels dynamically. We refer to this as tactical channel management. 

In the following, we focus on tactical management. However, there may some cases where the 
channel-configuration itself should be adapted, for instance by splitting or merging channels. For 
instance, if there is just one subscriber, we may start with one channel (carrying all events) and 
split it later as more subscribers arrive. The process of coordinating such adaptation could be part 
of a global adaptation process governed by strategic managers [Ecklund02]. We refer to such glo-
bal channel-reconfiguration as strategic channel management.   

Channel manager

A channel manager manages a channel-configuration; i.e. it keeps track of which channels are ac-
tive, and it helps in activating and de-activating channels. There will be one instance per (pub-
lisher) binding. Channel managers are located at the binding-server. In the two-level trading ap-
proach described below, the channel manager can find already active channels (using profile ex-
pressions), it can activate channels by using an activators (resulting from policy trading) and it 
can de-activate channels not used by any subscribers. 

6.2.3. Simple trading

We need to address how the configuration is defined and how channels are activated. A possible 
approach is to encapsulate all this into policies. This is tempting, since channel activation is an 
application domain specific task rather than a generic middleware functionality. Policies would 
be used to define the subscriptions to the channels necessary. The service profiles (of policies) 
state what channels are needed. This is matched with information about existing channels, which 
could be provided by an inspector interface (see section 5.4.3), which is provided by the channel 
manager. The information about existing active channels may also be used to select a policy that 
also activates the remaining set of channels.
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Example policies 

If we apply this approach to the channel-config example above (4 channels with dependencies), we 
need at least 4 policies for subscribing, and 10 policies for activating. 14 policies in total. Table 6.4 
below shows the profiles and informal descriptions of these policies. Note that ordering is signifi-
cant (we assume it selects the first matching policy in the order). It is essential that policies that 
subscribe to existing channels are placed before policies that create the same channels. For in-
stance, policy #1 re-uses the channel created by policy #5, #7, #9 or #14. The service profile of 
policy #1 will ensure that it is selected if the channel exists.    

# Policy description User profile Service profile

1 Subscribe to channel 1. TQ[2,2] VChan + tl[0,2] + ql[0,2] + Lum

2 Subscribe to channel 1 and 2 TQ[2,2] + Colour VChan + tl[0,2] + ql[0,2] + (Lum ⊕ Chrom)

3 Subscribe to channel 1 and 3 TQ[3,3]  VChan + ( ( tl[0,2] + ql[0,2] + Lum) ⊕ 
                  ( tl[3,3] + ql[3,3] + Lum ) )

4 Subscribe to channel 1, 2, 3 and 4 TQ[3,3] + Colour VChan + ( ( tl[0,2] + ql[0,2] + (Lum ⊕ Chrom) ) ⊕ 
                  ( tl[3,3] + ql[3,3] + (Lum ⊕ Chrom) ) )

5 Add channel 1. TQ[2,2] null

6 Subscribe to channel 1, add channel 2 TQ[2,2] + Colour VChan + tl[0,2] + ql[0,2] + Lum

7 Add channel 1 and 2. TQ[2,2] + Colour null

8 Subscribe to channel 1, add channel 3 TQ[3,3] VChan + tl[0,2] + ql[0,2] + Lum

9 Add channel 1 and 3. TQ[3,3] null

10 Subscribe to 1, 2 and 3, add channel 4. TQ[3,3] + Colour VChan + ( ( tl[0,2] + ql[0,2] + (Lum ⊕ Chrom) ) ⊕ 
                  ( tl[3,3] + ql[3,3] + Lum ) )

11 Subscribe to 1 and 3, add 2 and 4. TQ[3,3] + Colour VChan + ( ( tl[0,2] + ql[0,2] + Lum) ⊕ 
                  ( tl[3,3] + ql[3,3] + Lum ) )

12 Subscribe to 1 and 2  add 3 and 4. TQ[3,3] + Colour VChan + tl[0,2] + ql[0,2] + (Lum ⊕ Chrom)

13 Subscribe to 1, add 2, 3 and 4. TQ[3,3] + Colour VChan + tl[0,2] + ql[0,2] + Lum

14 Add all TQ[3,3] + Colour null

Table 6.4. Policy examples

Limitations

The simple trading scheme described here has serious limitations with respect to scalability. In 
general, it is infeasible, except for a small number of channels. The main reason is that when 
specifying policies that activate channels, every possible combination of already active channels 
needs to be handled explicitly. If there are no dependencies among channels, the minimum 
needed number of policies obviously grows exponentially with the number of channels. To il-
lustrate this problem, try to add policies to support ’TQ[2,3] + Colour’ (with subscriber side frame 
dropping) to the example (table 6.4) above. We will need 6 additional policies to cover all possible 
channel-activations. It may be also a tedious and error-prone task to construct each such alterna-
tive manually. For instance, our experiments indicate that if we fail to cover all alternatives, 
there is a danger of producing duplicate channel instances. 

In addition, using environment-descriptors to describe all available event-channels is not feasible 
for a high number of event-channels. Recall that conformance testing using our profile model 
(chapter 4) are computationally efficient for a low or moderate number of components. Further-
more, long expressions are not very readable for humans and would probably contain redundant 
subexpressions.  
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6.2.4. Two-level trading

Because of the limitations of the simple policy trading scheme described above, we consider an 
alternative negotiation approach where the channel manager can activate channels on demand 
(i.e. when subscribed to) and where policy-trading is applied at two levels: One for subscribing to 
sets of channels, and one for activating each individual channel. With this approach, we can re-
duce the minimum number of "create-channel" policies to one per channel.  

Our experimental design uses activator components (see section 5.3.3) both for subscriber bind-
ings and for individual channels. The first level involves activators for subscriber-bindings (to be 
used by the subscriber and the server). These activators would ask the channel-manager for the 
channels they need. The channel manager consults a policy trader to get policies for channels. 
These policies contain activators to be deployed on the server (and possibly the publisher). If trad-
ing is successful, the channel manager activates the channel and returns the result. It also stores 
the activator(s) in its own repository, in order to allow subsequent binding to re-use the channel. 

Unlike the simple trading approach, the first level policies do not specify the channels needed in 
service-profiles. A policy does not need to assume that certain channels are active. The policy im-
plementation contains a list of needed channels, which are still described using profile-
expressions. Expressions are used by the channel manager, and in second-level trading, in order 
to get to existing channels or channel-policies that satisfy the requirements. They are matched 
with the user-profiles of channel-policies (since they describe the resulting behaviour of channels). 
The service profile can be used to describe requirements for the environment the channel is to be 
activated in, e.g. properties of the server platform, the publisher platform or the network.  

Example policies

If we apply this approach to the channel-config example above (4 channels with dependencies) we 
now need 4 policies for subscribing and 4 for activating; 8 policies in total. Table 6.5 shows the 
policy configuration. Note that adding support for ’TQ[2,3] + Colour’ (with subscriber side frame 
dropping) would now require only one extra policy. Note also that service profiles are empty since 
this is a minimum policy configuration focusing only on channels. However, we can use service 
profiles for other things. 

# Policy description User profile Service profile

1 Subscribe to channel 1. TQ[2,2] -
2 Subscribe to channel 1 and 2 TQ[2,2] + Colour -

3 Subscribe to channel 1 and 3 TQ[3,3]  -

4 Subscribe to channel 1, 2, 3 and 4 TQ[3,3] + Colour -

5 Add channel 1. VChan + tl[0,2] + ql[0,2] + Lum -
6 Add channel 2 VChan + tl[0,2] + ql[0,2] + Chrom -
7 Add channel 3 VChan + tl[3,3] + ql[3,3] + Lum -
8 Add channel 4 VChan + tl[3,3] + ql[3,3] + Chrom -

Table 6.5. Policy examples
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Environmental properties

To illustrate that environment and service profiles are important, let us extend our focus some-
what, to consider properties other than the events themselves. First, let us assume that the high-
est quality layer requires a subscriber display with a certain minimum resolution, using the pro-
file ’Display + HiRes’ (high resolution). Let us assume that not all displays are capable of han-
dling colours, hence the profile ’Display + Colour’. Let us also assume that the policies of channel 
3 and 4 need to reserve outbound bandwidth on the publisher node. We refer to section 5.5.1 for 
an example on how we can do such reservation and how a resource manager can report the 
amount of reservable bandwidth as a profile expression (through an inspector interface). The ad-
dition to the rule base is straightforward: 

BwReservable[x1] ≤ BwReservable[x2], if  x1 >= x2; (rule 4)

These assumptions affect policy #2, #3, #4, #7 and #8.  See table 6.6 below  (’Sub’ means sub-
scriber and ’Pub’ means publisher). 

# Policy description User profile Service profile

2 Subscribe to channel 1 and 2 TQ[2,2] + Colour Sub + Display + Colour

3 Subscribe to channel 1 and 3 TQ[3,3]  Sub + Display + HiRes

4 Subscribe to channel 1, 2, 3 and 4 TQ[3,3] + Colour Sub + Display + HiRes + Colour

7 Add channel 3 VChan + tl[3,3] + ql[3,3] + Lum Pub + BwReservable[800]

8 Add channel 4 VChan + tl[3,3] + ql[3,3] + Chrom Pub + BwReservable[1000]

Table 6.6. Adding environmental assumptions

Negotiation scenarios

Example 1: Subscriber 1 wants a stream with at least the lowest rate, quality level 2 and colour. 
It sends a request to the binding server. The server may add to the requirement and the environ-
ment descriptor before the policy trader is consulted.   

R = TQ[1,2] + Colour
E = Sub + Display + Colour + HiRes

The expressions would match policy #2 and #4, and policy # 2 is chosen. The server side activator 
for this policy consults the channel manager to get channel 1 and channel 2. Since the channel 
manager does not have existing channel activations matching these requests, the trader is con-
sulted again, using the expressions of the requested channels as requirements. Before doing that, 
it composes an environment descriptor by consulting the inspector of the publisher (and possibly 
other inspectors).   

R1 = VChan + tl[0,2] + ql[0,2] + Lum
R2 = VChan + tl[0,2] + ql[0,2] + Chrom
E  = Pub + BwReservable[2000]

The trader returns policy #5 and #6. The corresponding activators are deployed on the publisher 
which actually activates the channels. The request from the subscriber returns with information 
about the active channels (IP-addresses), and the subscriber side activator of policy #2.   

Example 2: A subscriber wants a stream with the highest rate, quality level 2 and colour. The 
first-level trading request is: 

R = TQ[3,3] + Colour
E = Sub + Display + Colour + HiRes
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The trader returns policy #4, and its activator will request channel 1, 2, 3, and 4 from the channel 
manager. Channel 1 and 2 are already active so they are just returned. Channel 3 and 4 must be 
traded for, and two requests are made, including an environment descriptor from the publisher, 
which reports that only 1500 kB of bandwidth is available (due to a high load). 

R = VChan + tl[3,3] + ql[3,3] + Lum
E = Pub + BwReservable[1500]

Policy #7 is successfully traded and activated including reservation of bandwidth. When trading 
for the other channel, the environment descriptor has changed. 

R = VChan + tl[0,2] + ql[0,2] + Chrom
E = Pub + BwReservable[700]

This trading request will fail since there are no matching policies. Now, the first level activation 
would also fail, meaning that the whole binding will fail, and the channel manager should be no-
tified to de-activate unused channels. Alternatively, the subscriber could give an alternative re-
quirement, for example by dropping the ’Colour’ part of the requirement. In that case, policy #3 
could be used instead, which does not require channel 4. It would succeed by just getting the al-
ready active channels from the channel manager. 

6.2.5. Implementation

The two designs described above are explored and evaluated by means of a proof of concept imple-
mentation. The main goal is to test a negotiation process based on using policy trading. Our im-
plementation is based on the design described in section 5.5.2. A channel manager, a slightly spe-
cialised version of the server negotiator and a set of demonstrator activators are added. Instead of 
the real event-channels and video streaming we use placeholder stubs. We first explore the sim-
ple trading scheme and quickly discover its limitations. Then we investigate the 2-level trading 
scheme. Except the policies themselves, the main differences between the two approaches, are in 
the channel manager. 

Channel manager

The channel manager keeps track of available event channels and may initiate creation of such. 
An event channel would (in a full multicast based implementation) be a multicast IP address and 
a filter configuration on the publisher side, which make sure that events are transmitted using 
the right network destination addresses. Similarly, subscribers need to know what addresses to 
listen on and how to handle incoming data. In our experiment, each channel is described by a 
unique identifier (to simulate address allocation) and a profile expression to characterise the 
events it carries (and possibly other QoS properties). The channel manager also acts as an inspec-

tor to be used in the server negotiator dynamic profile expressions (see section 5.4.2 and 5.4.3).  

In the case of using simple trading, the channel manager offers methods to add, find, or remove 
channels. The inspector operation gets a list of profile expressions describing each available chan-
nel, and it combines those expressions using the component sum operator. 

In the case of two-level trading, the channel manager offers methods to get or remove channels. 
The manger keeps activators representing active channels in a local repository. The get method 
first checks this repository, and if an activator is found there, it is asked for an activation to be 
returned as the result. If not found, a policy trader is consulted to find new activators. It returns 
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policies satisfying the profile expression describing the wanted channel. Each policy contains acti-
vator classes for the server and the publisher. The manager tries to activate the policies in turn. 
As soon as activation succeeds for a policy, its server-activator is stored in the repository and the 
result is returned. For publisher activation, the manager would invoke a method on the publisher 
to install the publisher-side activator. The manager needs to keep track of the participating pub-
lishers (in this case, only one). The inspector method may return properties of the publisher(s).

Binders, negotiators and dynamic profiles

The binders (resolver and generator classes) used in section 5.5.2 are re-used with minimal modi-
fications. Each binding instance is set up with an instance of the channel manager (channels are 
not shared between different bindings). The server side negotiator (which implements the binding 
operation) would set up the profile expressions to be used to invoke the policy-trader, as follows: 

ureq = Expr.SUM(Expr.parse(up), _localUP);
envd = Expr.COMPSUM(Expr.parse(sp), Expr.evaluate(chanmgr.getProfile())); 
plist= _ppi.getTrader().lookup( ureq, envd );

The user requirement is a sum of a local requirements, _localUP (local requirement) and up (the 
requirement coming from the client). The environment descriptor (envd) is a component sum of 
the environment descriptor coming from the client and the result of calling the inspector opera-
tion of the channel manager.  

Demonstrator activators

A set of activator components are implemented, corresponding to the example policies presented 
above. We focus on server activators. They interact with the channel manager to find channel-
information and to create new channels when necessary. We implement them as a generic class 
which takes three parameters: (1) A profile expression describing the channels to subscribe to,  (2) 
a set of channels to be created in the case of simple trading and (3) an informal description of 
what happens. This generic class is subclassed into concrete activators by just adding the needed 
parameters. Channel-activators for the two-level trading approach are very simple. On the server 
side, they just allocate a unique identifier (to simulate the allocation of a multicast address). All 
activators share this functionality.  

Publisher- or subscriber side activators establish local implementations of the pub/sub service in-
terface like in section 5.5.2. In a full implementation, publisher activators would attach the notify 
implementation to a mapping and filtering function that either drops events (if no subscribers) or 
routes them the appropriate event-channel implementations. The mappings would in the case of 
two-level trading be updated by publisher side channel activators. 

Subscriber implementations would need to collect incoming events from a set of multicast ad-
dresses and decide if to deliver them to the application’s notify interface (if they match the sub-
scription). Server activators would produce the set of multicast addresses for the channels which 
are passed over to clients by the negotiation protocol. Except that they would follow the same pat-
tern as our demonstrator activators. Concrete policies are made by just parametrizing the generic 
class by a description of channels to be re-used or created. 



37Properties that are shared among components, have to be expressed repeatedly for each compo-
nent when expressions are in the normal form (section 4.3.3). 
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6.2.6. Discussion

A goal of this investigation is to see how our policy trading approach and profile model can be ap-
plied to a binding type with multiple participants. We study a case where video is distributed to 
multiple receivers using a publish/subscribe binding type, and where QoS selectivity is ap-
proached through subscription to proper sets of event channels (possibly multicast), carrying dif-
ferent aspects of the video stream. Channels may be activated, deactivated (and possibly defined) 
dynamically. 

Using multiple multicast channels like this is appealing for several reasons. For instance, doing 
event-filtering close to the source, rather than close to the consumer, can save resources of net-
work and receiver nodes. This approach can however be complex in terms of the number of event 
channels needed to support full selectivity with minimal redundancy, as well as the number of 
possible subscriptions. In practise, we can exploit knowledge of applications and QoS dimensions 
to reduce this complexity.

Our policy trading and conformance matching scheme can be attractive in this context, in the 
sense that meaningful configurations and subscriptions can be defined statically as policies and 
channel configurations. Therefore, the search for solutions at run-time can be rather simple. Our 
experiment negotiate subscriptions and channel-activations based on static channel configura-
tions. This is possible and feasible if we trade subscriptions and channel-activations separately. A 
second level trading operation can be skipped by letting the channel manager create channels di-
rectly. Making channel-activation negotiable is slightly more complicated but more flexible: The 
system can more easily adapt to heterogeneous and changing environments (publisher environ-
ments in particular), and QoS requirements. Furthermore, support for new or changing platforms 
can be added by just adding new policies to the trading service. 

Our experiment is based on static channel configurations. In general, we may want to change con-
figurations dynamically, for instance by splitting or merging channels. This will require changes 
to the set of policies in the trader repository, which raises some issues. First, the order of search-
ing policies is significant, meaning that if a policy is replaced by a set of policies, they may need to 
be inserted in different places in the order, depending on the other policies. Second, there is a 
many-to-many relationship between channels and subscription policies, which complicates the 
management of policies. Third, replacing a channel which is in use may require the clients using 
it to stop and re-negotiate. 

Our experiment indicates that profile expressions are suitable for matching both policies and 
channels (chanmgr). There are limitations though. We may view channels as components and use 
the component sum operator to form expressions describing a number of channels. This seems at-
tractive, but only with a limited number of components. Both the readability of expressions and 
computational complexity may suffer if there is more than a handful of components. Though de-
normalising may help36, it can also be somewhat inefficient to describe a number of similar com-
ponents. This raises the question if it is useful to extend the profile language with iteration or re-
cursion operators, in order to allow composition of possibly unknown numbers of similar compo-
nents.  
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6.3. Performance measurements

Based on the experiments in this chapter we did some measurements of the time it takes to 
match and find policies. Table 6.7 below shows the results in microseconds. Using the rule base of 
section 6.2 (web case) we tested with null requirements and environments for which no policies 
exist. We then measured the time for example 1 and example 2. Using the example policies of sec-
tion 6.2.3 (single level pub/sub case) we traded for a full colour full quality binding assuming ei-
ther two active channels or four active channels. We did the tests several times, on a 2.8 GHz 
Pentium 4 computer running Linux kernel 2.6.9 and Sun Java 1.6.0, and we computed the mean 
values for matching each policy and for finding the solution, respectively.  

# Trader config Test Resulting policy Total time Time/match

1 Section 6.1 R=null 
E=null

none  -   51 µs

2   " Example 1 
(2 components in E)

policy #6 1224 µs  165 µs

3   " Example 2 
(3 components in E)

policy #5  700 µs   60 µs

4 Section 6.2.3 Channel 1 and 2 
(2 components in E)

policy #12 2656 µs  211 µs

5    " All 4 channels 
(4 components in E)

policy #4 1269 µs  187 µs

Table 6.7. Measuring time of policy matching

These results indicate that the trading approach is feasible at least for the types of application 
scenarios we tested. Note that we did not attempt to optimise our implementation with respect to 
performance. It seems that matching and finding a policy would not be dominant compared with 
time used for exchanging messages over the network, loading and instantiating activators (in-
cluding disk access), etc. 

We do not observe a significant increase in matching time by increasing the number of compo-
nents in the environment descriptor from 2 to 4. There is a slight increase in the matching time 
when going from the web case to the pub/sub case. This is expected since many of the service pro-
files are longer. Note also that user profiles tend to be shorter and if matched first, it may shorten 
the search time significantly. In two of the tests (1 and 3) the user profile does not match in most 
policies. This simple experiment seems to confirm that there are many factors that influence 
search overhead and that the length of expressions may have little impact as long as they are 
within manageable limits. We expect that if the length of expressions does pose a significant 
matching overhead, they are impractical of other reasons as well.

6.4. Concluding remarks

In this chapter we provide some evidence that our approach can be used for application cases like 
the web or some architectures for multi-subscriber video streaming. First, web applications can 
exploit policy trading to adapt to changing conditions and requirements. A combination of user 
requirements and a characterisation of the client browser/web-server (e.g. display size or server 
load), lead to the selection amongst pre-defined configurations of server components (policies). 
This experiment indicates that profile expressions may be more compact and composable than 
e.g. CC/PP profiles [W3C-04a] and that it could be useful if the profile model definition language 
could be extended to allow conformance rules involving sums.  
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Second, our approach may support negotiability for publish/subscribe bindings with heterogene-
ous participants, at least in an architecture where negotiation is facilitated by a single server en-
tity in a LAN environment, and where the application is multi-subscriber video streaming. Our 
experiment assumes pre-defined sets of possible channels which are selected and activated 
through selection of proper policies. A policy maps from QoS requirements to event-channel selec-
tions. Change to the channel-configuration could lead to change of the policy-configuration and 
replacement of running policies. We observe that a simple approach to policy trading where acti-
vation and subscription are mixed is not feasible except for a small number of channels. A better 
solution is to do policy trading in two levels: One for subscribing to bindings, and one for activat-
ing event-channels. We also observe that it is useful to characterise channels using profile expres-
sions, though it is not feasible to describe the availability of a high number of channels that way. 
It could be a topic for further research if it is feasible and useful to extend the profile model with 
constructs for iterative or recursive expressions.
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Chapter 7. 

Discussion

In this chapter we summarise and discuss the results of this thesis. The overall theme is how to 
support QoS aware binding at run-time. This involves negotiation of contracts and configuration 
of the implementation of bindings. The problem is approached as follows: (1) We propose an over-
all model and architecture for supporting negotiable bindings. (2) We develop a language for QoS 
profile expressions based on declared conformance rules and composition operators, and (3) we 
investigate how all this can be supported by a middleware level infrastructure. 

In section 7.1, we summarise and discuss the main results of our overall architecture, profile lan-
guage and infrastructure framework respectively. In section 7.2, we discuss our results with re-
spect to some selected topics like scalability, adaptation, composition and generality. In particular 
we discuss if our results are general in the sense that they are usable outside the context in which 
they were produced and not limited to particular application domains, technologies, platforms or 
binding types. This is also somewhat related to interoperability meaning that the independently 
developed components should be able to bind. 

7.1. Results summary

In this section we summarise the results of our work. Early ideas of policy binding and policy 
trading have been developed and generalised over a period of time. In particular, the simple de-
clared conformance approach has been developed and generalised to a language and a tool to de-
fine and evaluate concrete models as rule bases.

7.1.1. Binding and negotiation model

A binding would correspond to a contract and realisation of interaction between the participants 
such that the contract is enforced. Our approach to contract negotiation is based on trading 
[Hanssen00] of some policy component that defines the contract and configuration of the binding 
to enforce it. A policy consists of a QoS profile which consists of two parts (expectation and obliga-
tion), one or more implementation components, and possibly a set of associated resource require-
ments (as discussed in section 5.5.1). 

Policies (including profiles) are specified with some binding type in mind, and they are managed 
by a trading service. The negotiation (trading) process match profiles with a complete environ-
ment description and a requirement which are composed from parts coming from components tak-
ing part in the binding. How parts are composed may depend on the binding type and metapolicy. 
Figure 7.1 below illustrates how this would look for a client/server binding type. Since profiles are 
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pre-composed and directly associated with enforcement policies, some of the complexity of match-
ing and selecting profiles at a number of different components can be avoided.

policies

exp

obl
requirement

environment
⊕

+

select one 
as contract

client

client

server

server

system
components

Figure 7.1. Policy trading model

In most related contractual approaches, profiles are specified for interface types or component 
types and associated with interfaces or components. Each interface or component may have a set 
of alternative profiles to support adaptation. Figure 7.2 below illustrates how we may view this in 
a client/server binding type. Negotiation may involve complex matching of many profiles of many 
components. 

client
contract 
templates

exp

obl

server
contract 
templates

exp

obl

match

resulting 
contract

other system 
components

Figure 7.2. A more traditional negotiation model

We also propose a distinction between bindings and their activations. This distinction may sim-
plify the understanding of QoS contracts and adaptation, as well as late binding, since contract 
negotiation (or re-negotiation) is decoupled from binding establishment. A meta-policy can specify 
how a binding activates, how it negotiates contracts, or how it adapts to changing environments 
or requirements. 

7.1.2. Profile model

An important contribution of our work is a language for expressions to be used in profiles, re-
quirements and environmental descriptions involved in negotiation. It supports evaluation at 
run-time for conformance. This language is defined and evaluated in chapter 4. We define how 
expressions can be constructed from atomic QoS statements termed ’basic profiles’ using composi-
tion operators. Two such operators are defined: The sum (’+’), which corresponds to conjunction 
and component-sum (’⊕’), which implies separate contexts for the operands (which therefore must 
be satisfied separately). To define the semantics of any expressions using these operators, we de-
fine a distributive law and a normal form. Based on these definitions and conformance theorems, 
we are able to develop an algorithm for conformance checking expressions. 

Concrete profile models explicitly establish conformance relationships between basic (atomic) pro-
file expressions. These are typically defined for specific application domains and are defined as 
rule-bases which are essentially sets of axioms from which we can infer conformance between any 
pair of basic profiles. From an axiom set, we may derive a full rule set, covering any pair of 
profile-types. Such a rule set can be directly mapped to executable code which allows efficient con-
formance checking at run-time. As a proof of concept we implemented a profile model compiler 
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(which can also be useful in analysing consistency and performance issues). The compiler per-
forms a basic semantic check of rules, computes the derived rule-set by using a transitive closure 

algorithm and outputs conformance checking code.

Discussion

An initial idea [Hanssen98] was to base dynamic QoS statement on declared conformance, mean-
ing that a concrete profile model would simply be a directed acyclic graph of profile names where 
the edges define conformance relationships. This simple approach was extended [Hanssen00] 
since it is too inflexible for the general case, where we want to involve environmental properties 
of multiple components involved in the binding. First, the sum operator was introduced to com-
pose expressions describing different QoS dimensions. Second, the component sum operator was 
introduced to compose expressions about separate environments. The model was formalised and 
we developed an algorithm for testing expressions for conformance. Furthermore, in some cases 
(like e.g. the latency time in section 5.1), models may still be too inflexible if we allow simple de-
clared conformance and sum operators only. To cover a sufficiently wide set of situations, we may 
need to define a high number of profiles, leading to more complicated models than necessary. 
Therefore we propose to allow profiles with parameters and use rule bases to define models 
[Hanssen05a].

The result may therefore be viewed as a compromise between declared conformance and param-
eter value comparison. It may be tempting to view the definition of such profiles as user defined 
QoS characteristics, but our profiles are meant to be simpler and more abstract than the QoS 
characteristics of e.g. CQML. Also, semantic rules defining conformance are more explicit and 
general compared with languages like QML or CQML (section 2.4.1). 

We evaluate our model in section 4.5. There are important issues in how concrete models (rule 
bases) are defined. First, our definition of conformance rules means that models do not need to be 
complete in the sense that all possible conformance relationships are covered by the rule base. We 
require that models do not produce false positives. This is based on an assumption that we always 
want to avoid selection of incorrect policies, and that there may exist conformance relationships 
that we do not need in practice. Models should be sufficiently complete, meaning that they should 
cover needed conformance relationships. Second, models should be consistent, meaning that we 
should not be able to infer contradicting results from a rule base. Since models are not complete, 
we cannot prove that they are consistent, but we can prove that inconsistencies exist, which is 
useful. We proposed a definition of inconsistency (based on which ranges of profile parameter val-
ues evaluate to true) and proved that it is sound. 

This means that we have some tools to evaluate concrete profile models. There are inconsistencies 
and potential problems that can be detected and reported. It is useful to view models as graphs 
where edges are rules and nodes are profile types. We observe that cycles in such a graph may in-
dicate derived rules that are not easily foreseen by the model designer and that may be imprecise 
(not sufficiently complete). Cycles can be problematic except for symmetric rules or equivalence 
and should be reported by profile model compilers. 



37. We also participated in developing the FlexiNet framework itself.
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7.1.3. Infrastructure support

Our binding model and negotiation scheme should be supported by an infrastructure, mainly a 
middleware platform offering proper abstractions and services. The infrastructure should (1) sup-
port negotiable and adaptable behaviour (of bindings); i.e. it should be able to reconfigure itself at 
run-time to change its internal behaviour, and (2) support the process of negotiating such behav-
iour. In chapter 5, we describe an experimental framework which serves as a proof of concept and 
as a tool for exploring our concepts.

In an early phase of our work, we designed the FlexiBind framework [Hanssen99] which was 
based on the ANSA FlexiNet framework37. These experiments represent early contributions to 
reflective middleware research. The focus was how to support dynamic configuration of bindings 
by pluggable and replaceable policies. The distinction between bindings and their activations may 
help decoupling policy and application programming. We identify two types of pluggable policy 
components: (1) Binders (generators and resolvers) which represent binding protocols and 
metapolicy and (2) activators which define how negotiable aspects are configured. In principle, 
each invocation is resolved (by a resolving mechanism), not only to a target object but to a configu-
ration of negotiable aspects (layers or other resources). Bindings (also non-active) are represented 
by binding proxies, which can resolve such activations. When activated, a proxy is attached to an 
activator and (possibly) a metapolicy object which defines how activators are selected.

In later work [Hanssen05a], we explore further how middleware can support profile expressions 
and negotiation based on policy trading. Negotiation mainly involves collecting environmental 
properties from the platform and requirements from applications. Binder- and negotiator compo-
nents define how environment descriptors are collected and composed. The prototype framework 
supports dynamic profile expressions which can contain placeholders for subexpressions to be de-
termined by querying the platform at negotiation time. Such querying is done on inspector compo-
nents which can map from platform dependent characteristics to the more abstract profile model. 
Such mapping can be highly configurable and set up or modified by binder components. However, 
this scheme requires some conventions for naming of inspectors. 

Experimental evaluation

An experimental framework is implemented and serves as a proof of concept and a tool for explo-
ration. It is further evaluated with respect to two cases. First, we investigate how resource reser-
vation in the operating system or network can be incorporated into policy binding. Due to plat-
form heterogeneity we believe that resource management should be done by pluggable compo-
nents, which fit into a framework defining resource managers, reservation domains and resource 

consumers. An idea is to extend the inspector interface with an admission test operation. Our ap-
proach also implies a possible separation of concerns between policy implementation and resource 
requirements. An experiment (using Linux packet scheduling) demonstrates that this approach 
may work in practise, for instance to bound invocation delay.

Second, we evaluate how our framework can support binding types beyond simple client/server 
activation, and in particular those having more than two participants. As a proof of concept, we 
design and implement a framework for negotiable publish/subscribe bindings. We observe that it 
can be made highly negotiable how event streams can be implemented, in particular since our 
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framework allows binding to a service before it is decided how to implement it. This experiment 
indicate that we can realise publish/subscribe bindings, but it raises issues about the relationship 
between the binding and associated contracts, as well as how to manage implementations or state 
shared between different participant bindings. How this is handled would be more application do-
main specific. In section 6.4, we further evaluate our approach by applying it to a specific applica-
tion case using subsets of shared multicast channels to stream video. Here, we need an additional 
entity to manage channels and channel configurations (channel manager) and we observe that we 
can benefit from doing policy trading in two levels: (1) policies for activating channels and (2) for 
subscribing to them.

7.2. Evaluation and discussion

In this section, we discuss and evaluate our results with respect to some selected topics: Composi-
tion (section 7.2.1), orthogonality (section 7.2.2), adaptation (section 7.2.3), performance and scal-
ability in trading (section 7.2.4), and generality (7.2.5). 

7.2.1. Composition

A service may be realised by a composition of services or components. A component which imple-
ments a service may have expectations which involve not only the client behaviour but other com-
ponents of its environment as well. These components may have their own expectations, meaning 
that a contract validation may in general involve finding a transitive closure of component de-
pendencies. In typical related work (see figure 7.2), when negotiating binding between a client 
and a service, there will be a partial match between their profiles. The expectation of the server 
profile would be satisfied by a combination of the obligation of the client and obligations of other 
components in the environment, etc. The matching process may be complex since it involves pro-
files of several components, but also since it involves evaluation of several QoS parameters which 
may interact in various ways. 

Our approach contributes to simplifying composition in QoS modelling and QoS negotiation. 
There are two reasons for this: first in our architectural approach as discussed in section 7.2.1, 
profiles are associated with policies for binding, instead of service interfaces or components. A 
policy specifies a mapping from a sum of environmental properties to resulting QoS. It encapsu-

lates non-trivial interactions between environment components. Second, this idea is strongly sup-
ported by our profile expression language, which is based on declared conformance rules and com-
position operators (chapter 4). The scope of profile expressions/profile models is to describe what 
components are needed, what components are available and constraints on how policies can com-
bine them, rather than what compositions result in.

Profile expressions represent constraints on behaviour, but these are not directly stated. Evalua-
tion at run-time can therefore be simplified. If we view profile expressions as constraints, compo-
sition can be understood as logical conjunction or disjunction. For instance, a profile may assume 
behaviour A and behaviour B, or one may assume behaviour A or behaviour B. Behaviour A and 
behaviour B may be in the same or in different contexts. Composition operators represent con-
junctions and component-sum also imply separation of context. If we register multiple policies 
sharing implementation and user profile, this may be viewed as disjunctive composition in the 
sense that one of the alternatives may be selected.
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In chapter 4, we show that the model defining the semantics of profile expressions and composi-
tion operators is sound. In section 4.5.4, we discuss how composition operators are used and how 
some known composition patterns can be supported. It is however necessary to define some prag-
matics for how compositions are expressed (section 4.5.4), and it is useful to check models for con-
sistency- and interoperability problems (section 4.5.2 and 4.5.3). In chapter 6 we apply our ap-
proach to certain application cases and we validate that our model can be used for the composi-
tions needed there. 

Nested composition

In general, composition can be nested, and in the context of our model, there are two different 
cases to be considered. First, a component of an environment may be realised or supported by us-
ing other components. This could imply that we do binding again, recursively. Second, a descrip-
tion of an environment may consist of components, and the contexts of some components appear 
inside the contexts of other components. Our profile model seems to support nesting of expres-
sions, but as pointed out in section 4.5.4, this is in a somewhat limited sense. In particular, there 
are cases where we may wish to express constraints on the identity or location of containing con-
texts, and this does not necessarily follow from the expression nesting. It is possible to identify 
constraints more explicitly by adding additional constraints. A more abstract and portable ap-
proach may be add a kind of labelling to the profile model but it remains to be investigated if this 
is feasible.

Nested composition seems to be solvable in our application cases in chapter 6. In section 6.2 we 
test both ways to do nested composition. First, we try to do only one level of binding and to de-
scribe the appearance of multiple channel components in service profiles and environment de-
scriptors. We observe that this is not generally feasible. The problem is however not related to the 
limitation mentioned above, since the identity of each channel is not significant in negotiation. 
The main problem is that mixing channel subscription and channel activation in the same poli-
cies lead to an unnecessary high number of policies. Furthermore, there is a practical limit to the 
length of profile expressions. An approach doing policy trading in two levels, seems to be more 
scalable and would also better support heterogeneity of channel implementations. 

7.2.2. Orthogonality

Orthogonality means that extra-functional behaviour should not be tied to specific service inter-
face types. This is motivated by the desire for reusable components in open systems, as well as 
the desire for automatic adaptability. Any type should in principle be allowed to negotiate a given 
extra-functional behaviour. We also distinguish between abstract extra-functional behaviour and 
the policies or implementations which enforces them. The orthogonality requirement was meant 
for the abstract behaviour and the abstract interface, but it is relevant to discuss orthogonality 
with respect to policy implementations as well. 

Abstract behaviour orthogonality

We claim that our contract and policy concepts support the reasoning about extra-functional be-
haviour to be orthogonal to functional types. In our architecture we introduce policies and their 
corresponding software components (activators) as an extra level of indirection; i.e. we do not ap-
ply policy implementation components directly but rather via a policy component. This represents 
a separation of concerns between policy and the resulting behaviour, and would together with 
policy trading, abstract over differences in how a given extra-functional behaviour is realised. An 
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important part of our approach is that policy implementations should be associated with explicit 
assumptions, which may include the type of target interfaces. We claim that our orthogonality 
goal is reached since (1) one can define an abstract behaviour which is meaningful for a range of 
different service interfaces, (2) since one can create alternative policies for different environments 
and target types, but which satisfy the same abstract behaviour and (3) since we can do transpar-
ent selection and installation of policy based on an abstract requirement. This is also supported 
by the binding type concept. A binding type does not have to include the type of participant inter-
faces, but rather the roles they play in the binding. 

Orthogonality for a given behaviour may however be limited in the sense that policies are not 
available for all target types. It may be a question of making policies for all needed cases. How-
ever, all abstract behaviour would not be meaningful for all possible service types. For instance, 
transactional behaviour (ACID) is not relevant for stateless or read-only services, colour is not 
relevant for audio streams, frame rate or jitter is not relevant for services which are not continu-
ous media, etc. This issue can be resolved in two ways: (1) define that a property is never satisfied 
for the type, (2) define that a property is always satisfied for a type. For instance, a jitter require-
ment would always be satisfied for a still-image. 

Policy implementation orthogonality

Though extra-functional behaviour can be viewed as orthogonal to functional behaviour, their 
implementations are not necessarily so, and sometimes such behaviour would be related to some 
of the underlying syntax or semantics of the functional interface. For instance, the implementa-
tion of transactional behaviour may need to distinguish between methods which read and opera-
tions which update the state of the object. For instance, a mean latency time requirement should 
be equally meaningful for all operational interfaces and individual methods. However, the imple-
mentations (e.g. use of caching) may need to discriminate read and write operations, especially 
when consistency or recoverability is an additional requirement. Some properties cannot be im-
plemented without making assumptions about target implementations or the semantics of their 
individual methods. A goal may be to minimise assumptions or to make assumptions which hold 
for a wider range of targets. Assumptions should be expressed explicitly in service profiles to aid 
the negotiation. Trading can ensure that policies are not deployed in incompatible environments.

However, our observations suggest that simplicity and generality of policy implementations may 
be conflicting goals. Policy implementations which reduce assumptions tend to be more complex 
since they must test for many cases at run-time and (possibly) use reflective techniques to expose 
implementation issues. Furthermore, reducing assumptions often implies making meta-level as-
sumptions, for instance that certain naming conventions are used to identify operation semantics. 

7.2.3. Adaptation and extensibility

Adaptation is run-time modification of active bindings. In our context, there are two approaches 
to this: (1) that the policy is explicitly re-negotiated and replaced and (2) that the policy itself 
adapts its behaviour. In the first case, the contract is changed such that the new service profile is 
satisfied by the environment. In the second case, the adaptation stays within the constraints of 
the contract. Since a service profile denotes a range of states the environment can be in, we as-
sume that the policy itself can deal with variations within that range. We do not focus strongly on 
adaptive policies or metapolicies themselves, but our architecture is designed to support such 
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policies and extensibility of adaptation range through adding new policies. This needs to be dis-
cussed.

Our architecture addresses renegotiation in the sense that activators may be replaced within the 
lifetime of a binding. Adaptation can conceptually be understood as switching between activators. 
Activations (layer stacks) are constructed when an activator (a policy) is instantiated (activate), 
though they can in principle be constructed at invocation time (see section 5.3). Even if re-
activation means replacing the activator, it does not necessarily mean a full re-construction of the 
layer stack and re-allocation of resources. Different activators may share or re-use parts of the 
activations. In effect, re-activation may result in adjustments to existing stacks (and associated 
resources). For instance, frame dropping may be added to the sender stack in response to a drop 
in network bandwidth. In our current design, policy programmers would need to make assump-
tions about the previous activator, in order to re-use parts of it or to transfer state consistently 
from one version of the binding to the next. Such assumptions may be explicit in negotiation, and 
activator instances may implement the inspector interface (section 5.4) to describe themselves.

Safe reconfiguration

When adapting by replacing activators, it is important to ensure that the transition does not lead 
to violation of call semantics or other inconsistencies (like those identified in [Goudarzi99]). 
Adaptable bindings should therefore be able to keep track of ongoing interactions and to drive the 
binding into a safe state before reconfiguring. In addition, the interruption of ongoing invocations 
should be as little as possible or within bounds (possibly specified as a QoS requirement).

Our prototype implementation protects the activation using locks. For typical RMI interfaces, our 
binding objects uses a classical read/write lock which ensures that the reconfiguration does not 
happen while invocations are in progress, and that it eventually happens. Invocations require a 
read lock and there may therefore be multiple concurrent invocations (read lock as long as an in-
vocation is active), but changing the activation or activating/passivating/re-activating it requires 
exclusive access (write lock). This is a simple approach which is not necessarily suitable for all 
cases. For instance, if bindings support transactions consisting of several causally related invoca-
tions, and if the negotiated QoS is with regard to the execution of the transaction as a whole. In 
that case, one may need to hold a read-lock as long as the transaction is active, and the simple 
locking scheme may be problematic with respect to performance since the safe state cannot be 
reached until the transaction is committed. For stream bindings, simple locking per stream would 
prevent any adaptation, and it may be a unnecessary overhead to request a lock per frame. For 
such cases it could be beneficial to use more advanced synchronisation schemes (see e.g. 
[Wegdam03]).

Adaptation extensibility

Our architecture allows embedding some adaptation in the policy implementation instead of 
adapting by invoking explicit re-negotiation of the contract. This makes sense in cases where an 
adaptation method itself is application domain- or technology specific, or where the adaptation 
method is more efficient than re-trading policies. For instance, it may use feedback loops to con-
tinuously adjust various parameters to maintain the contract in response to changing measured 
QoS or environmental properties. It could also make sense in the case of section 6.2, where a 
policy determines the number of multicast channels subscribed to (carrying different quality 
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levels of a video stream). A policy may be made to adapt to smaller variations in e.g. load. Larger 
variations may require changes of channel subscriptions and thus replacement of policy. 

Therefore, adaptation is not strictly a metapolicy issue, but sometimes also a policy issue. We 
would like extensibility in the sense that one running policy can be automatically replaced with 
another which the implementer of the first one did not foresee. A specific adaptation scheme can 
be embedded in a policy working for a range of environment properties. New policies can be dy-
namically plugged into a running system to extend the adaptability range. When a contract can-
not longer be enforced, this may trigger explicit adaptation: The environment descriptor is re-
formulated and a search for a new policy and contract is initiated. If a policy is not found, we may 
try to negotiate with users to see if they can accept a degraded user profile.

7.2.4. Scalability

It is of interest how binding performs when the size of the system grows in size. There is no sim-
ple answer to this, since there is more than one dimension in which to characterise the size of a 
system, and since it may depend on the binding-type, metapolicy, negotiation protocol, etc. We 
may consider the number of participants that can be involved in a binding, or the number of pos-
sible policies. Multi-participant binding in particular is discussed in section 7.2.5 below. In the 
rest of this section we discuss the following issues:

1. Architecture of the policy trading service; i.e. dependence on a central trader service can rep-
resent a bottleneck. 

2. The number of candidate policies to search, or more specifically, the number of expression 
matchings (conformance checks) needed to find a contract. 

3. The length and structure of profile expressions used in negotiation. These are related to the 
number of components which are involved in a negotiation. 

Trading architecture

Dependence of a centralised trader component could be a scalability problem, and the traditional 
trading approach has been criticised for it [Vasud98a]. In our approach, the policy-trader should 
be regarded as a conceptual entity, and it may be distributed and/or replicated over many loca-
tions. We find that it can be convenient to have one instance of a trading service per service in-
stance and co-locate the trader with the server. More generally it may be desirable to share poli-
cies between different services and even applications. Like in traditional trading, it is also pos-
sible to federate separate trading domains. Therefore, an issue is to what extent the trader infor-
mation can be partitioned such that lookups between trader federations are minimised. This 
problem is related to the indexing problem briefly discussed below. 

Candidate policy search complexity

If in policy trader implementations, we use linear search to find matching policies, this may limit 
the scalability with respect to the number of candidate policies available. It may however be pos-
sible to index or order the database of candidate policies according to conformance relationships, 
but this is not straightforward since conformance defines partial orders. Furthermore, the order 
of policies may be significant for other reasons (as observed in chapter 6). 
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It is beyond the scope of this thesis to explore the use of indexing on policy files. However, we can 
identify it as a partial-order indexing problem. This is investigated e.g. in the context of object 
oriented databases [Bertino95]. If we restrict the profile expressions to sums only, indexing pro-
file expressions is equivalent to the problem of indexing on set attributes. The search for a con-
formant user profile corresponds to finding subsets, and the search for a service profile would cor-
respond to finding supersets. [Goczyla97] outlines a possible solution which is based on partial-

order trees. This could be used in our context as well (with some adaptations). However, further 
research is needed on efficient implementation as well as how to incorporate component sum ex-
pressions. 

Worst case complexity

When discussing scalability and performance of trading policies (see also section 4.5.1 and section 
6.3), we should analyse the worst case complexity of policy trading with respect to the number of 
components involved in the negotiation and the number of possible policies available. If the 
number of components involved in the negotiation is denoted C and the number of candidate poli-
cies is denoted M, the worst case scenario is O(MC3), since it is possible to implement the con-
formance checking with an O(C3) worst case performance (section 4.5.1). 

Our trading approach is not easily comparable with e.g. CQML due to the different architectures. 
If we negotiate by matching profiles specified on each component or interface to participate, and 
the number of profiles at each component is denoted N, the worst case complexity seems to be 
O(NK) where K is the number of components involved as active participants of the binding (e.g. 
client and server). A problem in such a comparison is how we can characterise M in terms of N, 
and C in terms of K. If we assume that the scope of a given trader database is limited to the in-
volved components, a theoretical upper limit for M would be all possible combinations of profiles 
from these components. However, we can assume that most combinations are meaningless and 
can in our approach be eliminated statically. This indicates that our approach may be more scal-
able in some cases. Also, the cost of profile comparison itself is not easily comparable. It would be 
lower in our approach because of our use of declared conformance and the simpler structure of 
profile expressions.

7.2.5. Generality

We claim that our results are general in the sense that they are usable outside the context in 
which they were produced, and that they are not tied to a particular application domain, technol-
ogy or platform. As a part of validating this, we have developed an infrastructure framework that 
is highly configurable and where extra-functional aspects of bindings are highly negotiable. This 
is related to the orthogonality claim discussed above. Our approach was successfully applied to 
different application cases. In both cases, resulting profile models were simple and manageable. 
Certain extensions to the infrastructure were necessary in the publish/subscribe case and the 
most obvious and simple way of using trading was not scalable. However, a two-level approach 
was found to be effective, and the use of a channel manager does not invalidate a claim that our 
results are general. 

Our profile language is general purpose in the sense that it is not restricted to specific QoS cat-
egories or application domains. This claim is supported by analysis and by applying it to several 
examples. It supports defining application specific concrete models and compositions. However, 
there are issues concerning the generality and interoperability of concrete profile models. The 
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scope of our language is rather narrow. It supports conformance matching, but each participant 
may need to interpret profile expressions in terms of measurable characteristics, and they should 
do so in a consistent way. In practise, this means that implementers of policies, inspectors and 
metapolicies would need to have some knowledge of the meanings of expressions that cannot be 
derived from the rule bases themselves. This would need to be specified elsewhere. Advantages of 
this separation of concerns include that we may define models that are general and reusable; we 
may define hierarchies of rule bases where more application-specific parts may be based on more 
generic parts and mapping rules between such parts may be defined to support interoperability. 
However, allowing interpretations to be context-dependent may also lead to subtle interoper-
ability conflicts if not careful (see section 4.5.3).

Another issue related to our choice of focus is that our model does not define degrees of conform-
ance or QoS satisfaction. In contrast, related work based on utility functions or worth based nego-
tiation (see chapter 2) may define total ordering. By matching profiles we can only determine if a 
policy is satisfactory or not. The ordering of policies in the trader repository is a way to define 
what policy to be selected first (based on policy designers knowledge on the application domain), a 
metapolicy may define a way to order candidate policies returned from a trader (for instance 
based on resource requirements), and clients may specify ordered alternative requirements to 
support degradations. We suspect a limitation to generality in the sense that negotiation based on 
strict conformance is well suited for certain types of applications, while not well suited for other 
types.

Our approach is not platform specific, but there may be challenges in defining profile models and 
policies which are portable across platforms. Profile models should abstract over platform specif-
ics to support interoperability between components running on different platforms. On the other 
hand, platform specific capabilities may be exposed through environment descriptors to allow 
them to be exploited. This means that policies may be used to encapsulate and abstract over plat-
form dependent solutions. 

Binding type and scalability

We claim is that our results are usable for other binding types than RMI and also bindings with 
more than two participants. To validate this, we investigate how we can design and implement a 
publish/subscribe binding type as was also done in [Parlav03]. We perform two experiments: one 
to see how we can implement infrastructure support (section 5.5.2) and one to see how we may 
apply this to an application case (section 6.2). We are able to re-use most of the infrastructure 
used for RMI bindings, in particular the binding-proxy and the binder framework. It is conven-
ient to use operational interfaces (and RMI) in parts of the implementation (binding, event deliv-
ery). Implementations of event streams are completely negotiable though. 

These investigations support a claim that our approach is general enough to be used for multi 
party binding types, at least in some application scenarios. However, there are still issues which 
deserve more discussion, in particular when it comes to scalability. 

A contract for a multi-party binding can be viewed as composite in the sense that it can be de-
scribed in terms of contracts for individual participants. In our policy model, an expectation 
should be satisfied by a composition of participant environments, and an obligation should satisfy 
all requirements of participants. Each individual participant may have requirements which are 
satisfied separately, without involving other participants. For instance, different subscribers of a 
publish/subscribe binding may require different filtering of the content. All participants are not 
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necessarily in the binding at the same time and they should be allowed to come and go over time. 
Furthermore, it can be impractical to involve a large number of participants in a single negotia-
tion operation. A multi party binding may in our conceptual model have a single contract, but in 
practise, a negotiation should not involve more participants than necessary. This is obviously im-
portant for scalability. In our experiments, negotiations typically involve two participants, the 
joining subscriber (or publisher) and a negotiation service. However, in section 6.2, the subscriber 
negotiation, publisher side inspectors may be invoked when trading for channel (second level) 
policies.

The concept of contracts being composite (or even hierarchically composed) could be a topic for 
further research. For example, it would be interesting to see if it fits into the architecture of 
[Ecklund02] where the authors propose hierarchically composed domains of QoS management. In 
related research on reflective middleware, there are global and local bindings, but local bindings 
are assumed to be trivial. Our investigation indicates that it can be convenient to negotiate bind-
ings separately for individual participants, but we may require them to be consistent with some 
global contract (for the multi party binding as a whole). We may require the component sum of 
local expectations to satisfy the expectation of the global contract and we may require the obliga-
tion of the global contract to satisfy the sum of all local obligations.

7.3. Summary 

This chapter is a summary and discussion of our results. We describe how ideas of policy binding 
and policy trading have been developed and generalised. A declared conformance approach has 
been developed and generalised to a more general language for QoS profiles. An infrastructure 
framework has been developed and evaluated over some time. 
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Chapter 8. 

Conclusions

The main goal of this thesis is to develop the foundations of a QoS aware binding facility, which 
maps from application requirements plus descriptions of the environmental properties to suitable 
bindings between components. We investigate the use of policies as architectural entities to en-
capsulate potential QoS contracts and their implementation, the use of policy trading as a princi-
ple for negotiation and the development and evaluation of a language for profile-expressions, 
based on conformance rules and composition operators. In this chapter we summarise what are 
the main results of our investigations (section 8.1), we present some critical remarks (section 8.2) 
and we discuss research trends and possibilities for further research (section 8.3). 

8.1. Main results

The main contributions in this thesis are related to (1) an alternative binding and negotiation 
model, (2) a language for profile expressions and (3) infrastructure support.

8.1.1. Negotiation model

We propose a scheme for QoS aware binding where potential contracts are predefined. A policy is 
an entity consisting of an obligation (user profile), an expectation of the environment (service pro-

file) and an enforcement policy (typically an implementation component). Policies (including pro-
files) are specified with some binding type in mind, and they are managed by a trading service. 
Policy trading is essentially to search for policies where the user profile satisfies a QoS require-
ment, and where the service profile is satisfied by an environment descriptor (a composition of en-
vironment descriptions coming from the components taking part in the binding). Metapolicies dic-
tate how to manage policies, i.e. how to negotiate and (possibly) how to react to changing environ-
mental conditions by re-negotiating.

This means that contract templates (profiles) are decoupled from interfaces or components and 
associated with a policy trader instead. This has a potential to simplify negotiation, since it is re-
duced to a linear search, since there is a clear and simple semantics of matching profiles and 
since composition can be handled by just adding expressions before trading is invoked. Solutions 
(possibly end-to-end) can be defined statically instead of e.g. matching a number of alternative 
profiles on each participating component against each other to find usable combinations.

Separating functional and extra-functional behaviour is not a new idea. Since we started our 
work, much progress has been made in aspect oriented programming and dynamic aspect weav-
ing, so this is not a focus here. However, QoS contracts are typically more or less associated with 
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interfaces or components. In our approach, the concepts of contract, policy, and activation of bind-
ings support the reasoning about extra-functional behaviour to be orthogonal to functional types 
or service instances. Our approach adds a level of indirection between negotiation and the imple-
mentations, it let us describe behaviour in an abstract way, and it supports alternative imple-
mentations of the same abstract behaviour in a transparent way. We may support a high level of 
negotiability; we have for example demonstrated how we may bind to a service and where its im-
plementation may be decided on later (when activating).

8.1.2. Profile expression model

A main contribution of this thesis is a language (profile model) for profile expressions, designed 
towards conformance checking and composition. This language is founded on declared conform-
ance rules and composition operators: Sum (which corresponds to logical conjunction) and compo-

nent sum (which combines expressions in separate contexts). Expressions are composed from ba-

sic (atomic) profiles which are simple names or names associated with numeric parameters. Con-
crete profile models (for applications or application domains) are defined as rule-bases, defining 
conformance between basic profiles. We demonstrate how we can compile such rule-bases into ef-
ficient conformance checking code and that a general conformance checking algorithm can be 
made. We evaluate the model with respect to performance, consistency and completeness prob-
lems, interoperability problems and composition. We find that viewing rule-bases as graphs and 
using a profile model compiler provide us with tools to help identifying some of those problems.

Our language implies a separation of concerns between conformance relationships and the inter-
pretation of profiles in terms of measurable characteristics. This allows expressions to be simpler, 
more general and more abstract than more traditional approaches based more directly on meas-
urable characteristics. This claim is supported by analysis and by applying the approach to ap-
plication examples. However, since participants may need to define how profile expressions are to 
be interpreted, and since the meaning of a profile may be context dependent, care should be taken 
to avoid interoperability conflicts when defining models.

Our profile language supports composition by having generic composition operators and clearly 
defined composition semantics. Service profiles and environment descriptors would capture the 
availability of components and constraints of different contexts, possibly including constraints on 
how components may be combined. The policy concept is meant to encapsulate the effect of com-
position, i.e. how component properties are combined (possibly in non-trivial ways) to achieve a 
result. This means that the use of policy trading and composed service profiles can simplify com-
position (in negotiation), but (as observed in section 6.2) it does not necessarily eliminate the need 
for invoking the negotiation process recursively in the case of nested composition. 

8.1.3. Infrastructure 

To validate our approach to negotiability, we explore a middleware level binding framework. 
Some of these experiments represent early contributions to reflective middleware research, and 
much has been done since by others. An important contribution is the distinction between bind-
ings and activations of bindings. Activations are defined and managed by activators, which could 
be part of the traded policies. Furthermore, bindings are set up by pluggable binder components 
(resolvers and generators) and managed by metapolicy components. 
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We demonstrate how to incorporate support for policy trading, and in particular, how to setup, 
produce and evaluate profile-expressions in an infrastructure. Binders and negotiator components 
compose expressions (environment descriptors and requirements) and expression parts can be col-
lected from inspectors that can be dynamically installed in the middleware platform or in the 
bindings themselves. We demonstrate that it is possible to incorporate support for system level 
resource management, and that such support can be effective in constraining e.g. invocation time. 
We also demonstrate that our framework can be used to negotiate publish/subscribe bindings. 
This indicates that we can support binding types beyond RMI and in particular, multi-party bind-
ings. In our demonstration, each individual participant initiates negotiation individually, but our 
negotiation scheme supports incorporating constraints or components of a more global binding 
level. This is explored in section 6.2 where bindings activate sets of event channels which are 
shared between participants. It is useful to describe such channels using profile expressions 

8.2. Critical remarks

The work reported in this thesis has been done over a long time span and much work has been 
published, especially in the area of reflective middleware, since we started. However, our early 
contributions were published and presented to the research community, and they are not invali-
dated by later research. Our core concepts are rather general and we do not see fundamental 
problems in implementing them on more recent reflective or component oriented middleware like 
OpenCom. Also, the acceptance of a paper on the Adaptive and Reflective middleware workshop 
in 2005 [Hanssen05] should indicate that we have produced some results which are still regarded 
as relevant by the research community.

One may argue that the usability of our approach is somewhat limited since the solution space for 
bindings (an thus, possible compositions) is a fixed number of statically defined policies. One may 
also argue that the policy approach is based on an assumption that it is possible for a component 
developer to know (in advance) what resources or configurations are necessary to achieve a par-
ticular QoS level. This can be a non-trivial problem in open systems. However, our approach does 
not exclude policies that make some of the decisions themselves (within the constraints of their 
profiles). A policy may for example use a feedback loop to continuously adjust various characteris-
tics of the binding. Furthermore, our approach does not exclude using policy trading recursively 
as demonstrated in section 6.2. At last, we do not exclude the possibility of generating policies au-
tomatically by using compilation and run-time probing techniques like in 2KQ+ (see section 
2.4.2). Policies may be added or replaced in an evolving system. 

One may argue that policy trading is of limited use since it is based on strict conformance. We 
present a rather fixed view of application QoS requirement, and negotiation does not deal with 
optimisation of resource utilisation. However, our approach does not exclude the possibility of 
(during negotiation) ordering satisfactory policies according to a metapolicy (and possibly ad-
ditional information attached to policies), and it does not exclude the possibility of attaching al-
ternative requirements to client requests to be considered by the trading service if the first prior-
ity requirement cannot be satisfied. In our cases (chapter 6) we show that it is sometimes neces-
sary to order policies in the trader search according to the designer’s knowledge on what is "best", 
and that this (somewhat ad. hoc.) approach can be useful. 
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8.3. Further research

At last we briefly summarise the research trends in our area of interest the last decade and iden-
tify some areas of current and future research. Based on our own results we identify some issues 
for further research. 

8.3.1. Research trends and challenges

During the progress of this thesis, research on reflective and adaptive middleware has been very 
successful. It has been demonstrated [Blair04] that reflection can be a more open and flexible ap-
proach to middleware, that it does not necessarily incur a performance overhead, and that it can 
be platform independent. It has been demonstrated how to provide very configurable middleware 
as component frameworks [Coulson02, Coulson04]. [Blair04] identifies some future research di-
rections for middleware where focus is on how to extend the scope of such middleware, both in 

depth (going further down towards the system level) and in width (investigating new application 
areas). Current research indicates that such middleware can successfully be tailored to support 
interaction paradigms like peer-to-peer, publish/subscribe etc., or used in application areas like 
the GRID, mobile computing or sensor networks. Furthermore, reflection and QoS awareness 
seem to support the autonomic computing vision [Anane07]. 

Traditionally, research on QoS has been focusing on specific architectures, technologies or ap-
plication areas like networking or multimedia. In the last decade, there has been an increasing 
interest in more general QoS architectures and QoS support at the middleware level. Though sig-
nificant progress have been made in QoS modelling [Aagedal01], or middleware architectures 
[Nahrstedt00, Ecklund02] the area of QoS support for open and distributed systems can still be 
regarded as immature and many questions remain both in QoS modelling, QoS negotiation and in 
QoS management. Current research trends include how to integrate QoS in component infra-
structures, how to support automatic composition based on QoS requirements [Staehli04], and 
how to support QoS web service composition [Zeng04, Thi06] as well as mobility, etc. We high-
light the following as an important research challenge: 

QoS aware composition in open systems where we can assume very little about the implementation 

of components involved. We would depend on a suitable notion for describing capabilities in an 
abstract way and to reason about composition of those. Modelling, static analysis and run-time 
expression (and negotiation) are important issues. Reflection has proved to be an useful principle 
and it would also be interesting to see how this can be used in this context. For instance, mirror 
based reflection may be an interesting approach [Eliassen06]. 

8.3.2. Profile model

This thesis has laid the theoretical foundations for a profile expression language for contract ne-
gotiation and identified its potential to capture conformance relationships and composition. The 
language features investigated here are still just the core features. This means that we may ex-
tend the core model in order to simplify expression, to improve expressibility, to help making cor-
rect models or to better support interoperability. We have identified several issues which could be 
interesting topics for further investigation:
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Section 4.6.1. identified some ways to extend the profile model; some of them were also justified in 
chapter 6. Many of these suggested extensions relate to (static model) definition and include al-
lowing equivalence rules, symmetry rules to capture typical patterns and arithmetic operators to 
support scaling of parameters (which is important for interoperability). We may also consider ad-
ditional semantics, for instance to constrain the values of parameters.

Possible extensions to the (run-time) expression language include labelling of expressions to pro-
vide abstract identity for instances in nested compositions. We may also benefit from some higher 
order syntax that capture common composition pragmatics or that increase the readability of ex-
pressions. 

A more fundamental issue is if the language could be extended with recursion or iteration opera-
tions (e.g. Kleene closure) to capture (possibly infinite) sequences of similar components. 

Furthermore, it is relevant to investigate how to define mappings between profile expressions and 
more measurable characteristics of the participating components. Implementers of policies, in-
spector components, etc. may need some knowledge on the meanings of expressions that cannot 
be derived from the rule-bases themselves. This must be defined elsewhere, for instance by using 
QoS modelling languages like CQML. One may also envisage tools that generate code for inspec-
tor components from specifications. Mappings may be somewhat dependent of platforms and may 
not be trivial. It is also important that the meanings of expressions are consistent and compatible 
amongst heterogeneous and autonomous participants. As discussed in section 4.5, there are inter-
esting interoperability issues and it may be relevant to see if ontologies as used with the semantic 
web can be of use in defining profile-models. 

8.3.3. Other issues

When considering our results in general, there are several interesting issues for further research. 
Some of these are obviously related to validating and generalising our results. It is particularly 
relevant to investigate alternative binding types or interaction paradigms like publish/subscribe, 
peer-to-peer, etc. Applying the results to different application domains would strengthen a claim 
that they are general purpose or identify limitations. Possible issues for further research include: 

● Transactions. Some researchers propose that extra-functional properties of transactions (tra-
ditionally referred to as ACID) should be negotiable (e.g. [Karlsen03, Arntsen05]). We may 
take this idea further and view transaction as a unit of computation for which several QoS 
dimensions are negotiable. Here, we may evaluate a transactional binding type supporting 
multiple servers.  

● Scalability. Further investigate the idea of nested contracts as discussed in section 7.2.5 
where a binding with multiple parties corresponds both to a global contract for all parties, 
and local contracts for each party. This may be further generalised to a hierarchy. We may 
investigate how our approach can be combined with the hierarchical management model of 
[Ecklund02].  

● Policy concept. Evaluate how to use adaptation in policies or automatic generation of policies 
as discussed in section 8.2 above. 
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