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“Til lags åt alle kan ingen gjera; det er no gamalt og vil so vera”
–Ivar Aasen



Abstract
Through the last few decades, computer technology has gradually merged into
our everyday lives. Computers and sensors are embedded in an increasing
amount of household items, enabling us to monitor and remotely control our
connected devices from apps on our smartphones. The technology interfaces
are also evolving along with new technologies. Among the up and coming
digital interfaces are wearable technology. The Myo gesture control armband
(GCA) is an example of tools which aims to make the communication from
computer to human more seamless and intuitive. The Myo GCA is a multi
sensor armband containing 8 surface electromyography sensors whichmeasure
electrical activity originating from skeletal muscles in the upper forearm. It
is also equipped with a 9-axis inertial measurement unit which can provide
information on spatial arm movements of the users. Together these sensors
enable its user to pass 6 configurable commands to a smart phone or Blue-tooth
connected computer. In this thesis we explore the Myo armbands potential as
a multi sensor for handwriting recognition. Data are sampled and manually
extracted through a cumbersome time consuming process, using recorded
video as a reference to the sampled Myo data. The subjects are given the
task of writing 10 repetitions each, of the four capital letters: E, L, O, and
R. A strong positive correlation between same class letters within subjects
has been proven in all of the four sensor types, where the orientation data
yields the highest correlation coefficient values, while the sEMG data yields the
lowest. Statistical similarity between same class letters has been found through
singular value decomposition, where again orientation data yields the highest
values, while sEMG scores the lowest of all sensor types. In an attempt to cross
subject classification though k-NN, with k = 1, k = 3, and k = 5, the 1-NN
classifier yields a minimum success rate of 58% across the four letters. This
is considerably better that what we would expect from a random assignment
of letter classes. In the last part of the results, a similarity search by DTW is
attempted. This yield poor results, with a classification success rate of around
10% on average across letters.
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1
Introduction
This chapter is a short description of the motivation behind this project, along
with the problem description and the structure of the given thesis.

1.1 Motivation
The motivation for this thesis is to explore the Myo armband’s potential as a
multi sensor for handwriting recognition. Wearable technologies, like Google
Glass and smart watches aspires to make interaction between humans and
machines easier and more intuitive. The nature of these technologies makes
them a sought after tool for machine interaction in the Virtual Reality (VR)
and Augmented Reality (AR) market. In VR/AR the users vision is partially or
completely replaced with a computer generated environment, which aims to
aid or entertain the user through enabling tools or features to interact with. In
this configuration, a traditional way of human-computer interaction, like the
mouse and keyboard may in some cases feel awkward and/or may restrict the
level of engagement for the user. Communication between humans is to a large
extent based gestures and body language. A similar form of communication
between humans and machines could be favorable in the future, and one of
the means of achieving this goal could be to let computer process data from
wearable technologies as a way of body language interpretation.

1
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Throughout numerous professions handwriting is still the most efficient form
of writing. Teachers are still using blackboards around the world, and many
students are still taking notes in lectures using pen and paper. Although taking
notes on laptops and tablets have become more common in universities and
colleges, some institutions of higher education along with most primary schools
and high schools prohibits the use of these tools during class, as studies has
found that some students find them distractive [Fried, Carrie B., 2008]. The
clear advantage of documents written and stored on computers is the ease
of organization and accessibility. If all hand written documents of individual
students could be translated into digital writing and accessed by teachers and
parents, and grammars spelling and hand writing technique could be assessed
by machine learning tools, to give a faster more detailed feedback.

1.2 Problem Description
The objective of this thesis is to investigate the Myo armbands potential as a
tool for handwriting recognition. The Myo’s nine-axis inertial measurement
unit and eight surface electromyography (sEMG) sensors provides data, which
might be sufficient in information to correctly label individual written letters
into respective classes. Before the data can be analyzed, an accurate method
for extracting data corresponding to the written letters, has to be developed.
This is necessary as there are no large public datasets containing captured IMU
and sEMG sequences of individual letter recorded by Myo. Another challenge
in this thesis is to collect enough data from a participating individual, as letters
might not be classifiable across subjects, due to the variation in timing, and
writing techniques.



2
Theoretical Background
2.1 Inertial Measurement Unit (IMU)
An IMU measures spatial information and consists usually of a gyroscope, an
accelerometer, and often a magnetometer. The perfect and ideal IMU will
provide continuous information on orientation and acceleration, thus, it could
provide perfect spatial coordinates (x ,y, z) at any time t by a double integration
of the accelerometer data. In reality a IMU can be used to provide coordinates
for short time periods, but have to be updated frequently by GPS, for the values
not to accumulate error and become incorrect. In this thesis we will not focus
on the navigation aspects of the IMU, but rather search for patterns in the
sensor data, which may enable us to classify the letters written by subjects.
The accelerometer provides data along the x,y, and z-axes, where the unit is
given in [m/s2]. Combined with a gyroscope which measures orientation in a 3-
dimensional coordinate system, a orientation vector on quaternion form can be
calculated. The quaternion has an added fourth dimension which represents
the IMUs rotated angle about the axis given by the three first orientation
coordinates.

3



4 CHAPTER 2 THEORET ICAL BACKGROUND

2.2 Myo Armband
2.2.1 Introduction
Myo is a wearable multi sensor armband produced by Thalmic Labs for hand
movement and gesture recognition. The armband measures spatial movement
andmuscle activity in the upper forearm and transmits a live feed via Bluetooth
to a connected device such as a smart phone or a computer fitted with the USB
Bluetooth adapter. Data is registered by means of eight surface electromyo-
graphy sensors and a nine-axis inertia measurement unit (IMU) consisting
of an accelerometer, a gyroscope and a magnetometer, governing three axes
each.

Table 2.1: Myo gca Hardware

1
Sensors Medical Grade Stainless Steel EMG sensors, Highly

sensitive 9-axis IMU containing 3-axis gyroscope,
3-axis accelerometer, 3-axis magnetometer.

LEDs Dual indicator LEDs.
Processor ARM Cortex M4 Processor.
Haptic Feedback Short, medium, long vibrations.

The Myo comes installed with a set of recognizable hand gestures for the
Myo Connect app, which is the software for Myo on Microsoft and Mac OSX
platforms. These gestures and movements (see figure) can be used to move
between slides in Power Point, navigate and scroll in web browsers.The Myo is
marketed as a presentation tool for lecturers, as a controller for radio controlled
drones, cars etc., and as a controller for computer applications. All the data
collected in this thesis is from the Myo gesture control armband.

Figure 2.1: Figure illustrates the default recognizable gestures and movements of the
Myo armband.
Source: [Thalmic Labs, 2018a].
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2.2.2 Technical aspects
The Myo kit comes equipped with the following items:

• Myo armband

• 10 Myo sizing clips

• Micro USB cable

• Bluetooth adapter

The Myo Armband consists of eight rigid rectangular pods connected with a
flexible material, as shown in figure 2.2.

Figure 2.2: Myo Armband with pods numerated on the right image.
Source: [Bernhardt, Paul, 2015a] and [Thalmic Labs, 2018a].

The material used in the Myo armband is a flexible type of elastomer, similar
to materials used in other wearables. Circumference range of the armband is
19-34 cm. This range is due only to the armbands elasticity. Total weight of
the armband is 93 grams, and it is fitted with two LED lights which pulsate
in different frequencies and colors based on current status. A micro USB-port
is used to charge the Myo’s two 2.5 volt batteries located in pod 3 and 5.
One charge-up is supposedly sufficient for one full days use [Thalmic Labs,
2018b].

2.2.3 Myo Sensor Information
Each pod is equipped with one surface electromyography sensor, which mea-
sures difference in electric potential between muscles directly under the skin.
Pod number 4 is the main pod, and hold the micro USB port and the nine-
axis IMU. This is also where the processor is located, which calculates the
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orientation data based on the accelerometer and gyroscope. Thalmic Labs has,
although advertising the magnetometer, chosen to disable the access to this
data from the Myo SDK. The current (Dec. 2017) available raw data output
from the Myo-Data-Capture is sEMG, accelerometer, gyroscope and orientation,
where the latter is given in both quaternions and Euler angles.

Table 2.2: Additional to the dimensions of sensor data given in this table, each file
contains a vector with timestamps corresponding to individual data samples.
Source: [Bernhardt, Paul, 2015b]

Name of Output Files Data Dimensionality Sampling Frequency

Accelerometer 3 50 Hz
(EMG 8 200 Hz
Gyro 3 50 Hz
Orientation 4 50 Hz
OrientationEuler 3 50 Hz

The Euler angle representation of the orientation data is omitted in the rest of
this thesis as the quaternion representation was easier to visualize.

2.2.4 Data Capture
Data capture from the Myo Armband is accessible though Thalmic Labs app
calledMyo-Data-Capture¹. This is a simple executable command line which logs
data from the Myo sensors and stores them as comma-separated values(csv)
in five individual csv-files. Each of the five files have a timestamp in the
fist column, and recorded data in the following columns. Since the chosen
computational engine for this thesis is Matlab, a Matlab function was created
to send commands to “Terminal” which is the command-line interface for
UNIX-based operating systems. The recordMyo Matlab function takes time
in seconds as input, and this determines the number of seconds recorded by
Myo. When recordMyo has terminated, the resulting csv-files are stored in the
current Matlab folder.

2.3 Data Processing Methods.
When working with high dimensional data from multiple sensors, chances are
that some of the data is redundant. When recording data from handmovements

1. Available at: https://market.myo.com/app/55009793e4b02e27fd3abe79/myo-data-
capture
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while writing, the forearm is in contact with the table surface trough writing.
This implies that accelerometer data describing non-parallel movement in
respect to the table surface, could be less valuable for later classification. If this
would be the case, than dimensionality reduction through Principal Component
Analysis could be used to identify and remove redundant data, without loss of
information.

2.4 Principal Component Analysis(PCA)
PCA applies a linear transformation to a data samples X of dimensionality
[n ×m] where n is the number of samples (e.g. over a given time), and m
is the number of observations. The linear transformation matrix A is found
through eigen-decomposition of the sample covariance matrix R, where the
corresponding eigenvectors are columns in the transformation matrix A.

R =
N−1∑
i=1

xix
T
i (2.1)

A = a0, a1, a2, · · · am−1 (2.2)

The eigenvectors of A are sorted in descending order, along with the eigen
values Λ = [λ0, λ1, λ1, · · · , λm−1]. The first eigenvector will then represent the
basis of highest variance in the sample data X. X can now be multiplied with the
transformation matrix AT to yield out transformed data samples, where largest
variance across dimensions are bound in the first column vector y0.

Y = XAT (2.3)

For further use of the transformed data, dimensions with low or zero variance
can be neglected. When performing PCA on raw data, which are to be used
for classification, it is important to note that dimensionality reduction, where
dimensions of low variance are neglected can greatly effect classification per-
formance. This can occur in datasets where the variance within observations
are high, but variance between classes are are very low. An example of this is
given in figure 2.3
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Figure 2.3: Objects of class 1 plotted in blue, and class 2 plotted in orange. Classes are
indistinguishable along the vector of greatest variance.

In figure 2.3, dimensionality reduction of raw data by PCAwould be catastrophic
for further classification, as all the data would be projected on to the line
y = 0.5x . This would remove the information which distinguish the two
classes from each other.

2.5 Correlation Coefficient
The correlation coefficient ρ is a measure of the linear dependency between
two random variables A and B of equal length N, and is given by

ρ(A,B) = 1
N − 1

N∑
i=1

(Ai − µA
σA

) (Bi − µB
σB

)
(2.4)

where µA and σA are the mean and standard deviation of A, respectively. The
correlation coefficient have values ranging from -1 to 1, where ρ = −1 implies
a perfect negative correlation, a value of ρ = 0 implies no correlation, while a
value of ρ = 1 states maximum positive correlation.
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Figure 2.4: Examples of correlation coefficients ρ(A,B) = 1,ρ(C,D) = −1,ρ(E, F ) = 0
and 0 < ρ(G,H ) < 1.
Source: peronal collection (produced in Matlab)

[Box et al., 2007] In figure 2.4 we are presented with four plots where in each
plot two random variables are plotted against each other. In the upper left
plot the two variables A and B have a maximal correlation, hence ρ = 1. In
the upper right plot, variables C and D have a maximum negative correlation,
hence ρ = −1. For the lower left plot, there seem to be no correlation between
E and F, and their correlation coefficient is zero, while in the lower right plot,
a positive correlation is evident, and the correlation coefficient will therefor be
between zero and 1.

2.6 Cross Correlation
The cross correlation function for two real discrete time signals X and Y is
given by

ρxy(τ ) ≡
∞∑

n=−∞

(xn − µx )(yn−τ − µy)
σxσy

(2.5)
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where the time shift τ is also referred to as the lag. [Box et al., 2007] The cross
correlation is a measure of similarity between two signals where output can
also indicate if one signal is lagging the other. The signal data in this thesis
vary in space and time and hence cross correlation is a first basic technique
that can be employed for finding the level of similarity between two given
space time signals.

2.7 Auto Correlation
Auto correlation calculates the cross correlation of one signal X to itself. If X is
a discrete signal consisting of L samples, the result from an auto correlation is
a new function ρxx (τ ), where τ = [−L+1,L+2, . . . ,−1, 0, 1, . . . ,L−2,L−1],
given by

ρxx (τ ) ≡
L−1∑
n=0

(xn − µx )(xn−τ − µx )
σ 2
x

(2.6)

As seen from function 2.7 the correlation coefficient is calculated between
the signal and a version of the signal which is shifted by tau. For τ = 0,
ρxx (0) = σxσx/σ

2
x = 1. While the autocorrelation function is often used to

search for periodicity within a signal, we will in this thesis merely use it as a
performance reference for cross correlation.

2.8 Singular Value Decomposition
The singular value decomposition of the n ×m matrix A is given through the
eigenvalue decomposition of the symmetric matrix AAT , such that,

A = UΣVT = (orthonormal)(diagonal)(orthonormal) (2.7)

AAT = (UΣVT)(VΣTUT) = UΣΣTU = UΛUT ⇔ AU = ΛU (2.8)

, and
ATA = (VΣTUT)(UΣVT) = VΣTΣV = VΛVT ⇔ AV = ΛV (2.9)

, where them ×m matrix U contains the eigenvectors of AAT, the n ×n matrix
V are the eigenvectors of ATA. Σ (n ×m) holds the the r = rank(A) singular
values of A, which consists of the square root of the positive eigenvalues of Λ,
sorted in a decreasing order. [Str, 2006]. We can use the SVD to determine the
degree of linear dependency of n row vectors of length m by looking at the
singular values of the (n ×m) matrix (m > n)they make up. If all row vectors
of A are linearly dependent, then Σ will be a diagonal matrix where all entries
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are zero with the exception of σ11, which holds the square root of the one and
only non-zero eigenvalue λ11, originating from AAT. For an (n ×m) (n < m),
where all entries are random variables with zero mean, the n singular values
σii of A will have similar values asm grows large.

2.9 Dynamic Time Warping(DTW)
DTW is an algorithm often used when performing similarity search between
two temporal sequences of different speed. This is useful in many fields of time
series analysis, and was originally developed for speech recognition [H. Sakoe
and S. Chiba, 1978]. DTW is a branch of dynamic programming where temporal
time series can compared to each other despite deformation and warping in
time. This is achieved by first creating a cost matrix also known as a distance
matrix between the two temporal time series which are to be compared. Before
distance matrix can be computed the two time series,X = [x1,x2, · · · ,xN ] and
Y = [y1,y2, · · · ,yM ], where N ∈ N and M ∈ N, must be Z-normalized.

Xz =
X − µ

σ (X )

Yz =
Y − µ

σ (Y )
(2.10)

, where

µx =
1
N

N∑
i=1

Xi (2.11)

, and

σ (X ) =
√√√

1
N − 1

N∑
i=1

|Xi − µx |2 (2.12)

Next step is to calculate the [N ×M] cumulative distance matrix D, which is
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given by

D(i, j) = |xi − yj | +min[D(i + 1, j)
D(i, j + 1)
D(i + 1, j + 1)] for(i ≥ 1 ≤ j)

D(1, j) = |x1 − yj | +D(1, j − 1) for(i = 1, j > 1)
D(i, 1) = |xi − y1| +D(i − 1, 1) for(j = 1, i > 1)
D(1, 1) = |x1 − y1|

(2.13)

f ori = 1, ..,N and j = 1, ...,N . D hold the cumulative distance between every
two data points in X and Y. The next step of the DTW algorithm is to find
the warping path of lowest cost. The warping path p = [p1, · · · ,pL], where
pl = (nl ,ml ) ∈ [1 : N ] × [1 : M] for l ∈ [1 : L] is a sequence which satisfies
the following conditions [Müller, Meinard, 2007]:

• Boundary conditions are: p1 = D(1, 1) and pL = (D(N ,M))
• Monotonically increasing: n1 ≤ n2 ≤ · · · ≤ nLandm1 ≤ m2 ≤ · · · ≤ mL

• Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)}f orl ∈ [1 : L − 1]
To find the optimal warping path, the matrix D is traversed from D(N ,M) to
D(1, 1), where pl−1 is chosen as the minimum value in D, which satisfies the
three conditions listed above. For pL = D(N ,M) and pl = D(i, j), we find pl−1,
by:

pl−1 =min[D(i − 1, j)
D(i, j − 1)
D(i − 1, j − 1)]

(2.14)

The classical DTW algorithm has no restrictions on the warping path other
than the three mentioned above. However, for a less time consuming algorithm,
we introduce a warping constraint, which restricts the path of p. An example
of such a constraint is the Sakoe-Chiba Band, which defines the maximum
tolerated relative deviation w of the warping path from the diagonal of the
matrix D.

w ≤
r

N
(2.15)
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Figure 2.5: Illustration of a Sakoe-Chiba band, where r is the vertical distance from
the diagonal and n is length of both signals.

The Sakoe-Chiba band is a very simple way of restricting the warping path, and
can be modified to non-square distance matrices as well, byw ≤ f loor (|n−m|),
where Di j = D(n,m). In figure 2.5 the gray diagonal area marks the values
calculated in the cumulative [20 × 20] cost matrix, with a w = 5/20 = 0.25
or 25%.
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2.10 Pattern Recognition
Pattern recognition is a field of science, where the goal is to recognize or
classify specific patterns or features in data. This process can be performed by
techniques though supervised classification, where the classifier is trained on
preclassified data, or by unsupervised classification, which just considers the
data at hand without any prehand knowledge. The two approaches are further
discussed in the two following sections.

2.10.1 Unsupervised and Supervised learning
Unsupervised learning is an sub category of machine where the goal is to
unravel similarities of a given set of feature vectors X, with the goal of group-
ing together vectors that are similar to each other. In unsupervised learning
also known as unsupervised pattern recognition or clustering, there is no a
priori knowledge of classes or labels of the feature vectors. Still, unsupervised
learning tasks appear in many fields of social sciences and engineering as a
way of clustering, or anomaly detection in large datasets. Supervised pattern
recognition uses a priori knowledge to classify new feature vectors into already
established classes. One common method for supervised classification is to use
a training set where feature vectors are already assigned a class, such that
the classifier can learn which features the objects of common class members
share and what best separates them from the members of other classes. In this
type of machine learning the classifier "practices" on the training set, and then
applied its knowledge on new unclassified feature vectors. Another version
of supervised learning, uses the training data in the classification task. An
example of the latter method is the k-Nearest Neighbor classifier

A supervised classifier assigns a new unclassified feature vector to a class
based on a priori knowledge gathered from a training set where the true
class membership is known. The training set can either be used to train the
classifier, or directly in the classification process, as is the case in the Nearest
Neighbor (k-NN) classifier. Here, a distance measure is used to determine a
unclassified feature vector’s distance to every feature vector in the training set,
no matter class. The new vector vector is then assigned to the class which hold
the majority of the new features k nearest neighbors, where k is a positive
integer. The k-NN classifier is further elaborated in section 2.11.
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2.11 Supervised K-Nearest Neighbors(k-NN)
Classification

The supervised version of the k-NN classification algorithm is a suboptimal but
popular nonlinear classifier Consider the unknown feature vector x, which are
to be assign one classω1. Given the N training vectors, we identify the k nearest
neighbors regardless of their class label. For the k samples, we identify the
number of vectors, ki , that belong to the classωi , i =1,2,3,...,M . It follows from
this, that

∑
iki = k. The unknown feature vector are now assigned to the class

ωi with the maximum numbers of ki samples [Theodoridis and Koutroumbas,
2008]. A rule of thumb is to choose k as an odd number for two-class problems,
and in general not to be a multiple ofM . This assures that we avoid ending up
with a draw when counting the classes of the k nearest neighbors. For k = 1we
have a very simple classifier, as the unknown feature vector x is simply assigned
the class of its single nearest neighbor. Although primitive, the case of k = 1 is
admissible in some classification problems, meaning that it yields the lowest
risk of miss-classification for all 1 ≤ k ≤ ∞ [Cover, T., and Hart, P., 1967]. The
k-NN classifier can be modified by the choice of distance measure techniques,
where two popular once are Euclidean and Cityblock distance.





3
Methodology
This chapterwill discuss the different approaches and techniques used to collect
and process the data, as well as the method of classification

3.1 Diversity in Handwriting
Handwriting is a very complex activity to generalize, as each subject has his or
her distinct way of drawing each letter. All though two written letters appear
identical and in fact are identical in shape and size, the process of creating
the two respective letters need not be the same. Take the letter capital E as
an example. Capital E is made up of 4 straight lines; three horizontal and one
vertical. When drawing this letter, is it not given which line is drawn first, and
it is not given how many times the pen or pencil is lifted from the paper from
start to finish. In fact, it is easy to quickly come up with at least 10 different
writing methods for writing the letter capital E. Another factor, which adds
to the complexity of the problem, is the variation in writing techniques or
hand posture. Some people move their entire arm, from shoulder down, while
writing, while others limit their arm movement, and use mainly their wrist
and finger joints to move the pen. This means that classification of all letters
spanned by all writing techniques will require a vast set of training data. We
will therefor in this project mainly focus on letter recognition where the same
person provides both the query data and training data.

17
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3.2 Comments on the Choice of Target Letters.
In the process of choosing the target capital letters E, L,O and R, the diversity
in letter shape, and range of writing methods were considered. The four letters
are chosen based on the geometric shapes that each letter consists of, and the
arguments for choosing the letters E, L, O and R are as follows:

• E - The letter consists of 4 straight lines, where each line is parallel to one
out of two perpendicular axis. The letter can be written in a vast number
of different ways when accounting the permutations of line orders, and
draw direction. The letter is also the only chosen letter where the writer
is forced to lift the pen at least once during the drawing, hence the letter
E is expected to be the most difficult letter to classify across different
subjects. One drawing configuration of E, where the two first lines forms
the letter L, later followed by the two last horizontal lines, could subject
letter E and L to be miss-classified.

• L - Letter consists of two perpendicular lines, which is in almost every
case written the same way across subjects. That is, starting from top to
bottom, then going left to right, all in one motion, without lifting the
pen. If the letter L turn out to be impossible to classify across subjects
then this would indicate that the cross-subject letter classification is not
feasible for other other letters of the alphabet.

• O - Letter O was chosen due to its circular shape, which is interesting as
the motion which creates a circle has no abrupt changes in acceleration,
as oppose to the right angles in L and possibly in E. The potential case,
where the pen displacement is recorded as an identical but scaled down
displacement of the Myo’s IMU, would implicate that the accelerometer
data from the Myo armband corresponding to the letter O would plot as
a one-period sinusoid when plotted as a function of time, in both axis
that are parallel to the table.

• R - Was chosen as it consists of one vertical line, one arc and one diagonal
line. The letter can be drawn in one line, without lifting the pen, but also
in two lines, and a third option introduces a drawing path where one
line is traversed twice, namely the vertical.

The reason for collecting only capital letters was that we expect them to bemore
standardized and less influenced by personalization from the subjects.
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3.3 Video Recording of experiment
For the recording of each individual experiment, the built in camera of a laptop
was used. This camera has a 640x480 pixel resolution and a frame rate of
30 fps. A Microsoft Studio LifeCam HD 1080p with 30 fps was provided by
University of Tromsø, and originally the primary choice for the video recording.
This camera was rejected after several recordings gave a frame rate of less than
15fps. When conducting the experiments, recording of the video is started a
few seconds before the capture of Myo Armband data, as they are controlled
through two independent softwares. After recording, the video is stored in
a folder along with corresponding data output from Myo. The code for Myo-
Data-Capture is compiled in C++ but is activated in Matlab through the use of
a built-in function “system()”, which sends command lines to the terminal of
the computer. The webcam is operated from within Matlab, using the built-in
functions “videoWriter()”.

3.4 Data Collection
In the experiment setup, each subject writes ten consecutive repetitions of the
capital letters E, L, O, and R on a piece of A4 paper, twice. This results in a
total of 80 letters collected form each subject. Letters were written from left to
right, from short side to short side on an A4 paper. first row of letters consists
of ten repetitions for E, second row ten times L, and so on. The letter size is in
the range 1-3cm, depending on the subject.



20 CHAPTER 3 METHODOLOGY

Figure 3.1: Myo’s position on the arm, seen from three different angles.

The Myo armband was worn in the writing arm of the subject, such that when
the under arm is pointing forwards, elbow is angled at 90 degrees and touching
the side of your body, and the fist is clinched as around a pole, the logo on
the Myo armband is pointing straight upwards and the Myo is 1 cm. from
the subjects biceps. The recording camera is placed on the side opposite to
the writing arm, at a 48 degree angle relative to the table surface. The data
analyzed in this thesis all originates from subjects that are right handed.

3.5 Myo Data Capture
3.5.1 Data Preprocessing
The built-in Matlab function “csvread” is used to extract and transform the
time stamp vector and the recorded data vectors from each of the 5 csv-files
into 1-D and 2-D arrays, respectively. The time stamp vectors from IMU sensors
are all identical, thus only the time stamp vector from the accelerometer data
and EMG data are saved.

The recorded video of each experiment is reviewed in Matlab using the built-in
function “implay()”. The reason for this is that we want to identify sequences
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which corresponds exclusively to data recorded during the writing of a given
letter. We can extract these sequences mymeans of video review, but for this, we
need a way of knowing which video frames that corresponds to which recorded
sensor data in respect to time. We need an equivalent to a "Hollywood movie
clapper". The movie clapper is used to synchronize video and audio in the
movie business, but in our situation we need to synchronize sensor data and
video. We solve this by giving the main pod of the Myo armband a firm slap
while video and sensor data are being recorded. This slap which we will from
now refer to as a jolt, is visible in both the video and the accelerometer data.
And since we have time stamps corresponding to each video frame and sensor
data point, we can align everything in respect to time.

When reviewing the recorded video, we have to manually write down the frame
number of the jolt, see figurefigure 3.2, along with the frames that corresponds
to the beginning and the end of each letter (figure 3.3). The frame number
is visible in the lower right corner of the Matlab “Movie Player” as shown in
figure 3.2.

Figure 3.2: Video frame of the jolt, where a firm blow is delivered to pod 4 of the Myo
Armband. Frame number is visible and outlined in red, along with total
number of frames for the video file.
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Figure 3.3: Picture on far left shows no pen mark, while a small pen mark is visible
in the mid-left image as the pen moves towards right in the frame. The
far right picture is the first frame where the pen is disconnected from the
paper, while in the mid right, the pen is still connected to the paper.

The frame number from the jolt is stored as a value in an info file, along with
frame numbers which corresponds to the last frame before a pen mark is visible,
and the first frame of pen disconnected from paper. Examples of these frames
are the far left and far right pictures in figure 3.3 respectively. We will from
now refer to these frames as start-frame and end-frame. Each of the start- and
end-frames are stored consecutively in four arrays, one for each type of letter.
Hence for ten repetitions of the letter E, the array that holds it’s start and
end-frames has 20 elements.

3.5.2 Frame Rate of Recorded Video
The frame rate of the recorded video can be found in the Matlab Movie Player
window, in Tools->Video Information. This frame rate can not be used as it
is only an estimate of the real frame rate. The real frame rate is not constant
during a video recording, but fluctuates. This means that the frame rate in
the beginning of a recording is not necessarily the same as in the end of that
same recording. For each start-frame and end-frame to accurately predict the
corresponding time stamps in the Myo data, a new time vector FRrhas to be
constructed from the time stamps of each video frame. The vector FRr is a time
vector, with unevenly spaces elements, where

FRr (1) = 0

FRr (2) = Seconds elapsed between the capture of frame 1 and 2.

FRr (2) = Seconds elapsed between the capture of frame 1 and 3.
...

FRr (N ) = Seconds elapsed between the capture of frame 1 and N.

(3.1)
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, where N is the last frame of the video file. The time stamp of a video frame
is given in seconds elapsed since capture of the first frame in the video file.
By not considering this variation in frame rate the data extracted from the
Myo recordings will be shifted, thus including data which is not representing
writing, and leaving out data that is.

Figure 3.4: Elapsed time in seconds plotted against elapsed frames, where the orange
line corresponds to a constant frame rate while the blue is the true frame
rate.

As seen in figure 3.4 the true fps deviates from the mean fps value given in
Matlab’s Video Information, where the maximum deviation occurs at frame 447,
where the difference is at 1,286 seconds. This deviation can also be seen in
figure 3.5, where the two different fps approaches are plotted against elapsed
frames.

Figure 3.5: Frames per second plotted against frames, for true fps in blue, and mean
fps in red.

Since the mean time spent on writing a single letter in the data set correspond-
ing to figure 3.4 was 0.647 seconds, using the mean fps from the video, would
lead to the wrong data being extracted from data recorded by Myo.
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A different method for sectioning out individual letters from the recorded myo
data was attempted, and is further discussed in Chapter 4.

3.5.3 Extracting Myo Data for Classification Training
To extract a correct Myo data sequence, which are to represent the sensor data
captured during the drawing of an individual letter, recorded video has to be
aligned with the Myo sensor data in respect to time. The jolt in the initializing
phase of each recording is our tool for alignment. The jolt data point is distinct
and easy to locate as it causes a spike in the accelerometer data.

Figure 3.6: Plot of data from accelerometer, where the jolt data point is easily distin-
guishable from the the rest of the data.

To get sensor data points corresponding to all star and end-frames, time stamp
of the jolt data point is subtracted form the sensor time stamp vector to form
vector X, and the video time stamp corresponding to the jolt frame is subtracted
from FRr in equation 3.1 to form vector Y. X hold the same amount of elements
as the original sensor data time stamp vector, where the time stamp corre-
sponding to the jolt data point is now zero. Y holds only 20 elements, one for
each start and stop-frame. The elements in Y holds values representing time
since jolt, just as in X. If for simplicity we assume that X holds 1000 elements
and Jindx is the index of the jolt data point, then the twenty start and end-data
points Zi, i = 1,2,3,...,20, are extracted from X by,

Zi = Jindx + j for min[Yi − X j ] (3.2)

Z is now a vector which holds the twenty indexes corresponding to the start
and end of each written letter of a given type.
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3.5.4 Validation of Letter Extraction Method
Although the method in section 3.5.3 is extremely time consuming and awk-
ward, the results are fairly accurate. A test was performed, where 16 synchro-
nization jolts were delivered to the Myo while recording both video and Myo
data. The first jolt was used as a synchronization jolt, while the other jolts were
predicted by the method described in section 3.5.3, where start and end data
points in Myo data are predicted by the synchronization jolt along with the
start- and end-frames from the corresponding video recording. The predicted
jolts were compared to the highest positive value of each spike visible in Myo
accelerometer data for Z-direction.

Figure 3.7: Plot of test for synchronization jolt accuracy. Each jolt prediction is plotted
as a red dotted line on top of the z-accelerometer data.

The result of this test showed that the offset Ei for the fifteen predictions Pi ,
compared to the 15 positive spikes Si in Myo z-acceleration (see figurefigure
3.7) was:

E =
1
15

15∑
i=1

Ei =
1
15

15∑
i=1

�
Pi − Si

�
= 0 (3.3)

, and:

σE =

√√
1
15

15∑
i=1

(Pi − Si )2 = 0.89 (3.4)

As these predictions are of indexes of data points, where sample frequency is
50Hz, the standard deviation std(E) = 0.89 corresponds to a σET ime of

σET ime = 0.89/50Hz = 18ms (3.5)

All the Myo data from one recording is sectioned into 40 sequences, by extract-
ing Myo sensor data between indexes Z(k) to Z(k+1), where k is odd. When
the raw Myo accelerometer data in x-direction is plotted with vertical lines at
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each start and end data point, see figure 3.8 we can clearly see that the vertical
lines comes prior and following a a period of larger amplitudes. This is caused
by the moving of the arm, in between each letter.

Figure 3.8: Plot of data from accelerometer in x-direction, where the vertical lines
represent beginning and end of the new sequences, here emphasized by
E1, E2,...,E10

Sequences as shown in figure 3.8 are made for every sensor and every recorded
letter (E,L,O and R), and stored according to which classification method to
use.

3.5.5 Comment on Recorded sEMG Time Stamps.
While the sampling frequency of the Myo armband is 200Hz for EMG data,
the Bluetooth is not able so send this information at 200Hz. Data originating
from two consecutive time stamps are therefor sent in one package via the
bluetooth, hence they are both provided with identical timestamps. The time
stamp vectors is therefor re-sampled such that corresponding data is evenly
spaced when plotted against the re-sampled time vector.

3.5.6 Moving Average
The 50Hz and 200Hz recording frequency of the Myo armband [Bernhardt,
Paul, 2015b] introduces fair amount of noise in the data. To make the data
better suited for classification by machine learning methods, a moving average
filter is applied to smooth out the unwanted noise . This noise is also visible
when the Myo armband is stationary in space, thus giving a strong indication
that the noise originates from the Myo itself. The moving average filter was
chosen over a filter in the frequency domain as it can be adapted to live data
for future work without the need to perform repeated Fourier transforms as
data points iterates through the test sequence. A test conducted to find the
maximum frequency of a subject actively shaking his hand, found the highest
frequency achieved to be 8,6HZ. As subjects are told to write in their normal
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speed, we assume that the moving average of each sequence does not remove
critical information from the data. If we define the test sequence to be of a
finite length NS , and the most resent arrived data point always to occupy the
first index i = 1 in our test sequence S(i) for i = 1, · · · ,N then, with only the
delay of ∆t = (X/2) − 1 sample periods, a moving average filter of odd length
X, can calculate the moving average filtered sequence for every new data point,
where the test sequence occupies indexes i = 2, · · · ,N +1. This simple moving
average filter for X = 3 is given by:

SM3(i) = 1
3

∑
(S(i − 1) + S(i) + S(i + 1)) (3.6)

3.5.7 Sequence Length Normalization
For the averaged raw data to be used in machine learning algorithms, the
sequences need to be normalized in length. This is achieved by re-sampling each
signal to the length of the longest recorded sequence across all recorded letters.
Since it is unknown if it is possible to classify individual letters from each other
based on the Myo data, we are reluctant to perform dimensionality reduction
in the initial stages of classification. Therefore, the choice was made to include
all data in the classification approach. This was done by first stretching the
length of each sequence to a length which is greater than the longest recorded
sequence. The reason for this is that we can then re-sample all signals without
loosing information. The resampling are done in an inelegant and effective
way in Matlab. Given a signal B of length 85, which are to be stretched to the
desired length 100, the new, stretched signal Bnew is given by:

[Eamonn J. and Mueen, 2016]The implication of the code above is that
some data points, in this case 15, are copied to appear twice right after each
other.

The standard length for each letter section for IMU data in this thesis is 100
data point, as it is the largest IMU data sequence recorded of a single letter in
across all subjects. Standard length for sEMG is 400 as the sampling frequency
i four times as high compared to IMU sampling frequency. This means that for
future work we are able to test a classifier, specifically trained on one subject,
on data from other subjects.
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3.5.8 Z-Normalization of Sequences
The letter sequences extracted in 3.5.3 have to be z-normalized to perform
well in dynamic time warping [Eamonn J. and Mueen, 2016], and since both
the gyroscope and orientation data are non-stationary, we z-normalize all IMU
data. For the letter sequence S, the z-normalized letter sequence Sz is given
by:

Sz =
(S − µS )
σS

(3.7)

, where µS is the mean of the letter sequence S and σS is the standard deviation
of S.

3.6 Discrimination in Signal Characteristics
3.6.1 Omitting Unpromising Sensor for Further Study
To avoid processing unnecessary amounts of data in a classification scenario,
it would be advantageous if some of the sensors turned out to be redundant.
This could be the case if some of the eight sEMG-sensors were located at areas
above muscles in the forearm which are inactive during the writing procedure.
Another occurrence of redundant sensors would be if one of the accelerometer
or gyroscope sensor where to only output constant values. A third possibility
is that some of the sensor data has low signal-to-noise ratio, thus leaving the
data useless for the study at hand.

3.6.2 Additional Signal Realignment
The cross correlation function is an effective tool for measuring similarity
of signals which may be shifted in comparison to each other. In this section
the cross correlation function is applied to a set of ten signals, each signal
originating from the same subject and the same sensor. The the cross correlation
is applied in a one-to-all fashion,where the first signal is cross correlated against
the nine remaining signals in the set, in addition to an auto correlation which
is effectively a cross correlation with itself. The cross correlation results are
then normalized with respect to the max value from the auto correlation. The
positions of the max value of each cross correlation is then subtracted from
the position of the max value from the auto correlation. The result from this
operation is then used to adjust the start and stop time stamps described in
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the letter extraction section 3.5.3.

Figure 3.9: The first of the ten signals are auto correlated, then cross correlated
against the remaining nine signals.
Source: Personal collection (produced in Matlab).

figure 3.9 illustrates the operation where the first of ten signals, originating
from the same subject, sensor and letter, are cross correlated with first itself,
then the remaining 9 signals.

Figure 3.10: Auto correlation and cross correlations plotted against each other before
additional realignment.
Source: Personal collection (produced in Matlab).

From figure 3.10 we see the 10 cross correlation results plotted on top of each
other. As evident from the respective figure, there are some misalignment of
the maximum values in respect to τ . For this particular case, the second and
fourth signal has peak values at τ2 − τ1 = −2 and τ4 − τ1 = 2. These values are



30 CHAPTER 3 METHODOLOGY

used to correct the extraction window for letter repetition two and four, such
that when cross correlation operation described in figure 3.9 are performed on
the adjusted signals, the maximum peak of each cross correlation is aligned to
each other. This second iteration of cross correlation is plotted in figure 3.11
below.

Figure 3.11: Auto correlation and cross correlations plotted against each other, after
additional realignment.
Source: Personal collection (produced in Matlab).

The results from the additional realignment described in this section will act
as input to the remaining work of this thesis.



4
Results
4.1 Correlation
4.1.1 Method
For simplicity, we rename the 18 sensor data dimensions from accelerometer,
gyroscope, orientation and sEMG to:

31
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Table 4.1: Table lists the name conversions for each sensor type and dimension.

Sensor Notation

Senor Type Dimension/sEMG number Sensor Number
Accelerometer X 1
Accelerometer Y 2
Accelerometer Z 3
Gyroscope X 4
Gyroscope Y 5
Gyroscope Z 6
Orientation X 7
Orientation Y 8
Orientation Z 9
Orientation ϕ 10

sEMG 1 11
sEMG 2 12
...

...
...

sEMG 8 18

The results plotted in figures figure 4.1, figure 4.2, figure 4.3 and figure 4.4
originates from the following procedure:

• Consider one sensor dimension.

• The mean sequence within a set of 10 letters originating from one subject
are calculated.

• The correlation coefficient is then calculated between the mean sequence
and the 10 letter sequences within the set.

• The mean of the ten coefficients is calculated next.

• This process is repeated for all ten sets of that letter type,which originates
from five different subjects.

• The mean and standard deviation is then calculated across these ten
mean correlation values.

• Repeated for remaining 17 sensor dimensions,
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4.1.2 Results
The result of this calculations indicates which sensor dimension that has the
highest correlation within subjects for that letter.

Figure 4.1: Mean and standard deviation of correlation coefficients across all subjects
for letter E, for each sensor number.
Source: Personal collection (produced in Matlab).

Figure 4.2: Mean and standard deviation of correlation coefficients across all subjects
for letter L, for each sensor number.
Source: Personal collection (produced in Matlab).
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Figure 4.3: Mean and standard deviation of correlation coefficients across all subjects
for letter O, for each sensor number.
Source: Personal collection (produced in Matlab).

Figure 4.4: Mean and standard deviation of correlation coefficients across all subjects
for letter R, for each sensor number.
Source: Personal collection (produced in Matlab).

As seen from the plotted results in figures figure 4.1, figure 4.2, figure 4.3 and
figure 4.4, sensor dimensions 7-10 yields the highest mean correlation values.
These sensor numbers corresponds to the four orientation dimensions. The
mean correlation coefficient for the four orientation dimensions is:

• E = 0.81

• L = 0.81

• O = 0.87

• R = 0.80
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, while for the sEMG data, which yields the lowest correlation values in figures
4.1, figure 4.2, figure 4.3 and figure4.4, we have a mean correlation coefficient
for all sEMG dimensions of:

• E = 0.52

• L = 0.51

• O = 0.60

• R = 0.54

4.2 Singular Value Decomposition
4.2.1 Method I
In this section wewill use SVD to further examine the statistical data similarities
for letters written by a given subject. We will also calculate the singular values
for the given letters across users to see if there is any similarity in the letter
data across subjects.

For one letter sample, each vector representing a sensor number is concatenated
such that we end up with vectors of length L, where

L = (3 × 100) + (3 × 100) + (4 × 100) + (8 × 400) = 4200 (4.1)

Note that the lengths of all letter sequences are normalized to 100 for IMU-
dimensions, and 400 for sEMG-dimensions.

We first calculate the singular values within each letter set. There are 40 sets,
10 sets for each letter, which all consists of data from ten letter repetitions.
We calculate the SVD for all sensor data combined as discussed in 4.2.1, and
for each of the sensor types, accelerometer, gyroscope, orientation and sEMG,
separate.

4.2.2 Results I
Resulting singular values on the diagonal of Σ is normalized by the sum of the
diagonal of Σ and plotted in figure 4.5
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Figure 4.5: [Singular values of subjects across letters.
Source: Personal collection (produced in Matlab).

From figure 4.5 we get a visual representation of the singular value from each
subjects letter sets, based on the all the sensor dimensions. The singular values
which are calculated based on individual sensor types, e.g. accelerometer data,
are listed in table 4.2.
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Table 4.2: The table lists mean and standard deviation of singular values within
subjects.

Letter Mean(σ11) Standard deviation(σ11)
All Sensors

E 0.1705 0.0233
L 0.1579 0.0149
O 0.1783 0.0258
R 0.1731 0.0229

Accelerometer
E 0.233 0.0368
L 0.215 0.0380
O 0.258 0.0377
R 0.247 0.0341

Gyroscope
E 0.280 0.0488
L 0.244 0.0330
O 0.296 0.0424
R 0.292 0.039

Orientation
E 0.337 0.044
L 0.332 0.059
O 0.419 0.093
R 0.330 0.046

sEMG
E 0.16 0.017
L 0.151 0.018
O 0.167 0.022
R 0.169 0.016

4.2.3 Method II
To determine the statistical similarities of written letters across subjects, a super
matrix is created containing all the collected data from one letter across all
users. When including all sensor numbers in the super matrix for a letter X,
the size is 100 × 4200, where rows 1 to 20 are the twenty letter repetitions
from subject 1, rows 21 to 40 are the letter repetitions from subject 2, and so
on. There are in total four super matrices, one for each letter. The purpose of
these matrices is to explore if their corresponding singular values indicates a
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similarity in letters, across subjects.

4.2.4 Results

Table 4.3: Largest singular value along with a summation of the ten largest singular
values for each letter. SVD for each letter is calculated from all sensor
numbers, across all users.

Singular Values for Super-Matrix

Letter σ1 Σ10
i=1σi

E 0.033 0.206
L 0.032 0.208
O 0.044 0.217
R 0.035 0.210

We will after calculating the SVD for the super matrices construct four sensor
matrices which contains individual sensor types, rather than data from all
sensors. These are named:

• Super Accelerometer

• Super Gyroscope

• Super Orientation

• Super sEMG
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Table 4.4: Largest singular value along with a summation of the ten largest singular
values for each letter. SVD for each letter is calculated exclusively from
orientation data across all users.

Singular Values for Super-Acceleration Matrix

Letter σ1 Σ10
i=1σi

E 0.047 0.306
L 0.065 0.343
O 0.079 0.340
R 0.057 0.327

Singular Values for Super-Gyroscope Matrix

Letter σ1 Σ10
i=1σi

E 0.060 0.380
L 0.070 0.398
O 0.083 0.423
R 0.075 0.387

Singular Values for Super-Orientation Matrix

Letter σ1 Σ10
i=1σi

E 0.085 0.470
L 0.100 0.515
O 0.145 0.591
R 0.101 0.470

Singular Values for Super-sEMG Matrix

Letter σ1 Σ10
i=1σi

E 0.033 0.206
L 0.032 0.209
O 0.044 0.217
R 0.035 0.210

Table 4.5: Table lists the sum of the 10 first normalized singular values along with the
highest singular value.
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4.3 K-Nearest Neighbor classification
4.3.1 Method
Sensor data is grouped in four categories based on the sensor type, and data
from one letter is concatenated into one vector, such that accelerometer and
gyroscope vectors consists of 300 features each, orientation vector consists of
400 features and sEMG vectors holds 3200 features.

For the training of the k-NN classifier, we have, for each subject, two sets
of four letter classes with 10 observations in each class. Since the number
of observations in our data sets are very low, a cross-validation scheme is
implemented, which parts the data into five folds of equal length, where
observations are assigned randomly. The classifier uses 4 out of the 5 folds as
training data, while the last fold is used as test data. This is repeated 5 times,
where a different fold is left out each time. The number of nearest neighbors
k was set to 1, 3, and 5, while the distance measure was set to euclidean
with equal weighting. The two sets of sampled data from each subject acts as
training data and test data, one time each. We will from now assign a number
to each of the ten sets such that:

1st subject’s 1st set = Set1
1st subject’s 2nd set = Set2
2nd subject’s 1st set = Set3

...
5th subject’s 2nd set = Set10

Table 4.6: Notation for Sets

For the notation of the classification results, k-NNX(Y) is the k-nearest neighbor
classifier, which is given the task of classifying the data in set Y based on the
training data in set X.

The k-NN classifier is first used to classify letters from one subject based on
training data form that same object. All the four data types, accelerometer, gy-
roscope, orientation and sEMG, are used separate to test each type’s capability
of classification. The full table of these results can be found in Appendix A. In
these tables, a classification score of 0 means no correct classifications, while a
score of 1 means that all letters of the letter type was classified correctly.

We then go on to splitting all the data in two bi-sets. This means that the
classifier is fist trained on sets of odd numbers,(see table 4.6 ), then set to
classify sets of even number. This is repeated with opposite training and test
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bi-sets.

4.3.2 Results
From the result in Appendix A, its evident that the nearest neighbor rule is
capable of classifying data originating from the same subject in most cases.
For k-NN1(2) and k-NN2(1), the data originating from subject 1, we have on
average a lower classification accuracy, than for the other subjects.

Table 4.7

k-NNX(Y) 1-NN 3-NN 5-NN

Validation Accuracy
k-NN1 0.925 0.93 0.94

k-NN2(1) 0.935 0.92 0.905

E
k-NN1(2) 0.58 0.54 0.46
k-NN2(1) 0.6 0.62 0.56

L
k-NN1(2) 0.58 0.54 0.46
k-NN2(1) 0.6 0.62 0.56

O
k-NN1(2) 0.78 0.8 0.8
k-NN2(1) 0.84 0.8 0.84

R
k-NN1(2) 0.78 0.74 0.74
k-NN2(1) 0.78 0.72 0.72

Average
k-NN1(2) 0.72 0.705 0.69
k-NN2(1) 0.755 0.72 0.705
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4.4 Results from Similarity Search with Dynamic
Time Warping.

The function output of a DTW between two time series are simply a positive nu-
meric value, where values close to zero indicates high similarity. As knowledge
on the position of each individual letter in raw data already is acquired through
video analysis, we can test the performance of a sliding DTW function’s ability
to correctly predict these positions.

4.4.1 Method
In this test we will use DTW to test letter recognition within a subjects data
recording. Since we have 18 different sensor dimensions we chose to only use
the sensor dimension of greatest correlation within letter sets. This means that
for subject 1, where letter E have the highest correlation in sensor 9, we will
perform similarity search only between letter sequences and raw data from
sensor 9.

The data record from sensor 9 of set 1 from subject 1 is of length 3000. The
candidate sequences which are to be tested against the target letter sequence
need to be extracted from the recorded data. This is done through the con-
struction of a candidate matrix where each column holds a candidate sequence.
The candidate sequences overlap each other such that when the mean target
letter sequence length is 50, and the recorded signal S is of length 3000, the
corresponding candidate matrix has the dimension:

(50 × ((3000/2) − 50 + 1)) = (50 × 1451) (4.2)

This corresponds to the first column of the candidate matrix overlapping the
second column with 48 data points. All the columns in the candidate matrix are
z-normalized prior to DTW operation. To perform dynamic time warping on
the data recording from sensor 9, a mean letter sequence is constructed for the
target letter E. This is done by first length normalizing the ten letter sequences.
When the ten sequences have the same length, the individual means are
subtracted and the sequences are divided by their respective standard deviation.
Now the mean of the ten sequences are computed, by averaging.

Similarity search within the data from sensor 9 is done by calculating the DTW
distance between the mean letter sequence and every column in the candidate
matrix. A warping restriction is set to 10% of the mean letter sequence length.
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Since the data recorded from sensor 9 contains ten subsequences corresponding
to the writing of letter E, the ten lowest DTW distance values should have
positions matching the positions where the letter was written. The success of
this approach relies the similarity of letter sequence data, and letter sequence
length.

4.4.2 Results
The results for individual cases are plotted in Appendix B. This table consists of
both the sensor number that was chosen for each task, and the corresponding
success rate of the DTW similarity search. The mean success rate of the DTW
classification for each letter is listed below.

• Mean success rate for letter E: 11%

• Mean success rate for letter L: 7%

• Mean success rate for letter O: 11%

• Mean success rate for letter R: 10%





5
Discussion
In this chapter, we will thoroughly discuss the different challenges and aspects
of this thesis, along with what should have been done different, and some
thoughts on future work.

5.1 Data Collection
5.1.1 Additional Collected Data
Along with the collected data presented in this thesis there are additional data
available to the public¹ online. This additional data consists of 5 single sets
of 4 (E,L,O,R) by 10 letters , along with complete alphabets written by the
respective subject. There is also a gathering of data from 18 subjects, writing
the four target letters, one time each. The purpose of this collected data set was
to collect data on a broad subject group, The test phase was done in Tromsø
Library with permission from the library director. Random persons were asked
to participate as anonymous subjects, where data was recorded by the Myo
Arband along with a close-up video of the subjects hand movements. Subjects
are not identifiable through the video as seen in 5.1

1. From user Brynjulv Tveit at www .dataverse .no/dataverse/uit

45
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Figure 5.1: Standardized video angle of subjects hands, in experimental setup type 1.

Each subject were to write the four letters in the following order: E, L, O, and
R within the square brackets, as seen in 5.1.The purpose of this experiment
was to compare data from single written letters, across subjects. The majority
of the time spent on this thesis was used on developing a functioning method
for identification of letter sequences in the Myo data, based on recorded video.
The rest of the collected data is gathered at University of Tromsø

5.1.2 Omitted Synchonization Method
The first approach letter extraction problem in section 3.5.3, was made while
assuming that the orientation data from Myo was calculated from the Myos
magnetometer. A conducting coilwas coupledwith a 9 volt battery togetherwith
a visible switch such that the activation of the magnetic field would be visible
both in orientation data and in the recorded video. The coil were to produce a
magnetic field B see figure 5.2, which would be visible in magnetometer data,
and thus act like the "synchronization jolt". This would spare the subjects from
getting the jolt to their arm.
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Figure 5.2: An illustration of the device which was initially the primary synchroniza-
tion tool for alignment of recorded video and Myo data.
Source: Personal collection.

When this method was found unsuccessful, due to the inaccessible magnetome-
ter data, the approach by synchronization jolt was tested and proved sufficiently
accurate for the job.

5.1.3 Practical info on Myo Armband
During data collection with Myo in this thesis we experienced some difficulties
with delayed start of the data logging. Another problemwhich caused headache
was that the Myo-Data-Capture program fails to record if the battery level of
the Myo drops under a certain level. The exact cut-off battery percentage are
not known, but one recording session was lost, when the battery level was in
the range 35-50 percent.

5.1.4 Alternative to Video Recording
As the method for sequence identification in this thesis is very time consuming,
a different approach was attempted, where a microphone recorded the writing
of the pen, with a semi-rough and acoustically amplifying surface under the
paper. The method showed promising results, but was abandoned when due to
the proven accuracy of the already developed video recording method.
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5.2 Results
5.2.1 Correlation
The correlation results in this thesis calculated within the individual subjects
letters. This was done on an early stage to establish the feasibility of the
remaining classification tasks. The orientation data has a mean correlation
coefficient of above 0.8 for all letters when calculated within subject sets, while
the sEMG have mean correlation coefficients above 0.5, noting that the range
of the correlation coefficient is [−1, 1]. Although the correlation coefficients
within subjects data are high, we need either a strong letter correlation across
all users or large amounts of training data to generalize classification such that
it will work on test data from new subjects. Since we can assume that there
are now strong letter correlation from one random subject to another, based
on variations in writing techniques and the fact that subjects might use the left
hand instead of the right hand, we have to assume that the there is a need for a
lot of training data, to achieve letter classification of a new random user.

5.2.2 Singular Value Decomposition
The results from SVD clearly indicates that there exists some similarity be-
tween letters across users. The best results were again from the orientation
dimensions, where the largest singular values were:

• E = 0.085

• L = 0.100

• O = 0.145

• R = 0.101

This means that the first singular value of letter O along with it’s corresponding
vectors in matrix U andmatrix V, holds 14.5% of the total information regarding
letter O, and similar for the letters, E,L and R. Results for all the sensors
combined in the super matrix yields a lower singular values. The result from
SVD in this thesis proves that there is a similarity between the letters across
users. The method of using SVD as a proof of statistical similarity between
vectors are used with great success in other studies, such as in [Sharma and
Alsam, 2014].
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5.2.3 Nearest Neighbor Classification
The results from section 4.3, where classifier is trained and tested on data from
the same subject, further establishes the similarity of letters with in subjects.
The results in table 4.7, where half of all orientation data is used as training
data and half as test data, yields promising results, as the k-NN classifier is
considered as a simple classifier in general. Since the test data and training
data in table4.7 both contains sets from all users, this does not prove the
feasibility of classification across users but gives an indication on how much the
miss-classification grows when training data from multiple users are included.
This is interesting as it is important to know if the recorded sequence of letter
X for one subject is similar of identical to the recorded sequence of letter Y
for a different subject. Although the classification rate of across all users went
down when compared to mean classification within subjects, we still achieve
a classification rate significantly higher than the that of 0.25, which would
would be the expected success rate of randomly assigning classes to letter
sequences.

5.2.4 Dynamic Time Warping
The attempted similarity search using DTW faces one obstacle which the other
methods in this thesis is not introduced to. The DTW algorithm in this thesis
searches through the entire raw file from one sensor dimension, as oppose to
the other techniques which are given test queries as input. The difference in
these two approaches is that the DTW is is not guarantied to extract the correct
query length from the raw data. This will maybe turn out to be the greatest
challenge in future studies, as one subject might write twice as fast as another
subjects, if not more, if we consider the case were subjects are in the early
stage of education.

5.3 Comment on future application methods
5.3.1 Hand WrittenWord Recognition
Consider the scenario where we are not able to classify the written letters from
the (English) alphabet into it’s 26 distinct classes. Classification of individual
words can still be possible, by the means of disambiguation [Kreifeldt et al.,
1989]. An example of this technique being utilized is in older mobile phones
through text on 9 keys(T9), or predictive text. The same concept could be used
in handwriting recognition though Myo, by grouping one letter together with
the letters it is most likely to be miss-classified as. Using this technique the
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classifier is not dependent of 100% success rate in classification, which in turn
increases the chances of a future where handwriting recognition through Myo
Armband is reality.

5.3.2 Myo versus Smart Watches
As seen in the results presented in this thesis, the IMU sensors out performs
the sEMG sensors on average. Since most smart watches are already embedded
with IMU sensors, it is possible that the future of handwriting recognition is
in smart watches and not in the Myo Armband. A smart watch is also worn
in a consistent position and with a more or less fixed orientation. The watch
has also the advantage that the wrist is much harder than the upper forearm,
which therefor translates movement to the IMU more accurate. If handwriting
recognition though arm mounted IMU sensors exists in the future, it is more
applicable in the form of a watch, then for the Myo Armband.

5.4 Conclusion
In this thesis we have explored the Myo Armbands potential as a multi sensor
for handwriting recognition. A strong positive correlation between same class
letters within subjects has been proven in all of the four sensor types, where
the orientation data yields the highest correlation coefficient values, while
the sEMG data yields the lowest. Statistical similarity between same class
letters has been found through singular value decomposition, where again
orientation data yields the highest values, while sEMG scores the lowest of
all sensor types. In an attempt to cross subject classification though k-NN,
with k = 1, k = 3, and k = 5, the 1-NN classifier yields a minimum success
rate of 58% across the four letters. This is considerably better that what we
would expect from a random assignment of letter classes. In the last part of
the results, a similarity search by DTW is attempted. This yield poor results,
with a classification success rate of around 10% on average across letters. Since
the data from IMU sensors over all out performs the data from the sEMG, we
suggest that future studies on this subject of handwriting recognition by arm
mounted multi sensors are performed with IMU sensors mounted on the wrist,
instead of on the upper forearm, as this would result in larger arm movements,
hence larger amplitudes in the recorded IMU data. As the IMU sensors are
embedded in a vast variety of smart watches, this seems like a more realistic
approach to the problem, as the data collection can be done more effectively. If
future work succeeds in hand writing recognition through wrist mounted IMU
sensors, a hypothetical handwriting recognition-app would be accessible to a
larger number of users.
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k-NN Classification Results for sEMG Data
Validation accuracy for training data

K=1 K=3 K=5

k-NN1(2) 0.75 0.775 0.825
k-NN2(1) 0.775 0.8 0.8
k-NN3(4) 0.55 0.5 0.45
k-NN4(3) 0.775 0.65 0.625
k-NN5(6) 0.875 0.75 0.85
k-NN6(5) 0.85 0.85 0.85
k-NN7(8) 0.875 0.875 0.825
k-NN8(7) 0.825 0.825 0.825
k-NN9(10) 0.8 0.875 0.8
k-NN10(9) 0.8 0.875 0.925

Classification of letter E
K=1 K=3 K=5

k-NN1(2) 0.6 0.9 0.9
k-NN2(1) 0.3 0.7 0.8
k-NN3(4) 1.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.8 0.8 0.8
k-NN6(5) 0.8 0.8 0.9
k-NN7(8) 0.9 0.9 0.9
k-NN8(7) 0.9 0.9 1.0
k-NN9(10) 0.9 1.0 1.0
k-NN10(9) 1.0 1.0 1.0

Classification of letter L
K=1 K=3 K=5

k-NN1(2) 0.6 1.0 0.9
k-NN2(1) 0.8 0.8 0.6
k-NN3(4) 0.4 0.3 0.4
k-NN4(3) 0.6 0.5 0.1
k-NN5(6) 0.5 0.7 0.7
k-NN6(5) 0.3 0.3 0.2
k-NN7(8) 0.4 0.4 0.4
k-NN8(7) 0.5 0.6 0.5
k-NN9(10) 0.6 0.6 0.6
k-NN10(9) 0.6 0.7 0.6

Table 5.1: Table lists values for validation accuracy for classifiers trained on data from
all sEMG dimensions, and the classification accuracy on test sets for the
letters E and L, respectively.
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Classification of letter O
K=1 K=3 K=5

k-NN1(2) 0.2 0.1 0
k-NN2(1) 0.2 0 0
k-NN3(4) 0.7 0.7 0.7
k-NN4(3) 0.2 0 0
k-NN5(6) 1.0 1.0 1.0
k-NN6(5) 1.0 1.0 1.0
k-NN7(8) 1.0 1.0 1.0
k-NN8(7) 1.0 1.0 0.9
k-NN9(10) 0.8 0.9 1.0
k-NN10(9) 0.8 1.0 1.0

Classification of letter R
K=1 K=3 K=5

k-NN1(2) 0.1 0 0
k-NN2(1) 0.2 0.1 0.2
k-NN3(4) 0.9 0.7 0.7
k-NN4(3) 0.9 0.9 0.8
k-NN5(6) 1.0 1.0 1.0
k-NN6(5) 0.9 1.0 1.0
k-NN7(8) 0.9 1.0 0.9
k-NN8(7) 0.9 0.8 0.9
k-NN9(10) 0.8 0.8 0.8
k-NN10(9) 0.9 0.7 0.8

Mean results across all 4 letters.
K=1 K=3 K=5

k-NN1(2) 0.375 0.5 0.45
k-NN2(1) 0.375 0.4 0.4
k-NN3(4) 0.75 0.675 0.7
k-NN4(3) 0.675 0.6 0.475
k-NN5(6) 0.825 0.875 0.875
k-NN6(5) 0.75 0.775 0.775
k-NN7(8) 0.8 0.825 0.8
k-NN8(7) 0.825 0.825 0.825
k-NN9(10) 0.775 0.825 0.85
k-NN10(9) 0.825 0.85 0.85

Table 5.2: Table lists the sEMG data classification accuracy on test sets for the letters
O and R, respectively, and the mean
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k-NN Classification Results for Accelerometer Data.
Validation accuracy for training data

K=1 K=3 K=5

k-NN1 0.9 0.925 0.95
k-NN2 0.9 0.9 0.875
k-NN3 1.0 0.975 1.0
k-NN4 1.0 1.0 0.975
k-NN5 0.825 0.9 0.8
k-NN6 0.875 0.825 0.85
k-NN7 0.875 0.85 0.85
k-NN8 0.925 0.825 0.875
k-NN9 0.875 0.95 0.9
k-NN10 0.9 0.875 0.875

Classification of letter E
K=1 K=3 K=5

k-NN1(2) 0.8 0.8 0.8
k-NN2(1) 0.9 0.9 0.9
k-NN3(4) 1.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 1.0 1.0 1.0
k-NN6(5) 0.7 0.5 0.5
k-NN7(8) 0.9 0.9 1.0
k-NN8(7) 0.7 0.9 0.8
k-NN9(10) 1.0 1.0 0.9
k-NN10(9) 1.0 1.0 1.0

Classification of letter L
K=1 K=3 K=5

k-NN1(2) 0.8 0.7 0.7
k-NN2(1) 0.6 0.6 0.6
k-NN3(4) 1.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.6 0.5 0.7
k-NN6(5) 0.9 1.0 1.0
k-NN7(8)) 0.2 0.3 0.3
k-NN8(7) 0.8 0.4 0.3
k-NN9(10) 0.8 0.6 0.6
k-NN10(9) 1.0 0.8 0.9

Table 5.3: Table lists values for validation accuracy for classifiers trained on data from
accelerometer dimensions, and the classification accuracy on test sets for
the letters E and L, respectively.
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Classification of letter O
K=1 K=3 K=5

k-NN1(2) 0.2 0.2 0
k-NN2(1) 0.2 0.2 0
k-NN3(4) 1.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.9 0.9 0.9
k-NN6(5) 0.7 0.8 0.8
k-NN7(8) 1.0 1.0 1.0
k-NN8(7) 1.0 1.0 1.0
k-NN9(10) 0.8 0.8 1.0
k-NN10(9) 1.0 0.8 1.0

Classification of letter R
K=1 K=3 K=5

k-NN1(2) 0.1 0.1 0.1
k-NN2(1) 0.2 0.1 0.1
k-NN3(4) 01.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.9 1.0 0.8
k-NN6(5) 1.0 1.0 1.0
k-NN7(8) 1.0 0.8 1.0
k-NN8(7) 0.9 1.0 1.0
k-NN9(10) 1.0 1.0 1.0
k-NN10(9) 0.9 0.9 0.9

Mean results across all 4 letters.
K=1 K=3 K=5

k-NN1(2) 0.475 0.45 0.4
k-NN2(1) 0.475 0.45 0.4
k-NN3(4) 1.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.85 0.85 0.85
k-NN6(5) 0.825 0.825 0.825
k-NN7(8) 0.775 0.75 0.825
k-NN8(7) 0.85 0.825 0.775
k-NN9(10) 0.9 0.85 0.875
k-NN10(9) 0.975 0.875 0.95

Table 5.4: Table lists the accelerometers classification accuracy on test sets for the
letters O and R, respectively, and the mean cross all letters.
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k-NN Classification Results for Gyroscope Data
Validation accuracy for training data

K=1 K=3 K=5

k-NN1 0.925 0.925 0.925
k-NN2 0.875 0.95 0.925
k-NN3 1.0 1.0 0.975
k-NN4 0.975 0.975 1.0
k-NN5 0.9 0.825 0.825
k-NN6 0.95 0.95 0.975
k-NN7 0.95 0.95 0.975
k-NN8 0.95 0.85 0.9
k-NN9 0.975 1.0 0.975
k-NN10 0.975 0.95 0.95

Classification of letter E
K=1 K=3 K=5

k-NN1(2) 0.6 0.7 0.7
k-NN2(1) 0.6 0.4 0.4
k-NN3(4) 0.8 0.8 0.8
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 1.0 0.9 0.9
k-NN6(5) 0.8 0.7 0.6
k-NN7(8) 1.0 1.0 1.0
k-NN8(7) 1.0 1.0 1.0
k-NN9(10) 1.0 1.0 1.0
k-NN10(9) 1.0 1.0 1.0

Classification of letter L
K=1 K=3 K=5

k-NN1(2) 0.6 0.4 0.4
k-NN2(1) 0.7 0.7 0.7
k-NN3(4) 0.9 0.9 0.7
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.8 0.8 0.9
k-NN6(5) 1.0 1.0 1.0
k-NN7(8) 0.8 0.8 0.8
k-NN8(7) 0.9 0.8 0.9
k-NN9(10) 0.6 0.7 0.7
k-NN10(9) 0.9 0.8 0.8

Table 5.5: Table lists values for validation accuracy for classifiers trained on data from
gyroscope dimensions, and the classification accuracy on test sets for the
letters E and L, respectively.
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Classification of letter O
K=1 K=3 K=5

k-NN1(2) 0.6 0.4 0.3
k-NN2(1) 0.5 0.5 0.4
k-NN3(4) 1.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 1.0 1.0 1.0
k-NN6(5) 1.0 1.0 1.0
k-NN7(8) 1.0 1.0 1.0
k-NN8(7) 1.0 1.0 1.0
k-NN9(10) 1.0 1.0 1.0
k-NN10(9) 0.9 1.0 1.0

Classification of letter R
K=1 K=3 K=5

k-NN1(2) 0.3 0.3 0.4
k-NN2(1) 0 0 0
k-NN3(4) 1.0 1.0 1.0
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.9 0.9 0.7
k-NN6(5) 1.0 1.0 1.0
k-NN7(8) 1.0 1.0 1.0
k-NN8(7) 0.9 0.8 0.8
k-NN9(10) 1.0 1.0 1.0
k-NN10(9) 1.0 1.0 1.0

Mean results across all 4 letters.
K=1 K=3 K=5

k-NN1(2) 0.525 0.45 0.45
k-NN2(1) 0.45 0.4 0.375
k-NN3(4) 0.925 0.925 0.875
k-NN4(3) 1.0 1.0 1.0
k-NN5(6) 0.925 0.9 0.875
k-NN6(5) 0.95 0.925 0.9
k-NN7(8) 0.95 0.95 0.95
k-NN8(7) 0.95 0.9 0.925
k-NN9(10) 0.9 0.925 0.925
k-NN10(9) 0.95 0.95 0.95

Table 5.6: Table lists the gyroscope data classification accuracy on test sets for the
letters O and R, respectively, and the mean
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k-NN clustering using orientation data.
Validation accuracy for training data

K=1 K=3 K=5
KNN1(2) 0.9 0.9 0.95
KNN2(1) 0.925 0.925 0.9
KNN3(4) 0.975 0.975 0.975
KNN4(3) 0.975 0.95 0.975
KNN5(6) 0.9 0.9 0.875
KNN6(5) 0.95 0.975 0.925
KNN7(8) 0.925 0.975 0.975
KNN8(7) 0.975 0.925 0.9
KNN9(10) 0.975 0.975 0.975
KNN10(9) 0.875 0.9 0.95

Classification of letter E
K=1 K=3 K=5

KNN1(2) 0 0 0
KNN2(1) 0.4 0.4 0.3
KNN3(4) 0.2 0.2 0.1
KNN4(3) 0.5 0.4 0.6
KNN5(6) 1.0 0.8 0.9
KNN6(5) 0.7 0.9 0.7
KNN7(8) 0.9 1.0 1.0
KNN8(7) 0.9 0.9 0.9
KNN9(10) 1.0 1.0 1.0
KNN10(9) 1.0 1.0 1.0

Classification of letter L
K=1 K=3 K=5

KNN1(2) 0 0 0
KNN2(1) 0.1 0.1 0.1
KNN3(4) 1.0 1.0 0.9
KNN4(3) 1.0 1.0 1.0
KNN5(6) 0.8 0.8 0.8
KNN6(5) 0.8 0.9 0.9
KNN7(8) 0.8 0.8 0.8
KNN8(7) 1.0 1.0 1.0
KNN9(10) 0.7 0.8 0.8
KNN10(9) 1.0 1.0 1.0

Table 5.7: Table lists values for validation accuracy for classifiers trained on data from
orientation dimensions, and the classification accuracy on test sets for the
letters E and L, respectively.
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Classification of letter O
K=1 K=3 K=5

KNN1(2) 0 0 0
KNN2(1) 0.4 0 0.1
KNN3(4) 1.0 1.0 1.0
KNN4(3) 0.9 0.9 1.0
KNN5(6) 0.8 0.8 0.8
KNN6(5) 1.0 1.0 1.0
KNN7(8) 1.0 1.0 1.0
KNN8(7) 1.0 1.0 1.0
KNN9(10) 1.0 1.0 1.0
KNN10(9) 1.0 1.0 1.0

Classification of letter R
K=1 K=3 K=5

KNN1(2) 0.5 0.5 0.5
KNN2(1) 0.1 0.1 0.1
KNN3(4) 0.8 0.9 0.9
KNN4(3) 1.0 1.0 1.0
KNN5(6) 0.9 0.9 0.8
KNN6(5) 0.9 0.9 0.9
KNN7(8) 1.0 1.0 1.0
KNN8(7) 0.9 1.0 1.0
KNN9(10) 0.9 0.9 0.8
KNN10(9) 1.0 1.0 1.0

Mean results across all 4 letters.
K=1 K=3 K=5

KNN1(2) 0.125 0.125 0.125
KNN2(1) 0.25 0.15 0.15
KNN3(4) 0.75 0.775 0.725
KNN4(3) 0.85 0.825 0.9
KNN5(6) 0.875 0.825 0.825
KNN6(5) 0.85 0.925 0.875
KNN7(8) 0.925 0.95 0.95
KNN8(7) 0.95 0.975 0.975
KNN9(10) 0.9 0.925 0.9
KNN10(9) 1.0 1.0 1.0

Table 5.8: Table lists the orientation data classification accuracy on test sets for the
letters O and R, respectively, and the mean
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Set 1
Letter Sensor of Max(ρ) Classified
E 9 2
L 7 3
O 1 3
R 4 3

Set 2
Letter Sensor of Max(ρ) Classified
E 2 1
L 7 0
O 9 0
R 9 2

Set 3
Letter Sensor of Max(ρ) Classified
E 8 1
L 4 0
O 7 0
R 1 1

Set 4
Letter Sensor of Max(ρ) Classified
E 7 1
L 4 2
O 7 6
R 5 0

Set 5
Letter Sensor of Max(ρ) Classified
E 3 0
L 10 0
O 10 0
R 8 0
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Set 6
Letter Sensor of Max(ρ) Classified
E 5 1
L 7 0
O 7 0
R 8 3

Set 7
Letter Sensor of Max(ρ) Classified
E 10 0
L 10 0
O 7 1
R 10 0

Set 8
Letter Sensor of Max(ρ) Classified
E 10 1
L 8 1
O 7 1
R 7 0

Set 9
Letter Sensor of Max(ρ) Classified
E 5 3
L 8 0
O 9 0
R 8 0

Set 10
Letter Sensor of Max(ρ) Classified
E 4 1
L 8 1
O 9 0
R 5 1
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