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Abbreviations

FM Frequency Modulation

FWHP Full Width Half Power

IRW Impulse Response Width

NRCS Normalized Radar Cross Section

PRF Pulse Repetition Frequency

RAR Real Aperture Radar

RCM Range Cell Migration

RCMC Range Cell Migration Correction

RCS Radar Cross Section

SAR Synthetic Aperture Radar

TBP Time Bandwidth Product

Nomenclature

BD Doppler bandwidth

βa Radar azimuth beamwidth

∗ Convolution

δa Azimuth resolution

δr range resolution

η Azimuth time
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F Fourier transform

fD Doppler frequency

fs Sampling frequency

γ SAR processor coherence function

h (Matched) filter or impulse response

Ka Azimuth Doppler FM rate of change

Kr Range chirp FM rate of change

λ Radar wavelength

La Antenna length in azimuth direction

lc Coherence length

n Additive receiver noise

Pr Power received at sensor

Q Quadratic filter

R0 Distance of closest approach to target

ρ Autocorrelation function or charge distribution

σ Radar cross section

σ0 radar backscattering coefficient

Ta Azimuth exposure time

τ Range time or autocorrelation lags

Tr SAR pulse duration
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τc Coherence time

Ts Sampling period

Vg Speed of antenna footprint along ground

Vr Speed of antenna footprint under rectilinear approximation

Vs Speed of radar platform

w Azimuth Doppler prefilter

wa Antenna pattern (azimuth dimension)

wr Antenna pattern (range dimension)
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Abstract

A synthetic aperture radar (SAR) achieves a high azimuth resolution by illuminat-

ing targets with multiple pulses and using the Doppler history to synthesize a large

antenna. When combining the pulses, it is normally assumed that the targets are

stationary, and that their reflectivity is independent of time. The topic of this thesis

is the processing of SAR images where the the targets have a time-dependent reflec-

tivity. One can imagine, for instance, a ship rolling in a rough sea. One possible way

of processing such targets is described by Raney (1969a, 1980a, 1980b, 1981a). The

goal of this thesis is to provide a well structured introduction into Raney’s formal-

ism on partially coherent targets, and to investigate a focusing strategy for scenes

where the targets have different coherence times. The image formation processes of

a synthetic aperture radar is thoroughly discussed, and a one-dimensional model of

the azimuth dimension is introduced. Raney’s formalism is compared to this model

and found to be formally correct. A partially coherent point target is simulated, and

Raney’s formalism is tested for the purpose of target detection in the presence of scene

partial coherence. It is shown that the whole system, including partial coherence in

both scene and processor, behaves as a Gaussian low-pass filter weighted by the scene

autocorrelation function and the processor coherence function.
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Chapter 1

Introduction

The topic of this thesis is the processing of synthetic aperture radar (SAR) images

where the scene consists of a point target with a time-varying reflectivity. SAR

systems, being coherent imaging systems, generally assume that all targets are sta-

tionary when the return signals are combined into a single image (Vachon, 1983, ch.

2). While there exists methods for dealing with a moving target (Raney, 1971), a

stochastic-time variation in a stationary target presents an entirely different challenge.

1.1 Objectives

The aim of this study is to investigate whether it is possible to process partially co-

herent targets in a way that facilitates target detection despite the partially coherent

nature of the return signals. This investigation shall be based on Raney (1969a, 1980a,

1980b, 1981a) (henceforth collectively referred to as Raney’s articles), who proposes

the introduction of partial coherence in the SAR processor as a way of enhancing

SAR images of partially coherent targets. This approach is formulated in continuous

azimuth time in one dimension.

Central to this method is the theory of quadratic filters, which allows the use of the

autocorrelation function of the the target’s reflectivity variation to be exploited. This

15



16 CHAPTER 1. INTRODUCTION

in turn can be defined based on the target’s coherence time, which is the only statis-

tic required to implement this method of processing. The estimation of this statistic

is beyond the scope of this study as it is not possible in general to obtain neither

the coherence time not the autocorrelation function from SAR data (Raney, 1980b,

p. 786). However, there exist methods of measuring coherence times for e.g. ocean

waves (Carande, 1994; Shemer & Marom, 1993). In simulating partially coherent

processing it shall therefore be assumed that a rough estimate of the coherence time

is available.

An important motivation for the work by Raney on this topic is the description of

how a SAR system interacts with azimuthal travelling ocean waves during imaging

(Raney, 1980b, p. 784). This seems to have been a controversy at the time when

these articles were published (Raney, 1981b; Alpers & Rufenach, 1979) with com-

peting models still being in existence at least a decade afterwards (Kasilingam &

Shemdin, 1990).

Raney’s formalism shall be developed one step further by modifying the choice of

quadratic filter in order to investigate the processing of scenes which contain targets

with different correlation times.

1.2 Structure of the thesis

The starting point of this thesis is the theory of electromagnetic waves and radiation,

which are the physical phenomena upon which a SAR system depends in order to

function. This is covered in chapter 2.

Next, chapter 3 covers a small selection of topics in signal processing which are rel-

evant to SAR processing, followed by a chapter devoted to the principles of radar

systems in general.
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This is followed by a thorough review of the theory of SAR systems in chapter 5

with a particular emphasis on the impulse response and resolution properties. The

decoupling of the impulse response into its range and azimuth components is central

to the theory of Raney, and shall be carried over to subsequent chapters.

Chapter 6 then proceeds with a unified presentation of quadratic filter theory, a neat

way of formulating a non-linear system as a linear one, which allows all the well-

known results of such systems to be exploited.

Partial coherence is the topic of chapter 7, which finishes the presentation of Raney’s

formalism and offers an evaluation of its validity in terms of the topics covered in

previous chapters.

The final part of this thesis is reserved for simulating a simple one-dimensional SAR-

system. Chapter 8 deals with simulating a point target in order to study the basic

properties of the proposed method. Finally chapter 9 takes this one step further and

presents a simulation of a point target embedded in a distributed scene, and a novel

approach for processing such scenes is put to the test.
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Chapter 2

Electromagnetic waves

This chapter gives a brief overview of electrodynamics relevant for remote sensing,

starting with Maxwell’s equations. From these the three-dimensional wave equation

is rederived, and the finally a proof of Jefimenko’s equations is sketched. The aim is

to explain how the electric field is inversely proportional to the separation distance

between source and observer, which shall subsequently be used to define the directivity

and gain of a radar antenna.

2.1 Maxwell’s equations

The study of electromagnetism is at its most fundamental level concerned with how

a collection of charges, possibly undergoing some motion, affects another collection of

charges at a different location. The classical theory describes the interaction between

these charges by means of electric and magnetic fields which mediate the forces ex-

changed back and forth. In the static case these fields exist due to the presence of

charges, while an accelerating charge causes a part of the field to detach itself from

the charge and carry off energy, momentum and angular momentum at the speed of

light. This is referred to as electromagnetic radiation and motivates the study of the

fields themselves independent of the charges that produce them (Griffiths, 2013, p.

xvi-xvii).

19
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The theory of classical electrodynamics is contained in Maxwell’s equations:

∇ · E =
1

ε0
ρ (Gauss’s law) (2.1)

∇ ·B = 0 (no name) (2.2)

∇× E = −∂B

∂t
(Faraday’s law) (2.3)

∇×B = µ0J + µ0ε0
∂E

∂t
(Ampère’s law with Maxwell’s correction) (2.4)

along with the force law, which describes the force F experienced by a charge q due

to fields E and B:

F = q (E + v ×B) (2.5)

and suitable boundary conditions (Griffiths, 2013, ch. 7). E and B denote the electric

and magnetic fields, and ρ and J represent charge and current densities. ε0 and µ0

are the permittivity and permeability of free space, with values:

ε0 = 8.85 · 10−12 C2Nm−2 (2.6)

µ0 = 4π · 10−7 NA−2 (2.7)

Equation 2.5 describes the force applied to a charge q moving through the fields with

velocity v.

In free space, where there are no charges or currents, Maxwell’s equations reduce to:

∇ · E = 0 (2.8)

∇ ·B = 0 (2.9)

∇× E = −∂B

∂t
(2.10)

∇×B = µ0ε0
∂E

∂t
(2.11)
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Taking the curl of equation 2.10 and 2.11:

∇× (∇× E) = ∇(∇ · E)−∇2E = ∇×
(
−∂B

∂t

)
(2.12)

∇× (∇×B) = ∇(∇ ·B)−∇2B = ∇×
(
µ0ε0

∂E

∂t

)
(2.13)

and using equation 2.8 and 2.9:

∇2E = −∇×
(
−∂B

∂t

)
=

∂

∂t
(∇×B) = µ0ε0

∂2E

∂t2
(2.14)

∇2B = −∇×
(
µ0ε0

∂E

∂t

)
= −µ0ε0

∂

∂t
(∇× E) = µ0ε0

∂2B

∂t2
(2.15)

Hence each Cartesian component of the fields satisfies the three-dimensional wave

equation:

∇2f =
1

v2
∂2f

∂t2
(2.16)

with a propagation speed v given by:

v =
1

√
ε0µ0

(2.17)

which turns out to be equal to the speed of light in vacuum. This important result

underpins the classical theory of light as electromagnetic waves (Griffiths, 2013, ch.

9.1). It can further be show that for monochromatic plane waves, the electric and

magnetic fields are mutually perpendicular, in phase and proportional (Griffiths, 2013,

p. 396).

2.2 Radiation

The energy transported by the electric and magnetic fields, per unit time per unit

area, is given by the Poynting vector S, which is related to the fields by:
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S =
1

µ0

(E×B) (2.18)

The energy crossing an infinitesimal surface da per unit time (the energy flux) is equal

to S · da. Hence S is referred to as the energy flux density (Griffiths, 2013, ch. 8.1).

As mentioned, the acceleration of a charge causes energy to be transported away by

the fields. The transportation of energy to infinity is referred to as radiation. This

term is often used in the broader sense of any field with a non-zero Poynting vector,

but shall here be restricted to the former sense of the word.

Consider a localized radiating source at the centre of a sphere with radius r. The

power P (r, t) passing through this sphere is:

P (r, t) =

∮
S · da (2.19)

The energy arriving at the sphere at a time t depends on the retarded time t0 = t− r
c

since electromagnetic waves travel at the speed of light. Letting r →∞, the radiated

power is then:

Prad(t0) = lim
r→∞

P
(
r, t0 +

r

c

)
(2.20)

(Griffiths, 2013, ch. 11.1). The differential da is equal to r2 sinϕdθdϕ, where θ and

ϕ are the azimuth and zenith angles respectively (Weisstein, n.d.). Hence the only

parts of the fields which reach to infinity are the ones with a Poynting vector that

decreases by no more than r−2 at large r. If the fields go like r−1, then the r−2 factor

in the Poynting vector cancels out the r2 factor in da, rendering the whole expression

independent of propagation distance.

In the static case the electric field is given by Coulomb’s law:

E(r) =
1

4πε0

∫
ρ(r′)

r2 r̂dτ ′ (2.21)
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which describes the electric field at a point r in terms of the charge distribution ρ at

a point r′, with r = r − r′, r = ‖r‖, r̂ = r
r, and dτ ′ being an infinitesimal volume

element (Griffiths, 2013, p. 63).

The magnetic field is similarly given by the Biot-Savart law:

B(r) =
µ0

4π

∫
I× r̂

r2 dl′ =
µ0

4π
I

∫
dl′ × r̂

r2 (2.22)

where I denotes a steady current and dl′ an infinitesimal line element (Griffiths, 2013,

p. 224). Both these field go like r−2, and hence produce no radiation.

The potentials of these fields are:

V (r) =
1

4πε0

∫
ρ(r′)

r dτ ′ (2.23)

A(r) =
µ0

4π

∫
J(r′)

r dτ ′ (2.24)

respectively. It can be shown that the generalization for non-static sources is simply

the same expressions evaluated at the retarded time tr = t− r
c
:

V (r) =
1

4πε0

∫
ρ(r′, tr)

r dτ ′ (2.25)

A(r) =
µ0

4π

∫
J(r′, tr)

r dτ ′ (2.26)

The corresponding fields are then given by the relations:

E = −∇V − ∂A

∂t
(2.27)

B = ∇×A (2.28)

which yield Jefimenko’s equations:
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E(r, t) =
1

4πε0

∫ (
ρ(r′, tr)

r2 r̂ +
ρ̇(r′, tr)

cr − J̇(r′, tr)

c2 r

)
dτ ′ (2.29)

B(r, t) =
µ0

4π

∫ (
J(r′, tr)

r2 +
J̇(r′, tr)

cr

)
× r̂dτ ′ (2.30)

where ρ̇ and J̇ denote time derivatives. These expressions do indeed contain terms

that decrease at a rate r−1, and the radiation for any ρ and J can be determined by

picking out these terms (Griffiths, 2013, p. 444-450).



Chapter 3

Signal processing

The electromagnetic wave equation derived in the previous chapter lays the foundation

for classical electrodynamics where electromagnetic radiation is considered as waves.

Such waves can be represented as sinusoids, and this chapter treats the processing

of sinusoidal signals, and linear frequency modulated (FM) signals in particular. It

shall be discussed in the following chapter how such signals play an important role in

SAR processing. Linear time-invariant systems shall also be discussed, as well as the

Fourier transform, which offers an efficient way of implementing and analyzing such

systems.

3.1 Linear FM signals

A sinusoidal signal x(t) can be represented as a complex exponential:

x(t) = Aei(ω0t+ϕ) (3.1)

due to Euler’s formula:

eix = cosx+ i sinx (3.2)

Here i =
√

(−1) represents the imaginary unit. A complex exponential eiθ is re-

ferred to as a phasor and represents a rotation in the complex plane by an angle θ

25
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(McClellan, Schafer, & Yoder, 2003, p. 18-19).

If the angle of rotation is given by a function ψ(t) instead of a constant angular

frequency ω0 and phase ϕ, then the instantaneous frequency is:

ω(t) =
d

dt
ψ(t) (3.3)

This frequency variation is referred to as frequency modulation. If ψ(t) is a second-

order polynomial in t, then the instantaneous frequency is a linear function of t. Such

a linear FM signal is called a chirp (McClellan et al., 2003, p. 60-61).

3.2 Linear time-invariant systems

Consider a continuous-time system which maps an input x(t) to an output y(t):

x(t) 7→ y(t) (3.4)

Such a system is said to be time-invariant if:

x(t− t0) 7→ y(t− t0) (3.5)

That is, if the input is delayed by an amount of time t0, then the output is delayed

by the same amount of time.

Furthermore, suppose that two pairs of input and output signals for the same system

are given by:

x1(t) 7→ y1(t)

x2(t) 7→ y2(t)
(3.6)

If a linear combination of the two input signals x(t) = αx1(t) + βx2(t) is used as a

new input, then a linear system will produce the output:
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αx1(t) + βx2(t) 7→ αy1(t) + βy2(t) (3.7)

A system for which linearity and time-invariance both hold is referred to as a linear

time-invariant (LTI) system (McClellan et al., 2003, p. ch. 9).

One useful property of LTI systems is that they are fully characterized by their impulse

response h(t). This is obtained by feeding a unit impulse to the system and observe

the output. Hence, if δ(t) is a unit impulse at t = 0, then it relates to the impulse

response by:

δ(t) 7→ h(t) (3.8)

The unit impulse response is more commonly referred to as the Dirac delta function,

which is not an actual function, but rather a generalized function or distribution

(Zauderer, 2006, ch. 7.2). It has the properties that it is zero everywhere except at

the origin, and that: ∫ ∞
−∞

δ(t)dt = 1 (3.9)

It is perhaps more properly defined by the relation:∫ ∞
−∞

f(t)δ(t− t0) = f(t0) (3.10)

for any given function f(t).

If the impulse response of an LTI system is known, then it can be described by a

convolution integral:

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ (3.11)

which relates the output directly to the input through the impulse response. The

convolution operation is usually represented by the symbol ∗. Equation 3.11 is then

more compactly expressed as:
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y(t) = x(t) ∗ h(t) (3.12)

Since the integral in equation 3.11 is an improper one, the question of existence arises.

A function f(t) is said to be of class Lp if:

∫ ∞
−∞
|f(t)|p <∞ (3.13)

For two L1 functions f(t) and h(t), the convolution theorem states that the integral:

g(t) =

∫ ∞
−∞

f(t− τ)h(τ)dτ (3.14)

exists, although not necessarily for all values of t (Brown, 1963, p. 313-314).

3.3 The Fourier transform

A signal x(t) is said to be periodic if x(t+ T0) = x(t) for all values of t. The smallest

value of T0 which satisfies this equation is referred to as the fundamental period, and

its inverse f0 = 1
T0

is called the fundamental (cyclic) frequency. The cyclic frequency

f is related to the angular frequency ω by ω = 2πf .

The theory of Fourier series states that any periodic signal can be expressed as a

weighted sum of sines and cosines with frequencies that are integer multiples of the

fundamental frequency of the signal (McClellan et al., 2003, ch. 3). Expressing this

by means of a complex exponential:

x(t) =
1√
T0

∞∑
k=−∞

ak e
i2πkf0t =

∞∑
k=−∞

akvk (3.15)
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for k ∈ Z, where vk(t) ≡ 1√
T0
ei2πf0kt forms an orthonormal set1 on [−T0

2
, T0

2
] with the

inner product:

〈f, g〉 ≡
∫ T0

2

−T0
2

f(t)g∗(t) dt (3.16)

Using Fourier’s trick, apply the inner product with vl(t) to equation 3.15:

〈x, vl〉 =
∞∑

k=−∞

ak 〈vk, vl〉 = ak (3.17)

due to the orthonormality property, which yields the formula:

ak =
1√
T0

∫ T0
2

−T0
2

x(t)e−i2πkf0t dt (3.18)

(McClellan et al., 2003, p. 48-50). The set {fk, ak} is referred to as the spectrum of

the signal, with fk ≡ kf0 being the kth harmonic of f0.

This formalism can be extended to include non-periodic functions by letting T0 →∞
(McClellan et al., 2003, p. 307-312). In this limit the set {kf0} becomes a continuous

variable f due to the inverse relations between T0 and f0. Rewriting equation 3.15

to:

x(t) =
1

2π

∞∑
k=−∞

(
ak
√
T0

)
ei2πft

(
2π

T0

)
(3.19)

the factor 2π
T0

can be identified as an infinitesimal angular frequency element dω. This

expression is then a Riemann sum, and the summation can be replaced by an integral:

x(t) =
1

2π

∫ ∞
∞

(
ak
√
T0

)
eiωt dω (3.20)

1Two vectors f and g in an inner product space (i.e., a vector space with an inner product) are

said to be orthogonal if 〈f, g〉 = 0. The norm of a vector f can be expressed as ‖f‖ =
√
〈f, f〉. If

each vector in a set are orthogonal and has norm 1, then the set is said to be orthonormal (Anton

& Rorres, 2011, ch. 6).
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Hence:

ak
√
T0 =

∫ ∞
−∞

x(t)e−iωt dt ≡ X(ω) (3.21)

is defined as the Fourier transform of x(t), with the inverse transform being given by

equation 3.20.2

The transform so far considered is referred to as the continous Fourier transform

(CFT). In the case where x(t) has been sampled, yielding a set x[n] of N samples,

the discrete time Fourier transform (DTFT) is applied instead. The sampling process

can be represented as a multiplication with an impulse train:

x[n] = x(nTs) = x(t)
∞∑

n=−∞

δ(t− nTs), n = 0, 1, ..., L− 1 (3.22)

where Ts is the sampling period. Substituting x[n] for x(t) in equation 3.21:

X(ω) =

∫ ∞
−∞

x(t)
∞∑

n=−∞

δ(t− nTs)e−iωt dt

=
∞∑

n=−∞

∫ ∞
−∞

x(t)δ(t− nTs)e−iωt dt

=
L−1∑
n=0

x(nTs)e
−iωnTs

(3.23)

In numerical calculations the Fourier transform is evaluated at a discrete set of N

evenly spaced frequencies ωk = 2πk
NTs

for k = 0, 1, ..., N − 1, the result of which is the

discrete Fourier transform (DFT):

X[k] =
L−1∑
n=0

x[n]e−i
2πkn
N , k = 0, 1, ..., N − 1 (3.24)

If N = L there exists an exact inverse transform:

2Equation 3.20 can also be written as x(t) = 1√
2π

∫∞
∞

(
ak
√
T0√

2π

)
eiωt dω, in which case there is

a factor 1√
2π

in both the Fourier transform and the inverse Fourier transform. Some authors, e.g.

Zauderer (2006), prefer this due to the symmetry it provides.
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x[n] =
1

N

N−1∑
k=0

X[k]ei
2πkn
N , n = 0, 1, ..., N − 1 (3.25)

and efficient computer algorithms for performing the calculations, collectively referred

to as the fast Fourier transform (FFT) (McClellan et al., 2003, ch. 13).

The extension to two variables is straightforward. The CFT for a continuous function

f(x, y) is:

F (ω, λ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−iωxe−iλy dx dy (3.26)

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (ω, λ)eiωxeiλy dω dλ (3.27)

(Raney, 1969a). Similarly, for an M ×N discrete sample, such as a digital image, the

DFT is:

F [u, v] =
M−1∑
x=0

N−1∑
y=0

f [x, y]e−i
ux
M e−i

vy
N (3.28)

f [x, y] =
1

MN

M−1∑
u=0

N−1∑
v=0

F [u, v]ei
ux
M ei

vy
N (3.29)

(Gonzales & Woods, 2010, p. 257-258). The Fourier transform is useful for signal

processing purposes due to the way operations on signals transform, e.g. the convo-

lution of two signals in the time domain becomes multiplication of their respective

Fourier transforms in the frequency domain. Hence convolution and multiplication

forms a Fourier transform pair:

x(t) ∗ h(t)↔ X(ω)H(ω) (3.30)

(McClellan et al., 2003, p. 327-328). Filtering of large vectors or matrices can be per-

formed more efficiently in the frequency domain. In order to obtain a correct result

it is required that two time-limited signals be zero-padded up to at least the sum of
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their lengths minus one (along each individual axis in the 2D case). Otherwise the

resulting convolution will be circular, sometimes referred to as wrap-around errors

(Gonzales & Woods, 2010, ch. 7).

The Fourier transform as an operation shall be denoted by F , and the inverse Fourier

transform by F−1.



Chapter 4

Radar

Having discussed electromagnetic waves, the present chapter builds upon this topic

in order to explain the principle of radar systems. The inverse dependence of the

electric field on the separation between source and observer shall be used in order to

define the antenna directivity and gain. Then the radar equation is rederived, and

finally the beamwidth of a linear antenna array is discussed. The latter shall prove

useful in subsequent simulations.

4.1 Principles of radar systems

Radar (RAdio Detection And Ranging) systems work by transmitting pulses of elec-

tromagnetic radiation in the radio wave part of the spectrum, which are in the range

of 3 MHz and 300 GHz (Kingsley & Quegan, 1992, chapter 1). Each pulse is timed

by the radar clock and propagate at the speed of light. Once a pulse hit a target the

energy in the pulse is scattered, and part of it is returned to the receiver. The range,

i.e. distance to the target, is then given by:

R =
cτd
2

(4.1)

33



34 CHAPTER 4. RADAR

where R is range, c ≈ 3 × 108 ms−1 is the speed of light in vacuum1 and τd is the

signal propagation delay.

The properties of a radar antenna is described by the antenna pattern, which quan-

tifies the antenna’s ability to focus energy in a given direction. Let the transmitted

electric field be given by:

E =
1

r
e−ikrF (k) (4.2)

for some F (k), which is justified by results in section 2.2. The squared norm of F (k),

which depends on the wave vector k, is then the radiated energy distribution, and

the antenna directivity is:

D(k) =
4π‖F (k̂)‖2∫ 4π

0
‖F (k̂)‖2dΩ

(4.3)

where k̂ = k
‖k‖ and dΩ is a differential solid angle element. For a lossy antenna there

is also an efficiency factor η, which defines the antenna gain:

G(k̂) = ηD(k̂) (4.4)

(Massonet & Souyris, 2008). For an isotropic antenna ‖F (k̂)‖2 is constant, and hence

D = 1. If in addition the antenna is lossless, then G = 1 as well.

The ability to focus transmitted energy may also describe the sensitivity of the an-

tenna to received energy. If reciprocity is assumed, then the antenna pattern describes

both (Kingsley & Quegan, 1992, p. 7).

1The speed at which light travels depends on the index of refraction of the medium through which

it is propagating. The refractive index of air is approximately 1, which justifies using the value of c

in vacuum for Earth observation purposes.
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4.2 The radar equation

An antenna radiating power isotropically with a peak power Pt gives rise to a power

flux at a distance R:

Power flux at distance R =
Pt

4πR2
(4.5)

since 4πR2 is the area of a sphere with radius R (Kingsley & Quegan, 1992, p. 11-15).

Given a non-isotropic antenna there is an additional gain factor Gt which modifies

the amount of power concentrated towards the target, hence yielding a power flux at

the target:

Power flux at target =
GtPt
4πR2

(4.6)

The amount of power re-radiated by the target is described by the target’s radar cross

section (RCS) σ, which is defined as “the power re-radiated towards the radar per unit

solid angle divided by the incident power flux/4π radians” (Kingsley & Quegan, 1992,

p. 12), and may depend on incidence angle, radar frequency, polarization, dielectric

properties, roughness, time etc. This can be understood as the cross-section of an

isotropic radiator re-radiating the same amount of power. Hence:

Re-radiated power =
PtGtσ

4πR2
(4.7)

The return trip adds another factor 4πR2 to the denominator, and the amount of

power which the antenna sees is determined by the effective antenna area2 Ae, which

enters as a factor in the numerator, yielding an expression for the received power Pr:

Pr =
PtGtσAe

(4πR2)2
(4.8)

2The effective area of an antenna is related to the actual by Ae = ηA, where η is an efficiency

factor. For parabolic dishes η is usually takes values between 0.4 and 0.9, while television antennas

can have an effective area which is greater than their actual cross-section (Kingsley & Quegan, 1992,

p. 9).
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The gain of the receiving antenna can be expressed as a function of the effective area

and radar wavelength:

Gr =
4πAe
λ2

(4.9)

which may be substituted into the previous equation. Adding an efficiency factor Ls

to take system loss into account yields the full radar equation:

Pr =
PtGtGrσλ

2
sLs

(4π)3R4
(4.10)

In the presence of an average noise power N the signal-to-noise ratio (SNR) can be

useful since this is by definition:

SNR =
Pr
N

=
PtGtGrσλ

2
s

(4π)3R4N
(4.11)

if the noise properties of the system are known.

4.3 Antenna beam width

Consider two point radiators separated by a distance d with a phase difference α.

An observer in the far field oriented at an angle θ will then observe an additional

phase difference due to the difference in path length from the two radiators, which

is given by d sin θ. This phase difference is then the number of wavelengths in d sin θ

multiplied by 2π. This is illustrated in figure 4.1.
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Figure 4.1: Geometry of two point radiators observed from an angle θ in the far field.

Based on figure 29-10 in Feynman et al. (1963).

The observed phase difference is therefore:

ϕ2 − ϕ1 = α +
2πd sin θ

λ
= α + kd sin θ (4.12)

where k = 2π
λ

is the wave number (Feynman, Leighton, & Sands, 1963, p. 29-5).

Using this result, Elachi and van Zyl (2006, p. 222-225) derives an expression for the

beam width of a linear array antenna as a function of radar wavelength and array

length. The aim of this section is to explain the mysterious factor 0.886 which appears

in a number of equations dealing with SAR systems, such as in Cumming and Wong

(2005, ch. 4).

Given a linear array of N equally spaced radiators which are position a distance d

apart, and which have the same amplitude and phase, the total far field is proportional

to:

E(θ) ∝ eiα
N∑
n=1

e−inkd sin θ (4.13)
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In the limit where N goes to infinity, this sum can be replaced with an integral:

E(θ) ∝
∫ D

2

−D
2

e−ikx sin θdx (4.14)

where it is assumed that the amplitude is uniform across the antenna (which has

length D) and the phase is set to 0. Using the inverse Euler relation sinx = eix−e−ix
2i

,

his integral evaluates to:

E(θ) ∝ D
sin
(
kD sin θ

2

)
kD sin θ

2

≡ D sinc

(
kD sin θ

2

)
(4.15)

In the discrete case, the nulls of E(θ) occur where the angles between the vectors

e−inkd sin θ in the complex plane are evenly spaced. This implies that:

Nkd sin θ = 2mπ (4.16)

where m is an integer, and that the nulls are located at:

θ = sin−1
(

2mπ

Nkd

)
(4.17)

In the continuous case nd is replaced by D. Noting that k = 2π
λ

:

D sin θ = mλ (4.18)

with nulls at:

θ = sin−1
mλ

D
(4.19)

Setting M = 1, and if the wavelength is small compared to the antenna length, then,

by the small angle approximation, the first null θ0 is located at:

θ0 ≈
λ

D
(4.20)

This is also a good approximation to the fulifthl width half-power (FWHP) beam

width, which is given by:
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θFWHP ≈ 0.886
λ

D
(4.21)

The derivation of the FWHP beamwidth can be found in Appendix A.
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Chapter 5

Synthetic aperture radar

The previous chapters have covered some basic topics of electromagnetic radiation,

signal processing and antennas. This chapter builds upon that theory by describing

how a radar antenna can be used as an imaging system. Having laid the foundation for

understanding radar systems in general, this chapter introduces the synthetic aperture

radar, which is the instrument of interest for this study. Of particular interest are the

impulse response and resolution properties of such systems. The 2D impulse response

shall be decoupled into the range and azimuth components, and the latter, on which

the formalism of Raney is based, will be used in the following chapters for evaluating

the theory and modelling a simple SAR system.

5.1 Basic principles

Consider a radar system mounted on a platform moving parallel to the ground. Such

imaging systems are usually side-looking, i.e. it illuminates an area to one side of the

nadir track, which is the system path projected onto the ground. A pulse is trans-

mitted with a given frequency, and due to the side-looking configuration each pulse

sweeps across the ground at the speed of light. Targets in the range direction are

then discriminated by the time between the return pulses from the targets (Elachi &

van Zyl, 2006, p. 239-255).

41
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The ranging is done along the antenna boresight, i.e. the axis along which the antenna

gain attains its maximum. This is referred to as the slant range. In order to measure

distance along the ground the slant range has to be converted into ground range.

Figure 5.1: Geometry of a side-looking imaging radar, based on figure 6-15 and figure

6-25 in Elachi and van Zyl (2006). The radar antenna transmits pulses which sweep across

the ground. Between pulses any echoes from illuminated targets are recorded.

Figure 5.1 shows the SAR geometry for a system with zero squint angle. The squint

angle is defined as the angle between the slant range vector and the zero-Doppler

plane. The zero-Doppler plane is in turn defined as the plane which extends from the

antenna and has a normal vector equal to the platform velocity (Cumming & Wong,

2005, p. 117-120). The projection of the squint angle onto the ground corresponds to

the beam yaw angle, which is constant, while the squint angle depends on the target

range. For simplicity a zero squint angle shall be assumed henceforth.
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The azimuth resolution of real aperture radar (RAR), i.e. the smallest distance be-

tween two separable objects, is equal to the width of the antenna footprint. This is

in turn proportional to the radar wavelength and target range, and inversely propor-

tional to the antenna length in the azimuth direction. Hence for a platform moving at

an altitude R0 with an azimuth antenna length La, look angle θ and radar wavelength

λ, the corresponding azimuth resolution δa is given by:

δa =
R0λ

La cos θ
(5.1)

where λ
L

is the approximate antenna beam width in the azimuth direction.

For spaceborne radar with an altitude of around 800 km, this means that δa is typically

hundred of meters or several kilometres. This type of system is therefore unsuitable

for imaging from space.

A synthetic aperture radar solves this problem by using the Doppler history to syn-

thesize a large aperture (Cumming & Wong, 2005, ch. 4). While a target stays in

the radar beam it is illuminated by many pulses. As the satellite approaches the

target, the radar signal is frequency modulated due to the relative motion between

antenna and target, which results in a positive shift in frequency. When the radar

passes directly above the target the frequency shift turns from positive to negative.

The increase in resolution is obtained by using the Doppler history of the target.

Specifically, the return pulses recorded by the radar can be considered as a sampling

of a continuous waveform which represents the Doppler-shifted return signal in the

time domain. The frequency modulation introduces a phase shift:

ψ(η) = −πBD

Ta
η2 (5.2)

(Vachon, 1983, p. 6) where BD is the Doppler bandwidth, Ta is the integration time,

and η is the azimuth time referenced to the zero Doppler time.
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This signal can be reconstructed if the pulse repetition frequency (PRF) ensures that

the sampling rate is sufficiently high to avoid aliasing1. The radar signal can then be

focused in the azimuth direction by matched filtering.

5.2 Data arrangement and processing

The echo of each pulse is recorded in between pulse transmission. This takes the form

of a voltage at the antenna as a function of time, yielding a curve which represents

the amplitude of the echo. One such curve is recorded for each pulse cycle. On a

one-dimensional storage medium, the SAR data appears as a collection of voltage

curves separated by gaps where the antenna is not recording. In a computer memory

the voltage curves can instead be sampled and written as rows in a matrix. The first

dimension of this matrix then corresponds to range time, while the second dimension

corresponds to azimuth time. Rows and columns may be referred to as range lines

and range gates respectively (Cumming & Wong, 2005, ch. 4.6.1).

The Doppler modulation described above, which is the key concept of a SAR system,

encodes the signal from a target in a linear chirp along the azimuth direction. This

is usually the case for the range direction as well due to the chosen structure of the

transmitted pulse, as shall be further elaborated below. The job of a SAR processor

is therefore to remove the chirp encoding in both range and azimuth in order to re-

cover the signal from the target. Since the encoding can be expressed mathematically

as two convolution along the two dimensions with the respective linear chirps, SAR

processing is simply a demodulation process in two dimensions. However, it shall be

shown that there is a dependency between azimuth time and range time which causes

a significant complication.

This dependency shows up in the raw data in the form of range cell migration (RCM).

1The Shannon sampling theorem states that a continuous-time signal can be accurately recon-

structed from a set of samples provided that the sampling rate is greater than the Nyquist rate,

which is twice the maximum frequency of the sampled signal (McClellan et al., 2003, p. 77).
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This effect is caused by the varying range to a target while it is observed in the radar

beam. If the radar, travelling at a speed V , passes directly overhead of a target at a

time η = 0, when the slant range distance is at a minimum R0, then the slant range

distance as a function of azimuth time is given by:

R(η) = R2
0 + V 2η2 (5.3)

which, referring to figure 5.1, is obtained by the Pythagorean theorem. This in turn

leads to a parabolic curving of the point target response, which has a convex shape

towards the radar. The straightening of this parabola is referred to as range cell

migration correction (RCMC). This is a challenging task, and therefore it is also a

distinguishing feature of SAR processing algorithms (Cumming & Wong, 2005, p. 10).
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Figure 5.2: Locus of energy of the SAR point target response (not to scale). The shape

may vary depending on the zero Doppler position. The grid represents range cells, i.e.

sample points. Range cell migration can be considered significant if it occurs over at least

one range cell. Based on figure 4.14 in Cumming and Wong (2005) and figure 6-41 in Elachi

and van Zyl (2006).

While the modern literature on SAR processing techniques may give the impression

that SAR systems require digital devices, this is not the case. A SAR image can

also be focused by means of a series of lenses (Harger, 1970, ch. V). The first SAR

images were formed with an optical correlator at the University of Michigan’s Radar

Laboratory in 1957, using coherent optics to compress chirped radar pulses (Galati,

2016; The Optical Society, 2005). The Seasat satellite, launched in 1978, carried a

SAR instrument which transmitted data in real time to five ground stations in a 20
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MHz analog data stream. The synthetic aperture, which was several kilometres long,

was formed by means of an optical correlator, and the products were stored on 70 mm

film. Approximately 10 percent of the roughly 42 hours2 of SAR data which was col-

lected by Seasat was digitally processed by NASA Jet Propulsion laboratory between

178 and 1982 (Alaska Satellite Facility, n.d.; Beal, Tilley, and Monaldo, 1983). Digital

transmission of raw SAR data was first carried out on the Space Shuttle Columbia,

which carried an imaging radar assembled from spare parts of the Seasat in the early

eigthies (Jet Propulsion Laboratory, 2001).

5.3 Image fading

The amount of detail that can be recorded by an imaging system is limited by the res-

olution of the system. This limitation causes a phenomenon known as speckle in SAR

images, which can be observed as a grainy noise pattern over an otherwise uniform

surface. This phenomenon is caused by signal fading, which is the superposition of

the returns from several scatterers which are simultaneously illuminated by the radar

beam (Elachi & van Zyl, 2006, p. 242-248). The relative phase of the individual

scatterers vary with viewing angle, which results in multiplicative noise in the radar

image (Cumming & Wong, 2005, p. 265).

If each individual resolution cell in a scene is modelled as a discrete set of scatterers,

the instantaneous voltage received at the radar sensor from one single cell can be

expressed as:

2The Seasat mission ended 105 days after being launched due to a short circuit onboard the

satellite. Interestingly, this event sparked rumours which claim that the failure was a deliberate

action by the US military. Supposedly Seasat, being a civilian satellite, was too good at detecting

submerged submarines, which in the context of the Cold War might cause embarrassment if such

images were to be made public (Norris, 2008, p. 172).
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V = Ve e
iϕ =

Ns∑
n=1

Vn e
iϕn (5.4)

Suppose that Ns � 1 and that Vn and ϕn are independent random variables. If ϕn

is uniformly distributed in the range [−π, π], then the sum over the individual scat-

terers can be considered as a random walk in the complex plane due to the vectorial

property of addition in C.

Under these assumptions the observed amplitude Ve will have a Rayleigh distribution

with some parameter s (which is dependent on the target, and therefore specific to

each individual pixel) determined by the moments of the observed voltage, while the

real and imaginary components of V will be independent identically distributed (iid)

Gaussian random variables with zero mean and variance s
2
. The observed phase ϕ

will be uniformly distributed over [−π, π] (Oliver & Quegan, 2004, p. 84-99).

The observed power is proportional to the square of the observed voltage, Making the

change of variables P = V 2, the probability density function (pdf) of P is exponential

with mean σ. Changing variables again to P = sN , the pdf of N is given by:

fN(n) = e−n, n ≥ 0 (5.5)

This result explains the classification of speckle as multiplicative noise in that the

observed power is expressed as a deterministic value s multiplied by an exponentially

distributed random variable with mean 1. The parameter s is therefore proportional

to the RCS of a point target introduced in equation 4.7 in section 4.2. In the case

of a continuous extended target, suppose that the phase of the scattered signal is

approximately constant over an area A. The quantity corresponding to the RCS for

this extended target over the area A is then referred to as the differential backscat-

tering coefficient, or normalized radar cross section (NRCS), denoted by σ0 (Oliver

& Quegan, 2004, p. 31), which is given by a slight modification to equation 4.7:

Re-radiated power =
PtGtσ

0

4πR2
(5.6)
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Direct comparison of images from different SAR systems requires calibrating the

images to σ0, which is the physical quantity of interest.

5.4 Demodulation

The pulse transmitted by a SAR system is commonly a linear FM pulse, given by:

spulse = wr(τ) cos (2πf0τ + πKrτ
2) (5.7)

where:

wr(τ) = rect

(
τ

Tr

)
(5.8)

is an approximation of the envelope of the pulse3, Kr is the chirp FM rate, Tr is the

pulse duration, and τ is the range time referenced to the centre of the pulse. The

reflected energy sr(τ) is a convolution of the ground reflectivity gr(τ) with the pulse

(Cumming & Wong, 2005, ch. 4.4).

For a point target at a distance Ra, gr(τ) = A′0δ(τ − 2Ra
c

). Here A′0 models the

backscatter coefficient and 2Ra
c

is the delay time of the signal. Hence:

sr(τ) = A′0wr

(
τ − 2Ra

c

)
cos

(
2πf0

(
τ − 2Ra

c

)
+ πKr

(
τ − 2Ra

c

)2

+ ψ

)
(5.9)

where the variable ψ has been introduced to account for a possible phase change

in the reflected signal due to scattering processes in the reflecting medium and the

atmosphere4.

To remove the carrier signal, the process of quadrature demodulation is applied

(Cumming & Wong, 2005, ch. 4B.1).

3The function rect(x) is by definition equal to 1 if |x| ≤ 1
2 and zero otherwise.

4Ignoring any associated reduction in signal strength.
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x(τ) × Low-pass

filter

Analog-to-digital

converter

Real

channel

cos (2πf0τ)

× Low-pass

filter

Analog-to-digital

converter

Imaginary

channel

− sin (2πf0τ)

xc1(τ) xc2(τ)

xs1(τ) xs2(τ)

Figure 5.3: Diagram of quadrature demodulation to remove carrier signal. Based on figure

4B.1 in Cumming & Wong (2005).

This process is based on the trigonometric identities:

cos θ cosϕ =
1

2
(cos (θ − ϕ) + cos (θ + ϕ)) (5.10)

sin θ cosϕ =
1

2
(sin (θ − ϕ) + sin (θ + ϕ)) (5.11)

The output of the two multipliers in figure 5.3 is therefore:

xc1(τ) =
1

2
cosϕ(τ) +

1

2
cos 4πf0τ + ϕ(τ) (5.12)

xs1(τ) =
1

2
sinϕ(τ) +

1

2
sin 4πf0τ + ϕ(τ) (5.13)

(5.14)

where ϕ(τ) is the frequency modulation. Since f0 is much higher than ϕ(τ), the

second term in xc1(τ) and xc2(τ) are filtered out by the low-pass filter, and the

resulting complex signal is:
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xout(τ) = xc2(τ) + ixs2(τ) =
1

2
eiϕ(τ) (5.15)

By inspection of equation 5.9, ϕ(τ) for a point target is:

ϕ(τ) = −4πf0R(η)

c
+ πKr

(
τ − 2R(η)

c

)2

+ ψ (5.16)

where R is now a function of azimuth time η. Finally, the demodulated baseband

signal is then:

s(τ, η) = A′0e
iψwr

(
τ − 2R(η)

c

)
wa(η − ηc)e−i4πf0

R(η
c

+iπKr(τ− 2R(η)
c )

2

(5.17)

where:

wa(η) = sinc2
(

0.886θ(η)

β

)
(5.18)

is the azimuth antenna pattern which relates the received signal strength to the angle

θ from the boresight and the antenna azimuth beamwidth β (Cumming & Wong,

2005, p. 138 and p. 144).

5.5 SAR impulse response

If the factor A′0e
iψ in equation 5.17 is ignored, then what is left is the impulse response

h(τ, η) of the SAR system since this expression is the baseband signal received from

a point target. Hence:

h(τ, η) = wr

(
τ − 2R(η)

c

)
wa(η − ηc)e−i4πf0

R(η)
c

+iπKr(τ− 2R(η)
c )

2

(5.19)

Knowing the impulse response, the baseband return signal from any ground surface

with known reflectivity g(τ, η) can be worked out by a simple convolution:

sbb(τ, η) = g(τ, η) ∗ h(τ, η) + n(τ, η) (5.20)
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where n(τ, η) accounts for the additive noise of the system, e.g. thermal noise, which

can be modelled (Cumming & Wong, 2005, ch. 4.6.3). A diagram representing the

SAR system model found in equation 5.20 is shown in figure 5.4.

g(τ, η) SAR system + sbb(τ, η)

n(τ, η)

Figure 5.4: Model of a SAR system with additive noise. Based on figure 4.15 in Cumming

& Wong (2005).

The aim of SAR processing is to recover g(τ, η), which in this system model is a

deconvolution process.

5.6 Range resolution

If the signal:

x(t) = rect

(
t

T

)
eiπKt

2

(5.21)

is transmitted and its echo received at a time t0 later, then the echo is given by:

xr(t) = rect

(
t− t0
T

)
eiπK(t−t0)2 (5.22)

The matched filter5 h(t) to x(t) is obtained by time-reversal and complex conjugation:

h(t) = rect

(
t

T

)
e−iπKt

2

(5.23)

5In section 3.2 the letter h was used to denote the impulse response of an LTI system. Since

a matched filter is an LTI system, it shall throughout this thesis be denoted by the same letter,

following the notation of McClellan et al. (2003). The system characterized by the function h will

be made clear from context.
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The pulse compression consists of calculating the convolution between xr(t) and h(t).

This convolution is referred to as the correlation function between the two signals,

which is approximated by:

x(t) ∗ h(t) ≈ T sinc (KT (t− t0)) (5.24)

The peak of this sinc function marks the location of the original signal in the echo

(Cumming & Wong, 2005, ch. 3.3). The condition for 5.24 to be valid is that the time

bandwidth product (TBP)6 is larger than 100 (Cumming & Wong, 2005, p. 108-110).

This can be understood by noting that:

x(t) ∗ h(t) = (T − |t|) rect

(
t

2T

)
sinc(Kt(T − |t|)) (5.25)

where (T − |t|) rect
(
t
2T

)
represents a triangular envelope while sinc(Kt(T − |t|)) re-

sembles the sum of three sinc functions separated by an interval T . This is illustrated

in figure 5.5. The condition that TBP ≥ 100 ensures that the two outer sinc functions

are sufficiently narrow not to interfere with the one centred at t = 0.

6The TBP is defined as “the product of the 3-dB width in time and the 3-dB bandwidth of the

signal” (Cumming & Wong, 2005, p. 35).



54 CHAPTER 5. SYNTHETIC APERTURE RADAR

-15 -10 -5 0 5 10 15

t

0

5

10

-15 -10 -5 0 5 10 15

t

-0.5

0

0.5

1

-15 -10 -5 0 5 10 15

t

-5

0

5

10

Figure 5.5: Reproduction of figure 3A.1 in (Cumming & Wong, 2005), which shows the

separate factors in a matched filter output. Here K = 1 and T = 10. The TBP is equal to

|K|T 2 (Cumming & Wong, 2005, p. 71), which in this case is 100.

The pulse resolution is defined as “the spread between the two -3-dB points of the

compressed signal” (Cumming & Wong, 2005, p. 83), and is given by:

δt =
0.886

|K|T
(5.26)

where the constant 0.886 appear for the same reason as in appendix A. In order

to convert this to resolution in the slant range, δt is multiplied by the speed of

propagation (in this case the speed of light c) and divided by 2 to account for the

two-way travel distance:

δr =
0.886c

2|Kr|Tr
(5.27)

Cumming and Wong (2005, p. 83 ad 131) note that the constant 0.886 can be ignored

if a window is applied to the signal. In this case there will be an additional factor

γw,r, which Cumming and Wong (2005, p. 92) refer to as a impulse response width

(IRW) broadening factor.
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5.7 Azimuth resolution

Cumming and Wong (2005, p. 140-149) gives the obtainable azimuth resolution as:

δa =
0.886Vg cos θr,c

∆fd
γw,a =

L

2

Vg
Vs
γw,a (5.28)

where Vg is the speed of the antenna footprint along the ground, Vs is the satellite

speed, L is the antenna length, and γw,a is the azimuth IRW broadening factor. The

angle θr,c is an approximation to the squint angle at the zero Doppler time c, and the

doppler bandwidth ∆fd is given by:

∆fD =
2Vs cos θr,c

λ
βa = 0.886

2Vs cos θr,c
L

(5.29)

with the azimuth FM rate of change Ka being:

Ka =
2V 2

r cos2 θr,c
λR0

(5.30)

Here Vr is the speed obtained by a rectilinear approximation to the curved Earth

geometry (Cumming & Wong, 2005, figure 4.6), which shall prove useful in later

chapters.

They also note that the achievable azimuth resolution is normally given as half the

antenna length since:

γw,a
Vg
Vs
≈ 1 (5.31)

for small squint angles.

(Elachi & van Zyl, 2006, p. 249-255) ignores the squint angle altogether and derives

the azimuth resolution by two different approaches.

The synthetic array approach exploits the equivalence between a moving antenna and

an antenna array, provided that the received signals are recorded coherently and that

the target is static while seen by the antenna. The maximum width of the antenna
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footprint created by the synthesized array is equal to twice the width of the real

footprint since the target must stay within the beam during the synthesis. Recalling

equation 5.1, the synthetic footprint then has a maximum width L of:

L =
2λR0

La
(5.32)

Taking the beamwidth to be:

βs =
λ

L
=

La
2R0

(5.33)

the resulting array footprint is:

δa = R0βa =
La
2

(5.34)

which is in agreement with the result obtained by Cumming and Wong (2005). It

should be noted that Elachi and van Zyl (2006, p. 251) states equality in equation

5.34. However, the expression hβs is, by the definition of the radian, the arclength

of a segment of a circle with radius h, spanned over an angle βs. Hence this result

should be taken as an approximation as well.

Alternatively, the doppler synthesis approach uses the Doppler bandwidth to derive

the same expression. The echo from a target has a spectrum which spans the interval

f0±fD. As the radar approaches a target, the radial speed of the satellite towards the

target causes a phase shift. Every shift of λ
2

each way leads to a total displacement of

one wavelength, which corresponds to 2π radians or one complete cycle (Kingsley &

Quegan, 1992, p. 19-20). Hence the phase shift is the radial speed Vrad divided by λ
2
:

fD =
2Vrad
λ

(5.35)

The radial speed between the satellite and a target just entering the beam is the

projection Vs sin βa
2

, and fD is therefore given by:

fD =
2Vs
λ

sin
βa
2

(5.36)
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and using the small angle approximation and the approximate beamwidth in equation

4.20:

fD ≈
Vsβa
λ

=
Vs
La

(5.37)

and the Doppler bandwidth is 2fD. Two targets displaced by a distance δa in the

azimuth direction will have a time displacement:

∆η =
δa
Vs

(5.38)

The shortest observable time displacement by the SAR system is the inverse of the

Doppler bandwidth:

∆ηmin =
1

2fD
=

La
2Vs

(5.39)

and by plugging this into equation 5.38 the finest obtainable resolution is obtained:

δa = Vs∆ηmin =
La
2

(5.40)

5.8 Azimuth phase shifting

Since the distance between satellite and target varies while the target is within the

radar beam, there will be a phase difference between two return signals in the same

manner as for the two point radiators in section 4.3. i.e. the radar wave number

times the path difference, and in this case multiplied by two due to the two-way

travel. Hence, when the radar is at position xi along the flight path while observing

a target at a radial distance ri:

ϕi = 2k (ri −R0) =
4π (ri −R0)

λ
(5.41)

This phase should therefore be subtracted from each echo in order to achieve the

highest possible resolution, the process of which is referred to as focusing (Elachi &
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van Zyl, 2006, p. 251-253).

An unfocused SAR can simplify the processing. Assuming that phase shifts of less

than λ
4

can be neglected, the corresponding synthetic array length can be solved by

combining equation 5.41 with the pythagorean theorem to obtain:

2k

√R2
0 +

(
La
2

)2

−R0

 =
π

4
(5.42)

By noting that the first order Taylor expansion of
√

1− x is 1 − x
2

and assuming

R0 � 1, this can be solved approximately:

2k

√R2
0 +

(
La
2

)2

−R0

 = 2k

(
R0

(√
1− L2

a

4R2
0

− 1

))

≈ 2kR0

(
1− 1

2

L2
a

4R2
0

− 1

)
=
πL2

a

λR0

(5.43)

Therefore:

πL2
a

λR0

=
π

4
=⇒ La =

√
λR0

2
(5.44)

and the resulting resolution is:

δa =
λR0

L
=
√

2λR0 (5.45)

5.9 Azimuth processing model

The pulse scanning along the range direction travels at the speed of light, while the

the scanning in the azimuthal direction proceeds at the speed of the SAR carrier.

These two speed are vastly different in magnitude, with the range scanning being
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virtually instantaneous in comparison with the azimuth scanning speed.

Cumming and Wong (2005) stress that the SAR impulse response depends on both

range and azimuth time, which complicates the deconvolution. On the other hand,

Massonet and Souyris (2008, ch. 3.12) treat the impulse responses in the azimuth

and range directions separately.

The impulse response in the range direction is simply taken to be the time-shifted

chirp pulse:

hr(τ) = rect

(
τ − τ0
Tr

)
eiπK(τ−τ0)2 (5.46)

where Tr is the pulse length, which corresponds to equation 3.31 in (Cumming &

Wong, 2005, p. 86) with zero time offset. Similarly, the azimuth impulse response is

taken to be the chirp generated by the Doppler effect:

ha(η) = rect

(
η

Ta

)
wa(η)e−

iπBDη
2

Ta (5.47)

where BD is the Doppler bandwidth and η = 0 at the point of closest approach to the

target. Although not stated, a zero squint angle and zero Doppler centroid frequency

must be assumed. This approach ignores range migration, but results in a decoupling

of the impulse response so that the range and azimuth channels can be processed
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separately7

A moving target does not complicate range processing due to the difference in magni-

tude between pulse propagation speed and target motion, while the azimuth scanning

speed is on the same scale. This channel is therefore severely affected by target mo-

tion (Vachon, 1983, ch. 2.1).

Figure 5.6 describes the model for the azimuth channel used by Vachon (1983). Here

f represents the input to the radar antenna as a function of azimuth time η. This

signal is modified by convolution with a prefilter w, which accounts for the antenna

azimuth pattern and Doppler modulation. Receiver noise n is added before the sig-

nal goes through the processor h. The image g is then obtained by a squaring the

magnitude of the processor output.

7It appears that different authors use different signs in the exponent in equation 5.47. Recalling

equation 5.2, the rate of change is negative, which agrees with Vachon (1983) and Kingsley and

Quegan (1992), while Massonet and Souyris (2008) and Cumming and Wong (2005) use a positive

rate and Raney (1980b) uses both. This is dependent upon the local coordinate system and should

not make any difference for modelling purposes since the sign merely determines the direction of

rotation of the phasor in the complex plane, and as long as the matched filter is correctly constructed

the final output should be unaffected. However, from a physical point of view it can be argued that

the rate should be negative if η is taken to be negative during the radar’s approach to the target

and positive as the target recedes. The derivative of equation 5.2 then changes sign from positive to

negative at η = 0. This is consistent with the frequency shift observed for a sound source moving

at an angle relative to the observer.



5.9. AZIMUTH PROCESSING MODEL 61

f w + h |·|2 g

n

Figure 5.6: Block diagram describing a model of the SAR azimuth channel. Based on

figure 1 in Vachon (1983).

The output image g of a single range gate can therefore be expressed as:

g(η) = |f(η) ∗ w(η) ∗ h(η) + n(η) ∗ h(η)|2 (5.48)

Recalling the expression for the Doppler modulation (equation 5.2), the prefilter w is

given by:

w(η) = wa(η) · e−iπ
BD
Ta

η2 (5.49)

where wa(η) is the azimuthal antenna pattern. The processor is typically a matched

filter h(η) = w∗(−η), which is the optimum SR processor for a point target assuming

additive Gaussian noise (Raney, 1980b, p. 777).

This processing model is consistent with the azimuth compression step in the ba-

sic range Doppler algorithm (RDA). In this algorithm the raw SAR data is first

compressed in the range direction by means of a filter matched to the range chirp

(equation 5.46), either directly by a convolution or in the frequency domain after a

range FFT. In the latter case the inverse FFT is applied after filtering. In the next

step the azimuth FFT is applied, which transforms the data into the range Doppler

domain where range cell migration correction is performed. Assuming the correction

is perfect, the trajectory of each target will run parallel to the azimuth frequency

axis, such that azimuth compression can be done by a filter matched to the azimuth

chirp (equation 5.47), either in the frequency domain prior to the inverse FFT or by
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a convolution afterwards (Cumming & Wong, 2005, p. 225-228).

The rest of this thesis will focus on the azimuth compression step, and it shall therefore

be assumed that the range compression and RCMC have already been performed.



Chapter 6

Quadratic filter theory

The following chapter refers to Raney (1969a), who proposes a method for lineariz-

ing quadratic functionals. In this formalism an N -dimensional non-linear problem is

exchanged for a 2N -dimensional linear one, where N is the number of temporal di-

mensions. This procedure allows the properties of LTI-systems, which were covered in

chapter 3, to be exploited. This shall be done in subsequent chapters by introducing

an additional azimuth time dimension during processing in order to take advantage

of the scene coherence time.

The aim of this chapter is to offer a complete proof for the formalism. Some of the

derivations are not to be found in Raney’s articles, and one contribution of this study

is to supply these in order to provide a unified presentation of the formalism. It is

hoped that this may prove useful for other purposes that are beyond the scope of this

study as well.

6.1 Motivation

In figure 5.6 the final image is the squared norm of the processor output. Suppose

that the PRF is sufficiently high such that the Doppler spectrum can be perfectly

reconstructed from the sampling process. Then the sampling process can be dis-

regarded altogether and the azimuth time can be treated as a continuous variable.

63
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Raney (1980b, p. 777) refers to this as the continuous-wave model, where the scene

reflects a continuous signal which in this case is presented to the azimuth processing

channel. Therefore equation 5.48 can be evaluated be means of convolution integrals.

The impulse response is then1:

g(η) = |w(η) ∗ h(η)|2

=

∣∣∣∣∫ w(x)h(η − x) dx

∣∣∣∣2
=

∫
w(x)h(η − x) dx

(∫
w(y)h(η − y) dy

)∗
=

∫
w(x)h(η − x) dx

∫
w∗(y)h∗(η − y) dy

=

∫∫
h(η − x)h∗(η − y)w(x)w∗(y) dx dy

≡
∫∫

Q(η − x, η − y)w(x)w∗(y) dx dy

(6.1)

where Q(η − x, η − y) ≡ h(η − x)h(η − y). The properties of the last integral is the

subject of quadratic filter theory.

6.2 Definition

A quadratic filter Q is here defined by the relation:

g(u) =

∫∫
T

Q(u− x, u− y)f(x)f ∗(y) dx dy (6.2)

which relates an input f to the output g of a non-linear time-invariant system char-

acterized by the impulse response Q.

It is required that Q be a correlation function. This requirement puts a number of

constraints on Q, first among which is:

Q(x, y) = Q∗(y, x) (6.3)

1The limits of integrals will be omitted in the cases where the domain of integration is R.
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which Raney refers to as “complex (Hermitian) symmetric”, but which more correctly

describes Q as a Hermitian form (Barile, n.d.). Furthermore, Q should be square

integrable:

∫∫
T

|Q(x, y)|2 dx dy <∞ (6.4)

and also positive definite, such that:

∫∫
T

Q(x, y)s(x)s∗(y) dx dy ≥ 0 (6.5)

for any square integrable function s. Finally, it is required that:

∫
Q(x, x) <∞ (6.6)

6.3 Frequency domain representation

The representation of equation 6.2 in the frequency domain is obtained by means of

the Fourier transform. Consider the change of variables:

s = u− x

t = u− y
(6.7)

Then equation 6.2 takes the form:

g(u) =

∫∫
T ′
Q(s, t)f(u− s)f ∗(u− t) ds dt (6.8)

Let g̃(ω) = F [g(u)]. Then:

g̃(ω) =

∫
g(u)e−iωu du =

1

2π

∫
Q̃(λ, ω − λ)f̃(λ)f̃ ∗(λ− ω) dλ (6.9)
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Proof.

g̃(ω) = F
[∫∫

T ′
Q(s, t)f(u− s)f ∗(u− t) ds dt

]
=

∫∫
T ′
Q(s, t)F [f(u− s)f ∗(u− t)] ds dt

(6.10)

The Fourier transform of a product is a convolution, scaled by 2π, and therefore:

F [f(u− s)f ∗(u− t)] =
1

2π
F [f(u− s)] ∗ F [f ∗(u− t)] (6.11)

Furthermore, a time delay of td gives rise to an exponential e−iωtd in the Fourier

transform, and f ∗(t)↔ f̃ ∗(−ω), such that:

F [f(u− s)] ∗ F [f ∗(u− t)] =
(
e−iωsf̃(ω)

)
∗
(
e−iωtf̃ ∗(−ω)

)
=

∫
e−iλsf̃(λ) e−i(ω−λ)tf̃ ∗ (−(ω − λ)) dλ

=

∫
e−iλse−i(ω−λ)tf̃(λ) f̃ ∗(λ− ω) dλ

(6.12)

Plugging this back into equation 6.10, exchanging the order of integration and letting

T ′ = R2:

g̃(ω) =
1

2π

∫∫
T ′
Q(s, t)

(∫
e−iλse−i(ω−λ)tf̃(λ) f̃ ∗(λ− ω) dλ

)
ds dt

=
1

2π

∫ (∫∫
T ′
Q(s, t)e−iλse−i(ω−λ)t ds dt

)
f̃(λ) f̃ ∗(λ− ω) dλ

=
1

2π

∫
Q̃(λ, ω − λ)f̃(λ) f̃ ∗(λ− ω) dλ

(6.13)

�

6.4 Augmentation of variables

The motivation of Raney (1969a) is to express this relation in a form which corre-

sponds to the transfer function for a linear filter. This is done by augmenting variables,

resulting in what Raney refers to as a dilinear extension of g. This is represented by:
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g(u)→ G(u, v) (6.14)

where G(u, v) is defined as:

G(u, v) =

∫∫
T ′
Q(x, y)f(u− x)f ∗(v − y) dx dy (6.15)

which can be recognized as a two-dimensional convolution. Hence Q is now the

impulse response of an LTI system. Taking the Fourier transform and letting T ′ = R2:

G̃(ω, λ) = Q̃(ω, λ)f̃(ω)f̃ ∗(−λ) (6.16)

Proof.

G̃(ω, λ) =

∫∫ (∫∫
T ′
Q(x, y)f(u− x)f ∗(v − y) dx dy

)
e−iωue−iλv du dv

=

∫∫
T ′
Q(x, y)

(∫
f(u− x)e−iωu du

∫
f(u− x)e−iλv dv

)
dx dy

= f̃(ω)f̃ ∗(−λ)

∫∫
T ′
Q(x, y)e−iωxe−iλy dx dy

= Q̃(ω, λ)f̃(ω)f̃ ∗(−λ)

(6.17)

�

Hence this extension allows the quadratic filter to be described in the frequency do-

main by a linear two-dimensional transfer function.

In order for this to be useful, it is required that the observable output g(u) can be

recovered from G̃(ω, λ). (Raney, 1969a) does not provide a complete proof of this

assertion, but rather refers to an operation called association of variables, here defined

as:

q̃(ω) =
1

2π

∫
Q(ω − λ, λ) dλ =

1

2π

∫
Q̃(η, ω − η) dη (?) (6.18)

where q(x) = Q(x, x). This, Raney informs, can be derived from the definition of the

inverse Fourier transform of Q̃(ω, λ) by a change of variables. The second equality is
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rather puzzling since the two integrals are related by a linear change of variables, yet

involve the Fourier transform pair Q and Q̃, such that ω appears in the spatial domain.

The answer can be found in the appendix of Raney (1981a), where the same relation

is given as:

q̃(ω) =
1

2π

∫
Q̃(ω − λ, λ) dλ =

1

2π

∫
Q̃(η, ω − η) dη (6.19)

which is formally correct and confirms that there is indeed an error in equation 16 in

Raney (1969a).

Proof.

q̃(ω) =

∫
q(x)e−iωx dx

=

∫
Q(x, x)e−iωx dx

=

∫
F−1

[
Q̃(η, λ)

]
e−iωx dx

=

∫ (∫∫
1

4π2
Q̃(η, λ)eiηxeiλy dη dλ

)
e−iωx dx

=
1

4π2

∫∫
Q̃(η, λ)

(∫
ei(η+λ−ω)x dx

)
dη dλ

(6.20)

The integral over x is the inverse Fourier transform of 1 if x is taken to be the

frequency. Using the transform pair 1↔ 2πδ(ω) (McClellan et al., 2003, table 11-2):

q̃(ω) =
1

4π2

∫∫
Q̃(η, λ) · 2πδ(η + λ− ω) dη dλ (6.21)

Due to the sampling property of the Dirac delta, the only contribution to the integral

over λ comes from the point where λ = ω − η:

q̃(ω) =
1

2π

∫
Q̃(η, ω − η) dη (6.22)
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Finally, the change of variables η = ω − λ yields the second equality in equation

6.19. �

Having established association of variables as a valid operation, Raney (1981a) com-

pletes the concept by showing that g(u) can be recovered from g̃(ω). Applying asso-

ciation of variables to g̃(ω) and using equation 6.16:

g̃(ω) =
1

2π

∫
G̃(η, ω − η) dη

=
1

2π

∫
Q̃(η, ω − η)f̃(η)f̃ ∗(η − ω) dη

(6.23)

Comparing this with equation 6.9, it can be verified that this result is identical to the

one obtained by taking the Fourier transform of g(u) directly.

G(u, v)G̃(ω, λ)

g(u)g̃(ω)

F

Association of

variables

F

Augmentation of

variables

Figure 6.1: Flowchart describing the mapping of the output g(u) of a quadratic filter to

a two-dimensional domain. Based on Raney (1981a).
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Chapter 7

Partially coherent targets

This chapter commences by providing a thorough discussion of the concept of coher-

ence, which originates in classical optics. This shall therefore be the starting point,

and the connection to partially coherent SAR systems shall be made. A system model

for such systems shall then be presented, and the theory of quadratic filters from the

previous chapter will be applied following Raney(1980a, 1980b, 1981a). Finally the

validity of this approach shall be discussed, which forms part of the contribution of

this study to the topic.

7.1 Coherence

The concept of coherence is central to this study and must be carefully defined in

order to proceed. A natural starting point for this is the field of optics.

In Young’s interference experiment, which demonstrated the wave nature of light,

sunlight was directed through a pinhole in a screen and then through two pinholes in

another screen set at a considerable distance from the first screen (Jenkins & White,

1957, p. 234-235). This setup produces two spherical waves which interfere with

each other and form a symmetrical intensity pattern on a third screen. The pinholes

may be replaced with narrow slits in order to facilitate the use of monochromatic

light instead of sunlight, which produces cylindrical wave fronts. The experiment is

71
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perhaps best known in this form through the image of the interference fringes thus

created. The geometry is similar to the one in figure 4.1 since it is assumed that

the distance between the slits is much smaller than the distance to the photographic

screen. (Jenkins & White, 1957, ch. 13).

The nulls of these fringes is interestingly described by equation 4.18, with the mod-

ification that D here represents the distance between the slits. Letting d denote the

distance to the photographic screen, D sin θ = Dx
d

where x is the horizontal distance

from the central fringe at the photographic screen. The fringes are therefore located

at:

x = mλ
d

D
(Bright fringes) (7.1)

x =

(
m+

1

2

)
λ
d

D
(Dark fringes) (7.2)

In section 4.3 it was assumed that the radiators in figure 4.1 had a constant phase

difference and this applies for Young’s experiment as well. If two lamps were used as

sources, one in front of each slit, then no interference fringes would be observed. This

is due to the fact that the light from any source will display sudden changes of phase.

For visual light this change occurs in time intervals of the order of 10−8 seconds, and

therefore the fringes cannot be maintained for longer intervals than this (Jenkins &

White, 1957, p. 244). When a single monochromatic source is illuminating two slits,

there is a perfect correspondence between the phase variations in the light emerging

from the slits, and the phase difference is therefore constant. Regarding the slits

themselves as sources, they are said to be coherent sources. Conversely, according to

(Zernike, 1938, p. 786), “Two vibrations of light shall be called incoherent, if their

superposition gives no visible interferences”.

While strictly monochromatic radiation is always coherent, this is not the case for

radiation which has a finite spectral width. Beran and Parrent (1963, p. 29-30)

distinguish between partial coherence effects due spectral spread, which they refer
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to as temporal coherence effects, and spatial coherence effects which are observed for

extended self-luminous sources. In Youngs’ original experiment, the former appears

with increasing difference in path length from the two pinholes, which causes a decay

in the visibility of the fringes1. The time delay between the two waves are then larger

than the wave’s coherence time. The latter can be introduced by increasing the size

of the single pinhole in the first screen, or by increasing the distance between the

two pinholes in the second screen. Both of these changes will cause the visibility

to decrease due to the distance between the pinholes being larger than the wave’s

coherence length (Beran & Parrent, 1963, p. 9-10).

In the context of SAR, the speckle phenomenon described in section 5.3 is an effect

of spatial coherence. The coherence length is in this context the distance over which

a target can move through the radar beam before speckle becomes significant due to

the radar geometry. Time-varying target reflectivity introduces an effect of temporal

coherence, with the coherence time being the time over which the target reflectivity

is effectively constant.

All information regarding coherence is contained in the mutual coherence function,

defined as:

Γ12(τ) = 〈V1(t+ τ)V ∗2 (t)〉 (7.3)

Here V1(t) and V2(t) represent complex field disturbances at two points P1 and P2, τ

is a time delay, and < · > denotes time average. The complex degree of coherence is

defined as:

γ12(τ) =
Γ12(τ)√

Γ11(0)Γ22(0)
(7.4)

This quantity can be related to the visibility of the fringes in Young’s experiment.

1For an illumination source with spectral width ∆ν, interference fringes are visible if the path

difference ∆r satisfies ∆r � c
∆ν
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The term visibility2 may be defined as:

V =
Imax − Imin
Imax + Imin

(7.5)

in terms of the maximum intensity Imax and the intensity of an adjacent minimum

Imin (Beran & Parrent, 1963, ch. 1). The degree of coherence of two sources is by

definition “equal to the visibility of the interference fringes that may be obtained from

them under the best circumstances” (Zernike, 1938, p. 786). Hence:

V = |γ12(τ)| (7.6)

under the assumption of narrow spectral width ∆ν, i.e. τ∆ν � 1. |γ12(τ)| = 0

then represents the incoherent limit, while |γ12(τ)| = 1 is the coherent limit (Beran

& Parrent, 1963, ch. 4.2).

This serves to flesh out the rather brief treatment by Elachi and van Zyl (2006, p.

30-31), who simply notes that a superposition of two (presumably real-valued) fields

E1(t) and E2(t) has an average power:

P ∝
〈
[E1(t) + E2(t)]

2〉 =
〈
E1(t)

2
〉

+
〈
E2(t)

2
〉

+ 2 〈E1(t)E2(t)〉 (7.7)

and that 〈E1(t)E2(t)〉 = 0 implies that the sources are incoherent. The coherence

time τc is defined as the time when two waves with frequencies ν and ν + ∆ν are out

of phase by one cycle:

τc =
1

∆ν
(7.8)

and the coherence length is defined as:

lc = cτc =
c

∆ν
(7.9)

which only accounts for temporal coherence. Furthermore Elachi and van Zyl define

coherence simply by 〈E1(t)E2(t)〉 6= 0, which must necessarily also include partial

2Introduced by Albert Abraham Michelson in 1890 (Beran & Parrent, 1963, p. 5).
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coherence. Indeed, “Two waves are said to be coherent with each other if there is a

systematic relationship between their instantaneous amplitudes” (Elachi & van Zyl,

2006, p. 30). There is certainly some degree of coherence if the cross-covariance is non-

zero. However, recalling equation 7.3, it should be noted that 〈E1(t)E2(t)〉 = Γ12(0)

which is of limited use by itself. For this study the quantity |γ12(τ)| ≡ ρ(τ) is the

main quantity of interest.

7.2 System model

The model of the azimuth channel to be used in this study is the one which forms

the basis for Raney (1980b), which is an extension of the model described in section

5.9. The target function f(η) is now modulated by a stochastic process {α(η|x)},
where {·} shall be used as notation for a stochastic process. The target coherence is

dependent on on how fast the autocorrelation function of {α} decays. In the non-

coherent limit all samples are independent. The block diagram for this system model

is shown in figure 7.1.

f w × + h ||2 g

n{α}

Figure 7.1: Block diagram describing a model of the SAR azimuth channel where par-

tial temporal coherence has been introduced. Comparing with figure 5.6, the scene input

function is now modified by a random phase shift {α(η)}, where {·} is used to denote a

stochastic process. Based on figure 5c in Vachon (1983).

The target function f(η) is commonly also be described as a stochastic process due

to the speckle phenomenon described in section 5.3. However, in order to separate

the effects caused by the temporal coherence it is convenient to neglect speckle noise,

which is a valid approach under the assumption that only targets with a coherence
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length longer than the footprint are considered.

The justification for multiplying α with the output of the prefilter is the observa-

tion that α is conditional, but not dependent, on the position of the corresponding

scene element (Raney, 1980a, p. 36). In simulating this model the multiplication is

straightforward for a single point target since each return is associated with only one

scattering element. However, in the case of an extended scene the spatial dependence

most be handled correctly, as shall be discussed in chapter 9.

The explicit expression for the azimuth prefilter provided by Raney (1980b, p. 778)

relies on the rectilinear approximation which was mentioned in section 5.7. The

change of variables x = Vrη is introduced, and the prefilter takes the form3:

w(x) = wa(x) e
−i 2π

λR0
x2

(7.10)

This is consistent with equation 5.47 and equation 5.30 for the zero-squint case, where

the quantities involved are related by:

BD

Ta
=

2V 2
r

λR0

(7.11)

which is the FM rate of change of the Doppler chirp, here set to be positive. The

factor wa(x) is the weighting of the far field due to the azimuth antenna pattern, for

which a Gaussian function is used:

wa(x) = e−
ax2

2 (7.12)

This is a good approximation to the main lobe of equation 5.18 within the FWHP

beamwidth for an appropriate value of a, which is determined by calculating the

3Raney (1980a, 1980b) starts out with a positive exponent in equation 7.10 and ends up with a

negative one midway through the derivations. For consistency a negative exponent is here introduced

from the start, in line with the argument given in section 5.5.
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equivalent rectangle4 of wa(x):

∫
wa(x)

wa(0)
dx =

∫
e−ax

2

dx =

√
2π

a

∫ √
a

2π
e−ax

2

dx =

√
2π

a
(7.13)

since the last integral is a Gaussian probability density function with variance a−1.

This is a measure of half the azimuth footprint, which is equal to Rβa by the small

angle approximation tan(βa) ≈ βa, βa being the azimuth beamwidth. Hence a can be

determined by:

√
2π

a
= Rβa =⇒ a =

2π

(Rβa)2
(7.14)

4The equivalent rectangle of a complex filter h(t) can be defined as
∫ |h(t)|
|h(t0)| dt or

∫ |h(t)|2
|h(t0)|2 dt,

where |h(t0)| is the peak value of |h(t)|. The idea is to obtain the width of a rectangle having the

same area and maximum height as the (squared) norm of h(t) (Brown, 1963, p. 149).
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Figure 7.2: Comparison of the antenna patterns given by equation 5.18 (red) and equation

7.12 (blue) for the radar parameters in table 8.1.

Following the notation in Raney (1980b), let:

b =
4π

λR0

(7.15)

and:

c =
a

2
+ i

b

2
(7.16)

The prefilter is then expressed as:

w(x) = e−cx
2

(7.17)
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and the matched filter is given by:

h(x) = w∗(−x) = w∗(x) (7.18)

where the last equality is due to the quadratic dependence on η.

The stochastic process {α(η|x)} is assumed to be wide-sense stationary with a Gaus-

sian autocorrelation function which takes the form:

ρ(τ) = e
−π τ

2

τ2c (7.19)

where τ denotes time lags and τc is the correlation time, which is defined by this ex-

pression. The factor π which appears in the exponent seems to be an arbitrary choice,

and does not appear in e.g. Carande (1994), who reports the results of measuring

ocean coherence time under the assumption of a Gaussian autocorrelation function.

Changing variables to u = τVr, ρ can be written as:

ρ(u) = e
− πu2

(τcVr)2 ≡ e−
B
2
u2 (7.20)

where, still in keeping with the notation in Raney (1980b), B ≡ 2π
(Vrτc)2

.

7.3 Partially coherent quadratic filtering

Recalling the quadratic filter defined in section 6.1 and the expression of w(η) given

in the previous section, the quadratic filter of a partially coherent SAR processor is,

according to Raney (1980b, p. 778) given by:

Q(x, y) = γ(y − x)w∗(−x)w(−y) (7.21)

where γ is a correlation function, here chosen by Raney to be a Gaussian function:

γ(u) = e−
A
2
u2 (7.22)
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which has exactly the same form as equation 7.20. Hence:

Q(x, y) = e−
A
2
(y−x)2 e−c

∗x2 e−cy
2

(7.23)

f w × + Q g

n{α}

Figure 7.3: Modification of the block diagram in figure 7.1. The filter h and magnitude

squared operation has here been replaced with a quadratic filter.

Raney provides a number of results based on the explicit forms of w and ρ given in

the previous section.

• If the coherence time of the scene is known, then setting A = B maximizes the

ratio (expected signal)2/(noise variance). Assuming B � a, this degrades the

resolution by a factor
√

2 beyond the scene limited quantity5 (Raney, 1969b,

as cited in Raney, (1980a, p. 39)). This result, which is crucial for motivating

this thesis, seems to be available in Raney (1969b) only. Raney’s dissertation

has proven to be hard to locate, and the result must therefore be taken on faith

alone.

• Setting A > 0 the aperture is restricted during processing. Let the fraction

of the restricted aperture and the total available aperture be denoted by n−1.

Then A = n2a, and the number of independent looks N is given by:

N =
√

1 + n2 (7.24)
5This term, used by Raney (1980b, p. 780), is not explained in Raney’s articles, but presumably

refers to the highest resolution that can be achieved by the SAR system in the presence of partial

coherence in the scene.
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• The expected impulse response of a point target located at x = 0 is6:

E[gδ(u)] =

∫∫
Q(u− x, u− y)w(x)w∗(y)ρ(y − x) dx dy (7.25)

If A = B the contributions from scene and processor partial coherence is col-

lected in a factor ρ(y − x)2, the rest being equal to equation 6.1 with u = Vrη.

• Under the assumption of a large TBP and the explicit formulas given for the

quantities involved, the resolution of a partially coherent SAR is given by:

δa =

√
2π(A+B + a)

b
(7.26)

In the coherent limit this is equal to half the antenna length. This resolution

happens to be the reciprocal of the image bandwidth for a sinusoidal wave field:

f(x; t) =
√
σBα(t|x) (1 +m cosωx) (7.27)

where m is a modulation index on the mean reflected amplitude σB. The

modulation α(t|x) here represents capillary waves.

• The Fourier transform of the impulse response of the whole SAR system, includ-

ing the prefilter, can be obtained by augmentation and association of variables.

This is given by:

g̃δ(ω) = γ
(ω
b

)
ρ
(ω
b

) 1

2π

∫
h̃(ω − λ)w̃(ω − λ)h̃∗(−λ)w̃∗(−λ) dλ (7.28)

under the assumption of a large TBP (Raney, 1981a, p. 743). Taking the inverse

Fourier transform of this expression should in principle yield a one-dimensional

impulse response where the correlation structure is still preserved, although it

6Raney (1980a) includes a power factor σ in the impulse response. Here it is assumed that the

input to the azimuth prefilter is an impulse, and this factor is therefore omitted without loss of

generality since it can be multiplied back in at any stage.
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was introduced through augmentation of variables. The derivation of this result

is the topic of Raney (1981b), a summary of which is presented in appendix B.

• For a deterministic real-valued input f(x) it is possible to derive a transfer func-

tion for the whole SAR system, including the prefilter, through augmentation

and association of variables. Let F (x) ≡ f(x)2. Then:

g̃(ω) = F̃ (ω)g̃δ(ω) (7.29)

with g̃δ(ω) defined above.

The question of dependence between partial coherence and expected quantities is

covered in depth by Raney and seems to be the main topic of the discussion in these

articles. In summary:

• The integral over the impulse response under the assumption of large TBP is

independent of scene and system coherence. Hence a SAR with large TBP is

energy conservative. This has an analog when considering the expected output

due to partially scene coherence, namely that the effective gain of the SAR is

also independent of scene and system coherence.

• The expected output in the presence of receiver noise alone is independent on

system coherence, while the noise variance is a function of system coherence, as

is the effective noise bandwidth, both decreasing with coherence decreases.

• The mean output signal for a distributed scene is independent of scene and

system coherence, while the signal output variance decreases as partial system

coherence is introduced.

• The variance to mean-squared ratio of a SAR observing a partially coherent

scene decreases with system coherence, but is independent of scene coherence.

• The bandwidth of the SAR including the azimuth prefilter decreases as system

coherence is reduced.
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Finally, one crucial observation is that ρ and τc are, in practice, not measurable from

SAR data (Raney, 1980b, p. 786). Furthermore, “no evidence of degraded resolution

(for a distributed scene) is available in the image” (Raney, 1980b, p. 786).

7.4 Discussion

So far the the aspects of SAR theory which relates to the articles by Raney have been

discussed in order to understand the basis and limitations of the proposed method.

The essence of partially coherent processing is the factor γ(y − x) in equation 7.21.

This factor is assumed to be a correlation function. For a scene function f(x)α(t|x),

setting γ equal to the autocorrelation function of α maximizes the expected signal

squared to noise variance ratio at a cost of decreased resolution. This approach re-

lies on the introduction of a second variable since the γ factor introduces a coupling

between the two independent variables x and y.

Figure 6.1 presents a scheme for transforming the non-linear quadratic filter formu-

lation into an LTI system by an operation referred to as augmentation of variables.

Filtering can either be done in the time domain by setting g(u) = G(u, u) after fil-

tering, or by following the scheme clockwise and filtering in the frequency domain.

The formalism has been completely rederived and is found to be formally correct.

Therefore, the results in Raney’s articles may also be considered formally correct.

The decoupling of the range and azimuth directions is also valid, as described in sec-

tion 5.9. It is assumed that range cell migration has been perfectly corrected. The

Gaussian antenna pattern of equation 7.12 is also a good approximation to the sinc

pattern of equation 5.18, as illustrated in figure 7.2.

The optimal processor coherence is governed by the scene coherence time, which

cannot be extracted from the SAR data and must therefore be determined by other

means (e.g. Carande (1994) or Shemer and Marom (1993) in the case of ocean



84 CHAPTER 7. PARTIALLY COHERENT TARGETS

coherence time). The factor π that appears in the autocorrelation function (equation

7.20) seems to be an arbitrary scaling and can be neglected. While Raney considers

an arbitrary stationary process {α} (presumably for convenience in order to derive

closed-form expressions) Raney (1981a) and Vachon (1983, p. 20) define a partially

coherent target as one that undergoes a phase modulation ei{θ}. While this prevents

analytical development in terms of the coherence time of {θ}, it links the coherence

time with the phase error, which is the physically observable quantity. The choice

of {α} leaves much freedom in modelling, and for simplicity the definition of Vachon

shall be used to restrict the partial scene coherence to a random phase fluctuation.

Therefore τc shall henceforth denote the coherence time of {θ}.



Chapter 8

Point target simulation

The most central aspects of SAR theory which are relevant to Raney’s quadratic filter

formulation have now been covered, and based on this the formulation itself seems

to be sound. The next step is to generate some simulated data in order to study

the effect of processing partially coherent targets using this approach. This chapter

shall restrict itself to partially coherent point targets, and based on these results some

remarks on the obtainable resolution shall be made.

8.1 Implementation

The following describes an implementation of the model in chapter 7, specifically

figure 7.1 and figure 7.3. From the definitions of a and b, the radar parameters required

are the radar altitude R0, radar velocity Vr, radar wavlength λ and beamwidth β.

The latter depends on λ and antenna length La. Recalling the expression for the the

first null beamwidth in section 4.3, let:

βa =
λ

La
(8.1)

The last quantity involved is the sampling period Ts which is the reciprocal of the

pulse repetition frequency (PRF). The radar parameters used in the subsequent mod-

elling is described in table 8.1.

85
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R0 Radar altitude 800 km

Vr Effective radar velocity 7100 m/s

λ Radar wavelength 0.057 m

La Antenna length 10 m

fs Azimuth sampling rate (PRF) 1700 Hz

Table 8.1: Radar parameters from table 4.1 in Cumming and Wong (2003).

The radar footprint in units of length along the azimuth axis is equal to 2R0 tan βa,

and the exposure time is therefore:

Ta = 2
R0 tan βa

Vr
≡ 2η0 (8.2)

which in this case is approximately 1.28 s. Suppose that a target enters the beam at

−η0, and exits at η0, with η = 0 corresponding to the time at which the radar passes

directly over the target. The azimuth prefilter is then implemented as equation 7.17:

w(η) = e−cV
2
r η

2

(8.3)

evaluated at times [−η0, η0] with a spacing Ts.

Once the target vector is convolved with the prefilter vector, the result is multiplied

with the random vector eiθ where θ is a sample from a random Gaussian process with

a correlation time τc.

The generation of the sample θ is not trivial, and shall be discussed further below.

The additive noise can be modelled as a white Gaussian complex process:

n ∼ σn(N(0, 1) + iN(0, 1)) (8.4)

where σn is the noise standard deviation. This shall be set to 0.25 times the maximum

amplitude of the signal in the following simulations. Once this has been added to the
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signal, the result can be convolved with the matched filter h which is simply the com-

plex conjugate of w. This is the coherent processing normally used when compressing

SAR data. The output should be divided by the power of the filter and calibrated so

that the image represents the radar backscatter coefficient σ0 as given in equation 5.6.

The scaling of the output is not of great interest in the study of target coherence, but

rather the shape of the resulting signal. Therefore the maximum amplitude of the

target vector, which is equal to the square root of the power at the sensor might as

well be set to 1, so that σn can be adjusted accordingly to yield the desired SNR.

8.1.1 Generation of correlated Gaussian random numbers

Deserno (2002) describes a method for generating correlated Gaussian random num-

bers rn with zero mean and unit variance.

Starting with a sample gn, define the correlation coefficient:

f ≡ e−
1
|τ | (8.5)

where τ is the number of lags over which rn is coherent. Next define the sequence rn

by te recursive relation:

r0 ≡ g0

rn ≡ f rn +
√

1− f 2gn+1

(8.6)

or equivalently:

rn = fng0 +
√

1− f 2

n∑
i=1

gif
n−i (8.7)

By induction:



88 CHAPTER 8. POINT TARGET SIMULATION

E[rn+1] = fE[rn] +
√

1− f 2E[gn+1] = 0

E[r2n+1] = f 2E[r2n] + (1− f 2)E[g2n+1] = 1
(8.8)

and the autocorrelation function is:

ρ[n] = E[rmrm+n]

= E

[
rm

(
fnrm +

√
1− f 2

m+n∑
i=m+1

gif
m+n−i

)]
= fnE

[
r2m
]

= e−
n
|τ |

(8.9)

where the second equality is due to the fact that rm is not correlated with gi for i > m.

Although this procedure yields an exponential decay in the autocorrelation function,

the assumption of ρ having a Gaussian shape can be considered one of convenience

and not a necessary condition since the exponential decay does not alter the physical

interpretation of the coherence time.

In the case of a point target there is no summation involved in each step in the

convolution between the target function and the prefilter. Hence the output of the

prefilter can be multiplied directly with the random vector {α} in order to model

partial scene coherence. For an extended scene the process is rather more involved

since the convolution must keep track of azimuth time as well as the time dependence

of the random phase fluctuation. This shall be explored in the next chapter.

8.1.2 Implementation of the quadratic filter

The obvious method of implementing the quadratic filter in MATLAB is to define

space vectors x = y = Vrη, where η is the vector used to construct the azimuth

prefilter, and then define a meshgrid [X,Y] = meshgrid(x,y) and plug X and Y into

the definition of Q, thereby forming a complex-valued image. Recalling that:
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g(u) =

∫∫
Q(u− x, u− y)w(x)w∗(y) dx dy (8.10)

Define the image w(x)w∗(y) ≡ W (x, y) and augment variables to:

G(u, v) =

∫∫
Q(u− x, v − y)W (x, y) dx dy (8.11)

which is a 2D convolution integral. The filtering can then be done by the conv2

function, which is somewhat computationally inefficient. Instead Q and W can be

zero-padded to twice the size of W, after which the fast Fourier transform fft2 is

applied to both images, the result of which is multiplied element-wise. By the con-

volution theorem this is equivalent to a convolution. The inverse fft can then be

applied, and the padding removed by cropping the image. The main diagonal then

corresponds to u = v, which is the desired result.

Figure 8.1 shows plots of |Q| for different values of A, which illustrates how partial

processor coherence affects the envelope of the quadratic filter. It may be noted that

the main diagonal remains unaffected.
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(b) A = 10−7
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(c) A = 10−5
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(d) A = 10−3

Figure 8.1: Comparison of |Q| for different values of A.

In order to set the optimal processor coherence, it is necessary to know the coherence

time of the scene. Since {α} = eiπ{θ} and the coherence time of {θ} is chosen, the

coherence time of {α} is required due to the formulation of Raney. As already stated,

the coherence time shall be defined as the time it takes for the autocorrelation function

to decay by a factor e−1 ≈ 0.4. Since calculating the autocorrelation function of {α}
given the coherence time of {θ} proves rather intractable, it shall be taken as a rule

of thumb that the coherence time of {α} is approximately one tenth of the coherence

time of {θ}. This may be justified by comparing the autocorrelation plots of the

respective processes, which is shown in figure 8.2. Hence an approximation to the
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optimal processor coherence time is:

B =
2

( τc
10
Vr)2

(8.12)

which, as shall be demonstrated, is sufficiently accurate for the present purposes.
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(a) Estimated autocorrelation functions for {θ} (left) and {α} ≡ eiπ{θ} (right) given that

{θ} is coherent over 10 lags.
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(b) Estimated autocorrelation functions for {θ} (left) and {α} ≡ eiπ{θ} (right) given that

{θ} is coherent over 50 lags.
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(c) Estimated autocorrelation functions for {θ} (left) and {α} ≡ eiπ{θ} (right) given that

{θ} is coherent over 100 lags.

Figure 8.2: Comparison of estimates of the autocorrelation functions of {θ} (left column)

and {α} ≡ eiπ{θ} (right column) for different number of lags over which {θ} is coherent.

The blue lines show the confidence bounds of two standard errors.
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8.2 Results

Figure 8.3 illustrates how a point target behaves as partial coherence is introduced

in the scene. Once the coherence time becomes smaller than the integration time of

the SAR, the point target loses strength while the resolution is slightly degraded. At

coherence times much smaller than the integration time the target is hardly visible.

Figure 8.4 shows the same results using a quadratic filter with A = 0, from which it

can be verified that the quadratic filter formulation is valid in the case of coherent

processing.
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(d) τc = 0.1 s
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(e) τc = 0.01 s

Figure 8.3: Comparison of point target response for various coherence times using a 1D

matched filter. The target becomes less visible as the coherence decreases, as predicted by

the theory.
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(b) τc = 10 s
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(c) τc = 1 s
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(d) τc = 0.1 s
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(e) τc = 0.01 s

Figure 8.4: Comparison of point target response for various coherence times using a

coherent quadratic filter. Comparing these results with the ones in figure 8.3, it can be

verified that a fully coherent quadratic filter produces the same results as a standard 1D

matched filter.
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Consider the case of τc = 0.5. Figure 8.4 illustrates the effect of introducing partial

coherence in the processor as well. A further decrease in amplitude is observed while

the shape of the output is smoother. The optimal case of A = B, shown in figure 8.5c,

should according to Raney maximize the ratio (expected signal)2/(noise variance), as

discussed in section 7.3.
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(c) τc = 0.5 s, A = B
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(d) τc = 0.5 s, A = 2B

Figure 8.5: Comparison of point target response for various coherence times using a

partially coherent quadratic filter.

Recalling equation 7.26, the theory predicts a resolution of approximately 63 m in

the optimal case. Figure 8.6 relates this number to the half power width of the target

response, which is roughly 40 m in this case. As noted in section 4.3, this is one
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possible measure of resolution. Considering the margin of error in the estimation of

the coherence time of {α}, as well as the fact that this number is based on the expected

impulse response, this correspondence may be considered satisfactory. Compared to

the optimal coherent case of 5 m given by equation 5.40, the degradation in resolution

is significant. While the reduction in resolution was predicted by the theory, the

reduction in amplitude shown in figure 8.5 is inconvenient for the purpose of target

detection. It may therefore seem that the criterion of maximizing the ratio (expected

signal)2/(noise variance) may be of limited use for this purpose.
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Figure 8.6: Illustration of the half power width of the point target response for τc = 0.5 s

and A = B. The half power width, which here is roughly 40 m, is one possible measure of

resolution and can be compared with the resolution predicted by equation 7.26, which is 63

m. The optimal resolution is 5 m as given by equation 5.40. The degradation in resolution

predicted by the theory is roughly in agreement with the one obtained in the simulation .
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Chapter 9

Distributed scene simulation

Having simulated a point target, this chapter deals with case of a point target embed-

ded in a distributed scene. Suppose that a point target is surrounded by a number of

weaker scatterers with a significantly shorter coherence time. The question is whether

or not it is possible to use Raney’s formalism in order to strengthen the response of

the more coherent point target.

9.1 Motivation

The weighting of the quadratic filter in Raney’s articles has a Gaussian shape due to

the assumption of the shape of the autocorrelation function. If the response of the

point target and the background of the scene combined is considered as a superpo-

sition of the two, then it is reasonable to suspect that there is something to gain by

setting:

γ(u) ≡ e−
Atarget

2
u2 − e−

Abackground
2

u2 (9.1)

Intuitively, this scooping of the envelope of this quadratic filter, henceforth referred

to as a scooped filter, should strengthen the signal from the point target by limiting

the integration such that the return from the background is mostly excluded. The

case of interest in the following sections is when the point target has a coherence time
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an order of magnitude above the scene.

9.2 Implementation

As already mentioned, a distributed scene requires a separate implementation of the

convolution between the scene function and the azimuth prefilter where the ran-

dom phase fluctuation is applied in each convolution step according to the procedure

described in section 8.1.1. This has been achieved by manually implementing the

convolution in the usual way by a for-loop. During a regular discrete convolution

process the flipped azimuth prefilter slides over the target vector, and at each step

the overlapping elements of the two vectors are multiplied, and the products summed

in order to produce one element in the convolution vector (MathWorks, n.d.).

The modification consists of forming a matrix of column vectors, each of which is a

realization of the {α}-process with a chosen coherence time, and weighting the sum of

each convolution step by the appropriate vector picked out from the random matrix.

In this way each element of the scene is weighted by an element from its corresponding

column in the random matrix at each step in the convolution, and as the convolution

progresses the weight evolves according to the imposed temporal correlation.

The background has been modelled using the same procedure from section 8.1.1. A

Gaussian random vector is first formed, and the correlation structure is then applied

to this random vector. Thus a spatial correlation has been introduced as well, which

accounts for the speckle phenomenon discussed in section 5.3.

9.3 Results

Consider the case where τc,background = 0.0588 s, τc,target = 0.588 s and the spatial

coherence length lc is 208.8 m. The envelope of the corresponding quadratic filter is

illustrated in figure 9.1.
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Figure 9.1: Plot of the scooped quadratic filter envelope for τc,background = 0.0588 s and

τc,target = 0.588 s.

The background variance is constant and set to 1, and the power of the point target

at the sensor has been set to 10. A scene of 2088 m has been modelled, and it is

assumed that the surrounding reflectivity is zero. The scene has been processed using

a 1D matched filter, to which has been applied a 10 point running average filter, and

a quadratic filter with a scooped envelope. The coherence of the quadratic filter has

been set to optimum. The result is shown in figure 9.1.
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Figure 9.2: Distributed scene simulation 1. Pr = 10, lc = 208.8 m, τc,background = 0.0588

s, τc,target = 0.588 s.

It is interesting to note that the quadratic filter produces slightly negative values.

This is not surprising since the quadratic filter is no longer necessarily a correlation

function according to the requirements stated in section 6.2. Specifically, the filter Q

which is used here is not necessarily positive definite since it is now a difference be-

tween two Gaussian functions. A slight relaxation of the requirements for a quadratic

filter described in chapter 6 has therefore been introduced. Apart from this, it is

similar to the averaged output of the 1D matched filter. The point target emerges

quite strongly from the background.

Suppose that the power of the point target is reduced from 10 to 5. In this case it is
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hardly detectable, as shown in figure 9.3.
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Figure 9.3: Distributed scene simulation 2. Pr = 5, lc = 208.8 m, τc,background = 0.0588 s,

τc,target = 0.588 s.

Keeping the power of the point target at 5, suppose that the coherence length of the

background is adjusted to 2088 m, which is equal to the scene length. If the spatial

coherence has any effect on the point target return it should appear in the result in

figure 9.4. It may be observed that the point target remains hardly detectable, and

hence the scene coherence length seems to have no significant effect.
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Figure 9.4: Distributed scene simulation 3. Pr = 5, lc = 2088 m, τc,background = 0.0588 s,

τc,target = 0.588 s.

Next the effect of reducing the coherence times of the point target and background

is investigated. Let the power of the point target be restored to 10, and the scene

coherence length to 208.8 m. Figure 9.5 shows the results of lowering the coherence

times to τc,background = 0.0294 s and τc,target = 0.294 s, and figure 9.6 shows the effect

of setting τc,background = 0.0059 s and τc,target = 0.0588 s.
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Figure 9.5: Distributed scene simulation 4. Pr = 10, lc = 208.8 m, τc,background = 0.0294

s, τc,target = 0.294 s.
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Figure 9.6: Distributed scene simulation 5. Pr = 10, lc = 208.8 m, τc,background = 0.0059

s, τc,target = 0.0588 s.

As expected the return signal of the point target is weakened to the point of dis-

appearing completely. Interestingly the 1D matched filter with a 10 point running

average filter seems to perform equally well as the partially coherent quadratic filter.

9.4 Discussion

The similarity between the partially coherent quadratic filter and the 1D matched

filter with a running average filter is a noteworthy result. In order to explain this,

consider the expected transfer function given by equation 7.29. Recalling that:
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g̃δ(ω) = γ
(ω
b

)
ρ
(ω
b

) 1

2π

∫
h̃(ω − λ)w̃(ω − λ)h̃∗(−λ)w̃∗(−λ) dλ (9.2)

is the transfer function of the quadratic filter, a closed form expression can be derived.

For a complex Gaussian Fourier the transform pair is:

e−cx
2 ↔

√
π

c
e−

ω2

4c (9.3)

(Smith III, 2000). Since w(x) = e−cx
2

and h(x) = e−c
∗x2 :

h̃(ω − λ)w̃(ω − λ)h̃∗(−λ)w̃∗(−λ) =

√
π

c∗
e−

(ω−λ)2
4c∗ ·

√
π

c
e−

(ω−λ)2
4c ·

√
π

c∗
e−

(−λ)2
4c∗ ·

√
π

c
e−

λ2

4c

=
π2

|c|2
e−

(ω−λ)2
4c

− (−λ)2
4c e−

(ω−λ)2
4c∗ −

(−λ)2
4c∗

=
π2

|c|2
e−

ω2

4c e−
λ2+ωλ

2c e−
ω2

4c∗ e−
λ2+ωλ

2c∗

=
π2

|c|2
e
−ω

2(c+c∗)
4|c|2 e

− (λ2+ωλ)(c+c∗)
2|c|2

=
4π2

a2 + b2
e
− aω2

a2+b2 e
−2a (λ2+ωλ)

a2+b2

(9.4)

Therefore:

g̃δ(ω) = γ
(ω
b

)
ρ
(ω
b

) 1

2π

4π2

a2 + b2
e
− aω2

a2+b2

∫
e
−2a (λ2+ωλ)

a2+b2 dλ

= γ
(ω
b

)
ρ
(ω
b

) 1

2π

4π2

a2 + b2
e
− aω2

a2+b2

√
a2 + b2

a

√
π

2
e

aω2

2(a2+b2)

= γ
(ω
b

)
ρ
(ω
b

)√ 2π2

a(a2 + b2)
e
− aω2

2(a2+b2)

(9.5)

where the integral was evaluated using the Integrate function in Wolfram Math-

ematica 9.0. This is a new result which illustrates that the SAR transfer function

for a quadratic filter takes the form of a Gaussian low-pass filter weighted by the

autocorrelation function and the processor coherence.
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Given this result it is not surprising that simply averaging the output of a 1D matched

filter yields similar results.



Chapter 10

Summary and conclusions

The aim of this study was to give a well-structured introduction into Raney’s formal-

ism for partially coherent processing of SAR images, and to investigate the processing

of scenes containing targets with different correlation times.

Chapter 2 covered the basis of EM radiation, which is the medium through which

information is recorded by a SAR. Chapter 3 discussed some key topics in signal pro-

cessing which pertain to the operation of a SAR, and chapter 4 introduced the radar

as a ranging instrument. Chapter 5 thoroughly covered the principles and properties

of SAR systems and introduced a simplified processing model of the azimuth channel

which is the basis of Raney’s quadratic filter formalism. Next the quadratic filter

was introduced in chapter 6, and a filtering scheme was rederived where a non-linear

system is transformed into a linear one. Concluding the theoretical part of this thesis,

chapter 7 discussed the physical concept of coherence and described how a quadratic

filter can represent a partially coherent SAR processor for the azimuth channel.

Finally, chapter 8 and chapter 9 presented the results of filtering simulated SAR data

using a partially coherent quadratic filter. In the case of a single point target it was

found that the degradation of the resolution agrees with the theoretical predictions.

Furthermore a quadratic filter with a scooped envelope was tested for the purpose

of processing a distributed scene where a partially coherent point target is embed-
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ded in a background, the signal strength and coherence of which is significantly lower.

It was found that replacing the Gaussian envelope with the difference of two Gaussian

envelopes, the latter of which is narrower than the former, produced results which

were comparable to processing the data with a standard matched filter and applying a

running average filter. This correspondence was explained by examining the expected

transfer function of the SAR system including the prefilter. An explicit form of the

transfer function was derived, and it was found to be the product of the processor

envelope, the scene autocorrelation function, and a Gaussian function. The whole

system therefore acts as a low-pass filter1 for this particular choice of quadratic fil-

ter, which explains why averaging the output of a matched filter processor produces

similar results.

It may therefore be concluded that the partially coherent quadratic filters considered

here, under the he criterion of maximizing the ratio (expected signal)2/(noise vari-

ance), do not offer any significant potential for target detection compared to standard

SAR processing.

Future work on this topic might consider other forms of quadratic filters by varying

the choice of the quadratic filter envelope γ. This will necessarily include ascertaining

which functions are permissible due to the requirements posed on partially coherent

quadratic filters by Raney, and whether or not it is possible to relax these require-

ments, one example of which has been presented in this thesis. The existence of

the Fourier transform of partially coherent quadratic filters for different choices of γ

should then be thoroughly investigated.

Furthermore, the formalism in itself is interesting and may have applications not

considered in this study. The presentation of Raney’s work on this topic is therefore

considered part of the contribution of this thesis, in the hope that it may prove useful

1The scooped quadratic filter might also qualify as a band-pass filter. However, the filter is still

band-limited by the target autocorrelation function e−
Atarget

2 u2

in equation 9.1.
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for other purposes.
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Appendix A

Derivation of the half power

beamwidth

The power of the electric field is proportional to the square of the amplitude, and at

θ = 0 there is no contribution from the phase factor. Therefore, in the ratio E2(β)
E2(0)

all constants cancel, and the half power beam width β is obtained through equation

4.15:

sin
(
kD sin β

2

2

)
kD sin β

2

2


2

≡ sinc2

(
kD sin β

2

2

)
=

1

2
(A.1)

which, according to Elachi and van Zyl (2006) can be solved numerically to yield:

β = 0.88
λ

D
(A.2)

However, setting D = λ = 1 in the integral and solving using the Mathematica func-

tion FindRoot, the answer comes out as 0.918.

Following Stutzman and Thiele (2013, p. 130), the equation:

sincx =
1√
2

(A.3)
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can be solved the same way to obtain x ≈ ±1.392. Using this to solve for β:

1

2
kD sin

β

2
= 1.392

=⇒ β = 2 arcsin
2.784

kD

= 2 arcsin
2.784λ

2πD

≈ 2 arcsin 0.4431
λ

D

(A.4)

If λ
D
� 1, then the arcsin can be Taylor expanded to first order in λ

D
around 0. The

first order Taylor expansion of arcsinx is equal to x, and therefore:

β ≈ 0.886
λ

D
(A.5)

which is close, but not quite. If equation A.1 is expressed in decibel and solved for

the value of β at which the difference is -3 dB:

10 log10 sinc

(
kD sin β

2

2

)
= −3dB (A.6)

then β is the angle at which the power drops off by a factor 10
−3dB
10 ≈ 0.5011 and the

same procedure as above does indeed yield the approximation:

β ≈ 0.884
λ

D
(A.7)

In either case the constant factor is approximately equal to 1.



Appendix B

Derivation of the SAR transfer

function

The transfer function of a partially coherent SAR system is here rederived following

Raney (1981b).

The expected impulse response of a partially coherent SAR system is given by:

E[gδ(u)] = E

[∫∫
Q(u− x, u− y)w(x)w∗(y)α(x|0)α∗(y|0) dx dy

]
=

∫∫
Q(u− x, u− y)w(x)w∗(y)E [α(x|0)α∗(y|0)] dx dy

=

∫∫
Q(u− x, u− y)w(x)w∗(y)ρ(y − x) dx dy

(B.1)

assuming that {α} has an autocorrelation function ρ (Raney, 1980b, p. 779).

Augmenting variables:

Gδ(u) =

∫∫
Q(u− x, v − y)w(x)w∗(y)ρ(y − x) dx dy (B.2)

Define:

Qw(x, y) = w(x)w∗(y)ρ(y − x) (B.3)

121



122 APPENDIX B. DERIVATION OF THE SAR TRANSFER FUNCTION

such that Gδ(u) can be written as:

Gδ(u) =

∫∫
Q(u− x, v − y)Qw(x, y) dx dy (B.4)

Raney (1981a, p. 743) states that Qw(x, y) satisfies the requirements of a quadratic

filter. Taking the Fourier transform of Gδ(u) yields:

G̃δ(u) = Q̃(ω, λ)Q̃w(ω, λ) ≡ Q̃T (ω, λ) (B.5)

Next, Raney (1981b) applies the principle of stationary phase, whereby the integral

over a function:

f(t) = fa(t)e
iϕ(t) (B.6)

can be written as:

∫
f(t) dt =

√
2πfa(t

∗)√
|ϕ′′(t∗)|

(B.7)

where ·∗ does not denote complex conjugation, but t∗ is the point at which ϕ′(t) = 0.

This approximation is valid under the assumption of large TBP. Applying this to the

quadratic filters in equation B.5 yields:

Q̃(ω, λ) = γ

(
λ+ ω

b

)
h̃(ω)h̃∗(−λ)

Q̃w(ω, λ) = ρ

(
λ+ ω

b

)
h̃(ω)h̃∗(−λ)

(B.8)

(Raney, 1981b, p. 749). Therefore:

Q̃T (ω, λ) = γ

(
λ+ ω

b

)
ρ

(
λ+ ω

b

)
h̃(ω)h̃∗(−λ)w̃(ω)w̃∗(−λ) (B.9)

Finally, applying association of variables:

g̃δ(ω) =
1

2π

∫
Q̃T (ω − λ, λ) dλ

= γ
(ω
b

)
ρ
(ω
b

) 1

2π

∫
h̃(ω − λ)w̃(ω − λ)h̃∗(−λ)w̃∗(−λ) dλ

(B.10)



Appendix C

Source code

C.1 Main scripts

C.1.1 Linear filter demo with point target

clear all;

close all;

% Set seed

rng(5705)

% Radar parameters (Cumming & Wong, 2003, table 4.1)

R = 800e3; % Radar altitude (m)

V = 7100; % Effective radar velocity (m/s)

lambda = 0.057; % Radar wavelength (m)

L = 10; % Antenna length (m)

PRF = 1700; % Azimuth sampling rate/PRF (Hz)

beta = lambda/L; % Beamwidth

Ts = 1/PRF; % Sampling period

% Filter energy
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load(’E.mat’); % Constant equal to 4.8003e+05

% Point target

f = 1;

% Noise sd

sigma_n = 0.25;

% Coherence time

tau_c = 0.01;

% Raney parameters

a = 2*pi/(R*beta)^2;

b = 4*pi/(lambda*R);

c = a/2 + 1i*b/2;

% Time vector. Target enters beamwidth at t0 and is directly beneath the

% radar platform at t=0.

t0 = R*tan(beta)/V;

t = -t0:Ts:t0-Ts;

% Azimuth prefilter

w = exp(-c*(V*t).^2);

L_w = length(w);

% Convolve target function with azimuth prefilter

% Assume that the scene has zero reflectivity around f(t),

% so that the full convolution is kept.

fw = conv(f,w);

L_fw = length(fw);
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% Generate Gaussian noise with standard deviation sigma_n

n = sigma_n*(randn(1,L_fw) + 1i*randn(1,L_fw));

% Number of lags over which the target is coherent

numlags = tau_c/Ts;

% Phase error vector

theta = mycorrgn(L_fw, numlags);

alpha = exp(1i*pi*theta);

% Apply phase errors

fw = fw.*alpha;

% Matched filter

h = conj(w);

% Apply matched filter, throw away zero-padded parts

fwh = conv(fw + n, h,’same’);

% Magnitude squared

g = abs(fwh).^2;

% Normalize by the enregy of the filter

g = g/E;

% Output time vector

eta = -length(g)/2*Ts:Ts:(length(g)/2-1)*Ts;

% Plot output

figure(1)

plot(V*eta,g)



126 APPENDIX C. SOURCE CODE

ylim([0,1])

xlabel(’x’,’fontsize’,11)

ylabel(’g’,’fontsize’,11)

C.1.2 Quadratic filter demo with point target

clear all;

close all;

% Set seed

rng(5705)

% Filter energy

load(’E.mat’); % Constant equal to 4.8003e+05

% Radar parameters (Cumming & Wong, 2003, table 4.1)

R = 800e3; % Radar altitude (m)

V = 7100; % Effective radar velocity (m/s)

lambda = 0.057; % Radar wavelength (m)

L = 10; % Antenna length (m)

PRF = 1700; % Azimuth sampling rate/PRF (Hz)

beta = lambda/L; % Beamwidth

Ts = 1/PRF; % Sampling period

% Noise sd

sigma_n = 0.25;

% Coherence time

tau_c = 0.01;

% Raney parameters
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a = 2*pi/(R*beta)^2;

b = 4*pi/(lambda*R);

c = a/2 + 1i*b/2;

% Target

f = 1;

% Time vector. Target enters beamwidth at -t0 and is directly beneath the

% radar platform at t=0.

t0 = R*tan(beta)/V;

t = -t0:Ts:t0;

% Azimuth prefilter

w = exp(-c*(V*t).^2);

L_w = length(w);

% Convolve target function with azimuth prefilter

% Assume that the scene has zero reflectivity around f(t),

% so that the full convolution is kept.

fw = conv(f,w);

L_fw = length(fw);

% Generate Gaussian noise with standard deviation sigma_n

n = sigma_n*(randn(1,L_fw) + 1i*randn(1,L_fw));

% Number of lags over which the target is coherent

numlags = tau_c/Ts;

% Phase error vector

alpha = exp(1i*pi*mycorrgn(L_fw, numlags));
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% Apply phase errors

fw = fw.*alpha;

% Coherence parameters

B = 2/(tau_c/10*V)^2;

A = 0;

% Quadratic filter

x = V*t;

y = x;

[Y,X] = meshgrid(x,y);

Q = exp(-(Y-X).^2*A/2) .* exp(-X.^2*conj(c)) .* exp(-Y.^2*c);

N_Q = size(Q,1);

% Target image

W = transpose(fw+n)*conj(fw+n);

% Zero padding

n_pad = 2*size(W);

Q_pad = padarray(Q,n_pad-size(Q),’post’);

W_pad = padarray(W,n_pad-size(W),’post’);

% Convolution

G = fft2(Q_pad) .* fft2(W_pad);

G_inv = ifft2(G);

% Remove zero padding

G_inv_cropped = G_inv(1:L_fw + N_Q - 1, 1:L_fw + N_Q - 1);

G_inv_cropped_diag = transpose(diag(G_inv_cropped));

g_full = real(G_inv_cropped_diag)/E;
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% Crop output vector

if mod(L_fw,2) == 0

g = g_full((L_fw)/2:length(g_full)-(L_fw)/2);

else

g = g_full((L_fw-1)/2:length(g_full)-(L_fw-1)/2-1);

end

% Time vector

eta = -length(g)/2*Ts:Ts:(length(g)/2-1)*Ts;

% Plot output

figure(2)

plot(V*eta,g)

ylim([0,1])

xlabel(’x’,’fontsize’,11)

ylabel(’g’,’fontsize’,11)

C.1.3 Quadratic filter demo with distributed scene

clear all;

close all;

% Set seed

rng(5705);

% Filter energy

load(’E.mat’); % Constant equal to 4.8003e+05

% Radar parameters (Cumming & Wong, 2003, table 4.1)

R = 800e3; % Radar altitude (m)

V = 7100; % Effective radar velocity (m/s)
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lambda = 0.057; % Radar wavelength (m)

L = 10; % Antenna length (m)

PRF = 1700; % Azimuth sampling rate/PRF (Hz)

beta = lambda/L; % Beamwidth

Ts = 1/PRF; % Sampling period

% Raney parameters

a = 2*pi/(R*beta)^2;

b = 4*pi/(lambda*R);

c = a/2 + 1i*b/2;

% Generate scene

SL = 500;

tpos = 100;

Pr = 10;

numlags1 = 50;

numlags2 = 100;

numlags3 = 1000;

[f,fw] = generate_scene(SL, tpos, Pr, numlags1, numlags2, numlags3);

L_fw = length(fw);

L_f = length(f);

sigma_n = 0.25*Pr;

% Time vector. Target enters beamwidth at -t0 and is directly beneath the

% radar platform at t=0.

t0 = R*tan(beta)/V;

t = -t0:Ts:t0;

% Linear filter
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w = exp(-c*(V*t).^2);

h = conj(w);

L_w = length(w);

% Generate Gaussian noise with standard deviation sigma_n

n = sigma_n*(randn(1,L_fw) + 1i*randn(1,L_fw));

% Linear filter

g1 = abs(conv(h,fw+n,’same’)).^2/E;

% Quadratic filter

A = 2/(numlags2/10*Ts*V)^2;

B = 2/(numlags3/10*Ts*V)^2;

x = V*t;

[Y,X] = meshgrid(x,x);

Q = (exp(-(Y-X).^2*B/2) - exp(-(Y-X).^2*A/2)) .* ...

exp(-X.^2*conj(c)) .* exp(-Y.^2*c);

N_Q = size(Q,1);

% Target image

W = transpose(fw+n)*conj(fw+n);

% Zero padding

n_pad = 2*size(W);

Q_pad = padarray(Q,n_pad-size(Q),’post’);

W_pad = padarray(W,n_pad-size(W),’post’);

% Convolution

G = fft2(Q_pad) .* fft2(W_pad);

G_inv = ifft2(G);
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% Remove zero padding

G_inv_cropped = G_inv(1:L_fw + N_Q - 1, 1:L_fw + N_Q - 1);

G_inv_cropped_diag = transpose(diag(G_inv_cropped));

g2_full = real(G_inv_cropped_diag)/E;

% Crop vectors

if mod(L_fw,2) ~= 0

g2 = g2_full((L_fw-1)/2:length(g2_full)-(L_fw-1)/2-1);

f_cropped = f((L_fw-1)/2:length(g2_full)-(L_fw-1)/2-1);

else

g2 = g2_full((L_fw)/2:length(g2_full)-(L_fw)/2);

f_cropped = f((L_fw)/2:length(g2_full)-(L_fw)/2);

end

% Time vector

eta = -length(g1)/2*Ts:Ts:(length(g1)/2-1)*Ts;

ylimits = [-3,10];

% n-point sliding averaging filter

nfilt = 10;

% Plot output

figure(3)

subplot(4,1,1)

plot(V*eta,f_cropped)

title(’Ground truth’,’fontsize’,11)

ylabel(’g’)

ylim(ylimits)

subplot(4,1,2)

plot(V*eta,g1)
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title(’1D matched filter’,’fontsize’,11)

ylabel(’g’)

ylim(ylimits)

subplot(4,1,3)

plot(V*eta,conv(g1,ones(1,nfilt)/nfilt,’same’))

title(’1D matched filter with 10 point running average filter’,’fontsize’,11)

ylabel(’g’)

ylim(ylimits)

subplot(4,1,4)

plot(V*eta,g2)

title(’Optimal partially coherent quadratic filter’,’fontsize’,11)

ylabel(’g’)

ylim(ylimits)

xlabel(’x’)

C.2 Functions

C.2.1 mycorrgn

function [r] = mycorrgn(L, tau)

%MYCORRGN Generate correlated Gaussian random vector

% Creates a Gaussian random vector with a given coherence time

%

% See https://www.cmu.edu/biolphys/deserno/pdf/corr_gaussian_random.pdf

% for details.

%

% L: Length of output vector

% tau: Number of lags over which the output vector is coherent

g = randn(1,L);

r = zeros(1,L);
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f = exp(-1/tau);

r(1) = g(1);

for n=1:L-1

r(n+1) = f*r(n) + sqrt(1-f^2)*g(n+1);

end

end

C.2.2 generate scene

function [f,fw] = generate_scene(SL,tpos,Pr,numlags1,numlags2,numlags3)

%GENERATE_SCENE Generate a simulated SAR scene

% Creates a simulated range gate with targets and background,

% both of which have a given coherence time.

% A spatial coherence is also applied.

%

% SL: number of elements in scene vector

% tpos: target positions

% Pr: target power

% numlags1: number of spatial lags over which the background is

% coherent

% numlags2: number of temporal lags over which the background is

% coherent

% numlags3: number of temporal lags over which the target is coherent

% Radar parameters (Cumming & Wong, 2003, table 4.1)

R = 800e3; % Radar altitude (m)

V = 7100; % Effective radar velocity (m/s)

lambda = 0.057; % Radar wavelength (m)
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L = 10; % Antenna length (m)

PRF = 1700; % Azimuth sampling rate/PRF (Hz)

beta = lambda/L; % Beamwidth

Ts = 1/PRF; % Sampling period

% Raney parameters

a = 2*pi/(R*beta)^2;

b = 4*pi/(lambda*R);

c = a/2 + 1i*b/2;

% Time vector. Target enters beamwidth at -t0 and is directly beneath the

% radar platform at t=0.

t0 = R*tan(beta)/V;

t = -t0:Ts:t0;

L_t = length(t);

% Azimuth prefilter

w = exp(-c*(V*t).^2);

% Generate target vector

f = mycorrgn(SL,numlags1);

tpos = SL/2 + tpos;

% Target positions

for i=1:length(tpos)

f(tpos(i)) = Pr;

end

% Zero padding

f = padarray(f,[0,L_t-1],’both’);
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% Preallocation

L_fw = SL + L_t - 1;

fw = zeros(1,L_fw);

theta = zeros(L_fw,SL);

% Correlation matrix

for j=1:SL % Background

theta(:,j) = mycorrgn(L_fw,numlags2);

end

for i=1:length(tpos) % Targets

theta(:,tpos(i)) = mycorrgn(L_fw,numlags3);

end

% zero padding

theta = padarray(theta,[0,L_t-1],’both’);

% Convolution

for i=1:L_fw

f_sub = f(i:i+L_t-1);

theta_sub = theta(i,i:i+L_t-1);

fw(i) = sum(fliplr(w).*f_sub.*exp(1i*pi*theta_sub));

end

end


