
INF-3981

MASTER’S THESIS IN COMPUTER SCIENCE

A Prototype for Continuation-Passing Orchestration

of Composite Web Services

Kent Ove Josefsen

December 15th, 2007

FACULTY OF SCIENCE
Department of Computer Science

University of Tromsø

INF-3981

MASTER’S THESIS IN

COMPUTER SCIENCE

A Prototype for Continuation-Passing Orchestration

of Composite Web Services

Kent Ove Josefsen

December 15th, 2007

Abstract

Web services enable businesses to deliver services via the Web. In addition, Web services
can be used to improve business efficiency, because Web services can often replace manual
activities in a business process. A Web service can be composed of other simpler Web
services using the abstraction traditionally known as workflows. The process of
controlling the correct and reliable execution of a workflow is known as workflow
enactment, but it can also be referred to as Web services orchestration.

A centralized approach to Web services orchestration is not an optimal solution, when
considering the decentralized nature of Web services and the Internet. The problem is
that a centralized workflow engine can easily become a communication and processing
bottleneck as well as a central point of failure. Therefore, a decentralized approach to
Web services orchestration is needed in order to overcome these obstacles. However, some
decentralized approaches require static analysis of workflow specifications, which implies
that resources must be allocated prior to the workflow execution. As a result, resources
are wasted.

In this thesis a prototype is developed to demonstrate a decentralized Web services
orchestration based on continuation-passing enactment of distributed workflows. This
decentralized approach does not require any pre-allocation of resources, nor is it subject
to the limitations of a centralized approach. The continuation-passing mechanism
involves continuations, or the reminder of the executions, which are passed along
asynchronous messages for workflow enactment.

Acknowledgements

I would like to thank my supervisor Weihai Yu at the University in Tromsø, who helped
me find the topic for this thesis and who gave me assistance.

I would also like to thank the Apache community for providing the necessary tools which
made it possible to realize the prototype.

Finally, I would like to thank my family and friends for their moral support.

Contents

Page
Table of Contents . ix
List of Figures . xi
List of Tables . xiii
Chapter
1 Introduction . 1
2 Background . 5

2.1 XML . 5
2.1.1 Definition . 5
2.1.2 Document . 5
2.1.3 Schema . 6
2.1.4 Parser . 6
2.1.5 Document Object Model (DOM) 6

2.2 Web service . 7
2.2.1 Definition . 7
2.2.2 Standards . 7
2.2.3 Composition . 8
2.2.4 Orchestration . 8

2.3 Workflow . 9
2.3.1 Related concepts . 9
2.3.2 Definition . 10
2.3.3 Specification . 10
2.3.4 Workflow engine . 13
2.3.5 Workflow execution . 13
2.3.6 Workflow enactment . 14
2.3.7 Relationships between terms . 14

2.4 Workflow enactment services . 14
2.4.1 Definition . 14
2.4.2 Centralized . 15
2.4.3 Traditional decentralized . 15
2.4.4 Continuation-passing . 16

2.5 CEKK . 17
2.5.1 A workflow model . 17
2.5.2 Definition . 19
2.5.3 Transition rules . 19

3 Requirements . 23
3.1 Goal . 23
3.2 Functional and data requirements . 23

3.2.1 Functional requirements . 23
3.2.2 Data requirements . 25

ix

4 Design . 27
4.1 Components . 27

4.1.1 Web application . 28
4.1.2 Workflow enactment service . 29
4.1.3 Service providers . 30

5 Implementation . 33
5.1 Application scenario . 33

5.1.1 Actors . 33
5.1.2 Use cases for booking a trip . 34

5.2 Travel agency . 35
5.2.1 User interface . 35
5.2.2 Application logic . 36
5.2.3 Resource access . 37
5.2.4 Service interface . 37

5.3 Software agents . 37
5.3.1 Abstract workflow patterns . 37
5.3.2 Realization of abstract workflow patterns 39
5.3.3 CEKK transition rules . 43

5.4 Service providers . 44
5.5 Development tools . 44

5.5.1 Java Development Kit (JDK) . 44
5.5.2 Eclipse Sofware Development Kit (Eclipse SDK) 44
5.5.3 Apache Tomcat . 44
5.5.4 Apache Ant . 45
5.5.5 Apahe Velocity . 45
5.5.6 Apache Axis2 . 45
5.5.7 Apache TCPMon . 45

5.6 Deployment . 45
5.6.1 Travel agency . 45
5.6.2 Software agents . 46
5.6.3 Service providers . 46

6 Testing . 47
6.1 Configuration . 47
6.2 Running a real test . 48

6.2.1 A successful reservation . 49
6.2.2 A failed reservation . 50

6.3 Evaluation . 51
7 Conclusion . 53
References . 55
Appendices . 56
A XML schema for workflow specification . 57
B A sample workflow specification . 59
C An extended version of the sample workflow specification 61
D A list of flight service method invocations . 63

x

List of Figures

2.1 An example of a process . 9
2.2 An example of a business process . 10
2.3 The relationship between a task, a work item and an activity 11
2.4 A workflow specification that models an insurance claim 12
2.5 The general interactions of a workflow engine 14
2.6 An example of centralized enactment . 15
2.7 An example of traditional decentralized enactment 16
2.8 An example of continuation-passing enactment 17
2.9 A tree structure of the flow specification1 18

3.1 Workflow execution . 25

4.1 A view of the prototype components . 27
4.2 The architecture of a Web application . 28
4.3 The architecture of a workflow engine . 30
4.4 The architecture of a service provider . 30

5.1 The booking of a trip by means of a UML use case diagram 34
5.2 Travel agency component . 35
5.3 User interface components . 35
5.4 A flow diagram showing the creation of a workflow specification 36
5.5 Software agent component . 37
5.6 The internal architecture of a software agent 38
5.7 A tree structure representing a workflow specification 39
5.8 Agents running workflow pattern 4 . 40
5.9 Agents running the workflow specification in Appendix B 42
5.10 Service provider component . 44

6.1 Test configuration . 47
6.2 A reservation form . 49
6.3 A successful reservation . 49
6.4 Available flight seats . 50
6.5 A failed reservation . 50

xi

xii

List of Tables

2.1 UML symbols and node types . 13
2.2 Relationships between various terms . 14

5.1 XML schema elements and node types . 43

xiii

xiv

Chapter 1

Introduction

As businesses evolve, so does business software. Or, to put it another way, business soft-
ware helps businesses to evolve. However, business software relies heavily on information
technology (IT). This often leads to problems when businesses need to integrate their ap-
plications, because the IT systems they use are often heterogeneous. The motivation for
integrating business software is often to improve business efficiency.

Java [16] can be used as an enterprise development platform, where an enterprise cor-
responds to a large business, in order to remove some of the issues with heterogeneous
hardware. This is mainly because Java byte code will run anywhere the Java Virtual Ma-
chine (JVM) runs. The version of Java suitable for enterprises is called Java 2 Platform,
Enterprise Edition (J2EE). However, an alternative to J2EE exists from Microsoft which
is called .NET, but .NET applications can not run on a platform from a vendor other than
Microsoft. Therefore, it can be said that J2EE portability is good, while .NET portability
is limited. However, interoperability is in some cases more important than portability. In-
teroperability between J2EE applications and .NET applications can be achieved through
Enterprise Application Integration (EAI).

One approach to EAI is to use Message-Oriented Middleware (MOM), where the so-
lutions are based on message brokers. The downside of using this approach is that MOM
only works best inside of a firewall [21], and it also requires the investment in expensive
software licenses [6]. In addition, message brokers requires adapters which adds more to
the cost.

Another approach to EAI is to use Web services technology [19]. In this thesis, a Web
service will correspond to a service that is described via Web Service Description Language
(WSDL) and that is capable of being accessed via standard network protocols, such as
SOAP over HyperText Transport Protocol (HTTP). Because a Web service is transport
neutral, it has actually nothing to do with the Web. The benefit of using HTTP to trans-
port SOAP messages is that it allows Web services to be accessed behind a firewall, thus
taking better advantage of the Wide Area Network (WAN) called the Internet. A SOAP
message contains an eXtensible Markup Language (XML) document [18], where XML is
used to describe the data to be exchanged. The Web services specifications are based on
open standards, which makes it cheap for small or medium enterprises to implement them.

Although Web services can be used for EAI which enables business-to-business (B2B)
interaction, there are some cases in which business software can not perform every task
which is needed in order to achieve a business goal. Some tasks may still be performed
by humans, despite the fact that the Web services technology enables interactions between
business applications without humans getting in the way. The set of tasks which enables a

1

business to achieve a business goal is called a business process.

In this thesis the term workflow will be used to represent the automation of a business
process, in whole or part. A prototype will be developed that demonstrates the execution of
a workflow, where the activities in the workflow are Web service invocations. Web services
will be provided by different service providers. The workflow will consist of a set of activities
which can by performed in sequence or in parallel.

Workflow enactment is the process of controlling the correct and reliable execution of
activities by different processing entities [24]. A workflow enactment service is the core of
a workflow management system (WfMS), because it handles the workflow execution. This
enables flow independence, which means that the flow of activities in the workflow can
be modified without changing the implementation of Web services. On the other hand,
the implementation of Web services can be changed without having to modify the flow of
activities in the workflow.

The benefit of using Web services to perform activities in a workflow is that the Web ser-
vices technology is a standards-based realization of an service-oriented architecture (SOA)
[19]. SOA aims at removing redundancy via reuse of services, which implies that Web
services can be shared among different types of workflows. According to [12], there are two
types of Web services:

• Composite: A composite Web service combines the functionality from other Web
services.

• Basic: A basic Web service only accesses the local system.

A workflow enactment service can contain one or more workflow engines. A centralized
approach to workflow execution, means that only one workflow engine, which is located
on a single server, is responsible for doing workflow enactment. Web services technology
enables workflows to span a great variety of resources. However, as workflows become more
complex, there is a greater pressure on workflow enactment services to deliver an acceptable
level of performance. This is especially true for a centralized workflow enactment service.
A centralized approach to control the execution of a workflow is not an optimal solution,
when considering the decentralized nature of Web services and the Internet. The problem
is that a centralized workflow engine can easily become a communication and processing
bottleneck [24]. A centralized workflow enactment service can also become a central point
of failure [24].

One way of solving the issues associated with a centralized workflow enactment service
has been to distribute parts of the workflow among several workflow engines [24]. This so-
lution is also known as a decentralized approach to workflow enactment. A workflow engine
that is able to communicate with other workflow engines will be referred to as an agent.
This is because an agent can act as both a client and a server. However, the traditional
approach to decentralized enactment of distributed workflows has been to pre-allocate re-
sources prior to the workflow execution [24]. As a result, some resources are occupied when

2

they are not actually being used. Therefore, this approach wastes resources, which is a
downside, because the wasted resources could potentially have been used for other pur-
poses.

The motivation for this thesis is to develop a prototype that demonstrates a decen-
tralized approach to workflow enactment, where solutions to the issues associated with a
centralized workflow enactment service and a traditional decentralized workflow enactment
service will be tested and evaluated. More specifically, the decentralized approach will be
based on a continuation-passing enactment style, where a continuation represents the rest
of an execution during a workflow execution [24].

According to [24], some of the advantages of using a decentralized workflow enactment
service, which is based on a continuation-passing mechanism, can be described as follows:

• Scalability: Scalability is the ability to execute a growing number of concurrent
workflows, or instances of the same workflows, simultaneously. Processing bottle-
necks can be avoided by adding more agents in the workflow enactment service, to
accomodate growth with capacity.

• Adaptability: Adaptability is the ability to change, or be changed, to fit changed
circumstances. There is no need for static analysis of the workflow prior to the
workflow execution, because agents are able to adopt to changes by changing the way
they enact a workflow at run-time. A centralized worklfow enactment service is also
adaptable, because it analyzes the workflow dynamically at run-time. A traditional
decentralized workflow enactment service is not adaptable, because it does a static
analysis of the workflow prior to the workflow execution.

• Robustness: Robustness has to do with automatic recovery of partial failures.
Therefore, no central point of failure exists. This means that if one agent for some
reason is unable to execute a workflow, then the workflow execution can be assigned
to another agent at run-time. In addition, availability can be increased by adding
more agents in order to minimize the effects of partial failures.

The prototype will be developed in a top-down manner. This implies that the function-
ality of the prototype will be defined first. A business scenario will be chosen as a basis for
the creation of meaningful workflows, because meaningful workflows will make it easier to
demostrate how a continuation-passing enactment style works in practice. A meaningful
piece of functionality can be specified as a use case, where a use case is a Unified Modeling
Language (UML) notation [14]. The rest of this thesis is organized as follows:

• Chapter 2: Chapter 2 explains the concepts which are relevant for this thesis.

• Chapter 3: Chapter 3 specifies the goal for this thesis, and it describes the minimum
requirements for the prototype.

• Chapter 4: Chapter 4 explores different design artifacts which are based on the
requirements.

3

• Chapter 5: Chapter 5 describes in detail how to realize the design artifacts based
on a specific application scenario.

• Chapter 6: Chapter 6 describes how the prototype was tested. An evaluation is
given based on the results from the tests of the prototype.

• Chapter 7: Chapter 7 discusses what has been learned during the development
process, and it suggests further improvements to the prototype.

4

Chapter 2

Background

This chapter presents some relevant background information.

2.1 XML

2.1.1 Definition

According to [18], the Extensible Markup Language (XML) can be defined as:

a metamarkup language for text documents that allows developers and writers
to invent the elements they need as they need them, where an element is XML’s
basic unit of data and markup.

This definition defines XML as a highly flexible format for data. The first version of
XML came in 1998 and was called XML 1.0 [18]. It was based on Unicode 2.0, but it soon
became outdated as Unicode evolved. Therefore, an updated version of XML called XML
1.1 was released in 2004 [18]. In addition, the strength of using XML is described by [18]
in the following statement:

XML and Unicode guarantee that your data files will be portable across virtu-
ally every popular computer architecture and language combination in use today
(2004).

This statement states that XML is language and platform independent [18].

2.1.2 Document

XML documents are text documents, which are composed of characters. If an XML doc-
ument is to take advantage of the features of XML 1.1, then it has to start with the tag
〈?xml version = ”1.1”?〉. XML 1.1 defines how an XML document should look like, what
elements are legal, etc. In short, an XML document should only have one root element,
because it usually represents the document itself. The root element can contain any num-
ber of elements. An element can include attributes which can be used to describe the data
it contains.

5

2.1.3 Schema

An XML schema makes it possible to define a specific type of XML document. It allows
for the creation of simple and complex types. Any XML document that does not follow
the rules of the XML schema is not accepted as a well-formed XML document. One rule
may be that the data contained in an element is of a specific type. For example, a string of
letters is not accepted if a numeric type was expected. The XML document should always
include information on where to locate an XML schema if it uses one.

2.1.4 Parser

XML parsers read the data contained in an XML document, and is usually done by following
some rules defined in an XML schema. XML parser are required to support either UTF-8
or UTF-16 as input encoding formats [18], which are Unicode formats. According to [18],
the application that receives data from the parser may be:

• A web browser: A Web browser that displays the document to a reader.

• A word processor: A word processor that loads the XML document for editing.

• A database: A database that loads the XML data in a new record.

• A program written in Java: A program written in Java that converts the XML
data into a manageable representation.

2.1.5 Document Object Model (DOM)

The World Wide Web Consortium (W3C) [13] defines DOM as:

a platform- and language-neutral interface that will allow programs and scripts
to dynamically access and update the content, structure and style of documents.

According to [13], a DOM implementation is:

that piece of software which takes the parsed XML or HTML document and
makes it available for processing via the DOM interfaces.

However, most DOM implementations provide a simple parsing interface that accepts
a reference to an XML document file, or stream [18].

Problem The downside of using DOM is that the entire document must be read and
parsed, by a DOM parser, before it is available to a DOM application [18]. This implies
that the entire document must be stored in memory before it can be manipulated, which
can be a big disadvantage if the document is large.

6

2.2 Web service

In order to understand the Web services technology, it is important to have a basic knowl-
edge of XML. In addition, it is important to know the benefits of XML, because XML
forms the basis for making Web services language and platform independent.

2.2.1 Definition

According to [3], a Web service can be defined as:

a piece of business logic, located somewhere on the Internet, that is accessible
through standard-based Internet protocols such as HTTP or SMTP.

This is a fairly simple definition, but there exist other definitions of Web services which
are longer and more specific [12]. The key to the success of the Web services technology is
XML, because it provides a standard way to define the syntax of exchanged documents.

2.2.2 Standards

The Web services technology includes three open standards named SOAP, WSDL and
UDDI, which will be described separately. In order for a Web service to be accessible, it
should at least be based on the two standards named SOAP and WSDL.

SOAP

SOAP was originally an acronym for Simple Object Access Protocol, but the acronym ex-
pansion is no longer used [2]. SOAP itself is really just a thin wrapper around an XML
application payload [5], and it can be transported across the network using HTTP, FTP
and SMTP protocols. This means that SOAP is a quite flexible messaging service. Many
programming languages has a built-in support for this protocol. A client, written in one
programming language, can send SOAP messages to a server, written in another program-
ming language. Services provided by a server through a SOAP interface are traditionally
called Web services. The SOAP message consists of an envelope that contains a header and
a body. The header element consists of header blocks that contains optional or mandatory
information about how to process and route the SOAP message. The body element is
always mandatory and contains the message content intended for the final receiver. SOAP
can be used as a client-server model for making RPC method invocations, but messages
can also be sent only in one direction to a receiver [19].

WSDL

WSDL stands for Web Service Description Language [19], and describes where and how
to access a Web Service. It describes which messages go in and come out from a Web
Service, and also its operations, in an abstract way. WSDL 1.1 has been standardized in
2001 by W3C as a protocol that logically describes the functionality of a Web Service and
is constructed using the XML format. WSDL includes a support to describe Web Services

7

that are constructed using a RPC style approach and Web Services that are constructed
using a message style approach. WSDL tells a client what the Web Service does, how
to use it and where it is offered. Some basic set of tags has to be present in a WSDL
document so that a WSDL parser understands how to parse the document. A WSDL file
starts by specifying the XML version and encoding style. The WSDL document starts with
a definitions tag that contains all the other definitions under a single namespace. Some of
the other mandatory tags are described here:

• Message: This tag describes messages, that go in and come out from a Web service,
in an abstract way.

• PortType: This tag describes a set of operations, supported by a Web service, in
an abstract way.

• Operation: This tag describes a single operation.

• Binding: This tag is a concrete protocol describing a particular portType, and may
be used to specify a RPC style messaging approach using SOAP.

• Port: This tag must be defined to specify an address to a Web service and associate
it with a binding tag.

• Service: This tag is a collection of port tags that can be used to specify multiple
Web service addresses.

• Documentation: This tag can be used to write human readable words to describe
how the Web service works.

UDDI

UDDI stands for Universal Description, Discovery and Integration [19] and is a registry of
Web services. Categories separate Web services and it is possible to search for a specific
Web service using the UDDI registry.

2.2.3 Composition

A composite Web service invokes one or more other Web services and combines their func-
tionality. In contrast, a Web service that does not invoke other Web services is called a
basic Web service. The process of developing a composite Web service is referred to as a
Web service composition [12], but the details on how this is done is usually kept private,
for example within a company.

2.2.4 Orchestration

A Web service composition may require that Web services invocations need to be coor-
dinated. This is accomplished via Web service orchestration, which controls the order in
which different Web services are invoked [12]. In addition, it controls the conditions under

8

which Web services should or should not be invoked [12]. An orchestrated Web service
invokes one or more other Web services from potentially multiple service providers in a
coordinated fashion [1]. A Web service orchestration can be modelled using Petri nets
[22] or a variety of UML activity diagrams [14]. These models can be used to analyze the
orchestration.

2.3 Workflow

2.3.1 Related concepts

Processes

A process in the real world consists of a number of tasks to be to be executed, where a set
of conditions determine the execution order [22]. A task is a logical unit of work. According
to [22], a task can belong to each of the three categories:

• Manual: A task is performed by a person, without any intervention by an applica-
tion.

• Automatic: A task is performed by an application, without any human intervention.

• Semi-automatic: A task involves the use of an interactive application, where the
latter means that a person can interact with an application.

A generic name for person, application or a group of persons or applications is often
referred to as a resource [22].

A directed graph can be used to visualize the flow of activities in a process, where an
activity represents the performance of a task by a resource. For example, figure 2.1 shows
a directed graph that illustrates the flow of five activities called A, B, C, D and E. The
graph used in figure 2.1 gives a high-level view of the ordering of the steps within the process.

Figure 2.1: An example of a process

Some activities in figure 2.1 are dependent on the completion of other activities. For
example, the arc from A to B illustrates that A is dependent of the completion of B.

9

Figure 2.1 also shows that C and D can be processed in parallel. Finally, E depends on
the completion of both C and D.

Business processes If a process intends to achieve a business objective, then it can be
referred to as a business process. Traditionally, business processes only involved manual
activities, but the invention of information technology has made it possible to automate
some of the activities.

The example in figure 2.2 illustrates how to handle an insurance claim, and it is a mod-
ification of the example used in figure 2.1. The only difference is that the activities, called
A, B, C, D and E, are given meaningful names in order to get a better understanding on
how to achieve the business objective.

Figure 2.2: An example of a business process

The first activity Fetch means to fetch a new insurance claim. The next activity Evalu-
ate means to evaluate the claim. The two activities Pay and Send means to pay money to
the customer and to send documents to the customer respectively. The last activity Store
means to store the results into a persistent storage.

2.3.2 Definition

The Workflow Management Coalition (WFMC) [4] defines a workflow as:

the computerized facilitation or automation of a business process, in whole or
part.

A distributed workflow is executed by multiple processing entities, where each processing
entity only executes a portion of the workflow.

2.3.3 Specification

A workflow specification is a formal, executable description of a workflow [12], and it can
be visualized using graphical notations. The purpose of the workflow specification is to

10

automate the steps of a business process. A workflow specification can be expressed in
Web Services Business Process Execution Language (WS-BPEL) [17]. A WS-BPEL speci-
fication can be modelled using Petri nets [22] or a variation of UML activity diagrams [14].
These models can be used to analyze a workflow by observing the order in which activities
are executed, and under which conditions activities are executed.

It is important to understand the term case, when dealing with a workflow specification.
A case can be described by using the example in figure 2.2, because it begins at the start
of the first activity and ends after the completion of the last activity. A case can have
different states during its lifetime. According to [22], the state of a case consists of three
elements:

1. The values of the relevant case attributes.

2. The conditions that have been fulfilled.

3. The content of the case.

The term work item is also important to understand, when dealing with a workflow
specification. It can be regarded as the combination of a case and a task which is just
about to be carried out [22].

The relationship between a task, a work item and an activity is illustrated in figure 2.3.
An arc from the task to the work item only means that a task becomes an work item, but
only if the state of the case allows it. The latter is illustrated by an arc from the case to
the work item. An arc from the work item to the activity means that the activity is the
performance of the work item.

Figure 2.3: The relationship between a task, a work item and an activity

The examples in figure 2.1 and figure 2.2 only involve sequential and parallel flows,
and all the nodes are of the same type. However, there are situations where a condition
in a process allows the creation of an alternative flow. Therefore, in order to visualize a
workflow specification using a directed graph, it is important to represent different types
of nodes using separate notations. According to [12], there are three types of nodes:

11

• Work node: Work nodes represent work items to be performed by a resource.

• Routing node: Routing nodes define the order in which work items should be
executed, and allow the definition of parallel and conditional activation of work nodes.

• Start and completion nodes: Start and completion nodes denote the starting and
ending points of the workflow.

These types of nodes can be represented graphically is by using a variation of UML
diagrams, but they can also be represented by using variations of Petri nets.

The example in figure 2.2 is extended, in figure 2.4, to include alternative flows in or-
der to demonstrate the use of different types of nodes in a variation of the UML activity
diagram [14]. Some of the notations, in figure 2.4, have been inspired by [12].

Figure 2.4: A workflow specification that models an insurance claim

Table 2.1 associates the different UML symbols with their respective node types.

12

Symbol Name Node Type

Rounded box Work node

Diamond Routing node

Horizontal bar Routing node

Filled circle Start and completion node

Table 2.1: UML symbols and node types

The graphics next to the work nodes indicates what type of resource should perform
the work item. An example of a resource can be a database, a human or an application. A
set of variables are used to exchange data among work nodes, and they can also be used
for routing purposes.

The example in figure 2.4 shows that an insurance claim can be rejected. If this happens,
then the customer will not receive any payments. Instead, the customer will be notified
via email with a description of what went wrong. The decision to reject or to approve an
insurance claim is made by a human during evaluation, because this is indicated by the
graphics next to the work node.

2.3.4 Workflow engine

A workflow engine executes workflow instances, where a workflow instance is an execution
of the workflow [12].

2.3.5 Workflow execution

An general insight into the interactions of a workflow engine is given in figure 2.5.

The steps in figure 2.5 will be discussed briefly. Before the workflow engine can begin
to work, it has to retrieve a workflow specification from a repository, as shown in step two.
The workflow specification contains work nodes, routing nodes and start and completion
nodes. The workflow engine knowns what type of node it is handling at any point of the
workflow execution. If a node is a work node, then the workflow engine usually contacts a
message broker, as shown in step three. The message broker selects a resource that belongs
to the work item, and forwards this information to the workflow engine, as shown in step
four. When the workflow engine knows which resources to use, it places the work to be
done in the work queue of the selected resource, as shown in step five. The resource then
pulls work, which could be a query to a database, from the work queue. Another form of
interaction in step five is for the workflow engine to push work to the resource, meaning
that the workflow engine invokes a method of the resource API. Step one illustrates that
the workflow engine checks for the results of completed work items, before it executes the
next node in the workflow specification.

13

Figure 2.5: The general interactions of a workflow engine

2.3.6 Workflow enactment

Workflow enactment is defined as the process of controlling the correct and reliable execu-
tion of activities by different processing entities [24].

2.3.7 Relationships between terms

Table 2.2 shows the relationships between various terms which have been explained earlier.

Basic Web service Task / activity

Composite Web service Workflow / business process

Web service orchestration Workflow enactment / execution

Table 2.2: Relationships between various terms

2.4 Workflow enactment services

2.4.1 Definition

A workflow enactment service can consist of one workflow engine, but it can also consist of
multiple workflow engines. The former can be referred to as a centralized workflow engine,
while the latter can be referred to as a decentralized workflow engine.

14

2.4.2 Centralized

A centralized workflow engine is located on a single server, and it is responsible for control-
ling all the activities in a workflow. One example that shows an execution of a workflow
is illustrated in figure 2.6, where a centralized workflow engine executes a workflow speci-
fication that contains a sequence of three work items named A, B and C. The sequence is
defined as seq(A, B, C).

Figure 2.6: An example of centralized enactment

Figure 2.6 shows that the work items A, B, C are executed by resources located at the
sites a, b and c, respectively. The arc from the workflow engine to a resource corresponds
to step five in figure 2.5, and it illustrates a work item being sent from the workflow engine
to a resource. If the resource has finished executing a work item, then it sends the results
back to the workflow engine. Step one, two and three in figure 2.6 illustrates a synchronous
form of interaction. For example, the workflow engine waits for the results from a, before
it sends B to b.

Problem A problem is that centralized workflow engines can easily become a communi-
cation and processing bottleneck, and they can also become a central point of failure [24].
In addition, the centralized workflow engines are typically heavyweight. Therefore, the cost
of deploying one is usually to high for a large number of small businesses [24].

2.4.3 Traditional decentralized

A traditional approach to decentralized workflow enactment requires pre-allocation of re-
sources. In other words, the process is instantiated prior to its execution [24]. This explains
why global coordination is needed. In addition, some pre-allocated resources can remain
unused after the workflow execution has completed [24].

An example of a traditional decentralized enactment is shown in figure 2.7. The work-
flow specification that was illustrated in figure 2.6 will be used here too. The work items A,

15

Figure 2.7: An example of traditional decentralized enactment

B and C, from the workflow specification, are executed at the sites a, b and c, respectively.
Figure 2.7 shows that there are three workflow engines, located at sites w1, w2 and w3,
which are executing parts of the workflow specification. The arc from a workflow engines
to a resource corresponds to step five in figure 2.5, and it illustrates a work item being sent
from the workflow engine to a resource. In step one, one dedicated workflow engine, at
site w1, is in charge of using the resource located at site a. In step two, another workflow
engine, located at site w2, uses the resource located at site b. In step three, a third workflow
engine, located at site w3, uses the resource located at site c.

All the resources which are needed during the workflow execution remain allocated in
step one, two and three. The allocated resources are colored in blue.

Problem This form of enactment waste unused resources, which otherwise could have
been used for other purposes. It is therefore an inefficient form of decentralized enactment.
In addition, this form of enactment is not adaptable at run-ime.

2.4.4 Continuation-passing

Continuation-passing enactment is a decentralized approach to workflow enactment. A
continuation, which represents the rest of an execution at a certain point of the execution,
is passed from one agent to another using asynchronous messaging [24]. This approach
does not need global coordination.

An example of a continuation-passing enactment is shown in figure 2.8. The workflow
specification that was illustrated in figure 2.6 will be used here too. The work items A, B
and C, from the workflow specification, are executed at the sites a, b and c, respectively.
Figure 2.7 shows that there are three workflow engines, located at sites w1, w2 and w3,
which are executing parts of the workflow specification. The arc from a workflow engines
to a resource corresponds to step five in figure 2.5, and it illustrates a work item being sent

16

Figure 2.8: An example of continuation-passing enactment

from the workflow engine to a resource. However, all the resources are not pre-allocated
prior to the workflow execution. In step one, a workflow engine located at site w1 receives
the whole workflow specification and uses the resource located at site a to execute the work
item A. The continuation is the passed on to the next workflow engine located at site w2.
In step two, the workflow engine located at site w2 uses the resource located at site b to
execute the work item B. Next, the continuation is passon on to the third workflow engine
located at site w3. In step three, the workflow engine located at site w3 uses the resource
located at site c to execute the last work item C. The overall picture is that once a workflow
engine has finished its work, then the continuation is passed on to the next workflow engine.

The benefit of using the continuation-passing mechanism is that no resources are pre-
allocated. Only the resources which are actually needed are allocated in each step of the
workflow execution. The allocated resources are colored in blue.

2.5 CEKK

2.5.1 A workflow model

The key abstraction in the workflow model is the term flow. The term flow corresponds to
a workflow [24]. According to [24], a flow can be defined recursively as follows:

Flow ::== Empty Flow | Activity | Blackbox Flow
| seq(Flow*) | fork(join-agent, Flow*) | or(Flow*)
| if(Condition, Flow, Flow) | loop(Condition, Flow*)

As the definition shows, and according to [24], the flow includes three primitive flows
as follows:

• Empty Flow: Empty Flow can be used to indicate the completion ot the execution
of a flow.

17

• Activity: Activity is an activity that includes: an agent that is in charge of its exe-
cution, the program to be executed, a compensation program, the input and output
data, etc.

• Blackbox Flow: Blackbox Flow is a flow whose internal structure is only known by
its own agent, and it can be managed by a central workflow engine.

According to [24], some of the more complex flows can be described as follows:

• seq: seq defines a sequence of sub-flows.

• fork: fork spawns multiple parallel branches of sub-flows. joinagent joins parallel
branches, and it can be automatically chosen during the execution of a workflow.

• or: or enables execution from multiple alternative sub-flows.

• if: if chooses a flow by determining if a condition is true or false. A condition is
defined on either flow-relevant data or execution status of the flow.

• loop: loop defines a sub-flow that is repeated until the condition is evaluated to be
false.

An example [24] of a flow specification can look like the following:

seq(Aa, fork(e, or(Bb, Cc), Dd), Ee)

Aa, Bb, Cc, Dd and Ee denote activities to be executed by agents at the sites a, b, c,
d and e, respectively. A compensating activity for Aa would then look like A−1

a . The flow
specification can be represented in a tree structure, as figur 2.9 shows.

Figure 2.9: A tree structure of the flow specification1

1Copyright @ 2006 Yu and Yang [24]

18

2.5.2 Definition

CEKK is an abstract state machine for distributed and recoverable flow enactment, where
C, E and K represent control, environment and continuation, respectively [24]. According
to [24], the CEKK machine can be looked at from two perspectives:

• Local CEKK machine: A local CEKK machine defines possible states and their
possible transitions locally at an agent.

• Global CEKK machine: A global CEKK machine defines the possible global states
of a flow and the possible transitions among them. It consists of a number of local
CEKK machines. The global state of the flow is the aggregation of the local states
and the global state transitions are defined solely by the local state transitions..

A state of a local CEKK machine at agent p is a quadruple < c, e, ks, kf >p, where c
is called a control expression, e an environment, ks is called a success continuation and kf
is called a failure continuation [24]. According to [24], they can be defined as follows:

• control expression: control expression represents the next flow to be enacted im-
mediately.

• environment: environment is the runtime context of the flow.

• success continuation: success continuation is the continuation towards the suc-
cessful end of the flow.

• failure continuation: failure continuation is the continuation towards the compen-
sated end of the flow.

2.5.3 Transition rules

According to [24], the state transitions appears in one of four forms as follows:

1. Local ongoing: A local state transition performed by agent p.

< c0, e0, ks0, kf0 >p→< c1, e1, ks1, kf1 >p

2. Remote forwarding: Send state information from agent p to agent q.

< c, e, ks, kf >p→< c, e, ks, kf >q

3. Local divergence: Agent p spawns multiple parallel branches, where each branch
is independent from the other branches.

< c0, e0, ks0, kf0 >p→

{< c1, e1, ks1, kf1 >p, < c2, e2, ks2, kf2 >p, . . . , < cn, en, ksn, kfn >p}

4. Local convergence: Agent p joins spawned branches.

19

{< c1, e1, ks1, kf1 >p, < c2, e2, ks2, kf2 >p, . . . , < cn, en, ksn, kfn >p} →

< cu, eu, ksu, kfu >p

Remote forwarding is asynchronous message passing between agents. In all other cases,
state transitions are carried out locally at individual agents. This explains why global co-
ordination is not needed among the agents [24].

The names of the transition rules have intuitive meaning. For example, the transition
rules named A1 and S1 refers to an activity and a sequence, respectively. According to
[24], the transition rules named A1, A2, A3, S1 and S2 can be listed as follows:

• A1: A1 represents an agent q that is sending state information to another agent p.

< Ap, e, ks, kf >q→< Ap, e, ks, kf >p if p 6= q

• A2: A2 represents a successful execution of an activity at an agent p, where a
compensation activity is added to the failure continuation.

< Ap, e, ks, kf >p→

< ks.head, succ (Ap) : e, ks.tail, A−1
p : kf >p if succ(Ap)

• A3: A3 represents a failed execution of an activity at an agent p, which means that
the failure continuation is enacted.

< Ap, e, ks, kf >p→< kf.head, fail (Ap) : e, kf.tail, kf >p if fail(Ap)

• S1: S1 represents the last sub-flow to be enacted in a flow sequence, which means
that nothing is pushed to the success continuation.

< seq(fs), e, ks, kf >p→< fs.head, e, ks, kf >p if |fs| = 1

• S2: S2 represents a flow sequence with multiple sub-flows, which means that the first
sub-flow is enacted. The other sub-flows are pushed to the success continuation.

< seq(fs), e, ks, kf >p→< fs.head, e, seq (fs.tail) : ks, kf >p if |fs| 6= 1

The next transition rules named F1 and J1 are somewhat complicated, therefore a
state initially represented as < c, e, ks, kf > will be shortened to < c, ks >. A reason for
doing this is because recoverable flow enactment is not a goal for this thesis. The modified
transition rules can be defined as follows:

• F1: F1 represents agent p which spawns multiple parallel branches.

< fork(q, f1, f2, . . . , fn), ks >p→

{< f1, join−succ : ks >p, < f2, join−succ : ks >p, . . . , < fn, join−succ : ks >p}

20

where

join−succ = join(q, and(succ(f1), succ(f2), . . . , succ(fn)))

• J1: J1 represents joining spawned branches.

{< join−succ, ks >q, . . . , < join−succ, ks >q} →< ks.head, ks.tail >q

The transition rules A1, A2, A3, S1 and S2 are valid for an abstract CEKK engine,
while the transition rules F1 and J1 are valid for an abstract CK engine, where C stands
for control and K stands for continuation.

21

22

Chapter 3

Requirements

3.1 Goal

A goal has been described in the task description for this thesis as follows:

The goal of this project is to design, implement and test a Java prototype that
supports decentralized web services orchestration based on continuation-passing
enactment of distributed workflows.

Some of the related background information, in the previous chapter, give an explana-
tion of the different terms used in this description.

3.2 Functional and data requirements

3.2.1 Functional requirements

The prototype have to include a Web application with a user interface, a workflow en-
actment service and at least two service providers. In addition, it is required to have an
application scenario for the prototype which makes it possible to construct meaningful
workflows. A meaningful workflow is important in order to better understand what is hap-
pening during the workflow execution. However, a specific application scenario will not
be defined as part of the functional requirements. Any application scenario that fits the
requirements is approved. The workflow must be an orchestration of Web services, where
the Web services are provided by different service providers.

The functional requirements for the user interface, the Web application, the workflow
enactment service and the service providers will be described separately.

Service providers Each service provider must be independent from one another. The
service providers have to provide simple Web services which can be accessed via the Web.
It must be able to dynamically configure each Web service while it is running on a server.
In addition, each Web service must be able to:

• Send and receive SOAP messages.

• Provide a WSDL description of its services that can be accessed via the Web.

23

Web application The user interface must be embedded in the Web application. The
user interface must be Web-based, which means that it must accept input and provide
output in the form of Web pages. The Web pages should be displayed in a Web browser,
and they must contain pure HTML code. A user that is using the Web browser should be
able to choose among different options in the Web page. The Web page must then list a
set of options that the user can choose from. The user must also be able to make a request
from the Web page. The Web browser should act as a proxy on behalf of the user. The
request must be sent to the Web application and contain all the options which the user has
chosen. The user must be able to view the response in a Web browser. As a summary, the
user interface must be able to:

• Send and receive Web pages via the Web.

• Process Web requests.

A workflow specification should be sent to the workflow enactment service when a user
makes a request via a Web browser. The workflow specification must be based on which
options the user has chosen. The results received from the workflow enactment service
must be sent as a response to the request made by a user via a Web browser. In order to
fulfill these requirements the Web application must be able to:

• Assign a unique reference number to each workflow specification.

• Keep a list of available service providers.

• Send and receive SOAP messages.

• Provide a WSDL description of its services that can be accessed via the Web.

Workflow enactment service The workflow enactment service must consist of multi-
ple workflow engines. It must support decentralized web services orchestration based on
continuation-passing enactment of distributed workflows. The continuation-passing mech-
anism must follow the transition rules of an abstract CK engine. In addition, each workflow
engine must be able to:

• Receive a workflow specification.

• Execute the whole workflow specification or parts of the workflow specification.

• Invoke a Web service from a service provider.

• Communicate directly with one another.

• Send and receive SOAP messages.

• Provide a WSDL description of its services that can be accessed via the Web.

24

Figure 3.1: Workflow execution

The UML use case diagram [14], in figure 3.1, shows the requirements for the workflow
execution.

In addition, the workflow enactment service must be able to execute a minimum of two
independent parts of a workflow specification in parallel. The workflow enactment service
must also be able to execute multiple workflow specifications concurrently.

3.2.2 Data requirements

The format of the workflow must at a minimum be based on the format that the CK machine
uses. This means that it should be possible to identify the tag < c, ks > within the structure
of the workflow, where c stands for control and ks stands for success continuation.

25

26

Chapter 4

Design

This chapter will identify some of the design artifacts which need to be organized, while
taking into consideration the requirements from the previous chapter. The design artifacts
will be organized in a way so that they fulfill the requirements for the prototype.

4.1 Components

From the requirements it has been possible to identify three artifacts, namely a Web ap-
plication, a workflow enactment service and a set of service providers. It is assumed that
these artifacts are independent processes. Therefore, each artifact can be thought of as a
component.

Figure 4.1: A view of the prototype components

A UML activity diagram in figure 4.1 is used to illustrate a minimum set of messages

27

which must be sent between the different components. This is helpful in order to understand
what form of communication is needed between each component. In addition, knowing
what type of information is passed between each component gives an idea on what type
of information must be handled by each component. Each component will be described
separately.

4.1.1 Web application

The Web application component should allow users to interact with the prototype. Al-
lowing this interaction to take place through a Web-based user interface means that the
prototype can be used from any location on the Internet. The only thing a user needs
in order to interact with the prototype is a Web browser. This allows a wide range of
application scenarios to be chosen. At the minimum the user must be able to choose at
least two activities from the Web page, where the activities must be performed by different
service providers. This is important in order to allow the workflow enactment service to
execute two independent parts of a workflow specification in parallel.

If figure 4.2 there are three entities, namely a client, a server and a workflow enactment
service. The Web application resides on the server.

Figure 4.2: The architecture of a Web application

The client represents a Web browser, and displays Web pages to a user. The user in-
teracts with the Web browser, while the Web browser interacts with the user interface of
the Web application via the Internet.

The server can be separated into four layers, namely a presentation layer, a processing
layer, an application logic layer and a service interface layer. Each layer can be described

28

as follows:

• Presentation layer: The presentation layer is the static part of the user interface,
and it determines what the Web pages should look like for the end user.

• Request processing layer: The request processing layer is the dynamic part of the
user interface. This layer handles the requests from a Web browser and it replies
to the Web browser by sending a Web page. The request processing layer can be a
servlet, a Perl script, etc.

• Application logic layer: The application logic layer generates a workflow specifi-
cation based on the data from the request processing layer. It also generates a unique
reference number for each workflow specification. This layer also keeps an overview
of the results received via the service interface layer.

• Service interface layer: The service interface layer is responsible for sending work-
flow specifications to the workflow enactment service via SOAP messaging. It is also
responsible for receiving SOAP messages which contain the results from the workflow
enactment service. It will also provide a WSDL description of its services, which acts
as a service contract.

A template engine can be used to separate the presentation layer from the request pro-
cessing layer. Web pages can be stored as templates, and represent the presentation layer.
The templates can contain embedded scripting code. The template engine can generate
HTML code from the templates. Using templates has a benefit because information in
different languages can be stored in separate templates. The Web-based user interface
represents both the presentation layer and the request processing layer.

4.1.2 Workflow enactment service

The workflow enactment service will consist of multiple workflow engines. The architecture
of a workflow engine is shown in figure 4.3.

A workflow engine can be separated into three layers, namely an composite service layer,
a service orchestration layer and a basic service interface layer. Each layer can be described
as follows:

• Composite service interface layer: The composite service interface layer is re-
sponsible for receiving SOAP messages containing workflow specifications from the
Web application or from other workflow engines. I should also be able to access other
workflow engines via SOAP messaging. It should provide a WSDL description of its
services, which acts as a service contract. As figure 4.3 tries to illustrate, the mes-
sage passing between different workflow engines are carried out in an asynchronous
manner. Therefore, once a message has been sent from a workflow engine, then no
message is expected in return.

29

Figure 4.3: The architecture of a workflow engine

• Service orchestration layer: The service orchestration layer handles the process-
ing and transformation of workflow specifications according to a set of rules which
support decentralized Web services orchestration based on continuation-passing en-
actment of distributed workflows.

• Basic service interface layer: The basic service interface layer is responsible for
accessing Web services offered by service providers in a synchronous manner.

4.1.3 Service providers

The service providers can provide a variety of different Web services. The architecture of
a service provider is shown in figure 4.4.

Figure 4.4: The architecture of a service provider

A service provider can be separated into two layers, namely an application logic layer
and a basic service interface layer. Each layer can be described as follows:

• Application logic layer: The application logic layer depends on an application
scenario. In general it will be responsible for manipulating application specific data.
This layer should provide meaningful objects which can be manipulated.

30

• Basic service interface layer: The basic service interface layer is responsible
handling SOAP messages in a request-response pattern. It will also provide a WSDL
description of its services, which acts as a service contract.

31

32

Chapter 5

Implementation

This chapter will focus on how to realize the ideas presented in the previous chapter.
The prototype will be implemented Java, as the goal for this thesis indicates. The Java
programming language is very suitable because it provides an easy mechanism, which is
called a package, that creates a namespace for each component of the prototype. Java byte
code can also run anywhere a JVM is located.

5.1 Application scenario

The design components of the prototype will be realized to create an application scenario
as follows:

• Web application: The Web application component will represent a travel agency
that enables users, or customers, to book a trip via a Web browser. The trip can
consist of a flight, a hotel and a car reservation.

• Workflow enactment service: The workflow enactment service component will
consist of multiple workflow engines, where a workflow engine will be able to com-
municate directly with other workflow engines. This type of workflow engine will be
referred to as a software agent, because an agent can act as both a client and a server.
The software agents coexist in a distributed environment.

• Service provider: The service provider component includes multiple service providers.
This is because the process of booking a trip can make use of a different service
provider for each type of reservation. The service providers perform the actual flight,
hotel and car reservation.

UML use case diagrams are being used in order to give a high-level view of the appli-
cation scenario.

5.1.1 Actors

Customer The customer actor represents a human who is interested in booking a trip
that the travel agency has to offer.

Flight The flight actor represents a fictional Web service provider that offers the possi-
bility of booking a flight through its Web service interface. It also offers an opportunity to
cancel a reservation.

33

Hotel The hotel actor represents a fictional Web service provider that offers the possibility
of booking a hotelroom through its Web service interface. It also offers an opportunity to
cancel a reservation.

Car The car actor represents a fictional Web service provider that offers the possibility
of renting a car through its Web service interface. It also offers an opportunity to cancel a
reservation.

5.1.2 Use cases for booking a trip

Figure 5.1 shows a UML use case for booking a trip. It shows a customer that can select
the appropriate flight, hotel and car. Selecting a flight is always mandatory when booking
a trip, but selecting a hotel or a car is an optional choice. It is assumed that the customer
is already registered.

Figure 5.1: The booking of a trip by means of a UML use case diagram

34

5.2 Travel agency

The travel agency component is written in Java. The component is a simple Java class.
This is shown in figure 5.2.

Figure 5.2: Travel agency component

5.2.1 User interface

The Web pages are the static part of the user interface, and they are stored as templates on
the server. These templates can be seen in figure 5.3. The static part of the user interface
can be referred to as the presentation layer.

Figure 5.3: User interface components

A customer can choose a set of options from a Web page via a Web browser. Next,
the customer can send a request by clicking on a button on the Web page. This Web
page is generated from a template called reservation.vm. The Web page returned as a
response to the request can be generated from a template called result.vm or error.vm.
The template result.vm is used if the results have been successfully received from an agent.
The template called error.vm is used if the time spent waiting for a result causes a timeout.

35

The dynamic part of the user interface accepts inputs from a Web browser. The inputs
are handled by a servlet [16]. The servlet is also responsible for sending a response to the
browser. The dynamic part of the user interface takes place at the request processing layer.

5.2.2 Application logic

Figure 5.4 shows how the use case Book trip in figure 5.1 is handled by the travel agency
after the request processing layer has received a request from a Web browser, and it illus-
trates, at the application logic layer, how different workflow specifications are created based
on what options the customer has chosen. In this example, the travel agency has a list of
three software agents named A, B and C. Agent A, B and C are responsible for making
different service providers perform the booking of a flight, hotel and car, respectively.

Figure 5.4: A flow diagram showing the creation of a workflow specification

From figure 5.4 it is possible to identify four different workflow specifications. An
detailed example of a workflow specification will not be given until the continuation-passing
mechanism which is used by the software agents has been explored in more detail. However,
the workflow reference number is created dynamically for each workflow specification. In

36

addition, the number of concurrently executing workflows which need to be joined is also
created dynamically.

5.2.3 Resource access

The complete workflow specification is given to the resource access layer which sends the
workflow specification to a predefined software agent.

5.2.4 Service interface

The service interface layer receives a messages which contain the results from completed
workflow executions, which eventually ends up in a Web browser.

The use case Send documents in figure 5.1 only means that the results from the booking
request should be displayed in the Web browser to the customer.

5.3 Software agents

The software agents are written in Java. Each software agent component is a simple Java
class. This is shown in figure 5.5.

Figure 5.5: Software agent component

Each software agent contains a workflow engine. The software agents are able to commu-
nicate with each other in an asynchronous manner. The internal architecture of a software
agent is shown in figure 5.6.

Before the use case Process request in figure 5.1 is explained, it is important to investi-
gate some of the possible workflow patterns in more detail.

5.3.1 Abstract workflow patterns

The abstract workflow patterns has been inspired by the application scenario in figure 5.1.
Four abstract workflow patterns illustrate different flows of four activities A, B, C and D,
where A, B, and C represents to book a flight, hotel and car, respectively. Activity D
represents an action which uses remote forwarding to send results to another agent. The
abstract workflow patterns can be listed as follows:

37

Figure 5.6: The internal architecture of a software agent

1. Sequence(Fork(A), D)

2. Sequence(Fork(A ,B), D)

3. Sequence(Fork(A ,C), D)

4. Sequence(Fork(A ,B ,C), D)

The fourth workflow pattern can easily be represented as a tree structure, with the
Sequence element at the root, as figure 5.7 shows.

A running example

A running example, which is illustrated in figure 5.8, shows the message passing between
agents, when using the workflow described in figure 5.7.

The agents are called start, a, b, c, d and e. The start agent receives a workflow and
carries out the first step from the sequence flow in figure 5.7, which in this case is a Fork

38

Figure 5.7: A tree structure representing a workflow specification

node. Figure 5.8 shows how three agents are run in parallel and later joined by agent e.
The results from agent a, b and c are forwarded to agent d. This example shows a workflow
that is successfully executed, but it only describes one specific workflow pattern.

5.3.2 Realization of abstract workflow patterns

The abstract workflow patterns will be realized by using XML to create the workflow
specifications. However, before a workflow specification can be created using XML, there
must exist some basic building blocks. These building blocks are the elements which must be
defined in an XML schema. The abstract workflow patterns, combined with the application
scenario, provide an helpful indicator towards which elements must be defined in the XML
schema.

An XML schema for specifying workflow elements

A set of elements, which will be used in the worfklow specifications, can be defined in
an XML schema as shown in Appendix A. The set of elements that is used in the XML
schema is inspired by visualizing the abstract workflow patterns. The names of some of the
elements are inspired by [24]. These few elements are sufficient in order to translate the ab-
stract workflow patterns into executable workflow specifications. Some of the elements have
attributes. Values can be assigned to the attributes dynamically during workflow execution.

The XML schema defines the root element of a workflow specification as < cekk >.
The reason for choosing the name cekk is that the prototype will support recoverable
distributed workflows. This property is not a part of the goal for this thesis, but an effort
will be made to try and realize it anyway. The < cekk > element has an attribute called
epr whose value corresponds to the address of an agent which is currently executing the
workflow specification. The < cekk > element also has an attribute called < id > whose
value corresponds to the workflow reference number of the a workflow specification. The

39

Figure 5.8: Agents running workflow pattern 4

elements that the < cekk > element contains correspond to the elements of the quadruple
on page 19, which describes the state of a local CEKK machine. Therefore, the < cekk >
element contains the elements < c >, < e >, < ks > and < kf >. These elements can
only contain one root element called < seq >, where the latter can contain the elements
which are described as follows:

• < activity > : The < activity > element is used by an agent to let a service provider
perform an activity. The address of a service provider is stored in an attribute called
epr. Every activity is defined by using the format of an < activity > element, which
consists of the elements < method >, < arg1 >, < arg2 > and < compensation >.
The < method > element contains the name of a service provided by a service
provider. The elements < arg1 > and < arg2 > contain data values which the
service accepts. A < compensation > element specifies the name of a service which
reverse the changes made by a completed activity.

• < fork > : The < fork > element creates parallel branches, where each branch
contains a root element called < cekk >. The epr attribute in the < cekk > element

40

determines which agent should execute it. The forkepr attribute in the < cekk >
element specifies the address of the agent that executed the < fork > element.

• < end−fork > : Each branch created by the < fork > element contains a <
end−fork > element at the end. The latter contains an attribute called epr which
specifies the address of an agent that executes a < join > element.

• < join > : The < join > element has to attributes called no and fork−epr, where the
value of the former attribute is dynamically specified. The no attribute represents
how many branches which should be joined. The fork−epr attribute specifies the
address of the agent that executed the < fork > element. This is useful in case a
compensation is needed.

• < remote−trans > : The < remote−trans > element is used to forward the < cekk >
element at the root to another agent.

• < end−trans > : The < end−trans > element ends the workflow execution. It
contains an attribute called epr which specifices the address of where the results from
the workflow execution should be sent.

The elements which can contain a < seq > element can be described as follows:

• < c > : This element is initially empty. However, before the first element in a < seq >
element can be executed, it has to be moved from the < seq > element in the < ks >
element into the < seq > element in the < c > element. When this element has done
its purpose, then it is removed. Next, the first element from the < seq > element in
the < ks > element has to be moved into the < seq > element in the < c > element,
and so on. Therefore, the < seq > element in the < c > element can only contain
one element at any time, that is about to be executed.

• < e > : This element contains the results from successful or failed activities. There-
fore, it is not restricted to only contain a < seq > element, because it can contain
arbitrary elements created on the fly during a workflow execution. The arbitrary
elements then contain the results from successful or failed activities.

• < ks > : This element initially contains the whole workflow specification, and it
represents the path towards a successful workflow execution. When the first element
of a < seq > element in the < ks > element is removed, then the rest of the workflow
specification remains in the < ks > element. Therefore, a continuation is stored in
this element.

• < kf > : This element is initially empty, but as activities completes successfully, then
this element will contain a sequence of elements which can undo any changes made by
successfully completed activities. Therefore, this element represents the path towards
a failed workflow execution.

41

A valid workflow specification

A valid workflow specification has been created using a set of elements which the XML
schema in Appendix A defines as legal. The abstract workflow pattern Sequence(Fork(A
,B ,C), D) can be realized by using the workflow specification in Appendix B. This work-
flow specification also contains sample values which correspond to a set of options which
has been chosen by a customer. Figure 5.9 gives a graphical view of the workflow specifi-
cation.

Figure 5.9: Agents running the workflow specification in Appendix B

An explanation of the graphical notations used in figure 5.9 can be found in table 2.1.
However, the XML schema elements can be categorized into different node types, as figure
5.1 shows.

The workflow specification has to be extended into a CEKK specification, as shown in
Appendix C, before it can be enacted by the software agents.

42

Work node Routing node Start and completion nodes
< activity > < fork > < end−trans >

< end−fork >
< join >

< remote−trans >

Table 5.1: XML schema elements and node types

5.3.3 CEKK transition rules

The CEKK transition rules [24] will not be followed strictly, but they will be used as an
inspiration for how the software agents execute a workflow specification. A description on
how strictly the software agents follow the CEKK transition rules can be made by listing
the following transition rules:

• A1: Rule A1 corresponds to the < remote−trans > element in the XML schema.
The software agents follow this rule strictly.

• A2: Rule A2 is followed strictly by the software agents. The < e > element in the
workflow specification contains the result from a successfully completed activity.

• A3: Rule A3 is not followed strictly by the software agents. The < e > element in
the workflow specification contains the result from a failed activity, but the failure
continuation is not enacted until a software agent, that is performing a join, discovers
the failed activity. Only then is the failure continuation enacted.

• S1: Rule S1 is not followed strictly by the software agents, because the rule suggests
that the workflow specification should be present in the < c > element. However, the
software agents expect the workflow specification to be present in the < ks > element.
If the workflow specification only contains one element in the < seq > element, then
this element will be pushed from the < ks > element to the < c > element.

• S2: Rule S2 is similar to rule S1, but it suggests that the reminder of the workflow
specification should be pushed from the < c > element to the < ks > element. This
happens if the workflow has more the one element in the < seq > element. However, a
software agent only pushes the first element in the < seq > element from the < ks >
element to the < c > element. So the behaviour is fairly opposite to the transition
rule.

A description on how strictly the software agents follow the CK transition rules can be
made by listing the following transition rules:

• F1: Rule F1 does not handle failure continuation, therefore this rule is not followed
strictly by the software agents. The only similarity is that multiple parallel branches
can be spawned.

43

• J1: Rule J1 does not handle failure continuation, therefore this rule is not followed
strictly by the software agents. The only similarity is that multiple parallel branches
can be merged. The software agent performing the < join > element will create a
failure continuation that contains a < fork > element.

5.4 Service providers

The service providers are written in Java. Each service provider component is a simple
Java class. This is shown in figure 5.10.

Figure 5.10: Service provider component

The service providers provide Web services which can be configured manually through
a Web browser. Each Web service has several methods which manipulate the application
logic data. The method for making a reservation has the same number of arguments in
every Web service that is provided by the service providers. The service providers performs
the actual activities in a workflow specification.

5.5 Development tools

5.5.1 Java Development Kit (JDK)

JDK [16], version 1.6, from Sun Microsystems was used to compile the Java code.

5.5.2 Eclipse Sofware Development Kit (Eclipse SDK)

Eclipse SDK [20], version 3.3.1, was used as a Java code editor, because it automatically
detects syntax errors in the Java code before the code is compiled. It also gives valuable
suggestions on how to correct the syntax errors. This helps in order to speed up the
development process.

5.5.3 Apache Tomcat

Apache Tomcat [10], version 6.0, was used as an application server. A prototype component
can be deployed in Apache Tomcat if has been packaged into a Web Application aRchive
(WAR) file. If the prototype component has been successfully deployed, then Apache

44

Tomcat will handle HTTP invocations of the prototype component. It will also handle
server-side dynamic content.

5.5.4 Apache Ant

Apache Ant [8], version 1.7, was used to automatically build and package the travel agency
component, together with its dependencies, into a WAR file.

5.5.5 Apahe Velocity

The request processing layer is separated from the presentation layer with the help of the
Apache Velocity Engine [11], version 1.4. The Apache Velocity Engine converts templates
into HTML pages.

5.5.6 Apache Axis2

Apache Axis2 [9], version 1.3, was used as a core engine for Web services. It can be deployed
into Apache Tomcat as a WAR file to handle the complexity in SOAP messaging, but it
has not been tested in other application servers. Apache Axis2 is important because every
prototype component must be able to send and receive SOAP messages. Apache Axis2
includes an object model called the AXIs Object Model (AXIOM) [9], which can transform
the XML content of a SOAP message into an object model representation, which can easily
be manipulated inside a prototype component. The object model can then be translated
back into XML, using AXIOM, and sent via SOAP to a recipient. Apache Axis2 also
automatically generates a WSDL file for every service, which can be viewed in a Web
browser.

5.5.7 Apache TCPMon

Apache TCPMon [7], version 1.0, was used as a debug tool. This tool displays the contents
of SOAP messages which are being sent between the components of the prototype.

5.6 Deployment

Each component of the prototype is contained within a Java package in order to give them
a unique namespace.

5.6.1 Travel agency

The travel agency will be deployed to the application server as a WAR file. The WAR
file contains all the necessary dependencies and configuration files which are needed in
order to deploy the travel agency component. It also contains the component itself. One
of these dependencies is the Apache Axis2 libraries which handle SOAP messaging. Two
configuration files called web.xml and services.xml are needed. The former is needed by

45

Apache Tomcat, while the latter is needed by Apache Axis2. The web.xml configuration
file describes how to access the travel agency component through a Web browser, while the
services.xml describes how to access the travel agency component via SOAP messaging. A
message exchange pattern (MEP) [9] can be specified in the services.xml configuration file,
which in this case is both an In-Out MEP and an In-Only MEP.

5.6.2 Software agents

A software agent component will be uploaded as a service from the Apache Axis2 ad-
ministration module, but before this happens it must be packaged into a file with an aar
extension. The aar format is exactly the same as a jar [15] format, except that the names
are different. The aar file must contain a ”service.xml” configuration file.

5.6.3 Service providers

The service providers are deployed in exactly the same way as the software agents.

46

Chapter 6

Testing

This chapter describes how the prototype was tested. It also describes the results from the
various tests.

6.1 Configuration

Figure 6.1 shows an application server that contains different components. The location of
the application server is http://localhost:8080. The components are named Hotel Service,
Car Service, Flight Service, start, a, b, c, d, e and Travel Agency. All these components
are independent from each other, and can live on separate application servers.

Figure 6.1: Test configuration

It can be seen that the travel agency component uses a separate Axis2 engine compared
to the other components, but it is still able to communicate with the software agents called

47

start, a, b, c, d and e. The software agents inside the Axis2 engine can communicate with
each other, but they can also communicate with the service providers called hotel service,
car service and flight service.

A Web browser can be used to access the travel agency component, but it can also be
used to configure the service providers. Initially the service providers contains no applica-
tion specific data. Therefore, the service providers have to be configured properly, before
a test can start, as follows:

• Flight Service: The Flight Service is configured by typing the following url into a
Web browser:

http://localhost:8080/axis2/services/airline/
setAvailableSeats?inFlightCode=AA0004&availableSeats=5

This command will create a flight called AA0004 with five available seats. A list of
commands for the Flight Service can be found in Appendix D.

• Hotel Service: The Hotel Service is configured by typing the following url into a
Web browser:

http://localhost:8080/axis2/services/hotel/
setAvailableRooms?inHotelDate=010107&availableRooms=5

This command will create a date where five rooms are available at the hotel. The
date format is ddmmyy where dd means day, mm means month and yy means year.

• Car Service: The Car Service is configured by typing the following url into a Web
browser:

http://localhost:8080/axis2/services/car/
setAvailableCars?inCarDate=010107&availableCars=3

This command will create a date where three cars are available at a car rental com-
pany. The date format is ddmmyy where dd means day, mm means month and yy
means year.

6.2 Running a real test

A test can be run once the service providers have been configured. The easiest way to run
the test is to type the following url in a Web browser:

http://localhost:8080/travel/servlet/travelagency

This url should bring up a Web page in the Web browser that contains a reservation
form which looks like the one in figure 6.2.

From here it is possible to choose between the different options in the reservation form.

48

Figure 6.2: A reservation form

6.2.1 A successful reservation

One way to get a successful reservation is to type AA0004 into the textfield labeled Flight
Code, and checking all the check boxes. Now, clicking on the button labeled Confirm
Booking will cause an extended workflow specification to be created which looks like the
one in Appendix C. This workflow specification can be executed directly by the workflow
enactment service. When the workflow execution is finished, another Web page will be
displayed in the Web browser that contains the results from the reservations. The results
will look like figure 6.3, except that the reservation numbers may be different.

Figure 6.3: A successful reservation

It is possible to see if the reservation of a flight seat really took place by typing the
following url into the Web browser:

http://localhost:8080/axis2/services/airline/getAvailableSeats?inFlightCode=AA0004

49

If the Web browser is capable of displaying XML, then the result from this command
should look similar to figure 6.4.

Figure 6.4: Available flight seats

Figure 6.4 shows that there are four available flight seats left on the flight called AA0004.

6.2.2 A failed reservation

By continuing from the example with a successful reservation, and by going back to the
Web page that contains the reservation form, then it is possible to choose a set of options
which will cause the reservation to fail. This is possible by increasing the number of cars
to above the available limit. Clicking the button labeled Confirm Booking will then cause
a flight seat and a hotel room to be reserved, but these reservations will be compensated
because of the failed car reservation. The results will look like figure 6.5, except that the
reservation numbers may be different.

Figure 6.5: A failed reservation

Although the Web page displays the flight and hotel reservations as successfully com-
pleted, the overall result suggests that they did not succeed.

A failed reservation can also happen if one of the services is unreachable. A reason for
this may be that the service has been removed from the server, but it can also be the case
that the service is down.

50

6.3 Evaluation

The prototype behaves as expected for both tests which include a sucessful reservation and
a failed reservation. The prototype is not adaptable in situations where one agent becomes
unreachable. If the unreachable agent is used during a workflow execution, then the work-
flow execution will fail to respond with any results. However, if a service provider becomes
unreachable, then any successfully completed activities will automatically be compensated.
No tests for scalability and performance where performed, because these properties were
not part of the goal for this thesis.

In addition, similar tests have also been carried out on a Local Area Network (LAN)
where the service providers were located on a remote host. The results from these tests
were identical to the other results.

51

52

Chapter 7

Conclusion

A workflow enactment service is the core of a WfMS. Therefore, having a workflow enact-
ment service that is scalable, adaptable and robust is very important in order to provide
reliable executions of distributed workflows. These properties can be achieved if the work-
flow enactment service uses a continuation-passing mechanism for distributed workflow
enactment.

A Java prototype has been developed that uses a small scale application scenario to
demonstrate continuation-passing orchestration of composite Web Services, using only cer-
tain types of flows which have been defined in a schema as shown in appendix A. Therefore,
the goal for this thesis has been fulfilled. The continuation-passing mechanism, which the
prototype uses, has been inspired by [24].

The prototype does not pre-allocate any resources prior to the workflow execution, which
is one of the most important signatures of a continuation-passing enactment style. This
allows multiple concurrent workflows to be executed by the workflow enactment service
without wasting valuable resources.

Using a small scale application scenario is an important step towards having a full scale
workflow enactment system which is based on the continuation-passing mechanism. In ad-
dition, the prototype enables recovery of failed workflow executions by using compensation
activities to invert the effects of successfully completed activities.

However, some improvements can be made to the prototype. For example, the prototype
can become more robust by avoiding failures caused by unreachable agents. If an agent has
a list of other available agents, then this agent can randomly select another agent if one
agent becomes unreachable.

A unique workflow reference number is created by the Web application called travel
agency. This workflow reference number is assigned to a workflow specification before it is
sent to one of the software agents. Problems can occur if there are multiple travel agen-
cies which use the software agents simultaneously, because there can be duplicate workflow
reference numbers assigned to different workflows. This situation is clearly not desirable,
which means that there should be one standard interface to the workflow enactment ser-
vice. As a result, one agent will be responsible for receiving workflow specifications from
the travel agencies. This agent will assign a unique workflow reference number to each
workflow. This is an improvement which enables multiple travel agencies to use the same
workflow enactment service.

There are some known performance issues which relate to the Web service technology.
For example, sending SOAP via HTTP improves the availability of Web services, because

53

HTTP easily passes through firewalls. However, HTTP is less efficient than raw sockets
and other mechanisms [2]. Another performance issue is that SOAP uses XML, where XML
requires parsing and interpreting which can result in processing bottlenecks. In addition,
XML carries a lot of overhead in order to represent data [2]. This means that the size of
SOAP messages becomes large, which can result in communication bottlenecks. Therefore,
the flexibility of using Web services can have a large impact on performance. This becomes
more obvious for a composite Web service which invokes other Web services.

The XML overhead does not benefit the performance of the prototype, because continuation-
passing enactment requires that the rest of an execution should be sent during a remote
transition. The rest of an execution can be a large portion of the workflow, which can make
the messages which are sent between agents very large. Problems can occur when these
messages are sent over the Internet, which is a WAN, because the available bandwidth can
be limited. In a traditional decentralized workflow enactment service, the workflow engines
will receive a separate part of the workflow. The worst case scenario for a continuation-
passing enactment style is that every agent executes one single step of the workflow before
sending the continuation onwards, but this is the price to pay in order to have an adaptable
workflow enactment service that uses a continuation-passing enactment style for distributed
workflows.

However, there are attempts to encode an XML document into a binary data format
[23], which is much faster to parse than plain text. This can improve the performance of a
continuation-passing enactment of distributed workflows.

The lessons learned during the prototype development stages have cast a new light on
the importance of having open source projects like Apache Axis2, Apache Tomcat, Apache
Ant, Apache Velocity and Eclipse SDK. These projects have made it possible to realize the
Java prototype which demonstrates a continuation-passing enactment of distributed recov-
erable workflows. However, it was a challenge to debug the prototype when something
went wrong, because there could have been a bug present in the workflow specification long
before problems began to surface. Having a good intuition for how the workflow was going
to be executed by the workflow enactment service was an important part of the workflow
design phase. Therefore, the only way to debug a workflow specification, when something
went wrong, was through the use of human intuition.

54

References

[1] Ryan A. What is a business process? http://www.visualocity.net/visualocity/

articles/whatIsABusinessProcess.jsp, September 2006.

[2] Britton C. and Bye P. IT Architecture and Middleware, Second Edition. Addison-
Wesley, 2004.

[3] Chappell D. and Jewell T. Java Web Services. O’Reilly, March 2002.

[4] Hollingsworth D. The workflow reference model. http://www.wfmc.org/standards/
docs/tc003v11.pdf, January 1995.

[5] Sosnoski D. Digging into axis2: Axiom. http://www.ibm.com/developerworks/

webservices/library/ws-java2/, 2006.

[6] Piedad F. and Hawkins M. High Availability: Design, Techniques, and Processes.
Prentice Hall, Desember 2000.

[7] Apache Software Foundation. Apache tcpmon. http://ws.apache.org/commons/

tcpmon/index.html.

[8] Apache Software Foundation. The apache ant project. http://ant.apache.org/,
2007.

[9] Apache Software Foundation. The apache axis2/java project. http://ws.apache.

org/axis2/index.html, 2007.

[10] Apache Software Foundation. The apache tomcat project. http://tomcat.apache.

org/, 2007.

[11] Apache Software Foundation. The apache velocity project. http://velocity.

apache.org/engine/releases/velocity-1.5/, 2007.

[12] Alonso G., Casati F., Kuno H., and Machiraju V. Web Services: Concepts, Architec-
tures and Applications. Springer, 2004.

[13] W3C DOM Interest Group. Document object model (dom). http://www.w3.org/

DOM/, 2005.

[14] Lunn K. Software Development with UML. Palgrave Macmillan, 2003.

[15] Sun Developer Network. Java archive. http://en.wikipedia.org/wiki/JAR_

(file-format), 2007.

[16] Sun Developer Network. Java technologies. http://java.sun.com/, 2007.

55

http://www.visualocity.net/visualocity/articles/whatIsABusinessProcess.jsp
http://www.visualocity.net/visualocity/articles/whatIsABusinessProcess.jsp
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.ibm.com/developerworks/webservices/library/ws-java2/
http://www.ibm.com/developerworks/webservices/library/ws-java2/
http://ws.apache.org/commons/tcpmon/index.html
http://ws.apache.org/commons/tcpmon/index.html
http://ant.apache.org/
http://ws.apache.org/axis2/index.html
http://ws.apache.org/axis2/index.html
http://tomcat.apache.org/
http://tomcat.apache.org/
http://velocity.apache.org/engine/releases/velocity-1.5/
http://velocity.apache.org/engine/releases/velocity-1.5/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://en.wikipedia.org/wiki/JAR_(file-format)
http://en.wikipedia.org/wiki/JAR_(file-format)
http://java.sun.com/

[17] OASIS. Web services business process execution language version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, April 2007.

[18] Harold E. R. and Means W. S. XML in a Nutshell, 3rd Edition. O’Reilly, September
2004.

[19] Weerawarana S., Curbera F., Leymann F., Storey T., and Ferguson D. Web Services
Platform Architecture. Prentice Hall, 2006.

[20] Open Source. Eclipse classic. http://www.eclipse.org/, 2007.

[21] Mallalieu T. and Carriere J. Enterprise interoperability: .net and j2ee. http://msdn2.
microsoft.com/en-us/library/ms954598.aspx, 2004.

[22] Wil van der Aalst and Kees van Hee. Workflow Management: Models, Methods, and
Systems. The MIT press, 2004.

[23] Wikipedia. Binary xml. http://en.wikipedia.org/wiki/Binary_XML.

[24] Yu and Yang. Continuation-passing enactment of distributed recoverable workflows.
In proceedings of ACM SAC’07.

56

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.eclipse.org/
http://msdn2.microsoft.com/en-us/library/ms954598.aspx
http://msdn2.microsoft.com/en-us/library/ms954598.aspx
http://en.wikipedia.org/wiki/Binary_XML

Appendix A

XML schema for workflow
specification

57

58

Appendix B

A sample workflow specification

59

60

Appendix C

An extended version of the sample
workflow specification

61

62

Appendix D

A list of flight service method
invocations

Create a flight called AA0004 with four available seats:

http://localhost:8080/axis2/services/airline/
setAvailableSeats?inFlightCode=AA0004&availableSeats=4

Get the number of available seats in flight AA0004 :

http://localhost:8080/axis2/services/airline/getAvailableSeats?inFlightCode=AA0004

Get the number of flights:

http://localhost:8080/axis2/services/airline/getNumberOfFlights

See how many reservations there are:

http://localhost:8080/axis2/services/airline/getNumberOfOrders

Check if there is a flight reservation with the reference number 2878822157 :

http://localhost:8080/axis2/services/airline/getFlightOrders?inOrderID=2878822157

63

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 XML
	2.1.1 Definition
	2.1.2 Document
	2.1.3 Schema
	2.1.4 Parser
	2.1.5 Document Object Model (DOM)

	2.2 Web service
	2.2.1 Definition
	2.2.2 Standards
	2.2.3 Composition
	2.2.4 Orchestration

	2.3 Workflow
	2.3.1 Related concepts
	2.3.2 Definition
	2.3.3 Specification
	2.3.4 Workflow engine
	2.3.5 Workflow execution
	2.3.6 Workflow enactment
	2.3.7 Relationships between terms

	2.4 Workflow enactment services
	2.4.1 Definition
	2.4.2 Centralized
	2.4.3 Traditional decentralized
	2.4.4 Continuation-passing

	2.5 CEKK
	2.5.1 A workflow model
	2.5.2 Definition
	2.5.3 Transition rules

	3 Requirements
	3.1 Goal
	3.2 Functional and data requirements
	3.2.1 Functional requirements
	3.2.2 Data requirements

	4 Design
	4.1 Components
	4.1.1 Web application
	4.1.2 Workflow enactment service
	4.1.3 Service providers

	5 Implementation
	5.1 Application scenario
	5.1.1 Actors
	5.1.2 Use cases for booking a trip

	5.2 Travel agency
	5.2.1 User interface
	5.2.2 Application logic
	5.2.3 Resource access
	5.2.4 Service interface

	5.3 Software agents
	5.3.1 Abstract workflow patterns
	5.3.2 Realization of abstract workflow patterns
	5.3.3 CEKK transition rules

	5.4 Service providers
	5.5 Development tools
	5.5.1 Java Development Kit (JDK)
	5.5.2 Eclipse Sofware Development Kit (Eclipse SDK)
	5.5.3 Apache Tomcat
	5.5.4 Apache Ant
	5.5.5 Apahe Velocity
	5.5.6 Apache Axis2
	5.5.7 Apache TCPMon

	5.6 Deployment
	5.6.1 Travel agency
	5.6.2 Software agents
	5.6.3 Service providers

	6 Testing
	6.1 Configuration
	6.2 Running a real test
	6.2.1 A successful reservation
	6.2.2 A failed reservation

	6.3 Evaluation

	7 Conclusion
	References
	Appendices
	A XML schema for workflow specification
	B A sample workflow specification
	C An extended version of the sample workflow specification
	D A list of flight service method invocations

