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Abstract 
 
 
As a result of climate change, the Arctic faunas of the Northeast Atlantic have begun 

to shift in an Atlantic direction. One system exposed to such a change is the Northeast 

Greenland (NEG) Shelf. However, the colonisation route taken by boreal fauna to the 

NEG shelf is unknown. This knowledge is essential to predict to what extent boreal 

fauna will dominate Arctic habitats, and alter ecosystems in the future. For the species 

under study here, colonisation is possible from either the Barents Sea via a northern 

route, or via southern expansion from Iceland and Jan Mayen Island. Here, we used 

microsatellite markers and established reference population genetic data from Atlantic 

cod (Gadus morhua), beaked redfish (Sebastes mentella) and deep-sea shrimp 

(Pandalus borealis) to determine the most likely origin of specimens of these species 

recently collected at the NEG shelf. We demonstrate that all three species originate 

from the Barents Sea, and suggest that a likely colonisation route is via advection 

across the Fram Strait. Our results show that the species composition of Arctic habitats 

can be shaped by the dispersal of pelagic larvae, and that the fauna of the Barents 

Sea can project on to adjacent Arctic habitats with unknown consequences to the 

structure and function of putatively isolated Arctic communities. 

 

Keywords: Atlantic cod, Barents Sea, climate change, population genetics, range 
expansion of fishes 
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Preface 
 

This thesis is written in the form of an extended draft of a scientific article, intended to 

be later submitted to a peer-review journal.  Prior to the article itself is a General 

Introduction – tasked with familiarising the reader with the species, study site and 

techniques utilised therein. After the article is a reflective Future Perspectives section, 

outlying how the work could be extended. 

 

I would like to take the opportunity to formally thank my supervisors, Kim, Jørgen and 

Jon-Ivar, fellow co-authors, Shripathi and Christophe, and the NFH Group for Genetics 

(lead by Kim). I’ve enjoyed two wonderful years of study under your guidance, and 

wherever the future takes me, I will look back with fond memories. I wish to especially 

thank Kim and Jørgen. Kim, for his keenness to involve me in other projects which 

gave me the opportunity to learn additional skills and experience that I am truly grateful 

for, and Jørgen, for his interest in me as a person. I will miss your humour and support. 

 

This work is a contribution to the TUNU-Programme, UiT The Arctic University of 

Norway and was part-funded by a Small Research Grant from The Fisheries Society 

of the British Isles. 
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General Introduction 
 

This thesis uses microsatellites, a type of genetic marker, to understand how boreal 

fauna in the Northeast Atlantic can disperse or migrate into the Arctic habitats of the 

Northeast (NE) Greenland shelf. This General Introduction aims to introduce the 

reader to the study site of the NE Greenland shelf, the three species under study; 

Atlantic cod (Gadus morhua), beaked redfish (Sebastes mentella) and deep-sea 

shrimp (Pandalus borealis), the field of population genetics, and how genetic tools are 

used in the context of this thesis.  

 

The Northeast Greenland Shelf – Study site 
Much of the NE Greenland shelf is ice-covered for 10 months of the year, and 

dominated by the cold southward-flowing East Greenland Current from the Arctic 

Ocean (Fig. 1, Håvik et al. 2017). As a result, it is poorly productive (Wassmann 2011) 

and thus supports a low abundance of fishes – of solely ‘Arctic’ description (i.e. fishes 

that spawn only at sub-zero temperatures) (Christiansen 2012). Compared to their 

boreal counterparts (e.g. Atlantic cod), Arctic fishes are seldom harvested.  Currently, 

only Russia exploit stocks of but a few species, namely, polar cod (Boreogadus saida), 

navaga (Eleginus nawaga) and Arctic flounder (Liposetta glacialis), and are limited by 

their jurisdictional boundaries to the Barents, White and Kara Seas (Karamushko 

2012, Hop & Gjøsæter 2013). Hence, commercial fisheries have not yet been 

established on the NE Greenland shelf and thus a lack of interest (and its associated 

funding) has resulted in a lack of historical knowledge of the site (Christiansen et al. 

2014). Since 2002, the TUNU-Programme, UiT The Arctic University of Norway, has 

undertaken bi-annual expeditions to the shelf (Christiansen 2012), where ice-

conditions have become favourable to allow access. 

 

In general, recent warming (Hoegh-Guldberg & Bruno 2010) has resulted in a loss of 

sea-ice for the entire Arctic (NSIDC 2018). For the NE Greenland shelf, this has 

resulted in the September (Arctic sea-ice extent minimum) marginal-ice zone shifting 

north-westwards. In relation to the stations where the sampling was conducted for this 

thesis, only five out of 17 years so-far this century would have sea-ice covering those 
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stations – with a sea-ice extent that typifies the mean of the 20th century. Thus, in 

recent years, such as those when the sampling for this thesis took place, much of the 

south and east of the shelf was ice-free in September (Fig. 1).  

	
	
	
	
	
	
	
	
	
	
	
	
	
 

 

Changes to water temperature and sea-ice extent raise questions of how both native 

Arctic fauna, and the fauna of adjacent systems (i.e. the Icelandic and Barents Sea) 

will respond. The previous warm period (1920–1960) saw a general northward shift of 

boreal fauna driven by increased primary production (Drinkwater 2006), and while this 

was never evaluated for the NE Greenland shelf, we cannot conclude that it did not 

occur.  

 

If the current warming trend continues, productivity in the Arctic and its adjacent seas 

is predicted to increase (Wassmann 2011, Hollowed et al. 2013, Wiedmann et al. 

2014). Thus, the large NE Greenland shelf, with similar depths to the Barents Sea 

Fig. 1. Thesis sampling stations (green circles) in relation to the mean sea-ice extent for September (white 

shading, source: NSIDC 2018), where one or more stations were ice covered this century (left, years: 

2000, 2006, 2007, 2009 & 2012), and in the years where Atlantic cod (Gadus morhua), beaked redfish 

(Sebastes mentella) and deep-sea shrimp (Pandalus borealis) were observed on the Northeast Greenland 

shelf (right, years: 2015 & 2017). Arrows indicate currents (source: Koltermann & Lüthje 1989, Håvik et 

al. 2017). Atlantic surface currents (red arrows): IMC (Irminger Current), NAC (Norwegian Atlantic 

Current), WSC (West Spitsbergen Current), RAC (Return Atlantic Current). Atlantic sub-surface currents 

(white arrows): GSG (Greenland Sea Gyre). Arctic surface currents (blue arrows): EGC (East Greenland 

Current), JMC (Jan Mayen Current). Arrow size indicates velocity. Maps were created using ESRI ArcMap 

(v. 10.6, www.arcgis.com). 
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(~300 m) may have the potential to support a host of boreal species favoured by 

climate scenarios (Cheung et al. 2010). This could impact native Arctic fauna two-fold, 

directly via restructuring trophic relationships (Hollowed et al. 2013, Fossheim et al. 

2015, Frainer et al. 2017) and indirectly due to the attraction of fisheries (Christiansen 

2017). Potential newcomers to NE Greenland, such as those studied herein are 

commercially important species (Haug et al. 2017). Fisheries may look to capitalise on 

these new stocks and as there is a large proportion of benthic fauna on the shelf (e.g. 

Cottoids, Liparids and Zoarcids, Christiansen 2012), Arctic fauna will turn up as 

bycatch (Christiansen et al. 2014) and habitats will face destruction (Wiedmann et al. 

2014) if trawling methods akin to those in sub-Arctic fisheries are employed (CAFF 

2013, Lynghammar et al. 2013). Though, it is also worth mentioning that top-down 

processes (i.e. enhanced competition with newcomers) are likely to drive Arctic 

species northwards, as observed during the previous warm period (Drinkwater 2006).  

 

Study species and their population structure within the Northeast Atlantic 
Atlantic cod (Gadus morhua, hereafter “cod”), beaked redfish (Sebastes mentella, 

hereafter “redfish”) and deep-sea shrimp (Pandalus borealis, hereafter “shrimp”) are 

among the most economically important commercial fish and invertebrate species, 

having been exploited for centuries (Haug et al. 2017) – hence, the elucidation of their 

population structure has been of interest for management. They are all widely 

distributed throughout the NE Atlantic, co-habiting continental shelves of the Barents 

Sea and Iceland (Bergström 2000, Drinkwater 2005, Saha et al. 2017). The pelagic 

redfish are also distributed off the shelves of the Norwegian Sea (Saha et al. 2017). 

All three species have been reported around Jan Mayen Island (Nilssen & Aschan 

2009, Wienerroither et al. 2011) at  latitude ~71 °N. On the East Greenland Shelf, the 

northernmost report of shrimp is at latitude 70 °N (Bergström 2000) while cod and 

redfish are present south of latitude 67 °N, and 66 °N, respectively (Magnusson & 

Magnusson 1995, Jørgensen et al. 2015).  

 

Several studies have revealed their population structure within these distribution limits, 

using genetic tools. Within the Norwegian and Barents Seas, two populations of cod 

have been genetically described: Norwegian Coastal Cod (NCC), and North East 

Arctic Cod (NEAC) (Westgaard & Fevolden 2007). NEAC (Norwegian = skrei) is 
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characterised by its long-distance spawning migrations, from feeding areas in the 

Barents Sea to spawning locations – mainly off the Norwegian Lofoten Islands (latitude 

~68 °N, Sundby & Nakken 2008). NCC, by contrast, spawn along the entire Norwegian 

coast (Nordeide 1998), inhabiting coastal waters and fjords, and performing, in 

general, relatively short migrations (Hylen 1964). In addition, two populations of cod 

have been genetically described in Icelandic waters (Pampoulie et al. 2015)—Frontal 

and Coastal cod—differing whereby the Frontal ecotype descends deeper than its 

Coastal equivalent to feed at thermal fronts (Neuenfeldt et al. 2013). Cod from Iceland 

is well known to migrate to and from West Greenland, thus only Jan Mayen Island 

remains as a potential fifth population of cod in the NE Atlantic. This remains 

unstudied, though tagging experiments suggest that it represents a fragmented sub-

population of Iceland (Neuenfeldt et al. 2013).  

 

The population structure of redfish is complex, and, in the past has been clouded by 

uncertainties in the taxonomic classification of the genus Sebastes, driven by 

significant hybridisation between described species (Roques et al. 2001). Currently, 

three populations are genetically described in the NE Atlantic, a Norwegian “shallow” 

population that includes redfish distributed throughout the Barents Sea, Norwegian 

Sea and west to Jan Mayen Island, an Icelandic “deep” population inhabiting mostly 

deep waters of the Irminger Sea, southwest of Iceland, and an East Greenland “slope” 

population inhabiting mainly continental slope areas surrounding the Irminger Sea 

(Saha et al. 2017). The populations are named according to how they are assessed 

by the International Council for the Exploration of the Sea (ICES 2015) and how 

samples clustered in analysis (following Saha et al. 2017), not solely due to their depth 

strategies.  

 

Deep-sea shrimp populations of the NE Atlantic are considered to have high gene 

flow, as a function of high connectivity. Martinez et al. (2006) report how shrimp of 

three areas show genetic divergence, namely, the Barents Sea and Spitsbergen, 

Norwegian Fjords, and Jan Mayen Island. Jorde et al. (2015) confirmed this and 

demonstrated further how shrimp from Iceland can also be differentiated from those 

described, and suggest that while high gene flow is apparent, temperature is the 

isolating factor driving population divergence in shrimp.  
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An Introduction to population genetics  
Population genetics is the study of genetic variability (polymorphism) at various levels, 

i.e. among individuals, within populations and among populations. Genetic variability 

is driven by four major evolutionary forces: natural selection, genetic drift, mutation, 

and gene flow (dispersal between populations). These forces can be understood by 

applying the Hardy-Weinberg principle, the equation to which, is expressed as: 

 

p2 + 2pq + q2 = 1 

 

where p and q are the frequencies of dominant or recessive alleles in a two-allele 

system, thus p2 and q2 represent the frequencies of dominant and recessive 

homozygous genotypes, respectively, and 2pq, the frequency of heterozygous 

genotypes.  

 

The Hardy-Weinberg principle or equilibrium (HWE) states that genotype frequencies 

in a population will remain constant from generation to generation in the absence of 

evolutionary forces. Thus, a population not in HWE is subject to evolutionary force(s) 

and depending on the frequency of alleles within a population, the forces at play can 

be identified. For example, mutation and gene flow introduce new alleles into a 

population, natural selection change genes frequencies, and genetic drift changes 

allele frequencies randomly (only in small populations). 

 

Genetic software tools, such as those utilised herein (STRUCTURE, Pritchard et al. 

2000, and snapclust, Beugin et al. 2018) cluster individuals into groups whereby the 

aim is to maximise the HWE within the groups depending on Bayesian or maximum-

likelihood probabilities (Beugin et al. 2018). This clustering allows the inference of 

relationships between groups and uses groups to describe populations according to 

their variability. Alternatively, with prior ecological knowledge of a species under study 

we can pre-emptively collect samples in different locations thought to each represent 

a population, and then compare the relationships between those pre-defined groups.  

 

The term genotype relates to the genetic make-up of an individual and can be obtained 

via a variety of markers (genes or DNA sequences). This section covers 

microsatellites, as used in this thesis, though more commonly used are SNPs (Single 
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Nucleotide Polymorphisms) (see Syvänen 2001). Microsatellites are regions on the 

genome where DNA is repeated in tandem sequences (e.g. CACACACA) (Selkoe & 

Toonen 2006). Repeat units vary, but are generally di-, tri-, tetra- or penta-nucleotide. 

Most importantly, the repeat length varies between individuals and populations i.e. 

they are polymorphic. It is this repeat length that is “scored” whereby the genotype of 

an individual is made up of the allele (variant form of a gene/DNA sequence) length of 

the repeat unit on one chromosome, and another (for diploid organisms).  

 

Variability in repeat length is driven by mutations, which not only occur through the 

classical substitution of one nucleotide for another, but “step-wise”, whereby a repeat 

unit is inserted or deleted during replication by the slippage of DNA polymerase 

(Ellegren 2004). This results in high levels of mutation, and since microsatellites are 

sequences in non-coding regions (introns), there is no selection pressure acting upon 

them, so mutations are retained, though, microsatellites can be subject to so-called 

“hitch-hiking” selection, acting on a nearby gene (Schlötterer 2003). High mutation 

rates translate to high levels of polymorphic variation, which allows the differentiation 

of individuals and populations. High mutation rates themselves are useful in studying 

recent population divergence (Selkoe & Toonen 2006). Microsatellites also enable the 

distinction between homozygotes (allele of the same repeat length) and heterozygotes 

(alleles of two different repeat lengths) and are polymerase chain reaction (PCR)-

based, thus only small amounts of DNA are required, which can be highly degraded 

(e.g. ancient DNA). A major disadvantage of microsatellites is homoplasy – that two 

identical genotypes may be observed but may not be identical-by-descent (Estoup et 

al. 2002). This occurs due to high mutation rates whereby a single repeat unit is gained 

or lost, and results in an underestimation of population differentiation.  

 

Use of population genetic tools to assign individuals to populations 
Population genetic information can be used to answer a variety of questions, for 

example as herein to identify the population origin of unknown individuals. Here, it is 

explained how genetic tools can be used to address this. The population genetic 

structure of the species under study here has been elucidated (c.f. Westgaard & 

Fevolden 2007, Jorde et al. 2015, Saha et al. 2017). Those populations can be used 

to “assign” individuals of an unknown population i.e. how closely do the genotypes of 

each unknown individual resemble each species known population.  
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This task is complicated by low-levels of population differentiation (Nielsen et al. 2001), 

as expected for studies utilising microsatellites on marine species (e.g. FST <0.01, 

Ward et al. 1994). This is linked to a variety of factors e.g. high gene flow among 

populations, huge effective population sizes resulting in almost no genetic drift and 

thereby very limited divergence among populations, and overlapping spawning areas, 

which are often in transit (Ward et al. 1994, Hauser & Ward 1998). Despite population 

differentiation being ‘weak’ for a variety of species (e.g. Atlantic herring Clupea 

harengus: McPherson et al. 2001, American lobster Homarus americanus: Benestan 

et al. 2015), including those under study here (Westgaard & Fevolden 2007, Jorde et 

al. 2015, Saha et al. 2017), it has been shown to be statistically significant. Thus, high 

assignment success is possible, if the study design is optimal. This often means the 

use of many markers (e.g. >15 microsatellites recommended) and large sample sizes 

(e.g. n = ~100) to capture the entire genotypic variation within a population (Hansen 

et al. 2001). Nielsen et al. (2001) and Roques et al. (1999) are examples of assignment 

using microsatellites, for cod, and redfish, respectively.  

 

A disadvantage of microsatellites not yet mentioned is that they are subject to scoring 

errors. These impact the validity of the data as they obscure the true genotype 

(DeWoody et al. 2006, Selkoe & Toonen 2006). There are three forms of scoring 

errors: null alleles, stuttering and large allele dropout. Null alleles occur because of 

mutations at a primer site which cause an allele to not amplify during PCR and thus, 

to not be represented. This results in an individual falsely appearing as a homozygote 

(Selkoe & Toonen 2006). Stuttering is caused by the slippage of DNA polymerase 

during PCR, resulting in an allele appearing to have less repeats than in reality (Selkoe 

& Toonen 2006). Large allele dropout occurs as a result of low-annealing efficiency 

for large fragments (alleles) during PCR, also causing genotypes to appear, falsely, 

as homozygotes (Wang et al. 2012). Software tools (e.g. MICROCHECKER, Van 

Oosterhout et al. 2004) have been designed to identify scoring errors (Selkoe & 

Toonen 2006) though, null alleles are notoriously difficult to detect as there is no 

difference between them and homozygotes – which occur naturally in populations to 

varying degrees (Dakin & Avise 2004, Van Oosterhout et al. 2004). Despite some 

studies (e.g. Carlsson 2008) that claim null alleles are unlikely to impact the outcome 

of assignment analysis, it is often routine to omit these microsatellites (DeWoody et 

al. 2006).  
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The screening process for scoring errors is often extended to other sources of bias, 

biases that cause the misrepresentation of the genome, rather than the incorrect 

typing of it. These include, but are not limited to, linkage disequilibrium, non-neutrality, 

and deviation from HWE. If two or more markers are correlated or non-randomly 

associated, they are said to be in linkage disequilibrium (Manel et al. 2005). Non-

neutrality, as previously mentioned, are cases where markers are subject to natural or 

sexual selection – for microsatellites, this is an indirect process (Schlötterer 2003). 

Non-neutrality is an issue for population genetic studies if markers under selection are 

not correlated with neutral markers. Hence, they do not serve as a neutral 

representation of the genome of an individual. Finally, deviation from HWE is often 

explored, which can be an alternative method to identify an excess of homozygotes 

i.e. null alleles (e.g. Jorde et al. 2015). Studies differ in how they treat potential sources 

of bias due to a trade-off between retaining suspect markers and therefore statistical 

power, or the inverse (DeWoody et al. 2006). 

 

Several genetic tools are routinely used to assign individuals to populations. These 

are either model-based methods, such as STRUCTURE, snapclust and GeneClass2 

(Piry et al. 2004), or geometric methods such as Discriminant Analysis of Principle 

Components (DAPC) (Jombart et al. 2010). Model-based methods compute a 

likelihood (Bayesian or Maximum-likelihood) probability that unknown genotypes 

belong to a group/population, given a population structure and model of evolution 

(HWE) (Pritchard et al. 2000, Beugin et al. 2018). These methods provide group 

membership probabilities that genuinely reflect the probability that an unknown 

individual belongs to each group/population (Beugin et al. 2018). In contrast, DAPC 

aims to visualise cluster (group/population) diversity in a reduced space and estimate 

group assignment probabilities. DAPC probabilities, therefore, reflect genetic 

proximities, and cannot be interpreted as the probability that an individual belongs to 

a given population (Beugin et al. 2018). Hence DAPC should not be used principally 

as an assignment tool (e.g. Bonanomi et al. 2016).  
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As a result of climate change, the Arctic faunas of the Northeast Atlantic have 
begun to shift in an Atlantic direction (Fossheim et al. 2015, Kortsch et al. 2015, 
Haug et al. 2017). One system exposed to such a change is the Arctic Northeast 
Greenland Shelf. However, the colonisation route taken by boreal fauna to this 
area is unknown. This knowledge is essential to predict to what extent boreal 
fauna will dominate Arctic habitats, and alter ecosystems, in the future (Murphy 
et al. 2016). Here we show that Atlantic cod (Gadus morhua), beaked redfish 
(Sebastes mentella), and deep-sea shrimp (Pandalus borealis) specimens found 
on the Northeast Greenland shelf originate from the Barents Sea, and suggest 
that a likely colonisation route is via advection across the Fram Strait. Our 
results indicate that the species composition of Arctic habitats can be shaped 
by the dispersal of pelagic larvae, and that the fauna of the Barents Sea can 
project onto adjacent Arctic habitats with unknown consequences to the 
structure and function of putatively isolated Arctic communities (Kortsch et al. 
2015, Christiansen 2017, Frainer et al. 2017). 
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Introduction 
 
The Arctic is warming at twice the global average rate (Hoegh-Guldberg & Bruno 

2010). Increases in water temperature and loss of sea-ice (Polyakov et al. 2017, 

Smedsrud et al. 2017) are expected to expand the distribution of boreal fauna 

northwards (Drinkwater 2005, Cheung et al. 2010, Hollowed et al. 2013), and that has 

already become apparent in the Barents Sea (Fossheim et al. 2015, Kortsch et al. 

2015, Haug et al. 2017). Atlantic mackerel (Scomber scombrus) exemplify this trend, 

having recently displayed an exceptional northward shift in distribution to Spitsbergen 

(Berge et al. 2015, Mecklenburg et al. 2018). Novel species in the Arctic, such as the 

predatory Atlantic mackerel, pose a considerable threat to native Arctic fauna and thus 

to the Arctic ecosystem, as they restructure trophic relationships (Kortsch et al. 2015, 

Christiansen 2017, Frainer et al. 2017). 

 

In 2015, boreal species, i.e. juvenile Atlantic cod (Gadus morhua), juvenile beaked 

redfish (Sebastes mentella), and adult deep-sea shrimp (Pandalus borealis), were 

observed on the Northeast (NE) Greenland shelf (latitudes 74–77 °N) for the first time 

since sampling began in 2002 (Christiansen et al. 2016). This was well outside of their 

known ranges of distribution (Bergström 2000, Drinkwater 2005, Saha et al. 2017). 

However, the route which the species took to colonise the site, was unknown. This 

study adds to Christiansen et al.’s (2016) observations with further finds of the same 

species in 2017 and aims to determine their population genetic origin. This knowledge 

will allow us to infer the colonisation routes taken by the three species, required by 

climate models (e.g. Cheung et al. 2010) to predict which species will likely ensue, 

and to what extent boreal fauna will dominate Arctic habitats in the future (Murphy et 

al. 2016).  

 

Atlantic cod (hereafter, “cod”), beaked redfish (hereafter, “redfish”) and deep-sea 

shrimp (hereafter, “shrimp”) are widely distributed throughout the NE Atlantic, co-

habiting continental shelves of the Barents Sea and Iceland (Bergström 2000, 

Drinkwater 2005, Saha et al. 2017). In addition, redfish is also distributed off the 

shelves of the Norwegian Sea (Saha et al. 2017). All three species have been reported 

around Jan Mayen Island (Nilssen & Aschan 2009, Wienerroither et al. 2011) at  

latitude ~71 °N. On the East Greenland Shelf itself, the northernmost report of shrimp 
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is at latitude 70 °N (Bergström 2000) while cod and redfish have only been found as 

far north as latitudes 67 °N, and 66 °N, respectively  (Magnusson & Magnusson 1995, 

Jørgensen et al. 2015) – over 1000 km south of our observations in NE Greenland.  

 

We consider the NE Greenland shelf to be subject to colonisation along two main 

routes, either via migration against the East Greenland Current (Håvik et al. 2017), 

along the East Greenland shelf from Iceland, or from the Barents Sea via advection 

(Hunt et al. 2016) by the Return Atlantic Current (Bourke et al. 1988, Eldevik et al. 

2009, Håvik et al. 2017) – the physical connector between Spitsbergen and NE 

Greenland, across the abyssal plains of the Fram Strait. High connectivity within the 

Barents Sea, driven by the Norwegian Atlantic Current along the Norwegian coast, 

and the West Spitsbergen Current (Eldevik et al. 2009, Håvik et al. 2017) along the 

Barents Sea shelf-break, is well documented to result in the advection of cod, redfish, 

and shrimp larvae from the Norwegian coast and the Barents Sea proper to 

Spitsbergen (Føyn 2002, Pedersen et al. 2003, Drevetnyak & Nedreaas 2009). On the 

other hand, cod, redfish, and shrimp larvae from Iceland are known to advect with the 

East Greenland Current and via the Irminger Current to West Greenland (Magnusson 

& Magnusson 1995, Hedeholm et al. 2017). Moreover, as neither cod, redfish, nor 

shrimp are known to migrate as juveniles (Drevetnyak & Nedreaas 2009, Ottersen et 

al. 2014), we hypothesize that the three species found on the NE Greenland shelf are 

advected across the Fram Strait by the Return Atlantic Current and therefore originate 

from the Barents Sea.  
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Materials & Methods 
 
Sampling 
Specimens of juvenile cod (Gadus morhua, n = 7, body weight [bw]: 206–762 g), 

juvenile redfish (Sebastes mentella, n = 32, bw: 12–82 g), and adult shrimp (Pandalus 

borealis, n = 40) were caught via bottom trawl (c.f. Christiansen et al. 2016) from 2007 

to 2017 on the Northeast (NE) Greenland shelf (latitudes 74–79 °N), well outside of 

their known distributional range (Table 1, Fig. 1). In addition, 0-group cod (n = 3) and 

0-group redfish (n = 32) were caught via mid-water trawls (“Harstad” trawl, ~20 min, 

~3 Knots) over the Fram Strait (Table 1, Fig. 1) and are included in the analysis to 

support colonisation route hypotheses. Gill or muscle tissue samples from each 

specimen were preserved at sea in 96% ethanol and stored at -20 °C until further 

processing. Sampling was conducted using the R/V Helmer Hanssen as part of the 

TUNU-Programme (Christiansen 2012). A subset of redfish fry and shrimp was used 

for genotyping, otherwise, genotyped individuals represent all specimens caught in 

the area. 

 

 
 
 
 
 

Table 1. Details of assignment samples for each species. Station: p = Pelagic, b = Bottom, 

Year/Month = time of sampling. Totals for each species represent the number of genotyped 

individuals. Mean temp. = in situ sampling temperature obtained from CTD-sensor (Seabird 

911). 

Station 
# 

Latitude Longitude Year Month 
Mean 
temp. 

(°C) 

Mean 
depth 
(m) 

Cod Redfish Shrimp 

178 p 76.55N 03.03W 2007 10 2.0 29 1  - - 

1312 b 74.33N 14.08W 2015 8 1.8 300 -  11 - 

1321 b 75.09N 13.38W 2015 8 1.1 213 5  2 - 

1339 b 76.14N 09.03W 2015 8 1.6 280 1  7 - 

1353 b 77.28N 05.49W 2015 8 0.3 385 1  11 7 

1278 p 77.37N 02.24E 2017 9 5.6 34 -  16 - 

1338 b 76.00N 14.18W 2017 9 0.1 350 -  1 33 

1381 p 78.86N 00.63W 2017 9 1.2 26 2  16 - 

Genotyped individuals in total    10  64  40 
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Reference data 
Genotyped reference populations (Table 2) for the Northeast Atlantic were obtained 

from several studies (cod: Westgaard & Fevolden 2007, redfish: Saha et al. 2017, 

shrimp: Jorde et al. 2015). To ensure the major populations of each species in the 

Northeast Atlantic were well represented, the cod reference populations were 

supplemented by genotyping to obtain a representative cod population from Iceland, 

following the same procedure as listed below.  

 

 

 

Fig. 1. Stations (green circles) of observation for Atlantic cod (Gadus morhua), beaked redfish (Sebastes 

mentella) and deep-sea shrimp (Pandalus borealis) (Table 1). Arrows indicate currents (Source: 

Koltermann & Lüthje 1989, Håvik et al. 2017). Atlantic surface currents (red arrows): IMC (Irminger 

Current), NAC (Norwegian Atlantic Current), WSC (West Spitsbergen Current), RAC (Return Atlantic 

Current). Atlantic sub-surface water (white arrows). Arctic surface currents (blue arrows): EGC (East 

Greenland Current), JMC (Jan Mayen Current). Arrow size indicates velocity. Map created using ESRI 

ArcMap (v. 10.6, www.arcgis.com). 
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Table 2. Details of reference samples for each species. Abbr. = the abbreviated population name, 

Year/Month = time of sampling. n = sample size (number of genotyped individuals).	

Species Population Abbr. Year Month n Latitude Longitude 
Cod Iceland ICE 2013 4 93 63.57N 20.61W 
 Norwegian Coastal Cod NCC 2002 4 86 69.30N 18.65E 
 North East Arctic Cod NEAC 2005 12 47 74.10N 21.10E 

 North East Arctic Cod NEAC 2001 12 90 78.22N 14.65E 

Redfish Iceland Deep IDP 2012 8 87 65.46N 30.39W 

 South-East Greenland Slope EGS 2011 3 133 64.24N 35.14W 

 Norway Shallow NSH 2006 10 91 72.18N 10.25E 

Shrimp Iceland ICE 2011 7 92 67.28N 22.67W 

 Jan Mayen Island JMA 2011 10 88 70.61N 08.43W 
 Norway NOR 2010 10 94 64.75N 11.10E 
 Spitsbergen West SPW 2010 8 85 79.51N 10.29E 

 
 
Microsatellite genotyping 
DNA was isolated from ethanol-fixed gill or muscle tissue using the DNeasy Blood and 

Tissue Kit (Qiagen, Hilden, Germany) or the E-Z 96 Tissue DNA Kit (Omega Bio-Tek 

Inc., Norcross, GA, USA) following the manufacturer’s instructions.  

 

Microsatellite loci were arranged in multiplexes (Table S1), and amplified using 

polymerase chain reaction (PCR). PCR reactions (2.5 μL) contained ca. 1 x Qiagen 

Multiplex Master Mix, 0.1–1.0 μm primer, and 15–25 ng DNA. The 5′ end on the 

forward primers was labelled with a fluorescent dye by the manufacturer (Applied 

Biosystems, Foster City, CA, USA). Amplification was performed in a GeneAmp 2700 

or 9700 thermal cycler (Applied Biosystems). PCR profiles were applied as per 

published protocols (cod: Westgaard & Fevolden 2007, redfish: Saha et al. 2017, 

shrimp: Pereyra et al. 2012, Appendix S1). PCR products were separated using an 

ABI 3130XL sequencer and GeneScan 500-LIZ (Applied Biosystems) was used as 

internal size standard. Alleles were automatically binned using GENEMAPPER 

software (v. 3.7, Applied Biosystems) and double-checked manually. Negative 

controls employed for extraction, amplification and fragmentation reported no 

contamination between samples. Replicates (33%) reported the repeatability and 

consistency of genotyping to be 100%.  
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Reference data screening 
Prior to analysis, reference genotypes that showed no amplification in >10% of loci 

were removed. This achieved amplification success >98% for each locus. All 

microsatellite loci were assessed for the presence of potential scoring errors, deviation 

from Hardy-Weinberg equilibrium (HWE), and non-neutrality (Appendix S1). As the 

presence of scoring errors such as null alleles may introduce ambiguity around the 

true origin of the NE Greenland specimens, we ran analyses under two conditions, (1) 

removing loci showing potential scoring errors, and (2) inclusive of all loci (Appendix 

1, Table S1). This enabled us to retain loci subject to potential scoring errors where 

both conditions produced concurrent results, and to therefore minimise the loss of 

statistical power. 

 

To increase the power of assignment (see Appendix S2 for evaluation), only 

individuals with membership coefficients (q) lower/higher than 0.2/0.8 were used to 

establish reference population datasets (c.f. Vähä & Primmer 2006, Appendix S3, 

Table S3). As weak population differentiation was expected within all datasets, we 

adopted a conservative approach to infer q (Hubisz et al. 2009) using a no-admixture 

model as implemented in the Bayesian clustering method, STRUCTURE (v.2.3.4, 

Pritchard et al. 2000). This approach has been shown not to bias the true structuring 

in datasets with weak genetic differentiation (Hubisz et al. 2009). STRUCTURE was 

run assuming no admixture (NOADMIX = 1), correlated allele frequencies 

(FREQSCORR = 1) and utilising locality data (LOCPRIOR = 1). The program was run 

using K = number of reference populations, for 10 iterations, each with a burn-in period 

of 500,000 and 500,000 MCMC replicates. CLUMPAK (Kopelman et al. 2015) was 

used to merge runs (merged barplots: Appendix S3, Fig. S3), and reported similarity 

scores >0.95.  

 

Assignment tests 
STRUCTURE was employed as the principle tool to assign the NE Greenland 

individuals to previously identified populations. For this, STRUCTURE was run under 

the assignment mode (POPFLAG = 1), and assumed no admixture (NOADMIX = 1), 

correlated allele frequencies (FREQSCORR = 1) and utilised locality data (LOCPRIOR 

= 1). The program was run using K = number of reference populations, for 10 

iterations, each with a burn-in period of 500,000 and 500,000 MCMC replicates. 
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CLUMPAK reported run similarity scores >0.95. STRUCTURE barplots were 

visualised in R (v. 3.2.3, R Core Team 2018) using the pophelper package (v. 2.2.5, 

Francis 2017).  

 

The maximum-likelihood clustering tool snapclust (Beugin et al. 2018), within the R 

package adegenet (v. 2.1.1, Jombart 2008), was used to corroborate the membership 

probabilities output by STRUCTURE. The function snapclust was run without 

optimization, and priors for the NE Greenland individuals were set to the reference 

population identified by STRUCTURE as the most probable origin. Runs used zero 

iterations (max.iter = 0) and membership coefficients were interpreted as output.  

 

Discriminant and distance tests 
As an exploratory tool, Discriminant Analysis of Principle Components (DAPC) 

(Jombart et al. 2010), within the R package adegenet, was used to explore how the 

NE Greenland individuals relate to the reference populations. DAPC is a geometric 

clustering method free of HWE and linkage disequilibrium (LD) assumptions, that 

attempts to maximise the inter-variation between clusters while minimising the intra-

variation observed within clusters.  

 

DAPC clusters were set a priori to the number of reference populations plus one, 

including NE Greenland individuals as part of the DAPC model. The x.val function 

indicated the number of principle components (PC’s) to retain, but when this method 

resulted in the selection of too many PC’s, which would lead to overfitting, the 

optim.a.score function was preferred, based on an initial selection of all PC’s 

before refinement. All discriminant functions were retained due to the few clusters 

present (c.f. Jombart 2008). 

 

To identify the genetic distance between the NE Greenland individuals and reference 

populations, neighbour-joining trees were produced using the aboot function in the R 

package poppr (v. 2.3.0, Kamvar et al. 2015). This method utilised Nei’s Distance (Nei 

1987) and 1000 bootstrap replicates. Due to the small sample size of NE Greenland 

cod, neighbour-joining trees were only produced for redfish (n = 64) and shrimp (n = 

40) data.  
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Impact of potential scoring errors on assignment 
Pre-analysis testing where loci subject to potential scoring errors were removed from 

analyses resulted in the same outcome as analysis retaining all loci (Appendix S4). 

We therefore suggest that potential scoring errors had little impact on assignment and 

thus present our analyses utilising all loci available.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



	20 

Results 
 
Overall, we find that all cod (n = 10), and 95% of redfish (n = 61) caught on either the 

NE Greenland shelf or in the Fram Strait, are genetically assigned by STRUCTURE 

to the North East Arctic Cod (NEAC) population (Fig. 2c), and Norwegian Shallow 

(NSH) redfish population (Fig. 2f), respectively. All shrimp (n = 40) caught on the NE 

Greenland shelf, are genetically assigned to the Spitsbergen West (SPW) shrimp 

population (Fig. 2i). Assignment with STRUCTURE was supported by high 

membership probabilities (q >0.8), which suggests that it is high-likely that the three 

species on the NE Greenland shelf originate from the Barents Sea.  

 
 

 
 

 
 
 
 

 
 

 

 
 

Fig. 2. Genetic evidence of Atlantic cod (Gadus morhua) (a, b, c), beaked redfish (Sebastes mentella) 

(d, e, f) and deep-sea shrimp (Pandalus borealis) (g, h, i) specimens found off Northeast Greenland 

originating from the Barents Sea. Maps (a, d, g) show species known distribution extent (shaded 

colours) in the Northeast Atlantic, catch sites of individuals in Northeast Greenland (NEG) waters (full 

circles), reference samples (hollow circles) and a proposed colonisation route (arrow). DAPC 

scatterplots (b, e, h) show how the NEG groups relate to the reference populations of the Northeast 

Atlantic Ocean. DAPC cluster ellipses were set to contain 95% of genotypes. DAPC scatterplots 

explain 94% (b), 92% (e) and 97% (h) of the total variation observed. STRUCTURE barplots (c, f, i) 
show membership probabilities (q) for NEG individuals based on the reference populations used. For 

abbreviations refer to Table 2. Maps were created using ESRI ArcMap (v. 10.6, www.arcgis.com). 
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Individual assignment tests with STRUCTURE were generally highly consistent with 

those of snapclust, where 90% of cod tests, 98% of redfish tests and 75% of shrimp 

tests formed a consensus between the two approaches (Appendix S5, Table S5). Of 

those consistent tests, all individuals of the three species under study were assigned 

with a greater probability to populations in the Barents Sea than populations from any 

other location. The exception was three out of 60 (5%) of redfish individuals (Appendix 

S5, Table S5.2). There was no difference in the assignment outcome between cod or 

redfish individuals caught on the NE Greenland shelf and in the Fram Strait, as such, 

they are presented as a single group. 

 
DAPC clustered the NE Greenland group of the three species closely with the 

corresponding Barents Sea populations as indicated by the assignment testing (Fig. 

2c,f,i). The 95% DAPC cluster ellipses between NE Greenland and these population 

clusters overlapped considerably, though overlap was also evident between the 

reference population clusters, most significantly for the cod and shrimp clusters. The 

ellipse centre for the NE Greenland redfish and shrimp groups falls most closely to the 

centre of their Barents Sea population clusters whereas the ellipse centre for the NE 

Greenland cod falls closer to the extremes of the NEAC population than its centre (Fig. 

2b). The redfish and shrimp neighbour-joining tree’s resulted in the same grouping as 

the assignment testing and DAPC scatterplots, and report a Nei’s Distance of <0.02 

between the redfish caught in NE Greenland and the Norwegian Shallow population 

(Fig. 3a). Nei’s Distance was comparatively low (0.02) between the Norwegian and 

Icelandic shrimp reference populations as between the shrimp NE Greenland group 

and Spitsbergen West population (Fig. 3b). Bootstrap values (>88% and >73%) on 

both trees suggest good reproducibility. 

 

 



	22 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Neighbour-joining trees utilising Nei’s distance, for beaked redfish (Sebastes mentella) (a) and 

deep-sea shrimp (Pandalus borealis) (b) NE Greenland (NEG) groups and reference populations. For 

abbreviations refer to Table 2. Branches are labelled with bootstrap values using 1000 iterations. 
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Discussion  
 

The Northeast Greenland Shelf–Barents Sea connection 
Our results show that the NE Greenland shelf is readily colonized by cod, redfish and 

shrimp from the Barents Sea, probably advected across the Fram Strait by the Return 

Atlantic Current, as shown by recent simulation studies (Koszalka et al. 2011, Jorde 

et al. 2015, Strand et al. 2017). Advection plays an important role in the northward 

transport of plankton in the Barents Sea, via the West Spitsbergen Current (Hunt et 

al. 2016) and because up to 50% of this Atlantic water is estimated to cross the Fram 

Strait (Rudels 1987, Manley 1995, de Steur et al. 2014), the Return Atlantic Current is 

a likely connector between the Barents Sea and the NE Greenland shelf. The inflow 

of Atlantic water in the Barents Sea has doubled since 1980 (Oziel et al. 2016), 

resulting in an increase in the West Spitsbergen Current temperature (Beszczynska-

Möller et al. 2012), hence, there is reason to believe that the faunal connection across 

the Fram Strait has tightened concordantly in recent years. 

 

While the NE Greenland shelf is dominated by Arctic water carried southward by the 

East Greenland Current, an increase in water temperature may explain the loss of 

sea-ice (Polyakov et al. 2017, Smedsrud et al. 2017), and the occurrence of boreal 

species such as cod, redfish and shrimp, along the eastern portion of the NE 

Greenland shelf and shelf break. The copepod Calanus finmarchicus is the major prey 

for young cod (Astthorsson & Gislason 1995, Sundby 2000) and its abundance during 

the last warm period in the North Atlantic (1920–1960) has likely driven the range 

expansion of cod and other boreal species (Drinkwater 2006). Svensen et al. (2011) 

report C. finmarchicus in relatively low abundance on the NE Greenland shelf in 

autumn, but in light of the West Spitsbergen Current warming it is likely that the 

abundance of this important prey species will increase in the Fram Strait and on the 

NE Greenland shelf (Weydmann et al. 2018).  

 

Life histories and colonisation routes 
North East Arctic Cod (NEAC), the population origin of the cod found on the NE 

Greenland shelf, utilises the Barents Sea as a nursery and feeding area and 

undertakes a counter-current migration against the Norwegian Atlantic Current to the 

spawning grounds along the Norwegian coast (latitudes 62–71 °N) (Sundby & Nakken 
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2008). Spawning occurs during March and April in relatively shallow water, where eggs 

and larvae drift by surface currents (Sundby et al. 1989), such as the Norwegian 

Atlantic Current, and disperse northwards and eastwards into the Barents Sea (Vikebø 

et al. 2005). Until late September, the pelagic larvae (0-group) are highly-mobile and 

retained in the upper-mixed layer. Depending on weather patterns and thus local wind-

forcing, up to 1/3 of some 0-group year-classes is advected off the Norwegian and 

Barents Sea shelf and disperses over the Norwegian Sea (Sundby et al. 1989). 0-

group cod have also been observed west of Spitsbergen (Føyn 2002).  

 

We propose that 0-group cod advected off the shelf by wind-forcing (Vikebø et al. 

2007, Strand et al. 2017) either outside of their spawning grounds, or at any point until 

their northern-most report west of Spitsbergen are likely to cross the Fram Strait by 

the Return Atlantic Current. In October, when cod larvae are >80 mm in total length 

(TL), they gain motility, descend out of the pelagic layer, and become demersal 

(Yaragina et al. 2011). Therefore, for our theory to hold true, 0-group cod from the 

Norwegian coast / Barents Sea must advect to the NE Greenland shelf by October of 

their spawning year. Our observations of 0-group cod just off the NE Greenland shelf, 

in September of 2007 and 2017, demonstrate that this is achievable.  

	

Redfish, on the other hand, are ovoviviparous, i.e. eggs are fertilized, develop and 

hatch internally and larvae are extruded (Sorokin 1961). Larval extrusion occurs along 

the continental shelf break of the Norwegian and Barents Seas from latitudes 64–74 

°N between March and June (Sorokin 1961, Cadrin et al. 2010) peaking in mid-April 

(Saborido-Rey & Nedreaas 2000). Larvae are extruded at different depths, resulting 

in transport to all directions, with most believed to drift north along the continental shelf 

break (Saborido-Rey & Nedreaas 2000). However, like cod, redfish larvae have been 

observed in Atlantic water west off the continental shelf, and as far north as 

Spitsbergen (Hylen et al. 1995, Drevetnyak & Nedreaas 2009). In this study, we 

observed large numbers of 0-group redfish over the Fram Strait with a genetic 

signature of the Norwegian-Barents Sea population. Redfish larvae are pelagic until 

40–50 mm TL at age 4–5 months when they gain motility and descend to deeper 

waters by the autumn of their first year (Kelly & Barker 1961). The pelagic larval phase 

enables long distance dispersal of redfish dictated by currents.  
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We propose that the 0-group redfish found over the Fram Strait were advected north 

to Spitsbergen along the shelf break by the West Spitsbergen Current, before crossing 

the Fram Strait by the Return Atlantic Current. The juvenile redfish found on the NE 

Greenland shelf had reached their destination along this route by the time they were 

4–5 months old. 

 

Shrimp found on the NE Greenland shelf were shown to originate from the Barents 

Sea as a whole (see sampling of Jorde et al. 2015). Shrimp spawns in autumn 

throughout the Barents Sea and their larvae hatch in spring, ascending from the 

bottom to depths between 0–50 m within a 24-hour period (Pedersen et al. 2003, 

Garcia 2007). Shrimp larvae are highly-mobile and are distributed according to 

currents until they are 2–3 months of age when they settle as post-larvae (Shumway 

et al. 1985, Bergström 2000). Pedersen et al. (2003) simulated shrimp larval drift within 

the Barents Sea, over three years and demonstrated that larvae were moved 

maximum distances of 330 km before settling, but often much less owing to a relatively 

short pelagic larval phase. Thus, we find it more likely that the NE Greenland shrimp 

originates from the north-west Barents Sea, i.e. at Spitsbergen, than the northern 

Norwegian Coast or central-eastern Barents Sea. If we assume this to be true, the 

most likely colonisation route is via the Return Atlantic Current, as is the case with cod 

and redfish.  

 

Retention or homing? 
What becomes of cod, redfish and shrimp arriving at the NE Greenland shelf? The 

most likely scenario, for fishes, is that the NE Greenland shelf functions as a nursery 

ground, while the Barents Sea remains the preferred spawning habitat. This implies 

both species are able to home, long-distance and return to the Barents Sea as adults 

– and would explain why, so far, we have only observed juvenile fish on the NE 

Greenland shelf.  

 

Cod undertakes counter-current spawning migrations of ~1000 km in both the Barents 

Sea (Sundby & Nakken 2008), and from West Greenland to Iceland (Jamieson & 

Jónsson 1971). Although the Fram Strait represents a barrier with depths of >3000 m, 

cod are able to perform pelagic migrations (Neuenfeldt et al. 2013). This behaviour 

has been noted from tagging experiments where specimens found at Jan Mayen 
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Island and the Norwegian coast migrated over deep water to Iceland and the Faroe 

Islands, respectively (Iversen 1934, Holden 1960). Redfish are not known to perform 

long-distance migrations (Sorokin 1961), although they are pelagic as adults and do 

move between the Barents Sea and Jan Mayen Island over deep water of the 

Norwegian Sea (Saha et al. 2017). Hence, it is possible that as adults, redfish seek 

deeper waters of the Greenland Sea and return to the Barents Sea. 

 

Shrimp is the only species we observed as adults, and with eggs, implying that they 

have, or will form a fragmented sub-population. Our results show the genetic distance 

between NE Greenland and Barents Sea shrimp to be similar to that between Icelandic 

and Norwegian shrimp which is either a function of high connectivity or an indication 

of a recently established sub-population of NE Greenland shrimp – and we are unable 

to rule out either possibility.  

 

Climate change and range expansions 
Prior to a discussion on climate-driven change, a historical perspective can be 

insightful, to first avoid misperceptions, but also to understand how ecosystems were 

resilient to change in the past and, therefore how likely they will be effected by change 

in the future (Drinkwater 2006). The case study of cod allows the best understanding 

of this. Studies from the current warm period (1990–present) allude to cod distribution 

within the Barents Sea shifting north as a result of warming (Wassmann et al. 2011, 

Fossheim et al. 2015, Vihtakari et al. 2018). Upon inspection, however, this should be 

understood as a reoccurring phenomenon since cod has supported a substantial 

fishery in the north-west Barents Sea since the 1870’s (e.g. ~50 million individual cod 

landed per year in the late 19th century, Iverson 1923). Likewise, cod were distributed 

throughout the northern Barents Sea during the last warm period of the 1920–1960’s 

(Drinkwater 2006). Moreover, the recent find of a 450-year-old cod in multi-year ice in 

the Canadian High-Arctic (Crawford et al. 2018) may further indicate how far north this 

species was distributed in the past.  

 
In contrast to the Barents Sea, the NE Greenland shelf is severely understudied 

(Christiansen et al. 2014). Because of this, biodiversity baselines are fragmentary with 

no timeline (Christiansen 2012), and it is difficult to establish whether our observations 

reflect a recent shift driven by climate change or constitute a common component of 
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the NE Greenland Shelf fauna not previously observed due to a lack of sampling. 
Despite this, the Barents Sea is the most productive ecosystem in the Northeast 

Atlantic (Wassmann 2011) and presently supports the historically largest stock of cod 

(Yaragina et al. 2011). Therefore, in the future we could expect to find more boreal 

species, and greater numbers thereof, on the NE Greenland shelf. Christiansen et al. 

(2016) observed the novel finding of a fourth species on the NE Greenland shelf, 

capelin (Mallotus villosus), which was not analysed as part of this study. In addition, 

Atlantic herring (Clupea harengus), Atlantic haddock (Melanogrammus aeglefinus) 

and Atlantic mackerel (Scomber scombrus) are present in Spitsbergen waters. So, the 

three species studied herein are clearly not alone in being capable of entering the NE 

Greenland shelf. The simulation study by Strand et al. (2017) demonstrates that, 

depending on year, between 2.4% and 12% of 0-group North East Arctic Cod year 

classes may be transported northwest along the proposed route (Fig. 2a), which 

suggests that there is potential for a “boreal invasion” of NE Greenland in the future 

along this route, if conditions promote survival.  

 

Implications and future work 
Advection has the potential to restructure Arctic ecosystems (Hunt et al. 2016) and the 

route identified here suggests that the boreal fauna of the Barents Sea may be further 

projected onto the NE Greenland shelf by advection in the future. As a result, we can 

expect trophic relationships to be restructured (Frainer et al. 2017) as boreal 

generalists such as cod are favoured by climate scenarios (Cheung et al. 2010, Wisz 

et al. 2015a). Cod, as an example, is a species well-known to predate polar cod 

(Boreogadus saida), other Arctic fishes and zoobenthos (Link et al. 2009, Christiansen 

2017), and so, as a figure-head of boreal range expansions into the Arctic, gives a 

glimpse of what is to come for native Arctic fauna.  

 

The colonisation mechanisms identified here form a drive to improve our 

understanding of pelagic ecosystem function and structure which is needed to predict 

the impact of change (Murphy et al. 2016). Further work on this subject should utilise 

these mechanisms to predict the composition, structure and function (e.g. Frainer et 

al. 2017) of the Arctic. This work should account for a variety of factors but most 

notably should consider how likely habitats such as the NE Greenland shelf are to 

sustain incoming species (c.f. Drinkwater 2006). Recent studies on the zooplankton 
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present on the NE Greenland shelf (e.g. Svensen et al. 2011), for example, are limited. 

In addition, studies should consider the impact of ocean warming on spawning location 

(c.f. Sundby & Nakken 2008), ontogeny, and larval development, as the NE Greenland 

shelf may become out of range to larvae before conditions there promote enhanced 

growth (Young et al. 2018). Clearly observations in the understudied seas of the Arctic 

are needed, especially through non-invasive means, e.g. using acoustic surveys and 

environmental DNA sampling, and must ensure that this information is made available 

for inclusion in models to achieve accurate forecasts (Ingvaldsen et al. 2015, Wisz et 

al. 2015a,b). Finally, bettering our understanding of dispersal routes and ecosystem 

function, as attempted here, is crucial to model (Murphy et al. 2016) and manage the 

vulnerable Arctic ecosystems of the future (Harris et al. 2018). 

 

Conclusion 
Our findings support the hypothesis that cod, redfish, and shrimp are dispersed from 

the Barents Sea across the Fram Strait and settle on the Northeast Greenland shelf. 

Due to a lack of time series, we are unable to decipher if this is a new phenomenon, 

or not. In any case, these boreal generalists may impact native Arctic fauna and with 

a warming ocean in mind, we suggest that the Northeast Greenland shelf is likely to 

take on a larger proportion of Atlantic species from Barents Sea origin. 
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Future perspectives 
 

If this study were to be extended, with no limitations, it should seek the use of genetic 

markers, such as SNPs, that have the potential for increased power (Putman & 

Carbone 2014). It is widely accepted that while microsatellites are more powerful than 

SNPs by number, they are time-consuming and expensive to develop, hence, 

relatively few (e.g. ~10–15) microsatellites are commonly used, and as a result, 

datasets often lack the power to differentiate populations (Hansen et al. 2001, Putman 

& Carbone 2014). This was observed in the present study e.g. DAPC reference 

population clusters overlapped in some cases and FST was low (~0.1) for cod and 

shrimp data. The fourth species of interest in the planning of this study, capelin, was 

not analysed for this reason (data not shown). Instead, a reasonable number of SNPs 

(e.g. ~1000) could be utilised to differentiate populations effectively (Putman & 

Carbone 2014), achieve greater assignment success, and therefore increase the 

support of our conclusions. 

 

Alternatively, dispersal routes could be assessed directly via the use of tagging. 0-

group fishes could be caught outside of their spawning grounds, in the Norwegian 

Sea, for example, and tagged before attempted recapture surveys were made. This, 

though, may prove problematic for two reasons, first, captured redfish are usually non-

viable (Drevetnyak & Nedreaas 2009), and second, due to a relatively small proportion 

of Barents Sea fishes (e.g. 2.4% to 12% of 0-group cod year classes, Strand et al. 

2017) expected to disperse to the Northeast Greenland shelf, this method would 

require large effort and extensive fishing – likely to impact native Arctic fauna. On the 

other hand, 0-group fish surveys (e.g. Føyn 2002) conducted in the Greenland Sea, 

would not impact Arctic bottom fauna, and could utilise both sonar and active pelagic 

fishing. Finally, environmental DNA (eDNA) surveys conducted over the shelf could 

elucidate the presence or absence of species using metabarcoding or quantitative 

PCR (e.g. Thomsen et al. 2012) with no impact to fauna. In addition, state-of-the-art 

eDNA haplotype analysis (e.g. Stat et al. 2017) offers a promising application to 

population genetic studies, and thus assignment studies of this type in the future. 
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Appendices 
Appendix S1 
 
PCR Profiles 
The PCR profile for cod (from Westgaard & Fevolden 2007) consisted of an initial 

denaturation step at 95 °C for 15 min, followed by 22 cycles of 95 °C for 30 s, 56 °C 

for 3 min and 72 °C for 1 min. The PCR reactions ended with a final elongation step 

of 60 °C for 30 min. 

 

The PCR profile for redfish (from Saha et al. 2017) consisted of an initial denaturation 

step at 95 °C for 15 min, followed by 25 cycles of 95 °C for 30 s, 56 °C for 90 s and 72 

°C for 1 min. The PCR reactions ended with a final elongation step of 60 °C for 45 min.   

 

The PCR profile for shrimp (from Pereyra et al. 2012) consisted of an initial 

denaturation step at 95 °C for 15 min, followed by 35 cycles of 95 °C for 30 s, 56 °C 

for 3 min and 72 °C for 1 min. The PCR reactions ended with a final elongation step 

of 60 °C for 30 min.   

 

Microsatellite loci evaluation 
Methods: 

MICRO-CHECKER (v. 2.2.3, Van Oosterhout et al. 2004) was used to identify large 

allele drop-out, null alleles, and stuttering scoring errors. Locus-wise deviation from 

HWE was analysed using GENEPOP (v. 4.2.1, Rousset 2008) using exact tests (Guo 

& Thompson 1992), in addition to Linkage Disequilibrium (LD) identification between 

loci. In addition, BAYESCAN (v. 2.1, Foll & Gaggiotti 2008) and ARLEQUIN (v. 3.5.2.2, 

Excoffier & Lischer 2010) were used to test loci neutrality with default settings. 

ARLEQUIN simulations examined the joint distribution of FST and heterozygosity under 

a hierarchical island model (Beaumont & Nichols 1996). All results were judged for 

significance under the false discovery rate (FDR) approach (Benjamini & Yekutieli 

2001) at the 5% level. Loci were not considered to be non-neutral unless both 

approaches reported them as such. 
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Results: 

There was no evidence of large allele dropout in any loci. Several cases of stuttering 

and significant LD were reported, though these were deemed as non-genuine since 

genuine stuttering and LD are expected to affect all populations equally (Dormontt et 

al. 2014). Loci were deemed to be subject to null alleles if null alleles were present in 

more than a single population. This applied to one locus of each species (cod: Gmo35, 

redfish: Spi6, shrimp: PbA104a). No loci deviated from HWE in more than a single 

population. No loci were consistently reported as non-neutral outliers under both 

approaches utilised.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S1. Microsatellite loci are shown in amplification multiplexes (MP’s) and as utilised under both 

screening conditions and analyses (following: Westgaard & Fevolden 2007, Pereyra et al. 2012, Saha et al. 

2017). 

Species Condition 1 All loci 

Cod 
MP1: Gmo8, Gmo19, Gmo35, Gmo37, Tch11  
MP2: Gmo2, Gmo3, Gmo34, Tch13, Gmo132 

MP1: Gmo8, Gmo19, Gmo35, Gmo37, Tch11  
MP2: Gmo2, Gmo3, Gmo34, Tch13, Gmo132 

Total 9 10 

Redfish 

MP1: Sal1, Sal3, Sal4, Smen05  
MP2: Spi4, Spi10, Smen10  
MP3: Seb09, Seb25, Seb31, Seb33, Seb45 

MP1: Sal1, Sal3, Sal4, Smen05  
MP2: Spi4, Spi6, Spi10, Smen10  
MP3: Seb09, Seb25, Seb31, Seb33, Seb45 

Total 12 13 

Shrimp 

MP1: PbC8, PbC105, SD2-14 
MP2: PbA1, PbA110, PbC109, PbD9 
MP3: SD1-41, SD2-68, SD3-62 

MP1: PbA104a, PbC8, PbC105, SD2-14 
MP2: PbA1, PbA110, PbC109, PbD9  
MP3: SD1-41, SD2-68, SD3-62 

Total 10 11 
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Appendix S2 
 
Reference dataset evaluation 
Methods:  

To test the power of assignment, the function predict.dapc in the R package 

adegenet was used to re-assign all reference samples back to their original a priori 

population clusters. The x.val function indicated the number of principle 

components to retain. ARLEQUIN was used to calculate pairwise FST values (Weir & 

Cockerham 1984) between the reference populations. Only results for the all-loci 

condition of analysis are shown.  

 

Results: 

DAPC reassignment reported reference samples were successfully re-assigned to 

their original cluster (population) in 97% (cod) and 93% (redfish & shrimp) of cases. 

FST values ranged from 0.011 to 0.040 and were all highly significant (P <0.001) (Table 

S2).  

 
Table S2. Pairwise FST values and P-values. The 

values in boldface are significant after false discovery 

rate control at P = 0.05. For abbreviations refer to 

Table S3. 

Species     

Cod 

 ICE NCC NEAC 
ICE - 0.000 0.000 
NCC 0.024 - 0.000 
NEAC 0.014 0.023 - 

Redfish 

 NSH EGS IDP 
NSH - 0.000 0.000 
EGS 0.031 - 0.000 
IDP 0.037 0.040 - 

Shrimp 

 NOR SPW ICE JMA 
NOR - 0.000 0.000 0.000 
SPW 0.031 - 0.000 0.000 
ICE 0.011 0.019 - 0.000 

 JMA 0.038 0.024 0.025 - 
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Appendix S3 
 
Reference population structure 
 

 
	
	
	
	
	
	
	

	

	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S3. Details of reference populations for each species, post removal 

of individuals with a threshold of q lower/higher than 0.2/0.8 and, under 

both analyses conditions. Abbr. = the abbreviated population name, n = 

sample size (number of genotyped individuals). 

Species Population Abbr. Condition 1 
n 

All loci 
n 

Cod Iceland ICE 92 92 
 Norwegian Coastal Cod NCC 67 57 
 North East Arctic Cod NEAC 136 126 

Redfish Iceland Deep IDP 80 80 

 South-East Greenland Slope EGS 111 109 
 Norway Shallow NSH 91 90 

Shrimp Iceland ICE 90 92 
 Jan Mayen Island JMA 87 87 
 Norway NOR 87 91 
 Spitsbergen West SPW 45 58 

Fig. S3. STRUCTURE barplots showing Atlantic cod (Gadus morhua) (a, b), beaked redfish 

(Sebastes mentella) (c, d) and deep-sea shrimp (Pandalus borealis) (e, f) reference population 

membership probabilities (q) prior to the removal of individuals with a threshold of q lower/higher than 

0.2/0.8. Barplots (a, c & e) utilised a reduced number of loci (Condition 1). Barplots (b, d & f) utilised 

all loci available regardless of potential scoring errors identified. For abbreviations refer to Table S3. 
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Appendix S4 
	
Evaluation of the impact of potential scoring errors on assignment 
When using the datasets where loci subject to potential scoring errors (specifically, 

null alleles) were removed, individual assignment using STRUCTURE resulted in the 

same outcome as when analysing the data utilising all loci available, regardless of 

scoring errors. STRUCTURE barplots (Fig. S4) show that 100% of cod, 95% of redfish 

and 80% of shrimp tests resulted in the genetic assignment of individuals to a 

population within the Barents Sea, with a high membership probability (q >0.8) 

suggesting a high-likelihood that specimens of the three species found off Northeast 

Greenland originate from the Barents Sea. 
 

DAPC clustering using datasets where loci with potential scoring errors were removed 

resembled the results when using all loci available (Fig. S4a,c,e). The NE Greenland 

group of all three species clustered closely with the same Barents Sea populations as 

indicated by the assignment testing (Fig. S4b,d,f). The 95% DAPC cluster ellipses 

between NEG and these population clusters overlapped considerably, though overlap 

was also evident between the reference population clusters, most significantly for the 

cod and shrimp clusters. The distance between the NE Greenland group clusters and 

clusters they were assigned to using STRUCTURE only differed for the shrimp data. 

Here, there is a greater distance between the NE Greenland shrimp group and 

Spitsbergen West shrimp group, than when analysed using all loci available.  

 

Therefore, we suggest that the impact of potential null alleles on assignment was 

minimal and that utilising all loci available regardless of null alleles did not bias the 

assignment outcome.  
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Fig. S4. Genetic analysis using a reduced set of loci that accounted for potential scoring errors, that 

we termed ‘Condition 1’, for Atlantic cod (Gadus morhua) (a, b), beaked redfish (Sebastes mentella) 

(c, d) and deep-sea shrimp (Pandalus borealis) (e, f) data. DAPC scatterplots (a, c, e) show how the 

NE Greenland groups relate to the reference populations of the Northeast Atlantic Ocean. DAPC 

cluster ellipses were set to contain 95% of genotypes. DAPC scatterplots explain 91% (a), 94% (c) 

and 99% (e) of the total variation observed. STRUCTURE barplots (b, d, f) show membership 

probabilities (q) for NE Greenland individuals based on the reference populations used. For 

abbreviations refer to Table S3. 
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Appendix S5 
 
Assignment membership probabilities 
STRUCTURE and snapclust membership probabilities (q) for cod (Table S5.1), redfish (Table S5.2) and shrimp (Table S5.3) 

specimens caught off Northeast Greenland are shown, and summarised with the most probable assignment origin indicated for 

both methods. 

 
Table S5.1. STRUCTURE and snapclust identified population origin and membership probabilities (q) for 

Northeast Greenland (NEG) cod individuals using all loci. Bold typeface indicates the q values supporting the 

most probable origin of each individual. For abbreviations refer to Table S3. 

Sample STRUCTURE 
origin 

snapclust 
origin 

STRUCTURE q values snapclust q values 
ICE NEAC NCC ICE NEAC NCC 

NEG Cod 1 NEAC NEAC 0.133 0.852 0.015 0.230 0.630 0.140 
NEG Cod 2 NEAC NEAC 0.074 0.925 0.001 0.056 0.943 0.001 
NEG Cod 3 NEAC NEAC 0.158 0.839 0.003 0.388 0.601 0.011 
NEG Cod 4 NEAC NEAC 0.148 0.848 0.003 0.380 0.605 0.015 
NEG Cod 5 NEAC NEAC 0.063 0.935 0.002 0.092 0.887 0.021 
NEG Cod 6 NEAC NEAC 0.160 0.835 0.005 0.373 0.620 0.007 
NEG Cod 7 NEAC NEAC 0.144 0.840 0.016 0.284 0.631 0.085 
NEG Cod 8 NEAC NEAC 0.171 0.825 0.004 0.466 0.520 0.014 
NEG Cod 9 NEAC ICE 0.188 0.802 0.010 0.557 0.326 0.117 
NEG Cod 10 NEAC NEAC 0.038 0.962 0.000 0.036 0.962 0.002 
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Table S5.2. STRUCTURE and snapclust identified population origin and membership probabilities (q) for 

Northeast Greenland (NEG) redfish individuals using all loci. Bold typeface indicates the q values supporting the 

most probable origin of each individual. For abbreviations refer to Table S3. 

Sample STRUCTURE 
origin  

snapclust 
origin 

STRUCTURE q values snapclust q values 
EGS IDP NSH EGS IDP NSH 

NEG Redfish 1 NSH NSH 0.044 0.000 0.956 0.217 0.001 0.782 
NEG Redfish 2 NSH NSH 0.000 0.000 1.000 0.001 0.016 0.983 
NEG Redfish 3 NSH NSH 0.003 0.002 0.995 0.036 0.056 0.908 
NEG Redfish 4 NSH NSH 0.001 0.000 0.999 0.004 0.001 0.995 
NEG Redfish 5 EGS EGS 0.870 0.052 0.079 0.553 0.226 0.221 
NEG Redfish 6 NSH NSH 0.004 0.000 0.996 0.044 0.000 0.956 
NEG Redfish 7 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 8 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 9 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 10 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 11 NSH NSH 0.000 0.000 1.000 0.000 0.000 1.000 
NEG Redfish 12 NSH NSH 0.000 0.000 1.000 0.012 0.001 0.987 
NEG Redfish 13 EGS EGS 0.919 0.000 0.081 0.990 0.000 0.010 
NEG Redfish 14 NSH NSH 0.027 0.002 0.971 0.017 0.032 0.801 
NEG Redfish 15 NSH NSH 0.003 0.000 0.997 0.023 0.000 0.977 
NEG Redfish 16 NSH NSH 0.003 0.001 0.996 0.031 0.061 0.908 
NEG Redfish 17 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 18 NSH NSH 0.000 0.000 1.000 0.001 0.001 0.998 
NEG Redfish 19 NSH NSH 0.001 0.000 0.999 0.002 0.000 0.998 
NEG Redfish 20 NSH NSH 0.005 0.000 0.995 0.063 0.000 0.937 
NEG Redfish 21 NSH NSH 0.000 0.000 1.000 0.009 0.000 0.991 
NEG Redfish 22 EGS EGS 0.746 0.001 0.253 0.953 0.002 0.045 
NEG Redfish 23 NSH NSH 0.001 0.000 0.999 0.023 0.003 0.974 
NEG Redfish 24 NSH NSH 0.001 0.000 0.999 0.033 0.003 0.964 
NEG Redfish 25 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 26 NSH NSH 0.000 0.000 1.000 0.009 0.000 0.991 
NEG Redfish 27 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 28 NSH NSH 0.006 0.000 0.994 0.048 0.000 0.952 
NEG Redfish 29 NSH NSH 0.000 0.000 1.000 0.005 0.000 0.995 
NEG Redfish 30 NSH NSH 0.000 0.000 1.000 0.001 0.001 0.998 
NEG Redfish 31 NSH NSH 0.000 0.000 1.000 0.007 0.000 0.993 
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NEG Redfish 32 NSH NSH 0.000 0.000 1.000 0.002 0.000 0.998 
NEG Redfish 33 NSH NSH 0.000 0.000 1.000 0.000 0.000 0.999 
NEG Redfish 34 NSH NSH 0.008 0.000 0.992 0.076 0.000 0.924 
NEG Redfish 35 NSH NSH 0.009 0.001 0.990 0.028 0.024 0.948 
NEG Redfish 36 NSH NSH 0.000 0.000 1.000 0.004 0.000 0.996 
NEG Redfish 37 NSH NSH 0.000 0.000 1.000 0.026 0.003 0.971 
NEG Redfish 38 NSH NSH 0.000 0.000 1.000 0.002 0.000 0.998 
NEG Redfish 39 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 40 NSH EGS 0.120 0.000 0.880 0.693 0.000 0.307 
NEG Redfish 41 NSH NSH 0.022 0.000 0.978 0.023 0.000 0.977 
NEG Redfish 42 NSH NSH 0.004 0.000 0.996 0.176 0.005 0.819 
NEG Redfish 43 NSH NSH 0.000 0.000 1.000 0.000 0.000 1.000 
NEG Redfish 44 NSH NSH 0.000 0.000 1.000 0.000 0.001 0.999 
NEG Redfish 45 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 46 NSH NSH 0.028 0.000 0.971 0.127 0.002 0.871 
NEG Redfish 47 NSH NSH 0.000 0.000 1.000 0.012 0.000 0.988 
NEG Redfish 48 NSH NSH 0.001 0.002 0.997 0.005 0.045 0.950 
NEG Redfish 49 NSH NSH 0.001 0.000 0.999 0.007 0.000 0.993 
NEG Redfish 50 NSH NSH 0.000 0.000 1.000 0.000 0.001 0.999 
NEG Redfish 51 NSH NSH 0.000 0.000 1.000 0.000 0.001 0.999 
NEG Redfish 52 NSH NSH 0.000 0.000 1.000 0.001 0.000 0.999 
NEG Redfish 53 NSH NSH 0.004 0.000 0.996 0.175 0.000 0.825 
NEG Redfish 54 NSH NSH 0.000 0.000 1.000 0.000 0.000 1.000 
NEG Redfish 55 NSH NSH 0.000 0.000 1.000 0.000 0.000 1.000 
NEG Redfish 56 NSH NSH 0.000 0.000 1.000 0.285 0.000 0.715 
NEG Redfish 57 NSH NSH 0.000 0.000 1.000 0.000 0.000 1.000 
NEG Redfish 58 NSH NSH 0.002 0.000 0.998 0.107 0.001 0.892 
NEG Redfish 59 NSH NSH 0.000 0.000 1.000 0.000 0.001 0.999 
NEG Redfish 60 NSH NSH 0.001 0.000 0.999 0.025 0.000 0.975 
NEG Redfish 61 NSH NSH 0.000 0.000 1.000 0.000 0.004 0.996 
NEG Redfish 62 NSH NSH 0.000 0.000 1.000 0.016 0.010 0.974 
NEG Redfish 63 NSH NSH 0.000 0.000 1.000 0.007 0.000 0.993 
NEG Redfish 64 NSH NSH 0.000 0.000 1.000 0.000 0.000 1.000 
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Table S5.3. STRUCTURE and snapclust identified population origin and membership probabilities (q) for Northeast Greenland (NEG) 

shrimp individuals using all loci. Bold typeface indicates the q values supporting the most probable origin of each individual. For 

abbreviations refer to Table S3. 

Sample STRUCTURE 
origin  

snapclust 
origin 

STRUCTURE q values snapclust q values 
ICE JMA SPW NOR ICE JMA SPW NOR 

NEG Shrimp 1 SPW ICE 0.027 0.027 0.938 0.008 0.451 0.439 0.096 0.014 
NEG Shrimp 2 SPW SPW 0.008 0.000 0.976 0.016 0.063 0.012 0.751 0.175 
NEG Shrimp 3 SPW SPW 0.008 0.015 0.977 0.000 0.301 0.253 0.445 0.002 
NEG Shrimp 4 SPW NOR 0.003 0.02 0.914 0.063 0.010 0.168 0.207 0.615 
NEG Shrimp 5 SPW SPW 0.015 0.001 0.982 0.002 0.197 0.022 0.772 0.009 
NEG Shrimp 6 SPW SPW 0.007 0.008 0.962 0.023 0.135 0.132 0.534 0.200 
NEG Shrimp 7 SPW NOR 0.006 0.000 0.979 0.015 0.159 0.009 0.257 0.575 
NEG Shrimp 8 SPW SPW 0.011 0.001 0.983 0.005 0.169 0.018 0.715 0.098 
NEG Shrimp 9 SPW SPW 0.004 0.000 0.996 0.000 0.028 0.012 0.958 0.001 
NEG Shrimp 10 SPW SPW 0.007 0.000 0.987 0.006 0.137 0.001 0.805 0.057 
NEG Shrimp 11 SPW SPW 0.002 0.013 0.967 0.018 0.008 0.349 0.584 0.058 
NEG Shrimp 12 SPW SPW 0.000 0.000 0.998 0.002 0.001 0.003 0.967 0.028 
NEG Shrimp 13 SPW SPW 0.000 0.001 0.999 0.000 0.000 0.098 0.900 0.001 
NEG Shrimp 14 SPW SPW 0.001 0.000 0.998 0.001 0.002 0.002 0.991 0.005 
NEG Shrimp 15 SPW SPW 0.005 0.001 0.990 0.004 0.023 0.026 0.832 0.119 
NEG Shrimp 16 SPW ICE 0.042 0.003 0.954 0.001 0.798 0.013 0.188 0.002 
NEG Shrimp 17 SPW JMA 0.000 0.042 0.958 0.000 0.001 0.707 0.290 0.002 
NEG Shrimp 18 SPW SPW 0.001 0.014 0.985 0.000 0.003 0.273 0.716 0.007 
NEG Shrimp 19 SPW SPW 0.002 0.001 0.997 0.000 0.042 0.018 0.933 0.007 
NEG Shrimp 20 SPW SPW 0.001 0.007 0.992 0.000 0.008 0.437 0.555 0.000 
NEG Shrimp 21 SPW SPW 0.008 0.004 0.986 0.001 0.208 0.171 0.551 0.070 
NEG Shrimp 22 SPW SPW 0.007 0.001 0.992 0.000 0.180 0.055 0.751 0.014 
NEG Shrimp 23 SPW SPW 0.001 0.001 0.999 0.000 0.007 0.033 0.960 0.001 
NEG Shrimp 24 SPW SPW 0.000 0.000 1.000 0.000 0.000 0.028 0.971 0.000 
NEG Shrimp 25 SPW SPW 0.004 0.002 0.993 0.001 0.052 0.095 0.846 0.007 
NEG Shrimp 26 SPW NOR 0.013 0.001 0.824 0.162 0.017 0.004 0.038 0.942 
NEG Shrimp 27 SPW SPW 0.004 0.008 0.979 0.009 0.041 0.126 0.776 0.057 
NEG Shrimp 28 SPW SPW 0.007 0.002 0.990 0.001 0.112 0.050 0.828 0.010 
NEG Shrimp 29 SPW NOR 0.004 0.000 0.924 0.072 0.022 0.001 0.212 0.765 
NEG Shrimp 30 SPW SPW 0.005 0.003 0.976 0.016 0.079 0.037 0.751 0.132 
NEG Shrimp 31 SPW SPW 0.003 0.005 0.991 0.001 0.021 0.201 0.769 0.009 
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NEG Shrimp 32 SPW SPW 0.011 0.003 0.985 0.001 0.203 0.144 0.645 0.008 
NEG Shrimp 33 SPW JMA 0.005 0.026 0.945 0.024 0.029 0.587 0.273 0.111 
NEG Shrimp 34 SPW SPW 0.003 0.000 0.996 0.001 0.183 0.004 0.798 0.016 
NEG Shrimp 35 SPW SPW 0.004 0.000 0.996 0.000 0.128 0.002 0.869 0.002 
NEG Shrimp 36 SPW ICE 0.052 0.008 0.837 0.103 0.504 0.016 0.069 0.411 
NEG Shrimp 37 SPW SPW 0.000 0.000 1.000 0.000 0.000 0.001 0.999 0.000 
NEG Shrimp 38 SPW SPW 0.004 0.003 0.993 0.000 0.013 0.238 0.749 0.000 
NEG Shrimp 39 SPW SPW 0.002 0.002 0.996 0.000 0.030 0.109 0.851 0.010 
NEG Shrimp 40 SPW JMA 0.008 0.054 0.937 0.001 0.094 0.680 0.225 0.002 
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