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SUMMARY 
Cardiovascular disease (CVD) has been, and continues to be, one of the main causes of global 

deaths. For decades, fish consumption has been acknowledged to reduce the risk of CVD, and 

especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are known to have 

anti-inflammatory properties. Still, there are indications that beneficial effects are not limited 

to fatty acids alone. The overall aim of this thesis was to investigate bioactivity in marine 

sources ascribed to nonlipid constituents. 

 

Lipid-free extracts from cold-pressed whale oil (CWO) and cod-liver oil (CLO) demonstrated 

high antioxidative capacity in in vitro biochemical assays. Furthermore, extracts from CWO 

had anti-inflammatory activity and reduced Tumour necrosis factor alpha (TNF-a) and 

Monocyte chemotactic protein 1 (MCP-1) secretion from stimulated THP-1 cells. CLO on the 

other hand did not display any anti-inflammatory activity in the in vitro cell assay.  

 

To evaluate the impact of CWO on atherosclerosis a high fat Western-type diet supplemented 

with 1% CWO were fed to female apolipoprotein E-deficient mice (ApoE-/-) for 13 weeks. 

The CWO-fed mice had reduced atherosclerotic lesions in the aortic arch compared to 

control-fed mice. CWO-fed mice also had reduced levels of cholesterol parameters and 

reduced weight whereas the total antioxidant status and expression of several hepatic genes 

were heightened compared to control-fed mice.  

 

To evaluate the anti-atherogenic effect from lean protein sources a high fat Western-type diet 

with the protein replaced with cod-scallop or chicken and fed to female ApoE-/- mice for 13 

weeks. This resulted in the reduction of the total aorta plaque burden in cod-scallop-fed mice 

compared to the total aorta plaque burden in chicken-fed mice. In addition, cod-scallop-fed 

mice also gained less weight and had lower levels of leptin and glucose when compared to 

chicken-fed mice. 



 

III 

SAMMENDRAG 

Hjerte- og karsykdommer er fremdeles en av de hyppigste dødsårsakene verden over. 

Gjennom de siste tiårene har det vært velkjent at inntak av fisk reduserer risikoen for hjerte- 

og karsykdommer, og spesielt fettsyrene eikosapentaensyre (EPA) og dokosaheksaensyre 

(DHA) er kjente for å ha anti-inflammatoriske egenskaper. Likevel er det indikasjoner på at 

de fordelaktige effektene ikke er begrenset til bare fettsyrene. Hensikten med denne 

doktorgraden var å undersøke bioaktivitet i marine kilder som ikke kun kommer fra marine 

fettsyrer.  

 

Fettfrie ekstrakter fra kald-presset hvalolje (CWO) og tran hadde høy antioksidativ kapasitet i 

biokjemiske analyser in vitro. Ekstrakter fra CWO hadde anti-inflammatorisk aktivitet og 

reduserte sekresjonen av Tumor nekrose faktor alfa (TNF-a) og Monocytt kjemotaktisk 

protein 1 (MCP-1) i stimulerte THP-1 celler. Tran på den andre siden hadde ikke noe anti-

inflammatorisk aktivitet i denne in vitro celleanalysen.  

 

Hun-mus med genetisk apolipoprotein E-mangel (ApoE-/-) ble foret med en fettrik diett med 

1% CWO i 13 uker for å evaluere påvirkningen av CWO på aterosklerose. Musene som ble 

foret med CWO hadde mindre lesjoner i aortabuen sammenlignet med musene som ble 

kontrollforet. I tillegg hadde musene som ble foret med CWO reduserte nivåer av 

kolesterolparametere og redusert vekt, mens total antioksidant status og utrykket av noen 

levergener var forhøyet sammenlignet med mus som ble kontrollforet.  

 

For å evaluere anti-aterogen effekt fra magre proteinkilder ble proteinet i en fettrik diett 

erstattet av torsk-kamskjell eller kylling. ApoE-/- hun-mus ble foret med denne dietten i 13 

uker. Den totale plakkdannelsen i aorta var redusert i mus som ble foret med torsk-kamskjell 

sammenlignet med mus som ble foret med kylling. I tillegg la mus foret med torsk-kamskjell 

mindre på seg samt hadde lavere nivå av leptin og glukose sammenlignet med mus foret med 

kylling. 
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1. INTRODUCTION 
 

Non-communicable diseases (NCD) are responsible for 70% of deaths globally each year, with 

cardiovascular diseases (CVD) as the main type [1]. A Global action plan for the prevention 

and control of NCDs 2013-2020 has been developed by the World Health Organization (WHO) 

[2]. This action plan focuses on cost-effective interventions such as diet and physical activity 

combined with drug therapy [2]. Diet has a major impact on the general human health and 

dietary interventions are considered safe and effective means to improve health.  

 

Seafood is considered a healthy low-calorie dietary source of important vitamins, minerals, 

proteins and lipids [3]. The marine long-chain n3-polyunsaturated fatty acids (LC-n3-PUFA), 

especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have anti-

inflammatory effects [4-8]. Good sources of LC-n3-PUFA are oily fish and omega-3 

supplements [3], however, blubber from marine mammals, such as whales and seals, also have 

high amounts of LC-n3-PUFA [9].  

 

Epidemiological studies performed in Greenland during the 1970s implied low incidents of 

CVD in the Inuit population compared to the Inuit population in Denmark [10, 11]. It is, 

however, important to emphasise that the CVD prevalence has been claimed to be 

underestimated in the studies of Bang and Dyerberg [12, 13]. Regardless, the low CVD 

prevalence has been ascribed the diet of the Greenland Inuit, being composed mainly of meat 

and blubber with a mammalian marine origin [14]. The Inuit research, among other, formed the 

foundation for human dietary invention studies performed in the 1990s by Østerud and his 

colleagues [9, 15]. Participants receiving cold-pressed whale oil (CWO) had improved anti-

inflammatory status and improved CVD markers [9]. Equal improvements were also observed 

when CWO was compared to cod liver oil (CLO), although CWO contained less LC-n3-PUFA 

than CLO [9]. These observations implicated other mechanisms than only LC-n3-PUFA 

contributing to the anti-inflammatory effect observed.  

 

Marine sources also provide proteins, peptides, amino acids, and other bioactive compounds, 

in addition to LC-n3-PUFA [3]. Increasing evidence indicate that these contribute to the 

beneficial effects associated with seafood [3, 16, 17]. Fish and other seafoods are the major 
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source of 2-aminoethanesulfonic acid (taurine), an organic compound found in most 

mammalian tissues [18]. Taurine has several important biological roles including 

osmoregulation, acid conjugation and as an anti-oxidant [19]. Dietary intake of taurine has been 

indicated to have anti-atherosclerotic properties in an animal studies [18], and epidemiological 

studies also suggest that taurine is a contributing factor to lower the risk of developing CVD 

[20-22].  
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1.1 PROBLEM OUTLINE 

For decades, fish consumption has been acknowledged to reduce the risk of CVD, and 

especially the LC-n3-PUFA, EPA and DHA are recognised as haveing anti-inflammatory 

effects. Still, previous studies have shown that the observed beneficial effects may not be 

limited only to the LC-n3-PUFA. Although LC-n3-PUFA is important, the study of lean 

seafood and other marine components with little or no LC-n3-PUFA, here by removal of lipids 

from CWO, will make it possible to establish if there is any anti-inflammatory effect of these 

marine components without the presence of LC-n3-PUFA. In vitro studies are important to 

investigate CVD parameters, however, it is important to proceed with in vivo studies to 

document the possible mechanisms and health effects. These pre-clinical studies may result in 

future clinical studies.  

 

 

1.2 PROJECT AIMS 

The overall aim of this thesis was to investigate bioactivity in marine sources ascribed to 

nonlipid constituents, both in vitro and in vivo, and to provide insight into anti-inflammatory, 

antioxidative and anti-atherogenic mechanisms related to the prevention of atherosclerosis.  

 

The specific goals in each paper were limited to the following:  

 

Paper I 

- To evaluate the in vitro antioxidative and anti-inflammatory effects of lipid free cold-

pressed whale oil  

Paper II 

- To evaluate the antioxidative and anti-inflammatory influence of cold-pressed whale oil 

in an animal (mouse) atherosclerosis model 

 

Paper III 

- To evaluate the impact of different protein sources in an animal (mouse) atherosclerosis 

model 
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1.3 RESEARCH DESIGN 

The schematic overview of the research design for paper I-III is shown in figure 1. CWO 

and CLO were tested in the in vitro assays (paper I). These two, together with corn oil (CO), 

refined whale oil (RWO), RWO-I and RWO-II are included as different feeds in the in vivo 

study (paper II). Finally, cod-scallop and chicken were used as different feeds in the last 

paper (paper III).   

 

 

 

 

Figure 1 Schematic overview of the research design for paper I-III. CWO = cold-pressed whale oil, 

CLO = cod liver oil, CO = corn oil, RWO = refined whale oil, RWO-I = refined whale oil + extract I, 

RWO-II = refined whale oil + extract II.  

 

 

 

 

 

 

 

 

 

 

 

 



 5 

2 BACKGROUND 

 
2.1 CARDIOVASCULAR DISEASE 
The World Health Organization defines CVD as a group of disorders of the heart and blood 

vessels [23]. Myocardial infarction (MI) and stroke caused by restricted blood flow to the heart 

or brain, are acute cardiovascular events [23]. Even though CVD mortality decrease in most 

European countries, CVD still accounts for 45% of all deaths in Europe [24]. Risk factors for 

CVD are classified as either modifiable or non-modifiable [25]. Non-modifiable risk factors are 

age, gender and genetics, whereas modifiable risk factors include dyslipidemia, hypertension, 

type 2 diabetes mellitus, smoking, excessive alcohol consumption, physical inactivity, and 

obesity [25]. The clinical relevance of the modifiable risk factors is well recognized and the 

decline in global deaths from CVD are related to change in health behaviour and treatment of 

these risk factors [26]. Still, the major independent cause of CVD is atherosclerosis, and the 

main direct cause appears to be rupture of atherosclerotic plaques [27].  

 

 

2.2 ATHEROSCLEROSIS 

Atherosclerosis is an important underlying cause for several types of CVD such as unstable 

angina, MI and stroke [27]. Atherosclerotic disease may be asymptomatic, or silent, for decades 

while lipids accumulate and contribute to the formation of lesions in the arterial vessel wall 

[28]. Atherosclerotic lesions are classified after morphological descriptions [29]. The lesions, 

or plaque, can cause narrowing of the lumen which may eventually end up in fibrous cap rupture 

and thrombus formation [30] (figure 2).  

 

The artery wall consists of the three layers tunica intima, tunica media and tunica adventitia 

(figure 2a). The innermost layer, tunica intima, has residential smooth muscle cells (SMC) and 

is lined with a monolayer of endothelial cells (figure 2a). The endothelium is an important 

barrier between the blood and underlying cells and endothelial cells produces several 

vasodilators and vasoconstrictors to mediate blood vessel tone [31]. Endothelial dysfunction 

may be a response to cardiovascular risk factors and a key step in the early development of 

atherosclerosis [32, 33]. Nitric oxide (NO) is a vasodilator that protects against atherosclerosis 

and promotes normal endothelial function in blood vessels [34]. Reduced release of NO leads 
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to increased expression of the cell-surface adhesion molecules intercellular adhesion molecule 

1 (ICAM-1) and vascular adhesion molecule 1 (VCAM-1) which facilitate binding of 

circulating monocytes [35]. After attachment to the endothelial surface, monocytes migrate into 

the tunica intima where they differentiate into macrophages [36].  

 

Macrophages engulf lipids, and after uncontrolled uptake of oxidized low density lipoprotein 

(ox-LDL), or with impaired cholesterol release and excessive cholesterol esterification, they 

transform into foam cells [37]. Foam cells, dying cells and lipids from dead cells, together with 

cholesterol crystals, accumulate in the lipid core of the plaque [30]. This leads to more advanced 

lesions with increased macrophage apoptosis and necrosis if the apoptotic and necrotic 

macrophages are ineffectively cleared by efferocytosis [38]. The necrotic plaque cells can 

release the cytoplasmic content into the core of the plaque contributing to the necrotic core [39]. 

Damaged endothelial cells produce mediators that recruits SMC from the tunica media into the 

tunica intima [30]. Here, the newly arrived SMC proliferate, together with residential SMC 

[30]. These cells produce collagen, elastin and other extracellular matrix molecules that 

constitute the fibrous cap covering the growing plaque [30]. Necrotic atherosclerotic plaque 

with a heightened state of inflammation is more prone to thinning of the fibrous cap [40]. In the 

event of fibrous cap rupture, the thrombogenic core of the plaque and tissue factors are exposed 

to the circulating blood leading to activation of the coagulation cascade [41]. Activation of the 

coagulation system lead to thrombus formation, and the thrombus may stay attached to the 

ruptured surface and narrow the lumen of the artery, or worse, it may travel with the blood flow 

and occlude a narrow blood vessel in the circulation [30]. Such occlusion may cause MI or 

stroke [42].  
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Figure 2 Atherosclerotic process by Libby et al. [30]. The process of atherosclerosis, from normal artery 

to thrombosis. a) The normal artery wall consists of three separate layers; the inner layer (tunica intima), 

middle layer (tunica media) and outer layer (tunica adventitia). Tunica intima is coated by a endothelial 

cell monolayer of and has resident smooth muscle cells (SMC). In the tunica media layer, the SMC is 

organized in a complex extracellular matrix, while the tunica adventitia layer contains microvessels, 

mast cells and nerve endings. b) In the initial phase of atherosclerosis, blood leucocytes adhere to the 

activated endothelial monolayer and migrate into the intima. Inside the vessel wall, leucocytes mature 

into macrophages and further into foam cells after lipid uptake. c) Lesion advancement includes 

proliferation SMC, both residential and media-derived, and the increased synthesis of collagen, elastin 

and proteoglycans. Lipids from apoptotic macrophages accumulate in the lipid core of the plaque, and 

in advanced plaque cholesterol crystals and microvessels are present. d) If the fibrous cap of the 

atherosclerotic plaque is physical disrupted, blood coagulation components in contact with tissue factors 

may form a thrombosis. The thrombus extends into the vessel lumen and could obstruct blood flow.  
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2.3 INFLAMMATION 

Inflammation is a protective response from the immune system towards tissue injury or 

infection [43]. Inflammation is a crucial local response which aims to eliminate the initial cause 

of cell injury, remove necrotic cells and tissue and facilitate tissue repair [43]. Inflammation is 

normally a controlled and self-limited mechanism, however, occasionally low-grade 

inflammation can be switched on by tissue malfunction [43]. A low-grade chronic inflammation 

will contribute to deterioration of illnesses, such as elevated blood pressure or insulin 

sensitivity, and diseases like atherosclerosis and diabetes mellitus type 2 are characterized by 

chronic low-grade inflammation [43]. Inflammations are commonly treated effectively with 

non-steroidal anti-inflammatory drugs (NSAID) and corticosteroids [44]. Still, this treatment 

may result in severe side effects such as osteoporosis, stroke and impaired wound healing [45], 

and it is highly interesting to explore alternative methods to treat inflammation [44]. 

 

 

2.3.1 CHOLESTEROL AND CHOLESTEROL METABOLISM 

Cholesterol is crucial for mammals as a structural component in the cell membrane and 

precursor for biosynthesis of several steroid hormones, vitamin D and bile acids [46]. 

Cholesterol is either obtained through diet or synthesized in the liver, and cholesterol 

homeostasis is regulated by faecal excretion of bile acids and by intestinal absorption of dietary 

cholesterol [46]. Cholesterol and triacylglycerol (TAG) are non-polar lipids and must be 

transported in association with lipoproteins [47]. The central core of the lipoproteins contains 

cholesterol esters and TAG surrounded by a hydrophilic membrane consisting of phospholipids, 

free cholesterol and apolipoproteins [47].  

 

Plasma lipoproteins are, based on their size, lipid contents and apolipoproteins composition, 

divided into the seven groups very low density lipoprotein (VLDL), intermediate density 

lipoprotein (IDL), low density lipoprotein (LDL), lipoprotein (LP), chylomicron, chylomicron 

remnants and high density lipoprotein (HDL) [47]. These are all, except HDL, considered pro-

atherogenic [47]. Chylomicrons and VLDL are produced in the liver and transport TAG, 

whereas LDL and HDL transport cholesterol back and forth peripheral tissue and liver [47]. 

LDL are derived from triglyceride depleted VLDL and IDL and enriched with cholesteryl ester 

(CE) [47]. The majority of cholesterol in the circulation is carried by LDL particles in different 

size and density [47]. The smallest LDL particles have less affinity for the LDL receptor 
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resulting in a prolonged circulation time [47]. HDL on the contrary, carry CE from the 

peripheral tissue to the liver and also hold anti-oxidant, anti-inflammatory, anti-thrombotic and 

anti-apoptotic properties [47]. The bidirectional flux of free cholesterol between cells and HDL 

is mediated by scavenger receptor class B type 1 (SR-B1) [48, 49]. Liver SR-B1 has high 

affinity for HDL binding in humans and mice and mediates the selective uptake of CE into the 

liver [50]. The obligate heterodimer ATP binding cassette, subfamily G member 5 (ABCG5) 

and ATP binding cassette, subfamily G member 8 (ABCG8) are located in the hepatocytes and 

convert CE into bile [51].  

 

As mentioned in section 2.2, macrophages engulf ox-LDL particles and develop into foam cells, 

the pathological hallmark of atherosclerosis. In addition, high levels of serum LDL cholesterol 

are related to CVD and atherosclerosis, and considerable effort has been put into reducing 

circulating cholesterol levels in high risk patients [52]. 

 

 

2.3.2 CYTOKINES  

Cytokines are key modulators in inflammation and induce both systemic and local responses in 

the body [53]. Cytokines and chemokines are involved in all stages of atherosclerosis and 

greatly influence the pathogenesis of the disease [54]. Cytokines and chemokines may be 

classified based on their characteristics, pro-atherogenic and anti-atherogenic, related to their 

function in the development of atherosclerotic plaques [55].  

 

Tumour necrosis factor alpha (TNF-a), interleukin 1 (IL-1) and interleukin 6 (IL-6) are pro-

atherogenic cytokines secreted from macrophages, lymphocytes, natural killer cells and 

vascular SMC [55]. TNF-a and IL-1 signalling affect almost all cells involved in atherogenesis 

through the p38MAPK/NF-kB pathway [55]. IL-6 is signalling through the Janus kinase 1 and 

elevated IL-6 serum levels are recognized as an independent risk factor for coronary artery 

disease [55]. Interleukin 10 (IL-10), transforming growth factor beta and interleukin 35 (IL-35) 

are considered anti-atherogenic [55]. IL-10 act anti-atherogenic through the down-regulation 

of TNF-a production, the prevention of ICAM-1 expression on activated endothelial cells and 

several other mechanisms [55]. TNF-a and IL-1 influence the organization of actin and tubulin 
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cytoskeletons in the endothelial cells leading to changes in their shape and open gaps between 

adjacent cells and thus increased permeability for LDL [56].  

Chemokines are a subgroup of cytokines that are able to attract cells to a desired location 

[57]. Monocyte chemotactic protein 1 (MCP-1) is an important chemokine involved in the 

selective recruitment of circulating monocytes, and regulates penetration and infiltration of 

monocytes into the inflamed artery wall [58]. Chemokines slow down passing monocytes that 

starts a rolling movement along the endothelial cells before they migrate across the 

endothelial layer [59].  

 

Impaired vascular homeostasis resulting in a steady recruitment of monocytes to the inflamed 

site is a central part of atherogenesis [60, 61]. Depending on the cytokine signal together with 

macrophage colony-stimulating factor, monocytes in the intima may differentiate into 

macrophages or dendritic cells [60]. TNF-a, interferon gamma (IFN-g) and several other 

cytokines are involved in the foam cell formation, e.g. inhibiting key proteins and hereby 

decrease cholesterol efflux from macrophages [62]. High cholesterol levels are toxic to cells 

and will eventually lead to apoptosis and/or necrosis [60, 61]. Cytokines are also involved in 

the regulation of efferocytosis (removal of apoptotic cells) [63, 64] and defective efferocytosis 

contribute to lipid accumulation in atherosclerotic lesions [60, 61]. Some cytokines, such as 

IFN-g, inhibit synthesis of collagen in SMC, and others may stimulate to SMC apoptosis, hence 

thinning the fibrous cap, which in turn may lead to plaque rupture and thrombosis formation 

[62].  

 

 

2.4 LIPIDS, PROTEINS AND AMINO ACIDS 

 

2.4.1 LIPIDS 

Linoleic acid (LA, 18:2n-6) and a-linolenic acid (ALA, 18:3n-3) are essential FAs for humans 

and have to be supplied through our diet [65]. They can, through several steps of chain 

elongation, be converted into PUFA (arachidonic acid (ARA, 20:4n-6) or EPA (20:5n-3) and 

DHA (22:6n-3), respectively) [65]. The conversion efficiencies for LA and ALA into PUFA is 

low [66], and direct dietary uptake of EPA and DHA from seafood is thus more effective.  
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The predominant PUFA in membrane phospholipids in mammalian tissue are ARA, EPA and 

DHA, and they have numerous cellular functions affecting eicosanoid synthesis together with 

membrane fluidity and membrane enzyme activity [67]. Eicosanoids are mediators of 

inflammation, and the major substrate for eicosanoid synthesis is ARA, which will generate 

several down-stream pro-inflammatory metabolites [68, 69]. However, EPA and DHA are also 

substrates for eicosanoid synthesis, and eicosanoids produced from EPA or DHA are known to 

inactivate ARA-derived eicosanoids and are thus regarded anti-inflammatory [67]. The anti-

inflammatory effect of EPA and DHA are also related to specialized pro-resolving mediators, 

such as E- and D-series resolvins, lipoxins, protectins and maresins [70].  

 

2.4.2 PROTEINS AND AMINO ACIDS 

Proteins are essential for body cellular mass increment, recovery and a steady-state maintenance 

[71]. In general, 9 of 20 amino acids are regarded essential and required through diet [71]. The 

nutritional value of a protein depend on the amount of essential amino acids, amino acid 

composition, absorption and utilization after digestion, effects after processing, and source [72]. 

Taurine is an organic acid containing an amino group created in the hepatocytes or acquired 

through diet [73]. Taurine is abundant in the brain, retina, muscle tissue and other organs in the 

body [74]. Taurine is assigned several important functions in the central nervous system and in 

the conjugation of bile acid [74]. Examples of disease associated with taurine deficiency is 

cardiomyopathy and renal dysfunction [74]. Taurine is present in most meat used for human 

consumption and are more abundant in seafood when compared to terrestrial meat, with 

especially high levels in shellfish and molluscs [75].  

 

2.5 MINKE WHALE  

The minke whale (Balaenoptera acutorostrata), also known as the common minke whale or 

the North Atlantic minke whale, is the smallest of the baleen whales [76]. According to the 

International whaling committee, the population is in a healthy state with approximately 90 000 

individuals [77], and minke whale is the only cetacean species commercially hunted in Norway 

[78]. The minke whale is highly adaptable to changes in the ecosystem in the Barents Sea, and 

will feed on prey available [79]. The minke whale also migrate north during the spring to feed 

of krill and copepods together with fish and crustaceans [80]. Minke whale prey consumption 

contributes significantly to the mortality of their central prey species [81]. The minke whale 

body is surrounded by a thick blubber, a subcutaneous lipid-rich layer of vascularized adipose 
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tissue, vital for thermal isolation, structural support and buoyancy [82]. During fasting and 

breeding blubber serves as the main energy source [82]. The LC-n3-PUFA levels in minke 

whale blubber are lower than the levels found in their prey, indicating a selective distribution 

of lipids for storage and for membrane lipids [83].  
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3 SUMMARY OF PAPERS 
 

Paper I Antioxidant and Anti-Inflammatory Activities in Extracts from Minke Whale 

(Balaenoptera acutorostrata) Blubber 

The aim of this study was to investigate if lipid-free extracts from cold-pressed whale oil 

(CWO) had antioxidative and anti-inflammatory activity ascribed to nonlipid constituents in 

vitro. Cod liver oil (CLO) was also tested and both CWO and CLO had high antioxidative 

capacity in Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant 

Power (FRAP) assays. Several CWO extracts displayed anti-inflammatory activity by 

reducing tumour necrosis factor alpha (TNF-a) and monocyte chemotactic protein 1 (MCP-1) 

secretion from lipopolysaccharide (LPS) stimulated THP-1 cells. CWO-BuOH had the most 

pronounced inhibition of TNF-a and MCP-1, with 50% and 85%, respectively. The extract 

maintained the inhibitory effect of MCP-1 after long-term storage whereas the TNF-a 

inhibition was not significant preserved. None of the extracts from CLO displayed any 

inhibitory effect on the secretion of TNF-a or MCP-1. In conclusion, CWO extracts displayed 

antioxidative and anti-inflammatory effects without the presence of marine lipids.  

 

 

Paper II Cold-pressed minke whale oil reduces circulating LDL-cholesterol, lipid oxidation 

and atherogenesis in apolipoprotein E-deficient mice fed a Western-type diet for 13 weeks 

The study was design to evaluate the anti-atherogenic effect of cold-pressed whale (CWO) oil 

in female apolipoprotein E-deficient mice (ApoE-/-). Six groups (n=12) of mice were fed a 

high fat Western-type diet supplemented with 1% CWO, cod liver oil (CLO), refined whale 

oil (RWO), RWO-1, RWO-II or corn oil (CO). After 13 weeks the mice were euthanized by 

carbon dioxide inhalation before the organs were harvested and the aorta dissected. CWO-fed 

mice had reduced atherosclerotic lesions in the aortic arch compared to the CO-fed mice. The 

levels of LDL/VLDL-cholesterol and ox-LDL-cholesterol were reduced whereas total 

antioxidant levels status was heightened in CWO-fed mice compared to CO-fed mice. In 

addition, mice fed CWO gained less weight and several hepatic genes involved in the 

cholesterol metabolism were upregulated compared to CO-fed mice. Cold-pressed whale oil 

had beneficial effects on the atherogenesis in ApoE-/- mice with reduced formation of lesions 

in the aortic arch, reduced cholesterol parameters and reduced weight whereas the total 

antioxidant status and expression of several hepatic genes were heightened.  
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Paper III Dietary intake of cod and scallop reduces atherosclerotic burden in female 

apolipoprotein E-deficient mice fed a Western-type high fat diet for 13 weeks 

The study was design to evaluate the anti-atherogenic effect of different lean protein sources 

in female apolipoprotein E-deficient (ApoE-/-) mice. Over a timespan of 13 weeks two groups 

(n=12) of mice were fed a high fat Western-type diet containing cod-scallop or chicken as the 

protein source. At the end of the study the mice were euthanized by carbon dioxide inhalation 

before the organs were harvested and the aorta dissected. Compared to the chicken-fed group, 

the total aorta atherosclerotic plaque burden was reduced with 24% and the thoracic and 

abdominal parts of the descending aorta were reduced with 46% and 56% in the cod-scallop-

fed group. In addition, cod-scallop-fed mice gained less weight and had lower levels of leptin 

and glucose compared to chicken-fed mice. Two hepatic genes, Paraoxonase 2 (Pon2) and 

Vascular adhesion molecule 1 (Vcam1), were downregulated in the cod-scallop-fed mice 

compared to chicken-fed mice. Downregulation of Pon2 suggest lower oxidative stress in the 

cod-scallop-fed mice. The marine protein from cod-scallop had beneficial effect on the 

atherogenesis due to the reduced total aorta burden, glucose and leptin levels compared to the 

chicken protein.  
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4 METHODOLOGICAL CONSIDERATIONS 

 

4.1 RAW MATERIAL 

 

4.1.1 WHALE OIL 

The raw material used to produce the whale oil studied in this thesis was blubber taken from 

the ventral groove of common minke whale (figure 3). The blubber was provided by Ellingsen 

Seafood AS (Skrova, Norway). The blubber was frozen to -20°C on board the vessel before 

transport to our laboratory. Blubber was obtained from the annual commercial hunt of minke 

whales in Norway occurring in the spring/early summer. Blubber from different time points 

could have been compared in this study because the fatty acid composition of whale blubber is 

known to change dependent on factors such as migration and feeding pattern [83]. However, 

evaluation of such variation was not within the scope of this thesis.  

  

 

 
 

Figure 3 Illustration of the common minke whale and the ventral groove.  
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4.1.2 COD LIVER OIL AND CORN OIL 

The CLO used in paper I and paper II was commercially available from Orkla Health [84], 

whereas CO used in paper II was bulk oil provided by the diet manufacturer (ssniff 

Spezialdiäten GmbH).   

 

 

4.1.3 COD, SCALLOP AND CHICKEN 

In paper III, the protein sources of the two test diets were chicken and a mixture of wild 

caught cod and scallop. Cod and scallop were combined to generate a lean diet from a marine 

protein source high in glycine and taurine (10.1 mg/g and 5.3 mg/g, respectively, paper III). 

Whereas chicken is regarded a healthy terrestrial lean protein source [85] and this diet had 

less glycine and taurine (5.7 mg/g and 0.1 mg/g, respectively, paper III). The wild cod was 

caught in September in the Northeastern Atlantic while the scallops were commercially 

available Canadian scallops (Placopecten magellanicus). Chicken breasts were bought from 

Ytterøykylling AS (Ytterøy, Norway). 

 

 

4.2 EXTRACTION 

Today, most of the available dietary marine oils are refined at high temperatures before used 

for human consumption [86]. The processing steps include bleaching, deodorization and 

vacuum stripping/distillation and are used to remove unwanted components, e.g. pigments, 

oxidation products, trace metals, sulphur compounds and contaminants [86]. This type of 

processing may lead to loss of proteins and trace elements, which means that protective 

antioxidants also are lost during processing [87]. Antioxidants are added the commercial CLO 

after refinement to prevent rancidification [84]. In this thesis, the temperature during the 

extraction of oil from whale blubber was kept below 40°C at all times to protect putative active 

components in the blubber, hence the oil could be called cold-pressed.  

 

 

4.3 THIN-LAYER CHROMATOGRAPHY 

Thin-layer chromatography (TLC) is a planar liquid chromatography with a liquid mobile phase 

and a silica coated plate as a stationary phase [88]. This method is inexpensive, rapid, simple 

and widely used for the analysis and isolation of natural products [88]. The samples are spotted 

on to the plate and solvent migrates up the plate due to capillary forces [88]. The polarity of the 
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solvents can be adjusted to increase the separation between components in the liquid [88]. A 

more efficient separation could be achieved using high-performance liquid chromatography 

(HPLC), which is more precise due to rate control of mobile phase [89]. In this thesis the 

separation was used merely to classify the lipids and not to quantify or isolate compounds 

present and TLC was therefore considered the best choice in paper I.  

 

 

4.4 ANTIOXIDATIVE CAPACITY 

Antioxidative capacity (AOC) is commonly measured by simplified in vitro assessments and 

several different methods can be used [90]. Since different methods measure factors/parameters 

differently, the term AOC is rather unspecific and conflicting results between methods are often 

observed [91].  

 

The assays are usually divided into two groups based on reactions transferring electrons or 

hydrogen atoms [92]. In this thesis one assay from each group, Ferric Reducing Antioxidant 

Power (FRAP) and Oxygen Radical Absorbance Capacity (ORAC), electron transfer and 

hydrogen transfer respectively, were used as AOC indicators in paper I. FRAP is simple and 

more rapid than ORAC, but ORAC is performed over a certain time range at physiological pH 

and 37°C [92]. Therefore, ORAC is considered more physiologically relevant than FRAP. The 

correlation between ORAC and FRAP is considered low [93]. Both assays have shortcomings. 

E.g. the ORAC reaction is carried out with an artificial radical in a homogenous system [94] 

and will therefore not reflect the actual stability in vivo. Temperature control throughout the 

plate is an important issue in ORAC and other temperature sensitive methods. Small differences 

in temperature between the wells could impact the results. The FRAP assay measure the 

reducing capacity based on ferric ion (the ability to reduce Fe(III) to FE(II)) [94], and not the 

antioxidants directly. However, both assays are simple, rapid and inexpensive without the need 

of special equipment.  

 

Since ORAC and FRAP are not fully comparable and have several shortcomings, measured 

AOC was used to assess the extracts before further investigations of the anti-inflammatory 

activity of the extracts. The focus was therefore on the total AOC and not the specific 

antioxidant present or the mode of action. In this context, technical replicates were considered 

sufficient and the sample size was not increased to allow statistical analyses of these 

experiments.  
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In paper II, the AOC was measured with the Total antioxidative status (TAS) kit in serum [95].  

The principle of the TAS method is based on inhibition of the absorbance of the radical cation 

the 2,2´-azinobis(3-ethylbenzothiazoline-6-sulfonate (ABTS) [96]. In this method ABTS is 

oxidized by the peroxidase metmyoglobin (in the presence of H2O2). The reduced ABTS 

molecule is colourless whereas the oxidized cation ABTS+ is blue-green [97]. Antioxidants 

present in the samples will be quantified based on their ability to suppress oxidation of ABTS 

and associated colour formation [96]. The method is fast but has several shortcomings, such as 

the dilution of samples may lead to false-positive results and that antioxidants present may also 

reduce ferrylmyoglobin radicals instead of ABTS radical, leading to an underestimated 

antioxidative activity [98]. A decolorization version of TAS method has also been developed, 

and in that version the ABTS radical is stably formed before the sample is added [99]. However, 

how well these two version correlate have been a subject of some controversy [99]. When serum 

AOC was measured with the original TAS assay, the decolorization TAS assay and FRAP 

assay, the reported AOC levels were highest in the decolorization TAS assay followed by the 

original TAS assay, while the lowest serum AOC was measured by the FRAP assay [97]. This 

may be a result of fast-acting antioxidants capable of reducing the ferrylmyoglobin radical, and 

intermediate radical in the original TAS assay [98], whereas the FRAP assay measure 

nonprotein AOC and protein are the main antioxidative component in serum [97]. Another 

study compared original TAS assay with ORAC assay and FRAP assay reporting the AOC 

order as ORAC > original TAS > FRAP [100]. Importantly, the TAS method was already 

established and validated in our laboratory for measuring AOC in serum from mice and were 

thus chosen as the preferred method in this thesis.  

 

 

4.5 ANIMALS IN LABORATORY EXPERIMENTS 

Use of animals for scientific purposes has been a subject for debate for many decades and this 

is a matter with great ethical concerns. Ethical guidelines, laws and regulations are established 

to control animal experiments. In 1959 Russel and Burch wrote the book "Principles of Humane 

Experimental Technique", and introduced the guiding principle of the three R's in animal 

research [101].  

 

The first R stands for Replacement, which means that research should replace living animals 

with in vitro techniques such as chemical, biochemical and cell culture assays whenever 
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possible. To rely only on in vitro studies will not provide documentation of mechanisms and 

potential health effects in vivo, however, it is important to perform in vitro studies before 

proceeding to in vivo studies. In this thesis, paper I is an in vitro paper using chemical assays 

and a cell model to test our extracts. The animal studies in paper II were based on the results 

from paper I and the previous results from the nineties [9, 15]. Jensen et al performed in vitro 

digestion experiments with cod [102] and studies have been performed on taurine, cod and 

scallop [103-107], previous to our animal study in paper III.  

 

The second R stands for Reduction of the number of animals used in each experiment [101]. 

This is obtained by power analysis and sample size calculation to avoid using too many 

individual animals. Studies using standardized animals (e.g. genotype) with little or minimal 

genetic variation contributes to reduce the animals needed to obtain significant results. There 

are no in vitro models for investigation of atherosclerotic progression, and human studies have 

several limitations and obvious restrictions. Although several larger animals such as rabbit and 

pigs have been used to investigate atherosclerosis disease mechanisms, and effects of drugs and 

diets [108, 109], mice are often considered the species of choice due to their short life span, 

inexpensive housing and breeding, and easy standardization [110]. Wild mice do not develop 

atherosclerotic lesions at a high fat modified diet [111], however, it is relatively easy to 

introduce genetic modifications in mice [110]. In atherosclerosis prone mice, lesions develop 

over a period of months and due to the small size, the required amount of the drug or compound 

to be investigated is low [110]. Genetically modified mice models still have several important 

limitations. For instance, lipoprotein profiles in mice are not identical to humans and mice do 

not develop unstable plaques that may rupture and lead to thrombosis which is a crucial step in 

human disease aetiology [110, 112]. Still, the initial phase of atherosclerotic development 

seems to be similar in mice and humans with the fatty streak developing into advances lesions 

with a fibrous cap [110, 112]. In this thesis, apolipoprotein E-deficient (ApoE-/-) mice were 

chosen as the model due to their spontaneous development of atherosclerotic lesions. This rapid 

development of atherosclerosis is a result of the impaired plasma lipoprotein clearing in the 

ApoE-/- mice [113]. This mouse model is recognized as a suitable model to investigate effects 

of anti-atherogenic diets [114] and is a mouse model our group has previously experience with 

[115-117].  

 

The last R stands for Refinement, referring to the effort and methods aiming to minimise pain, 

distress and suffering that may be experienced by laboratory animals [101]. For instance, 
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improvement of the housing conditions and protocols used to minimize the animal suffering. 

UIT – The Arctic University of Norway has a specialized animal facility with trained employees 

and a veterinarian in charge. The animal facility emphasize enhanced animal welfare and 

conditions are adapted to meet this. It is also mandatory for every researcher working with 

animals to have obtained FELASA B/C accreditation before starting the animal studies.  

 

 

4.6 DETERMINATION OF PLAQUE BURDEN IN AORTA 

After carefully dissection of the aorta from the mice carcass, any remaining periadventitial 

adipose tissue was removed before the aorta was opened longitudinally. Aortas were stained 

with Oil Red O staining and mounted en face on slides under coverslips. Following scanning 

of slides, image analysis revealed the amounts of atherosclerotic plaques burden. The 

atherosclerotic development was reported relatively to the total area of each given artery.  

 

Even though en face lipid staining of the aortic surface using Oil Red O staining is the 

established methodology to quantify atherosclerotic plaque burden in mice [118], the method 

has several drawbacks; The method is time consuming, the aortas need to be dissected from the 

carcass and cleaned precisely from any periadventitial tissue. Staining will only provide 

information of the area covered by plaque and not the three-dimensional structure which makes 

it difficult to determine the developmental stage of the lesions. Furthermore, the aorta will be 

physically distorted after the treatment and not usable for more detailed morphological analysis.  

 

Nevertheless, the en face evaluation is superior to e.g. cross-section determinations [119] due 

to accurate determination of shape, number and distribution of lesions throughout the entire 

aorta [120]. There are several other methods also available for quantitative determination of 

plaque burden in atherosclerosis mice models such as immunohistological staining [121] and 

MicroCT imaging [122]. Loyd et al. compared MicroCT imaging to en face by performing them 

successively [122]. The authors suggested that further studies should use both methods in 

combination to develop a further understanding of plaque pathologies. However, MicroCT 

imaging requires very expensive equipment currently not implemented and available in our 

laboratory.  

 

Another procedure considered for this thesis was to quantify the lesions in the brachiocephalic 

artery (BCA or innominate artery). The BCA supplies blood to the right arm (forefoot in the 
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mouse) and the head and neck and BCA is the first branching artery from the aortic arch. 

However, the BCA is very small and this method requires meticulous dissection to avoid 

artefacts associated with strain and tare of the artery. 

 

 

4.8 SERUM OR PLASMA FOR ANALYSIS 

In mouse studies, the obtainable serum or plasma levels from each mouse is an important 

limiting factor. From repeated sampling, the recommended sampling volume is 10% of the 

circulating blood volume [123], following this 50-100 µl is the maximum obtainable 

serum/plasma volume. For the final blood sample collected when the study was terminated, 500 

µl is the maximum obtainable volume. Our studies follow the institute’s ethical requirements 

which requires that animals are dead before taking the final blood sample. Another 

consideration when it comes to analysing proteins, lipids and lipoproteins in circulating blood 

is whether to use plasma or serum. Plasma has some practical limitations compared to serum 

due to the need for immediate centrifugation and freezing after sampling to avoid bias from 

different processing. Previous experiences in our research group showed that heparin-, citrate- 

and EDTA-plasma frequently contained particles interfering with lipid/cholesterol analysis. 

Serum samples were therefore chosen in the assays, even though serum is not an optimal sample 

media for evaluating cytokines, chemokines and other inflammatory markers.  
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5 DISCUSSION OF MAIN RESULTS 
 

The overall purpose of this thesis was to investigate anti-inflammatory bioactivity, as well as 

antioxidative and anti-atherosclerotic effects from marine sources with combinations of in vivo 

and in vitro experiments to provide some insight in the putative cardio-protective effects. In 

paper I, the lipophilic part of CWO and CLO was removed and the remaining part was 

investigated for antioxidative and anti-inflammatory effects not related to LC-n3-PUFA. In 

paper II, the anti-atherogenic effects of whale oil in different variants were evaluated after 

female ApoE-/- mice had been fed high fat Western-type diets supplemented with 1% of the 

different oils for 13 weeks. Paper III evaluated the putative anti-atherogenic effects in female 

ApoE-/- mice fed a high fat Western-type diet with lean seafood protein source or lean terrestrial 

protein source.  

 

 

5.1 ANTIOXIDATIVE CAPACITY 

Antioxidant activity has been ascribed many of the observed health effects of bioactive 

compounds and carotenoids [91]. Two methods commonly used to assess the AOC in vitro are 

FRAP and ORAC [93] and the results provided the fundament for further investigation of 

CWO. Reactive oxygen species (ROS) are produced and tightly regulated in normal cellular 

metabolism [124].  

 

Antioxidants are naturally present in the body, however, if there is excessive production of ROS 

or not enough antioxidants present the body may experience oxidative stress and cellular lipids, 

proteins and DNA may be harmed [124]. Antioxidants protect oxidisable substances by 

inhibiting or delaying the oxidation process, by removing oxidative damage or by inhibit ROS 

production [125-127]. In the in vitro assays in paper I both CWO and CLO had high AOC 

(figure 4), however, the dry matter yield showed considerable less total antioxidants in CLO 

compared to CWO.  
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(a)                                                                                   (b) 

Figure 4 Antioxidative capacity retrieved from paper I. CWO-1, CWO-2 and CLO were extracted 

sequentially with EtOAc, BuOH and H2O and the result are presented as Trolox equivalents (µmole 

TE/100g). (a) Oxygen Radical Absorbance Capacity (ORAC) assay (b) Ferric Reducing Antioxidant 

Power (FRAP) assay.  

 

5.2 ANTI-INFLAMMATORY EFFECT ON CYTOKINE SECRETION 

The macrophage like THP-1 cell line were established in 1980 [128] and have since been 

recognized as a suitable in vitro model to examine the regulatory and functional mechanisms 

of monocytes and macrophages in the cardiovascular system [129]. Anti-inflammatory effects 

were assessed based on the extracts´ abilities to inhibit lipopolysaccharide (LPS) induced TNF-

a and MCP-1 secretion from differentiated THP-1 cells. The CWO extracts inhibited MCP-1 

secretion (figure 5b) more pronounced than they inhibited TNF-a secretion (figure 5a). MCP-

1 plays a crucial role in atherosclerosis and is involved in the migration and infiltration of 

monocytes and macrophages in the artery [58]. An MCP-1 inhibitor may be an attractive drug 

candidate to delay the atherosclerosis progression or other chronic inflammation diseases.  

 

After more than four years of storage in the freezer (at -20°C), the CWO extracts still had an 

inhibitory effect on LPS-induced MCP-1 whereas inhibition of LPS-induced TNF-a secretion 

was not significant. The stored extracts did not affect Regulated on Activation, Normal T Cell 

Expressed and Secreted (RANTES) secretion from the LPS-treated THP-1 cells. After LPS 

binding to toll like receptor 4, different signalling pathways are activated to produce MCP-1 

and RANTES. MCP-1 is produced through the MyD88-dependent pathway together with other 

pro-inflammatory cytokines such as TNF-a [130, 131] while RANTES are produced through 

the MyD88-independent pathway together with interferons [132, 133]. The extracts derived 
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from CLO on the other hand, did not inhibit TNF-a nor MCP-1 secretion from the THP-1 cells 

when compared to the LPS controls. LPS-induced Interleukin 1-beta (IL-1b) secretion was also 

measured from the THP-1, however, none of the extracts tested inhibited secretion. IL-1b has 

a different secretion mechanism than TNF-a, MCP-1 and RANTES due to the lack of a 

secretory sequence to be translocated to ER lumen [134].  This may explain why none of the 

extracts tested inhibited IL-1b secretion. CLO derived extracts together with CWO derived 

extracts all had high AOC, but none of the CLO derived extracts displayed any anti-

inflammatory activity. This might be explained by the high temperatures used in the refining 

process of commercial CLO leading to degradation and loss of putative anti-inflammatory 

compounds.  

 

                                                                                (a) 

                                                                          (b)  
Figure 5 Anti-inflammatory assay retrieved from paper I. ELISA assay displaying relative response of 

Tumour Necrosis factor alpha (TNF-α) and Monocyte chemoattractant protein-1 (MCP-1) presented as 

mean SD. (a) Secreted TNF-α relative to control. *p<0.05 related to LPS control #p<0.05 related to 

CLO-BuOH 50 µg/ml ¤p<0.05 related to CLO-H2O 50 µg/ml. (b) Secreted MCP-1 relative to control. 

*p<0.001 related to LPS control ¤p<0.001 related to CLO-H2O 50 µg/ml. 
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5.3 EFFECT OF COLD-PRESSED WHALE OIL ON ATHEROSCLEROSIS IN 

APOLIPOPROTEIN E-DEFICIENT MICE 

In paper II the effect of CWO on the atherosclerotic progression was evaluated in female 

ApoE-/- mice fed high fat Western-type diets. The diets were supplemented with 1% CWO, or 

1% RWO enriched with two different types of extracts using CO and CLO as control diets.  

 

When compared to CO-fed mice, CWO-fed mice had reduced atherosclerotic plaque burden in 

the aortic arch, whereas no significant differences were observed in the thoracic aorta, 

abdominal aorta or total aorta (figure 6). CWO-fed mice also had reduced LDL/VLDL-

cholesterol and ox-LDL levels compared to CO-fed mice, and upregulated TAS compared to 

both CO-fed mice and CLO-fed mice. This is in accordance with paper I, demonstrating that 

extracts from CWO had in vitro antioxidative effects with higher total antioxidants than CLO. 

Similar anti-atherosclerotic effects were observed in a study feeding seal oil mixed with extra 

virgin olive oil, known to hold protective antioxidants, to ApoE-/- mice [116].  

 

ROS accumulation results in oxidative stress causing lipid peroxidation, oxidative damage and 

drive atherogenesis whereas antioxidants may contribute to keep ROS production at a normal 

level, thus delaying atherosclerotic development [135]. CWO has, as described in paper I, high 

AOC, suggesting that CWO do not require further addition of antioxidants. Together, increased 

TAS levels and reduced ox-LDL levels may explain the observed reduction of atherosclerotic 

lesions in the CWO-fed mice compared to the CO-fed mice. TAS was unaffected in the CLO-

fed mice compared to the CO-fed mice despite the high AOC levels described in paper I. This 

indicate that more than antioxidants contribute to the reduction of atherosclerotic plaque 

observed in CWO-fed mice.  

 

Cholesterol is vital for mammalian cells, however, an accumulated level of circulating LDL-

cholesterol is a major risk factor to develop atherosclerosis or hyperlipidaemia. Several hepatic 

genes are involved in the feedback-regulated process of the biosynthesis of cholesterol and to 

investigate the impact of the diets on these genes a predesigned TaqMan gene expression assay 

with a selection of hepatic genes was performed. 
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Figure 6 Atherosclerotic plaque burden retrieved from paper II. Female apolipoprotein E-deficient mice 

were, for 13 weeks, fed a high fat Western-type diets supplemented with different oils. (a-d) Diet A 

(n=11), diet B (n=9), diet C (n=11), diet D (n=11), diet E (n=12), diet F (n=10). a represents significant 

difference from mice fed diet A (CO) (p<0.05). (e) representative aorta from group A-F.  

 

 

The CWO-fed mice had moderately up-regulated Abcg5, Abcg8 (p=0.064), sr-b1 and 

Peroxisome proliferator-activated receptor a (Ppara). Overexpression of SR-B1 in mice leads 

to increased faecal cholesterol clearance [50] and hepatic SR-B1 is a positive regulator of 

macrophage reverse cholesterol transport in vivo [136]. The heterodimers ABCG5 and ABCG8 

are important contributors to the maintenance of the cholesterol balance by converting CE, or 

other sterols, into bile for excretion in the large intestine [51] and hence prevent accumulation 

A B

C

E

D

Diet A         Diet B        Diet C         Diet D         Diet E         Diet F Diet A         Diet B        Diet C         Diet D         Diet E         Diet F

Diet A         Diet B        Diet C         Diet D         Diet E         Diet F Diet A         Diet B        Diet C         Diet D         Diet E         Diet F

a

Diet A                                          Diet B                                          Diet C                                       Diet D                                              Diet E                                                   Diet F
  CO                                            CLO                                           RWO                                      RWO-I                                           RWO-II                                                CWO



 28 

of sterols from the diet [137]. Overexpression of Abcg5 and Abcg8 increase biliary cholesterol 

secretion and reduce inflammatory markers in the liver [138] and has, as the sr-b1 gene product 

[139], an atheroprotective role in mice. This may explain the reduced LDL-cholesterol and ox-

LDL-cholesterol observed in the CWO-fed mice compared to the CO-fed mice. However, none 

of the inflammatory markers had reduced levels when assessed both by hepatic gene expression 

analysis and by multiplex ELISA of serum protein levels. Also, the CLO-fed mice had reduced 

gene expression of Abcg8 and sr-b1, but the LDL/VLDL-cholesterol and ox-LDL levels were 

not reduced compared to the CO-fed mice. Another gene which may be involved in the observed 

effects is Ppara,which is a nuclear receptor participating in uptake, transport and reduction of 

fatty acids and TAG synthesis [140]. Natural ligands for PPARa include LC-n3-PUFA [141]. 

All diets used in this study, except the CO-control, contain marine oils which may activate 

PPARa and contribute to the beneficial effects observed.  

 

The extract(s) was reconstituted with RWO to investigate whether the anti-inflammatory 

activity previously observed with the CWO, could be ascribed to the fatty acids (RWO), the 

water-soluble components in the whale oil (RWO-I), or the water-soluble components in the 

residual whale blubber (RWO-II). Even though the results were not conclusive, both RWO-I 

and RWO-II reduced serum LDL/VLDL-cholesterol and ox-LDL concentration whereas the 

serum TAS was increased compared to the CO-fed mice. From the gene expression studies, the 

hepatic expression of Abcg5, Abcg8, Cytochrome p450 7A1 (Cyp7al), 3-hydroxy-3-methyl-

glutaryl-Coenzyme A reductase (Hmgcr), Sr-b1, Pparα and Peroxisome proliferator-activated 

receptor g (Pparg) were all increased in mice fed RWO-II when compared to the CO-fed mice. 

This may indicate that at least the RWO-II extract affected the same metabolic processes as 

CWO, however, these effects were moderate as no significant reduction was observed for the 

atherosclerotic plaque when compared to the CO-fed mice. The most established effect of LC-

n3-PUFA supplementation is reduction of circulating TAG levels, however, the dosage has to 

be pharmaceutical (3-4 g/day) to achieve optimal TAG lowering [142, 143]. In this thesis, the 

levels of LC-n3-PUFA were far below pharmaceutical dosage and at a level which is obtainable 

through normal diet and food supplement. Thus, as anticipated, the CWO-fed mice had 

unaltered TAG serum levels compared to the CO-fed mice. 
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5.4 EFFECT OF DIFFERENT PROTEIN SOURCES ON ATHEROSCLEROSIS IN 

APOLIPOPROTEIN E-DEFICIENT MICE 

Paper III evaluated the effect of a marine protein source on atherosclerosis development in 

female ApoE-/- mice fed high fat Western-type diets. The standard protein source casein was 

replaced with i) cod fillet and scallop muscle combined 1:1 on nitrogen basis as a marine protein 

source or ii) chicken breast as a terrestrial protein source. When the composition of the diets 

was analyzed, the cod-scallop diet had 1.9 g/kg cholesterol whereas the chicken diet had 2.0 

g/kg. However, this difference was too low to have an impact on the atherosclerosis progress. 

When compared to the mice fed the chicken diet, the cod-scallop fed mice had reduced plaque 

burdens in the aorta thoracic, abdominal and total area (46%, 56% and 24% respectively) 

(figure 7).  

 
 

 

Figure 7 Atherosclerotic plaque burden retrieved from paper III. Female apolipoprotein E-deficient 

mice were fed high fat Western-type diets for 13 weeks with cod-scallop or chicken as the protein 

sources. *represent the significant difference between cod-scallop fed mice (n=10) and chicken-fed 

mice (n=12). Data are presented as mean ± SEM.  

 

A tendency for reduction of the plaque burden in the aortic arch as well as the serum 

cholesterol levels were observed in mice fed the cod-scallop diet, however, these effects were 

not significant. The chicken diet had low content of taurine, whereas the cod-scallop diet 

contained 5.3 mg/g taurine. Taurine has been shown to reduce atherosclerotic lesions in 

ApoE-/- mice [144], and taurine is known to reduce circulating cholesterol levels by increasing 

excretion of bile acid [145]. When atherosclerotic burden is reduced without a parallel 
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reduction of cholesterol levels, another mechanism than lowering of circulating cholesterol 

levels is needed to explain the effect on plaque burden. 

Oxidative stress is an important part of atherosclerosis [146] and endogenous antioxidants such 

as Paraoxonase 2 (PON2) are upregulated in response to oxidative stress [147]. The chicken 

fed mice had elevated levels of PON2 compared to the cod-scallop fed mice signalling less 

oxidative stress in the cod-scallop fed mice which might have led to the observed reduced 

atherosclerotic lesions. Such beneficial effect may also partly be aascribed to taurine from the 

cod-scallop diet as taurine is known to have antioxidant activity [103, 148]. The Vcam1 gene 

was also down-regulated in cod-scallop fed mice. The expression of the cell-surface adhesion 

molecule VCAM1 is upregulated in endothelial cells during inflammation and it enhance the 

binding of circulating monocytes and their migration into the intima in the vessel wall [149]. 

The down-regulation thus, implicates less inflammation in cod-scallop fed mice compared to 

chicken fed mice, however, none of the other hepatic inflammation genes studied differed 

between the two groups.  

 

Even though they had similar feed intake, the cod-scallop fed mice gained less weight compared 

to the chicken fed mice. The cod-scallop fed mice also had less adipose tissue (by weight), 

which is the primary production site of leptin. Cod-scallop fed mice consequently had less leptin 

compared to chicken fed mice. Leptin is a key hormone in the regulation of food intake and 

energy expenditure balance [150]. Leptin is linked closely to atherosclerosis and may directly 

influence the growth of atherosclerotic plaque through several mechanisms [151, 152]. In one 

study, leptin-treated ApoE-/- mice had greater atherosclerotic burden than the vehicle-treated 

control mice [153], which is in accordance with our findings.  

 

 

 

 

 

 

 

 

 



 31 

6 CONCLUSIONS  
When CWO was deprived of the lipophilic part it still contained antioxidants and had anti-

inflammatory activity that could not be ascribed to LC-n3-PUFA activity. In comparison, CLO 

deprived of the lipophilic part also contained antioxidants but had no anti-inflammatory 

activity. When CWO was given to atherosclerosis prone mice, a reduced formation of 

atherosclerotic lesions in the aortic arch compared to CO-fed mice was observed. CWO-fed 

mice also had reduced body weight and serum levels of LDL/VLDL, ox-LDL, together with 

elevated serum total antioxidant status. Interestingly, the same effect was to some extent seen 

in RWO-II-fed mice.  

 

The cod-scallop fed mice displayed favourable metabolic effects, reduced atherosclerotic 

burden, reduced body weight, reduced visceral body tissue, reduced serum glucose and reduced 

leptin levels compared to the chicken-fed mice. This thesis adds to the notion that CWO has 

anti-inflammatory and antioxidative effects and it demonstrates for the first time that CWO 

prevent the formation of atherosclerosis. Furthermore, this thesis provides novel insight into 

the putative protective mechanism of dietary supplementation of CWO and cod-scallop in CVD 

and demonstrates that these beneficial effects are not limited to the well-known LC-n3-PUFA 

effects.  

 

 

7 FUTURE PERSPECTIVES  
To further elucidate the atheroprotective effects from CWO demonstrated in this thesis, the 

unknown bioactive compound(s) should be isolated and investigated further with 

bioprospecting screening assays. A putative isolated compound as a feed supplement in high 

fat Western-type diet fed ApoE-/- mice may provide more insight into the impact of CWO on 

atherogenesis. In addition, cod-scallop as a marine protein source should be compared to lean 

meat, red meat and processed meat for further in vitro bioactivity assays. The animal studies 

may be extended for a longer period of time to give more consistent results and this will most 

likely give more pronounced group-differences.  

 

In such animal studies of mice intestines can be sampled to isolate RNA and to quantify 

regulation of genes involved in protein and lipid metabolism. In addition, mice faeces may be 

collected and analysed in future the animal studies. This will provide insights into true digestion 
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and excretion mechanisms involved in the cholesterol metabolism. The gut microflora in the 

mice is another notable aspect to look into. Another interesting approach would be to investigate 

whether some of these supplements may be potent enough to reverse already established 

atherosclerosis in mice.  

 

Together, these investigations are likely to increase our knowledge, and understanding of the 

complex mechanisms involved in both formation and prevention of atherosclerosis and 

demonstrates the importance of further investigations.  
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