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A simple criterion for the m-cyclicity of the

group of rational points on an elliptic curve

defined over a finite field

Abstract. We give a simple criterion for the cyclicity of the m-torsion subgroup
of the group of rational points on an elliptic curve defined over a finite field of
characteristic larger than 3 for m = 2, 3, 4, 6, 12.
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1. Introduction and notation

The aim of this paper is to give a very simple criterion for the cyclicity of
the m-torsion of the group of rational points of an elliptic curve defined over
a finite field, in the case where m is a divisor of 12.

In this paper, p > 5 is a prime number and q is a power of p. We denote
by Fq the field with q elements, and by Fq its algebraic closure. F

n
q is the

product of n copies of Fq, while F
(n)
q is the subset of n-th powers.

We refer to [4] for the theory of elliptic curves, and we will use its
notation. If

E : y2 = x3 + a2x
2 + a4x+ a6

is an elliptic curve defined over Fq, and D ∈ Fq\F
(2)
q , then we define the

D-twist ẼD of E to be the elliptic curve defined over Fq by

ẼD : y2 = x3 +Da2x
2 +D2a4x+D3a6

We have the following property:

#ẼD(Fq) + #E(Fq) = 2q + 2.

Moreover, if d ∈ Fq2 is a square root of D, then

ϕd : E(Fq2) −→ ẼD(Fq2)

defined by ϕd(x, y) = (Dx, d3y) is an isomorphism of abelian groups that
preserves the rationality of 2-torsion points.

When studying torsion on elliptic curves, it is natural to look at division
polynomials ψn. They have the property that a point P = (x, y) ∈ E(Fq) is
n-torsion if and only if ψn(x, y) = 0. The interested reader can look at [1].
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We will just need two of them, namely the third and the fourth, and they
are defined as follows:

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8

and

ψ4

2y
= 2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ b4b8 − b26.

2. Cyclicity of E(Fq)[m] for m = 2, 3, 4, 6, 12

As shown in [2], there exists a necessary but not sufficient condition such

that E(Fq)[m] ≈ (Z/mZ)
2
, namely m2 | #E(Fq) and m | q − 1. We shall

provide a partial converse when m is a divisor of 12. The results we are now
presenting are known for m = 2 and m = 3 (see [3]), but we haven’t found
any proofs in the literature. To the best of our knowledge, the results are
unknown for other m. We give here a simple proof of the following result:

Theorem 1. Let E be an elliptic curve defined over Fq by a Weierstrass
equation

E : y2 = x3 + a2x
2 + a4x+ a6

of discriminant ∆. Let m = 2, 3, 4, 6, 12. Assume that m2 | #E(Fq) and
m | q − 1. Then we have

E(Fq)[m] ≈ (Z/mZ)
2
⇔ ∆ ∈ F

(m)
q

Before proceeding with the proof, we make some remarks.

Remark 1. The previous result is the best possible, in the sense that it can
not be extended to any other positive integer m, since the discriminant is
defined up to the 12-th power of a multiplicative constant.

Remark 2. Under changes of variables x = x′−x0, the discriminant and the
form of the Weierstrass equation are unchanged. We will therefore make
such changes of variables freely.

Remark 3. In the proof, we shall define quantities with indices. Except for
Pi, xi, and yi , these indices are the actual weights of the quantities.

We shall now prove theorem 1 in several steps.
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2.1. 2-cyclicity

In this section, we shall prove the main theorem when m = 2.

Proof (Proof of theorem 1 when m = 2.). We have

E[2] = {O, (x1, 0), (x2, 0), (x3, 0)}

where the xi’s are the 3 distinct roots of f(x) = x3 + a2x
2 + a4x+ a6. Since

2 | #E(Fq), one of them is in Fq. Then f either splits or has an irreducible
factor of degree 2. We then have

E(Fq)[2] ≈ (Z/2Z)2 ⇔ f splits

⇔ D ∈ F
(2)
q

where D is the discriminant of f(x). But

D = −4a6a
3
2 + a2

4a
2
2 + 18a6a4a2 − 4a3

4 − 27a2
6 =

∆

16
,

and the theorem is proved in the case m = 2.

Remark 4. We didn’t use the fact that 4 | #E(Fq) but just 2 | #E(Fq).

Corollary 1. Let E be an elliptic curve defined over Fq. Assume that the
j-invariant j is such that j 6= 1728 and that E has a non-zero rational
2-torsion point. Then we have

E(Fq)[2] is cyclic ⇔ (j − 1728) is not a square

Proof. This follows immediately from

j − 1728 =
c26
∆
.

2.2. 3-cyclicity

Lemma 1. Let E be an elliptic curve defined over Fq by a Weierstrass
equation

E : y2 = x3 + a2x
2 + a4x+ a6.

Assume that q ≡ 1 [3] and #E(Fq) ≡ 0 [9]. Then we have

x0 ∈ Fq is a root of ψ3 ⇔ ∃P = (x0, y0) ∈ E(Fq)[3].
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Proof. By definition, we have: x0 ∈ Fq is a root of ψ3 if and only if there
exists a point P = (x0, y0) ∈ E[3], and therefore, one way is straightforward.
Assume now that x0 ∈ Fq is a root of ψ3. Thus there exists a point P =
(x0, y0) ∈ E[3]. Assume that y0 6∈ Fq. Since

y2
0 = x3

0 + a2x
2
0 + a4x0 + a6,

we can deduce that D = y2
0 ∈ Fq\F

(2)
q . We then consider the D-twist ẼD

of E. We know that ϕy0
(x0, y0) ∈ ẼD(Fq2), and it is easy to see that this

point is in fact in ẼD(Fq). Since this is a point of 3-torsion, we thus get

2(q + 1) = #E(Fq) + #ẼD(Fq) ≡ 0 [3]

which contradicts the assumption q ≡ 1 [3].

Proof (Proof of theorem 1 when m = 3.). By hypothesis, there exists a point
P = (x0, y0) rational and of order exactly 3, and we can assume that x0 = 0
by a suitable change of variable. We thus have

E(Fq)[3] ≈ (Z/3Z)
2
⇔ ∃x ∈ F

∗

q , ψ3(x) = 0.

By lemma 1, the x-coordinates of rational points of exact order 3 are given
by the roots of ψ3 in Fq, and in our case, ψ3(x) = 3xϕ3(x), where

ϕ3(x) = x3 +
b2
3
x2 + b4x+ b6

(b8 = 0 since x0 = 0). This polynomial is either irreducible (no other rational
points of order 3), or splits (all the 3-torsion points are rational). By a
suitable change of variable, put ϕ3 in the form

θ3(x) = x3 + α4x+ α6

with

α4 = b4 −
b22
27

= 2a4 −
16a2

2

27
,

and

α6 = b6 −
b2b4

3
+

2b32
729

=
1

729

(
128a3

2 − 648a2a4 + 2916a6

)
.

Note that the two polynomials are of the same type. We have to consider
two cases. If α4 = 0, then a4 = 8

27a
2
2, and since b8 = 0,

a2

(
a6 −

16

729
a3
2

)
= 0.

Now, ∆ 6= 0 implies that a2 = a4 = 0 and we find that

∆ = (−3)3 (4a6)
2 = (−3)3 α2

6.
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We finally get that

∆ ∈ F
(3)
q ⇔ α6 ∈ F

(3)
q ⇔ θ3 splits.

If α4 6= 0, note that b8 = 0 and ∆ 6= 0 imply a2a4 6= 0. We consider the
resolvent polynomial

g(x) = x2 +
3α6

α4
x−

α4

3
,

whose discriminant is

δ =
36

(
−12a2

2a
2
4 + 54a3

4 + 64a3
2a6 − 324a2a4a6 + 729a2

6

)

(8a2
2 − 27a2

4)
2 =

9a2
4

4a2
2

.

Since this is a non-zero square in Fq, the polynomial g(x) has two distinct
rational roots α, β ∈ Fq. Note that none of them is zero since their product
is equal to −α4

3 . Let r be a root of θ3 in Fq. Since

β3 + α4β + α6 = −
β

3α2
4

· discriminant(θ3) 6= 0,

r 6= β. Consider then z = r−α
r−β

. It is obvious that z ∈ Fq if and only if r ∈ Fq,

and therefore, ϕ3 splits if and only if z ∈ Fq. We now look at A = z3. Since
we know that r3 + α4r + α6 = 0, αβ = −α4

3 and α + β = − 3α6

α4

, we easily
find that

(r − α)3 = −α
(
3r2 − 3(α+ β)r + α2 + αβ + β2

)

and similarly for (r − β)3. Then we have

A =
α

β
∈ Fq

which means that ϕ3 splits if and only if A = α
β

is a cubic residue in Fq.
Finally, remembering that b8 = 0, we get that

A =
α

β
=

(
128a4

2 − 864a2
2a4 + 729a2

4 + 2916a2a6

128a4
2 − 432a2

2a4 − 729a2
4 + 2916a2a6

)±1

=

(
∆

8a3
4

)±1

,

and thus A is a cubic residue in Fq if and only if ∆ is.

Corollary 2. Let E be an elliptic curve defined over Fq. Assume that the
j-invariant j is such that j 6= 0. Then we have

E(Fq)[3] ≈ (Z/3Z)2 ⇔ j ∈ F
(3)
q , q ≡ 1 [3] and 9 | #E(Fq)

Proof. We have

j =
c34
∆
.
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2.3. 4-cyclicity

Lemma 2. Let E be an elliptic curve defined over Fq by a Weierstrass
equation

E : y2 = x3 + a2x
2 + a4x+ a6.

Assume that q ≡ 1 [4] and #E(Fq) ≡ 0 [16]. Suppose also that

E(Fq)[2] ≈ (Z/2Z)
2
.

Then we have

x0 ∈ Fq is a root of ψ4/2y ⇔ ∃P = (x0, y0) ∈ E(Fq)[4]\E(Fq)[2].

Proof. As in the proof of lemma 1, one way is straightforward. Assume now
that x0 ∈ Fq is a root of ψ4/2y. Thus there exists a point P = (x0, y0) ∈
E[4]. Assume that y0 6∈ Fq. As in lemma 1, using twists, we can find a point
of order exactly 4 on any D-twist. We also have that every 2-torsion point
on E, as well as on ẼD is rational. That means that the number of rational
points on ẼD is divisible by 8. Thus we have

2(q + 1) = #E(Fq) + #ẼD(Fq) ≡ 0 [8]

which is absurd since q ≡ 1 [4].

Proof (Proof of theorem 1 when m = 4.). We first note that since the

theorem is true for m = 2, we have E(Fq)[2] ≈ (Z/2Z)
2
, and the previous

lemma applies. Moreover, the assumption #E(Fq) ≡ 0 [16] says that there
exists a rational point P0 = (x0, y0) of order exactly 4 on E. Let

P1 = 2P0 = (x1, y1).

By a suitable change of variable, we may assume that x1 = 0, which implies
that a6 = 0. Moreover, since

0 = x1 =
x4

0 − b4x
2
0 − 2b6x0 − b8

4x3
0 + b2x2

0 + 2b4x0 + b6
,

we get that x2
0 = a4. Finally, since E(Fq)[2] ≈ (Z/2Z)

2
, the polynomial

f(x) = x3 + a2x
2 + a4x = x

(
x2 + a2x+ a4

)

splits, which is equivalent to

a2
2 − 4a4 ∈ F

(2)
q .

We denote by δ2 one of its square roots. Since (x0, y0) ∈ E(Fq),

y2
0 = x3

0 + a2x
2
0 + a4x0 = a4 (a2 + 2x0) .

Knowing that a4 ∈ F
(2)
q , we find that a2 + 2x0 ∈ F

(2)
q . Now, since

(a2 − 2x0) (a2 + 2x0) = δ22 ,
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a2 − 2x0 ∈ F
(2)
q as well. We denote by t+, t− square roots of a2 ± 2x0 in Fq,

with the additional property that t+t− = δ2.
We now consider

ψ4

2y
(x) = 2x6 + 4a2x

5 + 10a4x
4 − 10a2

4x
2 − 4a2a

2
4x− 2a3

4

= 2 (x− x0) (x+ x0)
(
x2 + (a2 − δ2)x+ a4

) (
x2 + (a2 + δ2)x+ a4

)

The discriminant D of the fourth factor of this polynomial is

D = (a2 + δ2)
2 − 4a4

= 2δ2 (a2 + δ2)

= δ2
(
t2+ + t2− + 2δ2

)

= δ2

[
(t+ + t−)

2
+ 2 (δ2 − t+t−)

]

= δ2 (t+ + t−)2 .

We then see that
D ∈ F

(2)
q ⇔ δ2 ∈ F

(2)
q ,

and similarly for the third factor. Since q ≡ 1 [4] and ∆ = 16a2
4δ

2
2 =

(2x0)
4
δ22 ,

δ2 ∈ F
(2)
q ⇔ ∆ ∈ F

(4)
q .

Putting all the pieces together, we get that

∆ ∈ F
(4)
q ⇔ E(Fq)[4] ≈ (Z/4Z)

2
.

2.4. 6- and 12-cyclicity

Proof (Proof of theorem 1 when m = 6, 12.). The theorem is a direct con-
sequence of our theorem when m = 2, 3, 4.
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