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Abstract

Geometric energy derivatives which rely on core-corrected focal-point energies ex-

trapolated to the complete basis set (CBS) limit of coupled cluster theory with iter-

ative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as

elements of molecular gradients and, in the case of CCSDT(Q), expansion coe�cients

of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS

and CCSDT(Q)/CBS equilibrium structure of the S0 ground state of H2CO where ex-

cellent agreement is observed with previous work and experimentally derived results.

A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the

same level of theory produces an exceptional level of agreement to spectroscopically

observed vibrational band origins (VBOs) with a MAE of 0.57 cm�1. Second-order vi-

brational perturbation theory (VPT2) and variational discrete variable representation

(DVR) results are contrasted and discussed. Vibration-rotation, anharmonicity, and

centrifugal distortion constants from the VPT2 analysis are reported and compared to

previous work. Additionally, an initial application of a sum-over-states fourth-order

vibrational perturbation theory (VPT4) formalism is employed herein, utilizing quin-

tic and sextic derivatives obtained with a recursive algorithmic approach for response

theory.

1 INTRODUCTION

Spectroscopic accuracy, where deviations from gas-phase vibrational band origins (VBO’s)

does not exceed 1 cm�1, has been a longstanding goal of theoretical spectroscopy.1 Empiri-

cally fit2–5 potential energy surfaces (PESs) are capable of providing spectroscopic accuracy

for a system if a very high-quality ab initio PES is available and hundreds of rotationally

resolved spectroscopic observations about well-defined VBOs have been for reported for that

system. Such empirical reliance obsfucates the powerful predictive ability of theory which

most often seeks to describe the properties of systems that are di�cult to study in the lab-
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oratory. High-accuracy benchmark work6–8 on the rovibrational spectrum of water shows

that ab initio PESs alone are capable of spectroscopic accuracy for VBOs as long as com-

plete basis set (CBS) extrapolations and extensive correlation energy corrections are utilized.

Quantum chemistry has reached a point where fully ab initio PESs of this quality are now

available for several small molecules9–13 but the cost associated with higher-order correlation

corrections has prevented their development as a routine practice.

The e↵ectiveness of composite approaches to the total energy of a system is emphasized

in the current work through the use of a focal-point analysis (FPA)14–17 that provides a

spectroscopically accurate PES through high-level, size-extensive coupled cluster computa-

tions. Recent advances involving a (spin-free) orbital representation of the cluster amplitudes

combined with a spin summation technique have made otherwise prohibitive coupled cluster

models tractable.18 These models of correlation include the coupled cluster singles, doubles,

iterative triples (CCSDT), noniterative quadruples (CCSDT(Q)), and iterative quadruples

(CCSDTQ) methods. The benefits of including the complete T̂3 and T̂4 excitation opera-

tors19–22 have been known for some time, but the noniterative quadruple-excitation model23

is comparatively new. Due to its relative cost and exemplary performance, CCSDT(Q) has

been suggested as the “platinum standard” of quantum chemistry for high-accuracy stud-

ies.24 All of these high-level correlation methods have been shown to converge faster through

sub- and micro-iterations, which further increases their applicability by decreasing the time

to solution.25

The progress made in high-level coupled cluster methods is leveraged in this work by de-

termining the equilibrium geometry and fundamental VBOs of the ground state of formalde-

hyde (S 0 H2CO), using geometric energy derivatives determined numerically from focal-point

energies. Formaldehyde benefits from decades of research using high-resolution gas-phase

spectroscopy to describe the vibrational26–29 and rotational30,31 (as well as rovibrational in

databases such as HITRAN201632) characteristics of the parent molecule and its isotopo-

logues.33 Multiple empirically refined PESs2–5 for S 0 H2CO have been generated over the
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years which form an excellent basis of comparison to the current high-accuracy ab initio

work. The ground-state equilibrium structure (re) of formaldehyde has been previously op-

timized at the CBS limit with high-level correlation energy corrections34 but the e↵ects of

high-level corrections on molecular vibrations and higher-order spectroscopic constants have

not been evaluated. The reason for this shortcoming is obvious: the computational cost of

quadruple-excitation coupled cluster models has discouraged their use in the development of

anharmonic force fields until now.

Molecular force fields of small polyatomic systems have been produced through quartic

using CBS-extrapolated composite energies in the past,35–39 but only benchmark compu-

tations on triatomic systems9 have incorporated quadruple excitation contributions to the

correlation energy. A quartic force field (QFF) for S0 formaldehyde using correlated meth-

ods up to CCSDT(Q) and basis sets as large as cc-pV6Z is presented here. QFFs provide a

tractable alternative to full-dimensional PESs, which can require 50-100 times the number

of displaced nuclear configurations as a QFF, when only the near-equilibrium properties of

a molecule, such as fundamental vibrational frequencies, are desired. Such tractability al-

lows for the high-throughput production of accurate spectroscopic data that is critical in the

detection and characterization of molecules, especially for larger systems.

Second-order vibrational perturbation theory (VPT2) is used in this work to provide

higher-order spectroscopic constants and vibrational frequencies for S 0 H2CO and compared

to a discrete variable representation (DVR) variational approach. The convergence of the

VPT2 fundamental frequencies of S0 formaldehyde to the new CCSDT(Q)/CBS standard is

examined using a series of lower level CCSD(T)/cc-pVXZ (X=T,Q,5) QFFs. Additionally,

an initial application of vibrational perturbation theory to fourth order (VPT4) is presented,

which relies on fifth- and sixth-order geometric energy derivatives provided by a recursive

and generalorder implementation of response theory.40 A high-accuracy Morse-based PES

generated here is used to fit another, complimentary, dimensionless coordinate PES for use

with VPT4. Together, the two datasets o↵er a basis of comparison for follow-on studies in
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nuclear motion theory.

2 THEORETICAL METHODS

2.1 Complete Basis Set Extrapolation

All CBS extrapolation formulae assume the use of a hierarchy of basis sets that contain

an increasing number of one-electron basis functions. As basis set size increases, an exact

description of the Hartree-Fock electron density should be approached and diverse sets of vir-

tual orbitals should be provided for the description of electron correlation. The correlation-

consistent, polarized-valence, family of basis sets (cc-pVXZ, aug-cc-pVXZ, cc-pCVXZ, cc-

pwCVXZ; X=D, T, Q, 5, 6)41–43 were designed to have these properties. The Hartree-Fock

energy extrapolation formula of Feller44 as well as that of Helgaker et al. for the corre-

lation energy45 were developed using the correlation-consistent family of basis sets. The

three-parameter exponential fit,44

E

HF
X = E

HF
1 + ae

�bX
, (1)

relies on a system of direct-fit or least-squares equations involving Hartree-Fock energies

computed using at least three correlation-consistent basis sets. The slower convergence46–48

of the correlation energy (regardless of ansatz used) relative to the Hartree-Fock energy

prompted Helgaker et al. to develop a separate two-parameter fit45 of the correlation energy,

E

total
X � E

HF
X = "

corr
1 + aX

�3
, (2)

where X is the cardinality of the correlation consistent basis set, noting that a sequence

of basis sets is required to solve for extrapolated energies. The extrapolation formulae

used above are just two of the many approaches available in the literature for CBS energy

extrapolations.49 Other popular methods for the extrapolation of energies include the three-
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point scheme of Martin and Lee50 as well as numerous formulations from Schwenke.51

2.2 The Focal-Point Approach

Focal point analysis (FPA) is a dual-extrapolation composite energy scheme that systemati-

cally approaches the full configuration interaction (FCI) complete basis set (CBS) limit. The

one-particle basis set limit is targeted in both the reference (Hartree-Fock) energy as well as

the correlation energy. In this way, errors associated with the basis set dependence of the

CCSD(T) energy is minimized. The unrecovered correlation energy is primarily accounted

for by more complete models of n-particle excitation. These high level contributions to the

correlation energy are represented in FPA as energy increments and appear as high level

corrections (Ehlc) in model chemistries such as HEAT.52–54 Energy increments are defined

as the di↵erence in the correlation energy using two separate but “adjacent” methods in the

coupled cluster (or Møller-Plesset) hierarchy which rely on the same one-particle basis set.

The correlation hierarchy of methods used in FPA, such as the HF!MP2!CCSD!

CCSD(T)!CCSDT!CCSDT(Q) hierarchy used here, is used to determine method adja-

cency and is almost always reported explicitly or in the form of a FPA table such as the

example in Table 1. A common example of an energy increment is the one associated with

the correlation energy recovered using the iterative triple excitations model of coupled cluster

theory: �ET
X = E

CCSDT
X � E

CCSD(T)
X . The defining n-particle excitation model is used as the

energy increment superscript to convey that the correlation energy being recovered by the

additive di↵erence term is, in this example, from the iterative triples (CCSDT) results using

a cc-pVXZ basis set. These increments rely solely on the correlation energy components of

the methods employed, since the reference energy cancels when using the same one-particle

basis set.

The core-corrected focal-point energy used in this study is defined by five components;

four of which define the FPA energy and one which corresponds to the core correction. In

the equation below, E is an absolute energy and �E is the di↵erence between two absolute
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energies.

E

CCSDT(Q)
CBS =

 
E

HF
6 �

�
E

HF
6 � E

HF
5

�2

E

HF
6 � 2EHF

5 + E

HF
4

!
+

 
"

(T)
6 �

"

(T)
6 � "

(T)
5

1�
�
6
5

�3

!

+
⇣
E

T
4 � E

(T)
4

⌘
+
⇣
E

(Q)
3 � E

T
3

⌘
+
⇣
E

(T)
4,ae � E

(T)
4,fc

⌘

= E

HF
1 + "

(T)
1 + �E

T
4 + �E

(Q)
3 +�Ecore (3)

Any term represented by "

n
X is the correlation energy of a given method defined as En

X�E

HF
X

where n represents the defining excitation term of the model such as (T) in CCSD(T). Energy

increments described as �En or �"n are equivalent. The final term in this energy is the core

correlation correction which relies on the cc-pCVXZ basis set.43 It is defined as the di↵erence

between the CCSD(T) energy with all electrons correlated and the energy within the frozen

core approximation. Two energy increments are used in the present work, �ET
4 and �E

(Q)
3 ,

to define the CCSDT(Q)/CBS focal-point energy as seen in Equation 3.

2.3 Equilibrium Structure Optimization

Molecular structures are optimized with numerical gradients determined through three-point

or five-point central finite di↵erence formulae using the findi↵ module of PSI4.55 The C2v

ground state structure of formaldehyde requires 6 or 12 displaced geometries per numer-

ical gradient. CCSDT(Q)/CBS core-corrected focal-point energies are computed at each

displaced geometry required for calculation of the three and five-point gradient. The ef-

ficacy of core corrections in composite approaches is evaluated through comparison of the

three-point CCSDT(Q)/CBS geometry to a three-point optimized ae-CCSDT(Q)/CBS struc-

ture. Additionally, a CCSDTQ/CBS geometry, which relies on iterative CCSDT/cc-pV5Z

and CCSDTQ/cc-pVTZ additive corrections, is determined using five-point gradients. The
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CCSDTQ/CBS level of theory is shown below in the aforementioned notation.

E

CCSDTQ
CBS = E

HF
1 + "

(T)
1 + �E

T
5 + �E

Q
3 +�Ecore (4)

Relativistic corrections, �rel, are determined as the di↵erence between the simple internal

coordinates of structures optimized at ae-CCSD(T)/cc-pCVQZ corrected with mass-velocity

as well as one- and two-electron Darwin terms (MVD2)56,57 and ae-CCSD(T)/cc-pCVQZ

(referred to below as nonrel).

rCBS+�rel
= rCBS + (rMVD2 � rnonrel) (5)

The r coordinate shown in Eqn. 5 is representative of any corrected simple internal coor-

dinate; angle or bond distance. A root-mean-square (RMS) force convergence threshold of

1⇥10�7
Eh/a0 is used for all CBS structures. Analytic gradients implemented in CFOUR 2.0

are used to optimize the reference structures for the CCSD(T)/cc-pVXZ (X=T,Q,5) levels

of theory and are converged with a force RMS threshold of 1⇥10�9
Eh/a0.58

2.4 CBS Extrapolation of Analytic Gradients

Although the numerical gradients used here benefit from an clearly parallelized computa-

tional strategy, analytic gradients will always be preferred when available as they are much

faster to compute, are independent of system size, and su↵er much less from numerical

errors.59,60 A brief derivation of how common CBS formulae may be extended to include

first-order geometric derivatives is presented below. Solution of the a, b, c coe�cients in an

exponential fit44 produces an easily implemented form of the CBS extrapolation of Hartree-

Fock energies by way of:

E1 = E3 �
(E3 � E2) 2

E3 � 2E2 + E1
= E3 �

A

2

B

. (6)
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In the above form, Hartree-Fock energies computed using correlation-consistent basis sets are

presented as En where the highest n corresponds to the largest basis set used. Di↵erentiation

of the extrapolation formula with respect to a generic variable x representing a nuclear

coordinate in the Cartesian frame provides a direct method of extrapolation of analytic

gradients to the complete one-particle basis set limit:

@E1

@x

= (1� 2AB�1 + A

2
B

�2)
@E3

@x

+ 2(AB�1
� A

2
B

�2)
@E2

@x

+ A

2
B

�2 @E1

@x

(7)

The same principles used for the above derivation can be applied to Helgaker et al.’s

extrapolation formulae for the correlation energy.45

E1 = E2 �
E2 � E1

1� (X2/X1)
3 = E2 � Ac

�1 (8)

@E1

@x

= (1� c

�1)
@E2

@x

+ c

�1@E1

@x

(9)

The denominator shown above is a simple constant term represented as c, whereas the

electronic energies that enter the extrapolation are described by the di↵erence term A. In

both the reference and correlated results, the A and B variables are linear with respect to

the electronic energies and the @En/@x terms are independent of one another. The formulae

derived above are with respect to a general variable x where x is chosen to be a geometric

variable in this study. Similar approaches have been employed in past studies34,61,62 with

great success. However, the extrapolation of other types of energy derivatives may be better

suited to a parameterized extrapolation, such as those in Ref. 63, as suggested by recent

work on hyperpolarizabilities.64
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2.5 Quartic Force Fields

A local expansion of the CCSDT(Q)/CBS potential with respect to a set of curvilinear

internal coordinates is produced to fourth order about the five-point CCSDT(Q)/CBS opti-

mized geometry. The set of coordinates chosen are redundant simple internal coordinates of

formaldehyde: rCO, rCH, r0CH, ✓OCH, ✓0OCH, ⌧HCOH. Symmetry-adapted internal coordinates

are formed following the set described by Martin et al.:65

S1(a1) =
1
p

2
(rCH + r

0
CH)

S2(a1) = rCO

S3(a1) =
1
p

2
(✓OCH + ✓

0
OCH)

S4(b1) = ⌧HCOH (10)

S5(b2) =
1
p

2
(rCH � r

0
CH)

S6(b2) =
1
p

2
(✓OCH � ✓

0
OCH)

This quartic force field (QFF) is generated by displacing the equilibrium symmetry-adapted

internal coordinates by 0.01 Å for bond lengths and 0.02 rad for bond angles. The displaced

internal coordinate configurations are then transformed to the 183 required symmetry unique

Cartesian geometries. The focal-point procedure is performed at each of the displaced geome-

tries using the CCSDT(Q)/CBS level of theory. The INTDIF2008Mathematica program66 is

used to generate the single-point geometries, as well as solve for the symmetry-adapted inter-

nal coordinate energy derivatives by central finite di↵erence formulae. In the polynomial be-

low, the symmetry-adapted force constants are represented as Fij =
@2V

@Si@Sj
, Fijk =

@3V
@Si@Sj@Sk

,

and Fijkl =
@4V

@Si@Sj@Sk@Sl
.
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V4(S) =
1

2

X

ij

FijSiSj +
1

6

X

ijk

FijkSiSjSk +
1

24

X

ijkl

FijklSiSjSkSl. (11)

The coordinates in Eqn. 11 are understood to be displacement coordinates in S. Up to

four-mode coupling is considered (unrestricted summations up to fourth order) but force con-

stants obviously related by symmetry are equivalent, such as Fij = Fji, and only computed

once.

Relativistic corrections to the CCSDT(Q)/CBS QFF are evaluated as the di↵erence be-

tween the symmetry-adapted internal coordinate force constants (Eqn. 11) from two ad-

ditional QFFs. These are the ae-CCSD(T)/cc-pCVQZ (MVD2)56,57 and ae-CCSD(T)/cc-

pCVQZ (referred to as nonrel) levels of theory, �rel = V4(SMVD2) � V4(Snonrel), where the

QFFs in �rel are expanded about a geometry optimized at their respective levels of the-

ory. Corrections made directly to the CCSDT(Q)/CBS energy with the same methods,

E

CCSDT(Q)
CBS + (EMVD2 � Enonrel), are found inferior to those made at the force constant level

due to increasingly large shifts observed in F22, the diagonal C�O stretching force constant.

The additive di↵erence corrected CBS geometry, rCBS+�rel
(Eqn. 5), is used as the equilib-

rium geometry in VPT2 calculations in both cases but is likely inferior to a geometry which

is optimized using a numerical gradient that explicitly contains scalar relativistic corrections.

All QFFs are generated in the same procedure described at the beginning of this section and,

thus, displace the corresponding CCSDT(Q)/CBS, MVD2, and nonrel equilibrium structures

along the same set of internal coordinate displacements. A diagonal Born-Oppenheimer cor-

rection (DBOC) was determined negligible for the present work but Refs. 6, 67, and 68

show how the magnitude of DBOCs can grow with the number of vibrational quanta in

energy levels of water and how DBOC surfaces are needed for spectroscopic quality results

for systems such as H+
3 .

Variational results for anharmonic vibrational frequencies are provided (using the full
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extrapolated surface) through discrete variable representation (DVR) with P. B. Changala’s

NITROGEN program.69 A series of 9, 12, 12, 12, 12, and 9 potential-optimized grid points

are chosen for NITROGEN from an initial basis spanning 1.7 Å, 1.2 Å, 1.2 Å, 90�, 90�,

120� in redundant simple internal coordinates (see above). Standard thick restart was used

with a Lanczos tolerance of 1.0⇥10�6 cm�1 where the reported energy levels are converged to

machine precision (approximately 1.0⇥10�12 cm�1 in this case). Coordinate transformations

are performed with respect to the simple internal bond displacement coordinates, �rCH and

�rCO, that comprise Si=1�2,5 to generate a Morse,70 µ = 1� exp(�↵�r), representation of

the PES, ↵ = �fiii/3fii, before prediction of vibrational eigenvalues. The simple internal

coordinate derivatives used in ↵ are defined as fii =
@2V
@r2i

and fiii =
@3V
@r3i

. The final surface

maintains the symmetry of the original.

Second-order vibrational perturbation theory (VPT2) is used to provide vibrational fre-

quencies and spectroscopic constants with the SPECTRO program71 based on the quartic

potential, V4(q). The non-linear transformation of geometric derivatives, required to go from

curvilinear internal coordinate space to Cartesian space, is performed using the INTDER2005

program72 before transformation to reduced normal coordinates.73

V4(q) =
1

2

X

r

!rq
2 +

1

6

X

rst

�rstqrqsqt +
1

24

X

rstu

�rstuqrqsqtqu (12)

Additional anharmonic force fields are generated for the CCSD(T)/cc-pVXZ (X=T,Q,5)

levels of theory with the procedure noted above where SPECTRO is used to provide vibra-

tional frequencies and anharmonicity constants. The first and second harmonic derivatives

are calculated using the GUINEA module of CFOUR 2.0. Fermi resonances are treated in

both SPECTRO and GUINEA where results are confirmed consistent to the reported values.
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2.6 Recursive Calculation of Response Properties

For the analytic calculation of response properties at the Hartree-Fock (HF) level, a recently

developed formulation of response theory74 and its recursive implementation75 in a local

version of the Dalton2013 program suite76,77 was employed, where di↵erentiated one- and

two-electron integrals were obtained using the Gen1Int78,79 and cgto-diff-eri80,81 mod-

ules, respectively, and where the response equation solver of Jørgensen et al.82 was used. The

method has previously been described extensively,74,75 and we refer the interested reader to

this earlier work for further details about the underlying theory and its implementation. In

the present manuscript, we will only outline the main features of the approach.

In this formulation, an arbitrary response property hhA;B,C, . . .ii!bc··· involving pertur-

bations a, b, c . . ., associated with a collection of frequencies !bc···, where !a = �

P
i2{b,c,...} !i,

is expressed as a quasienergy derivative L

abc···
k,n . Using a generalization of Wigner’s (2n + 1)

rule expressed by integers k and n and permitting truncation rule choices between and in-

cluding the well-known (n + 1) and (2n + 1) rules,83 response properties can be expressed

compactly as

hhA;B,C, . . .ii!bc··· = L

abc···
k,n

{Tr}T
= E

abc···
k,n � (SW)abc···nW

� (SaW)bc···kS ,n
0
W

� (�aY)bc···k�,n
0
Y
� (⇣aZ)bc···k⇣ ,n

0
Z
, (13)

where E in this work is the HF energy, S is the overlap matrix, W is a generalization

of the so-called energy-weighted density matrix, and � and ⇣ are Lagrange multipliers for

respectively the time-dependent self-consistent field and idempotency conditions, expressed

as Y and Z, respectively. The notation
{Tr}T
= signifies that the trace and time-average over

the collective oscillation period of the applied perturbations will be taken for the terms

on the right-hand side of Eq. (13), and superscripts abc · · · denotes perturbation-strength

di↵erentiation and subsequent evaluation at zero perturbation strength for the collection of

perturbations thus indicated. The integers k and n, taking various forms in Eq. (13), indicate
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a particular choice of the generalized Wigner rule, placing certain conditions on which terms

must be evaluated to yield the desired response property. We remark that in this work,

which involves only perturbations that represent displacement of the Cartesian coordinates

of the system, the maximum value of k and n for a given property notably determines the

maximum order of such perturbation to which the density matrix D and Fock matrix F

must be evaluated during the course of the calculation. For further details, we refer to the

original works;74,75 noting, however, that it is the (2n + 1) rule which for all properties in

this work will result in the lowest computational costs and is therefore here the one chosen.

The (2n + 1) rule choice is equivalent to setting (k, n) = (2, 2) and (k, n) = (2, 3) for the

fifth- and sixth-order force constants, respectively, and the fifth-order force constants Lggggg,

where g denotes displacement of the Cartesian nuclear coordinates, are thus obtained by

evaluating the expression

L

ggggg
2,2

{Tr}T
= E

ggggg
2,2 � (SW)ggggg2W

� (SgW)gggg2S ,20W

� (�gY)gggg2�,20Y
� (⇣gZ)gggg2⇣ ,20Z

, (14)

for the fifth-rank tensor containing all combinations of the components of such displacements,

while the corresponding expression for sixth-order force constants Lgggggg is

L

gggggg
2,3

{Tr}T
= E

gggggg
2,3 � (SW)gggggg3W

� (SgW)ggggg2S ,30W

� (�gY)ggggg2�,30Y
� (⇣gZ)ggggg2⇣ ,30Z

. (15)

2.7 4th-order Vibrational Perturbation Theory

Using the recursive approach of the previous subsection, a set of fully analytic HF/cc-pVTZ

quintic and sextic geometric derivatives are determined in the Cartesian reference frame

with an S0 H2CO structure optimized at the HF/cc-pVTZ level of theory. An analytic

HF/cc-pVTZ Hessian produced about this equilibrium structure is used to transform the
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Cartesian derivatives into a reduced normal coordinate (dimensionless) system. For clarity,

CCSDT(Q)/CBS reduced normal coordinates are referred to as q whereas HF/TZ reduced

normal coordinates are denoted by q’. The set of HF/TZ reduced normal coordinate fifth-

and sixth-order derivatives determined from the recursive approach is referred to as V6(q’)

as shown in Eqn. 16.

V6(q’) =
1

120

X

rstu

�rrstuq
2
rqsqtqu +

1

720

X

rtu

�rrttuuq
2
rq

2
t q

2
u (16)

Additionally, the improved convergence radius of the aforementioned CCSDT(Q)/CBSMorse-

based QFF is exploited to produce another set of reduced normal coordinate force constants

up to sixth-order by LSQ fitting energies to displacements along q, the CCSDT(Q)/CBS

reduced normal coordinates. It may be noted that only the expansion coe�cients known to

contribute in VPT4 are used to define the quintic and sextic portions of both force fields.

Fundamental frequencies computed with fourth order vibrational perturbation theory

(VPT4) are determined using both the quartic (V4(q)) and quintic and sextic (V6(q) or

V6(q’)) force fields, as well as vibrational corrections to the instantaneous moments of inertia

µ↵�. The mass-dependent pseudopotential term U(q) which appears in the Watson Hamil-

tonian has not been included fully to fourth order. We use standard Rayleigh-Schrödinger

perturbation theory and a direct sum-over-states formalism, in contrast to other work on

analytical84 and numerical85,86 contact transformations. This approach has been incorpo-

rated into the GUINEA module of the CFOUR program suite.58 VPT4 is also capable of

generating additional vibrational corrections to the rotational constants, centrifugal distor-

tion constants, etc. We expect that these additional corrections could account for some of

the residual di↵erences with respect to experiment that we observe (see for example, Table

12); however, we have not yet implemented them.

All electronic structure computations are based on restricted Hartree-Fock (RHF) refer-

ence wavefunctions. The Molpro 2010.1.67 computational chemistry suite87 is used for single-

15



point coupled cluster computations up to CCSD(T). One and two electron integral cuto↵s

are 1⇥10�14
Eh where the HF and coupled cluster energies are converged to 1⇥10�11

Eh. The

NCC module24 of the CFOUR 2.0 package58 is used for the CCSDT and CCSDT(Q) com-

putations in the spin-adapted non-orthogonal coupled cluster framework.18 CCSD(T)/aug-

cc-pVQZ (aQZ) electronic contributions to the rotational constants of the CCSDT(Q)/CBS

reference structure are provided through CFOUR 2.0. Coupled cluster energies and ampli-

tudes are converged to better than 1⇥10�9
Eh in the CFOUR interfaced computations.

3 RESULTS AND DISCUSSION

3.1 Equilibrium Structures and Rotational Constants

The change in predicted geometries is a function of both basis set and treatment of elec-

tron correlation.61,88–93 These trends can be summarized succinctly with respect to the C2v

ground state of formaldehyde as: 1) bonds contract and angles grow with increasing basis

set cardinality as well as with the inclusion of core correlation; and 2) bonds lengthen and

angles shrink slightly as the description of the n-particle space improves. These relation-

ships are explored here using the ab initio structures of S0 H2CO predicted at various levels

of theory as shown in Table 2. The CCSD(T)/TZ predicted structure displays the longest

bonds and smallest HCH bond angle; the only unique bond angle in the system due to sym-

metry. This bond angle widens significantly, from 116.185 to 116.442�, in the CCSD(T)/QZ

structure where the characteristic contraction of bond lengths is observed. The contraction

is especially prominent in re(CO) which decreases by 0.003 Å. The re(CO) bond is rela-

tively converged in the included CCSD(T)/cc-pVXZ, X = T, Q, 5, sequence (referred to as

T!Q!5 hereafter) at the CCSD(T)/5Z geometry which only shrinks by 0.00024 Å com-

pared to the cc-pVQZ geometry. However, a modest contraction of re(CH) is accompanied

by an increase in ✓e(HCH) as the basis set grows from cc-pVQZ to cc-pV5Z.

The focal-point gradients used to optimize the CBS structures in this paper rely on
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extrapolation of CCSD(T)/cc-pVXZ (X=Q,5,6) energies and are corrected for higher-order

electron correlation using up to the CCSDT/5Z and CCSDTQ/TZ levels of theory as seen

in Eqns. 3 and 4. The E

HF
1 + "

(T)
1 + �Ecore and �E

T
5 + �E

Q
3 or �E

T
4 + �E

(Q)
3 components

of the composite energy are anticipated to shift the geometry in opposite directions within

the established trends. It is apparent from the results in Table 2 that the former, CBS,

components of the composite energy dominate in this context where large contractions of

the bond lengths and a modest widening of the HCH bond angle are observed in the CBS

results when compared to the CCSD(T)/cc-pVXZ (X=T,Q,5) structures.

The three-point finite di↵erence optimized ae-CCSDT(Q)/CBS geometry correlates all

electrons and is used to gauge the error associated with the core correlation correction,

�Ecore, used in the frozen core CCSDT(Q)/CBS results. The di↵erences between these two

geometries are listed in Table 2 as Err(�core). A slight contraction of the bond lengths, as well

as HCH bond angle, is observed in the three-point optimized all-electron ae-CCSDT(Q)/CBS

results when compared to the three-point optimized CCSDT(Q)/CBS core-corrected struc-

ture. Coincidentally, both the re(CO) and re(CH) bonds are shorter by an equivalent amount

of 0.00012 Å and 0.00013 Å, respectively. As such, a core-corrected valence focal point struc-

ture may exhibit slightly longer bond lengths and angles than its all-electron counterpart.

The three-point and five-point optimized CCSDT(Q)/CBS structures agree within the re-

ported number of significant digits and show negligible di↵erences (deviations on the order of

1⇥10�6 for bond lengths and 1⇥10�4 degrees for bond angles) for the core-corrected results.

The authors are not aware of any previous work which use a more complete composite

method than the CCSDTQ/CBS level of theory shown in Eqn. 4 to determine the equi-

librium geometry of this system. The energy increments used to correct the CBS energies

use basis sets which are two cardinality higher for the iterative triples correction, �ET
5 , and

one cardinality higher for the iterative quadruples correction, �EQ
3 , than previous results.34

As described earlier in this section, longer bond lengths are expected from more complete

models of correlation whereas contractions of these bonds are expected from increases in the

17



cardinality of the basis set. However, Halkier et al. have shown that the iterative triples

coupled cluster model (CCSDT) tends to give bond lengths slightly shorter than those of

CCSD(T).94

Similar behavior is observed here for iterative quadruples upon comparison of the CCS-

DTQ/CBS and CCSDT(Q)/CBS geometries in Table 2. The CCSDT(Q) model exhibits a

slight over-estimation of the total energy as first reported in Bomble et al.’s introduction of

the method.23 Eriksen et al.95 recently evaluated a number of non-iterative quadruple exci-

tation coupled cluster models and determined the correlation energy recovery of CCSDT(Q),

using a cc-pVTZ basis set, to be ⇠10% above that of the iterative CCSDTQ model. Thus,

the re(CO) bond length of the CCSDT(Q)/CBS structure, which is longer than the CCS-

DTQ/CBS result by 0.00027 Å, is likely a consequence of the overestimation of the quadruples

component present in the CCSDT(Q) model. The re(CH) bond length and ✓e(HCH) bond

angle, on the other hand, appear converged at this level of theory as seen in Table 2.

Despite the well-studied nature of S0 formaldehyde, there are very few equilibrium struc-

tures which are determined at a comparable level of theory as the present results. The

equilibrium structure of Puzzarini et al.,34 shown in Table 3, was determined in a similar

method as the present work as it relies on CBS-extrapolated (analytic) gradients which are

corrected with an additive di↵erence scheme. Exemplary agreement is seen for the calulated

bond lengths of S0 formaldehyde between the CCSDTQ/CBS structure computed in this

work and the cc-pVDZ-based CCSDTQ/CBS structure of Puzzarini et al. The C�O bond

length di↵ers by a negligible 0.00003 Å (1.20457 - 1.20454 Å) between the two geometries

with an even smaller di↵erence of 0.00002 Å (1.10052 - 1.10050 Å) for the C�H bonds. The

assumption of a diminishing basis set dependence for this system is reasonable considering

only re(CO) shows significant change amongst the CCSDT(Q)/CBS and CCSDTQ/CBS

geometries computed in this work.

The convergence of individual structural parameters relies not only on the reported ab

initio results but also requires validation through empirical findings. At present, Lohilahti
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reports the most recent (and certain) experimentally derived re structure of S0 formalde-

hyde.96 As shown in Table 3, both the CCSDT(Q)/CBS and CCSDTQ/CBS equilibrium

structures provided in this work show exceptional agreement with that of Lohilahti’s ex-

perimental structure. Both CBS geometries fall within experimental uncertainty for the

CH bond lengths and HCH bond angle, di↵ering less than 0.0001 Å from experiment in

re(CH) for both structures. CCSDTQ/CBS predicts a re(CO) bond length within experi-

mental uncertainty, only 0.00004 Å from Lohilahti’s value, whereas CCSDT(Q)/CBS mildly

overestimates the length, landing slightly outside the error bounds. The additive di↵erence

relativistic corrections shown in Table 2 and described in the theoretical methods appear

e↵ective here in the case of CCSDT(Q)/CBS, moving the corrected geometry closer in every

case, with re(CO) = 1.20471 Å, re(CH) = 1.10042 Å, and ✓e(HCH) = 116.698 degrees. For

CCSDTQ/CBS, both the relatively converged CH bond lengths and HCH bond angle im-

prove when including relativistic corrections but the CO bond length moves away from the

experimental structure (although still within experimental uncertainty) at re(CO) = 1.20444

Å.

Further validation of the quality of the provided structure is found through the analysis

of rotational constants. The equilibrium rotational constants, Be, provided in Table 3 are

computed by CFOUR from the internal coordinates of the listed structure if they are oth-

erwise unreported in the corresponding literature. The Be of the present work are corrected

for vibrational and electronic (magnetic) e↵ects as B0 = Be +�Bvib +�Bel, where B corre-

sponds to A, B, or C, as described in previous work.34 Vibrational corrections, �vib, to the

equilibrium rotational constants are determined with VPT2 from the CCSDT(Q)/CBS force

field whereas electronic contributions, �Bel, are predicted at the CCSDT(Q)/CBS geometry

using the CCSD(T)/aQZ level of theory. These are �Avib = -3235.6 MHz, �Bvib = -158.7

MHz, and �Cvib = -303.0 MHz for vibrational corrections and �Ael = -438.4 MHz, �Bel =

-4.7 MHz, and �Cel = -1.8 MHz for the magnetic corrections.

The magnetic correction, �Bel =
me
mp

gBe (me and mp are the masses of an electron and
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proton, respectively), appears particularly large for A when compared to past studies of

halogen cynanides97 where a correlation between mass and molecular magnetic moment (g-

value) was emphasized. In the present case, the electronic contribution to the rotational

g-tensor dominates the nuclear contribution (especially in the case of the a-principal axis)

producing g-values in line with past experimental work.98 The g-values are gaa = -2.8177,

gbb = -0.2201, and gcc = -0.0952 here whereas Flygare98 reports gaa = -2.9017(8), gbb =

-0.2243(1), and gcc = -0.0994(1). Other planar systems with a central double bond show a

similar pattern where the g-value along the double bond axis is much larger than the others.

This is the case for the isoeletronic methanimine99,100 (gaa = -1.27099(22), gbb = -0.18975(7),

and gcc = -0.03440(8)) as well as the isovalent thioformaldehyde98 (gaa = -5.6202(68), gbb

= -0.1337(4), and gcc = -0.0239(4)). The interested reader is encouraged to review the

supporting information of Ref. 34 for a tabulation of ab initio �Bel values for first-row

polyatomics and their isotopes.

A recent study of S0 H2CO in the terahertz (THz) regime reports high-accuracy A, B,

C constants 281970.5558(61), 38833.98715(31), and 34004.24349(31) MHz, respectively.30 A

di↵erence of 42.3, 19.7, and 10.9 MHz is observed between the experimental A, B, and C con-

stants of Brunken et al. and the theoretical A0, B0, and C0 constants of the CCSDT(Q)/CBS

structure.30 This represents a mean absolute percent error (MAPE; shown below where Y

is relative to X) of 0.033% with respect to the experimental values.

MAPE(%) =
100%

n

nX

i=1

����
Xi � Yi

Xi

���� (17)

Improvement on the MAPE is found by applying the same corrections to the equilibrium

rotational constants computed using the CCSDTQ/CBS structure. Both B0 and C0 show

better agreement with B0 di↵ering by 4.7 MHz and C0 by 1.0 MHz from experiment but a

slight decrease in accuracy is observed in A0 which varies by 46.9 MHZ. This level of accuracy

produces a MAPE a third of the original value at 0.010%. Inclusion of the CCSDT(Q)/CBS
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quartic and sextic centrifugal distortion constants e↵ects shifts A0, B0, and C0 by 0.0, -1.3,

and 1.3 MHz, respectively, which moves both the CCSDT(Q)/CBS and CCSDTQ/CBS ro-

tational constants slightly away from experiment. Although beyond the scope of this work, a

better comparison here would be to compute the actual ground state rotational level positions

variationally using our potential, and then fit them to the same rotational Hamiltonian used

by Brunken et al. However, this would not alter the qualitative result observed here: that the

rotational constants computed here via VPT2 are in excellent agreement with experiment.

The present VPT4 framework will soon allow for further correction of these spectroscopic

constants through higher-order contributions, once implemented, and should provide even

more accurate results by refining �Bvib as well as providing a more complete description of

centrifugal distortion.

3.2 Vibrational Band Origins

3.2.1 Convergence of VBOs

The easily applied and well-documented convergence patterns of structural parameters seen

in subsection A do not generally extend to the vibrational properties of polyatomic molecules.

A number of studies have shown that no systematic trend can be applied to anticipate change

associated with basis set cardinality as individual harmonic frequencies may increase or de-

crease independent of one another.101–103 However, previous work regarding the e↵ects of elec-

tron correlation on the harmonic frequencies of diatomics89,104 and small polyatomics105,106

suggest that convergence of !i follows that of the energy itself. A very narrow selection of

literature exists on the convergence of anharmonic frequencies36,107–110 due to the cost asso-

ciated with benchmarking large potential expansions. Most anharmonic force field studies

focus on reporting a set of spectroscopic constants which provide the best agreement to ex-

perimentally observed VBOs rather than analyze the convergence properties of the system

being investigated.

For these reasons, a progression of CCSD(T)/cc-pVXZ (X=T,Q,5) harmonic and anhar-
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monic fundamental vibrational frequencies is shown in Table 4 for S0 formaldehyde along-

side the modern CCSDT(Q)/CBS results. Martin has shown the convergence of !i for

S0 H2CO in the CCSD(T)/cc-pVXZ (X=D,T,Q) sequence.102 The present CCSD(T)/cc-

pVXZ (X=T,Q) results match those of Martin showing an increase in !1(a1) and !5(b2)

(C�H stretching modes) with decreases in !3(a1), !4(b1), and !6(b2) (bending modes) from

T!Q. At first sight, it is appealing to assume that the geometric changes associated with

increasing basis set cardinality (contraction of bonds and widening of angles) explain these

frequency changes on the basis of nuclear-nuclear repulsion. However, such a simple argu-

ment is incomplete with respect to the changes seen in !2(a1) which is dominated by the C=O

stretch (86.7% S2(a1), 13.7% �S3(a1), -0.4% S1(a1)). Inclusion of the present CCSD(T)/5Z

results shows a rise and fall from T!Q!5 in !2(a1) despite the slightly shorter bond length

(0.00023 Å contraction) in the 5Z results relative to the QZ results.

The internal coordinate diagonal quadratic force constants, Fii, provide some insight

as they follow directly from the energies and are the dominant terms in the symmetrized

F matrix.111 It is obvious from Table 4 that the trends seen in !i follow those seen in

Fii. The change seen in the T!Q!5 sequence of !2 is captured by F22 as 13.03486 !

13.08516 ! 13.06267 aJ/Å2. Inspection of the CCSDT(Q)/CBS results shows this analysis

to be consistent with the aforementioned trend of increases in C�H stretching modes and

decreases in bending modes with improved basis set. While the F22 constant of CCSD(T)/TZ

is similar to the CCSDT(Q)/CBS value, the o↵-diagonal F21, F31, and F32 constants in the

A1 symmetry block are larger in the latter CBS-extrapolated results and, thus, care must

be taken comparing the magnitudes of force constants outside of a sequence. The internal

coordinates used here are representative of the normal modes of vibration of formaldehyde,

as a total energy distribution (TED) shows only two vibrational modes, !2(a1) and !3(a1),

which correspond to <99.9% of the associated symmetry-adapted coordinate. The former

has been described above but the latter !3(a1) is represented by 86.4% S3(a1) and 13.4%

S2(a1) with a miniscule contribution from S1(a1). Previous work on ethylene does not reveal
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a similar relationship between harmonic force constants and frequencies, reinforcing the

system specific nature of these properties.107

The anharmonicity constants, xij, comprise contributions from the cubic and quartic PES

expansion coe�cients and are related to the anharmonic vibrational fundamental frequencies,

⌫i, by:112

⌫i = !i + 2xii +
1

2

X

i 6=j

xij. (18)

Convergence of individual anharmonicity constants in the T!Q!5 progression shows the

xii values steadily decreasing for i = 1, 2, 5 and increasing for i = 3, 4, 6, suggesting that, in

smaller basis sets, diagonal anharmonicity is underestimated for stretching modes and over-

estimated for bending modes. Both the diagonal and o↵-diagonal anharmonic corrections

(the second and third terms in Eqn. 18, respectively) for the antisymmetric and symmetric

C�H stretching modes, ⌫5(b2) and ⌫1(a1), decrease in the T!Q!5 progression as well as in

the CCSDT(Q)/CBS results. These decreases serve to o↵set the increases seen in !1(a1) and

!5(b2) but both modes are a↵ected by first-order resonances which a↵ect their overall accu-

racy as discussed later. The remaning o↵-diagonal coupling constants do not show a similar

trend overall but many xij tend toward a certain change even into the CCSDT(Q)/CBS

results. It should be noted that the CCSD(T)/TZ results show large changes from T!Q

relative to the rest of the progression series changes especially in the case of the resonance-

a↵ected x52 and x65 constants. The %! term listed in Table 4 is defined as (1� ⌫/!) ⇤ 100%

and describes the anharmonicity of the fundamental with respect to its corresponding har-

monic frequency.

3.2.2 VPT2 and the 51, 2161, 3161 Triad

The treatment of anharmonic resonances which a↵ect the vibrational frequencies of a molecule

in VPT2 involves two steps; the reformulation of a↵ected anharmonicity constants, xii and/or
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xij, to accomodate the removal of resonance denominators (or the equivalent sum-over-

states alternative) and the subsequent diagonalization of an e↵ective Hamiltonian which

contains the deperturbed frequencies along with appropriate interaction constants.112–116

Resonance interactions are most often identified in a VPT2 analysis by the di↵erences in

the energy of symmetry-related combinations of harmonic vibrational frequencies which cor-

respond to first-order (Fermi) and second-order resonances. However, critical interactions

which may otherwise cause large shifts in the anharmonicity constants and, thus, anhar-

monic vibrational frequencies may be overlooked due to arbitrarily defined tolerances.116

The CCSDT(Q)/CBS fundamentals of S0 formaldehyde serve as an example of this con-

cept where a generous threshold of 200 cm�1 would fail to identify the well-documented2,29

!3(a1)+!6(b2) ⇡ !5(b2), 1534.91 + 1271.10 ⇡ 3008.63 cm�1, component of the 51, 2161, 3161

resonance triad as �! = 202.62 cm�1. It is interesting to note that the failure of this detec-

tion method for S0 formaldehyde is an emergent property of the high-level CBS treatment

as the previously mentioned convergence pattern of the harmonic frequencies pushes �!

beyond the (arbitrary but oft-applied) threshold.

A complete description of this three-state interaction in VPT2 requires the diagonaliza-

tion of the e↵ective Hamiltonian, He↵, shown in Eqn. 19. The diagonal terms correspond

to the deperturbed values of the corresponding energies and are denoted with an asterisk

where combination levels are determined as ⌫i+⌫j+xij. O↵-diagonal matrix elements serve

as a measure of coupling between states where first-order interaction constants easily follow

from the cubic force constants. A trivial representation of the matrix element describing the

second-order interaction between the 2161 and 3161 combination levels, denoted K below, is
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K = 0 as the coupling between these two states is expected to be limited.115

He↵ =

0

BBBBB@

51 2161 3161

⌫

⇤
5

1p
8
�652

1p
8
�653

1p
8
�652 ⌫2 + ⌫6 + x

⇤
62 K

1p
8
�653 K ⌫3 + ⌫6 + x

⇤
63

1

CCCCCA
(19)

However, a more thoughtful solution to the matrix element denoted by K, shown in Eqn. 20,

follows from the second-order contact transformation. Such relationships have been carefully

explored elsewhere.115,117–120

K =
1

4
(K21,31 +K22,23 +K23,33 +K24,34 +K25,35 + 3K26,36) (20)

The expression above can be derived from the 1-1 resonance equations found in Ref. 119

where the necessary numerical factors follow from harmonic oscillator matrix elements in

reduced normal coordinates.

The eigenvalue of Eqn. 19 whose largest eigenvector coe�cient belongs to the 51 state is

listed in Table 11 for both solutions of K alongside the contributions (coe�cients squared)

from the other two states for the non-trivial K solution of He↵. A complete treatment of

the 51, 2161, 3161 resonance triad through deperturbation of 51 ⇡ 2161 and 51 ⇡ 3161 fol-

lowed by the diagonalization of He↵ in Eqn. 19 provides a superior result for ⌫5(b2) only

in the case of the CCSD(T)/TZ data where the trivial solution of K provides the best ex-

perimental agreement as discussed in the following section. McCaslin et al. have recently

produced the Full K solutions of ⌫5(b2) for CCSD(T)/XZ (X = D, T, Q) as well as bench-

marking the more complete NASA Ames atomic natural orbital (ANO) basis sets.121 The

Full K solutions in Table 11 match the fundamental values reported by McCaslin et al. for

CCSD(T)/XZ (X = T, Q) where the current work extends the data to show convergence

onto the CCSDT(Q)/CBS result of 2850.05 cm�1. The CCSD(T)/ANO0 (2855 cm�1) and
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CCSD(T)/ANO2 (2852 cm�1) results of McCaslin et al. are in excess of the CCSD(T)/CBS

result but the CCSD(T)/ANO1 ⌫5(b2) value of 2849 cm�1 is promising. In either case, the

ANO basis sets su↵er from the same overestimation of ⌫5(b2) relative to experiment, without

exception, when using the full treatment of the Fermi resonance.

The treatment of isolated Fermi (⌫i ⇠ 2⌫j and ⌫i ⇠ ⌫j + ⌫k) resonances in VPT4 is a

straightforward extension of the treatment for VPT2: the diagonal elements of the e↵ective

Hamiltonian are deperturbed VPT4 energies, and the o↵-diagonal element is the sum of the

first- and third-order Hamiltonian matrix elements. For formaldehyde, the coincidence of

the 51 ⇠ 2161 and 51 ⇠ 3161 Fermi resonances requires inclusion of an o↵-diagonal Darling-

Dennison term (the K term in VPT2). For VPT4, this requires evaluation of the fourth-

order once-transformed o↵-diagonal Hamiltonian, which we have not yet derived. Instead,

we substitute the second-orderK constants, as this coupling element has a rather small e↵ect

on the diagonalized energies. The interaction between ⌫1(a1) and 2⌫4(a1) is relatively weak

with �! = 133.76 cm�1 but is included as a Fermi resonance in the following VPT2 and

VPT4 analysis as its treatment as such improves agreement to experiment in both cases.

3.2.3 Comparison to Experiment

Comparison to previous theoretical and experimental work of S0 H2CO’s fundamental fre-

quencies is shown in Table 5. Theoretical results are evaluated against the analysis of Tchana

et al.122 and Bouwens et al.29 It is clear from the VPT2 results that as basis set cardinality

increases in the CCSD(T)/cc-pVXZ (X = T, Q, 5) sequence that the individual errors rel-

ative to experiment are reduced or left unchanged as in the case of ⌫6(b2). The exception to

this is ⌫5(b2) which is involved in the aforementioned 51, 2161, 3161 resonance triad where the

large di↵erence seen between CCSD(T)/TZ and CCSD(T)/QZ are emphasized in previous

sections and detailed in Table 11. Overall error decreases despite this exception as evidenced

by the MAEs ( 1
n

Pn
i=1 |Xi � Yi|) and MAPEs (Eqn. 17).

Extrapolation to the basis set limit with corrections for higher-order dynamic and core
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correlation, as represented by the CCSDT(Q)/CBS level of theory, shows a significant im-

provement in most but not all fundamentals. Substantial decreases in the absolute errors of

the C�O stretch, ⌫2(a1), and torsion, ⌫4(b1), which drop from 1.97 to 0.47 cm�1 and 1.47 to

0.14 cm�1, respectively, are seen when moving from the CCSD(T)/5Z to CCSDT(Q)/CBS

results. The accuracy of the anti-symmetric OCH bend, ⌫6(b2), and symmetric C�H stretch,

⌫1(a1), improve by similar amounts where error is reduced by over half a wavenumber. Com-

parable accuracy is observed in both the CCSDT(Q)/CBS and CCSD(T)/5Z results for the

symmetric OCH bend, ⌫3(a1), where errors for both are approximately a quarter wavenum-

ber (but on either side) from the experimental result of 1500.1747(4) cm�1. Keeping with the

trend of increasing error with increasing basis set cardinality, the CCSDT(Q)/CBS VPT2

prediction of ⌫5(b1) shows the worst agreement to experiment of the included results but of

course this is a resonant fundamental. Despite this, the MAE of the CCSDT(Q)/CBS VPT2

fundamentals approach spectroscopic accuracy at 1.49 cm�1 where the MAPE is approxi-

mately halved relative to the CCSD(T)/5Z results.

The CCSDT(Q)/CBS anharmonicity constants produced in the VPT2 analysis are shown

in Table 8. The results vary in accuracy relative to the experimental values reported by

Reisner et al.26 Some constants are surprisingly well-described, such as the x22, x42, x44

where the CCSDT(Q)/CBS value of x42, -7.19 cm�1, reproduces Reisner et al.’s experimental

value of -7.199(39) cm�1. The utility of this agreement is obvious, as the CCSDT(Q)/CBS

prediction of the 2141(b1) combination level is 2905.46 cm�1 compared to the experimental

value of 2905(1) cm�1. However, perfect agreement to Reisner et al.’s derived constants is

unnecessary to successfully predict extremely accurate combination levels as exhibited by

the VPT2 prediction of 2131(a1). The x23 constant varies by 1.19 cm�1, nearly 20%, from

Reisner et. al.’s result yet a CCSDT(Q)/CBS prediction of 2131(a1) at 3238.40 cm�1 is only

0.06 cm�1 away from the experimental result of 3238.4548(20) cm�1 of Perrin et. al.123

A better example of this point, and the di�culties associated with the empirical determi-

nation of anharmonicity, comes from the 4161(a2) and 1161(b2) energy levels whose xij’s are
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wildly di↵erent from their experimental counterparts with x64 = 7.07 v.s. -2.860(70) cm�1

and x61 = -8.37 v.s. -49.78(33) cm�1. CCSDT(Q)/CBS predicts 4161(a2) at 2423.14 cm�1

from VPT2 which is only 0.17 cm�1 from the high-resolution observations of Perrin et. al.123

despite x64 having the opposite sign and being over twice the magnitude of Reisner et. al’s

empirical value. Reisner et. al’s x61 constant is six times that of the CCSDT(Q)/CBS result

yet the CCSDT(Q)/CBS 1161(b2) prediction of 4023.46 cm�1 is only a couple wavenumbers

from Flaud et. al.’s gas phase observation124 at 4021.08066(60) cm�1. It is not surprising

that these two empirically determined anharmonicity constants vary so much from the cur-

rent high-accuracy study, as Reisner et. al. had to determine five and eleven xij’s before

extracting x64 and x61, respectively, where the analysis relied on accurate assignment of the

114261(b2) and 314361(a2) combination levels. A more updated fit of the anharmonicity con-

stants is found from Bouwens et. al.29 which is shown in Table 8 but the agreement is similar

and the conclusion remains with regard to theoretical and empirical findings. The present

data serves as an excellent example, along the lines of previous work in the literature,115 of

how high-accuracy ab initio force fields relying on convergent quantum chemistry can use

VPT2 to its fullest by generating a set of spectroscopic constants with predictable accuracy

and leverage this in the determination of overtones and combination bands.

The obvious exception to this statement is resonance-a↵ected energy levels where vi-

brational perturbation theory encounters di�culties that inevitably a↵ect the accuracy of

predictions. As previously discussed, the ⌫5(b2) fundamental is a classic case of this and is

qualitatively inaccurate if its interaction with the 2161(b2) and 3161(b2) combination levels is

treated with VPT2. The accuracy of the energy levels directly involved in the triad benefits

from an e↵ective Hamiltonian treatment (as shown in Eqn. 19) following deperturbation,

but x⇤
25, x

⇤
35, and x

⇤
65 and their corresponding unmixed energy levels do not. Errors are over

40 cm�1 for CCSDT(Q)/CBS VPT2 predictions of 3151(b2) = 4289.28 cm�1 and 5161(a1) =

4042.24 cm�1 relative to the gas-phase observations of 4335.09709(60) and 4083.1(10) cm�1,

respectively.29,124 Even the errors for the eigenvalues of He↵ are far too high relative to the
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rest of the dataset. Only 2161(b2) shows error under 5 cm�1 from experiment with a pre-

diction of 3003.79 cm�1 which is 3.73 cm�1 from the experimental value26 of 3000.0656(10)

cm�1. The relative lack of accuracy in the prediction of resonance-a↵ected energy levels with

VPT2 logically leads to variational approaches for predicting vibrational energy levels.

Variational (DVR) solutions to the CCSDT(Q)/CBS vibrational energy levels are shown

in Table 5 below their VPT2 counterparts. Individual errors are equivalent or superior to

VPT2 for all fundamentals but ⌫4(b1), the torsional mode, which displays an increase from

0.14 to 0.80 cm�1. Predicted values for ⌫3(a1) and ⌫6(b2) are essentially exact with the

CCSDT(Q)/CBS potential, where errors are both 0.03 cm�1. The largest error is seen in the

C�H stretching modes which are 1.18 and 1.06 cm�1 for ⌫1(a1) and ⌫5(b2), respectively. The

error in ⌫5(b2) is vastly improved relative to the 6.71 cm�1 error from the CCSDT(Q)/CBS

VPT2 fundamental, which can largely be attributed to issues associated with treating the

resonance discussed earlier. Excellent agreement is seen for the fundamentals overall with

a MAE of 0.57 cm�1 where the MAPE is half that of the VPT2 results. It is important to

recognize these results are exemplary for purely ab initio predictions of VBOs, especially for

a QFF, but modern high-resolution spectroscopy experiments are capable of obtaining far

more accurate rovibrational results for simple systems such as formaldehyde. The beauty

of the present work presents itself in situations where experiment cannot isolate, detect, or

analyze the molecular species of interest. CCSDT(Q)/CBS VPT2 and DVR fundamentals

of D2CO and HDCO are shown in Table 7.

It should be noted that the original quartic expansion in symmetry-adapted internal

coordinates is completely unsuitable for variational solutions to the vibrational problem

here. Originally, transformation of the PES to Simons-Parr-Finland (SPF) coordinates was

performed but the error was found to be too high for ⌫1(a1) and ⌫5(b2), the C�H stretching

fundamentals. Rauhut has reported this exact issue previously with variational approaches

using many-mode expansions, noting the C�H stretching fundamentals of formaldehyde were

sensitive to vibrational coupling and prone to errors which were associated with an incomplete
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description of the potential in its outer regions.125 Morse coordinates are found to be superior

for providing quantitatively accurate, spectroscopic, predictions of the fundamentals; a topic

which has been studied previously.37,126

3.2.4 Comparison to Previous Theory

There are no known PESs which use high levels of theory (those including CBS extrapolations

and higher-order dynamic electron correlation) for this system. Previous theoretical work

on formaldehyde is extensive but generally limited to CCSD(T) using the (aug-)cc-pVTZ

or (aug-)cc-pVQZ basis sets. It is clear from the variation seen in the error of previous ab

initio results (Table 5) that the accuracy of predicted VBOs goes beyond choice of theory

alone; the form of the PES and solution of the vibrational energy levels is equally important.

Results from three types of PES are compared to those of this work: the CCSD(T)/aTZ

(and F12b variant) 3-mode (many-mode) expansion of Rauhut et al.,125,127 which relies on

interpolation of intrinsic potentials, the CCSD(T)/TZ SPF QFF of Martin et al.,65 and the

CCSD(T)/aQZ Morse coordinate 6D (full-dimensionality) PES of Yachmenev et al.5 Al-

most the entire literature on S0 formaldehyde (that compares to experimental observations)

uses variational approaches for nuclear motion to avoid the resonance denominator issue

associated with VPT2.

None of the previous ab initio results show accuracy comparable to the present

CCSDT(Q)/CBS DVR fundamental VBOs which have a MAE of 0.57 cm�1 relative to gas-

phase observations. The variational CCSD(T)-F12b/aTZ many-mode results of Rauhut et

al. have a respectable MAE of 2.49 cm�1 but show the greatest range of error of any of the

included results and actually performs worse than its traditional CCSD(T)/aTZ counterpart

in predicting an accurate value of ⌫5(b2) (errors of 6.07 cm�1 and 0.27 cm�1, respectively).

The ab initio CCSD(T)/aQZ 6D PES of Yachmenev et. al., on the other hand, proves more

consistent with a MAE of 1.47 cm�1 despite unusually large error in the torsion, ⌫4(b1), of

3.49 cm�1. Such performance is similar to the resonance-a↵ected CCSDT(Q)/CBS VPT2
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results (MAE = 1.49 cm�1) where the Yachmenev et. al.’s 6D PES addresses challenges

previously noted by Rauhut by using a far more expansive surface and full unconstrained

coupling between vibrational modes.125 A more relevant comparison would be beteween the

variational results, DVR and TROVE, where the CCSDT(Q)/CBS QFF clearly shows its

strength with a MAE less than half that of the ab initio 6D PES.

Fitting of the expansive full-dimensionality 6D surface of Yachmenev et al. to high-

quality experimental results is understandably superior to all of the included ab initio VBO

predictions5 where MAE relative to experiment is an order of magnitude better than the

purely ab initio sources. Constructing a semi-empirical PES such as this one obviously

requires a great deal of high-resolution gas-phase observations in tandem with significant

refinement and is a service to theorists and experimentalists alike, but such treatments are

only available for extensively studied and small chemical species. The fact that spectroscop-

ically accurate VBOs can be variationally computed for fundamentals using an unaltered,

purely ab initio, surface that spans only 183 geometries is quite agreeable when compared to

the 30840 geometries used by Yachmenev et al. Moreso, the CCSDT(Q)/CBS DVR results

carry a MAE which is only twice that of the semi-empirical fit of Burleigh et al. which relies

on the older SPF QFF of Martin et al.2,65 Individual errors from CCSDT(Q)/CBS DVR are

actually superior in some cases (⌫3(a1), ⌫6(b2)) to those predicted variationally with canon-

ical Van Vleck vibrational perturbation theory (CVPT) using Burleigh et al.’s empirically

fit QFF. An interesting topic for further study would be investigating the accuracy of a

semi-empirical QFF produced through refinement of the CCSDT(Q)/CBS QFF used here.

3.2.5 Relativistic Corrections to the PES

Results for fundamental vibrational frequencies using�rel corrections to the CCSDT(Q)/CBS

equilibrium geometry and PES are shown in Table 5. A negligible decrease of 0.05 cm�1

in the error of ⌫3(a1) is met with increased error in all other fundamentals with the excep-

tion of ⌫5(b2) which is lowered by approximately 0.5 cm�1; a very small e↵ect considering

31



the convergence of the ⌫5(b2) eigenvalue of He↵ as shown in Table 11. Closer inspection

of the results shows that the magnitude of the shifts between CCSDT(Q)/CBS and the

CCSDT(Q)/CBS+�rel results are largest in the Fermi-a↵ected C�H modes (⌫1(a1), ⌫5(b2))

and, most importantly, the C�O stretch (⌫2(a1)). The latter fundamental, ⌫2(a1), drops

from 1745.54 to 1744.53 cm�1 which increases the error against the experimental value of

1746.00928(49) cm�1 by 1.01 cm�1. Such a shift is almost entirely explained by the change in

the harmonic force constant of the C�O stretching coordinate, �rel(F22) = -0.01605 aJ/Å2,

which lowers the harmonic vibrational frequency of 1776.83 to 1775.85 cm�1; almost exactly

a wavenumber. The Morse-based variational CCSDT(Q)/CBS+�rel predictions behave sim-

ilarly to VPT2 with respect to the increased error in the C�O stretch (⌫2(a1)) but, unlike

VPT2, the �rel shifts to ⌫1(a1) and ⌫5(b2) vastly improve agreement to experiment as these

modes are predicted with equivalent accuracy in the absence of resonance problems.

3.2.6 4th-order Vibrational Perturbation Theory

VPT2 is a successful, and the most used, approach to vibrational anharmonicity in molecular

physics. It is exceptionally easy to use in conjunction with Taylor series representations of

the potential energy surface and is familiar to theorists and experimentalists alike. Perhaps

VPT2’s most obvious limitation is quasi-degeneracies (resonances) but the e↵ective Hamil-

tonian approach is a solution, albeit an imperfect one, to that problem. What VPT2 cannot

do is take advantage of more expansive swaths of the nuclear potential which can be used to

produce better predictions of vibrational energy levels. A natural extension to higher-order

contributions (those arising from derivatives beyond quartic in normal coordinates) of the

PES follows by taking VPT to 4th-order via VPT4.

VPT4 requires derivatives of the potential through sextic. Most quantum chemistry

packages do not have the automated generation of quartic force fields implemented, let alone

to sextic, making the production of these surfaces a challenge. The neccessary quintic and

sextic geometric derivatives can be calculated at the HF level by a routine execution of the
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recursive response theory implementation described in Section 2.6. This is one of the few, if

not the only, method(s) of providing arbitrary-order force constants without recourse to nu-

merical methods which are much less reliable at high order than their analytic counterparts.

It is straight-forward to extend existing force fields in this way to generate a mixed-theory

sextic force field such as the V4(q)[CCSDT(Q)/CBS] + V6(q’)[HF/TZ] one used here. An-

other strategy used in this study is to LSQ fit displacements along the CCSDT(Q)/CBS

reduced normal coordinates (q) to energies from the Morse-based symmetry-adapted inter-

nal coordinate QFF to generate V6(q)[CCSDT(Q)/CBS] directly.

The di↵erence in VPT4 vibrational energy levels predicted with these PES is shown as

�VPT4‡ in Table 6, where VPT4† are the Morse-based results and VPT4‡ are the results

relying on the recursively solved V6(q’)[HF/TZ] (see theoretical details). Only the fun-

damentals, overtones, and combination level of ⌫2(a1) and ⌫4(b1) show agreement under a

wavenumber between the two VPT4 datasets. The exception to this is the 2161(b2) com-

bination level which is part of the discussed resonance triad with ⌫5(b2) and qualitatively

incorrect in VPT. Overall, HF/TZ does not describe the required quintic and sextic regions

of the force field with enough accuracy to improve upon the CCSDT(Q)/CBS VPT2 results

as most levels are shifted further away from experimental observations in the corresponding

VPT4‡ results.

It is immediately obvious from Table 6 that the di↵erences between the DVR and Morse-

based VPT4† data is much smaller than those between the two VPT4 datasets, and that

between VPT2† and VPT4†. Excellent agreement is anticipated due to the construction of

the VPT4† PES through LSQ fitting, and is indeed observed. VPT4 predicts vibrational

energy levels virtually identical to those from exact (variational) methods based on the

same potential. An order of magnitude increase in agreement is seen between the DVR

fundamentals and those predicted from VPT4† when compared to VPT2† for non-resonant

levels (to include multi-quanta states). Large shifts from VPT2† to VPT4† in 42(a1) and

62(a1) clearly show that a lack of vibrational anharmonicity in VPT2 is reponsible for the
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disagreement with DVR and not a resonance interaction.29 The treatment of resonances

in VPT4 is an open topic but a successful approach has been applied here. Extending

the e↵ective Hamiltonian treatment from VPT2 to VPT4 is done by defining the Fermi-

interaction terms as the sum of the first-order and third-order Hamiltonian elements while

retaining the transformed second-order term (discussed in previous sections) that couples

combination levels, if present. Determination of the VPT4 ⌫5(b2) fundamental in this way

shows a value of 2852.11 cm�1 which is a vast improvement on the original value of 3105.16

cm�1. The VPT4 Fermi resonance treatment of the questionable interaction between 11(a1)

and 42(a1) slightly improves (⇠0.2 cm�1) experimental agreement over the VPT2 result as

2782.25 cm�1.

4 CONCLUSIONS

The application of CCSDT(Q)-based focal-point analysis14–16 to geometric energy derivatives

is now feasible due to the implementation and optimization of non-orthogonal spin-adapted

coupled cluster theory.18,24,25 Optimization of the equilibrium geometry of S0 formaldehyde

using numerical CCSDT(Q)/CBS and CCSDTQ/CBS gradients provides structures that

show smooth convergence patterns expected of the quantum chemical methods which define

the composite focal-point energy. The gradient-based approach allows high-level geometries

to be produced in a straightforward way without fitting structural parameters to a PES at

an equivalent level of theory. A brief derivation of how CBS extrapolation formulae may be

applied to analytic forms of the molecular gradient is provided to allow subsequent studies to

benefit from currently implemented formulations and further advances in the development

of high-level coupled cluster approaches.

The CCSDT(Q)/CBS anharmonic force field based on focal-point energies shows the best

experimental agreement to date for purely ab initio fundamental VBOs of S0 H2CO with a

MAE of 0.57 cm�1 and MAPE of 0.029%. Fermi resonances which a↵ect the fundamentals
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of S0 have been explored in detail with emphasis on the interesting emergent behavior of the

51, 2161, 3161(b2) triad at the CCSDT(Q)/CBS level of theory. A series of anharmonic force

fields at the CCSD(T)/cc-pVXZ (X=T,Q,5) levels of theory show that the system-specific

basis set convergence of harmonic vibrational frequencies, anharmonicity constants, and their

anharmonic counterparts leads smoothly to the current high-level CBS-extrapolated results.

A full set of spectroscopic constants computed at the CCSDT(Q)/CBS level which include

rotational, centrifugal distortion, and vibration-rotation interaction constants provides a

point of comparison for previous and future work. The availability of fully analytic arbitrary-

order HF force constants through the recently published recursive approach contributes to the

ability to evaluate vibrational perturbation theory corrections beyond second order without

recourse to finite di↵erence methods.

The results provided here are proof of concept that state-of-the-art quantum chemistry is

capable of providing very accurate (within ⇠1 cm�1 of experiment) fundamental positions of

a prototypical tetra-atomic system using a very small PES (183 geometries) which is defined

by high-level composite energies. This accuracy is obtained without the use of smaller auxil-

iary corrections normally seen in composite schemes reiterating that the critical components

of any composite method resides in the CBS extrapolation(s) and core correlation treat-

ment. The present purely ab initio results rival last-generation empirically fit PES where

the theory presented here may lead to unprecedented levels of accuracy through empirical

refinement in the future. The obvious advantage of the present, purely ab initio, approach

over semi-empirical PES is that it enables high-throughput production of accurate geometric

and spectroscopic data which has zero experimental reliance using the most trusted, time-

tested, methods in quantum chemistry. It is the hope of the authors that the present work

provides su�cient example of the capabilities of well-defined ab initio methodologies which

display easily understood convergence properties and that the methods will be applied to

less understood molecules in the future.
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5 SUPPORTING INFORMATION

The Cartesian and symmetry-adapted internal coordinate derivatives for the CCSDT(Q)/CBS

QFF as well as the CFOUR VPT2 and VPT4 files for the Morse-fit and response theory

based sextic force fields are provided in the supporting information. This information is

available free of charge via the Internet at http://pubs.acs.org
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Table 1: Example Focal Point Table of CCSDT(Q)/CBS Energies

Ee +� +� +� +� +� = Ee

Basis Set [RHF] [MP2] [CCSD] [CCSD(T)] [CCSDT] [CCSDT(Q)] [Final]
cc-pVTZ E3 E3 E3 E3 E3 E3 E3

cc-pVQZ E4 E4 E4 E4 E4 Ẽ4 Ẽ4

cc-pV5Z E5 E5 E5 E5 Ẽ5 Ẽ5 Ẽ5

cc-pV6Z E6 E6 E6 E6 Ẽ6 Ẽ6 Ẽ6

CBS limit E1 E1 E1 E1 Ẽ1 Ẽ1 Ẽ1

Fit a+ bc�eX a+ bX�3 a+ bX�3 a+ bX�3 additive additive
Points (X) 4,5,6 5,6 5,6 5,6

Colored areas are provided using the fit and points in the last two rows or by additivity.
Bolded terms are the only energies required to compute the focal-point extrapolated energy.
Additive terms are determined as CCn/cc-pVXZ = CCn�1

/cc-pVXZ + [CCn/cc-pV(X-1)Z -
CCn�1

/cc-pV(X-1)Z] where CCn�1

is the previous method in the hierarchy.
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Table 2: Computed ab initio H2CO Geometries (Å,�)

Method Basis Gradient re(CO) re(CH) ✓e(HCH)
CCSD(T) cc-pVTZ Analytic 1.209 57 1.103 28 116.185
CCSD(T) cc-pVQZ Analytic 1.206 58 1.102 18 116.442
CCSD(T) cc-pV5Z Analytic 1.206 34 1.101 79 116.597
ae-CCSDT(Q) CBS 3-point 1.204 62 1.100 40 116.688
CCSDT(Q) CBS 3-point 1.204 84 1.100 53 116.695
CCSDT(Q) CBS 5-point 1.204 84 1.100 53 116.695
CCSDTQ CBS 5-point 1.204 57 1.100 52 116.694
Err(�core) -0.000 12 -0.000 13 -0.007
�rel -0.000 13 -0.000 11 +0.004

Frozen core computations unless otherwise denoted as all-electron (ae).
Err(�

core

) = ae-CCSDT(Q)/CBS- CCSDT(Q)/CBS
�

rel

= ae-CCSD(T)/pCVQZ (MVD2) - ae-CCSD(T)/pCVQZ
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Table 3: Equilibrium Molecular Structures (Å,�) of X̃ 1A1(S0) H2CO

Present Work Rauhuta Puzzarinib Carterc Yachmenev d Experimente,f

CCSDT(Q)/CBS CCSDTQ/CBS ab initio ab initio Spec. Fit Spec. Fit
re(CO) 1.204 84 1.204 57 1.206 0 1.204 54 1.202 96 1.203 67 1.204 61(19)
re(CH) 1.100 53 1.100 52 1.101 9 1.100 50 1.100 64 1.102 90 1.100 46(16)
✓e(HCH) 116.694 116.694 116.66 116.690 116.704 116.438 116.722(93)
Ae 285 686.8 285 691.3 285 082.7 285 715.9 285 600.5 285 248.4 285 598.2
Be 38 977.7 38 992.9 38 896.2 38 994.4 39 086.7 38 997.2 38 996.8
Ce 34 298.2 34 310.0 34 226.4 34 311.6 34 381.4 34 307.0 34 308.6
A0 282 012.8 282 017.3 - 282 033.7 281 955.8 - 281 970.557 8(61)
B0 38 814.3 38 829.5 - 38 832.1 38 846.3 - 38 833.987 15(31)
C0 33 993.4 34 005.2 - 34 008.0 34 003.8 - 34 004.243 49(31)

a CCSD(T)-F12b/aQZ result from Ref. 127. b CCSDTQ/CBS result from Ref. 34.
c CCSD(T)/TZ results from Ref. 65 fit to spectroscopically observed vibrational lines in Ref. 4.

d CCSD(T)/aQZ PES result fit to spectroscopically observed vibrational lines from Ref. 5.
e Experimentally derived equilibrium results from Ref. 96.

f A,B, and C from THz and IR results fit to the S reduction in Ref. 30.
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Table 4: Basis Set Dependence of S0 H2CO VBOs

Theory 5 (b2)* 1 (a1)* 2 (a1) 3 (a1) 6 (b2) 4 (b1)
CCSDT(Q)/CBS
Fii 4.803 847 4.957 790 13.036 335 1.657 386 0.821 508 0.262 751
wi 3 008.63 2 936.05 1 776.83 1 534.91 1 271.10 1 186.70
2xii �75.16 �64.14 �19.53 �1.51 �3.89 �5.62
1
2

P
i 6=jxij �109.50 �89.04 �11.76 �33.47 �18.26 �13.97

⌫i 2 823.98 2 782.87 1 745.54 1 499.93 1 248.96 1 167.11
%w 6.14 5.22 1.76 2.28 1.74 1.65

CCSD(T)/cc-pV5Z
Fii 4.797 530 4.952 077 13.062 667 1.662 347 0.823 216 0.263 664
wi 3 006.43 2 934.70 1 779.05 1 535.16 1 271.10 1 188.18
2xii �74.58 �63.93 �19.25 �1.31 �4.32 �5.61
1
2

P
i 6=jxij �108.91 �88.67 �11.82 �33.39 �18.51 �13.85

⌫i 2 822.93 2 782.09 1 747.98 1 500.45 1 248.27 1 168.73
%w 6.10 5.20 1.75 2.26 1.80 1.64

CCSD(T)/cc-pVQZ
Fii 4.789 586 4.947 730 13.085 162 1.670 461 0.825 754 0.264 194
wi 3 003.69 2 933.52 1 781.45 1 537.64 1 272.90 1 190.25
2xii �74.36 �63.85 �19.20 �1.43 �4.38 �5.84
1
2

P
i 6=jxij �108.77 �88.49 �11.99 �33.41 �18.49 �13.86

⌫i 2 820.56 2 781.17 1 750.25 1 502.80 1 250.03 1 170.55
%w 6.10 5.19 1.75 2.27 1.80 1.65

CCSD(T)/cc-pVTZ
Fii 4.764 287 4.931 374 13.034 858 1.691 586 0.830 064 0.264 728
wi 2 995.85 2 929.23 1 780.76 1 543.21 1 274.88 1 192.20
2xii �74.01 �63.10 �18.76 �1.85 �4.44 �6.36
1
2

P
i 6=jxij �108.05 �87.47 �12.70 �33.11 �18.19 �14.23

⌫i 2 813.80 2 778.66 1 749.31 1 508.24 1 252.24 1 171.60
%w 6.08 5.14 1.77 2.27 1.78 1.73

* deperturbed for 2
1

6
1

(b
2

) ⇡ 5
1

(b
2

) and 3
1

6
1

(b
2

) ⇡ 5
1

(b
2

) or 3
2

(a
1

) ⇡ 1
1

(a
1

) Fermi resonance.
Structural parameters for the cc-pVXZ (X=T,Q,5) progression are: re(CO) = 1.20957, 1.20658,
1.20634 Å; re(CH) = 1.10328, 1.10218, 1.10179 Å; and ✓e(HCH) = 116.185, 116.442, 116.597�.
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Table 5: X̃ 1A1(S0) H2CO Fundamental Vibrational Frequencies (cm�1)

1 (a
1

) 2 (a
1

) 3 (a
1

) 4 (b
1

) 5 (b
2

) 6 (b
2

)
Experiment
Bouwensa 2782.2(10) 1746.1(10) 1500.2(10) 1167.4(10) 2843.0(10) 1249.6(10)
Tchanab 2782.4569(10) 1746.00928(49) 1500.1747(4) 1167.2563(4) 2843.3256(10) 1249.0948(3)

This work Method Di↵erence from experiment

b MAE MAPE
CCSD(T)/TZ VPT2 -5.13* 3.30 8.07 4.34 2.27* 3.15 4.38 0.269
CCSD(T)/QZ VPT2 -2.80* 4.24 2.63 3.29 5.45* 0.94 3.22 0.178
CCSD(T)/5Z VPT2 -2.00* 1.97 0.28 1.47 6.07* -0.82 2.10 0.101
CCSDT(Q)/CBS VPT2 -1.25* -0.47 -0.24 -0.14 6.71* -0.14 1.49 0.058
+�

rel

VPT2 -1.71* -1.48 -0.19 -0.34 6.10* -0.26 1.68 0.119
CCSDT(Q)/CBS DVR 1.18 -0.32 -0.03 -0.80 1.06 0.03 0.57 0.029
+�

rel

DVR 0.49 -1.48 0.01 -0.95 0.25 -0.08 0.54 0.034

Previous Theory
CCSD(T)/aTZc VCI 0.94 -11.11 -5.48 -4.76 0.27 -8.49 5.18 0.355
CCSD(T)-F12b/aTZc VCI 1.74 1.29 -2.48 -0.06 6.07 -3.29 2.49 0.131
CCSD(T)/TZd VPT2 -5.56 3.89 8.13 4.14 -51.63 3.51 12.81 0.569
CCSD(T)/TZd VCI 6.74 2.99 4.12 -1.56 -1.33 -1.19 2.99 0.161
Empirical Fite CVPT -0.16 0.09 -0.67 0.04 -0.83 -0.19 0.33 0.017
CCSD(T)/aQZf TROVE -0.72 -1.40 -1.08 -1.16 -0.96 -3.49 1.47 0.098
Empirical Fitf TROVE 0.00 0.02 0.01 0.04 -0.02 -0.02 0.02 0.001

* treated for the Fermi resonances.
a DF spectroscopy results from Ref. 29. b Analysis from multiple sources as seen in Refs. 122,123.

c Ref. 127. d Untreated VPT2 and VSCF-CI ”raw” results from Ref. 65.
e Empirical fit of Martin et al.’s SPF CCSD(T)/TZ QFF from Ref. 2.

f Yachmenev et al.’s variational results from fit of CCSD(T)/aQZ PES in Ref. 5.
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Table 6: Comparison of VPT4 H2CO VBOs (cm�1)

Level Symm. Exp �Exp DVR(Exact) �VPT2† VPT2† �VPT4† VPT4† �VPT4‡ VPT4‡

4
1

b
1

1167.26 -0.80 1166.46 0.23 1166.69 0.05 1166.51 -0.42 1166.08
6
1

b
2

1249.09 0.03 1249.13 -0.27 1248.86 0.03 1249.16 -1.15 1248.01
3
1

a
1

1500.17 -0.03 1500.15 -0.25 1499.90 0.02 1500.17 -1.22 1498.95
2
1

a
1

1746.01 -0.32 1745.69 -0.28 1745.41 0.03 1745.71 -0.15 1745.56
4
2

a
1

2327.52 -3.06 2324.47 3.09 2327.56 0.17 2324.63 0.17 2324.80
4
1

6
1

a
2

2422.97 -0.32 2422.65 -0.10 2422.55 0.17 2422.82 -2.02 2420.80
6
2

a
1

2494.35 0.52 2494.87 -1.07 2493.81 0.13 2495.00 -2.63 2492.37
3
1

4
1

b
1

2667.05 -0.17 2666.88 -0.67 2666.21 0.10 2666.98 -2.75 2664.23
3
1

6
1

* b
2

2719.16 1.32 2720.47 8.88 2729.36 3.77 2724.25 -3.86 2720.39
1
1

* a
1

2782.46 1.18 2783.64 -3.71 2779.93 1.57 2785.21 -2.03 2783.18
5
1

* b
2

2843.33 1.06 2844.39 -66.90 2777.49 260.77 3105.16 -4.16 3101.00
2
1

4
1

b
1

2905.97 -1.24 2904.73 0.09 2904.82 0.10 2904.83 -0.95 2903.87
2
1

6
1

* b
2

3000.07 -0.17 2999.90 55.47 3055.37 -264.49 2735.41 0.08 2735.49
2
1

3
1

a
1

3238.45 -0.15 3238.31 -0.08 3238.16 -0.14 3238.16 -1.52 3236.64
2
2

a
1

3471.6 -0.5 3471.07 0.19 3471.26 0.01 3471.08 -0.13 3470.95
4
3

b
1

3480.7 -6.3 3474.42 8.19 3482.60 -0.90 3473.51 1.47 3474.98

* Fermi resonance a↵ected energy levels. See text for details.
Level assignment from VPT4† results. Experimental results from Refs. 5 and 29.

�VPTn† = VPTn† - DVR and �VPT4‡ = VPT4‡ - VPT4†.
† V(q) LSQ fit from the CCSDT(Q)/CBS PES used in DVR(Exact).

‡ HF/TZ V
6

(q’) from a local version of DALTON2013.
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Table 7: CCSDT(Q)/CBS VBOs of D2CO and HDCO (cm�1)

D2CO HDCO
VPT2 DVR Expa VPT2 DVR Expb

⌫1(a1) 2063.94* 2061.53 2054.694000(81) 2097.37* 2095.95 2104.4c

⌫2(a1) 1701.27 1701.11 1701.619103(32) 1723.90 1723.83 1724.0
⌫3(a1) 1099.98 1100.22 1100.44254(74) 1396.18 1396.49 -
⌫4(b1) 937.75 937.32 938.03549(68) 1058.60 1058.03 1059.6
⌫5(b2) 2166.47* 2163.15 2162.923385(66) 2854.57* 2845.31 -d

⌫6(b2) 988.86 988.92 989.25028(59) 1027.92 1028.01 1027.1

HDCO (Cs) modes described with H
2

CO (C
2v) spectroscopic ordering.

a FTIR results from Refs 128, 129, and 130.
b DF spectra from Ref 131 (˜2 cm�1 linewidth in spectra).

c Vibrational admixture with a DF spectra assignment of �4
2

+ 1
1

+ 6
2

.
d Unobserved in the DF spectra; not to be confused with 5

1

+ 3
2

= 2846.8 cm�1.
Values with asteriks treated for resonance interactions with eigenvalues shown below.

5
1

⇡ 3
1

6
1

(b
2

) eigenvalues are: 2068.15, 2166.47 cm�1.
4
2

, 6
2

, 1
1

, 3
2

(a
1

) eigenvalues are: 1864.91, 1972.75, 2063.94, 2201.79 cm�1.
5
1

, 2
1

6
1

, 3
2

(a0) triad eigenvalues are: 2729.43, 2754.03, 2854.57 cm�1.
1
1

, 4
2

, 6
2

(a0) triad eigenvalues are: 2032.29, 2097.37, 2135.51 cm�1.
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Table 8: Anharmonicity Constants (cm�1)

This worka Martinb Reisnerc Bouwensc

xij CBS 5Z QZ TZ TZ Exp.
11 -32.07 -31.97 -31.93 -31.55 -31.51 -28.95(14) -50.65(139)
21 -1.78 -1.86 -1.92 -2.27 -2.27 1.15(19) 0.40(92)
22 -9.77 -9.63 -9.60 -9.38 -9.95 -9.926(23) -10.00(20)
31 -27.16* -27.08* -26.96* -26.06* -30.05 -23.03(14) -26.80(137)
32 -7.07 -6.97 -7.08 -7.50 -7.49 -8.26(11) -8.27(31)
33 -0.75* -0.66* -0.72* -0.93* 0.08 -0.164(97) -0.55(39)
41 -7.64 -7.56 -7.54 -7.51 -7.44 -10.099(65) -8.67(81)
42 -7.19 -7.07 -7.10 -7.27 -7.26 -7.199(39) -7.12(15)
43 -0.34 -0.32 -0.38 -0.79 -0.80 -1.769(52) -1.59(19)
44 -2.81 -2.80 -2.92 -3.18 -3.41 -3.157(12) -2.91(8)
51 -133.14 -132.49 -132.25 -131.32 -131.15 -193.32(24) -88.47(473)
52 -0.70* -0.85* -0.97* -1.54* -46.62 -17.23(23) -14.38(334)
53 -34.63* -34.41* -34.25* -33.47* -10.73 6.00(37) -5.86(287)
54 -19.84 -19.55 -19.57 -19.63 -19.57 -13.35(17) -10.26(219)
55 -37.58 -37.29 -37.18 -37.00 -36.95 -17.97(13) -14.66(245)
61 -8.37 -8.36 -8.31 -7.78 -7.74 -49.78(33) -15.72(136)
62 -6.78* -6.90* -6.91* -6.81* 38.30 6.581(49) 3.82(186)
63 2.26* 1.99* 1.86* 1.59* -21.07 -29.861(88) -33.36(275)
64 7.07 6.79 6.87 6.74 7.09 -2.860(70) 2.40(66)
65 -30.70* -30.54* -30.48* -30.14* -52.42 -17.63(33) -7.65(283)
66 -1.94 -2.16 -2.19 -2.22 -2.20 -1.567(56) -2.35(254)

* computed with resonance denominators removed.
a CCSDT(Q)/CBS and CCSD(T)/cc-pVXZ (X=T,Q,5) results.

b CCSD(T)/TZ ab initio results from Ref. 65.
c SEP or DF spectroscopy in Ref. 26 or Ref. 29.

Table 9: CCSDT(Q)/CBS Vibration-Rotation ↵ Constants (MHz)

A B C

↵1 4909.417 11.067 67.110
↵2 89.510 217.061 266.381
↵3 -1894.655 -252.883 78.093
↵4 4300.901* 373.052 -39.664
↵5 2710.134 44.366 43.244
↵6 -3644.134* -75.243 190.938

* treated for Coriolis resonance.
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Table 11: E↵ects of the 51, 2161, 3161 (b2) Resonance Triad on ⌫5(b2) (cm�1)

�! ⌫5(b2) Contribution
Theory 51 ⇡ 2161 51 ⇡ 3161 Deperturbed K=0 Full K 51 2161 3161
CCSD(T)/TZ -59.79 177.77 2813.80 2844.70 2845.60 0.586 0.065 0.349
CCSD(T)/QZ -50.65 193.16 2820.56 2847.99 2848.78 0.621 0.073 0.306
CCSD(T)/5Z -43.72 200.17 2822.93 2848.62 2849.40 0.631 0.080 0.290
CCSDT(Q)/CBS -39.29 202.63 2823.98 2849.35 2850.04 0.628 0.083 0.289

Spectroscopic Constants
Theory 1p

8
�652

1p
8
�653 K x52 x53 x62 x63 x65

CCSD(T)/TZ 51.921 63.546 -2.932 -1.54 (-47) -33.47 (-11) -6.81 (38) 1.59 (-21) -30.14 (-53)
CCSD(T)/QZ 51.410 65.231 -2.621 -0.97 (-53) -34.25 (-12) -6.91 (45) 1.86 (-20) -30.48 (-61)
CCSD(T)/5Z 51.435 65.998 -2.527 -0.85 (-61) -34.41 (-13) -6.90 (54) 1.99 (-20) -30.54 (-69)
CCSDT(Q)/CBS 51.651 66.225 -2.205 -0.70 (-69) -34.63 (-13) -6.78 (61) 2.26 (-19) -30.70 (-77)

⌫2(a1) + ⌫6(b2) ⇡ ⌫5(b2) and ⌫3(a1) + ⌫6(b2) ⇡ ⌫5(b2) related denominators removed.
Values in parentheses correspond to xij without removal of resonance denominators.

K=0 and Full K values correspond to the ⌫5 eigenvalue of He↵ in Eqn. 11.
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