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ABSTRACT

In this study, we investigate key factors controlling the rift climax to post-rift marine basin fill. We

use two- and three-dimensional seismic data in combination with sedimentological core descriptions

from the Hammerfest Basin, south-western Barents Sea to characterize and analyse the tectonos-

tratigraphy and seismic facies of the Lower Cretaceous succession. Based on our biostratigraphic

analyses, the investigated seismic facies are correlated to 5–10 million year duration sequences that

make up the stratigraphic framework of the basin fill. The seismic facies suggest the basin fill was

deposited in shallow to deep-marine conditions. During rift climax in Volgian/Berriasian to Bar-

remian times, a fully linked fault array controlled the formation of slope systems consisting of gravity

flow deposits along the southern margin of the basin. Renewed uplift of the Loppa High north of the

basin provided coarse-grained sediments for fan deltas and shorelines that developed along the

northern basin margin. During the early to middle late Aptian, the input of coarse-grained sediments

occurred mainly in the NW and SW corners of the basin, reflecting renewed uplift-induced topogra-

phy in the western flank of the Loppa High and along the western Finnmark Platform. The lower

Albian part of the basin fill is interpreted as a post-rift succession, where the remnant topography

associated with the Finnmark Platform continued to provide sediments to prograding fan deltas and

adjacent shorelines. During the Albian, a series of faults were reactivated in the northern part of the

basin, and footwall wedges comprising various gravity flow deposits occur along these faults. During

the latest Albian to Cenomanian, the south-eastern part of the Loppa High was flooded by a rise in

eustatic sea-level and differential subsidence. However, the western part of the high remained

exposed and acted as a sediment source for a shelf-margin system prograding towards the SE. It is

concluded that the rift climax succession is controlled by: along strike variability of throw and steps

of the main bounding faults; the diachronous movement of the faults; and the nature of the feeder

system. The evolution of the post-rift succession may be controlled by rifting in adjacent basins

which preferentially renew sources of sediments; local reactivation of faults; and local remnant

topography of the basin flanks. We suggest that existing tectonostratigraphic models for rift basins

should be updated, to incorporate a more regional perspective and integrating variables such as the

influence of adjacent rift systems.

Correspondence: Dora Mar�ın, Department of Petroleum Engi-
neering, University of Stavanger, NO-4036 Stavanger, Norway.
E-mail: dora.l.restrepo@uis.no
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INTRODUCTION

Marine rift basins are commonly prolific for hydrocarbons

because of their large preservation potential of all the ele-

ments in a potential petroleum system (e.g. seal, reservoir

and source rocks) (Gawthorpe & Leeder, 2000). The pre-

diction of facies related to source rocks, and particular

reservoir rocks and their lateral and vertical continuity is

challenging, because depositional environments in rift

basins may range from continental to deep-marine envi-

ronments due to the contrast in topography along the

faults (Ravn�as & Steel, 1998). The infill of marine rift

basins is controlled by several variables: climate, eustatic

sea-level, subsidence, drainage evolution, footwall lithol-

ogy, nature of the feeder system (e.g. point source, multi-

ple source or linear source), variability along the strike of

the faults and basin physiography (Stow et al., 1996;

Ravn�as & Steel, 1998; Allen & Densmore, 2000;

Gawthorpe & Leeder, 2000; McArthur et al., 2013;

Sømme et al., 2013; Elliott et al., 2017). Some of these

variables are determined by the evolution of fault propa-

gation, which typically depends on the stage of the rift

evolution (Cowie et al., 2000; Gawthorpe & Leeder,

2000). A single rift phase is constituted by rift initiation

and rift climax, followed by a post-rift phase (Prosser,

1993). The rift initiation is characterized by several small

and isolated basins with low rates of subsidence as a result

of strain being distributed along many minor faults (Pros-

ser, 1993; Gupta et al., 1998; Cowie et al., 2000;

Gawthorpe & Leeder, 2000). Rift climax is characterized

by fully linked faults, where deformation is concentrated

over the major faults (Gupta et al., 1998; Cowie et al.,
2000; Gawthorpe & Leeder, 2000; Leppard &

Gawthorpe, 2006). Subsidence commonly outpaces sedi-

mentation, resulting in the deposition of deep-marine

mudstones with localized coarse clastic wedges deposited

close to the footwall area (Leppard & Gawthorpe, 2006).

Coarse-grained sediments have been described at the base

of the fault scarp in slope aprons, slumps and slides, talus

and coarse-grained aggradational or progradational fan

deltas (Surlyk, 1978, 1989; Stow et al., 1996; Gawthorpe

et al., 1997; Leppard & Gawthorpe, 2006; Larsen et al.,
2010; Henstra et al., 2016; Elliott et al., 2017). Prograda-
tion tends to occur with low accommodation or high sedi-

ment supply or a combination of these factors

(Gawthorpe & Leeder, 2000). The boundary between the

syn-rift to post-rift stages can be diachronous and is

marked by the end of the faulting and thermal contraction

subsidence influence (Prosser, 1993; Nøttvedt et al.,
1995; Gabrielsen et al., 2001; Zachariah et al., 2009). The
post-rift phase is usually divided into 1) an early post-rift

phase, where wedge geometries are commonly developed

associated with remnant topography inherited from the

rift phase (Prosser, 1993; Nøttvedt et al., 1995; Zachariah
et al., 2009) and 2) a late post-rift period, where the

continued erosion of the footwall crest leads to a reduction

in the topographic highs which usually yields finer

grain-size sediments (Prosser, 1993). Much effort has

been made to understand the variables controlling the

sedimentation in rift systems (e.g. Prosser, 1993; Nøttvedt

et al., 1995; Gupta et al., 1998; Ravn�as & Steel, 1998;

Cowie et al., 2000; Gawthorpe & Leeder, 2000; Gabriel-

sen et al., 2001; Leppard & Gawthorpe, 2006; Zachariah

et al., 2009; McArthur et al., 2013; Elliott et al., 2017).
In addition, tectonostratigraphic models have been devel-

oped for single rift systems (Gawthorpe & Leeder, 2000),

and more recently updated to include multiphase rifts

(Henstra et al., 2017). However, variables such as the

influence of adjacent rift systems in the post-rift evolution

have been poorly documented.

The Hammerfest Basin is located in the south-western

Barents Sea (Fig. 1). The basin experienced rifting dur-

ing the Late Jurassic–Early Cretaceous times (Berglund

et al., 1986; Gabrielsen et al., 1990; Faleide et al., 1993),
but did not evolve to break-up. Lower Cretaceous clastic

wedges deposited during this rift event are considered a

play model in the area (Seldal, 2005; NPD, 2017); oil and

gas discoveries (e.g. wells 7120/2-3S, 7120/1-2) and

rocks with reservoir potential (e.g. wells 7120/10-2,

7120/6-3S and 7122/2-1) have been found (Seldal, 2005;

NPD, 2017). Previous studies in the Hammerfest Basin

have analysed the Lower Cretaceous succession in isola-

tion, and no systematic tectonostratigraphic framework

has been built in order to map the temporal and spatial

variations of the syn-rift to post-rift sequences. There are

few published sedimentological descriptions of the

wedges (see Sandvik, 2014 for core descriptions of wells

7120/1-2 and 7120/2-2 located in the north-western part

of the basin). Neither their internal architecture, lateral

variability nor their ages have been characterized for the

entire basin. In addition, there are large uncertainties

regarding their depositional environments. Some of the

wedges have been described as shallow marine (wells

7120/1-2 and 7120/2-2) or fan deltas (well 7120/2-2),

whereas others have been interpreted as distal turbidite

systems (wells 7120/12-1 and 7120/10-1) (Knutsen et al.,
2000; Seldal, 2005; Sattar, 2008; Sandvik, 2014). This

reflects the complex distribution of facies in marine rift

basins.

Aimof the study

The main aims of this study are as follows: 1) to use

tectonostratigraphy and characterization of seismic facies

to understand the factors controlling the rift climax to

post-rift basin fill. Particularly to investigate how rifting

in adjacent basins may control the evolution of the post-

rift succession; 2) to describe and interpret the strati-

graphic architecture of the Lower Cretaceous succession

of the Hammerfest Basin and variability in depositional

© 2017 The Authors
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environments with respect to the recognized stages of rift-

ing; and 3) to improve the age control of the seismic facies

and correlate them within a basin wide stratigraphic

framework (Mar�ın et al., 2017). This is achieved by com-

bining two- and three-dimensional seismic data with wire

line logs, core data and dinoflagellate cyst (dinocyst) bios-

tratigraphy. Seismic facies analysis formed the basis for

the sedimentological interpretations. Where available,

well control and cored intervals aided our interpretations.

The range of the seismic facies described here helps to

elucidate the distribution and the origin of the Lower

Cretaceous sandstones in the Hammerfest Basin and can

be used for facies prediction in areas with challenging

geophysical imaging (e.g. presalt section).

GEOLOGICAL SETTING

Tectonic framework

The Hammerfest Basin is a symmetric and elongated

ENE–WSW-striking basin. The southern border towards

the Finnmark Platform is defined by the Troms-Finn-

mark Fault Complex (TFFC), (Fig. 1) (Sund et al., 1986;
Gabrielsen et al., 1990). The north-western boundary is

marked by the Asterias Fault Complex (AFC), which sep-

arates the basin from the Loppa High. The western

boundary with the Tromsø Basin is marked by the Ring-

vassøy-Loppa Fault Complex (RLFC), and the eastern

boundary towards the Bjarmeland Platform is not faulted

(Figs 1 and 2) (Gabrielsen et al., 1990).

During the Late Jurassic to Early Cretaceous, the basin

experienced extension (Berglund et al., 1986; Gabrielsen

et al., 1990; Faleide et al., 1993). Some of the faults

formed in this event were conditioned by the structures of

the Caledonian basement (Gabrielsen et al., 1990; Dor�e,
1991). A gentle central high was formed during the Late

Jurassic–Early Cretaceous in the western part of the

basin, as a flexural rollover due to the activity of the AFC

and TFFC (Fig. 2a) (Berglund et al., 1986; Sund et al.,
1986; Gabrielsen et al., 1990; Faleide et al., 1993; Larssen
et al., 2002). The eastern part of the basin is interpreted

as a sag basin, with a monocline in the north-eastern

boundary with the Loppa High (Gabrielsen et al., 1990).
b-Factors of 1.8 or 3 have been calculated for the neigh-

bouring Bjørnøya Basin (Clark et al., 2014) and <1.3 for

the Hammerfest Basin for the Late Jurassic to Early Cre-

taceous rift event (Leknes, 2008). A local compression

during the earliest Cretaceous has been suggested for the

AFC in the north-western part of the basin, forming a

local high and along the TFFC (Fig. 2a) (Berglund et al.,
1986; Sund et al., 1986; Gabrielsen et al., 1990; Indrevær
et al., 2016). The compression has been interpreted as a

result of strike slip movements (Berglund et al., 1986;
Sund et al., 1986; Gabrielsen et al., 1990) or as a localized
inversion due to differential uplift of the Loppa High

(Indrevær et al., 2016). Moreover, three Cretaceous

extensional phases (Berriasian–Valanginian, Hauterivian–
Barremian and Aptian–Albian) have been interpreted for

the adjacent Tromsø Basin (Faleide et al., 1993). Faleide
et al. (1993) described that the Kolmule Formation thins
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in proximity to the RLFC, suggesting an influence of the

Aptian event in the Hammerfest Basin.

Stratigraphy

During the latest Volgian to earliest Valanginian, a

regional unconformity (and its correlative surface)

known as the Base Cretaceous Unconformity (BCU)

was formed in the Barents Sea (Fig. 3b) (�Arhus et al.,
1990; Lundin & Dor�e, 1997; Mørk et al., 1999). The

Lower Cretaceous succession in the Hammerfest Basin

is divided into three formations: Knurr, Kolje and

Kolmule formations, which consist of claystone with

minor limestone and sandstone interbeds deposited in

an open-marine environment (Fig. 3) (Dalland et al.,
1988; Mørk et al., 1999). Laterally, discontinuous

sandstone beds and conglomerate packages have been

identified in the Knurr and Kolmule formations form-

ing wedges along the margins of the Hammerfest Basin

(Mørk et al., 1999; Seldal, 2005), suggesting a major

variability in the depositional environment. The depo-

sitional setting for these wedges is interpreted to be

submarine fans in the south-western part of the study

area (Seldal, 2005) and mainly offshore transition to

continental for the wells 7120/1-2 and 7120/2-2 in the

north-western part of the basin (Fig. 1) (Sandvik,

2014). Due to the lateral variability of the facies,

uncertainties in the correlation of formations and the

limited age control in the Lower Cretaceous succes-

sion, a sequence stratigraphic framework of seven

genetic sequences (S0-S6) bound by flooding surfaces

(sensu Galloway, 1989) is used in this study for well

and seismic correlations (Fig. 3) (Mar�ın et al., 2017).

The sequences are defined using stacking patterns in

the Gamma Ray (GR) logs and lap terminations on

seismic data, and their boundaries are marked by

downlaps and high GR values (Fig. 3a). The

sequences represent a time span of 5–10 million years

and can be correlated through all the basin and in

areas such as the eastern Barents Sea and partially
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with Svalbard (Grundv�ag et al., 2017 and Mar�ın et al.,
2017). They are also partially comparable with the

North Atlantic cycles described by Jacquin et al.
(1998). These sequences are interpreted as being con-

trolled by regional factors, although locally modified

by the fault activity in the Hammerfest Basin, as

pointed out by Sneider et al. (1995) for the North

Sea. The oldest sequences, 0 and 1 (S0 and S1; Boreal

Berriasian/Volgian–Valanginian and Hauterivian–early
Barremian), are approximate time correlative with the

Knurr Formation. Sequence 2 (S2; early Aptian–mid-

dle late Aptian age) is partially time correlative with

the Kolje Formation, and the youngest sequences 3–6
(S3–S6; Albian–Cenomanian) are approximate time

correlative with the Kolmule Formation (Fig. 3a).

METHODS

Two- and three-dimensional, conventional reflection

seismic data covering the Hammerfest Basin were

provided by the Norwegian DISKOS database

(Fig. 1). The seismic data quality varies and has fre-

quencies ranging from 10 to 50 Hz. A total of 12

wells with a full suite of logs were included in this

study (Fig. 1). Detailed sedimentological log descrip-

tion for intervals of six available cores is presented

(7120/2-2, 7120/2-1, 7120/2-3S, 7120/6-3S, 7120/1-

2 and 7120/10-2).

In this study, the age control for the three oldest

sequences (i.e. S0–S2) is improved (cf. Mar�ın et al.,
2017). Furthermore, a biostratigraphical framework for

the four youngest sequences (i.e. S3–S6) is provided here.
To achieve this, dinocyst analysis on samples collected

from wells 7121/5-2 (S0–S6) and 7122/2-1 (S0) was per-

formed (Fig. 3). Samples from well 7122/2-1 were col-

lected from a sediment core. Palynological slides from

well 7121/5-2 were prepared from mainly ditch cutting

and only few sidewall core samples. Palynological slides

from well 7122/2-1 and the upper part of the 7121/5-2

well were prepared at the Geological Survey of Denmark

and Greenland (GEUS) following methods described by

Nøhr-Hansen (2012).

The age frame is tied to the seismic with synthetic

seismograms (Fig. 3c). Time thickness maps and seis-

mic facies are described for each sequence. The seis-

mic facies description and interpretation is based on

information such as: foreset angles, presence or

absence of topsets and bottomsets, external geometries

(e.g. mound, wedges), internal configurations (e.g.
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chaotic, continuous reflectors), amplitude and continu-

ity of the reflectors. Some of the seismic lines with cli-

noforms are converted to depth and decompacted (for

details, see Mar�ın et al., 2017) in order to get the orig-

inal depositional approximate geometry (Deibert et al.,
2003; Salazar et al., 2015). The sedimentological inter-

pretation of the seismic facies is constrained by cores

and GR logs.

In this study, we refer to the full fan-shaped geometry

composed of different architectural elements as sub-

marine fans, whereas lobe is referred to as the down-dip

part of the submarine fan formed at the end of a channel

(Normark, 1978; Walker, 1978; Stow et al., 1996;

Grundv�ag et al., 2014).

RESULTS

Agemodel

Dinocysts from sequence 0 (S0) were studied from the

sediment core in well 7122/2-1. The basal part of S0

yields (possibly reworked) late Early to early Middle

Jurassic dinocysts, such as Nannoceratopsis gracilis,
Susadinium sp., Susadinium scofoides and Parvocysta
nasuta. The upper part of S0 in 7122/2-1 yields Pseu-
doceratium anaphrissum which suggests an early Bar-

remian age. The dinocyst assemblage from the base of

S0 in well 7121/5-2 is similar to the assemblage from

the Barents Sea described by �Arhus et al. (1990) and

dated to the Boreal Berriasian/Volgian. The middle

and the upper parts of S0 in 7121/5-2 are of Valangi-

nian age. In Mar�ın et al. (2017), the middle and the

upper parts of S0 in the 7120/10-2 well were tenta-

tively dated as latest Ryazanian to Valanginian or

younger. In the same well, APTEC (2007)observed

palynomorphs from Norian–Rhaetian, Late Callovian–
Middle Oxfordian and Late Pliensbachian to Early

Bajocian and interpreted them as reworked. Summariz-

ing all observations, S0 is dated to Boreal Berriasian/

Volgian–Valanginian or to early Barremian. The

sequence is also characterized by a significant degree

of reworking.

In contrast to the material analysed in Mar�ın et al.
(2017), the dinocysts from sequence 1 (S1) in the well

7121/5-2 are abundant and diverse. The most charac-

teristic dinocysts are Batioladinium longicornutum and

Pseudoceratium anaphrissum. Dinocyst assemblages nar-

row the age frame for the sequence and suggest that

the base of S1 is of upper Hauterivian age, whereas the

middle and upper part is early Barremian. In Mar�ın
et al. (2017), only the middle part of sequence 2 (S2)

was studied for biostratigraphy and tentatively dated to

middle late Aptian. Dinocyst assemblages from S2 in

7121/5-2 yield, for example, Circulodinium bre-
vispinosum. This suggests that S2 is of early Aptian to

earliest Albian age. Within sequence 3 (S3), the dino-

cyst preservation is moderate and the diversity is rather

low. The assemblages yield dinocysts with long ranges.

The best age constraint is given by the single SWC

sample from the middle part of the sequence, which

yields Surculosphaeridium longifurcatum. In the Boreal

realm, the first appearance of the species is dated to

111.16 Ma, (i.e. the earliest Albian; see Williams et al.,
2004). Sequence 4 (S4) yields, for example, Chichaoua-
dinium vestitum and Wigginsiella grandstandica. The

dinocyst assemblages suggest that the lower part of

the sequence is (tentatively) of middle Albian, whereas

the upper part is of late Albian age. The most impor-

tant dinocysts observed within sequence 5 (S5) are

Endoceratium turneri and Apteodinium grande. Our

results indicate latest Albian to earliest Cenomanian age

for S5. Sequence 6 (S6) yields, for example Endocer-
atium dettmanniae and ‘Sidridinium’ sp sensu Bailey

(2017). The dinocyst assemblage suggests that S6 spans

early to late Cenomanian age.

Fault Families

Four main types of fault families (i.e. faults with similar

strike and age), affecting the Lower Cretaceous

sequences, are observed in the study area (Figs 1 and 2).

Fault family 1(FF1) is constituted by normal faults with a

NNE–SSW strike and is located in the western part of the

basin. Most of the faults in FF1 belong to the RLFC in

the boundary with the Tromsø Basin and they offset all

the sequences. The throw of the RLFC has been inter-

preted to be more than 5000 ms TWT (Gabrielsen et al.,
1990). Fault family 2(FF2) is constituted by NE–SW
striking normal faults of the segmented TFFC in the

south and to the discontinuous AFC in the north (Figs 1

and 2). The TFFC and AFC in the NW offset all the

sequences and throws can be up to 1100 ms TWT

(Fig. 2a). The NE faults only offset younger sequences

than S3 (Fig. 2b). Fault family 3(FF3) is constituted by

E–W striking normal faults and is located in the central

part of the basin. Some of the faults offset all the

sequences and some of them stop at the BCU level. The

faults can be linked or isolated (Figs 1 and 2). Fault fam-

ily 3 has throws up to 200 ms TWT. Fault family 4(FF4)
is constituted by NW–SE striking normal faults, and they

are usually isolated. Fault family 4 is located in the eastern

part of the study area, affecting the S0–S2 or stopping at

the BCU level. Throws can be up to 400 ms TWT

(Figs 1 and 2b).

Seismic facies

Twelve seismic facies related to the Lower Cretaceous

fault activity have been defined and are summarized in

Table 1.
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Table 1. 4Summary of the seismic facies recognized in the Lower Cretaceous succession of the Hammerfest Basin.
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Facies A (Mounds)

Description

Mounds with variable internal reflectors can be discontin-

uous or chaotic. Truncations are locally observed

(Table 1). Clinoforms are sometimes identified in the dip

direction, with a height of 40–80 m and bidirectional

downlaps in the strike direction (Fig. 4a,b). Facies A was

penetrated by well 7122/2-1, and the GR log shows a

blocky pattern (Table 1). A fifty-metre-long core shows

sandstones with pebbles and shell debris (Fig. 5a;

Table 2).

Interpretation

Mounds (facies A) are interpreted as shallow marine coa-

lescent fan deltas (sensu Dabrio, 1990) (Fig. 5a; Table 1).

The sedimentological characteristics of well 7122/2-1

indicate shallow marine to a possible transgressive shore-

face environment (Table 2). The height of the clinoforms

(40–80 m) reveals a prograding shoreline/fan (Fig. 4a).

The truncations are interpreted as a local unconformity,

followed by a flooding event marked by the top of S0.

Facies B (Wedges)

Description

Facies B is always observed next to a fault scarp and is

subdivided in B1 and B2 (Fig. 4b,c,d; Table 1). Facies

B1 is characterized by wedges with a high slope angle

(approx. 5–6 ̊ ) and with internal chaotic or continuous

reflectors, forming a laterally continuous feature next to

the main fault scarps. Topsets are usually not observed

(Fig. 4a; Table 1). Small wedges (facies B2) are located in

narrow areas close to fault planes (Table 1).

Interpretation

The lateral continuity of facies B1 indicates the presence

of laterally continuous slope deposits alike the slope sys-

tem described by Leppard & Gawthorpe (2006). These

deposits are interpreted as coalescing fans consisting of

gravity flow deposits. The lack of topsets in this facies

suggests direct deposition to the slope, presumably

detached from the source, as described by Surlyk (1989)

in East Greenland. Some of these wedges were probably

fed by fan deltas which typically have a narrow subaerial

part with low preservation potential and a subaqueous

part, which in deep-marine settings tend to aggrade due

to the high amount of available accommodation space

(Surlyk, 1989; Dabrio, 1990; Reading & Collinson, 1996).

Facies B2 is more restricted to narrow areas close to the

bounding faults, suggesting talus or fault degradation

complexes, similar to those described by Surlyk (1978

and) Surlyk (1989) and Henstra et al. (2016). Wells 7120/

2-2 and 7120/2-1 penetrated facies B1 in the north-wes-

tern part of the basin and the amount of sandstone varies

(Fig. 5a,b; Table 2). Wedges (facies B1) in the north-

western part of the basin are interpreted as talus cones

formed in shallow water. This is supported by sedimento-

logical observations of wells 7120/1-2 and 7120/2/2,

which indicate the presence of offshore transition deposits

with interbedded gravity flow deposits, grading upward

into shallow marine (Fig. 5a,b; Table 2) (Sandvik, 2014).

Facies C (lens)

Description

Facies C is lens shaped, narrow in the proximal part

(facies C1) and wider in the distal part (facies C2), with

internal high amplitude and discontinuous reflectors

(Table 1). Facies C1 and C2 were drilled in wells 7120/2-

3S (proximal) and 7120/6-3S (distal), respectively. The

core of well 7120/2-3S penetrated fining upward units of

poorly sorted conglomerates, sandstones and siltstones

(Fig. 5d,f; Table 2). The distal well 7120/6-3S found

claystones and siltstones interbedded with normally

graded sandstone beds (Fig. 5f; Table 2).

Interpretation

The fining upward conglomerate beds drilled in well

7120/2-3S (facies C1) are interpreted as gravity flow

deposits emplaced in a slope conduit (Fig. 5d; Table 2).

The normal grading sandstones and the trace fossils in

well 7120/6-3S (distal part of facies C2) indicate deposi-

tion by turbidity currents in a lobe fringe setting (Fig. 5f;

Table 2) (Kneller, 1995; Grundv�ag et al., 2014). Based
on seismic facies, attribute maps and sedimentological

observations, facies C1 and C2 are interpreted as a sub-

marine fan fed by a single point source, where the discon-

tinuous reflectors may represent channels (Fig. 7a,b;

Table 1).

Facies D (continuous reflectors)

Description

Parallel reflectors with high amplitude (facies D)

(Fig. 4c,d). This facies is commonly observed adjacent

to facies B1, where high slope angles (approx. 5–6 ̊ ) are
replaced by parallel reflectors in the southern part of

the basin. (Fig. 4c). Facies D was drilled by well 7120/

10-2 (Fig. 5e). The GR log shows a blocky pattern,

which tends to be more heterolithic towards the top.

An 8.5 m core in the upper part of the unit shows a

tripartite subdivision: a) a lower heterolithic unit; b) a
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middle homogenous sandstone, thick-bedded and

capped by a thin mudstone and a muddy sandstone

bed; and c) an upper sandstone-dominated unit

(Fig. 5e; Table 2).

Interpretation

Facies D is interpreted as a turbidite lobe. This facies

was penetrated by well 7120/10-2, and its lower het-

erolithic part is interpreted as a distal/off axis tur-

bidite lobe in a slope setting (see Grundv�ag et al.,
2014 for similar deposits). Trace fossils that can be

attributed to the Zoophycos Ichnofacies, common in

slope settings (Frey & Pemberton, 1985), support the

interpretation (Figs 4d and 5e; Table 2). The fans

middle part is more sandstone-dominated and was

probably deposited by high-density turbidity currents

in a proximal turbidite lobe. The upper unit, which is

upward fining, may suggest deposition in a lobe fringe

to proximal lobe environments (see Grundv�ag et al.,
2014 for similar deposits) (Table 2). The relationship

between the steep wedges (facies B1), deposited next

to the TFFC and the parallel reflectors with high

amplitude (facies D) (Fig. 4e), presumably reflects the

transition of deposition from mass movements or cohe-

sive debris flows in the proximal part (facies B1) to a

fully turbulent flow (facies D, supported by the obser-

vations in well 7120/10-2). This is a consequence of a

change in the slope gradient and an increase in water

depth (Figs 4d and 5e and Table 2), as described by

Lowe (1982); Mulder & Alexander (2001); Leppard

& Gawthorpe (2006); Henstra et al. (2016) in other

settings.

Facies E

Description

Parallel reflectors with medium-to-low amplitude (facies

E). This facies can occur as mounds with internal contin-

uous reflectors (Table 1). Facies E is commonly observed

in the central part of the basin. The Gamma Ray log from

well 7120/6-2 (Table 1) shows mainly high values with

thin intervals of low values.

Interpretation

Facies E identified in the central part of the basin is inter-

preted as a lobe fringe facies, where the thin intervals of

low GR values suggest thin-bedded turbidite deposits

(see Surlyk, 1978; Grundv�ag et al., 2014 for similar exam-

ples). This facies can have mound shapes, which are inter-

preted as the finger-like protrusion from the distal part of

a lobe (Pr�elat et al., 2009), enhanced during compaction

(Shanmugam &Moiola, 1991).

Facies F (clinoforms)

Description

Facies F is subdivided into three groups: 1) facies F1 is

characterized by clinoforms with a height of 40–100 m

and foreset angles of 1̊ ; 2) facies F2 is characterized by cli-

noforms with a height of 80–210 m and foreset angles of

2–5 ̊ ; and 3) facies F3 is characterized by clinoforms asso-

ciated with fault planes, with a height of 80–200 m and

foreset angles of 2–15 ̊ (Table 1). Facies F3 was pene-

trated by well 7120/10-1, and its GR log shows intervals

with low values (Fig. 7d).

Interpretation

The clinoforms are interpreted based on their height

(Steel et al., 2008; Helland-Hansen & Hampson, 2009;

Sanchez et al., 2012). Facies F1 is interpreted as prograd-

ing sediments in a shelf environment; facies F2 is inter-

preted as shelf-margin clinoforms (see Mar�ın et al., 2017
for details); and facies F3 is interpreted as prograding fan

deltas/shorelines due to their proximity to a scarp

(Table 1) (i.e. Loppa High and the Finnmark Platform).

Facies G

Description

Facies G is characterized by chaotic reflectors with imbri-

cations. The GR log of well 7122/2-1 shows mainly high

values with thin intervals of low values (Table 1).

Interpretation

Facies G is interpreted as mass transport complexes

(MTCs), where the imbrications represent syndeposi-

tional thrusts (sensuMoscardelli & Wood, 2008).

Facies H

Description

Facies H is characterized by incisions of different dimen-

sions, which can have more than a couple of hundred

metres, to below the seismic resolution (Fig. 6c; Table 1).

Interpretation

Facies H is interpreted as incised valleys, gullies or

scours.

Lower Cretaceous sequences

The main depocenters, geometries, lateral variability and

geographic distribution of the seismic facies are described

below for each sequence (Figs 8 and 9).
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Sequence 0 (S0)

Sequence 0 is present across the entire Hammerfest

Basin, except in some small areas in the northern, cen-

tral and southern parts, where it onlaps onto the Loppa

High or uplifted footwalls (Figs 8a and 4e). There are

isolated and segmented depocenters, located next to the

main boundary faults of FF2 and north from the cen-

tral high, associated with FF3 (Figs 1 and 8a). The

thickness of this sequence is not constant, and its maxi-

mum value is 465 ms TWT. The main seismic facies

recognized in S0 are as follows: 1) facies A (mounds)

observed mainly in the N-NE part of the basin, form-

ing a linear belt of 70 km long (Fig. 9a); 2) facies H

(incisions) are closely related to facies A. Facies H are

located in the southern part of the Loppa High, where

they are observed until S3 and have a NW–SE to N–S
direction (Figs 7a and 9a; Table 1) or together with

facies A, with a NE–SW to E–W direction (Figs 9a

and 4a). Additionally, facies H is also identified in the

central high (Fig. 4c); 3) facies B1 (wedges) is located

immediately adjacent to fault scarps and is particularly

common in the boundary with the Finnmark Platform,

associated with the TFFC with a length of more than

80 km (Figs 4c,d and 9a); 4) facies B2 (small wedges)

are observed in association with FF3, in the central

high (Table 1); and 5) facies D (high amplitude, paral-

lel reflectors) is commonly observed adjacent to facies

B1 in the southern part of the basin (Fig. 4c,d). In the

eastern part of the basin, facies D is confined to a

NW–SE graben (FF4) (Fig. 9a), and 6) facies E (med-

ium amplitude, parallel reflectors) is observed in the

central part of the basin (Fig. 9a).

Sequence1 (S1)

Sequence 1 onlaps onto structural highs in the eastern,

the central and partially in the southern part of the basin

(Figs 6a and 9b). Similarly to S0, the main depocenters

are isolated and are located close to main boundary faults

in the NW and SE, associated with FF2 and in the SW

associated with FF4 (Figs 1 and 8b). The maximum

thickness of S1 is 450 ms TWT. Facies E (medium

amplitude, parallel reflectors) is the dominant seismic

facies within S1 (Figs 4c and 6a). Facies E is located not

necessarily immediately adjacent to a fault plane

(Table 1). Facies B1 (wedges) is now more aerially

restricted than in S0 (Fig. 9b). Two main wedge levels

are identified in the north-western corner of the basin

(Knutsen et al., 2000; Sandvik, 2014), where the lower

level belongs to S0–S1 and the second level to S2 (Figs 6b
and 7b). Amplitude extraction at the top of this sequence
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(contiguously to the south of the wedge) reveals linear

patterns that are below seismic resolution. These patterns

are included as part of facies H (incisions) (Figs 6b and

6c).

Sequence 2 (S2)

Sequence 2 is present across the entire basin except on a

small high in the southern and in the north-eastern part

of the basin, where it onlaps against structural highs

(Fig. 9c). The main depocenters are located in the north-

western and south-western part of the basin associated

with FF2 and FF3. A minor depocenter is located in the

south-eastern part of the basin, associated with FF4

(Fig. 8c). The maximum thickness of S2 is 550 ms

TWT. In S2 and younger sequences, wedges are mainly

restricted to the northern and southern fault boundaries

(FF2). The top of this sequence partially onlaps onto S0–
S1 wedges close to the TFFC in the eastern and central

parts (Fig. 4c). However, this relationship is not observed

in the western segment of the TFFC. Instead, clinoforms

(facies F3) prograding to the NW are observed (Fig. 7d).

An amplitude extraction at 50 msec below the top of this

sequence, in the north-western part of the study area,

shows two fan shapes with NW–SE direction, turning to

E–W and SW–NE in the distal part (Fig. 7a). In cross

section, the fan is narrow in the proximal part (facies C1)

and wider in the distal part (facies C2), (Fig. 5; Table 2).

Facies B1 (wedges) and facies F3 (clinoforms) are also

observed in the north-western part of the basin (Fig. 7b).

In addition, facies H (incisions) are present within S2, but

they are not present in the south-western part of the

Loppa High (Fig. 7a). Along the strike, to the E, facies

B2 (small-scale wedges) is observed, which is also com-

mon in S1 and S3 next to the SE part of the Loppa High

(Fig. 7a,c). A local unconformity is observed at the top of

this sequence in the western part of the basin (Fig. 2c).

Sequence 3 (S3)

Sequence 3 is present across the entire basin, except in

the north-western area where it onlaps onto S2 (Fig. 6b).

The main depocenter is located in the NE. The central

high affects neither this sequence nor the younger ones

(Fig. 8d). The maximum thickness of S3 is 280 ms

TWT. Sequence 3 is characterized by medium amplitude
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Fig. 5. Sedimentological logs of six key wells. (a) well 7122/2-1; (b) 7120/2-2; (c) 7120/1-2; (d) 7120/2-3S; (e)7120/10-2; and (f)
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Table 2. Summary of the seismic facies recognized in the Lower Cretaceous succession of the Hammerfest Basin.
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Table 2  
 Facies example Description Interpretation 


F
ig


. 5
a 


 Medium- to coarse-grained 
cross-stratified and plane 
parallel stratified sandstones. 
Massive beds occur locally. 
Occasional thin siltstone are 
interbedded with the sandstones. 
Pebbles of various lithologies 
and shell debris are typically 
occurring throughout the section. 
Bioturbation is very sparse and 
includes Thalassinoides and 
Skolithos. Escape traces are 
observed. 


Shallow marine, possible 
transgressive shoreface 
environments. 


F
ig


. 5
B


 


 Upwards thickening and 
coarsening grain size trends 
which end in cross-stratified and 
plane parallel stratified 
sandstones. Above, a heterolithic 
interval of mudstones and 
cm/dm scale of very fine- to fine-
grained sandstones with current 
ripple cross-lamination. 
Taenidium and Planolites are 
observed. Pyrite and siderite 
nodules and synaeresis cracks 
are present. 


Shallowing upward shoreface 
parasequence packages. 


Fi
g.


 5
B


 


 Layers of siltstones alternating 
with  finger-thick, wave and 
current ripple cross laminated, 
silty sandstones. Soft sediment 
deformation and dewatering 
structures are found. Planolites, 
Teichnicus, bivale burrows and 
Taenidium are observed. 


The Teichnicus, Planolites and 
bivale burrows Ichnofacies suggest 
offshore conditions. 


Fi
g.


 5
C


 


  


 


Heterolithic, bioturbated silty 
mudstones interbedded with 
thin, sharp-based sandstone beds 
either intensely bioturbated or 
containing swaley or wave ripple 
cross-lamination. Sandstones are 
fine to medium grained and 
moderately sorted. Bioturbation 
typically occur in transitions 
between the sandstone and the 
fine grained units. Siderite 
nodules are common throughout. 
Shell beds and shell fragments 
are present. Teichichnus, 
Phycosiphon and Cylindrichnus 
trace fossils are common.  


The fine grained character and the 
Cruziana Ichnofacies suggests 
deposition in a well oxygenated 
open-marine shelf environment. The 
normally graded, sharp based 
sandstones with swaley or wave 
ripple cross-lamination indicate 
episodic storm deposition. 







F
ig


. 5
D


 


 
  


Decimeter- to meter-scale fining 
upwards units of poorly sorted 
clast and matrix-supported 
conglomerates and moderately 
to well sorted fine- to medium-
grained sandstones and 
siltstones. The clasts are rounded 
and consist of a wide variety of 
multicolored carbonates, 
siliciclastic fragments and 
bivalves. In their upper part the 
sandstones are interbedded with 
claystone which thickness and 
abundance increase upwards. 
Chondrites, Phycosiphon and 
Zoophycus are observed. 


The thick fining upward 
conglomerate units is interpreted as 
gravity flow deposits emplaced by 
debris flows and high density 
turbidity currents. The Zoophychos 
Ichnofacies and the attribute maps 
(Fig. 9a) indicate deposition within a 
slope channel/canyon environment.  


F
ig


. 5
E


 


 A coarsening upwards, 
heterolithic unit of cm- to dm-
scale, normally graded sandstone 
beds. The basal part contain 
medium-grained sandstones with 
mudstone clasts passing upwards 
into plane parallel laminated 
medium-grained sandstones and 
fine-grained current ripple cross-
laminated sandstones. The beds 
gradually passes up into or are 
capped by mudstones. 
Chondrites, Zoophycus, 
Asterosoma trace fossils are 
observed. 


The normally graded beds indicate 
deposition by surge-type, low-
density turbidty currents. The 
heterolithic character indicates a 
distal/off axis lobe environment. 
The Zoophycos Ichnofoacies is 
typical for continental slope, 
supporting the interpretation of a 
turbidite lobe in a slope setting. 


F
ig


. 5
E


 


 A 3-4 m thick sandstone unit 
consisting of thick-bedded and 
amalgamated sandstone beds. 
Convolute bedding and dish 
structures are present. Generally, 
the beds are normally graded and 
contain rip-up mudstone clasts. 
The thickest beds have sharp and 
erosive bases. Coal fragments 
are common. 
 


Thick, normally graded sandstones 
rich in soft sediment deformation 
structures indicate deposition by 
high-density turbidity currents. 
Based on the amalgamated character 
of the unit, a proximal/axial turbidite 
lobe environment is suggested.  


Fi
g.


 5
E


 


 This association has a lower 
heterolithic part followed by 
thicker and amalgamated and 
normally graded sandstone beds 
dominated by dish structures and 
convolute bedding. The 
association shows an overall 
coarsening upward. 
 
 


The lower heterolithic part indicate 
deposition in a lobe fringe/off axis 
environment. The amalgamated unit 
represent deposition in more 
proximal /axial lobe environments. 
The upward coarsening indicate that 
the lobe was prograding.  


F
ig


. 5
F


 


  Dark grey claystones and 
siltstones interbedded with grey, 
well sorted, cm- to m-scale beds 
of fine- to medium-grained 
sandstones. The sandstone beds 
are normally graded and 
structureless. Small fluid escape 
traces and current ripple cross-
lamination occur locally. 
Mudstone rip-up clasts and shell 
fragments are common at the 
base of the sandstones. 
Chondrites, Teichichnus, and 
Phycosiphon are present. 


Submarine fan fringe. The normal 
grading of the sandstones suggests 
deposition by turbidity currents. The 
trace fossil assemblage and the 
amount of interbedded fines indicate 
a lobe fringe setting. 
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reflectors, highly faulted, with a polygonal pattern in map

view (Fig. 10b,c). Facies G (chaotic reflectors with imbri-

cations) are also common, (Table 1). Facies F3 (clino-

forms) with a height of 80–100 m prograded across a

narrow area, from the Loppa High to the SE. Further-

more, facies B1 (wedges) are present in the boundary with

the Finnmark Platform in the south-eastern part of the

basin (Fig. 10a; Table 1).

Sequence 4 (S4)

Sequence 4 is present across the entire basin, and the

main depocenter is located in the N-NE (Fig. 8e). The

maximum thickness of S4 is 310 ms TWT. Facies B1

(wedges) associated with the development of FF2 domi-

nates this sequence in the northern part of the basin

(Figs 6b, 9e and 11a). Two different types of clinoforms

are observed: 1) clinoforms with a height of 100–200 m,

foreset angles of approx. 4 ̊ and associated with a fault

plane (facies F3); and 2) facies F1 (clinoforms), which

prograded to the SW in the north-eastern part of the

basin (Fig. 11b). In other areas of the basin, the reflectors

are parallel with medium amplitude.

Sequence 5-6 (S5-S6)

Sequences 5 and 6 are present across the entire basin and

on the south-western part of the Loppa High (Fig. 9f).

The sequences are truncated by an unconformity (the top

of S6) to the W (Fig. 2a). The main depocenter is located

in the eastern part of the basin (Fig. 8f). The maximum

thickness to S5–S6 is 560 ms TWT. Facies F2 (clino-

forms with a height of 80–210 m) is observed in the

north-western part of the study area, prograding to the

E-SE (Fig. 6a). In other areas of the basin, the reflectors

are parallel with low–medium amplitude.

DISCUSSION

Palaeogeographic evolution

Boreal Berriasian/Volgian to Barremian (S0–S1)

During the deposition of S0 and S1, there were two main

sources of coarse-grained sediments in the basin: the

Loppa High and the Finnmark Platform (Fig. 12a,b).

The topography in the north and south was periodically

renewed due to the successive uplift of the Loppa High

(which started in the Late Jurassic; Wood et al., 1989;
Gabrielsen et al., 1990 or earliest Cretaceous; Glørstad-

clark, 2011) and the Finnmark Platform. Following each

uplift event, the drainage was readjusted (similar to what

Henstra et al., 2016 described from East Greenland),

forming multiple incised valleys in the south-eastern

Loppa High (facies H, Figs 7a and 12a) and depositing

multiple wedge levels (Figs 6b and 7b). Reworked paly-

nomorphs of Late Triassic to Middle Jurassic in the

Valanginian sandstones are common in the downflank of

the Troms-Finnmark Platform and the Loppa High

(wells 7120/10-2 and 7122/2-1). The medium- to coarse-

grained and well-sorted sandstones from the cores in wells

7120/10-2, 7122/2-1 and 7120/2-2 (Fig. 5a,b,e) contrast

with the fine-grained Lower to Middle Triassic sand-

stones (Mørk et al., 1999). These observations suggest

that the sandstones of the Norian–Bajocian Realgrunnen

Subgroup and probably the Snadd Formation (Mørk

et al., 1999) were at one stage deposited on the shoulders

of the Hammerfest Basin (Loppa High and Finnmark

Platform) and later acted as a sediment source when it

became exposed during uplift. Incised valleys were par-

tially entrenched into the Realgrunnen Subgroup, provid-

ing coarse-grained sediments during deposition of S0 and

fed the shallow coalescent fan deltas, as seen in well 7122/

2-1 (Figs 5a, 7a and 12a). Channels within the fans have a

NE–SW to E–W direction, which contrasts with the

NW–SE to N–S direction of the valleys in the Loppa

High (Figs 6a and 12a). This indicates that fans were

deflected to the west due to the FF3 movement

(Fig. 12a). The presence of laterally continuous slope

deposits along the southern margin of the Hammerfest

Basin indicates that the Finnmark Platform provided sed-

iments during the deposition of S0. The abundant

reworked Mesozoic material and the very well-sorted

sandstones in well 7120/10-2 suggests reworked sedi-

ments on a shoreline probably at a margin of a low-relief

hinterland on the Finnmark Platform and its later redepo-

sition as fans in the Hammerfest Basin (Fig. 12a).

The AFC in the north-western corner of the basin

shows evidence of normal displacement. As a result, a first

stratigraphic level containing shallow marine clastic

wedges was formed (facies B1; Figs 6b and 7b). The high

associated with the AFC controlled the shelf-edge loca-

tion until the deposition of S2 (Fig. 12a–c). The linear

features observed in the high associated with the AFC are

interpreted as gullies formed in the slope (Fig. 8b,c), trig-

gered by the tectonic activity during the early Barremian

(Indrevær et al., 2016). The water depth is interpreted as

shallow in the northern part of the basin, based on obser-

vations from wells 7122/2-1, 7120/1-2 and 7120/2-2 and

the height of the clinoforms (40–80 m) (Figs 4a and 5a,b,

c; Table 2). The south-western part is interpreted to be

deeper compared to the north-eastern part, supported by

the succession of turbidites and Zoophycos-type trace fos-
sil assemblage occurring in well 7120/10-2 (Fig. 5e;

Table 2). In the central high and eastern part of the basin,

the onlap relationship of S0 and S1 suggests that these

two areas experienced periods of subaerial exposure

(Figs 4e and 6a). Although the basin configuration is sim-

ilar during S0 and S1, the observed wedges are fewer in

S1 in the south-western part of the area, indicating a
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Fig. 6. Seismic lines showing the seismic facies in sequence 1 (SF of S1). (a) Sequence 1 onlaps onto the Loppa High and the eastern

part of the basin. (b) Wedge (SF B1) associated with the Asterias Fault Complex. (c) Linear features identified in amplitude extraction

at the top of S1. Location of the seismic lines is indicated in Fig. 5.
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quiescence period for the western part of the TFFC

during S1.

Early Aptian to early Albian (S2)

During the deposition of S2, small wedges (facies B2) in

the north-eastern part of the basin reflect that only occa-

sional flows provided coarse-grained sediments through

valleys located in the south-eastern part of the Loppa

High (Figs 7a,c and 12c). This indicates a depleted source

in the eastern part of the Loppa High, explained by a per-

iod of erosion reducing the topography, as suggested by

Henstra et al. (2016) for East Greenland. In contrast, the

input of sediments in the north-western corner of the

basin remains important in this sequence. A second wedge

level with internal prograding reflectors is associated with

a fault scarp (facies F3) and is interpreted as a prograding

shoreline/fan delta. The water depth in the north-wes-

tern corner reached values of 140 m (based on decom-

pacted clinoforms), but it becomes deeper towards the

south, where submarine fans fed by a point source were

deposited (Fig. 7a). The same relationship is observed in

the southern part of the basin, where the input of

sediment is higher in the west, compared to the eastern

part of the basin (Figs 7d and 12c). We suggest that the

increase in the sediment supply in the western part of the

basin is a combination of fault activity along the western

part of the AFC and TFFC (Fig. 7a–d), and fault activity

along the RLFC associated with an extensional episode

that affected the Tromsø Basin within S2 (Aptian)

(Faleide et al., 1993). This resulted in renewed topogra-

phy in the western part of the Loppa High and the Finn-

mark Platform (Fig. 12c), leading to an increase in the

rates of erosion.

The higher erosion rate in the western part of the

Loppa High could explain the lack of connected conduits

for the submarine fans identified in the north-western

part of the area. The flows that deposited facies C (sub-

marine fans) were commonly deflected to the east and

confined by the palaeo-topography of the basin (Figs 7a

and 12c). We attribute the deflection of the submarine

fans to the fault activity of the RLFC, AFC and other

faults belonging to FF2. This fault activity locally tilted

the north-western part of the basin and made the western-

most part of the Hammerfest Basin shallow (Figs 1 and

7a).
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Albian (S3–S4)

The remnant topography associated with the Finnmark

Platform resulted in fan delta/shoreline progradation in

the south-eastern margin (Figs 10a and 12d; Table 1).

Low-angle clinoforms with a height of 40–100 m

(Table 1) reflect sediments prograding in a shelf towards

the SW, in the eastern part of the study area (Fig. 11b).

The MTCs were probably triggered by oversteepening

due to sediment loading in proximity of the shelf-edge

(Table 1) (Moscardelli & Wood, 2008). Alternatively,

they could be a response of the tilting of the Hammerfest

Basin suggested by the shift of the depocenters from the

western part in S0–S2 to the central and north-eastern

part in S3–S6. This shift of the depocenters is interpreted
as a consequence of the activity of the RLFC, during an

extensional episode in the Tromsø Basin (Faleide et al.,
1993) forming the unconformity at the top of S2 (Figs 1,

2c and 4). As a result of the tilting of the Hammerfest

Basin, shallower conditions are interpreted in the north-

western part of the basin, supported by onlap relation-

ships. Deeper conditions are suggested in the eastern part

of the basin, supported by the height of the clinoforms

(up to 200 m) (Fig. 6b). Sequence 3 is affected by

polygonal faults, suggesting fine-grained lithology (Cart-

wright, 2011).

Latest Albian to Cenomanian S5–S6

Clinoforms that prograded from the Loppa High towards

the SE (facies F2) suggest a change from an erosive to a

prograding margin (Fig. 6a). Simultaneously, the south-

eastern Loppa High became flooded, including the valleys

located in the south-eastern part due to high eustatic sea

level during the Albian to Cenomanian transition (Haq,

2014) (Figs 2b and 11a). The western part of the Loppa

High remained subaerially exposed, providing sediments

to allow the margin to prograde as a result of renewed

uplift-induced topography (Fig. 12f).

Variables controlling the depositional
systemsand basin fill

Controls during rift climax

Variability along the strike of the main bounding faults: In
this study, we consider the variability in the throw and

the steps in the main bounding faults to be a factor
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affecting the depositional systems and the input of sedi-

ments into the basin, as it has been considered previ-

ously (Gawthorpe et al., 1990; Gupta et al., 1998;

McLeod et al., 2002; Elliott et al., 2012, 2017). High

accommodation space was generated in faults with

higher throw, for example in the southern bounding

fault (TFFC). This led to an increase in the water

depth and to deposition of axial turbidite lobes in the

immediate hangingwall (facies D) (Figs 9a and 12a).

The accommodation space generated during the rift cli-

max was higher in the south-western part compared to

the north-eastern part, which did not have any evident

fault displacement until the Albian (S4) (Fig. 11a).

Lower accommodation space in the northern Hammer-

fest Basin led to the deposition of shallower facies

(Fig. 5a).The input of sediments was affected by fault

steps, for instance in the TFFC, which has been

described as en echelon fault system (Gabrielsen et al.,
1990; Ahmed, 2012). In the middle part of the TFFC,

a step in this fault system is suggested as a potential

sediment supply entry point during the rift climax

(Fig. 9).

Diachronous movement of the faults

The diachroneity of fault movement is an important con-

trol on the timing and spatial distribution of depositional

systems in rift basins. In the study area, fault activity, and

therefore also fault-controlled deposition and accommo-

dation, was diachronous (Fig. 12). The BCU has been

interpreted as the syn-rift to post-rift boundary in other

areas of the Norwegian continental shelf (Gabrielsen

et al., 2001). In the Hammerfest Basin, some of the faults

of FF3 and FF4 offset the pre-Cretaceous rocks, but the

upper fault tips terminate below the BCU (Fig. 2). How-

ever, the BCU is commonly offset by faults of FF2 and

FF1 and growth wedges are observed in the overlying

sequences, indicating that the faulting in the Hammerfest

Basin was initially concentrated in the central part of the

basin and then in the main basin margin faults (Fig. 2).

Therefore, it is suggested that the BCU does not repre-

sent the transition of the rift climax to the post-rift suc-

cession in the Hammerfest Basin.

The fault activity stopped in the eastern part of the

study area during the deposition of S1 and was
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Fig. 10. Seismic lines showing the seismic facies in sequence 3 (SF of S3). (a) Wedges (B1) associated with the Troms-Finnmark
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concentrated in the western part of the basin until the

deposition of S2 (e.g. FF3 and FF2). This is supported

by thickness variations, the development of the north-

western and the south-eastern depocenters during the

deposition of S2 and the deposition of wedges associated

with faults (Figs 8c, 7b and 12c). These observations sug-

gest a diachronous transition between the rift climax and

the post-rift succession across the Hammerfest Basin sim-

ilar to the northern North Sea (Gabrielsen et al., 2001;
Zachariah et al., 2009).

The nature of the feeder system

Whereas the two previous factors control the distribu-

tion of the clastic wedges, the nature of the feeder

system controls their geometry and connectivity (Stow

et al., 1996). Lateral continuous wedges parallel to the

strike of the TFFC are interpreted in the southern

part of the basin, as slope deposits fed by a linear

source (Figs 9a and 12a). Slope deposits fed by a lin-

ear source are characterized by complex depositional

systems (Reading & Richards, 1994; Stow et al., 1996;
Galloway, 1998; Gawthorpe & Leeder, 2000; Leppard

& Gawthorpe, 2006), which can make facies more dif-

ficult to predict. Point sources forming well-defined

submarine fans are interpreted in the north-western

part of the basin within S2 (Fig. 7a), indicating more

predictable facies.

In summary, during the rift climax stage, the geometry,

distribution of depositional systems and the input of sedi-

ments in a basin are controlled by the interaction of sev-

eral variables such as: 1) variability along the strike of the

main bounding faults (Gawthorpe et al., 1990; Gupta

et al., 1998; McLeod et al., 2002; Elliott et al., 2012,

2017, 2017); 2) diachronous movement of the faults; and

3) nature of the feeder system (Reading & Richards, 1994;

Stow et al., 1996; Galloway, 1998; Gawthorpe & Leeder,

2000; Leppard & Gawthorpe, 2006). Although variations

in footwall lithology are not considered here, this may be

an important factor affecting the amount of coarse-

grained sediment transported into the basin (McArthur

et al., 2013).
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Controls duringpost-rift

Remnant topography of the basin flanks inherited from the
syn-rift stage

The Hammerfest Basin is a symmetric feature character-

ized by two main uplifted flanks: the Finnmark Platform

and the Loppa High (Fig. 2). At the time of the deposi-

tion of S3, a relatively homogeneous topography is inter-

preted based on the time thickness maps (Fig. 8), where

the influence of the central high was no longer evident.

The remnant topography inherited from the syn-rift per-

iod is not a major factor that influenced the input of

coarse-grained sediment to the basin. Only localized

areas of the Finnmark Platform provided sediment to a

prograding shoreline/fan delta (wedges B1; Fig. 10a).

The topography of the Loppa High during the post-rift

was conditioned by fault activity in its western flank

(Faleide et al., 1993; Indrevær et al., 2016), rather than
inherited from the main syn-rift period of the Hammer-

fest Basin. This contrasts to areas as the northern North

Sea, where uplifted and rotated fault blocks developed

within the syn-rift period were a major factor affecting

the post-rift deposition (Nøttvedt et al., 1995; Zachariah
et al., 2009).

Local reactivation of faults

Preferential reactivation of fault condition the input of

sediments in a basin. In the Hammerfest Basin, the pres-

ence of wedges related to the AFC indicates a local reacti-

vation of this fault complex in the northern boundary

with the Loppa High (Fig. 11a). This resulted in local-

ized depocenters with associated wedges in the adjacent

hangingwalls of the reactivated faults within S4.

Rifting in the adjacent basins

In the study area, fault activity in the eastern part of the

Tromsø Basin renewed the topography of the western

Loppa High during the Aptian–Albian (Faleide et al.,
1993), and uplifted and tilted the Hammerfest Basin east-

wards. This event triggered a larger drainage system in

the Loppa High, directed away from the Tromsø Basin

towards a gentler slope. Therefore, sediment was sourced

from the western part of the Loppa High and deposited in

the north-eastern Hammerfest Basin as clinoforms identi-

fied within S3 and S5–S6 (Fig. 6a).
Rifting in adjacent basins can contribute to the input of

potential coarse-grained sediment to a basin even in

periods of high eustatic sea level. In the study area, the

mid-Cretaceous eustatic sea-level rise (Haq, 2014) and

differential subsidence resulted in flooding of some of

the structural highs (e.g. the eastern part of the

Loppa High), affecting the sedimentation during the

Albian–Cenomanian (S4–S6). Development of clastic

wedges was mainly recognized in the areas affected by far

field tectonic influence, which overcomes the relative sea

level. In other areas of the basin, the continuous to semi-

continuous reflectors with medium amplitude reflect that

mainly mud from an open-marine environment (Mørk

et al., 1999) was deposited in the post-rift succession.

The observations presented here suggest that rifting in

adjacent basins is an important factor controlling the

renewed topography, which triggers preferential sources

of sediment.

In summary, during the post-rift stage, the topography

in a basin and the depositional system distribution are

controlled by the following variables: 1) rifting in adjacent

basins; 2) remnant topography of the basin flanks inher-

ited from the syn-rift period (Prosser, 1993; Nøttvedt

et al., 1995; Zachariah et al., 2009); and 3) local reactiva-

tion of faults.

Many of the depositional systems and geometries

described in this article coincide with the previous

tectonostratigraphic models for marine rift systems

(Gawthorpe & Leeder, 2000). However, these previous

models do not explain variables such as the preferential

input of sediment in parts of the basin. We suggest that

the tectonostratigraphic models for rift basins should be

updated, considering a more regional scale and integrating

information of neighbouring basins. As a result, variables

such as the influence of adjacent rift systems and diachro-

nous movement of the faults, extensively described in

both aborted and break-up rift systems (e.g. Rabinowitz &

Labrecque, 1979; Gabrielsen et al., 2001; Mohriak &

Leroy, 2013) 5, can be included in these tectonostrati-

graphic models.

CONCLUSIONS

Twelve seismic facies, which represent shallow to deep-

marine depositional environments in proximal to distal

positions to the main bounding faults, are interpreted

based on seismic data, well ties and sedimentological core

descriptions. The rift climax in the Hammerfest Basin

occurred mainly during the Volgian–Barremian, but the

transition to the post-rift succession is diachronous, being

younger towards the western part of the basin. The evolu-

tion of the post-rift succession in the basin was controlled

by three main factors: the influence of an adjacent rift

event, the remnant topography of the Finnmark Platform

and the local reactivation of faults.

We recognize four main stages in the tectonostrati-

graphic evolution of the Hammerfest Basin: 1) the Boreal

Berriasian/Volgian–Barremian stage, where a fully linked

fault array controlled the coarse-grained deposition of S0

and S1 in the area, and fan deltas or shorelines formed in

the north, and a laterally continuous, sand-dominated
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slope system developed in the south. Shallow marine to

continental environments is suggested in the north, east

and central parts of the basin, whereas deep-marine envi-

ronments are interpreted in the south-western part; 2)

during the Aptian stage, the input of coarse-grained sedi-

ments of S2 was preferential in the north-western and

south-western corners of the basin, which is the result of

the tectonic activity of the western Asterias Fault Com-

plex and Troms-Finnmark Fault Complex, and renewed

topography in the western Loppa High associated with

fault activity in the Tromsø Basin; 3) in the Albian stage,

remnant topography provided sediments for fan delta/

shoreline progradations recorded in S3–S4. Local fault
activity in the northern part of the basin controlled the

deposition of footwall wedges in S4. Furthermore, a shift

in the depocenters from the western part in S0–S2 to the
eastern part in S3–S6 reflect a shallower environment in

the westernmost part of the Hammerfest Basin; 4) during

the latest Albian–Cenomanian stage, the south-eastern

Loppa High was flooded due to a combination of an

eustatic sea-level rise and local tectonism, but the western

part remained a high, providing sediments to allow shelf-

margin progradation.

We conclude that tectonostratigraphic models for rift

basins should be revised considering a regional scale,

where variables such as rifting in adjacent basins can be

incorporated. These updated models could explain

renewed topography and preferential input of sediments

in a basin during the post-rift stage.
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