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Abstract

In this paper we present a new algorithm for parameter-free clustering by mode seeking.
Mode seeking, especially in the form of the mean shift algorithm, is a widely used strategy
for clustering data, but at the same time prone to poor performance if the parameters are
not chosen correctly. We propose to form a clustering ensemble consisting of repeated and
bootstrapped runs of the recent kNN mode seeking algorithm, an algorithm which is faster
than ordinary mean shift and more suited for high dimensional data. This creates a robust
mode seeking clustering algorithm with respect to the choice of hyper-parameters and high
dimensional input spaces, while at the same inheriting all other strengths of mode seeking
in general. We demonstrate promising results on a number of synthetic and real data sets.

Keywords: Density based clustering, Consensus clustering, kNN mode seeking, Mean
shift, Ensemble clustering,

1. Introduction

Density based clustering is one of the fundamental directions in unsupervised learning [2,
3, 4, 5, 6, 7, 8, 9]. The natural notion of a cluster consisting of points gathered together in
regions of high probability is very intuitive, and forms the basis of density based clustering.
Furthermore, one of the prominent methods of density based clustering is mode seeking, most
often represented by the mean shift algorithm [10]. In mean shift and mode seeking in general
each data point is connected to a mode (local maximum) of the probability density function
(pdf) and each mode represents a cluster. Successful applications of mean shift include
Microsoft’s Kinect® computer vision system [11], object motion tracking [12], initalization
of spectral clustering algorithms [13, 14] and change detection in satellite radar images
[15]. In addition more recent applications have shown good results in visualizing functional
connectivity in the brain [16], semi-supervised learning [17] and fault detection [18]. Mode

1This work is an extended version of [1], presented at the Scandinavian Conference on Image Analysis
2015.
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seeking for clustering based on mean shift is therefore a very influential methodology that has
been very useful for solving real world problems. There are however a variety of problematic
issues, that if solved, would make mode seeking based clustering even more powerful. Mean
shift is for example very sensitive to user defined parameters that greatly influence the
number of clusters returned by the method. Moreover, mean shift is slow, and does not
scale well as the number of dimensions (features) increases. Some approaches for mitigating
such effects have been proposed in recent years [19, 20, 21, 22, 23, 24, 25, 26, 27, 28], but
the problematic issues still remain to a large degree.

In this paper, our aim is to take mode based clustering further by proposing a different
strategy. In our approach, traditional mean shift is replaced altogether by a much faster
k nearest neighbor (kNN) mode seeking method [29]. In addition, ideas from ensemble
(consensus) clustering are incorporated for robustness with respect to hyperparameters.
These choices are motivated and explained below.

kNN mode seeking [29] is a recently proposed alternative method for mode seeking clus-
tering which is significantly faster than mean shift. At the same time it retains comparable
accuracy to ordinary mean shift [29]. The algorithm is based on the same principles as
mean shift, namely following the local gradient ascent of each point and using the mode
it converges to as cluster indicator. The difference lies in the underlying density estimate.
While mean shift uses a kernel density estimate, kNN mode seeking uses a kNN density
estimate [30], a more adaptive but less smooth estimate. Additionally, the modes and the
gradient ascent path connected to the modes are relaxed to only consist of points available
in the input data set2. The latter property gives an advantage in terms of computational
complexity that becomes even clearer in high-dimensional space.

Unfortunately, the kNN mode seeking algorithm is not free of the main problem of
probability density estimation; selecting the critical bandwidth parameter of the density
estimate. In the case of kNN mode seeking it is the neighborhood size parameter k. A
poorly chosen nearest neighborhood parameter (kernel density bandwidth for mean shift)
leads to an underlying probability density estimate that does not represent the data well.
Choosing a too small neighborhood gives a spurious and spiky density with too many local
modes. On the other hand, a too large neighborhood size will oversmooth the density leading
to a single all-encompassing cluster in the limit. This problem gets exponentially harder as
the dimensionality increases due to the fact that in most cases with a bounded number of
data points, high dimensional data spaces are mostly empty [3, 31].

In this work, inspired by the ideas of consensus clustering [32, 33, 34, 35], we propose to
execute the kNN mode seeking several times using a varying neighborhood parameter and
let the combined results form an ensemble that returns the final clustering. The key idea of
consensus clustering, also known as ensemble clustering, is that multiple runs of the same
algorithm with different initializations or different parameters will create a more diverse
representation of the underlying structure of the data [33, 2]. This will in turn give a more
stable and robust final clustering result.

A problem that arises when incorporating mode seeking clustering into consensus clus-

2See Figure 2 on page 6 for an illustration.
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tering is that the modal clustering algorithms mentioned here, kNN mode seeking and mean
shift, are both deterministic. A key component in consensus clustering is diversity achieved
by the inherent randomness in the clustering algorithms. Thus, multiple runs without pa-
rameter change will yield the same result. As a solution, we propose to perform random
subsampling without replacement for each repeated clustering. This technique, which is
similar to bootstrap aggregation used in random forests [36, 37] is well established and has
previously showed promising results for clustering gene expression data using a collection of
self-organizing maps and average linkage hierarchical clustering [33].

As we will show, our contributions will increase the robustness of the kNN mode seeking
algorithm towards local variation of different scales. In doing this we take a big step towards
a more user-friendly clustering scheme where manual parameter tuning is not necessary.

To summarize, our contributions are: (1) A new robust algorithm for parameter free
kNN mode seeking clustering capable of fast high dimensional clustering. (2) Introducing
ensemble clustering to improve mode based clustering. (3) Introducing several procedures
for introducing randomness into the mode seeking ensemble framework3.

The remainder of this paper is organized as follows. In Section 2 and 3 we review
clustering by mode seeking and the kNN mode seeking algorithm. Section 4 introduces our
proposed clustering algorithm. Finally, Section 5 shows experimental results on both real
and synthetic data.

2. Background: Clustering by mode seeking.

Mean shift and kNN mode seeking both fall in the category mode based clustering, or
simply modal clustering [2, 3]. The essence of mode based clustering is gradient ascent on
the underlying pdf of the data one wants to analyze. Originally introduced by Cheng, [38],
it was revitalized and made popular through the mean shift algorithm [10]. The main idea
is as follows; given a pdf, most often through an estimate, each point in the support of the
pdf will have an integral curve that converges to a mode of the pdf, see for example [39].
All points that converge to the same mode are considered part of the same cluster. This
induces a partition over the support of the density. The part of the support that converges
to the same mode is known as the basin of attraction of the mode.

The benefits of using modal clusterings are many, the density can adapt locally to the data
allowing to some extent to capture nonlinear clusters, the number of clusters is determined
by the density estimate. It is also robust to outliers, an outlier will represent its own cluster
and can be thresholded away based on its density value.

A mode can be defined to be a point at which the pdf has a local maximum. However, to
avoid confusion in cases where the mode can be represented by several points (most notably
a uniform density) we include a more general definition

Definition 1. Let f : X ∈ Rd → R be a pdf. A connected set of points M ⊆ X is a mode
of f if ∀m ∈ M, f(m) = h > 0 and there exists a compact, connected set CM ⊃ M with
∂CM ∩M = ∅, where ∂CM is the boundary of CM, such that f(x) ≤ h, ∀x ∈ CM.

3This paper is an extension of previous work [1]
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This definition allows a mode to consist of several connected points, such that uniform
areas of a density, for example a plateau or a flat ridge of equal probability density, is covered
by the definition.

More concretely, in the mean shift algorithm [10, 38], the pdf of a data set is estimated
by a kernel density estimate (KDE), [30], and gradient ascent is performed on the estimated
pdf.

The standard kernel density estimator for a set X = {xi}ni=1, xi ∈ Rd is given as follows:

f̂(x) =
1

n

n∑
i=1

k(x,xi), (1)

where k(·, ·) is a symmetric positive (semi-)definite function integrating to one. The most
commonly used kernel function is the Gaussian kernel:

k(xi,xj) =
1

cg
exp

(
−‖xi − xj‖2

2σ2

)
. (2)

Here σ2 is the bandwidth of the kernel, ‖ · ‖ denotes Euclidean norm ad cg is a normalizing
constant ensuring that the kernel density integrates to one.

The gradient of the KDE is given as :

∇f̂(x) = − 1

n

n∑
i=1

(x− xi)

σ2
k(x,xi), (3)

which is proportional to the mean shift vector:

m(x) =

∑n
i=1 xik(x,xi)∑n
i=1 k(x,xi)

− x. (4)

See Comaniciu et al. [10] for further details. Note that normalizing constants can be omitted,
as gradient ascent is only dependent on the direction of the gradient.

To summarize, the mean shift clustering algorithm can be stated as follows:

1. For each input point xi and a threshold ε:

• While ‖m(xi)‖ > ε, take a step in the direction of the mean shift vector, xi ←
m(xi).

2. Assign each point xi that has converged to the same mode to the same cluster C

In Figure 1 we see an example showing the mean shift procedure on a random selection of 50
points from a sample consisting of 500 points from a bivariate standard normal distribution.
We see that the trajectories (left) are smooth paths from each input point converging to the
mode of the kernel density estimate which is shown in Figure 1b.

The computational complexity of mean shift isO (Tn2), where n is the number of samples
and T is the number of initial points (typically chosen as T = n). We should also note that
each mean shift trajectory, T in total, is independent of all others so the algorithm is trivially
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(a) Mean shift trajectories.
(b) Kernel density estimate.

Figure 1: (a)Mean shift trajectories on a random normal sample. The kernel bandwidth σ2 was chosen equal
to the average distance to the 20th nearest neighbor. The colors of the trajectories are chosen at random
so that they are easier to separate visually. We note that all trajectories converge to the same mode in this
example. (b) 3D plot of the estimated density.

parallelizable allowing for considerable speedup when multiple threads are available. Also, if
the dimensionality of the data is extremely high, the running time of calculating Euclidean
distances used in the kernel density estimate have to be considered.

Furthermore, it is obvious that a good choice of bandwidth parameter σ2 is essential to
obtain a good clustering result. If we consider the example of a sample from a standard
normal distribution a too small bandwidth will result in many small clusters – equal to the
number of samples in the most extreme case. On the other hand, setting the bandwidth too
large will result in oversmoothing of the density. In the unimodal case oversmoothing is not
necessarily a problem, since even though the density may represent nonlinear structure with
a single global maximum an oversmoothed density would represent the correct clustering,
perhaps with some bias [40, 41].

Finally, a closely related problem is the ability of the underlying density to capture the
structure of the data in smooth high density regions. Recall that for the mean shift to cluster
a collection of data points together, they need integral curve trajectories that converge to
the same local maximum. For this to work, the kernel density estimate have to capture
unimodal dense regions that corresponds to the data clusters, whichis not trivial when the
clusters have shapes that are nonlinear or consists of overlapping mixture distributions [42].

3. kNN mode seeking

The kNN mode seeking algorithm is a mode based clustering algorithm where the kernel
density estimate is replaced by a kNN density estimate [29, 30]. It was introduced by Koontz
et al. [43] and reformulated by Duin et al. [29]. In addition to replacing the kernel density
with a kNN density estimate, the gradient ascent integral curve approximations are reduced
to consist only of data points contained in the input data set. As a result of this, the modes
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Figure 2: Illustration of the kNN mode seeking algorithm for a standard normal sample of size 20 and k = 3.
The red arrows shows the trajectory for a single point. The data points are marked with color corresponding
to the kNN density value. For better visualization the contour represents the inverse density values (pairwise
distance) shown for the entire support of the kNN density.

of the kNN density are also constrained to be represented by data points available in the
input set. This is similar in construction to a medoid [44]. Duin et al. [29] showed promising
benefits in terms of speed, accuracy and robustness when comparing to ordinary mean shift.

Given a kNN-density estimate, where the density at a point x is the reciprocal of the
squared distance to the k-th nearest neighbor xk:

f̂kNN(x) =
1

‖x− xk‖2
, (5)

the kNN mode seeking algorithm can be stated as follows:

1. For each input point xi:

• Define a pointer to the point within the k-nearest neighbors of xi with the highest
kNN-density.

• Repeat the process by following pointers from the initial pointer until a pointer
that points to itself is found. This will be taken as the local mode of f̂kNN(x).

2. Assign each point, xi, that converged to the same mode to the same cluster.

This is an approximation of the gradient ascent scheme of mean shift, the pointer to the
neighbor with highest density value represents the gradient while a point that points to itself
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represents a mode. An illustration of how the algorithm works for a single data point is
shown in Figure 2.

This method is significantly faster than mean shift and has comparable accuracy despite
only using input points for projection to the mode [29]. The gain in speed comes from
the fact that since the trajectories are only input points, the distance matrix that forms
the density estimate has to be calculated only once. For mean shift, the matrix has to be
updated for each iteration. In addition, as opposed to for example k-means, [30], the method
still retains the local properties of mean shift making it adapt closer to the data and less
sensitive to the shape of the cluster.

In Figure 3b we see the kNN mode seeking algorithm run on the same data set as in
Figure 1. To enable fair comparison we used k = 20 neighbors, recall that the mean shift
bandwidth was set to the average distance to the 20th neighbor. We see that the kNN
density is a very coarse (not smooth) compared to the kernel density example from Figure 1
and we note that the density contains many local maxima even though the sample is from
a unimodal density. If we increase the neighborhood size to 100, we get a unimodal density
(not shown here).
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(a) Trajectories of the kNN mode seeking al-
gorithm.

(b) kNN density.

Figure 3: kNN mode seeking trajectories with k = 20 on a random normal sample. The trajectories are
shown in random colors to help the reader visually separate them. We note that in this example the kNN
mode seeking algorithm found five modes.

To sum up, the kNN mode seeking algorithm is a fast, but crude version of mean shift
that scales better to high-dimensional data sets. It inherits most of the other benefits of
mean shift, but also the dependence of a critical parameter, in this case the neighborhood
parameter k.

4. Proposed method: Parameter free mode based clustering

In this section we present our proposed method: parameter free mode seeking clustering.
We achieve this using consensus clustering. The core idea of consensus clustering is that
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points that are clustered together repeatedly under different cluster settings (parameters,
initialization or resampling) or algorithms should be similar [45, 46, 47, 48, 35]. In most cases,
consensus clustering consists of a two stage clustering process, which can be summarized as
follows:

1. Run multiple clusterings of the data with different parameters, initializations and/or
random subsets each time. We will call this part the kNN mode seeking ensemble.

2. Combine the results to measure the consensus over all the repeated clusterings.

Another main motivation for introducing consensus clustering, is to acknowledge that there is
no single clustering algorithm which will be appropriate for every data set and that different
algorithms might produce different partitions for the same data set. Even when applying a
single clustering algorithm several times to the same data set with different initial conditions
or parameters, ambiguous results might arise when outputs are compared. This can often
make the interpretation of a clustering result a challenge. Further interesting views can be
found in [4].

We start by presenting how the kNN mode seeking ensemble is built in the next subsection
and then move on to explain how the consensus over the repeated clusterings is calculated.

4.1. kNN mode seeking ensemble

The goal of a clustering ensemble is robustness, diversity and stability, which is achieved
through the natural variation in the data set and the variation of the clustering algorithm
induced by random initialization or stochastic optimization [33, 2].

An issue that comes up when building an ensemble using kNN mode seeking is that once
the critical parameter of a density estimate is set – the kth nearest neighbor for the kNN
density – further operations on the density are deterministic. As one of the key elements
in consensus clustering is randomness in either initialization or parameter selection, see for
example [49], we need to introduce randomness when using mode seeking in a clustering
ensemble.

In this work we have chosen to introduce randomness in both parameter selection and
the data set itself. We have used the following strategies to achieve this:

• Random parameter selection: For each repeated clustering the k nearest neighborhood
parameter is sampled uniformly from K = {k1, k2, · · · , kn}, ki ∈ Z.

• Subsampling: We use different subsets of the data for each run of the kNN mode
seeking algorithm. The subsampling is performed without replacement.

The subsampling procedure is introduced to add diversity and prevent overfitting. This can
also be interpreted as to mimic the random initializations of non-deterministic algorithm
to further enhance the ability to capture structure in the data. As Monti et al. [33] states:
“Perturbations of the original data can be simulated by resampling techniques”. Also, the
variation of the k-parameter captures neighborhoods of different size, such that diversity in
the data and variation in scale is captured when it is run multiple times.

They are not bound to a particular shape – like e.g. k-means, they are geometrically
intuitive and the number of clusters is determined automatically by the algorithm [3].
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4.2. Calculating consensus

To evaluate the consensus of the clustering ensemble, we follow Monti et al. [33] and Fred
and Jain [32, 34]. We calculate a similarity measure across the individual clusterings, which
is averaged to form a similarity matrix. Many methods can be used in the final step. We
use hierarchical clustering [30], further explained below, as it is a well established method
that has shown promising results in ensemble clustering [50].

Given a data setX to be clustered andM repeated clusterings, we calculate the consensus
matrix, C, as :

Cij =
Sij
Iij
, (6)

where Sij is the number of times xi and xj has been assigned to the same cluster. Iij is the
number of times xi and xj are both included in the same random subsets of the data.

The complete consensus matrix can thus be considered a normalized similarity matrix. If
two data points are clustered together in many of the different clustering solutions (closer to
one), they are considered more similar than two data points that are not clustered together
as often (closer to zero). This similarity measure can then be converted to a dissimilarity
matrix and used to obtain a final partitioning/clustering. In previous works hierarchical
clustering with the single linkage criteria has been used [34, 32, 30].

dsl(X, Y ) = min
x∈X,y∈Y

‖x− y‖2. (7)

This is perhaps the most intuitive approach as it can be interpreted as cutting the links
between points that are clustered together less times than a certain threshold. However, it
is well known that the single linkage criteria works best when the cluster structures follows
elongated and nonlinear cluster structures [30], and can result in induced artifact clusters
even if the data does not contain such structures.

We therefore propose to also use another proximity measure used in hierarchical cluster-
ing, average linkage:

dal(X, Y ) =
1

|X| |Y |
∑
x∈X

∑
y∈Y

‖x− y‖2. (8)

Average linkage is more robust and can avoid elongated artifact clusters that can appear in
single linkage. At the same time it requires more computations as the similarity matrix has
to be updated at each level in the hierarchy [51].

Once a cluster hierarchy has been established the final clustering is obtained by selecting
the cluster level that has the longest lifetime, where the lifetime of a cluster is defined as
the absolute difference of the proximity level at which it is created and the proximity level
at which it is merged into a larger cluster [30]. This will automatically return the number
of clusters in the data set.

We summarize the proposed algorithm in Algorithm 1.
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Algorithm 1 Consensus clustering using kNN mode seeking

Input Data set X, range of k-values K, subsampling rate p and number of clustering trials
M .

1: Initialize I and S as 0N×N
2: for each clustering trial do
3: Draw a random k∗ from K.
4: Draw a random sample of size pN , X∗, from X.
5: For each pair of data points xi, xj contained in X∗, Iij ← Iij + 1.
6: Use kNN mode seeking with parameter k∗ to obtain a clustering of X∗.
7: For each pair of data points xi and xj in X∗ that belong to the same cluster, update

S by Sij = Sij + 1.
8: end for
9: Normalize the concensus matrix, C, by dividing elementwise by the counter matrix;
Cij =

Sij

Iij

10: Create a dendrogram using hierarchical clustering.
11: Obtain the final clustering by selecting the cluster configuration with the longest lifetime.
Output Clustering C of X.

Synthetic data sets in R2 Real data

Noisy circles MNIST (images)
Scale COIL-20 (images)

Banana ball Classic 3 (text)
EHR data (text)

Table 1: Summary of data sets used in the experiments.

5. Results and discussion

In this section we present numerical experiments on both real and synthetic data sets.
The synthetic point sets are included to illustrate that the clustering algorithm is able
to handle general issues of unsupervised learning such as nonlinearity, difference in scale,
clusters that are close in proximity and sensitivity to outliers. Also, these data sets enables
us to visually confirm if the clustering results are intuitive or not.

The real data sets are the MNIST handwritten digit images, the Classic 3 collection of
online abstracts, the COIL-20 data set in addition to a data set consisting of electronic health
records (EHR) for patients at the University Hospital of Northern Norway. A summary of
the data sets is presented in Table 1

The health-care data (Section 5.8) consists of free text and we do not have ground truth
available for validation purposes. We therefore analyze it qualitatively using wordclouds and
a visualization algorithm.
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5.1. Experimental setup

To evaluate clustering results, we have used the adjusted rand index (ARI) [52]. This
is a standard way of measuring the perfomance of a clustering algorithm by measuring the
accuracy of the clustering result compared to a priori ground truth and adjusting for the
probability of clustering by chance.

We start with presenting clustering performance in the next section and then proceed
to analyze the proposed algorithm in terms of speed. The focus of our contribution is to
enhance clustering by mode seeking, therefore we compare the proposed method to standard
mean shift and a single run of kNN mode seeking.

The main focus of this paper is to add robustness to the concept of clustering by mode
seeking. We have therefore chosen to compare the proposed algorithm with standard mean
shift and a single run of kNN mode seeking. In addition to this we have included several other
experiments, both to ensure a proper comparison with modern state-of-the-art ensemble
clustering methods as well as emphasising the strength of adding the ensemble In Section 5.9
we have compared our method to spectral ensemble clustering and the Bayesian cluster
ensemble. These are methods based on the same consensus matrix strategy, but the last
clustering stage is different. Section 5.10 compares our algorithm to a single run of mean
shift and kNN mode seeking followed by a stage of hierarchical clustering.

Finally, for completeness we have in Appendix A compared the performance of our
algorithm with the original algorithm of Fred and Jain [50]. The mean shift bandwidth
parameter, σ2, is selected as the mean distance to the 10th, 50th and 100th nearest neighbor.
In kNN mode seeking we use neighborhood parameter k = 10, 50, 100. These choices will
represent a wide range of parameter selections and reflect the overall performance of the
algorithms.

Our experience is that the proposed algorithm works for a wide range of parameters.
However, for all experiments we used the same parameters, inspired by and extended from
the previous work [1], where we used a fixed range of neighborhood parameters to capture
cluster structures on different number of scales. This showed promising results, and in this
work we use a slightly modified range when sampling the k parameters used in the proposed
algorithm:

• Neighborhood parameter k sampled uniformly from K = {5, 6, 7, 8, 9, 10}.

• Subsampling rate without replacement p = 80%.

• Number of iterations (repeated clusterings) M = 300.

In the experiments performed on low-dimensional data sets we observed that average
linkage did not give clear dendrograms with respect to lifetime and the correct number of
clusters. This is most likely a combination of the chaining problem in single linkage, see
e.g. [30], and the fact that in higher dimensions distance measures are less robust, leading to
the choice of merging clusters based on the closest data points unstable. Further evaluation
of single linkage for high dimensional data is deferred to future research. Because of this
observation we chose to use single linkage in all examples where the dimensionality is lower
than 5, and average linkage in the examples with higher dimensionality.
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Figure 4: Noisy circles experiment. (a) Consensus clustering using kNN mode seeking. (b) kNN mode
seeking algorithm with k = 10. (c) kNN mode seeking algorithm with k = 100. (d) Mean shift with
bandwidth equal to the mean distance to the 10th NN. (e) Mean shift with bandwidth equal to the mean
distance to the 100th NN.

5.2. Toy data: Noisy circles

To illustrate the ability of the algorithm to capture nonlinear structure at different scales
using the suggested default parameters, we test it on the ‘noisy circles’ data set4. We
compare the result of using Algorithm 1 with regular mean shift and two instances of kNN
mode seeking. Visual results comparing with the highest and lowest parameter selections for
mean shift and kNN mode seeking are shown in Figure 4. It is evident that the pure mode
seeking algorithms can not handle the nonlinearities represented by the two noisy circles.
They instead form a range of subclusters that represents local variation, but not the global
clustering structure.

Comment: Consider the following: If the data are distributed uniformly along the circles
with low variance and zero mean Gaussian noise we will by Definition 1 have a connected
mode along each circle. In practice, with unevenly sampled points along the circles, due to
the Gaussian noise, we will get local modes and it will thus be impossible for a pure mode
seeking algorithm to capture the global cluster structure.

The kNN mode seeking consensus clustering algorithm gives a correct clustering result.
In Figure 5 the dendrogram is shown and we clearly see that there are two clusters according
to the longest lifetime criteria.

5.3. Toy data: Scale experiment

Cluster structures of varying scale is often a problem for clustering algorithms. We test
our algorithm on a toy data set consisting of a combination of linear and nonlinear clusters
to illustrate its capability in such situations. Figure 6 shows the results on the scale data set
for the proposed algorithm, kNN mode seeking with k = 50 and mean shift with σ2 equal
to the average distance to the 100th nearest neighbor. Table 2 shows the ARI score for all
the bandwidth selectors. kNN mode seeking finds the correct number of modes at k = 50,
but the ARI score reveals that some nonlinearities are not captured. Mean shift cannot find
the correct number of clusters using any of the selected bandwidth rules, but achieves the
highest ARI with 21 clusters. The proposed algorithm achieves a correct clustering result.

4http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html.
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Figure 5: Dendrogram for the noisy circles experiment using the proposed algorithm.
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Figure 6: Toy data experiment with clusters of different shape, scale and structure. (a) Single linkage
dendrogram. (b) Average linkage dendrogram. (c) Proposed method, using the single linkage criteria. (d)
kNN mode seeking with k = 50. (e) Mean shift with kernel bandwidth equal to average distance to 100th
NN.
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Method k/σ2 # clusters ARI

ECkNN−MS – 9 1

ECMS – 9 1

kNN-MS
10 28 0.549
50 9 0.768
100 4 0.376

MS
1.58 102 0.612
4.02 21 0.806
8.96 7 0.688

Table 2: Clustering results, measured by adjusted rand index, on the 9 class toy data set. ECkNN−MS refers
to the proposed method, kNN-MSto kNN mode seeking and MSto mean shift.

5.4. Toy data: Banana ball

In the final toy example we mix two nonlinear “banana shaped” clusters with a Gaussian
blob, and keep the distance between the clusters low. This data set represents challenges
both due to the nonlinear structure and different scales across shapes. Also, all three shapes
are set very close to each other, which makes it a hard clustering problem due to the fact
that distances within clusters are, for some data points, larger than distances across clusters.

In this example, we compare the proposed algorithm to kNN mode seeking, mean shift
tuned to return the correct number of clusters, as well as the kNN mode seeking with a low
number of neighbors. This is to further illustrate the robustness of the proposed framework
compared to the sensitivity of the pure mode seeking algorithms to bandwidth parameter
selection. The results are shown in Figure 7. From the the subfigures of Figure 7 we again
see that the pure mode seeking algorithms cannot correctly cluster the nonlinear shapes.
The mean shift algorithm seems to perform better as the Gaussian blob is cleanly separated
from the rest, but the nonlinear structures are not correctly clustered. In Figure 7c we see
that the proposed algorithm correctly clusters all three classes except a few points. The
dendrogram is shown in Figure 8 and we see that the lifetime criteria gives three clusters.
This results in an ARI score of 0.9974.

In Figure 7d a neighborhood parameter of k = 15 was used as an example and we see
that the kNN mode seeking captures many local structures within each cluster. Figure 9
shows a 3D plot of the corresponding estimated kNN density (k = 15). This figure contains
an important observation; the global cluster structures are represented by elevated density
regions, but at the same time they are completely dominated by local maxima that will
clearly upset the kNN mode seeking result. We see that the proposed algorithm is able to
capture the elevated regions and obtain a coherent clustering result despite the problematic
local maxima.

To summarize the experiments performed on the synthetic data sets we see that the
proposed algorithm with the default parameters is able to capture global cluster structures
containing local maxima as well as nonlinear shapes and clusters that are close in proxim-
ity. Other mode seeking algorithms struggle with these issues, especially when it comes to
capturing global cluster structure and clusters that are close in proximity.
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Figure 7: Banana ball experiment. (a) kNN mode seeking with k = 120. This selection of k returns three
clusters. (b) Mean shift with σ = 1.0, which returns three clusters. (c) Results of the proposed algorithm.
(d) kNN mode seeking with k = 15.
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Figure 8: Dendrogram for the banana ball experiments using the proposed algorithm. We see that cutting
the dengrogram based on the longest lasting cluster configuration clearly gives three clusters, which is the
correct choice.

5.5. MNIST digit images

We evaluate the proposed clustering algorithm on the MNIST handwritten digits [53].
We used the training data consisting of 10000 digits (approximately 1000 of each) with
vectorized pixel values as features. No further preprocessing or feature extraction was done
and the previously suggested default parameters was used. Table 3 shows the results of the
proposed method, kNN mode seeking and mean shift with the same bandwidth selectors as
previously used. The average linkage dendrogram is shown in Figure 10 where we see that
the longest lifetime gives 10 clusters which is the correct choice. As a further validity check
we run the k-means algorithm, which is perhaps the most used clustering algorithm, with 10
clusters [30] as input. The k-means clustering results in an ARI of .3367, a clear indicator
that the MNIST digits can not be described by spherical clusters that are linearly separable.

As seen, our proposed algorithm outperforms the other mode seeking algorithms as well
as k-means without parameter tuning and returns the correct number of clusters when using
the average linkage dendrogram.

5.6. Coil-20 data set

We run our algorithm on the Coil-20 data set [54] with default parameters and compare
with kNN mode seeking and mean shift. It is a data set consisting of images of 20 different
objects taken at several different angles, resulting in highly nonlinear structure within each
image. The dimensionality is 16384, so the high-dimensional performance of the algorithm is
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Figure 9: 3D plot of the kNN density estimate with k = 15 for the banana ball density. The data set is
shown on the XY axis(the two horizontal axes), and the a surface plot of the density is on the Z axis(the
vertical axis)

Method k/σ2 # clusters ARI

ECkNN−MS – – 0.5850

ECMS – – 0.00002

kNN-MS
10 112 0.1795
50 18 0.3584
100 9 0.2424

MS
10th 1558 0.2437
50th 383 0.0435
100th 160 0.0392

Table 3: Clustering results, as measured by adjusted rand index, on the MNIST data set. The σ2 parameter
is set as the average distance to the given neighbor.
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Figure 10: Dendrogram for the full MNIST 10000 digits.

d ECkNN−MS kNN-MS MS

500 .5487 .5644 .5124
16384 .5730 ( 31s) .3440 ( 3s) .5057 ( 8823s)

Table 4: Clustering results, measured by adjusted rand index, on the COIL-20 data set. The computation
times for the full dimensional data set is included in parentheses.

crucial. As the concepts of nearest neighbors and average distances breaks down in such high
dimensionality, we perform a parameter sweep over k = 5 : 100 for the kNN mode seeking
and 100 values chosen linearly in the interval between the largest and smallest pairwise
distances of the data for the mean shift algorithm. To illustrate the effectiveness of our
proposed algorithm in higher dimensionality we run the experiment on both the full version
of the COIL-20 data set as well as a version where the dimensionality has been reduced to
500 using principal component analysis. The results are shown in Table 4. Our method has
the highest ARI and it works in the full dimensional space. We notice that the results of
the mean shift algorithm is comparable to our algorithm, but when the time factor is taken
into account the benefits of the proposed method is quite clear. Mean shift with the kernel
bandwidth that gives the highest ARI score for the full dimensional results takes about
8823 seconds to run, while the proposed algorithm runs in approximately 31 seconds5. The
kNN mode seeking algorithm runs in approximately 3 seconds in the full dimensional case,
which is by far the fastest, but the low ARI score shows that the increase in speed results
in reduced accuracy.

5This renders a mean shift based ensemble impossible to use in practice.
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Method k/σ2 # clusters ARI

ECkNN−MS – 3 0.9506

ECMS – 3 0.0003

kNN-MS
10 76 0.1167
50 7 0.4050
100 6 0.3117

MS
1.32 1 0
1 74 0.0048
0.8 3848 0.00001

Table 5: Clustering results, measured by adjusted rand index, on the classic 3 data set.

5.7. Classic 3 data set

We evaluate our algorithm on a data set involving text, the Classic 3 data set6. It
is a collection of abstracts from three online repositories of different journals [55]. We
preprocess the data set using a weighted term frequency - inverse document frequency (TF-
IDF) scheme [56]. The features are normalized to one and we use the suggested default
parameters. The average linkage dendrogram, not shown here, gives three clusters based on
the lifetime criteria. Results are summarized in Table 5. For the mean shift algorithm all
the suggested bandwidth estimators returned a single cluster, which is a clear indicator of
oversmoothing. We tried smaller bandwidths, but the results deteriorated quickly, giving 74
and 3848 clusters which are clearly not meaningful.

5.8. Case study: Patient stratification

We conclude the experiments by including a case study with real data where the proposed
clustering method is used. The case study aims to use written text to identify interesting
sub-populations related to mental well-being in a cohort consisting of patients that have
undergone major surgery. The written text is represented by nurses notes from the patients
electronic health record (EHR) in a period of 20 days after the surgery. We extracted EHRs
for 1138 patients that had undergone a major surgery from the department of gastrointestinal
surgery at the University Hospital of North-Norway [57]. The final data set consists of the
top 15 principal components of the term frequency - inverse document frequency [58] for
each patient7.

We applied the proposed clustering algorithm using the default parameters presented
earlier and based on the dendrogram, shown in Figure 13a, the number of clusters was
found to be 5 based on the longest cluster lifetime. As we have no labelled ground truth
for the patient data we evaluate the results qualitatively using visualization with t-SNE [59]
and wordclouds [60].

6https://sites.google.com/site/fawadsyed/datasets
7Each patient has a collection of documents that are concatenated together to form one string of text for

each patient.
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Figure 11: Wordclouds that illustrate the most frequent features (words) in the 5 clusters automatically
found by the clustering algorithm. The figure also illustrates the distances between the cluster means.
Number of patients in each cluster: bottom left (cluster 1): 684, upper left (2): 248, center (4): 140, upper
right (5): 32, bottom right (3): 34.

First of all we note that the clusters vary a lot in size, from 32 to 684 patients. Table 6
provides a qualitative summary of the clustering results. In Figure 11 we have plotted word-
clouds for each individual cluster in order to illustrate the most common words and overall
theme of each cluster. The figure also illustrates the (approximate) distances between the
cluster means (Euclidean distances on PCA features). Cluster 1, which by far is the largest
cluster, seems to contain “ordinary” patients with normal, positive outcomes. Frequent
words/phrases are good mood, positive, awake, nothing to report, oriented, clear. Cluster 2
also contains seemingly normal patients, but interpreting the common words suggests that
these patients are more anxious and worried. The, by far, most frequent word is anxious.
The two smallest clusters (cluster 3 and 5) contain specific patient cohorts, in cluster 3
words like confused, unclear, not oriented dominate, whereas in cluster 5 the theme appears
to be sedation and related drugs. Frequent words are maas (motor activity assessment score,
used to measure pain), fentanyl, propofol, midazolam (sedation drugs). Cluster 4 is placed
between the normal cluster (cluster 1) and the cluster with confused patients (cluster 3).
The words confused, unclear and not oriented are quite frequent here, but they cannot be
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Figure 12: EHR data set: Dimensionality reduced to two using t-SNE. The labels from clustering with the
proposed algorithm shown in different colors and symbols.

said to dominate. The most frequent words are related to speech and communication.
To further analyze the results the clustered data points are visualized in two dimensions

using t-SNE, [59], shown in Figure 12. The color coding and different symbols indicates
cluster labels. We see that the cluster labels represent compact and visually intuitive clusters
for all but the blue cluster (cluster 2). The green, brown and yellow clusters (cluster 3, 4
and 5) forms a group that is separated from the rest and has similar themes when the word
clouds are inspected.

Upon reviewing the wordclouds and the low dimensional visualization results we find the
results both intuitive and promising

When we run ordinary mean shift on the data set we get an unrealistically high number
of clusters (> 150) using the rule-of-thumb bandwidths. We manually tuned the bandwidth
such that the algorithms outputs 5 clusters. The result is visualized in Figure 13b. Mean
shift gives in this case one large cluster and four small clusters with one or two members
each, a result that is very hard to interpret further.

The result obtained by running a kNN mode seeking with k = 10 is shown in Figure 13d.
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Figure 13: Patient stratification case study. (a) Average linkage dendrogram. (b) Mean shift. (c) kNN
mode seeking with k = 8. (d) knn mode seeking with k = 10.

# of patients Keywords and themes

• 684 Good mood and nothing to report
× 248 Worried
◦ 34 Not oriented and confused
��� 140 Adequate and communicates
♦♦♦ 32 Sedation and sedation drugs

Table 6: Summary of clustering results on the EHR data set. The table shows the number of patients that
belong to each cluster, the marker and color that represents the cluster in the t-SNE maps and certain
keywords that describe the different clusters.
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Dataset \Clustering method K means kNN mode seeking Mean shift ECkNN−MS

Banana ball 0.9896 0.9922 0.9948 0.9974

Scale 1 0.5871 1 1

Classic 3 0.9825 0.9324 - 0.9506

COIL-20 0.6596 0.5346 0.2635 0.5730

MNIST 0.3756 0.5847 - 0.5850

Table 7: Spectral ensemble clustering results using different clustering methods for building the ensemble.

k = 50 and k = 100 results in a single large cluster. Figure 13c shows the output from kNN
mode seeking using k = 8. We see that reducing the neighborhood size from 10 to 8 has a
severe impact on the final result. This is included to illustrate that the kNN mode seeking
algorithm is very sensitive to the parameter choice, whereas the proposed method is much
more robust. It can also serve as a possible explanation to why combining several kNN mode
seeking runs gives better results. Comparing the two results we see that they capture very
different structures, smaller clusters at k = 8 and slightly larger structures at k = 10. If we
then compare with the result of the proposed algorithm where the kNN ensemble has been
used, we can see cluster structures that are evident in both the single run results.

5.9. Comparison with state of the art algorithms

In this section we compare the proposed algorithm to two state-of-the-art consensus
clustering algorithm, Spectral Ensemble Clustering (SEC)by Liu et al. [61] and Bayesian
Cluster Ensembles (BCE) by Wang et al. [62]. These algorithms are similar in construction
to our method as they are based on the same co-association stage, but in the final clustering
they differ.

SEC is simply a k-means based consensus matrix, constructed in the same way as done
in this work, followed by a stage of spectral clustering. BCE adds a Bayesian twist to
the consensus stage by assuming that the initial clusterings is a sample from a Dirichlet
distribution and propose variational methods to perform the final clustering. Further details
are beyond the scope of this paper, furher details can be found in [62] and [61].

Both algorithm suggest initial parameters, which were used exclusively in the experi-
ments. Also, we note that in both methods, the final number of clusters returned by the
algorithm has to be given as input.

We ran both algorithms on all the datasets except the noisy circles and the EHR data.
Results are shown in Table 7 and Table 8

5.10. Separating the effect of the ensemble from the effect of the hierarchical clustering after
mode seeking

To illustrate that the consensus stage/clustering ensemble is in fact the key ingredient
for adding robustness, we compare to the alternative setup of a single run of mode seeking
followed by hierarchical clustering.
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Dataset Bayesian consensus clustering

Banana ball .4074

Scale .7293

Classic 3 .9086

COIL-20 5807

MNIST .3896

Table 8: Bayesian cluster ensemble

Dataset kNN mode seeking Mean shift Linkage method

Banana ball
0.9974 0.6829 (Single link)
0.5248 0.4428 (Average link)

Scale
0.8963 0.8374 (Single link)
0.8642 0.1248 (Average link)

Classic 3
0.5524 - (Single link)
0.5102 - (Average link)

COIL-20
0.5524 0.2023 (Single link)
0.5102 0.5117 (Average link)

MNIST
0.3818 0.4556 (Single link)
0.2135 0.0333 (Average link)

Table 9: Clustering results (ARI) obtained using single runs of kNN mode seeking and mean shift combined
with hierarchical clustering.

We test both kNN mode seeking and mean shift followed by both average link and single
link on all three toy datasets, the MNIST digits and the COIL-20 images. Longest lifetime
is still used as the final clustering criteria. For simplicity and to get the best possible result
from the single stage algorithms, we sweep over a range of σ2 and k values and select the
ones with the best ARI compared to the ground truth. Results are shown in Table 9. In
most cases the ARI is lower compared to the proposed algorithm. We also note that the
pattern of single link vs average link in high and low dimensions is not as prevalent here.

5.11. Running times: kNN mode seeking vs mean shift

In this section we include two experiments that clearly illustrates the benefits of the
kNN mode seeking algorithm in terms of running times. The experiments are run using an
Ubuntu 14.04 64-bit system with 64 GB RAM and an Intel Xeon E5-2630 v3 processor. We
run mean shift and kNN mode seeking on the MNIST digits data set with the suggested
bandwidth selectors and measure the time taken. The algorithms are tested on both the full
dimensional version of the data (784 dimensions) and a version reduced to 500 dimensions
using principal component analysis. The results are presented in Table 11 and we see that
the kNN mode seeking algorithm is much faster compared to mean shift. In the suggested
consensus framework this is even more important since the algorithm will be repeated several
times. We also note that reducing the dimensionality improves the mean shift algorithm in
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Method d
k

10 50 100

MS
784 631.5s 345.4s 202.8s
500 446.5s 218.2s 118.9s
10 23.6s 11.3s 7.9s

kNN-MS
784 3.6s 3.0s 3.0s
500 3.7s 3.5s 3.7s
10 4.0s 3.9s 3.9s

Table 10: Time taken (in seconds) for clustering the MNIST data set using kNN mode seeking and mean
shift. The following bandwidth selectors were used; σ2 equal to kth average neighbor for mean shift and kth
nearest neighbor for kNN mode seeking. The d denotes input dimension, reduced using PCA accordingly.

Method d
k

10 50 100

ECkNN−MS – 642.2s – –
ECMS – 46121s – –

MS
784 152.8s 82.7s 45.2s
500 103.6s 59.7s 36.9s
10 10.2s 5.9s 4.04s

kNN-MS
784 3.0s 3.0s 3.1s
500 2.6s 2.7s 2.8s
10 2.2s 2.1s 2.1s

Table 11: Time taken (in seconds) for clustering the MNIST data set using kNN mode seeking and mean
shift. The proposed bandwidth selectors were used; σ2 equal to kth average neighbor for mean shift and kth
nearest neighbor for kNN mode seeking. The d denotes input dimension, which was reduced using PCA.
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Figure 14: (a) kNN mode seeking on a sample of varying dimensionality from a standard normal distribution.
Three different neighborhood sizes was used, 10th, 50th and 100th neighbor. (b) Mean shift on a sample of
varying dimensionality from a standard normal distribution. Three different kernel bandwidths were used,
average distance to 10th, 50th and 100th neighbor.

terms of speed, but it is still several orders slower compared to kNN mode seeking. The
kNN mode seeking actually takes a bit longer time in lower dimensions due to more clusters
found by the algorithm, but when comparing the time taken by the full dimensional to the
lower dimensional results we see that this factor can be disregarded in practice.

We run both mean shift and kNN mode seeking with the proposed bandwidth selectors
on samples from a standard normal distribution with increasing dimension from 2 to 1000
for mean shift and 2 to 5000 for kNN mode seeking. The resulting computation times are
shown in Figure 14a and Figure 14b. Comparing to the results on the MNIST, the same
trend is evident here: mean shift is increasing in time as a function of dimensionality while
kNN mode seeking is close to constant in time as a function of dimensionality.

6. Summary and conclusion

In this paper we have shown that introducing ensemble strategies into mode based clus-
tering can significantly increase the robustness towards parameter selection and high dimen-
sional data. We have suggested default parameters and shown that the proposed algorithm
can be used with these to perform exploratory data analysis which shows promising results
for both text and image data. The parameters were tested and kept unchanged through-
out all experiments, a considerable indicator that the proposed algorithm is robust. In all
experiments the lifetime criteria was used, and gave the correct number of clusters in most
cases.

We conclude with a list of interesting directions of future research:

• For large scale tasks sparse hierarchical clustering could be used [63, 64].
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• The recent robust single linkage by Chaudhuri et al. [65] could replace the hierarchical
stage in this paper.

• Spectral clustering techniques could be used in the final step [66, 1, 67]

• Quick Shift or medioid shift could replace kNN mode seeking [68, 69].

• Different ensemble combination strategies should also be investigated [35, 70].
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Appendix A. Clustering by evidence accumulation

This paper represents a contribution in the framework of clustering by mode seeking.
Still, we have to acknowledge the perhaps most known method for ensemble or consensus
clustering, the work of Fred and Jain [50] where k-means is used repeatedly with different
initializations and random selections of the number of clusters to build a clustering ensemble.
As in our method, single link and average link is used to calculate the consensus over the
repeated clusterings.

Comparing with our proposed method, Fred and Jain’s approach will in several cases
give relatively similar results in practice, but due to the benefits of the kNN mode seeking
algorithm it is in all cases much faster. To give a concrete example of this we run both k-
means and kNN mode seeking on the MNIST data set, with varying number of clusters for
k-means and varying number of nearest neighbors for our method8. The results are shown
in Figure A.15 and the benefits of the kNN mode seeking algorithm becomes quite clear.
K-means gets slower as the number of clusters increase, while kNN mode seeking stays close
to constant speed regardless of the number of clusters. Finally, we compare our proposed
algorithm with the k-means based algorithms of Fred and Jain on a selection of datasets
from the UCI repository [71]. We report both clustering results in terms of adjusted rand
index as well as the time taken for the clustering in Table A.12.

Reviewing the results shows us that the performance of our proposed algorithm is in
most cases equal or better than both the single and average link version of the algorithm of
Fred and Jain. In terms of speed the benefits of our algorithm are again obvious.

8We note that the number of clusters in kNN mode seeking is roughly inversely proportional to the
number of nearest neighbors, larger neighborhoods yields lower number of clusters and vice versa
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Figure A.15: Running times of kNN mode seeking vs k-means. The horizontal axis shows the number of
clusters for k-means and the number of nearest neighbors for kNN mode seeking.

data set ECkNN−MS EAC-SL EAC-AL

cancer .8070 ( 29s) .0026 ( 114s) .8018 ( 114s)
iris .7592 ( .8s) .5659 ( 35.5s) .5659 ( 35.9s)
wine .3749 ( 1.3s) .3007 ( 45.3s) .3627 ( 50.6s)
crab .5096 ( 1.4s) - ( 82s) .5631 ( 84.8s)

Table A.12: Clustering and running times results comparing ECkNN−MS and the methods of Fred and Jain.
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