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Abstract Greenland’s bed topography is a primary control on ice flow, grounding line migration,
calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm
Atlantic water (AW) that rapidly melts and undercuts Greenland’s marine-terminating glaciers. Here we
present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice
thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/
bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding
major improvements over previous data sets, particularly in the marine-terminating sectors of northwest
and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet
is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving
front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers
with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future
oceanic forcing.

1. Introduction

Subglacial bed topography and seafloor bathymetry provide fundamental controls on ice dynamics and
ocean circulation along Greenland’s periphery. The presence of sills in some fjords, for example, can block
warm (>2.5∘C) subsurface Atlantic water (AW) from interacting with glacier calving fronts, whereas other
fjords are too shallow to host AW, or some glacier fronts are grounded above AW levels (e.g., Rignot et al., 2012;
Straneo et al., 2010). AW is typically found deeper than 200–300 m below sea level (e.g., Holland et al., 2008;
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Rignot et al., 2016). When AW reaches glacier termini, calving fronts are exposed to strong ocean-induced
melt, which may be enhanced by subglacial discharge (Bendtsen et al., 2015; Xu et al., 2013). This melt can lead
to glacier undercutting, enhanced calving, ice front retreat, flow acceleration, and glacier thinning (Enderlin
et al., 2013; Morlighem, Bondizo, et al., 2016; Straneo and Heimbach, 2013). It is therefore critical to determine
the locations that are currently exposed to AW and that may be exposed to AW in the future, that is, how far
these glaciers need to retreat before the margin reaches higher ground (<200–300 m depth) or becomes land
terminating (bed >0 m).

Similarly, subglacial bumps and ridges control the retreat rate of Greenland glaciers and provide temporary
stabilizing shoals for grounding lines and ice fronts (e.g., Durand et al., 2011; Morlighem, Bondizo, et al., 2016).
It is essential to map these features in sufficient detail, at a spatial resolution compatible with the needs of
ocean and ice sheet numerical models (<500 m), to improve both our understanding of ice-ocean interactions
and the predictability of ice sheet evolution in a changing climate using these models (e.g., Aschwanden et al.,
2016; Durand et al., 2011; Seroussi et al., 2011).

Following pioneering efforts involving gravity measurements in the 1950s, since the early 1970s bed topogra-
phy and ice thickness data have been collected primarily by airborne radar sounders that detect the ice/bed
interface at nadir, directly beneath the aircraft (Dowdeswell & Evans, 2004; Evans & Robin, 1966). Over the past
decade, NASA’s Operation IceBridge (OIB) has tripled the amount of ice thickness data (horizontal resolution
between 30 and 60 m and vertical resolution ∼10 m), by flying more than 580,000 km of flight tracks over
Greenland (Rodriguez-Morales et al., 2014). These data, combined with other data and a mass conservation
approach, have transformed our knowledge of the bed topography of the Greenland ice sheet (Morlighem
et al., 2014a).

Despite this wealth of data, bed topography remains challenging to map along the coastal margins because
radar-derived ice thickness data of sufficient quality are lacking in the vicinity of calving fronts, and measure-
ments of fjord bathymetry have often been scarce to nonexistent until recently. Glacier termini are challenging
to measure by radar for three reasons: (1) the high density of surface crevasses that reflect off-nadir radar
signal (surface clutter); (2) the ice is warmer, which potentially prevents the radar signal from reaching the bed
due to the presence of water pockets; and (3) the deep valleys make the interpretation of radar echograms
difficult due to sidewall reflectors (Holt et al., 2006; Jezek et al., 2013). In many cases, no radar-derived ice
thickness measurement is available within 50 km of glacier termini, despite being critical regions for ice sheet
models. To map the bed beneath the ice, we have used the mass conservation approach (MC, Morlighem et al.,
2011). The accuracy of this mapping method degrades along flow away from radar lines (Morlighem, Rignot,
et al., 2016), as the ice moves away from ice thickness constraints. To control the optimization, it is necessary
to obtain bathymetry data along the ice fronts (Morlighem, Rignot, et al., 2016).

Here we employ new ocean bathymetry data from 30 different sources, in combination with the mass con-
servation method to produce a detailed, seamless, and comprehensive map of the bed topography and fjord
bathymetry around the entire periphery of Greenland (within 50 km of the coast) at a horizontal spatial reso-
lution of up to 150 m. In poorly charted fjords, we rely on synthetic fjord bathymetries (Williams et al., 2017).
We merge the final map with RTopo-2/IBCAO (Schaffer et al., 2016) at a distance of 50 km away from the
coast. We first describe the methodology employed to construct this topographic product, then compare
the results with recent bed topography maps from Bamber et al. (2013) and RTopo-2 (Schaffer et al., 2016),
and finally discuss the implications of the results for understanding and modeling the future of Greenland’s
marine-terminating glaciers.

2. Data and Method

We compiled radar-derived ice thickness measurements collected between 1993 and 2016 from the following
sources (Figure 1a): NASA’s Operation IceBridge, with data processed by the Center for Remote Sensing of Ice
Sheets (CReSIS, Leuschen et al., 2010 updated 2016), which is the largest data set with more than 580,000 km of
ice thickness measurements; the High CApability Radar Sounder (HiCARS, Peters et al., 2005, 2007), operated
by the University of Texas, Institute for Geophysics; the Pathfinder Advanced Radar Ice Sounder (PARIS, Raney,
2010); Alfred Wegener Institute (AWI, Nixdorf et al., 1999); the University of Denmark (DTU, Lindbäck et al.,
2014; Thomsen et al., 1997); and Uppsala University (UU, Lindbäck et al., 2014), collected in the vicinity of
Russell Gletscher and Nioghalvfjerdsfjorden.
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Figure 1. (a) Data coverage, including ice-penetrating radar measurements (Center for Remote Sensing of Ice Sheets, High CApability Radar Sounder, University
of Denmark, Uppsala University, Pathfinder Advanced Radar Ice Sounder, Alfred Wegener Institute) and ocean bathymetry (from single-beam data in dark blue),
and (b) BedMachine v3 bed topography sources, which include mass conservation (MC), kriging, Greenland Ice Mapping Project (GIMP) (Howat et al., 2014),
RTopo-2/IBCAO v3 (Jakobsson et al., 2012; Schaffer et al., 2016), and bathymetry data from multibeam and gravity inversions acquired after the compilation of
IBCAO v3.

For the ocean bathymetry (Figure 1a), we compiled multibeam echo sounding data (MBES, e.g., Jakobsson
et al., 2016) from the following sources: NASA’s Oceans Melting Greenland (OMG, OMG Mission, 2016) along
the coast of west and southeast Greenland; Slabon et al. (2016) along the Northwest coast; Weinrebe et al.
(2009) in Torssukataq and Uummannaq Fjords, for which we also included data from Ó Cofaigh et al. (2013),
Dowdeswell et al. (2014), Rignot et al. (2015), Fried et al. (2015), and Rignot et al. (2016); in Melville bay (Freire
et al., 2015); and data from the Petermann 2015 Expedition where the Petermann Fjord and the adjacent Hall
Basin in Nares Strait were completely mapped with the Swedish icebreaker Oden (Mix et al., 2015). In the
region of Disko Bay, we relied on single-beam and conductivity-temperature-depth data from Schumann et al.
(2012), and data from Holland et al. (2008) and Straneo et al. (2012) in Illulisat Icefjord. Bathymetry data were
also available in the vicinity of Kangerdlussuaq (Sutherland et al., 2014), Nordvestfjord (Dowdeswell et al.,
2016), Lille Gletscher (Chauché et al., 2014), Sermilik fjord (Straneo et al., 2016), Godthåbsfjord (Motyka et al.,
2017), Sarqardleq fjord (Stevens et al., 2016), Timmiarmiut Fjord, Heimdal Glacier, and Skjoldungen Fjord
(Kjeldsen et al., 2017); near the calving front of Bowdoin Glacier (Sugiyama et al., 2015); in Godthåbsfjord
(S. Rysgaard, personal communication, 2017), in Young Sound fjord (Rysgaard et al., 2003); near Flade Isblink
Ice Cap (Bendtsen et al., 2017); single-beam data in northwest Greenland from the Ocean Research Project
(ORP); and on the continental shelf along the southeast coast (Sutherland & Pickart, 2008). We also added vast
amounts of single-beam data from the Olex seabed mapping system (www.olex.no) as well as crowd-sourced
data from fishing and recreational vessels (MaxSea). While less reliable than MBES data, these data cover
an extensive area that significantly improved our mapping in many fjords, where other data were lacking.
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In the regions of Zachariae-Isstrøm and Nioghalvfjerdsfjorden, we relied on bathymetry data from Arndt et al.
(2015) and bathymetry derived from gravity inversions (Mouginot et al., 2015). We also relied on gravity inver-
sions downstream of Upernavik and Alison’s ice fronts. In fjords where coverage is sporadic or nonexistent, we
employed the approach proposed by Williams et al. (2017) to construct synthetic yet plausible bathymetry.

To map the subglacial topography of coastal Greenland, we employ a mass conservation approach (MC,
Morlighem et al., 2014a, 2013, 2011), which combines ice thickness measurements from radar, high-resolution
(150 m) satellite radar velocity vector data collected in 2008–2009 from Mouginot et al. (2017), surface mass
balance reconstruction from RACMO 2.3 downscaled to 1 km averaged for the years 1960–1989 (Noël et al.,
2016), and ice thickening/thinning rates from altimetry data differencing between 2003 and 2006 (Khan
et al., 2014). These products are provided at a higher resolution and better accuracy than the ones used in
BedMachine v2 and significantly improved the mapping in southeast Greenland, where we have less radar
data to constrain the calculation. Morlighem et al. (2014a) provide a complete description of the MC method.

For some glaciers, bathymetry measurements are available within a few kilometers of the glacier calving
fronts. These data are used to provide additional constraints to MC in places not well covered with radar data.
We use here the approach described in Morlighem, Rignot, et al. (2016), where bathymetry data are included
in the cost function to be minimized:

 (H) = ∫T

1
2

(
H − Hobs

)2
dT + ∫terminus

1
2
(H − (s − b))2 ds

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

constraint from bathymetry data

+(H) (1)

where H is the modeled ice thickness that satisfies the conservation of mass; Hobs is the measured ice thickness
data measured along flight lines, T ; and  is a regularizing term to avoid unrealistic spurious oscillation in
ice thickness due to overfitting. The second term of equation (1) forces the MC ice thickness to be as close as
possible to the ice front thickness estimated by subtracting the surface elevation, s (Howat et al., 2014), from
the ocean bathymetry, b, at the terminus. For 70% of the glaciers that were remapped using the bathymetry
constraint, we found that the bed estimate from BedMachine v2 (that was not constrained by bathymetry
data) was within 100 m of bathymetry measurements, which was less than our error estimate (Table S1 in the
supporting information).

The regions in blue in Figure 1b show that MC is applied mainly along the coast where ice velocities are higher
than 50 m/yr, which are regions where MC is most reliable (Morlighem et al., 2014b). Since the release of
BedMachine v2, we have increased the surface area mapped with MC by 44%, primarily along the east coast.
We then stitch together all individual MC ice thickness maps. Two adjacent MC maps of ice thickness are
constrained by the same flight lines along their boundaries to ensure a seamless transition between adjacent
maps. We create a gap of ∼ 2 km between the two maps and use a simple interpolation (inverse distance
weighting) in order to create a smooth transition.

Away from the regions of fast flow, we map the ice thickness in the interior of the ice sheet using kriging
(Deutsch & Journel, 1997). Kriging is applied 5 km away from the MC maps, and we include all MC ice thickness
results as additional point measurements to the kriging.

We deduce the subglacial topography by subtracting our ice thickness map from a surface digital elevation
model from the Greenland Ice Mapping Project (GIMP) (Howat et al., 2014), which has a nominal date of 2007.
This bed topography is then combined with all bathymetry data in the fjords and a natural neighbor inter-
polation along the fjords (Figure 1b). In uncharted or poorly charted fjords, we use a synthetic fjord method
(Williams et al., 2017) that enforces a parabolic across-flow profile consistent with the bed depth at glacier
termini and guided by available bathymetry measurements. We merge this map with RTopo-2 (Schaffer et al.,
2016) 50 km away from the coast. RTopo-2 is mostly based on the International Bathymetric Chart of the
Arctic Ocean v3.0 (IBCAO, Jakobsson et al., 2012), except in northeast Greenland where RTopo-2 uses the
bathymetric compilation by Arndt et al. (2015).

The final bed topography map is assembled on a grid with a horizontal resolution of 150 m (using a Polar
Stereographic North projection, with a central meridian of 45∘W and standard parallel of 70∘N), but the true
horizontal resolution of the bed topography depends on the source data used to create the maps in that
region. It is about 1,000 m in regions where kriging, RTopo-2, and gravity inversions are used, 400 m in the
regions mapped with MC, and 150 m for the regions of ice-free land or the regions for which we have MBES
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Figure 2. (a) BedMachine v3 bed topography (m), color coded between −1500 m and +1500 m with respect to mean sea level, with areas below sea level in blue
and (b) regions below sea level (light pink) that are connected to the ocean and maintain a depth below 200 m (dark pink) and that are continuously deeper
than 300 m below sea level (dark red). The thin white line shows the current ice sheet extent.

bathymetry data (Figure 1b), as these data are provided at a higher resolution than our 150 m grid. Figure 2a
shows the final bed topography product, with seamless transitions across glacier calving fronts.

All the data sets used to reconstruct the ice thickness cover the period 2003–2008, except the observed ice
thickness data that cover a longer period: 1993–2016. While many glaciers along the coast have been thin-
ning, the cumulative amount of thinning remains less than the uncertainty in radar-derived ice thickness
measurement (∼50 m) except in coastal regions that experience strong thinning.

3. Results and Discussion

Accounting for scale corrections (due to the polar stereographic projection which is increasingly distorted
with distance from the defined latitude of true scale, 70∘N), this new bed topography yields a total ice volume
of 2.99 ± 0.02 106 km3 (or 2.74 ± 0.02 106 Gt, assuming an ice density of 916.7 kg m−3). The volume above
floatation, which would directly contribute to sea level rise if the Greenland ice sheet were to melt entirely,
is 2.93 ± 0.02 106 km3 (or 2.69 ± 0.02 106 Gt). Assuming that the density of the ice is 916.7 kg m−3, for an
average density of sea water of 1,027 kg m−3, and assuming that 361.8 Gt of ice contributes to 1 mm of global
eustatic sea level rise, this new map suggests that the Greenland ice sheet has a total sea level rise potential
of 7.42 ± 0.05 m, which is 7 cm larger than stated by Stocker et al. (2013).

Figure 3 illustrates some examples of bed mapping across calving fronts, and Figure 4 shows the surface
and bed elevations compared with two recently released products: B2013 (Bamber et al., 2013) and RTopo-2

MORLIGHEM ET AL. BEDMACHINE GREENLAND V3 11,055



Geophysical Research Letters 10.1002/2017GL074954

-2
00

20
0

200

-200

-200

20
0

20
0

0

-2
00

200

200 0

-200200

200

200

20
0

-200

200

-200

0

200

200

200200

-400

-200

-200200

0

0

20
0

0

-200

200

0200

-6
00

-600

-600

-600

0

-600

-200

-400

-800
-400

-400

-800

-4
00

-200

00

0

-4
00

0

0

0

0

200

200

200

0

0

-800

-200

0

0

200

200
0

0

0

0

0

200

a

A

B

Savissuaq Gletscher

Savissuaq W

Savissuaq WWWW

5 km

-600-400

0

0

-2
00

20
0

200

0

0

200

-4
00

-200

-400

-400

-400

-400

-4
00

-400

-400

-200

-400

-600

-600

-6
00

-600

-6
00

-6
00

-2
00

0

0

0

0

0

-200

-200

-800

-200

-200

-200

-200

-200

-200

-2
00

-8
00

-800

-800

0

200

20
0

200

0

0

0

0

0
b

A

B

Hayes Gletscher

south Hayes N

5 km

-4
00

-200

-400

200
-200

-2000

-200

20
0

200

-200

-200-2000
20

0

-400

0

-600
-600 -600

-400

-400

-400

200

0

0

0

0

0

0

0
0

0

0

0

0

0

200
200

200

-2
00

-400

-400

-200

0

0

0

0

20
0

20
0

200 20
0

200 20
0

200

200
20

0

200

c

A

B

Illullip Sermia

5 km

20
0

0

-200

0

20
0

-2
00

0

0

-200 -400

-200

0 200

0

200

0

20
0

0
200

200

-400

-200

0
0

0

-400

-400

-200
-400 200

0

200

-200

-400 -200

-600

0

0

-2
00

-4
00 20

0

200

200 -2000

-200 -4
00

0

200
0

-200-600
0

200

0

200

20
0

-800

0

0

0

0

0

0

0

0
0

0

0

0

-800
-800

-800

-600

-600

-600

-600

-600

-400
-400

-400

-200

200

200

200

200

200

200

200

200

200

200

200

d

A

B

Mogens Heinesen S

Mogens Heinesen N

5 km

-200

200

0

200

-400

-400

-200

-200

-200

0

0

0

0

200

0

0

200

200

200

200

200

200

e

A

B

Heimdal Gletscher

5 km 0

0

-200

-200

-200

-400

-200

200

0
200

0

20
0

20
0

200

200

200

200

200

0

0

0

200

0

0

0 0

0

0

0

0

0

0

0

-200

200

200

200

200

200

200

200

200

20
0

200

200

200

-600
-200

-200

-200

-200

-200

-200

-400

-400
-400

-400f

A

B

Skinfaxe

5 km

-600 -400 -200 0 200 400 600 800

Bed elevation above sea level (m)

1995 201520102005200019901985

year

Figure 3. Bed topography for different sectors of Greenland: (a) the region of Savissuaq Gletscher, (b) Hayes Gletscher, (c) Illullip Sermia, (d) Mogens Heinesen N,
(e) Heimdal Gletscher, and (f ) Skinfaxe. The yellow/red lines indicate the ice front position between 1985 and today from Landsat data, and the white dotted line
shows the profile used in Figure 4. The topography is color coded between −700 m and 800 m, and contours are shown every 200 m from −800 m to 200 m
above sea level. Some glaciers, such as the one 10 km northwest of Heimdal Gletscher, were not mapped using MC.

(Schaffer et al., 2016) along some cross sections. B2013 relies solely on kriging for the bed topography under
the ice sheet and the IBCAO v3 (Jakobsson et al., 2012) for the ocean bathymetry. In a number of fjords,
no bathymetry data were available prior to OMG and B2013 manually lowered the bathymetry from IBCAO
in order to better represent deep fjords. RTopo-2 relied on mass conservation products from BedMachine
v2 (Morlighem et al., 2014a) for grounded ice and IBCAO for the ocean bathymetry in this region. Ice front
positions were derived from Landsat 5, 7, and 8 data.

In the region of Savissuaq Gletscher, in northwest Greenland, the new bathymetry data from OMG reveal
fine-scale (<1 km) details, such as moraines that may originate from the Little Ice Age (Figure 3a) and may
have acted as pinning points as the glacier retreated inland. The topography revealed by OMG is significantly
deeper than in previous mapping (>600 m below sea level) and rises gradually toward the ice margin. In this
region, the bed from BedMachine v2, which is included in RTopo-2 (Figure 4a), showed a misfit with OMG
data of about 100 m. This is one of the places where accounting for bathymetry data significantly improves
the mapping of bed topography upstream. The shape of the bed between BedMachine v2 and v3 did not
change significantly but shifted down by 100 m near the margin. The original offset, which is less than our
error estimate, may be due to several factors such as an underestimated thinning rate or underestimated
accumulation. We observe that the ice front has been retreating over a relatively flat bed (Figure 4a) but is now
entering a region of prograding bed slopes (i.e., the bed rises inland), which we expect will lead to slowing
down of retreat.

In the vicinity of Hayes Gletscher, in northwest Greenland (Figures 3b and 4b), new bathymetry data again
reveal a topography that is significantly different from previous mappings: in the south side of the domain, the
bed remains deep below sea level (< 800 m) and rises to about 200 m below sea level. The ice front of Hayes
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Figure 4. Surface and bed topography along six profiles (see white dotted lines in Figure 3) from this study (solid black) and bed from B2013 (dotted red, Bamber
et al., 2013) and RTopo-2 (dotted yellow, Schaffer et al., 2016). Multibeam bathymetry data (MBES) are shown in blue. The vertical lines show the ice front position
between 1995 and today.

was stabilized by a sill of about 200 m but was dislodged from this sill in 2005 and retreated into a region of
retrograde bed (i.e., the bed deepens inland) (Post, 1975; Weertman, 1974). According to our mapping, the ice
front will retreat another 3 km before the bed becomes prograde again. South Hayes N was also stable on a
sill until 1998 when it started to retreat inland, where the bed is deeper. It is now resting on the deepest part
of the bed, and we expect the ice front to either stabilize at its current position or retreat at a slower pace into
an area of prograde slope.

Illullip Sermia (Figures 3c and 4c) has also been resting on a pronounced sill of about 300 m where it has been
stable since at least 1985, but over the past 5 years, the northern side of the calving front has retreated by
about 2 km inland where the bed is deepest. The asymmetry of the retreat is in agreement with our new bed
mapping and suggests that this glacier will continue to retreat for at least another 5 km, where the bed is
strongly retrograde.

In the three following examples in southeast Greenland (Figures 3d–3f ), we did not have reliable ice thick-
ness measurements to correctly constrain the bed depth in BedMachine v2. Eastern Greenland is on average
∼1,000 m higher than western Greenland, and glaciers have carved their way through the mountain ranges
by glacial erosion over many glacial cycles (Kessler et al., 2008), forming deep, highly entrenched valleys.
The glaciers flowing through these fjords are particularly difficult to sound due to their complex geometry.
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Applying MC in these fjords is therefore challenging since the approach is poorly constrained. Prior to OMG,
very few glaciers in the southeast could be mapped using MC. With new bathymetry measurements at the
calving face of some glaciers of southeast Greenland, we now have the essential constraint at the ice front to
make MC mapping reliable.

In the region of Mogens Heinesen (Figures 3d and 4d), OMG data reveal a deep (800 m below sea level) fjord
that rises rapidly close to calving fronts, which are resting on a prograde slope. All three glaciers have been
retreating over the past two decades, but their rate of retreat seems to be slowing down as the grounding line
migrates to shallower topography.

Heimdal Gletscher and Skinfaxe glacier (Figures 3e, 3f, 4e, and 4f) are sitting on ledges within their fjord, and
their fronts have been stable for the past 10 years. There is evidence that Skinfaxe glacier has been stable at
that position since at least the 1930s (Bjørk et al., 2012), which suggests that significant thinning is required
to dislodge these glaciers from their current position. The glacier bed remains below sea level several tens of
kilometers inland. Similar deep fjords are found to be widespread in southeast Greenland.

These narrow and deep fjords have important implications for the current and future state of the Greenland
ice sheet as they can provide pathways for AW to interact with glacier termini. To investigate the regions
that are in contact with the ocean, we determine locations that are continuously below sea level from the
continental shelf to the ice sheet bed (light pink area in Figure 2b). As glaciers around Greenland retreat, these
regions will remain in contact with the ocean. We also determine the regions that are continuously below a
depth of 200 and 300 m, respectively, and are currently connected to the ocean below these depths (pink and
dark red areas in Figure 2b, respectively). Glaciers that retreat within these regions will potentially remain in
contact with warm AW as they do so. Since submarine bed channels are widespread and extend far inland,
these glaciers will remain vulnerable to ocean warming as they retreat for hundreds of kilometers.

This map suggests that while south and east Greenland are not significantly vulnerable to AW as the bed
topography is mainly above sea level in these regions, west Greenland and major glaciers in northern
Greenland are currently exposed to AW and will remain exposed for tens to hundreds of kilometers as they
retreat inland. Among the 243 glaciers listed in Rignot and Mouginot (2012), we find that 139 of them are
marine terminating (81 in B2013 and 129 in RTopo-2), 28 have pathways to the ocean that remain below 300 m
below sea level (22 in B2013 and 7 in RTopo-2, Table S1), and 67 are exposed to ocean waters that remain
below 200 m below sea level (32 in B2013 and 17 in RTopo-2, Table S1). This new bed shows that between 30
and 100% more glaciers are potentially exposed to AW than suggested by previous mapping, which repre-
sents ∼55% of the ice sheet’s total drainage area (45% in B2013 and 35% in RTopo-2). The Greenland ice sheet
is therefore more exposed to ocean warming than understood previously.

Although northwest Greenland is particularly well surveyed in terms of ice thickness measurements, east
Greenland remains underconstrained in many places, and the coast between Storstrømmen and north of the
Geikie Plateau must be further surveyed. These improvements would allow us to run MC in some regions
where there are not enough measurements to properly constrain the model. Many lines have been flown
south of the Geikie Plateau along the coast, but the bed remains challenging to sound. More gravity data
could help better constrain the topography if MBES mapping is not possible. Many fjords along the coast also
remain to be mapped (Table S1), especially in regions where we are relying on synthetic bathymetry (pink in
Figure1b). Additional bathymetry measurements in the fjords and on the continental shelf will further improve
the reliability and quality of BedMachine.

This mapping provides a physically based description of the subglacial topography and ocean bathymetry in
the vicinity of the Greenland ice sheet. The product makes it possible to consider modeling ocean circulation
in Greenland fjords. It also offers major improvements in the robustness of ice sheet model predictions, as it
includes many features that may play an important role on ice dynamics as glacier calving fronts continue to
retreat. As more radar, gravity, or multibeam data become available, we will update the map to continuously
improve projections of the contribution of the Greenland ice sheet to sea level rise. The final product will be
available as an Operation IceBridge Earth Science Data Set at the National Snow and Ice Data Center (NSIDC).

4. Conclusion

We present a new high-resolution bed map of the Greenland ice sheet and ocean bathymetry, with a seamless
transition across glacier termini. The map combines mass conservation and newly collected ocean bathymetry
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data from OMG and includes bathymetric data from previous marine surveys. Our new estimate for
Greenland’s sea level rise potential is 7 cm higher than the previously published value, and we find that
between 30 and 100% more glaciers are potentially exposed to AW than suggested by RTopo-2 or B2013. We
also find that our new map is consistent with the pattern of ice front retreat along the coast, where the glaciers
that have been retreating the most were resting on retrograde beds. This map is a self-consistent data set that
opens the door to high-resolution coupled ice sheet and ocean numerical modeling, which should ultimately
improve our ability to model the evolution of the Greenland ice sheet in a changing climate.
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