
Abstract

The main aim of this paper is to further develop the recently initiated
research concerning geometric construction of some power means where
the variables are appearing as line segments. It will be demonstrated
that the arithmetic mean, the harmonic mean and the quadratic mean
can be constructed for any number of variables and that all power means
where the number of variables are n = 2m, m � 1 2 N for all powers
k = �2�q and k = �2q; q 2 N can be geometrically constructed.
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1 Introduction

Means and averages have been studied and used since antiquity. The biblical
story about the Egyptian Pharao�s dream about seven fat and seven skinny
cows coming up from the Nile, and the interpretation by Joseph, lead to de-
tailed measuring of the rise and fall of the river and of the avearaging of the
use of the yearly crops.
The Greek mathematicians explored what is now called the Pythagorean

means, the arithmetic, the geometric and the harmonic means, because of
their importance in the study of geometry and music.
Power means have found many applications in modern mathematics. Let

us just mention that in homogenization theory, there are examples where the
e¤ective conductivities of composite structures are power means of the local
conductivities, see [11] and [13]. Other recent studies have investigated the
requrements of integer variables for the power mean also to be integer valued,
see [7].
For n positive numbers, a1; a2; :::::; an; the power mean P nk of order k; with

equal weights, is de�ned as follows,

P nk =

�
ak1 + a

k
2 + :::+ a

k
n

n

� 1
k

; if k 6= 0;

and
P n0 = [a1a2::::an]

1
n ; if k = 0:

There is a substantial literature on the subject of power means see [1], [5],
[10], [18] and [22]: The close connection between convexity and power means
is described e.g. in the new book [14]:
The Greek mathematicians constructed the Pythagorean means of two vari-

able line segments a and b as showed in Figure 1, see e.g. [3]. The quadratic
mean, Q = P 22 ; also known as the Root Mean Square, is also included in the
�gure.

Power means have throughout history mostly been analyzed and calculated
on the basis of numeric variables. In [6] the authors studied the properties of
certain power means based on variable line segments, and showed that P 2�2;
P 2�1; P

2
�1=2; P

2
0 ; P

2
1=2; P

2
1 and P

2
2 for two variables can be constructed in a basic

geometric structure di¤erent from the one employed by the Greek mathemati-
cians. In a recent work by the authors of this paper it has been shown that
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Figure 1: Classic Greek construction of Pythagorean means of the line seg-
ments a and b. A is the arithmetic mean, Q is the quadratic mean, H is the
harmonic mean and G is the geometric mean.

the arithmetic and the harmonic mean of three variables can be constructed
in a three dimensional structure [9]: Other works on geometric constructions
of power means are [2], [3], [4], [15]; [16]; [17];[18], [19]; [20]; [21] and [23]:
Most of the works so far has been concerned with geometric constructions

of special power means of two variables. In the recent paper [9] we raised the
questions to more general situations e.g. involving three or more variables and
more general power means. However, in [9] only the case with three variables
was considered. In this paper we continue this research by considering the more
general case with n variables and also more general power means involved.

This paper is organized as follows: In Sections 2 and 3 we demonstrate
how the arithmetic, harmonic and the quadratic mean can be constructed for
any number of variables. In Section 4 we show that it is possible to construct
the geometric mean and also in P n�2; P

n
�1; P

n
�1=2; P

n
1=2; P

n
1 and P

n
2 for n =

2m variables, where m is any positive integer. In Section 5 we discuss and
illustrate the fact that all power means for n = 2m variables, where the power
is k = �2�q; can be geometrically constructed (here q is any positive integer).
Finally, in Section 6 we show that the �ndings in Sections 4 and 5 allow the
construction of power means for all variables n = 2m; where the power is
k = �2q (and again m and q are arbitrary positive integers):

Remark 1 The classic Greek method of constructing the Pythagorean means,
as shown in Figure 1, may also be extended to construct P 2�2; P

2
�1; P�1=2;

P 20 ; P
2
1=2; P

2
1 and P

2
2 for two variables. To accomplish this, we use the facts
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Figure 2: Geometric construction of power means P 2�2; P
2
�1; P

2
�1=2; P

2
0 ; P

2
1=2; P

2
1

and P 22 :

described in [6]:

P 21=2(a; b) = P 21 (P
2
1 (a; b); P

2
0 (a; b));

P 2�1=2(a; b) = P�1(P
2
�1(a; b); P

2
0 (a; b))

and
P 22 (a; b)� P 2�2(a; b) = ab:

The construction method is illustrated in Figure 2.

2 Harmonic means for n variables

The basic structure which was used in [6] for the geometric construction of
P 2�2; P

2
�1; P

2
�1=2; P

2
0 ; P

2
1=2; P

2
1 and P

2
2 for two variables a1 and a2; is shown in

Figure 3. This structure can be found in [8]: Independent of the width of the
"�oor" AB; the length of the vertical line EF through the intersection of the
diagonals, is equal to the harmonic power mean of the two variables a1 and a2;
i.e.,

EF = P 2�1(a1; a2) =
2a1a2
a1 + a2

:

The arithmetic mean is found by bisecting the "�oor" AB and constructing
the vertical line between the "�oor" and the "roof": If, in addition, (d1; d2) =
(a1; a2), the "roof" DC equals 2Q = 2P 22 (a1; a2):
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Figure 3: Construction of the harmonic mean P 2�1(a1; a2):

We will show that the harmonic mean of three and more variables can be
constructed using the same basic structure. First we state the following lemma
(see [9]).

Lemma 1 In Figure 4 we consider a more general structure than that pre-
sented in Figure 3. The only requirement is that the lines AD and BC are
parallel. Let EF be the line through the intersection of the diagonals AC and
BD; parallel to AD and BC. Then, it holds that EF is equal to the harmonic
mean of AD and BC: Moreover, c1 = c2 = (a1a2) = (a1 + a2).

Figure 4: Alternative construction of the harmonic mean P 2�1(a1; a2):

The following iterative Theorem is useful for our purposes.

Theorem 2 Let n = 3; 4; 5; ::: It holds that

P n�1(a1; :::; an) =
n

2
P 2�1(a1;

1

n� 1P
n�1
�1 (a2; :::; an)): (1)
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Proof. We have that

n

2
P 2�1(a1;

1

n� 1P
n�1
�1 (a2; :::; an)) =

n

2
(
2a1 � 1

n�1P�1(a2; :::; an)

a1 +
1
n�1P�1(a2; :::; an)

) =
n

2
(
2a1 � 1

n�1
(n�1)a2a3:::::an

a2a3::::an�1+::::+a3a4:::an

a1 +
1
n�1

(n�1)a2a3:::::an
a2a3::::an�1+::::+a3a4:::an

) =

n

2
(

2a1a2::::an
a1 � (a2a3::::an�1 + ::::+ a3a4:::an) + a2a3:::::an

) =

na1a2::::an
a1a2:::::an�1 + ::::+ a2a3:::::an

= P n�1(a1; :::; an):

The proof is complete.

Remark 2 Iterative use of (1) implies that

P n�1(a1; :::; an) =
n

2
P 2�1(a1;

1

2
P 2�1(a2;

1

2
P 2�1(a3; :::;

1

2
P 2�1(an�1; an))):::): (2)

This formula is particularly suitable for the geometric construction of harmonic
mean for n variables.

2.1 Three variables

Consider now the case n = 3. The means P 3�1 and P
3
1 are constructed as shown

in Figure 5. The variables a1, a2 and a3 are organized vertically in ascending
order on a horizontal �oor AC (of an arbitrary width), under a "roof" line
FD; connecting the top of the smallest variable a1 and the top of the largest
variable a3.
From Lemma 1 we know that

GH =
1

2
P 2�1(a2; a3) =

a2a3
a2 + a3

is the vertical line through the intersection of the diagonals of the trapezoid
BCDE. Moreover, JK is the corresponding vertical line through the intersec-
tion of the diagonals in the trapezoid AHGF . The length of JK is then equal
to

JK =
1

2
P 2�1(a1; GH) =

1

2
P 2�1(a1;

a2a3
a2 + a3

) (3)

=
a1a2a3

a1a2 + a1a2 + a2a3
=
1

3
P 3�1(a1; a2; a3):
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Figure 5: Construction of the harmonic mean P 3�1(a1;a2; a3):

By using Lemma 1 it holds that IJ = 3KJ , i.e.,

P 3�1(a1; a2; a3) = IJ:

In order to see this, we consider the three trapezoids BCDE; AHGF and
AGMF in Figure 6. From the fact that c1 = c2 in Lemma 1, we know that

HG = GM:

Moreover, the same lemma yields the relations

JN = P 2�1(a1; GH) = IK = P 2�1(a1; GM);

and
JK = KN = IN:

From (3) we then have that

P 3�1(a1; a2; a3) = IJ = JK +KN + IN =
3a1a2a3

a1a2 + a1a2 + a2a3

This con�rms that IJ = 3KJ .
The arithmetic mean, P 31 (a1; a2; a3); may be constructed in the same struc-

ture by letting the width of the "�oor" AC in Figure 5 be equal to the sum of
the variables, trisect it with a standard method.

2.2 Four variables

To construct the harmonic mean of 4 variables one may use the formula (1)
for this case

P 4�1(a1; :::; a4) =
4

2
P 2�1(a1;

1

3
P 3�1(a2; a3; a4));
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Figure 6: Veri�cation that IJ = P 3�1(a1; a2; a3):

Figure 7: Nested construction of P 4�1(a1; a2; a3; a4):

or, as written in (2),

P 4�1(a1; :::; a4) =
4

2
P 2�1(a1;

1

3
P 3�1(a2; a3; a4)) =

4

2
P 2�1(a1;

1

2
P 2�1(a2;

1

2
P 2�1(a3; a4))):

The construction is shown in Figure 7.

Figure 7 shows that

IJ =
1

2
P 2�1(a3; a4) and KL =

1

2
P 2�1(IJ; a2) =

1

3
P�1(a2; a3; a4)

and
MO =

1

2
P 2�1(KL; a1) =

1

4
P 4�1(a1; a2; a3; a4):
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By recursive use of Lemma 1, it can then be deduced that

MN = 4�MO;

i.e.,

P 4�1(a1; a2; a3; a4) =MN =
4a1a2a3a4

a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4
: (4)

2.3 n variables

The nested version for P n�1 for n variables (see (2))

P n�1(a1; :::; an) =
n

2
(a1;

1

2
P 2�1(a2;

1

2
P 2�1(a3; :::::;

1

2
P 2�1(an�1; an)))::::);

can now be used for the geometric construction of the harmonic mean for
any number of n variables using the iterative methods presented above. In
particular, in this case formula (4) reads

P n�1(a1; :::; an) =
n�ni=1ai

�ni=1�
n
j=1;j 6=iaj

:

3 Quadratic means for n variables

The quadratic mean for n variables a1; :::an;

P n2 =

r
1

n
(a21 + :::+ a

2
n);

can geometrically be constructed for any number of variables. To show this
we use a property deducted from the crossed ladders diagram, see Figure 8.
From Figure 8 and Lemma 1 we �nd that

r = a� c = a� ab

a+ b
=

a2

a+ b
(5)

and

s = b� c = b� ab

a+ b
=

b2

a+ b
: (6)
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Figure 8: The crossed ladders diagram.

Setting

a =
q
a21 + :::+ a

2
n (7)

and

b = (
p
n� 1)

q
a21 + :::+ a

2
n (8)

this gives that

r =
(
p
a21 + :::+ a

2
n)
2p

a21 + :::+ a
2
n + (

p
n� 1)

p
a21 + :::+ a

2
n

=r
1

n
(a21 + :::+ a

2
n) = P

n
2 (a1; :::an):

We can easily construct (7) and (8) for any number of variables. In Figure 9
we have shown this for three variables a1, a2 and a3. The resulting crossed
ladders diagram with

a =
q
a21 + a

2
2 + a

2
3; b = (

p
3� 1)

q
a21 + a

2
2 + a

2
3

and the corresponding r equal to

P 32 =

r
1

3
(a21 + a

2
2 + a

2
3)

is also shown in the �gure.
The same procedure can obviously be used for the construction of the

quadratic mean of any number of variables.
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Figure 9: Construction of a =
p
a21 + a

2
2 + a

2
3 and b = (

p
3� 1)

p
a21 + a

2
2 + a

2
3

and of r = P 32 (a1; a2; a3):

4 Power means for n = 2m variables

For n = 2m; where m � 1 is any integer, another formula can be used for the
geometric construction of the harmonic mean.

We �rst consider the case m = 2; i.e., n = 4:

4.1 The case n = 4

We need the following result:

Lemma 3 For all real k we have that

P 4k (a1; a2; a3; a4) = P
2
k (P

2
k (a1; a2); P

2
k (a3; a4)): (9)

Proof. It yields that

P 4k (a1; a2; a3; a4) = P 2k (P
2
k (a1; a2); P

2
k (a3a4)) =

P 2k ((
ak1 + a

k
2

2
)
1
k ; (
ak3 + a

k
4

2
)
1
k ) =

"
((
ak1+a

k
2

2
)
1
k )k + ((

ak3+a
k
4

2
)
1
k )k

2

# 1
k

=

(
ak1 + a

k
2 + a

k
1 + a

k
2

4
)
1
k = P 4k (a1; a2; a3;a4)

so the proof is complete.
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Figure 10: Alternative construction of P 4�1(a1; a2; a3; a4):

Figure 10 shows the geometric construction of

P 4�1(a1; a2; a3; a4) =
4a1a2a3a4

a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4

using (9) in the case k = �1.
The variables are, as before, organized vertically on the "�oor" AD of ar-

bitrary width, each touching the "roof" HE connecting the top of the smallest
and the largest variable. P 2�1(a1; a2) = KL and P 2�1(a3; a4) = IJ are con-
structed using the crossing diagonals of the trapezoids ABGH and CDEF;
respectively. Then P 4�1(a1; a2; a3; a4) = MN is the vertical line between the
"�oor" AD and the "roof" HE through the intersection of the diagonals of
the trapezoid KIJL.

The veri�cation of the construction follows easily by using similar argu-
ments as presented earlier in this paper.
To construct the arithmetic mean P 41 (a1; a2; a3; a4) in the same structure,

the width of the "�oor", AD; would be chosen equal to the sum of the variables
and then quadrisect with standard method.

Remark 3 In addition it is also possible to construct P 4�2; P
4
�1=2; P

4
0 ; P

4
1=2 and

P 42 for 4 variables. One may then use the methods presented in [6]; or the
ones described in Remark 1 in the Introduction of this paper: These methods
allow the construction of P 2�2; P

2
�1; P

2
�1=2; P

2
0 ; P

2
1=2; P

2
1 and P

2
2 for (a1; a2) and

for (a3; a4); respectively. Then, by using our iterative formula (9) the corre-
sponding values of P 4k in the cases k = �2, �1, �1=2, 0, 1=2, 1, 2 can easily
be constructed.
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4.2 The case n = 2m

For this case we have the following useful result:

Theorem 4 Let m = 2; 3; :::. Then

P 2
m

k (a1; :::; a2m) = P 2k (P
2m�1

k (a1; :::; a2m�1); P
2m�1

k (a2m�1+1; :::; a2m)):(10)

Proof. We have that

P 2k (P
2m�1

k (a1; :::; a2m�1); P
2m�1

k (a2m�1+1; :::; a2m)) =

P 2k

"
(
ak1 + :::+ a

k
2m�1

2m�1
)
1
k ; (
ak2m�1+1 + :::+ a

k
2m

2m�1
)
1
k

#
=

24((ak1+:::+ak2m�12m�1 )
1
k )k + ((

ak
2m�1+1+:::+a

k
2m

2m�1 )
1
k )k

2

35 1
k

=

�
ak1 + a

k
2 + ::::+ a

k
2m

2m

� 1
k

= P 2
m

k (a1; :::; a2m):

The proof is complete.

Remark 4 The formula (10) can again be written nested as follows (see (2)):

P 2
m

k (a1; :::; a2m) = (11)

P 2k (P
2
k (:::P

2
k (P

2
k (a2m�1�3; a2m�1�2); P

2
k (a2(m�1)�1; a2(m�1))):::);

(P 2k (:::P
2
k (P

2
k (a2m�3; a2m�2); P

2
k (a2m�1; a2m)):::)):

This formulation will, by recursive use of the methods shown for n = 4, al-

low geometric construction of P n�2; P
n
�1; P

n
�1=2; P

n
0 ; P

n
1=2; P

n
1 and P

n
2 for n = 2

m

variables for all integer values of m � 1:
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5 Power means where the power k = �2�q

5.1 The two variables case

In the Introduction we presented the formulas

P 21=2(a; b) = P
2
1 (P

2
1 (a; b); P

2
0 (a; b));

P 2�1=2(a; b) = P�1(P
2
�1(a; b); P

2
0 (a; b)),

and
P 22 (a; b)� P 2�2(a; b) = ab:

This can be generalized. It is in fact well known that (see [13])

P 2k (a; b)� P 2�k(a; b) = ab;

for any real k and also that

P 22�q(a; b) = P 22�(q�1)(P
2
2�(q�1)(a; b); P

2
0 (a; b)) and (12)

P 2�2�q(a; b) = P 2�2�(q�1)(P
2
�2�(q�1)(a; b); P

2
0 (a; b)):

The latter formulas can be used for geometric construction of all power means
of two variables, where the power k = �2�q and q is a positive integer. In
particular, for q = 2 we have that

P 2�1=4(a; b) = P
2
�1=2(P

2
�1=2(a; b); P

2
0 (a; b)):

In the introduction we have shown how to construct P 2�1=2(a; b) and P
2
0 (a; b):

Using a1 = P 2�1=2(a; b) and b1 = P 20 (a; b);the same method can be used to
construct P 2�1=4(a; b) = P 2�1=2(a1; b1): Moreover, by recursive use of the same
method, all power means of two variables where the power k = �2�q and q is
a positive integer, can be geometrically constructed.

5.2 The case with n = 2m variables

Using the formulas (10), (11) and (12) we can construct all power means of
the type P 2

m

�2�q(a1; :::; a2m): We will show this for P
4
1=4(a; b; c; d):

From (10), (11) and (12) we can write

P 41=4(a; b; c; d) =

P 21=4(P
2
1=4(a; b); P

2
1=4(c; d)) =

P 21=4(P
2
1=2(P

2
1=2(a; b); P

2
0 (a; b)); P

2
1=2(P

2
1=2(c; d); P

2
0 (c; d))):
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Figure 11: The Crossed ladders diagram.

We have earlier shown the construction of

A = P 21=2(P
2
1=2(a; b); P

2
0 (a; b))

and of
B = P 21=2(P

2
1=2(c; d); P

2
0 (c; d)):

We then have that

P 41=4(a; b; c; d) = P
2
1=4(A;B) = P

2
1=2(P

2
1=2(A;B); P

2
0 (A;B));

which can be geometrically constructed using the method shown i Section 4.
By recursive use of the methods described in Section 4 we clearly can

construct all power mean of the type P 2
m

�2�q(a1; :::; a2m); where the number of
variables n = 2m where m � 1 is an integer, and where the power k = �2�q
(q is a positive integer).

6 Power means where the power is k = �2q

By sequential use of the properties of the Crossed ladders diagram we can
construct P n�2q(a1; :::; an) for any number of variables of the type n = 2m;
n 2 N, for all powers k = �2q, q 2 N:

6.1 The case with 2 variables

It is known that P 2�2q(a1; a2) is geometrically constructable, see e.g. [12]. Here
we present the following alternative proof of this theorem:.
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Figure 12: Construction of h1 = P 22 (a; b):

Proof. In Section 3 we showed that r1 and s1 in the Crossed ladders diagram,
see Figure 11, have the values

(r1; s1) = (
a2

a+ b
;
b2

a+ b
):

We then have

r1 + s1 =
a2 + b2

a+ b
=
(P 22 (a; b))

2

P 21 (a; b)
:

By using r1 + s1 and P 21 (a; b) as adjoining parts of the hypotenuse in a right-
angle triangle, see Figure 12, the height h1 from the hypotenuse to the right
angle is

h21 = (r1 + s1)P
2
1 (a; b) = (P

2
2 (a; b))

2;

i.e. we have that
h1 = P

2
2 (a; b):

Next we construct a Crossed ladders diagram with

(a1; b1) = (r1; s1);

which leads to

(r2; s2) = (
a21

a1 + b1
;

b21
a1 + b2

) = (
a4

(a+ b)(a2 + b2)
;

b4

(a+ b)(a2 + b2)
)

and

r2 + s2 =
a4 + b4

(a+ b)(a2 + b2)
=

(P 24 (a; b))
4

2P 21 (a; b)(P
2
2 (a; b))

2
:
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Having constructed P 22 (a; b) we can now construct P
2
4 (a; b) by using the above

method twice. First we use r2 + s2 and 2P 21 (a; b) as the adjoining parts of the
hypotenuse giving

h1 =
(P 24 (a; b))

2

P 22 (a; b)
:

Next, we use h1 and P 22 (a; b) as the adjoining parts of the hypotenuse to
construct P 24 :

h2 = P
2
4 (a; b):

If
(aq�1; bq�1) = (rq�1; sq�1) =

(
a2

q�1

(a+ b)(a2 + b2):::(a2q�1�1 + b2q�1�1)
;

b2
q�1

(a+ b)(a2 + b2):::(a2q�1�1 + b2q�1�1)
);

then

rq =
(aq�1)

2

aq�1 + bq�1
=

�
a2
q�1

(a+b)(a2+b2):::(a2
q�1�1+b2q�1�1)

�2
a2
q�1

(a+b)(a2+b2):::(a2
q�1�1+b2q�1�1)

+ b2
q�1

(a+b)(a2+b2):::(a2
q�1�1+b2q�1�1)

=

a2
q

(a+ b)(a2 + b2):::(a2q�1 + b2q�1)
=

a2
q

2qP 21 (a; b)(P
2
2 (a; b))

2:::(P 22q�1(a; b))
2q�1

and, respectively,

sq =
(bq�1)

2

aq�1 + bq�1
=

b2
q

2qP 21 (a; b)(P
2
2 (a; b))

2:::(P 22q�1(a; b))
2q�1 :

Hence, iterative use of the Crossed ladders diagram based on (aq�1; bq�1) =
(rq�1; sq�1) lead to

(rq; sq) = (
a2

q

2qP 21 (a; b)(P
2
2 (a; b))

2:::(P 22q�1(a; b))
2q�1 ;

b2
q

2qP 21 (a; b)(P
2
2 (a; b))

2:::(P 22q�1(a; b))
2q�1 )

and

rq + sq =
(P 22q(a; b))

2q

2q�1P 21 (a; b)(P
2
2 (a; b))

2:::(P 22q�1(a; b))
2q�1 :
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Having constructed P 21 (a; b); P
2
2 (a; b); ::: and P

2
2q�1(a; b) we can now construct

P 22q(a; b) by q sequential use of the right-angel triangel method shown above.
The proof is complete.

In particular, knowing that P 22q(a; b)P
2
�2q(a; b) = ab we can easily construct

P 2�2q(a; b) once we have constructed P
2
2q(a; b):

6.2 The case with n = 2m variables

By using formulas (10) and (11) we can write

P 4�4(a1; a2; a3; a4) = P
2
�4(P

2
�4(a1; a2); P

2
�4(a3; a4)):

By iterative use of these formulas and of the methods shown earlier in this
paper we can construct all power means of the type P n�2q(a1; :::; an); where the
number of variables is n = 2m; m 2 N, and for all powers k = �2q; q 2 N:
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