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Abstract 23 

24 

The temporal and spatial resilience of abundance patterns of assemblages of organisms inhabiting transition 25 

zones between Arctic and boreal regions is an issue of concern in relation to climate change. The recognition that 26 

baseline information spanning such transition zones is required to facilitate future monitoring and assessments of 27 

temporal dynamics provided the motivation for the present study. One such transition area is The Svalbard 28 

archipelago of the North-East Atlantic, located between the Arctic and the boreal Atlantic, where significant 29 

climate changes occur. The study aimed to utilize an existing data series from Svalbard to analyse and describe 30 

demersal fish assemblage structure and distributions. Norwegian bottom trawl surveys sampled the area annually 31 

in August-September 2007-2014, and the dataset is the first from this area which is sufficiently comprehensive to 32 

carry out assemblage analyses. The survey years analysed represent the recent unprecedented warm period in the 33 

Barents Sea-Svalbard region which started around 2004. The new baseline information improves the basis for 34 

future studies of resilience under changing environmental conditions. A key finding was that the major transition 35 

in species composition is that between deep Greenland Sea and Arctic Ocean assemblages (upper slope 36 

assemblages) and the shelf assemblages. In shallower shelf areas (< 500m depth)  structuring is weaker with 37 

assemblages having many species in common. The expected association of fish assemblages with regional 38 

bathymetric and hydrographic features was confirmed. The observed patterns probably reflect a comparatively 39 

extensive Atlantic influence during the warm period.   40 
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Introduction 47 

Quantification and characterization of potential future variation and change in marine communities and 48 

ecosystems require knowledge of previous states. Well documented information on variability in distribution and 49 

abundance patterns of species and assemblages constitute baselines for assessments and monitoring of impacts of 50 

known or anticipated sources of variability. At high latitudes, the significance of updated baseline knowledge on 51 

fish communities is especially pronounced as the natural variability is high and comprehensive information on 52 

fish diversity is limited (Christensen and Reist 2013). Increasing human uses and the recent pronounced 53 

warming trend with associated ice-cover changes may lead to wide-ranging ecosystem impacts potentially 54 

altering species composition and abundance patterns. Accordingly, there is an increasing demand for pertinent 55 

management advice, and baseline studies contribute significantly to the collective science effort required to 56 

respond to this societal need. In this study information is presented on demersal fish assemblages inhabiting an 57 

extensive continental shelf area of the Arctic Ocean-Atlantic transition zone, the Svalbard archipelago, based on 58 

data collected during the recent warm period. 59 

60 

The fish fauna in the pan-Arctic region, including the Atlantic sector, was reviewed recently by Mecklenburg et 61 

al. (2011). Regional analyses using extensive bottom trawl survey data, by Byrkjedal and Høines (2007), Dolgov 62 

et al. (2011), Johannesen et al. (2012) and Fossheim et al. (2015), supplemented earlier smaller scaled 63 

investigations by Burgos (1989) and Fossheim et al. (2006) of distribution of demersal fish in the Barents Sea. 64 

An atlas of fishes of the Barents Sea has also resulted from joint trawl surveys by Russia and Norway 65 

(Wienerroither et al. 2011, 2013). These efforts resulted in extensive baseline knowledge for areas with existing 66 

or potential uses.  67 

68 

However, for the Svalbard archipelago (Fig. 1) significant data series are available but these were not fully 69 

analysed in the previous studies. Reports on the fish fauna in that area were based on the Russian autumn-winter 70 

surveys (Dolgov 2004; Smirnov et al. 2000), but comprehensive analyses were not conducted. Using a multi-71 

year survey dataset, the current account therefore extends the Barents Sea assemblage analyses (Johannesen et al. 72 

2012) to comprise the shelves around Svalbard, including the Arctic Ocean shelf to the north of 80° N. 73 

74 

The Svalbard is the largest archipelago of the arcto-boreal Barents Sea (Ozhigin et al. 2011), characterised by 75 

complex bathymetry and numerous islands, as well as steep and strong environmental gradients between the 76 

warm areas of the Norwegian Sea under the influence of Atlantic Water and the Arctic Water to the north and 77 

northeast (Loeng 1991; Ozhigin et al. 2011). Circulation features around the archipelago reflect the shallow 78 

outflow of relatively low-salinity Arctic Water and the deeper saline and warm Atlantic Water flowing 79 

northwards along the shelf-break on the western side of the western island Spitsbergen (Ozhigin et al. 2011).  80 

81 

The main objectives of this study were to identify and characterize demersal fish species assemblages and their 82 

geographical patterns. Archived research bottom trawl survey data were used as the source of species-specific 83 

abundance information. Our dataset comprised quality-controlled catch data from annual joint Norwegian-84 

Russian ecosystem surveys conducted in August-September 2007-2014. In that period, the Barents Sea was 85 

exceptionally warm, i.e. with temperatures in the core of the Atlantic Water entering the Barents Sea, as recorded 86 
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in the Kola section, on the order of 1 °C above average in all years (Fig. 2c). A comparable increase in 87 

temperature has been recorded along the western Spitsbergen shelf during the same period (Walczowski et al. 88 

2012). The last decade (after 2000) was the warmest since the onset of regular measurements in 1900 in the Kola 89 

section (Bochkov 1982; Tereschenko 1997; Skagseth et al. 2008; Polyakov et al. 2013), and paleo-records based 90 

on foraminifera suggest that the Atlantic Water flowing into the Barents Sea area was at its warmest for the last 91 

2000 years (Spielhagen et al. 2011).  92 

 93 

In the earlier analyses of similar trawl survey datasets from Barents Sea (Burgos 1989; Fossheim et al. 2006; 94 

Byrkjedal and Høines 2007; Johannesen et al. 2012; Aschan et al. 2013; Fossheim et al. 2015; Johannesen et al. 95 

2016) spatial patterns at relatively large spatial scales were observed in the demersal fish community. The 96 

patterns of distribution were associated with regional hydrography, particularly the geographical position and 97 

character of the Polar Front between Atlantic and Arctic water masses (Loeng 1991; Byrkjedal and Høines 2007; 98 

Johannesen et al. 2012). In the Svalbard shelf, similar associations were expected with regional hydrography but 99 

probably sharper and more localized boundaries between assemblages associated with steep environmental 100 

gradients. Diversity was expected to change both with latitude and depth, as well as position around the islands. 101 

Generally, it was anticipated that the diversity and abundance in the high-Arctic subarea of the archipelago was 102 

low compared with that observed in the warmer southwestern shelf areas facing the Norwegian and Greenland 103 

Seas being under the influence of Atlantic Water.  104 

 105 

The new results from the Svalbard archipelago are discussed in the context of climate change, fisheries, and 106 

other potential anthropogenic activities in the area. 107 

 108 

Study area characteristics 109 

 110 

The Svalbard archipelago is located in the north-western part of the Barents Sea (Fig. 1). Towards the west and 111 

north the archipelago faces the >3000 m deep basins of the Greenland Sea and Arctic Ocean, respectively, 112 

whereas to the east and south there is no deepwater area delineating Svalbard from the shallow and partially ice-113 

covered Barents Sea. During winter, the polar ice cap is extending from the Polar Basin and covers the shallow 114 

subareas of our study area (e.g. Onarheim et al. 2014, 2015). During summer, the polar ice cap retreats and most 115 

of the study area is ice-free in an average year. However, the sea-ice extent varies considerably between years. In 116 

recent years, with the exception of 2014, the coastal and shelf areas north of Svalbard were ice free during 117 

summer. 118 

 119 

The bathymetry in the area is complex. Habitats range from rather deep glacial fjords, to coastal shelves 120 

extending from the sublittoral to 400 m with wide shallow banks, and to the outer shelf and upper continental 121 

slope of 400-1300 m depth.  122 

 123 

The hydrographic conditions around Svalbard are dominated by the Polar Front between relatively warm 124 

Atlantic Water advected from the south and regionally generated cold Arctic water masses. The frontal zone 125 

generally follows the bathymetric features of the Svalbard archipelago and the Svalbard Bank. 126 



5 

 

 127 

The continental shelf break to the west and north of Svalbard is dominated by the northward flow of Atlantic 128 

Water in the West Spitsbergen Current (Beszczynzka-Möller et al. 2012), which continues eastward in the Arctic 129 

Ocean on the northern side of Svalbard (e.g. Pnyushkov et al. 2013). To a varying degree, some of this sub-130 

surface Atlantic Water enters the Barents Sea from the north through canyons and troughs (Lind and Ingvaldsen 131 

2012). In addition to the along-path temperature variability, there is considerable cross-slope temperature 132 

variability reflecting cross-slope movements of the frontal zone due to temporal changes in the regional 133 

atmospheric circulation (Cottier et al. 2007). 134 

 135 

The Polar Front is topographically steered and located between the 150 m and 200 m isobaths separating colder 136 

and relatively low-salinity Arctic-influenced water masses on the shallow Svalbard Bank from warmer and more 137 

saline Atlantic-influenced water masses further out on the slope surrounding the bank (Parsons et al. 1996). 138 

Although the Polar Front is tightly connected to the topography, the position of the front can vary depending on 139 

the strength and position of the Atlantic Water inflow to the Barents Sea (Ingvaldsen 2005; Lien et al. 2013a). 140 

The Svalbard Bank is seasonally ice covered, and thus, the temperature is at the freezing point throughout the 141 

water column during winter. During summer, the temperature increases due to insolation. The Svalbard Bank is a 142 

source of dense, brine-enriched water formed during freezing of sea ice (Sarynina 1969; Årthun et al. 2011). 143 

These cold and dense water masses flow at the bottom along the slopes of the bank (Shapiro and Hill 2003; Lien 144 

and Ådlandsvik 2014) and slowly descend into the Bear Island Channel and eventually the Norwegian Sea 145 

(Blindheim 1989). 146 

 147 

 148 

149 
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Material and Methods  150 

 151 

Geomorphology, hydrography and circulation in the study area 152 

Based on bathymetric and hydrographic conditions, the study area was divided into six sub-areas (Fig. 1 and 2) 153 

used to provide an initial overview of sampling effort and fish occurrence patterns. The same subareas were 154 

subsequently used to interpret results of ordination analyses to which the entire dataset was input. The six 155 

subareas were: 156 

 157 

Atlantic continental shelf break 158 

The Atlantic continental shelf was split into a south-western (SW) and a north-eastern (NE) subarea at the 1000 159 

m isobath along the western slope of the Yermack plateau, thereby delineating the two subareas facing the 160 

Greenland Sea and Arctic Ocean, respectively. 161 

 162 

Hopen Deep 163 

The Hopen Deep forms the northeast extension of the Bear Island Trough and is dominated by Atlantic Water 164 

circulating counter-clockwise within the Deep (Skagseth 2008). Intermittently, Atlantic Water flows 165 

northeastward also in the western part along the slope of the Svalbard Bank (Lien et al. 2013a). Despite the 166 

Atlantic influence throughout the Hopen Deep, the benthic megafauna here is mainly Arctic, i.e., located north of 167 

the “benthic Polar Front”, probably due to intermittent flow of cold bottom water associated with sea-ice 168 

freezing on surrounding banks (Jørgensen et al. 2015). 169 

 170 

Svalbard Bank 171 

The Svalbard Bank is the shallowest of the larger banks within the Barents Sea, with summit depth of 30-50 m. 172 

A stationary front governed by the strong tidal currents is surrounding the bank. The front runs approximately 173 

along the 50 m isobath, and in areas shallower than 50 m the water column is well-mixed and homogeneous 174 

from surface to bottom (Fer and Drinkwater 2014).  175 

 176 

Svalbard East 177 

The area to the east of Svalbard exhibits a complex topography comprising several relatively small and shallow 178 

bank structures divided by canyons and small basins with depths exceeding 300 m. The banks are dominated by 179 

cold Arctic water masses throughout the water column (e.g. Pfirman et al. 1994), whereas the canyons are 180 

influenced by inflow of Atlantic Water, typically at depths below 150-200 m (Lind and Ingvaldsen 2012). 181 

 182 

Svalbard coastal area 183 

The fjords of Svalbard are dominated by cold Arctic waters, including cold and dense brine-enriched bottom 184 

water following sea-ice formation in winter. Along the western side of Svalbard, there is a variable influence 185 

from Atlantic Water extending into the fjords, depending on the regional wind pattern (Cottier et al. 2007) and 186 

the variable sea-ice production and subsequent interannual variability in density inside the fjords (Nilsen et al. 187 

2008). 188 

 189 
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Demersal fish survey design and sampling 190 

Species-specific occurrence and abundance data on fishes were available from bottom trawl catches from the 191 

Barents Sea-Svalbard area in August-September 2007-2014. The effort in the Svalbard area formed part of the 192 

Joint annual Norwegian/Russian Ecosystem Survey in the Barents Sea (Anon 2007; Anon 2009a, b; Anon 2010; 193 

Anon 2011; Eriksen 2012; Prokhorova 2013; Eriksen 2014). The survey series started in 2004,  however, since 194 

the quality of species identifications for many taxa were judged unreliable before 2007, it was decided not to 195 

include the first three years in the present study of species assemblages and diversity. Although scattered older 196 

data exist from the Svalbard area, the selected series was deemed the most suitable for conducting assemblage 197 

pattern analyses. The entire area of interest was sampled, and methods were standardized throughout the period 198 

selected.  199 

 200 

While the full annual survey was and is conducted jointly by the Institute of Marine Research (IMR), Norway, 201 

and Polar Research Institute of Marine Fisheries and Oceanography (PINRO), Russia, only Norwegian vessels 202 

sampled the Svalbard area and provided data to this study. Data were collected by five vessels and comprised 203 

967 geo-referenced bottom trawl samples (Fig. 1, Table 1). For each sample  bottom depth of the trawl tow was 204 

recorded. A full list of samples is provided as Electronic Supplementary Information (Online Resource 1). 205 

 206 

Fish were sampled with a Campelen 1800 bottom trawl towed on double warps. The mesh size was 80 mm 207 

(stretched) in the front and 16–22 mm in the cod-end, allowing the capture and retention of small-sized fish. The 208 

trawl configuration and bottom contact was monitored remotely by Scanmar trawl sensors. The horizontal 209 

opening was 17 m, and the vertical opening 4-5 m. A rockhopper ground gear was used throughout. The standard 210 

procedure was to tow for 15 minutes after the trawl had achieved contact with the bottom. Towing speed was 3 211 

knots, equivalent to a towing distance of 0.75 nautical miles (ca. 1400 m) in a 15 min tow. Due to unfavourable 212 

bottom conditions or other circumstances, a few (4 out of 967 tows) were interrupted after only 5 min but these 213 

were still included as valid. Tows in deep areas (>500m) usually produced small samples and were extended 214 

beyond 15 min, to a maximum of 65 min. This created challenges in the analyses, but only affected the deep 215 

areas that were not the primary interest of the study. 216 

 217 

Although sampling effort varied somewhat between years due to unforeseen circumstances, such as unfavorable 218 

weather, the bottom trawl sampling comprised the entire shelf and coastal area of the Svalbard archipelago. 219 

When samples from all years were pooled, the spatial distribution of the 967 samples (Fig. 1, Table 1, Online 220 

Resource 1) was found adequate and sufficient to characterize demersal fish assemblages in the habitats trawled, 221 

i.e. the predominant habitats of the mainly soft-substrate shelf and coastal waters beyond the shallowest coastal 222 

zone (i.e. beyond the 50 m isobath) to the upper continental shelf depths. Once the design was set and trawl sites 223 

selected, the same sites were, if practically possible, visited every year through the time series. A potential 224 

shortcoming for the present analysis is that the survey was not originally designed to optimize assemblage 225 

analyses. The sites were selected according to a systematic design spanning all habitats rather than to a stratified 226 

random design that might have been more appropriate.  227 

 228 
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Hydrographically the area has strong spatial patterns and pronounced seasonality (Fig. 2 a and b), particularly in 229 

the shallow subareas where winter cooling and summer warming combined with strong vertical mixing cause 230 

bottom temperatures to vary much more than in the adjacent deep shelf waters. The trawl sampling was 231 

distributed in all the relevant hydrographic conditions observed or derived from model outputs (Fig. 2 a and b). 232 

Unfortunately, a limitation in the present study was that environmental data such as near-bottom salinity and 233 

temperature and substrate data were not recorded for each trawl tow.  234 

 235 

Species identification and data processing 236 

Fish catches were sorted immediately on board by trained technicians to lowest possible taxonomic level. 237 

Unidentifiable specimens were frozen on board and subsequently identified by experienced taxonomists. If 238 

deemed necessary, voucher specimens were curated by the University Museum Bergen (Online Resource 1). A 239 

full account of all species is beyond the scope of this study but further details on the fish records are provided in 240 

the Barents Sea Fish Atlas generated from the same and other surveys (Wienerroither et al. 2011).  241 

 242 

Only demersal fishes were retained in the dataset (55 species and four genera, Table 2). Predominantly pelagic 243 

species: polar cod (Boreogadus saida), Arctic cod (Arctogadus glacialis), capelin (Mallotus villosus), Atlantic 244 

herring (Clupea harengus), lesser sand-eel (Ammodytes marinus), Greenland shark (Somniosus microcephalus) 245 

as well as mesopelagic species (myctophids, sternoptychids a.o.) were removed. Bottom trawl catches of pelagic 246 

species, many which form aggregations or schools in midwater and only occasionally occur near the seabed, 247 

were relatively common. However, they were unlikely to reflect the abundance and occurrence of such taxa. 248 

Inclusion of such species in e.g. multivariate analyses would rather distort than add valid information to the 249 

account of distribution and diversity of truly seabed-associated demersals, i.e. benthic or benthopelagic species. 250 

Greenland shark was excluded because it is predominantly pelagic, but also because it is rare in the bottom trawl 251 

catches. The species occurs in the area and catches are reported (Wienerroither et al. 2011, 2013), but it is 252 

unlikely that the bottom trawl survey catches reflect abundance or distribution. Also pollock (Pollachius 253 

pollachius) was removed because it was represented by a single possibly misidentified specimen not retained for 254 

subsequent confirmation of identity. Furthermore, specimens identified to the genus level were removed 255 

(representing <0.51% of the individuals recorded), except for specimens belonging to Sebastes, Icelus, 256 

Gymnelus, and Careproctus. For the three Sebastes species Golden redfish (Sebastes norvegicus), beaked redfish 257 

(S. mentella), and Norway redfish (S. viviparus) identification uncertainty based on morphology alone persists 258 

(especially for juveniles). Up until 2014 the procedure was to only identify specimens >10 cm to the species 259 

level. Therefore, not all specimens were identified to species and the decision was made to pool all Sebastes 260 

records and use the genus as a valid category in the analyses. (However, most of the unidentified specimens were 261 

probably S. mentella as this species is by far the most common in the Barents Sea. Amongst the Sebastes 262 

individuals in our data set identified by skilled personnel, 93% were assigned to S. mentella. Only two percent 263 

was S. norvegicus. The rest were recorded as S. viviparus but suspected to be misidentifications as S. viviparus is 264 

a warmer-water coastal species found along the coast in the southwestern Barents Sea of which no records have 265 

been confirmed from the Svalbard area).  266 

 267 
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The two Icelus species occurring in the area, Icelus bicornis and I. spatula, are very difficult to differentiate. The 268 

Gymnelus and Careproctus genera probably have several species in the area but the taxonomy is unresolved.  269 

 270 

Data analysis 271 

Prior to exploring the data, the catches were standardized to number of individuals per 15 min tow. All analyses 272 

were done using the software R (R Core Team 2017). Species accumulation curves were produced using the 273 

function Specaccum in the package Vegan (Oksanen et al. 2016). Accumulation curves are built using random 274 

permutations of sites (Gotelli and Colwell 2001), and 100 permutations were used to calculate standard errors of 275 

estimated species richness. Approximate 95% confidence intervals are calculated using 2 standard errors. To 276 

study changes in species composition and variation among sites, Correspondence Analysis (Jongman et al. 1995) 277 

were run using the package Ade4 (Dray et al. 2016). Correspondence analysis is a multivariate ordination 278 

method derived from Principal Component Analysis but adapted to count data (Greenacre 2013). It results in a 279 

joint ordination of species and sites, using the relative frequencies (i.e. species and site compositions). The joint 280 

ordination is expressed through species and site scores, and the eigenvalues represent the abundance weighted 281 

correlation between these scores. Input to the ordinations were the observed frequencies standardized to a tow 282 

duration of 15 mins. 283 

 284 

Results  285 

 286 

Species list, zoogeographical affinity and overall abundance patterns  287 

Table 2 lists the 59 species and higher taxa used in the multivariate analyses, and their zoogeographical 288 

affinities. In a first effort to explore the dataset, Figure 3 presents mean abundances of the 59 taxa for each of the 289 

survey years 2007-2014 split by subareas of the Svalbard shelf and slope shown in Figure 1. For the Atlantic 290 

continental shelf break, the records were categorized into south-western and north-eastern subareas shallower 291 

than 500 m, and an additional group of stations deeper than 500 m. 292 

 293 

Albeit to varying degree, the species accumulation curves for most subareas approach asymptotes, suggesting 294 

that the sampling was probably adequate to observe patterns for the major taxa occurring in the different 295 

subareas (Fig. 4). In general, the Atlantic sector subareas (SW and NE) had 40-45 taxa and around 10 more taxa 296 

than the Arctic subarea denoted Svalbard East. For the deepest stations (i.e. the upper continental slope deeper 297 

than 500 m) the species accumulation curve was not asymptotic. At this depth, catches were generally small and 298 

sampling probably also too limited to provide the full taxon list. Similarly, the Svalbard Bank subarea curve did 299 

not reach an asymptote. This subarea is a shallow bank with strong seasonal variability in temperature (Fig. 2 a 300 

and b). These conditions apparently produced rich samples with more variable species composition than adjacent 301 

subareas where seasonal temperature variation is less.  302 

 303 

The five first taxa listed in Figure 3 were essentially ubiquitous and common in all years of the series, i.e. 304 

Atlantic cod (Gadus morhua), long rough dab (Hippoglossoides platessoides), redfish (Sebastes spp.), 305 

Artediellus atlanticus, and Greenland halibut (Reinhardtius hippoglossoides). There was substantial similarity in 306 

species composition between the six subareas. 307 



10 

 

 308 

However, single species/genera create dissimilarity by either being prominent or almost absent in individual 309 

subareas. The group of stations from the deep Atlantic, essentially the shelf break and upper slope deeper than 310 

500 m, was clearly different from the six subareas. This deep group had low abundances of the more typical 311 

shelf species, and in contrast, a range of e.g. Arctic eelpouts that were absent from or uncommon in shallower 312 

waters, were prominent. This was also the only area in which the sub-Arctic macrourid roughhead grenadier 313 

(Macrourus berglax) and the Arctic skate (Amblyraja hyperborea) were consistently present.  314 

 315 

Distribution and abundance patterns 316 

 317 

Patterns across entire sampling area 318 

The patterns shown in Figure 3 pre-supposes patterns associated with the selected subareas. Therefore, using 319 

correspondence analyses, we explored patterns of variation inherent to the dataset, disregarding the subareas 320 

selected. In a preliminary correspondence analyses (CA) of the entire dataset (i.e. samples from all years and all 321 

depths pooled, result not shown) it was observed that the samples from depths >500 m tended to dominate the 322 

analysis and hide patterns in shallower shelf waters. This confirmed the patterns observed in the overview plot of 323 

the distribution and abundance of all species (Fig. 3) that the deep stations had a species composition distinctly 324 

different from all shallower subareas. This contrasting shelf vs. upper slope pattern was an obvious main result 325 

of the study. 326 

 327 

To gain further insight, two further correspondence analyses were carried out. In the first, the >500 m depth 328 

samples were omitted in order to explore patterns in the Svalbard shelf area. In the second, only the shelf break 329 

areas (Atlantic SW and Atlantic NE) were considered, including also the stations from depths >500 m. Thus 330 

three separate CAs were carried out, the one mentioned above on the entire dataset, and two on subsets of the 331 

data. 332 

 333 

Patterns on the shelf (<500 m) 334 

Scores on Axis 1 and 2 resulting from the CA run with all stations shallower than 500 m depth are shown in 335 

Figure 5. In the six plots shown in Figure 5, scores for all stations are provided but those for stations within 336 

individual subareas (Fig. 1) are highlighted (black dots and lines). The eigenvalue distribution suggested that 337 

main patterns of variation would be explained by Axis 1 and 2, each explaining roughly equal proportions of the 338 

total variation (Eigenvalue Axis 1: 0.67, explained variation 10.6%; Axis 2: 0.64; 10.2%). Most samples (and 339 

species) are concentrated in the centre of the plot confirming the above suggestion of a degree of homogeneity 340 

amongst samples across the entire Svalbard shelf. There is, however, also a dispersion of samples along three 341 

gradients suggesting a spatial pattern (Fig. 5).  342 

 343 

The major pattern (i.e. separation along Axis 1) is that of Hopen Deep and Atlantic SW tending to have negative 344 

scores and Svalbard Bank and Svalbard Coast tending to have positive scores. Taking also Axis 2 into account, 345 

the Atlantic SW samples are placed in the upper left quadrant opposite Svalbard East samples in the lower left 346 
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quadrant, hence it is suggested that Axis 2 represents a gradient from cold Arctic shelf areas to warm Atlantic 347 

waters. 348 

 349 

As examples of species providing comparatively clear patterns, we selected 16 abundant species with contrasting 350 

score patterns on Axes 1 and 2 (positive, negative and close to 0). For these species, CA site scores on Axis 1 vs. 351 

2 were plotted with symbol sizes reflecting abundances in individual trawl samples (Fig. 6). Amongst these 16 352 

selected species were examples of ubiquitous species showing no pattern, and in contrast, species showing clear 353 

associations with the three gradients revealed by the CA. Since the input data were not log-transformed, it is 354 

likely that abundant species tend to have a comparatively strong influence on the results. Haddock, Atlantic 355 

wolfish (Anarhichas lupus), and to a lesser extent Triglops murrayi and Norway pout (Trisopterus esmarkii) are 356 

species associated with the ‘Svalbard Bank-gradient’, whereas blue whiting (Micromesistius poutassou), Lycodes 357 

esmarki and Lycodes gracilis are associated with the ‘Atlantic SW-gradient’. Lycodes pallidus, Liparis fabricii, 358 

Triglops nybelinii, Icelus spp.  and to some extent L. eudipleurostictus are abundant along the ‘Svalbard East-359 

gradient’. Other species, such as, Atlantic cod, redfish, long rough dab and Artediellus atlanticus are distributed 360 

across the entire Svalbard shelf.  361 

  362 

Atlantic shelf break and upper slope 363 

A further CA was run for samples from the Atlantic subareas supposedly most influenced by Atlantic 364 

watermasses, i.e. from subareas referred to as Atlantic SW and Atlantic NE in Figure 1, the latter representing 365 

the subarea facing the Arctic Ocean. The deepest stations in the dataset derived from upper slope waters were 366 

also included in that analysis. 367 

 368 

The results suggested that Axis 1 (Eigenvalue=0.71; explained variation=9.5%) essentially represented a depth 369 

gradient. The species scores formed a continuum from the deep-living species associated with the upper 370 

continental slope with high positive scores to a range of shelf species clustering near the origo. On Axis 2 371 

(Eigenvalue=0.62; explained variation=8.3%), blue whiting, a benthopelagic species known to be associated 372 

with Atlantic water, was prominent with a low score compared with other species. In Figure 7a the two graphs 373 

for Atlantic SW and NE, respectively, show CA site scores on Axis 1 vs. 2 represented by symbols of depth. In 374 

both subareas, Axis 1 is clearly a depth gradient. In the SW, there is considerable variation on Axis 2, 375 

independent of depth. This is not the case in the NE, where blue whiting was virtually absent. 376 

 377 

In these two subareas, also the Axis 3 (Eigenvalue=0.53; explained variation=7.1%) and 4 (Eigenvalue=0.48, 378 

explained variation=6.4%) of the CA appeared informative (Fig. 7b), particularly in the Atlantic NE subarea. In 379 

Atlantic NE, a group of 7 relatively deep stations form a loose cluster in the lower part of the graph, suggesting a 380 

relatively pronounced difference in species composition compared with other stations. The species composition 381 

for those 7 species and the remainder of the stations (Fig. 8) showed that the seven stations have exclusively 382 

Arctic species (Amblyraja hyperborea, Lycodes spp., and Rhodichtys regina). The remaining stations have 383 

greater richness, and include also many boreal species.  384 

 385 
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These observations suggest that compared with the Atlantic SW there is greater structuring in the Atlantic NE 386 

into a truly deep Arctic assemblage and a shelf assemblage (including also some deep stations) with more boreal 387 

species composition. The Atlantic NE is hydrographically complex being a transition area between the 388 

Greenland Sea and the Arctic Ocean with a significant inflow of Atlantic water at shelf depths.  389 

 390 

Discussion 391 

 392 

Appropriateness of input data 393 

Although the surveys were not originally designed for assemblage studies, rather for monitoring abundance of 394 

key species of commercial interest, the dataset generated was sufficiently comprehensive to carry out such 395 

analyses. The sampling was apparently too limited at depth exceeding 500 m to obtain a full species list, and the 396 

results may be weaker for that subarea than for the remainder of the Svalbard area. The identification of species 397 

was consistent, and it was a benefit to future validation that voucher specimens were submitted to the University 398 

Museum Bergen collection. The number of samples by year was not sufficient to study interannual variation, and 399 

a significant shortcoming limiting the scope of the analyses was the lack of temperature, salinity and substrate 400 

data for individual samples and trawl tows. 401 

 402 

The species accumulation curves were approaching asymptotes for several subareas, suggesting that the 403 

sampling was adequate to observe the majority of taxa occurring in each subarea. However, it is premature to 404 

make firm subarea-comparisons of richness based on these results. The apparent lower species numbers in the 405 

Svalbard East subarea are likely affected by identification problems (for the genus Icelus) and the unresolved 406 

taxonomy of certain genera (e.g. Gymnelus, Careproctus). The latter is an issue of concern that requires more 407 

taxonomic research. The species accumulation curve for the deepest slope areas >500 m was not asymptotic and 408 

this may be attributed to the lower sampling levels at these depths but could also reflect greater heterogeneity of 409 

habitats across the wider depth range in those areas compared with the shelf. On the shelf break and upper slope 410 

>500 m the tow duration was increased to obtain larger samples, but the number of tows was comparatively low. 411 

 412 

Species occurrence and assemblages 413 

The descriptive data by individual subareas and the results of the exploratory multivariate analyses fill a major 414 

gap in the understanding of fish assemblage patterns in the northeast Arctic, complementing earlier studies in the 415 

Barents Sea (Burgos 1989; Fossheim et al. 2006; Byrkjedal and Høines 2007; Johannesen et al. 2012). The 416 

Svalbard region is a transition zone between the Atlantic water masses from the boreal Norwegian Sea and 417 

Southwestern Barents shelf Sea and the Arctic waters to the north. Northern parts of the archipelago have 418 

extensive seasonally varying ice cover, even in the recent warm period. There are no apparent topographical or 419 

other obstacles to preventing distributional overlap between the Barents Sea and Svalbard, hence it is not 420 

unexpected that the Svalbard archipelago and the remainder of the Barents Sea shelf have species lists with most 421 

species in common (Wienerroither et al. 2011). A full comparison between species compositions in the two 422 

neighbouring areas is beyond the scope of this study, but some features are noteworthy. Species occurring at 423 

Svalbard associated with deeper colder water (Paraliparis bathybius, Rhodichthys regina, Lycenchelys muraena, 424 

Lycodes adolfi, Lycodes frigidus, Lycodes luetkenii and Lycodes paamiuti) are not found in the main shelf area 425 
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of the Barents Sea but have been observed in deeper trenches between Franz Josef’s Land and Novaya Zemlya 426 

(Johannesen et al. 2017). One difference from the entire Barents Sea shelf is that the Svalbard archipelago is 427 

partly surrounded by cold deep oceans and thus has marginal deep fish assemblages. The Svalbard area lacks 428 

some species associated with shallow soft bottom brackish waters found in the southeastern Barents Sea such as 429 

flatfishes Limanda limanda, Liopsetta glacialis and European plaice (Pleuronecta platessa), a few cold-water 430 

coastal species (Lumpenus fabricii and Asidophoroides olrikii), found in the eastern Barents Sea only, and a few 431 

coastal boreal species reaching their northern distribution limit in the south-western Barents Sea (e.g. Atlantic 432 

halibut Hippoglossus hippoglossus, Wienerroither et al. 2011).  433 

 434 

The major transition in species composition was that between deep Greenland Sea and Arctic Ocean 435 

assemblages (shelf break and upper slope assemblage) and the shelf assemblages. Different shelf assemblages 436 

could be distinguished, but they had many species in common and were not very different. On the shelf, there 437 

appeared to be a clear difference between the Atlantic SW and Svalbard Bank and Svalbard East. The expected 438 

association of fish assemblages with regional bathymetric and hydrographic features was thus confirmed. An 439 

interesting finding was indication of high richness on the Svalbard Bank, in the subarea experiencing the more 440 

pronounced seasonal variation in hydrographic conditions. The varying conditions may facilitate occurrence of 441 

comparatively many species with different zoogeographical affinities in this shallow subarea. 442 

 443 

Assemblage patterns and environmental conditions 444 

Prevailing hydrographic conditions may underlie the relatively small differences in the species composition of 445 

fishes across the Svalbard shelf areas. Notwithstanding seasonality, during the recent and present warm period it 446 

is likely that a greater hydrographic homogeneity across the archipelago occurred as Arctic water masses retract 447 

from shallow areas of the shelf, and Atlantic water inflows are more prominent. The change from the Atlantic 448 

SW to an Arctic assemblage on the Svalbard Bank and in the Svalbard East subarea contrasts somewhat with the 449 

corresponding sharper transition observed in the Barents Sea where an association with the Polar Front was 450 

observed in earlier studies (Burgos 1989; Fossheim et al. 2006; Byrkjedal and Høines 2007; Johannesen et al. 451 

2012; Fossheim et al. 2015; Johannesen et al. 2016).  452 

 453 

The Atlantic subareas to the southwest and northeast are characterized by the strongest influence of the Atlantic 454 

Water influx from the south but also by the prominent deep front against the Norwegian Sea Deepwater with 455 

sub-zero temperature. In these subareas, the analyses suggest strong depth-related patterns which probably also 456 

reflect the depth-related hydrographical structure. This has been observed also in shelf-break studies further 457 

south in the Norwegian Sea (Bergstad et al. 1999). There are also some differences between fish assemblage 458 

pattern in the subareas facing the Norwegian/Greenland Sea (SW) and the Arctic Ocean (NE). Supposedly, the 459 

Atlantic influence is weaker in the latter area, especially in deep shelf waters.  460 

 461 

The Barents Sea and Svalbard region has in recent years experienced an unprecedented warming trend, and a 462 

further warming may cause an abrupt northward shift of the Polar Front (Wassmann et al. 2015). Under 463 

continued warming, our hypothesis is therefore that the entire Svalbard shelf and coastal waters will be inhabited 464 

by an Atlantic species assemblage, leading to a “borealization” of the Svalbard shelf (Fossheim et al. 2015). 465 
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Since Arctic and Atlantic food webs have different properties (e.g. connectivity) (Korscht et al. 2015), the 466 

dynamic properties of the ecosystem in the region is likely to change. Arctic species will likely retract to 467 

northern and eastern waters of the high Arctic. Deep assemblages on the upper continental slope, however, will 468 

likely be maintained because deep oceanic waters will remain of Arctic origin (Fossheim et al. 2015).  469 

 470 

In contrast, if a cooling trend should occur, or even cooling events during the general warming trend, the Polar 471 

Front would probably be stable. This was observed in earlier decades prior to the recent warming. A productivity 472 

decline in pelagic system due to cooling and increasing ice cover may be expected. Some boreal species may 473 

retract (e.g., Atlantic cod). However, the hypothesis is that the main distribution and species assemblage patterns 474 

will be maintained as suggested in this study. 475 

 476 

Utility of results and future work 477 

The results generated in this study represent an improved baseline that will contribute to facilitating future 478 

evaluations of states and trends in fish distributions and spatial abundance patterns. As such it is a contribution to 479 

regional biodiversity analyses and assessments underlying management advisory processes. It will also benefit 480 

the generation of testable hypothesis on structuring processes for this prominent and complex hydrographical 481 

frontal zone.  482 

 483 

Shortcomings in terms of sampling levels and design that prevented more thorough analyses of assemblage 484 

patterns for the entire area as well as those specific to subareas should be taken into account in future efforts. In 485 

order to facilitate temporal studies, the sampling design and level (the number of stations and their position) 486 

should not change from year to year. If a systematic strategy is retained, a regular grid on the shelf should be 487 

continued, but along the shelf break transects following the depth gradient with a shorter inter-station distance 488 

should be applied. This will allow for finer resolution of the study of species-depth composition relationship and 489 

how this relationship varies with time. Also, continued effort is recommended to reduce uncertainty by 490 

improving species identification. The use of  temperature sensors attached to the sampling gear (the trawl) is 491 

suggested for  future surveys. 492 

 493 

Apart from assessing impacts of climate variation and change, future studies using the new baseline may 494 

facilitate investigations of the influence of fisheries as well as increasing petroleum and mineral extraction 495 

activity. The Svalbard archipelago has been the subject of commercial fisheries for at least 85-90 years (Boitsov 496 

et al. 2004; Townshill et al. 2015). The present species composition in a major part of the Svalbard archipelago 497 

is probably already affected by past exploitation and therefore not in a virgin state. There is a continued need for 498 

monitoring and assessing fishing activities and to follow up new developments and potential northward shifts in 499 

fishing effort during the recent warming trend (Haug et al. 2017). Based on the current regulation practices, 500 

however, the expectation is that there will be limited effects of fisheries on the demersal fish community in the 501 

Svalbard archipelago. All fisheries are regulated (Total Allowable Catches, technical regulations, Marine 502 

Protected Areas) to maintain productivity and habitats, hence major changes may not be very likely. Bycatch 503 

rates are assumed small under current move-on-rules and technical regulations. The trend in the recent 15 years 504 

is rather declining than increasing shrimp trawling activity around Svalbard (ICES 2014). The possible 505 
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expansion in fisheries for Atlantic cod and pot fisheries that may happen will probably be possible without 506 

significant additional impact on non-target species. If shrimp trawling and pot fishing for crabs become 507 

substantial and venture into northern unexploited subareas, it is however relevant to consider what areas and 508 

assemblages will be affected by an increased target and bycatch mortality. Impacts of oil and gas activity as well 509 

as mining will naturally depend on scale, geographical distribution and technological approach of such activity. 510 

Currently, the only permissions granted are exploratory licenses in the Hopen Deep. It is difficult to develop 511 

scenarios, but a growing extractive industry is an issue of concern and enhances the need for monitoring and 512 

assessments.  513 

 514 

Future work should include continued and improved monitoring and assessments of fish assemblages and their 515 

environment, and targeted monitoring of human activity and impacts. For most fish species that are not targeted 516 

by current fisheries, i.e. ca. 90% of the species list, essential habitats, spawning and nursery areas are largely 517 

unknown, hence there is limited data to make risk evaluations. To facilitate further monitoring and advisory 518 

activity, there is thus a need for studies of essential habitats of different life stages of fishes, especially non-target 519 

species. 520 

 521 
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 674 
Figure captions 675 
 676 
Fig. 1 The Svalbard archipelago and the spatial distribution of trawl sites (black dots) sampled in the 2007-2014 677 
annual bottom trawl surveys used in the analyses of demersal fish assemblages. The multishaded/colored study 678 
area is the Svalbard Fishery Protection zone managed by Norway. For some of the analyses, the data set was 679 
split into six subareas (shown by different shading/colours), based on bathymetry and information on regional 680 
hydrography. The bathymetry used was that provided by the Norwegian Mapping Authority. 681 
 682 
Fig. 2 Modelled average temperature on the Svalbard archipelago across the time-series 2007-2014 in a) August-683 
September and b) March-April, as well as c) temperature anomalies from time-series in the Kola section 1950-684 
2014. For details on model set-up and performance, see Lien et al. (2013b; 2014). 685 
 686 
Fig. 3 Demersal fish abundance in Norwegian bottom trawl surveys on the Svalbard archipelago 2007-2014. 687 
Overview of distribution and abundance (number of individuals sampled by a 15 min trawl tow) for all species 688 
for each sampling year for six subareas of the Svalbard archipelago shown in Figure 1, and for the group of 689 
stations deeper than 500 m. The taxa are listed in ascending order according to overall abundance in the pooled 690 
dataset, and symbol sizes reflect mean abundance levels given in legend beneath the graph. Horizontal lines 691 
connect symbols in the cases where a species occurs in two or more subsequent years. Numbers of trawl hauls by 692 
subarea and year are shown as numbers above the horizontal axis. 693 
 694 
Fig. 4 Demersal fish data from Norwegian bottom trawl surveys on the Svalbard archipelago 2007-2014. Species 695 
accumulation curves for all trawl samples from individual subareas of the Svalbard archipelago shown in Figure 696 
1. Accumulation curves and associated 95% confidence intervals derived by 100 random permutations. 697 

Fig. 5 Correspondence analysis (CA) of demersal fish data from all the trawl sites shallower than 500 m depth of 698 
the 2007-2014 Norwegian bottom trawl survey on the Svalbard archipelago. Sampling site scores on Axis 1 vs. 2 699 
are given for all stations (grey dots). All plots show the entire output, but individual panels highlight the score 700 
patterns of the sites in the six subareas as black lines and dots. 701 

Fig. 6 Correspondence analysis (CA) scores on Axis 1 vs. 2 and abundance (standardized to 15 min trawling 702 
time) of 16 selected fish species observed during the 2007-2014 Norwegian bottom trawl survey on the Svalbard 703 
archipelago. Sizes of squares indicate abundance at individual sites, and small dots represent absences (zero 704 
observations). 705 

Fig. 7 Correspondence analysis (CA) of demersal fish data from the 2007-2014 Norwegian bottom trawl survey 706 
on the Svalbard archipelago, using only the sub-set of data from the Atlantic SW and NE subareas (Fig 1). From 707 
those subareas, all stations from the entire depth range are included. a) Site scores on Axis 1 and 2 , and b) Site 708 
scores on Axis 3 and 4. Grey scale of symbols indicate site depth.  709 

Fig. 8 Correspondence analysis (CA) of demersal fish data from the 2007-2014 Norwegian bottom trawl survey 710 
on the Svalbard archipelago, using only the sub-set of data from the Atlantic NE subarea (Fig 1). Comparison of 711 
species compositions in tows (sites) from the Atlantic NE subarea with CA site scores on Axis 3 >-5, and sites 712 
scores on Axis 3<-5 (7 sites occurred in this range). 713 

 714 

 715 

Captions to online resources 716 

Online resource 1 Data set used in the analysis 717 

 718 

 719 
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Table 1. - Norwegian bottom trawl surveys on the Svalbard archipelago 2007-2014. The number of trawl stations 

by subarea and year. Stations deeper than 500 m are given in parenthesis. 

Year Atlantic NE Atlantic SW Hopen Deep 

Svalbard  

Coast 

Svalbard 

Bank 

Svalbard 

East 

2007 22 (18) 44 (12) 32 24 21 18 

2008 16 (13) 32 (13) 8 20 10 12 

2009 12 (8) 9 (6) 12 15 8 15 

2010 2 (0) 10 (3) 16 8 18 14 

2011 16 (6) 21 (3) 7 8 18 25 

2012 20 (18) 20 (6) 16 32 15 25 

2013 26 (6) 26 (3) 20 33 21 24 

2014 11 (1) 14 (8) 20 3 17 7 
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Table 2. Demersal fish data from Norwegian bottom trawl surveys on the Svalbard archipelago 2007-2014. 

Species list, with abbreviations used in the figures and zoogeographical groups according to Andriashev and 

Chernova (1995) and Mecklenburg et al. (2011). Where the zoogeographical classification differs among the 

two, the group according to Mecklenburg et al. (2011) is given in parenthesis. A: Arctic, MA: Mainly Arctic, 

AB: Arcto-Boreal, MB: Mainly Boreal and B: Boreal 

Family Species 

  
Abbreviation Zoogeographical 

affinity 

Arhynchobatidae Bathyraja spinicauda Bat.spi MB 

Rajidae Amblyraja hyperborea Amb.hyp A 

 Amblyraja radiata Amb.rad MB 
 Rajella fyllae Raj.fyl MB (B) 

Argentinidae Argentina silus Arg.sp B 
Macrouridae Coelorinchus labiatus Coe.lab - 

 Macrourus berglax Mac.ber B (MB) 

Gadidae Gadus morhua Gad.mor MB 
 Melanogrammus aeglefinus Mel.aeg MB 

 Micromesistius poutassou Mic.pou MB 

 Pollachius virens Pol.vir MB (B) 
 Trisopterus esmarkii Tris.esm B 

Lotidae Brosme brosme Bro.bro MB (B) 

 Enchelyopus cimbrius Enc.cim B  
 Gaidropsarus argentatus Gai.arg A (AB) 

 Molva molva Mol.mol B 

Sebastidae Sebastes spp. Seb.spp MB 
Cottidae Artediellus atlanticus Art.atl MB (AB) 

 Gymnocanthus tricuspis Gym.tri MA (A) 

 Icelus spp. Ice.spp AB and MA 
 Myoxocephalus scorpius Myo.sco MB (AB) 

 Triglops murrayi Tri.mur B (MB) 

 Triglops nybelini Tri.nyb A 
 Triglops pingelii Tri.pin AB 

Psychrolutidae Cottunculus microps Cott.mic MA (AB) 

Agonidae Leptagonus decagonus Lep.dec AB 
Cyclopteridae Eumicrotremus derjugini Eum.der A 

 Eumicrotremus spinosus Eum.spi MA 

Liparidae Careproctus spp. Car.spp MA, A and AB 
 Liparis bathyarcticus Lip.bat MA 

 Liparis fabricii Lip.fab A 

 Liparis tunicatus Lip.tun A 
 Paraliparis bathybius Par.bat A 

 Rhodichthys regina Rho.reg A 

Zoarcidae Gymnelus spp. Gym.spp A and AB 
 Lycenchelys kolthoffi Lyc.ado A 

 Lycenchelys muraena Lyc.esm A 

 Lycenchelys sarsii Lyc.eud B 
 Lycodes adolfi Lyc.fla A 

 Lycodes esmarkii Lyc.fri MB 

 Lycodes eudipleurostictus Lyc.gra A 
 Lycodes frigidus Lyc.lut A 

 Lycodes gracilis Lyc.paa MB 

 Lycodes luetkenii Lyc.pall A 
 Lycodes paamiuti Lyc.ret (A) 

 Lycodes pallidus Lyc.ros A (AB) 

 Lycodes reticulatus Lyc.sem A 
 Lycodes rossi Lyc.squ A 

 Lycodes seminudus Lyce.kol A 

 Lycodes squamiventer Lyce.mur A 
 Lycodonus flagellicauda Lyce.sar A 

Stichaeidae Anisarchus medius Ani.med B (AB) 

 Leptoclinus maculatus Lep.mac MB (AB) 
 Lumpenus lampretaeformis Lum.lam MB 

Anarhichadidae Anarhichas denticulatus Ana.den MB (AB) 

 Anarhichas lupus Ana.lup MB 
 Anarhichas minor Ana.min MB 

Pleuronectidae Hippoglossoides platessoides Hip.pla MB 
 Reinhardtius hippoglossoides Rei.hip MA (AB) 
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