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ABSTRACT

In this paper we propose a new test statistic for unsupervised
change detection in polarimetric synthetic aperture radar (Pol-
SAR) data. We work with multilook complex (MLC) covari-
ance matrix data, whose underlying model is assumed to be
the scaled complex Wishart distribution. We use the complex
kind Hotelling-Lawley (HL) trace statistic for measuring the
similarity of two covariance matrices. The sampling distri-
bution of the HL trace is approximated by a Fisher-Snedecor
distribution, which is used to define the significance level of a
constant false alarm rate change detector. The performance of
the proposed method is tested on simulated and real PoOISAR
data sets and compared to the likelihood ratio test statistic.

Index Terms— radar polarimetry, synthetic aperture
radar, change detection, test statistic, complex Wishart distri-
bution, Hotelling-Lawley trace

1. INTRODUCTION

Multitemporal remote sensing represents a powerful source of
information to monitor and study processes on the Earth’s sur-
face, for instance, in dister management, detection and mon-
itoring of volcanic activity, glacier dynamics, deforestation,
and growth of urban areas. The use of synthetic aperture radar
(SAR) sensors is attractive in temporal studies, because they
are not limited by cloud cover and absence of sunlight, con-
trary to optical sensors. Many studies have demonstrated the
great potential of SAR images in change detection and time
series analysis, e.g., [1, 2]. This study is devoted to the multi-
channel PolSAR instrument, which provides increased detec-
tion capability as compared to single-polarization SAR.

In the analysis of multitemporal SAR data, a large amount
of automatic and unsupervised change detection approaches
have been developed and described in the literature. We
limit our focus to change detection in multilook complex
(MLC) PolSAR images, where the backscattered signal is
represented by the so-called polarimetric covariance (or co-
herency) matrix. For each pixel, this is a Hermitian and
positive definite matrix, which is often assumed to follow a
complex Wishart distribution. The higher complexity of the

matrix-variate data makes them less mathematically tractable,
which is probably why the literature on incoherent polarimet-
ric change detection is somewhat sparse, and mostly restricted

to nontextured density models.
The seminal work on test statistics for change detection

in multilook PolSAR images was done by Conradsen et al.,
who proposed a generalized likelihood ratio test for equality
of two complex covariance matrices and gave the asymptotic
sampling distribution for the test statistic [3]. This method,
also known as the Bartlett test, was compared by Kersten et al.
to the alternative contrast ratio and ellipticity tests [4]. Erten
et al. presented a test which allows the compared matrices
to be statistically dependent [5]. Other methods by Erten et
al. based on information theory followed in [6, 7]. Marino
et al. proposed a test which is reported to suppress intensity
information and perform well in detection of changes in the
internal structure of the covariance matrix. All of the men-
tioned approaches assume that the covariance matrices fol-
low the complex Wishart distribution. Change detection al-
gorithms for non-Wishart PoISAR data described by the mul-
tilook product model were presented by Phan et al. [8].

In this study, we apply the complex-kind Hotelling-
Lawley (HL) trace as a new test statistic for MLC PolSAR
data. The method can be seen as a matrix-variate version of
the intensity ratio test, where the HL trace is used to con-
trast two complex covariance matrices and produce a scalar
value, to which a threshold can be applied. Remark that both
low and high values of the test statistic indicate change, by
analogy with the intensity ratio. The sampling distribution
of the proposed test statistic has been approximated by the
Fisher-Snedecor (FS) distribution, which has been used as
an approximation for the real-kind Hotelling-Lawley trace
[9, 10, 11]. The parameters of the FS distribution are de-
termined by matching population moments of the HL trace
and the FS distribution, and depend only on the dimension
of the polarimetric data and the equivalent number of looks

estimated for the images.
Section 2 presents the underlying theory: the complex

Wishart distribution, the proposed test statistic and its sam-
pling distribution. Experimental results are given in Section 3
and conclusions in Section 4.



2. THEORY

Let A = {A(4,j);1 < i < I,1 < j < J}and B =
{B(3,j);1 <i<1,1<j<J} betwo equal-sized and co-
registered MLC PoISAR images acquired over the same geo-
graphical area at times o and t; (1 > %), where I and J are
the number of rows and columns of the images, respectively.
To determine whether a change has occured at position (4, 5)
in the image, we need to compare the POISAR measurements
A(i,7) and B(z, 7). These are assumed to be statistically in-
dependent sample covariance matrices with dimension d X d,
where d is the number of polarimetric channels. They are de-
fined on the cone of Hermitian and positive definite matrices,
denoted €2 .

2.1. Scaled complex Wishart distribution

The scaled complex Wishart distribution is defined on {2 and
has probability density function (pdf) [12]
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where |- | is the determinant, tr(-) is the trace operator, d is the
matrix dimension, L is the equivalent number of looks (i.e.,
the degrees of freedom), ¥ = E{C} is the scale matrix, and
the normalization factor
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is the multivariate gamma function of the complex kind. We
further assume that both A and B (whose pixel indices are
dropped from here on) follow complex Wishart distributions,
potentially with different distribution parameters, which is de-
noted A ~ W5 (L,,X,) and B ~ W$(L;, 3;). For simplic-
ity, we shall assume that images A and B have the same orig-
inal resolution and have been subject to the same multilook
processing, which legitimates the assumption of L, = L.

2.2. Hotelling-Lawley trace statistic

Under the assumption that L, = L;, change detection is per-
formed by choosing between the hypotheses:

HOZEaZEba
H S, 4%. 3)

The null hypothesis (Hy) corresponds to no change and the
alternative hypothesis (H1) to change. We propose to test
this with the complex-kind Hotelling-Lawley trace statistic,
defined as

L = tr(AT'B). 4)

This measure effectively produces a matrix quotient and com-
pacts the matrices into a scalar, which can be tested against a
threshold.

Thresholding can be done with a standard constant false
alarm rate (CFAR) procedure, or by alternative methods such
as the minimum classification error approach of Kittler and
Ilingworth (K&I) [13, 14]. In the CFAR approach we set
a desired false alarm rate (FAR) or significance level «, and
determine the threshold from the sampling distribution p., (7)
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The thesholds Tj, and Tj; define the lower and the upper «
percentiles of p,(7), and correspond to backscatter decrease
and increase, respectively. The HL trace can be used to test
for either kind of change, or both, depending on the applica-
tion. With two thresholds, the definition in (5) must be ad-
justed such that the two rejection regions together define a
FAR equal to a.

2.3. Sampling distribution

Both the CFAR approach and the K&I method require knowl-
edge of the sampling distribution of 7z ,. It is not mathemati-
cally tractable to derive this distribution for general d. Hence,
we adopt the method used in the real case, which is to approx-
imate p,(7) by a FS distribution [9, 10, 11]. The motivation
is that the FS distribution is the true model for d = 1, and
has generally shown to be an adequate approximation and a
practical solution. The pdf is given by [12]
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where y = E{7} is the mean, while £ and ( are shape param-
eters. The general vth-order moment is
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The remaining problem is to determine the parameters of
the FS distribution. Our proposed solution is to match the
population moments of the FS distribution, defined by (7),
with the population moments of 73;; . These have been derived
in [15] using results from [16]. The mean of 7y, is
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where ), = L, — d. The second-order moment is
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Fig. 1. Comparison of HL test and Bartlett test with data simulated from the complex Wishart model.

and the third-order moment is given as
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We seek expressions for the parameters of the FS distri-
bution in terms of the distribution parameters of the scaled
Wishart matrices A and B, ie., L = L, = L; and d. The
solutions for i, £ and ( are defined by the equation system

myD(&, ¢ p) =myP(L,d), v=1,23. (D)
An analytic solution for p is easily found by matching the
first-order moments. To match the second and third-order
moments and retrieve the shape parameters, we use minimum
distance optimization [17] and minimize
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Estimation of the equivalent number of looks is a critical point
in this procedure. To do this accurately and automatically, we
use the unsupervised method by Anfinsen et al. in [18].

3. RESULTS

We have performed a number of test on simulated and real
data, that will all be presented in a future journal paper. Due
to limited space, we here only show an experiment where we
have generated two test images with eight classes that follow
a scaled complex Wishart distribution with L = 12 and their
individual ¥ computed from samples of real data. The test
images represent times ¢y and ¢;. They are shown in Fig. 1
(a) and (b) as Pauli images. Here we see that the changes
occuring are: (i) a transition from class 1 to class 8 along a
vertical strip centered in the upper half of the images; (ii) a
transition from class 5 to class 7 in a vertical strip centered
in the lower half of the images; (iii) the transition from class
5 to class 1 in the central square. Test statistic images for
the proposed HL test (777z) and the Bartlett test (75) [3] are
respectively shown in (c) and (d) on logarithmic scale to en-
hance the contrast. The histograms of 7577, and 75 follow in
(e) and (f), before the change detection results obtained with
thresholds set to obtain a CFAR of 1% are shown in (g) and
(h).

A clear difference in the behaviour of the test statistics



is observed in Fig. 1 (e) and (f), as changes are mapped into
the upper tail of 7, while they can be found in both the up-
per and the lower tail of 7771, depending on the nature of the
change. Numerical results show that the HL test obtains a
superior detection accuracy of 97.9% against 90.6% for the
Bartlett test, as revealed by Fig. 1 (g) and (h). The measured
FAR is 0.90% for the HL test, while the Bartlett test meets the
specified CFAR of 1% exactly. The overall error rate is 1.02%
for the HL test and 1.40% for the Bartlett test. We have also
produced receiver operating characteristic curves of the two
tests for experiments with real data. They unanimously show
that the HL test performs better, as it yields a higher detection
rate than the Bartlett test when the measured FAR is equal.

4. CONCLUSIONS

We have proposed the complex-kind Hotelling-Lawley trace
as a test statistic for change detection in multilook PolSAR
images. Its sampling distribution has been approximated by
a FS distribution, thereby allowing efficient determination of
the decision threshold. Experiments show that the proposed
test performs better than the commonly used Bartlett test.
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