

MASTER'S THESIS IN MATHEMTAICS

Differential invariants of the 2D conformal Lie algebra action

Marte Rørvik Høyem

February 2008

FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS University of Tromsø, N-9037, Tromsø

Contents

1	Intr	oducti	on	1			
2	The	Lie A	lgebra g	6			
	2.1	Vector	Bundles over a Complex Manifold	6			
		2.1.1	Algebras of Functions on a Complex Manifold	6			
		2.1.2	Vector Spaces and Vector Bundles	8			
		2.1.3	Vector Fields on a Complex Manifold	12			
	2.2	The L	ie Algebra \mathfrak{g}	14			
		2.2.1	Lie Algebra Structure on \mathcal{O}	15			
		2.2.2	The Manifold \mathbb{C}	17			
		2.2.3	Almost Complex Structure on \mathbb{TR}^2	18			
		2.2.4	A Relation Between the Lie Algebras \mathfrak{g} and \mathfrak{h}	19			
3	Invariant Functions of the Lie Algebra \mathfrak{g}^k 22						
	3.1	The S	pace of Jets	22			
		3.1.1	Quotient Algebras	22			
		3.1.2	Algebra of Functions on the Space of Jets	23			
		3.1.3	The Tangent- and the Complexified Tangent Bundle of $J^k \mathbb{R}^2$	24			
		3.1.4	Vector Fields on $J^k \mathbb{R}^2$	26			
	3.2	The C	ontact Distribution and the Cartan Distribution	27			
		3.2.1	The Contact Distribution on $J^1 \mathbb{R}^2$	27			
		3.2.2	Contact Transformations and Contact Vector Fields	27			
		3.2.3	Prolongation of $\mathcal{D}(J^0\mathbb{R}^2)$ and $\operatorname{Cont}(J^1\mathbb{R}^2)$	29			
		3.2.4	The Cartan Distribution on $J^k \mathbb{R}^2$	30			
		3.2.5	Lie Transformations and Lie Vector Fields	30			
		3.2.6	Invariant Functions and Differential Invariants	32			
	3.3	The L	ie Algebra \mathfrak{g}^k	34			
		3.3.1	The Distribution Π^k	36			
		3.3.2	Invariant Functions of Order 0, 1, 2 and 3	40			
	3.4	Invaria	ant Differentiations and Differential Invariants	42			
		3.4.1	Tresse Derivation	44			
		3.4.2	Lie-Tresse Theorem	45			

	3.5	Invariant Derivatives of the Lie Algebra \mathfrak{g}	46			
		3.5.1 Invariant Derivatives of \mathfrak{g} , Method 1	46			
		3.5.2 Invariant Derivatives of \mathfrak{g} , Method 2	49			
		3.5.3 Invariant Derivatives of \mathfrak{g} , Method 3	52			
		3.5.4 Invariant Functions of the Lie Algebras $sl_2(\mathbb{C})_{\mathbb{R}}$ and $co(2)$	57			
4	Differential Invariants of the Deformed Representations of $\mathfrak g$					
	4.1	The Lie Algebra \mathfrak{g}_{Fb}	62			
		4.1.1 The Lie Algebra Homomorphism $K_{\lambda} : \mathfrak{h} \to \mathcal{D}(J^0 \mathbb{R}^2) \otimes \mathbb{C} \ldots \ldots$	62			
		4.1.2 A Lie Algebra Isomorphism	64			
	4.2	The Lie Algebra \mathfrak{g}_{Fb}^k	66			
		4.2.1 The Distribution Ω_{Fb}^k	67			
		4.2.2 Invariant Derivatives of \mathfrak{g}_{Fb}	68			
		4.2.3 Invariant Functions of the Lie Algebra \mathfrak{z}_{Fb} and \mathfrak{c}_{Fb}	71			
5	Applications and Examples					
	5.1	Applications	74			
	5.2	The Action of \mathfrak{g} on $J^k\mathbb{R}$	77			
6	App	pendix	82			
Bi	Bibliography					

Acknowledgments

I am grateful to my supervisor Boris Kruglikov for sharing his knowledge and guiding me throughout the work on this thesis.

I am appreciative to Valentin Lychagin for excellent lectures on nonlinear partial differential equations and helpful discussions and to Marius Overholt for many profitable conservations regarding complex analysis.

I want to thank all my fellow students and employees at the Institute of Mathematics and Statistics at UiTø for creating a friendly and inspiring work environment.

And I thank my boyfriend Frode Måløy, who in many ways have been a key person throughout this process.

Chapter 1

Introduction

The space

$$CO(2) = \left\{ \begin{bmatrix} \lambda \cos(t) & -\lambda \sin(t) \\ \lambda \sin(t) & \lambda \cos(t) \end{bmatrix} \mid t \in S^1 = \mathbb{R} \mod 2\pi, \ \lambda \in \mathbb{R}^+ \right\}$$

is the linear conformal Lie group. The Lie algebra of CO(2) is

$$\operatorname{co}(2) = \langle -y\partial_x + x\partial_y, \ x\partial_x + y\partial_y \rangle.$$

Consider the 4–dimensional Lie group

$$CO(2) \ltimes \mathbb{R}^2 = \left\{ \varphi \in \operatorname{Aff} \left(\mathbb{R}^2, \mathbb{R}^2 \right) : \ \varphi(x) = Ax + b \mid A \in CO(2), \ b \in \mathbb{R}^2 \right\}$$

The Lie algebra of $CO(2) \ltimes \mathbb{R}^2$ is

$$co(2) \ltimes \mathbb{R}^2 = \langle -y\partial_x + x\partial_y, \ x\partial_x + y\partial_y, \ \partial_x, \ \partial_y \rangle.$$

It is known [S, KL2] that the conformal Lie algebra

$$\mathfrak{g} = \{ V_g = g_1(x, y)\partial_x + g_2(x, y)\partial_y \mid g_{1x} = g_{2y}, \ g_{1y} = -g_{2x} \} \subset \mathcal{D}(\mathbb{R}^2)$$

is the completion of the ∞ -prolongation of $co(2) \ltimes \mathbb{R}^2$. Hence \mathfrak{g} is the Lie algebra that corresponds to the Lie pseudogroup of all conformal transformations of \mathbb{R}^2

$$\begin{split} \varphi: \mathbb{R}^2 &\longrightarrow \mathbb{R}^2, \ \varphi(x,y) = (\varphi_1(x,y), \varphi_2(x,y)), \\ & \left[\frac{\partial \varphi_1}{\partial x} \quad \frac{\partial \varphi_1}{\partial y} \\ \frac{\partial \varphi_2}{\partial x} \quad \frac{\partial \varphi_2}{\partial y} \right] \in CO(2). \end{split}$$

The conformal Lie algebra is canonically represented as the Lie algebra of vector fields in \mathbb{R}^2 . In Chapter 4 we find all possible representations of \mathfrak{g} via vector fields in

$$J^0 \mathbb{R}^2 = \mathbb{R}^2 \times \mathbb{R} = \mathbb{R}^3 (x, y, u)$$

which project to the canonical representation. Namely, for any function $F(u) \in C^{\infty} (J^0 \mathbb{R}^2)$ and constant $b = b_1 + ib_2 \in \mathbb{C}$ the inclusion map

$$I_{Fb}: \mathfrak{g} \longrightarrow \mathcal{D}(J^0 \mathbb{R}^2),$$

$$I_{Fb}(V_g) = V_g + F(u)(b_1g_1 - b_2g_2)\partial_u,$$

is an injective Lie algebra homomorphism and these are all representations of the form $V_g \mapsto V_g + \lambda \partial_u$. Let

$$\mathfrak{g}_{Fb} = \operatorname{Im}(I_{Fb}) = \{ V_g + F(u)(b_1g_1 - b_2g_2)\partial_u \mid g_{1x} = g_{2y}, \ g_{1y} = -g_{2x} \}$$

denote the image of the map.

In this thesis we will find the algebra of \mathfrak{g}_{Fb} -differential invariants.

Theorem 1 The algebra \mathcal{G}^{Fb} of \mathfrak{g}_{Fb} -differential invariants is generated by I_0 , I_2 , ∇_1 and

 ∇_2 , where for F = 0

$$I_{0} = u,$$

$$I_{2} = \frac{u_{20} + u_{02}}{u_{10}^{2} + u_{01}^{2}},$$

$$\nabla_{1} = \frac{1}{u_{10}^{2} + u_{01}^{2}} (u_{10}\mathcal{D}_{x} + u_{01}\mathcal{D}_{y}),$$

$$\nabla_{2} = \frac{1}{u_{10}^{2} + u_{01}^{2}} (u_{01}\mathcal{D}_{x} - u_{10}\mathcal{D}_{y}),$$

and for $F \neq 0$

$$I_{0} = \int \frac{du}{F(u)} - b_{1}x + b_{2}y,$$

$$I_{2} = \frac{(-u_{01}^{2} - u_{10}^{2})F_{u}(u) + F(u)(u_{02} + u_{20})}{(b_{1}F(u) - u_{10})^{2} + (b_{2}F(u) + u_{01})^{2}},$$

$$\nabla_{1} = \left(\frac{F(u)^{2}}{(u_{10} - b_{1}F(u))^{2} + (u_{01} + b_{2}F(u))^{2}}\right) \left(\left(\frac{u_{10}}{F(u)} - b_{1}\right)\mathcal{D}_{x} + \left(\frac{u_{01}}{F(u)} + b_{2}\right)\mathcal{D}_{y}\right),$$

$$\nabla_{2} = \left(\frac{F(u)^{2}}{(u_{10} - b_{1}F(u))^{2} + (u_{01} + b_{2}F(u))^{2}}\right) \left(\left(\frac{u_{01}}{F(u)} + b_{2}\right)\mathcal{D}_{x} + \left(-\frac{u_{10}}{F(u)} + b_{1}\right)\mathcal{D}_{y}\right).$$

Hence, any function $f \in \mathcal{G}^{Fb}$ of order m has the form

$$f = f(I_0, I_2, I_{3,1}, I_{3,2}, \dots, I_{m,1}, \dots, I_{m,m-1}),$$

where

$$I_{k,j} = \nabla_1^{k-2-j} \nabla_2^j (I_2), \quad j,k \in \mathbb{Z}_{\geq 2}, \ k > j.$$

The invariants $\{I_{k,j}\}$ are functionally independent.

We will also show that if f is a \mathfrak{g}_{Fb} -differential invariant and $h(x, y) \in C^{\infty}(\mathbb{R}^2)$ is a solution of the *PDE* $\mathcal{E} = \{f = 0\}$, then the function

$$u(x,y) = h(g_1(x,y), g_2(x,y)), F = 0,$$
(1.1)

$$u(x,y) = G^{-1}(b_1(x-g_1(x,y)) - b_2(y-g_2(x,y)) + G(h(g_1(x,y),g_2(x,y)))), \quad (1.2)$$

$$F \neq 0, \ G(u) = \int \frac{du}{F(u)},$$

is a solution of \mathcal{E} for any analytic function $g(z) = g_1(x, y) + ig_2(x, y)$ on domains where $g_z \neq 0$. Thus we get a collection of *PDEs* \mathcal{E} with $sym(\mathcal{E}) \supseteq \mathfrak{g}$. This provides a large family of solutions for any differential equation from this collection.

Structure of the thesis.

In Chapter 2 we collect some basic concepts from complex analysis and describe our main object, the Lie algebra g.

In Chapter 3 we describe the the space of jets, the Cartan distribution, invariant differentiations and the Lie-Tresse theorem. In the last part of this chapter we will use three different methods to find the differential invariants of the canonical representation of \mathfrak{g} . The three descriptions of the algebra turns out to be equivalent.

n Chapter 4 we will find the differential invariants of the deformed representations of \mathfrak{g} . We use the best method from Chapter 3 to generate the invariants.

In Chapter 5 we justify the above claim that Formulas (1.1) and (1.2) represent solutions of the \mathfrak{g} -invariant equations. In the last part of this chapter we will represent \mathfrak{g} as a Lie algebra of vector fields in $\mathbb{R}^2 = J^0 \mathbb{R}$, and find differential invariants of some finite dimensional Lie subalgebras of \mathfrak{g} .

Conventions.

Most of the results in this thesis are defined locally, restricted to regular domains where the \mathfrak{g} -differential invariants are well defined. We will not specify locations in the text. In this thesis we will extensively use complexification, which work nicely with real-analytic objects. Thus we adopt the following convention: depending on the context C^{∞} can mean smooth or analytic functor. The coordinate function

$$z = x + iy, \ \bar{z} = x - iy,$$

are used when we assume analyticity. The convention is helpful because the main results concerning \mathfrak{g} -differential invariants hold in smooth category. Thus we will be using the freedom of extending and shrinking the space of functions, vector fields etc.

Chapter 2

The Lie Algebra \mathfrak{g}

2.1 Vector Bundles over a Complex Manifold

In this section we will describe some basic concepts that will be important in the rest of the text. Most of the material is well known, see [KN].

2.1.1 Algebras of Functions on a Complex Manifold

Let M be a complex smooth manifold of dimension n. Consider the spaces of functions

$$C^{\infty}(M) = \{f : M \to \mathbb{R} \mid f \text{ is smooth}\},\$$

 $\mathcal{O}(M) = \{ f : M \to \mathbb{C} \mid f \text{ is complex analytic} \},\$

$$C^{\infty}(M, \mathbb{C}) = \{ f : M \to \mathbb{C} \mid f \text{ is smooth} \}.$$

The spaces of functions $C^{\infty}(M, \mathbb{C})$ and $\mathcal{O}(M)$ are \mathbb{C} -algebras, and the space of functions $C^{\infty}(M)$ is an \mathbb{R} -algebra. Moreover, $C^{\infty}(M, \mathbb{C})$ is equal to the tensor product

$$C^{\infty}(M,\mathbb{C}) = C^{\infty}(M) \otimes \mathbb{C}.$$

Let $U \subset M$ be a chart with local coordinates

$$(z_1 = x_1 + iy_1, \dots, z_n = x_n + iy_n).$$

There exist projections (restrictions)

$$C^{\infty}(M) \longrightarrow C^{\infty}(U),$$

 $\mathcal{O}(M) \longrightarrow \mathcal{O}(U),$
 $C^{\infty}(M) \otimes \mathbb{C} \longrightarrow C^{\infty}(U) \otimes \mathbb{C}.$

The functions $f_1 \in C^{\infty}(U)$, $f_2 \in \mathcal{O}(U)$ and $f_3 \in C^{\infty}(U) \otimes \mathbb{C}$ have the forms

$$f_1 = f_1(x_1, y_1, ..., x_n, y_n),$$

$$f_2 = f_2(z_1, ..., z_n),$$

$$f_3 = F_1(x_1, y_1, ..., x_n, y_n) + iF_2(x_1, y_1, ..., x_n, y_n).$$

The inclusion map

$$\mathcal{O}(M) \hookrightarrow C^{\infty}(M) \otimes \mathbb{C}$$

is an injective \mathbb{C} -algebra homomorphism. Hence $\mathcal{O}(M)$ is a \mathbb{C} -subalgebra of $C^{\infty}(M) \otimes \mathbb{C}$.

The inclusion $\mathbb{R} \hookrightarrow \mathbb{C}$ induces the inclusion

$$I: C^{\infty}(M) \hookrightarrow C^{\infty}(M) \otimes \mathbb{C},$$

$$I(f) = f(x_1, y_1, ..., x_n, y_n) + i0.$$

The projection maps $\operatorname{Re},\operatorname{Im}:\mathbb{C}\to\mathbb{R}$ induce the projections

$$\operatorname{Re}: C^{\infty}(M) \otimes \mathbb{C} \longrightarrow C^{\infty}(M),$$
$$\operatorname{Re}(f_1(x_1, y_1, ..., x_n, y_n) + if_2(x_1, y_1, ..., x_n, y_n)) = f_1(x_1, y_1, ..., x_n, y_n),$$
$$\operatorname{Im}: C^{\infty}(M) \otimes \mathbb{C} \longrightarrow C^{\infty}(M),$$

$$\operatorname{Im}(f_1(x_1, y_1, ..., x_n, y_n) + if_2(x_1, y_1, ..., x_n, y_n)) = f_2(x_1, y_1, ..., x_n, y_n),$$

with

$$\operatorname{Re} I = \operatorname{Im}(iI) = Id_{C^{\infty}(M)}$$

The inclusion I is an injective \mathbb{R} -algebra homomorphism. Hence $C^{\infty}(M)$ is an \mathbb{R} subalgebra of $C^{\infty}(M) \otimes \mathbb{C}$.

2.1.2 Vector Spaces and Vector Bundles

Let X_1 be an \mathbb{R} -linear map and X_2 and X_3 be \mathbb{C} -linear maps

$$X_1: C^{\infty}(M) \longrightarrow \mathbb{R},$$
$$X_2: \mathcal{O}(M) \longrightarrow \mathbb{C},$$
$$X_3: C^{\infty}(M) \otimes \mathbb{C} \longrightarrow \mathbb{C}.$$

The linear map X_j , for $j \in \{1, 2, 3\}$, is a derivation if it satisfies the equation

$$X_j(f_jg_j) = f_j X_j g_j + g_j X_j f_j \tag{2.1}$$

for all functions $f_1, g_1 \in C^{\infty}(M)$, $f_2, g_2 \in \mathcal{O}(M)$ and $f_3, g_3 \in C^{\infty}(M) \otimes \mathbb{C}$. The linear map X_j is a derivation at the point $p \in M$ if it satisfies Equation (2.1) at p.

For any point $p \in M$ the spaces of all derivations at p of the algebras $\mathcal{O}(M)$ and $C^{\infty}(M) \otimes \mathbb{C}$ are complex vector spaces, and the space of all derivations at p of the algebra $C^{\infty}(M)$ is a real vector space.

Let us use the following notation for the spaces of all derivations at p of the algebras $C^{\infty}(M)$ and $\mathcal{O}(M)$:

$$T_p M = \operatorname{Der}_{\mathbb{R}}(C^{\infty}(M))_p,$$
$$T_p^{1,0} M = \operatorname{Der}_{\mathbb{C}}(\mathcal{O}(M))_p.$$

Lemma 2 Let p be a point of the manifold M. Then the space of all derivations at p of the algebra $C^{\infty}(M) \otimes \mathbb{C}$ is equal to the tensor product

$$\operatorname{Der}_{\mathbb{C}}(C^{\infty}(M)\otimes\mathbb{C})_p=\operatorname{Der}_{\mathbb{R}}(C^{\infty}(M))_p\otimes\mathbb{C}.$$

Proof. For all functions $f \in C^{\infty}(M) \otimes \mathbb{C}$ there exist functions $f_1, f_2 \in C^{\infty}(M)$ such that

$$f = f_1 + i f_2.$$

Hence we have the \mathbb{C} -linear inclusion map

$$I: \operatorname{Der}_{\mathbb{R}}(C^{\infty}(M))_p \otimes \mathbb{C} \hookrightarrow \operatorname{Der}_{\mathbb{C}}(C^{\infty}(M) \otimes \mathbb{C})_p,$$

$$(IY)(f) = Y(f_1) + iY(f_2).$$

The algebra $C^{\infty}(M)$ is an \mathbb{R} -subalgebra of $C^{\infty}(M) \otimes \mathbb{C}$. Hence if we restrict $\tilde{Y} \in \text{Der}_{\mathbb{C}}(C^{\infty}(M) \otimes \mathbb{C})_p$ to $C^{\infty}(M)$, then \tilde{Y} is an \mathbb{R} -linear map

$$\tilde{Y}|_{C^{\infty}(M)}: C^{\infty}(M) \longrightarrow \mathbb{C}$$

such that for all functions $f,g\in C^\infty(M)$

$$\tilde{Y}(fg)(p) = f(p)\tilde{Y}g(p) + g(p)\tilde{Y}f(p).$$

Hence we have the \mathbb{C} -linear map

$$R: \operatorname{Der}_{\mathbb{C}}(C^{\infty}(M) \otimes \mathbb{C})_{p} \longrightarrow \operatorname{Der}_{\mathbb{R}}(C^{\infty}(M))_{p} \otimes \mathbb{C},$$
$$R(\tilde{Y}) = \tilde{Y}|_{C^{\infty}(M)}.$$

The map R is surjective since

$$RI = \mathrm{Id}_{\mathrm{Der}_{\mathbb{R}}(C^{\infty}(M))_p \otimes \mathbb{C}}$$
.

Suppose that for an element $\tilde{Y} \in \text{Der}_{\mathbb{C}}(C^{\infty}(M) \otimes \mathbb{C})_p \ \tilde{Y}(f_j) = 0$ for all functions $f_j \in C^{\infty}(M)$. Then

$$\tilde{Y}(f) = \tilde{Y}(f_1) + i\tilde{Y}(f_2) = 0, \ \forall f = f_1 + if_2 \in C^{\infty}(M) \otimes \mathbb{C}.$$

Hence $\operatorname{Ker}(R) = \{0\}$. It follows that the map R is bijective.

The inclusion map

$$T_p^{1,0}M \hookrightarrow T_pM \otimes \mathbb{C} = \operatorname{Der}_{\mathbb{C}}(C^{\infty}(M) \otimes \mathbb{C})_p$$

is an injective \mathbb{C} -linear map. Hence $T_p^{1,0}M$ is a \mathbb{C} -subspace of $T_pM \otimes \mathbb{C}$.

The inclusion map

$$I:T_pM \hookrightarrow T_pM \otimes \mathbb{C}$$

where

$$\operatorname{Re} I = \operatorname{Im}(iI) = \operatorname{Id}_{T_pM}$$

10

is an injective \mathbb{R} -linear map. Hence T_pM is an \mathbb{R} -subspace of $T_pM \otimes \mathbb{C}$.

Consider the \mathbb{C} -subspace of $T_pM\otimes\mathbb{C}$

$$T_p^{0,1}M = \overline{T_p^{1,0}M}.$$

Lemma 3 [KN] $T_pM \otimes \mathbb{C}$ is equal to the direct sum

$$T_pM\otimes\mathbb{C}=T_p^{1,0}M\oplus T_p^{0,1}M.$$

Let

$$(U, (z_1 = x_1 + iy_1, \dots z_n = x_n + iy_n))$$

be any smooth chart containing $p. \; T_pM$ is a real vector space of dimension 2n

$$T_p M = \langle \partial_{x_1} |_p, \partial_{y_1} |_p \dots \partial_{x_n} |_p, \partial_{y_n} |_p \rangle_{\mathbb{R}}.$$

 ${\cal T}_p^{1,0}M$ and ${\cal T}_p^{0,1}M$ are complex vector spaces of dimension n

$$T_p^{1,0}M = \langle \partial_{z_1}|_p, \dots, \partial_{z_n}|_p \rangle_{\mathbb{C}} = \left\langle \frac{1}{2}(\partial_{x_1} - i\partial_{y_1})|_p, \dots, \frac{1}{2}(\partial_{x_n} - i\partial_{y_n})|_p \right\rangle_{\mathbb{C}},$$
$$T_p^{0,1}M = \left\langle \partial_{\bar{z}_1}|_p, \dots, \partial_{\bar{z}_n}|_p \right\rangle_{\mathbb{C}} = \left\langle \frac{1}{2}(\partial_{x_1} + i\partial_{y_1})|_p, \dots, \frac{1}{2}(\partial_{x_n} + i\partial_{y_n})|_p \right\rangle_{\mathbb{C}}.$$

 $T_pM\otimes \mathbb{C}$ is a complex vector space of dimension 2n

$$T_p M \otimes \mathbb{C} = T_p^{1,0} M \oplus T_p^{0,1} M = \langle \partial_{x_1}|_p, \partial_{y_1}|_p \dots \partial_{x_n}|_p, \partial_{y_n}|_p \rangle_{\mathbb{C}}$$
$$= \langle \partial_{z_1}|_p, \dots, \partial_{z_n}|_p, \partial_{\bar{z}_1}|_p, \dots, \partial_{\bar{z}_n}|_p \rangle_{\mathbb{C}}.$$

Consider the spaces

$$TM = \bigcup_{p \in M} T_p M,$$
$$T^{1,0}M = \bigcup_{p \in M} T_p^{1,0} M,$$

$$T^{0,1}M = \bigcup_{p \in M} T_p^{0,1}M,$$
$$TM \otimes \mathbb{C} = \bigcup_{p \in M} T_pM \otimes \mathbb{C}.$$

By standard topological arguments TM, $T^{1,0}M$, $T^{0,1}M$ and $TM \otimes \mathbb{C}$ are vector bundles over M. The bundle TM is a real subbundle of $TM \otimes \mathbb{C}$, and $T^{1,0}M$ and $T^{0,1}M$ are complex subbundles of $TM \otimes \mathbb{C}$.

Remark 4 [KN] The above constructions work as well for the case when M is an almost complex manifold, i.e. M is a real manifold with a tensor field J which is, at every point p of M, an endomorphism of the tangent space T_pM such that $J^2 = -1$, where 1 denotes the identity transformation of T_pM .

2.1.3 Vector Fields on a Complex Manifold

Consider the spaces of smooth sections of the vector bundles $TM,\,T^{1,0}M,\,T^{0,1}M$ and $TM\otimes \mathbb{C}$

$$\mathcal{D}(M) = C^{\infty}(TM) = \operatorname{Der}_{\mathbb{R}}(C^{\infty}(M)),$$
$$\mathcal{D}^{1,0}(M) = C^{\infty}(T^{1,0}M),$$
$$\mathcal{D}^{0,1}(M) = C^{\infty}(T^{0,1}M),$$
$$\mathcal{D}(M) \otimes \mathbb{C} = \operatorname{Der}_{\mathbb{R}}(C^{\infty}(M)) \otimes \mathbb{C}.$$

The space $\mathcal{D}(M)$ is a module over the algebra $C^{\infty}(M)$, and the spaces $\mathcal{D}^{1,0}(M)$, $\mathcal{D}^{0,1}(M)$ and $\mathcal{D}(M) \otimes \mathbb{C}$ are modules over the algebra $C^{\infty}(M) \otimes \mathbb{C}$.

Consider the space of \mathbb{C} -analytic sections

$$C^{\omega}(T^{1,0}M) = \operatorname{Der}_{\mathbb{C}}(\mathcal{O}(M)).$$

The space $C^{\omega}(T^{1,0}M)$ is a module over $\mathcal{O}(M)$.

Let us write these vector fields in local coordinates. There exist projections (restrictions) for $\varphi \in \{(), (1, 0), (0, 1)\}$

$$\mathcal{D}^{\varphi}(M) \longrightarrow \mathcal{D}^{\varphi}(U),$$

 $\mathcal{D}(M) \otimes \mathbb{C} \longrightarrow \mathcal{D}(U) \otimes \mathbb{C},$
 $C^{\omega}(T^{1,0}M) \longrightarrow C^{\omega}(T^{1,0}U).$

For the vector fields $X_1 \in \mathcal{D}(U), X_2 \in \mathcal{D}(U) \otimes \mathbb{C}, X_3 \in \mathcal{D}^{1,0}(U), X_4 \in \mathcal{D}^{0,1}(U)$ and $X_5 \in C^{\omega}(T^{1,0}U)$ there exist functions $f_{1j}, f_{2j} \in C^{\infty}(U), h_{1j}, h_{2j}, q_{1j}, q_{2j} \in C^{\infty}(U) \otimes \mathbb{C}$ and $g_j \in \mathcal{O}(U)$ such that

$$X_{1} = \sum_{j=1}^{n} f_{1j} \partial_{x_{j}} + f_{2j} \partial_{y_{j}},$$

$$X_{2} = \sum_{j=1}^{n} h_{1j} \partial_{x_{j}} + h_{2j} \partial_{y_{j}},$$

$$X_{3} = \sum_{j=1}^{n} q_{1j} \partial_{z_{j}},$$

$$X_{4} = \sum_{j=1}^{n} q_{2j} \partial_{\bar{z}_{j}},$$

$$X_{5} = \sum_{j=1}^{n} g_{j} \partial_{z_{j}}.$$

The spaces $C^{\omega}(T^{1,0}M)$, $\mathcal{D}^{\varphi}(M)$ and $\mathcal{D}(M) \otimes \mathbb{C}$ are infinite dimensional Lie algebras with the Lie bracket being the commutator.

For $\beta \in \{(1,0), (0,1)\}$ the inclusion maps

$$C^{\omega}(T^{1,0}M) \hookrightarrow \mathcal{D}^{1,0}(M),$$

 $\mathcal{D}^{\beta}(M) \hookrightarrow \mathcal{D}(M) \otimes \mathbb{C},$

are Lie algebra homomorphisms. Hence $C^{\omega}(T^{1,0}M)$ is an infinite dimensional Lie subalgebra of $\mathcal{D}^{1,0}(M)$, and $\mathcal{D}^{\beta}(M)$ is an infinite dimensional Lie subalgebra of $\mathcal{D}(M) \otimes \mathbb{C}$.

The inclusion map

$$I: \mathcal{D}(M) \hookrightarrow \mathcal{D}(M) \otimes \mathbb{C},$$

where

$$\operatorname{Re} I = \operatorname{Im} (iI) = \operatorname{Id}_{\mathcal{D}(M)},$$

is a Lie algebra homomorphism. Hence $\mathcal{D}(M)$ is an infinite dimensional Lie subalgebra of $\mathcal{D}(M)\otimes\mathbb{C}$.

2.2 The Lie Algebra \mathfrak{g}

Consider the subspace $\mathfrak{g} \subset \mathcal{D}(\mathbb{R}^2)$

$$\mathfrak{g} = \{ g_1 \partial_x + g_2 \partial_y | g_{1x} = g_{2y}, \ g_{1y} = -g_{2x} \}.$$

Any element of \mathfrak{g} has the form

$$V_g = g_1 \partial_x + g_2 \partial_y,$$

where $g = g_1 + ig_2 \in \mathcal{O}$.

Proposition 5 The space \mathfrak{g} is a Lie algebra.

Proof. For any numbers $a, b \in \mathbb{R}$ and any functions $v, w \in \mathcal{O}$

$$aV_v + bV_w = (av_1 + bw_1)\partial_x + (av_2 + bw_2)\partial_y = V_{av+bw} \in \mathfrak{g}.$$

Hence \mathfrak{g} is a linear subspace of $\mathcal{D}(\mathbb{R}^2)$.

$$[V_v, V_w] = \tilde{u}_1 \partial_x + \tilde{u}_2 \partial_y$$

= $(v_1 w_{1x} - v_2 w_{2x} - w_1 v_{1x} + w_2 v_{2x}) \partial_x + (v_1 w_{2x} + v_2 w_{1x} - w_1 v_{2x} - w_2 v_{1x}) \partial_y.$

It is left to show that the Cauchy-Riemann equations hold for the function $\tilde{u}_1 + i\tilde{u}_2$.

$$\begin{split} &\frac{\partial}{\partial x}\tilde{u}_{1} = v_{1}w_{1xx} - v_{2}w_{2xx} - w_{1}v_{1xx} + w_{2}v_{2xx} + v_{1x}w_{1x} - v_{2x}w_{2x} - w_{1x}v_{1x} + w_{2x}v_{2x}, \\ &\frac{\partial}{\partial x}\tilde{u}_{2} = v_{1}w_{2xx} + v_{2}w_{1xx} - w_{1}v_{2xx} - w_{2}v_{1xx} + v_{1x}w_{2x} + v_{2x}w_{1x} - w_{1x}v_{2x} - w_{2x}v_{1x}, \\ &\frac{\partial}{\partial y}\tilde{u}_{1} = -v_{1}w_{2xx} - v_{2}w_{1xx} + w_{1}v_{2xx} + w_{2}v_{1xx} - v_{2x}w_{1x} - v_{1x}w_{2x} + w_{2x}v_{1x} + w_{1x}v_{2x}, \\ &\frac{\partial}{\partial y}\tilde{u}_{2} = v_{1}w_{1xx} - v_{2}w_{2xx} - w_{1}v_{1xx} + w_{2}v_{2xx} - v_{2x}w_{2x} + v_{1x}w_{1x} + w_{2x}v_{2x} - w_{1x}v_{1x}. \end{split}$$

Thus we see that

$$\tilde{u}_{1x} = \tilde{u}_{2y}, \ \tilde{u}_{1y} = -\tilde{u}_{2x},$$

and $[V_v, V_w] \in \mathfrak{g}$. Hence \mathfrak{g} is closed under the commutator bracket.

2.2.1 Lie Algebra Structure on \mathcal{O}

Consider the map

$$L:\mathfrak{g}\longrightarrow \mathcal{O},$$

$$L(V_g) = V_g(z) = V_g(x) + iV_g(y) = g.$$

L is an isomorphism of vector spaces over \mathbb{R} . Since \mathfrak{g} is a Lie algebra we are able to introduce a Lie algebra structure on the space of analytic functions. Namely, define the bracket on \mathcal{O} by the following rule

$$[V_v, V_w] \stackrel{def}{=} V_{[v,w]}.$$

In coordinates

$$[V_v, V_w] = V_v(V_w) - V_w(V_v)$$

= $(v_1w_{1x} - v_2w_{2x} - w_1v_{1x} + w_2v_{2x})\partial_x + (v_1w_{2x} + v_2w_{1x} - w_1v_{2x} - w_2v_{1x})\partial_y.$

Hence the bracket on \mathcal{O} is

$$[v,w] = [V_v, V_w](z) = V_v(w) - V_w(v)$$

= $(v_1w_{1x} - v_2w_{2x} - w_1v_{1x} + w_2v_{2x}) + i(v_1w_{2x} + v_2w_{1x} - w_1v_{2x} - w_2v_{1x}).$

Note that the formula for the bracket on \mathcal{O} in complex coordinates is

$$\{f(z), g(z)\} = f(z)g'(z) - f'(z)g(z).$$
(2.2)

This leads to an isomorphism of the space \mathcal{O} equipped with the bracket defined in Equation (2.2) with the space of linear in momenta holomorphic functions on $T^*\mathbb{C}$ equipped with the standard Poisson structure.

The Lie algebra $(\mathcal{O}, \{\})$ is simple, i.e. it contains no ideals, but it does contain subalgebras. For instance, consider the subspace

$$\mathrm{sl}_2 = \left\langle 1, z, z^2 \right\rangle \subset \mathcal{O}.$$

The space sl_2 is a linear subspace of \mathcal{O} . Moreover, for $j, k \in \{0, 1, 2\}$

$$\left\{z^{j}, z^{k}\right\} = (k-j)z^{k+j-1} \in \mathrm{sl}_{2}.$$

Hence sl_2 is a Lie subalgebra of \mathcal{O} isomorphic to $sl_2(\mathbb{C})$. It follows that the subspace

$$\langle V_1, V_i, V_z, V_{iz}, V_{z^2}, V_{iz^2} \rangle \subset \mathfrak{g}$$

is a Lie subalgebra of \mathfrak{g} isomorphic to $\mathrm{sl}_2(\mathbb{C})_{\mathbb{R}}$.

2.2.2 The Manifold \mathbb{C}

are

In this subsection we will use the theory of Section 2.1 for the manifold \mathbb{C} . Note that \mathbb{C} is a complex manifold of dimension 1, and $\mathbb{R}^2 \simeq \mathbb{C}$ is a real manifold of dimension 2.

The space $C^{\infty}(\mathbb{R}^2) \otimes \mathbb{C}$ is an algebra with subalgebras $C^{\infty}(\mathbb{R}^2)$ and \mathcal{O} .

For any point $z_0 \in \mathbb{C}$ we have the following vector spaces

$$T_{z_0} \mathbb{R}^2 = \langle \partial_x |_{z_0}, \partial_y |_{z_0} \rangle_{\mathbb{R}},$$
$$T_{z_0}^{1,0} \mathbb{C} = \langle \partial_z |_{z_0} \rangle_{\mathbb{C}}, \quad T_{z_0}^{0,1} \mathbb{C} = \langle \partial_{\bar{z}} |_{z_0} \rangle_{\mathbb{C}},$$
$$T_{z_0} \mathbb{R}^2 \otimes \mathbb{C} = \langle \partial_x |_{z_0}, \partial_y |_{z_0} \rangle_{\mathbb{C}} = \langle \partial_z |_{z_0}, \partial_{\bar{z}} |_{z_0} \rangle_{\mathbb{C}}$$

The spaces of smooth sections of the vector bundles $T\mathbb{R}^2$, $T^{1,0}\mathbb{C}$, $T^{0,1}\mathbb{C}$ and $T\mathbb{R}^2 \otimes \mathbb{C}$ $\mathcal{D}(\mathbb{R}^2) = C^{\infty}(T\mathbb{R}^2) = \{f_1\partial_x + f_2\partial_y \mid f_1, f_2 \in C^{\infty}(\mathbb{R}^2)\},$

$$\mathcal{D}^{1,0}(\mathbb{C}) = C^{\infty}(T^{1,0}\mathbb{C}) = \left\{ f\partial_{z} \mid f \in C^{\infty}(\mathbb{R}^{2}) \otimes \mathbb{C} \right\},$$
$$\mathcal{D}^{0,1}(\mathbb{C}) = C^{\infty}(T^{0,1}\mathbb{C}) = \left\{ f\partial_{\overline{z}} \mid f \in C^{\infty}(\mathbb{R}^{2}) \otimes \mathbb{C} \right\},$$
$$\mathcal{D}\left(\mathbb{R}^{2}\right) \otimes \mathbb{C} = C^{\infty}(T\mathbb{R}^{2}) \otimes \mathbb{C} = \left\{ f_{1}\partial_{x} + f_{2}\partial_{y} \mid f_{1}, f_{2} \in C^{\infty}(\mathbb{R}^{2}) \otimes \mathbb{C} \right\}.$$

Let $\mathfrak h$ denote the space of all derivations of the space $\mathcal O$

$$\mathfrak{h} = \{g\partial_z \mid g \in \mathcal{O}\}.$$

The space \mathfrak{h} is a free 1-dimensional module over \mathcal{O} .

The spaces $\mathcal{D}(\mathbb{R}^2)$, $\mathcal{D}^{1,0}(\mathbb{C})$, $\mathcal{D}^{0,1}(\mathbb{C})$ and \mathfrak{h} are infinite dimensional Lie subalgebras of $\mathcal{D}(\mathbb{R}^2) \otimes \mathbb{C}$.

Consider the space of anti-holomorphic functions

$$\bar{\mathcal{O}} = \left\{ h = h_1 + ih_2 \in C^{\infty} \left(\mathbb{R}^2 \right) \otimes \mathbb{C} \mid h_{1x} = -h_{2y}, \ h_{2x} = h_{1y} \right\} = \left\{ \bar{g} \mid g \in \mathcal{O} \right\}.$$

The space $\overline{\mathcal{O}}$ is a subalgebra of $C^{\infty}(\mathbb{R}^2) \otimes \mathbb{C}$.

Let $\overline{\mathfrak{h}}$ denote the space of all derivations of $\bar{\mathcal{O}}$

$$\bar{\mathfrak{h}} = \{ \bar{g} \partial_{\bar{z}} \mid g \in \mathcal{O} \}.$$

The space $\overline{\mathfrak{h}}$ is a free 1-dimensional module over $\overline{\mathcal{O}}$ and an infinite dimensional Lie subalgebra of $\mathcal{D}(\mathbb{R}^2) \otimes \mathbb{C}$.

2.2.3 Almost Complex Structure on \mathbb{TR}^2

The tensor

$$J = \partial_y \otimes dx - \partial_x \otimes dy$$

is an almost complex structure on \mathbb{TR}^2

$$J(\partial_x) = \partial_y, \quad J(\partial_y) = -\partial_x.$$

If the vector field

$$V = g_1 \partial_x + g_2 \partial_y \in \mathcal{D}(\mathbb{R}^2)$$

is a symmetry of the tensor J, then

$$L_V(J) = -[V,\partial_x] \otimes dy - \partial_x \otimes d(g_2) + [V,\partial_y] \otimes dx + \partial_y \otimes d(g_1)$$
$$= -(g_{2x} + g_{1y}) \partial_x \otimes dx + (-g_{2y} + g_{1x}) \partial_y \otimes dx$$
$$+ (g_{1x} - g_{2y}) \partial_x \otimes dy + (g_{2x} + g_{1y}) \partial_y \otimes dy = 0.$$

Hence \mathfrak{g} is the Lie algebra of symmetries of the tensor J. This shows that there must exist a Lie algebra isomorphism between \mathfrak{g} and \mathfrak{h} . In the next subsection we will find it.

18

2.2.4 A Relation Between the Lie Algebras \mathfrak{g} and \mathfrak{h}

Consider the \mathbb{R} -linear map

$$2\operatorname{Re}:\mathcal{D}\left(\mathbb{R}^{2}
ight)\otimes\mathbb{C}\longrightarrow\mathcal{D}\left(\mathbb{R}^{2}
ight).$$

We have that

$$2\operatorname{Re}\left[ix\partial_x,i\partial_x\right] = 2\partial_x \neq \left[2\operatorname{Re}\left(ix\partial_x\right),2\operatorname{Re}\left(i\partial_x\right)\right] = 0.$$

Hence 2 Re is not a Lie algebra homomorphism between the Lie algebras $\mathcal{D}(\mathbb{R}^2) \otimes \mathbb{C}$ and $\mathcal{D}(\mathbb{R}^2)$. We have that

$$g\partial_z = \frac{1}{2}(g_1\partial_x + g_2\partial_y + i(-g_1\partial_y + g_2\partial_x)).$$

Thus the map $2 \operatorname{Re}$ restricted to \mathfrak{h} is

$$2\operatorname{Re}\left(g\partial_z\right) = V_g.$$

Proposition 6 The \mathbb{R} -linear map

$$2\operatorname{Re}:\mathfrak{h}\longrightarrow\mathfrak{g}$$

is a Lie algebra isomorphism.

Proof. Using the Poisson bracket defined on \mathcal{O} in Subsection 2.2.1 we get

$$[2\operatorname{Re}(g\partial_z), 2\operatorname{Re}(f\partial_z)] = [V_g, V_f] = V_{\{g,f\}} = 2\operatorname{Re}((g_z f - f_z g)\partial_z) = 2\operatorname{Re}[g\partial_z, f\partial_z].$$

Hence 2 Re preserves the bracket.

By definition $V_g \in \mathfrak{g}$ if and only if $g \in \mathcal{O}$, i.e. $g\partial_z \in \mathfrak{h}$. Hence 2 Re is bijective.

Example 7 It was shown in Subsection 2.2.1 that

$$\langle V_1, V_i, V_z, V_{iz}, V_{z^2}, V_{iz^2} \rangle \subset \mathfrak{g}$$

is a Lie algebra. Hence

$$\mathfrak{s} = \left\langle \partial_z, z \partial_z, z^2 \partial_z \right\rangle \subset \mathfrak{h}$$

is a Lie algebra. Moreover, \mathfrak{s} is isomorphic to $sl_2(\mathbb{C})$.

The $\mathbb R-{\rm linear}$ map

$$2\operatorname{Im}:\mathfrak{h}\longrightarrow\mathfrak{g},$$
$$2\operatorname{Im}(g\partial_z)=-V_{ig},$$

is an isomorphism of vector spaces over \mathbb{R} . It follows from Proposition 6 that for any functions $g,h\in\mathcal{O}$

$$[2\operatorname{Im}(g\partial_z), 2\operatorname{Im}(h\partial_z)] = [2\operatorname{Re}(ig\partial_z), 2\operatorname{Re}(ih\partial_z)] = -2\operatorname{Re}\left[g\partial_z, h\partial_z\right] = -2\operatorname{Im}\left(i\left[g\partial_z, h\partial_z\right]\right).$$

Hence the map is not a Lie algebra isomorphism.

The complexification of the Lie algebra ${\mathfrak g}$ and the direct sum of the Lie algebras ${\mathfrak h}$ and $\bar{\mathfrak h}$

$$\mathfrak{g} \otimes \mathbb{C} = \{ V_g + iV_h \mid g, h \in \mathcal{O} \},$$
$$\mathfrak{h} \oplus \overline{\mathfrak{h}} = \{ g\partial_z + \overline{h}\partial_{\overline{z}} \mid g, h \in \mathcal{O} \},$$

are Lie subalgebras of $\mathcal{D}(\mathbb{R}^2) \otimes \mathbb{C}$.

Theorem 8 The map

$$\psi:\mathfrak{h}\oplus\bar{\mathfrak{h}}\longrightarrow\mathfrak{g}\otimes\mathbb{C},$$

$$\psi(g\partial_z + \bar{h}\partial_{\bar{z}}) = \operatorname{Re}(g\partial_z + \bar{h}\partial_{\bar{z}}) + i\operatorname{Im}(g\partial_z + \bar{h}\partial_{\bar{z}}) = \frac{1}{2}\left(V_{g+h} + iV_{i(h-g)}\right),$$

is a \mathbb{C} -linear Lie algebra isomorphism.

Proof. For any functions $g, h \in \mathcal{O}$

$$\psi(i\left(g\partial_z + \bar{h}\partial_{\bar{z}}\right)) = \psi(ig\partial_z - \bar{i}\bar{h}\partial_{\bar{z}}) = \frac{1}{2}\left(V_{ig-ih} + iV_{i(-ig-ih)}\right)$$
$$= \frac{i}{2}\left(V_{g+h} + iV_{i(h-g)}\right) = i\psi(g\partial_z + \bar{h}\partial_{\bar{z}}).$$

Hence the map ψ is \mathbb{C} -linear.

For any function $g \in \mathcal{O}$

$$\psi(g\partial_z + \bar{g}\partial_{\bar{z}}) = V_g.$$

Hence ψ is bijective.

We see that

$$\begin{split} \psi(\left[g\partial_{z} + \bar{h}\partial_{\bar{z}}, f\partial_{z} + \bar{q}\partial_{\bar{z}}\right]) &= \psi(\left[g\partial_{z}, f\partial_{z}\right] + \left[\bar{h}\partial_{\bar{z}}, \bar{q}\partial_{\bar{z}}\right]) \\ &= \frac{1}{2} \left(V_{[g,f]+[h,q]} + iV_{i(-[g,f]+[h,q])}\right), \\ \left[\psi\left(g\partial_{z} + \bar{h}\partial_{\bar{z}}\right), \psi\left(f\partial_{z} + \bar{q}\partial_{\bar{z}}\right)\right] &= \left[\frac{1}{2} \left(V_{g+h} + iV_{i(h-g)}\right), \frac{1}{2} \left(V_{f+q} + iV_{i(q-f)}\right)\right] \\ &= \frac{1}{4} \left(V_{[g+h,f+q]+[h-g,q-f]} + iV_{i([g+h,q-f]+[h-g,q+f])}\right) \\ &= \frac{1}{2} \left(V_{[g,f]+[h,q]} + iV_{i(-[g,f]+[h,q])}\right). \end{split}$$

Hence ψ preserves the bracket.

Chapter 3

Invariant Functions of the Lie

Algebra \mathfrak{g}^k

3.1 The Space of Jets

3.1.1 Quotient Algebras

For any point $z_0 = x_0 + iy_0 \in \mathbb{C}$ the space

$$\mu_{z_0} = \left\{ f \in C^{\infty} \left(\mathbb{R}^2 \right) \mid f(x_0, y_0) = 0 \right\}$$

is a maximal ideal of the algebra $C^{\infty}\left(\mathbb{R}^{2}\right)$.

The space

$$(\mu_{z_0})^{k+1} = \left\{ f \in C^{\infty} \left(\mathbb{R}^2 \right) \mid f = \sum f_1 \dots f_{k+1}, \ f_j \in \mu_{z_0} \right\}$$
(3.1)

is an ideal of $C^{\infty}(\mathbb{R}^2)$ for any integer $k \in \mathbb{Z}_{\geq 0}$. It follows from Equation (3.1) that

$$(\mu_{z_0})^{k+1} \subset (\mu_{z_0})^k \dots \subset (\mu_{z_0})^2 \subset \mu_{z_0}.$$

Hence for k > 0 the ideal $(\mu_{z_0})^{k+1}$ is not maximal.

The quotient space

$$C^{\infty}\left(\mathbb{R}^{2}\right)/\left(\mu_{z_{0}}\right)^{k+1}$$

is an \mathbb{R} -algebra.

For any smooth function $f(x, y) \in C^{\infty}(\mathbb{R}^2)$ the corresponding equivalence class $[f(x, y)]_{z_0}^k \in C^{\infty}(\mathbb{R}^2) / (\mu_{z_0})^{k+1}$ has the following representative

$$[f]_{z_0}^k \equiv f(x_0, y_0) + \sum_{m+n \le k} \frac{m!n!}{(m+n)!} \frac{\partial^{m+n} f}{\partial x^m \partial y^n} (x_0, y_0) (x - x_0)^m (y - y_0)^n.$$

3.1.2 Algebra of Functions on the Space of Jets

For any pair of integers $m, n \in \mathbb{Z}_{\geq 0}$ such that $m + n \leq k$ there exists an \mathbb{R} -linear

$$\operatorname{map}$$

$$u_{mn}: C^{\infty}\left(\mathbb{R}^{2}\right)/\mu_{z_{0}}^{k} \longrightarrow \mathbb{R},$$
$$u_{mn}([f]_{z_{0}}^{k}) = \frac{\partial^{m+n}f}{\partial x^{m}\partial y^{n}}(x_{0}, y_{0}).$$

The space

$$J_{z_0}^k \mathbb{R}^2 = C^{\infty} \left(\mathbb{R}^2 \right) / \left(\mu_{z_0} \right)^{k+1}$$

is a real vector space of dimension (k+1)(k+2)/2

$$J_{z_0}^k \mathbb{R}^2 \simeq \langle u_{mn} \mid m+n \le k \rangle_{\mathbb{R}}.$$

Consider the space

$$J^k \mathbb{R}^2 = \underset{z_0 \in \mathbb{C}}{\cup} J^k_{z_0} \mathbb{R}^2.$$

By standard topological arguments $J^k \mathbb{R}^2$ is a vector bundle over \mathbb{C} . Its total space is diffeomorphic to

$$J^{k}\mathbb{R}^{2} \simeq \mathbb{R}^{(k+1)(k+2)/2+2}(x, y, u_{mn}|m+n \le k).$$

Consider the following spaces

$$C^{\infty}\left(J^{k}\mathbb{R}^{2}\right) = \left\{f: J^{k}\mathbb{R}^{2} \to \mathbb{R} \mid f \text{ is smooth}\right\},\$$
$$C^{\infty}\left(J^{k}\mathbb{R}^{2}, \mathbb{C}\right) = \left\{f: J^{k}\mathbb{R}^{2} \to \mathbb{C} \mid f \text{ is smooth}\right\}.$$

The space $C^{\infty}(J^k\mathbb{R}^2)$ is an algebra over \mathbb{R} and $C^{\infty}(J^k\mathbb{R}^2,\mathbb{C})$ is an algebra over \mathbb{C} .

The algebra $C^{\infty}(J^k\mathbb{R}^2,\mathbb{C})$ is equal to the tensor product

$$C^{\infty}\left(J^k\mathbb{R}^2,\mathbb{C}\right) = C^{\infty}\left(J^k\mathbb{R}^2\right)\otimes\mathbb{C}.$$

The inclusion map

$$I: C^{\infty}\left(J^k \mathbb{R}^2\right) \hookrightarrow C^{\infty}\left(J^k \mathbb{R}^2\right) \otimes \mathbb{C},$$

where

$$\operatorname{Re} I = \operatorname{Im}(iI) = \operatorname{Id}_{C^{\infty}(J^k \mathbb{R}^2)},$$

is an injective \mathbb{R} -algebra homomorphism. Hence $C^{\infty}(J^k\mathbb{R}^2)$ is an \mathbb{R} -subalgebra of $C^{\infty}(J^k\mathbb{R}^2) \otimes \mathbb{C}$.

3.1.3 The Tangent- and the Complexified Tangent Bundle of $J^k \mathbb{R}^2$

For any point $p \in J^k \mathbb{R}^2$ the space

$$T_p\left(J^k\mathbb{R}^2\right) = \operatorname{Der}_{\mathbb{R}}\left(C^{\infty}\left(J^k\mathbb{R}^2\right)\right)_p$$

is a real vector space. It follows from Lemma 2 that

$$T_p\left(J^k\mathbb{R}^2\right)\otimes\mathbb{C}=\mathrm{Der}_{\mathbb{C}}\left(C^\infty\left(J^k\mathbb{R}^2\right)\otimes\mathbb{C}\right)_p.$$

The real dimension of $T_p\left(J^k\mathbb{R}^2\right)$ is (k+1)(k+2)/2+2

$$T_p\left(J^k\mathbb{R}^2\right) = \langle \partial_x|_p, \partial_y|_p, \partial_{u_{nm}}|_p \mid m+n \le k \rangle_{\mathbb{R}}.$$

The complex dimension of $T_p(J^k\mathbb{R}^2)\otimes\mathbb{C}$ is (k+1)(k+2)/2+2

$$T_p\left(J^k\mathbb{R}^2\right)\otimes\mathbb{C}=\langle\partial_x|_p,\partial_y|_p,\partial_{u_{nm}}|_p\mid m+n\leq k\rangle_{\mathbb{C}}.$$

The inclusion map

$$I: T_p\left(J^k \mathbb{R}^2\right) \hookrightarrow T_p\left(J^k \mathbb{R}^2\right) \otimes \mathbb{C},$$

where

$$\operatorname{Re} I = \operatorname{Im}(iI) = \operatorname{Id}_{T_p(J^k \mathbb{R}^2)},$$

is an injective \mathbb{R} -linear map. Hence $T_p(J^k\mathbb{R}^2)$ is an \mathbb{R} -linear subspace of $T_p(J^k\mathbb{R}^2)\otimes\mathbb{C}$.

Consider the spaces

$$T\left(J^{k}\mathbb{R}^{2}\right) = \underset{p\in J^{k}\mathbb{R}^{2}}{\cup} T_{p}\left(J^{k}\mathbb{R}^{2}\right),$$
$$T\left(J^{k}\mathbb{R}^{2}\right) \otimes \mathbb{C} = \underset{p\in J^{k}\mathbb{R}^{2}}{\cup} T_{p}\left(J^{k}\mathbb{R}^{2}\right) \otimes \mathbb{C}.$$

The space $T(J^k \mathbb{R}^2)$ is an \mathbb{R} -vector bundle and $T(J^k \mathbb{R}^2) \otimes \mathbb{C}$ is a \mathbb{C} -vector bundle over $J^k \mathbb{R}^2$. The bundle $T(J^k \mathbb{R}^2)$ is an \mathbb{R} -subbundle of $T(J^k \mathbb{R}^2) \otimes \mathbb{C}$.

3.1.4 Vector Fields on $J^k \mathbb{R}^2$

Consider the spaces of all smooth sections of the vector bundles $T(J^k \mathbb{R}^2)$ and $T(J^k \mathbb{R}^2) \otimes \mathbb{C}$

$$\mathcal{D}\left(J^k \mathbb{R}^2\right) = C^{\infty}(T\left(J^k \mathbb{R}^2\right)) = \operatorname{Der}_{\mathbb{R}}\left(C^{\infty}\left(J^k \mathbb{R}^2\right)\right),$$
$$\mathcal{D}\left(J^k \mathbb{R}^2\right) \otimes \mathbb{C} = C^{\infty}(T\left(J^k \mathbb{R}^2\right), \mathbb{C}) = \operatorname{Der}_{\mathbb{R}}\left(C^{\infty}\left(J^k \mathbb{R}^2\right)\right) \otimes \mathbb{C}.$$

The space $\mathcal{D}(J^k\mathbb{R}^2)$ is a module over the algebra $C^{\infty}(J^k\mathbb{R}^2)$, and the space $\mathcal{D}(J^k\mathbb{R}^2) \otimes \mathbb{C}$ is a module over the algebra $C^{\infty}(J^k\mathbb{R}^2) \otimes \mathbb{C}$

$$\mathcal{D}(J^k \mathbb{R}^2) = \left\{ \tilde{f}_1 \partial_x + \tilde{f}_2 \partial_y + \sum_{m+n \le k} f_{mn} \partial_{u_{mn}} \mid \tilde{f}_1, \tilde{f}_2, f_{mn} \in C^\infty \left(J^k \mathbb{R}^2 \right) \right\},$$
$$\mathcal{D}(J^k \mathbb{R}^2) \otimes \mathbb{C} = \left\{ \tilde{f}_1 \partial_x + \tilde{f}_2 \partial_y + \sum_{m+n \le k} f_{mn} \partial_{u_{mn}} \mid \tilde{f}_1, \tilde{f}_2, f_{mn} \in C^\infty (J^k \mathbb{R}^2) \otimes \mathbb{C} \right\}.$$

The spaces $\mathcal{D}(J^k\mathbb{R}^2)\otimes\mathbb{C}$ and $\mathcal{D}(J^k\mathbb{R}^2)$ are infinite dimensional Lie algebras with the Lie bracket being the commutator. The inclusion map

$$I: \mathcal{D}(J^k \mathbb{R}^2) \hookrightarrow \mathcal{D}(J^k \mathbb{R}^2) \otimes \mathbb{C},$$

where

$$\operatorname{Re} I = \operatorname{Im}(iI) = \operatorname{Id}_{\mathcal{D}(J^k\mathbb{R}^2)},$$

is an injective Lie algebra homomorphism. Hence $\mathcal{D}(J^k \mathbb{R}^2)$ is an infinite dimensional Lie subalgebra of $\mathcal{D}(J^k \mathbb{R}^2) \otimes \mathbb{C}$.

3.2 The Contact Distribution and the Cartan Distribution

3.2.1 The Contact Distribution on $J^1 \mathbb{R}^2$

The 4-dimensional distribution on $J^1 \mathbb{R}^2$

$$C_0 = \operatorname{Ker}(\omega_0), \ \omega_0 = du - u_{10}dx - u_{01}dy$$

is called the contact distribution. The distribution is spanned by the four vector fields

$$C_0 = \langle X_1 = \partial_x + u_{10}\partial_u, X_2 = \partial_y + u_{01}\partial_u, Y_1 = \partial_{u_{10}}, Y_2 = \partial_{u_{01}} \rangle.$$
(3.2)

There exists no integral manifold of dimension four, since

$$[Y_j, X_j] = \partial_u \notin C_0, \ j \in \{1, 2\}.$$

Every smooth function $f\in C^\infty(\mathbb{R}^2)$ determines a 2–dimensional submanifold of $J^1\mathbb{R}^2$

$$L_f = \left\{ u = f(x, y), \ u_{10} = \frac{\partial f}{\partial x}(x, y), \ u_{01} = \frac{\partial f}{\partial y}(x, y) \right\}, \tag{3.3}$$

which is an integral manifold of the contact distribution since

$$\omega_0|_{L_f} = 0.$$

3.2.2 Contact Transformations and Contact Vector Fields

A diffeomorphism

$$F: J^1 \mathbb{R}^2 \longrightarrow J^1 \mathbb{R}^2$$

is called a contact transformation if it preserves the contact distribution, i.e.

$$F^*(\omega_0) = \lambda_F \omega_0, \ \lambda_F \in C^\infty(J^1 \mathbb{R}^2).$$

A vector field $X \in \mathcal{D}(J^1 \mathbb{R}^2)$ is called a contact vector field if its flow consists of contact transformations. If X is a contact vector field, then

$$L_X(\omega_0) = \lambda_X \omega_0, \ \lambda_X \in C^\infty(J^1 \mathbb{R}^2).$$

It is known that all contact vector fields on $J^1 \mathbb{R}^2$ have the form

$$X_f = f\partial_u + X_1(f)Y_1 + X_2(f)Y_2 - Y_1(f)X_1 - Y_2(f)X_2,$$

where X_j and Y_j are given in Equation (3.2) and the function $f \in C^{\infty}(J^1 \mathbb{R}^2)$ is equal to

$$f = \omega_0(X_f).$$

The space of all contact vector fields is an infinite dimensional Lie algebra denoted $\operatorname{Cont}(J^1\mathbb{R}^2)$.

Consider the subspace of $\mathcal{D}(J^1\mathbb{R}^2)\otimes\mathbb{C}$ that consists of all the complexified vector fields that preserve the contact distribution

$$\{Y \in \mathcal{D}(J^1 \mathbb{R}^2) \otimes \mathbb{C} \mid L_Y(\omega_0) = \lambda_Y \omega_0, \ \lambda_Y \in C^{\infty}(J^1 \mathbb{R}^2) \otimes \mathbb{C}\} \subset \mathcal{D}(J^1 \mathbb{R}^2) \otimes \mathbb{C}.$$
 (3.4)

For any vector field $Y \in \mathcal{D}(J^1\mathbb{R}^2) \otimes \mathbb{C}$ there exist vector fields $Y_1, Y_2 \in \mathcal{D}(J^1\mathbb{R}^2)$ such that $Y = Y_1 + iY_2$. Hence if Y preserve the contact distribution, then

$$L_Y(\omega_0) = L_{Y_1}(\omega_0) + iL_{Y_2}(\omega_0) = \lambda_Y \omega_0.$$

It follows that Y_1 and Y_2 are contact vector fields. Hence there exist functions $f_1, f_2 \in C^{\infty}(J^1 \mathbb{R}^2)$ and $f = f_1 + i f_2 \in C^{\infty}(J^1 \mathbb{R}^2) \otimes \mathbb{C}$, such that

$$Y = Y_1 + iY_2 = X_{f_1} + iX_{f_2} = X_f.$$

So the subspace described in Equation (3.4) is the complexification of the Lie algebra of contact vector fields

$$\operatorname{Cont}(J^1\mathbb{R}^2) \otimes \mathbb{C} = \left\{ Y \in \mathcal{D}(J^1\mathbb{R}^2) \otimes \mathbb{C} \mid Y = X_f, \ f \in C^{\infty}(J^1\mathbb{R}^2) \otimes \mathbb{C} \right\}.$$

The inclusion map

$$I: \operatorname{Cont}(J^1 \mathbb{R}^2) \hookrightarrow \operatorname{Cont}(J^1 \mathbb{R}^2) \otimes \mathbb{C},$$

where

$$\operatorname{Re} I = \operatorname{Im}(iI) = \operatorname{Id}_{\operatorname{Cont}(J^1 \mathbb{R}^2)},$$

is an injective Lie algebra homomorphism. Hence $\operatorname{Cont}(J^1\mathbb{R}^2)$ is a Lie subalgebra of $\operatorname{Cont}(J^1\mathbb{R}^2)\otimes\mathbb{C}$.

3.2.3 Prolongation of $\mathcal{D}(J^0\mathbb{R}^2)$ and $\operatorname{Cont}(J^1\mathbb{R}^2)$

Consider the vector field $W_1 = a_1\partial_x + b_1\partial_y + c_1\partial_u \in \mathcal{D}(J^0\mathbb{R}^2)$ and the complex vector field $W_2 = a_2\partial_x + b_2\partial_y + c_2\partial_u \in \mathcal{D}(J^0\mathbb{R}^2)\otimes\mathbb{C}$. The first prolongation of W_1 is $X_{f_1} \in \operatorname{Cont}(J^1\mathbb{R}^2)$ and the first prolongation of W_2 is $X_{f_2} \in \operatorname{Cont}(J^1\mathbb{R}^2)\otimes\mathbb{C}$, where

$$f_j = c_j - a_j u_{10} - b_j u_{01}, \ j \in \{1, 2\}.$$

It is known [KL1] that the k^{th} prolongation of the vector fields $X_{f_1} \in \text{Cont}(J^1 \mathbb{R}^2)$ and $X_{f_2} \in \text{Cont}(J^1 \mathbb{R}^2) \otimes \mathbb{C}$ is

$$X_{f_j}^{(k)} = \sum_{m=0}^{k} \sum_{n=0}^{k-m} \mathcal{D}_x^m \mathcal{D}_y^n(f_j) \partial_{u_{mn}} - \partial_{u_1}(f_j) \mathcal{D}_x|_{J^k} - \partial_{u_2}(f_j) \mathcal{D}_y|_{J^k}, \ j \in \{1,2\},$$

where

$$\mathcal{D}_x = \partial_x + \sum_{m,n\geq 0} u_{(m+1)n} \partial_{u_{mn}}, \quad \mathcal{D}_y = \partial_y + \sum_{m,n\geq 0} u_{m(n+1)} \partial_{u_{mn}},$$
$$\mathcal{D}_x|_{J^k} = \partial_x + \sum_{m=0}^k \sum_{n=0}^{k-m} u_{(m+1)n} \partial_{u_{mn}}, \quad \mathcal{D}_x|_{J^k} = \partial_y + \sum_{m=0}^k \sum_{n=0}^{k-m} u_{m(n+1)} \partial_{u_{mn}}$$

3.2.4 The Cartan Distribution on $J^k \mathbb{R}^2$

The distribution on $J^k \mathbb{R}^2$

$$C_k = \operatorname{Ker}(\omega_{mn} \mid m+n < k), \ \omega_{mn} = du_{mn} - u_{(m+1)n}dx - u_{m(n+1)}dy$$

is called the Cartan distribution. Note that when k = 1 the Cartan distribution is the contact distribution.

It is known [KLV] that if $L \subset J^k \mathbb{R}^2$ is an integral manifold of the Cartan distribution such that the map

$$\pi_k: L \longrightarrow \mathbb{R}^2$$

is a diffeomorphism, then there exists a unique function $h \in C^{\infty}(\mathbb{R}^2)$ such that L is equal to the k^{th} prolongation of the integral manifold L_h defined in Equation (3.3)

$$L = L_h^{(k)}.$$

3.2.5 Lie Transformations and Lie Vector Fields

A diffeomorphism

$$F: J^k \mathbb{R}^2 \longrightarrow J^k \mathbb{R}^2$$

is called a Lie transformation of $J^k \mathbb{R}^2$ if for any pair of integers $i, j \in \mathbb{Z}_{\geq 0}$ with i + j < k

$$F^*(\omega_{ij}) \equiv 0 \pmod{\langle \omega_{nm} \mid m+n < k \rangle}.$$

A vector field $X \in \mathcal{D}(J^k \mathbb{R}^2)$ is called a Lie vector field on $J^k \mathbb{R}^2$ if its flow consists of Lie transformations. Let $\text{Lie}(J^k \mathbb{R}^2)$ denote the space of all Lie vector fields on $J^k \mathbb{R}^2$. If $Y \in \text{Lie}(J^k \mathbb{R}^2)$, then

$$L_Y(\omega_{ij}) = \sum_{m+n < k} \lambda_{Y_{mn}} \omega_{mn}, \ \lambda_{Y_{mn}} \in C^{\infty}(J^k \mathbb{R}^2).$$
It follows from the Lie-Bäcklund theorem that all Lie transformations are prolongations of contact transformations, see [KLV]. Hence the space of Lie vector fields on $J^k \mathbb{R}^2$ is the k^{th} prolongation of the space of contact vector fields on $J^1 \mathbb{R}^2$

$$\operatorname{Lie}(J^k \mathbb{R}^2) = \operatorname{Cont}(J^1 \mathbb{R}^2)^k = \left\{ X_f^{(k)} \mid f \in C^{\infty}(J^1 \mathbb{R}^2) \right\}.$$

Consider the subspace of $\mathcal{D}(J^k\mathbb{R}^2)\otimes\mathbb{C}$ that consists of all vector fields that preserve the Cartan distribution

$$\left\{ Y \in \mathcal{D}(J^k \mathbb{R}^2) \otimes \mathbb{C} \mid L_Y(\omega_{ij}) = \sum_{m+n < k} \lambda_{Y_{mn}} \omega_{mn}, \lambda_{Y_{mn}} \in C^{\infty}(J^k \mathbb{R}^2) \otimes \mathbb{C} \right\} \subset \mathcal{D}(J^k \mathbb{R}^2) \otimes \mathbb{C}.$$
(3.5)

For any vector field $Y \in \mathcal{D}(J^k \mathbb{R}^2) \otimes \mathbb{C}$ there exist vector fields $Y_1, Y_2 \in \mathcal{D}(J^k \mathbb{R}^2)$ such that $Y = Y_1 + iY_2$. Hence if Y preserve the Cartan distribution, then

$$L_Y(\omega_{ij}) = L_{Y_1}(\omega_{ij}) + iL_{Y_2}(\omega_{ij}) = \sum_{m+n < k} \lambda_{Y_{mn}} \omega_{mn}$$

It follows that $Y_1, Y_2 \in \text{Lie}(J^k \mathbb{R}^2)$. Hence the subspace described in Equation (3.5) is the complexification of $\text{Lie}(J^k \mathbb{R}^2)$

$$\operatorname{Lie}(J^{k}\mathbb{R}^{2})\otimes\mathbb{C} = \operatorname{Cont}(J^{1}\mathbb{R}^{2})^{k}\otimes\mathbb{C} = \left(\operatorname{Cont}(J^{1}\mathbb{R}^{2})\otimes\mathbb{C}\right)^{k} = \left\{X_{f}^{(k)} \mid f \in C^{\infty}(J^{1}\mathbb{R}^{2})\otimes\mathbb{C}\right\}.$$

The inclusion map

$$I: \operatorname{Lie}(J^k \mathbb{R}^2) \hookrightarrow \operatorname{Lie}(J^k \mathbb{R}^2) \otimes \mathbb{C},$$

where

$$\operatorname{Re} I = \operatorname{Im}(iI) = \operatorname{Id}_{\operatorname{Lie}(J^k \mathbb{R}^2)},$$

is an injective Lie algebra homomorphism. Hence $\text{Lie}(J^k\mathbb{R}^2)$ is a Lie subalgebra of $\text{Lie}(J^k\mathbb{R}^2)\otimes\mathbb{C}.$

3.2.6 Invariant Functions and Differential Invariants

Let \mathfrak{f} be a Lie subalgebra of Cont $(J^1 \mathbb{R}^2)$. The space of functions

$$\mathcal{F}_k = \left\{ h \in C^{\infty}_{loc}(J^k \mathbb{R}^2) \mid X_f^{(k)}(h) = 0, \ \forall X_f \in \mathfrak{f} \right\}$$
(3.6)

is the algebra of invariant functions under the action of \mathfrak{f} on $C^{\infty}(J^k\mathbb{R}^2)$.

Let j be a Lie subalgebra of Cont $(J^1 \mathbb{R}^2) \otimes \mathbb{C}$. The space of functions

$$\mathcal{J}_k = \left\{ h \in C^{\infty}_{loc}(J^k \mathbb{R}^2) \otimes \mathbb{C} \mid X_f^{(k)}(h) = 0, \ \forall X_f \in \mathfrak{j} \right\}$$
(3.7)

is the algebra of invariant functions under the action of \mathfrak{j} on $C^{\infty}(J^k\mathbb{R}^2)\otimes\mathbb{C}$.

Proposition 9 Let \mathfrak{q} be any Lie subalgebra of $\operatorname{Cont}(J^1\mathbb{R}^2)$, and let \mathcal{Q}_k be the algebra of invariant functions under the action of \mathfrak{q} on $C^{\infty}(J^k\mathbb{R}^2)$. Then the algebra of invariant functions under the action of $\mathfrak{q} \otimes \mathbb{C}$ on $C^{\infty}(J^k\mathbb{R}^2) \otimes \mathbb{C}$ is $\mathcal{Q}_k \otimes \mathbb{C}$.

Proof. \Longrightarrow For all functions $h \in \mathcal{Q}_k \otimes \mathbb{C}$ there exist functions $h_1, h_2 \in \mathcal{Q}_k$ such

that

$$h = h_1 + ih_2$$

Hence for all contact vector fields $X_f \in \mathfrak{q}$

$$X_f^{(k)}(h) = X_f^{(k)}(h_1) + iX_f^{(k)}(h_2) = 0.$$

 \Leftarrow Suppose that the function $h \in C^{\infty}(J^k \mathbb{R}^2) \otimes \mathbb{C}$ is a \mathfrak{q} -differential invariant

$$X_f^{(k)}(h) = 0, \ \forall X_f \in \mathfrak{q}.$$

There exist functions $h_1, h_2 \in C^{\infty}(J^k \mathbb{R}^2)$ such that

$$h = h_1 + ih_2.$$

Hence

$$X_f^{(k)}(h) = X_f^{(k)}(h_1) + iX_f^{(k)}(h_2) = 0, \ \forall X_f \in \mathfrak{q}.$$

It follows that $h_1, h_2 \in \mathcal{Q}_k$ and

$$h \in \mathcal{Q}_k \otimes \mathbb{C}.$$

The projection map for any integer $k \in \mathbb{Z}_+$

$$\pi_{k,k-1}: J^k \mathbb{R}^2 \longrightarrow J^{k-1} \mathbb{R}^2$$

induces the following exact maps for any point $p\in J^k\mathbb{R}^2$

$$0 \longrightarrow C^{\infty}(J^{k-1}\mathbb{R}^2) \xrightarrow{\pi^*_{k,k-1}} C^{\infty}(J^k\mathbb{R}^2),$$
$$T_p(J^k\mathbb{R}^2) \xrightarrow{(\pi_{k,k-1})_*} T_p(J^{k-1}\mathbb{R}^2) \longrightarrow 0,$$
$$0 \longrightarrow C^{\infty}(J^{k-1}\mathbb{R}^2) \otimes \mathbb{C} \xrightarrow{\pi^*_{k,k-1}} C^{\infty}(J^k\mathbb{R}^2) \otimes \mathbb{C},$$
$$T_p(J^k\mathbb{R}^2) \otimes \mathbb{C} \xrightarrow{(\pi_{k,k-1})_*} T_p(J^{k-1}\mathbb{R}^2) \otimes \mathbb{C} \longrightarrow 0.$$

For any vector fields $X_1 \in \mathcal{D}(J^0 \mathbb{R}^2)$ and $X_2 \in \mathcal{D}(J^0 \mathbb{R}^2) \otimes \mathbb{C}$, the k^{th} prolongation of X_1 is a Lie vector field $X_1^{(k)} \in \text{Lie}(J^k \mathbb{R}^2)$ and the k^{th} prolongation of X_2 is the complexification of a Lie vector field $X_2^{(k)} \in \text{Lie}(J^k \mathbb{R}^2) \otimes \mathbb{C}$. Hence the vector fields X_1 and X_2 are $\left(\pi_{k,k-1}\right)_*$ -projectable. So for $j \in \{1,2\}$

$$(\pi_{k,k-1})_* X_j^{(k)} = X_j^{(k-1)}.$$

It follows that for any smooth functions $f_1 \in C^{\infty}(J^{k-1}\mathbb{R}^2)$ and $f_2 \in C^{\infty}(J^{k-1}\mathbb{R}^2) \otimes \mathbb{C}$

$$X_j^{(k-1)}(f_j) = (\pi_{k,k-1})_* X_j^{(k)}(f_j) = X_j^{(k)}(\pi_{k,k-1}^*f_j),$$

for $j \in \{1, 2\}$. Hence the map $\pi_{k,k-1}$ induces the canonical inclusions

$$(\pi_{k,k-1})_* : \mathcal{F}_{k-1} \hookrightarrow \mathcal{F}_k,$$
$$(\pi_{k,k-1})_* : \mathcal{J}_{k-1} \hookrightarrow \mathcal{J}_k,$$

where \mathcal{F}_k and \mathcal{J}_k are the algebras defined in Equation (3.6) and (3.7).

Definition 10 The algebra of \mathfrak{f} -differential invariants is the following injective limit

$$\mathcal{F} = \lim_{k \to \infty} \mathcal{F}_k = \bigcup_{k \in \mathbb{Z}_{\geq 0}} \mathcal{F}_k.$$

Definition 11 The algebra of j-differential invariants is the following injective limit

$$\mathcal{J} = \lim_{k \to \infty} \mathcal{J}_k = \bigcup_{k \in \mathbb{Z}_{>0}} \mathcal{J}_k.$$

3.3 The Lie Algebra \mathfrak{g}^k

The inclusion maps

$$I_1 : \mathcal{D}(\mathbb{R}^2) \hookrightarrow \mathcal{D}(J^0 \mathbb{R}^2),$$
$$I_2 : \mathcal{D}(\mathbb{R}^2) \otimes \mathbb{C} \hookrightarrow \mathcal{D}(J^0 \mathbb{R}^2) \otimes \mathbb{C},$$

$$I_j(f_1\partial_x + f_2\partial_y) = f_1\partial_x + f_2\partial_y + 0\partial_u, \ j \in \{1, 2\},$$

are injective Lie algebra homomorphisms. Hence any Lie subalgebra of $\mathcal{D}(\mathbb{R}^2)$ is a Lie subalgebra of $\mathcal{D}(J^0\mathbb{R}^2)$ and any Lie subalgebra of $\mathcal{D}(\mathbb{R}^2) \otimes \mathbb{C}$ is a Lie subalgebra of $\mathcal{D}(J^0\mathbb{R}^2) \otimes \mathbb{C}$.

Consider the following spaces for $k \in \mathbb{Z}_+$

$$\begin{split} \mathfrak{h}^{k} &= \left\{ (g\partial_{z})^{(k)} \mid g \in \mathcal{O} \right\}, \\ \bar{\mathfrak{h}}^{k} &= \left\{ (\bar{g}\partial_{\bar{z}})^{(k)} \mid g \in \mathcal{O} \right\}, \\ \mathfrak{g}^{k} &= \left\{ V_{g}^{(k)} \mid g \in \mathcal{O} \right\}. \end{split}$$

The spaces \mathfrak{h}^k , $\overline{\mathfrak{h}}^k$ and $\mathfrak{g}^k \otimes \mathbb{C}$ are infinite dimensional Lie subalgebras of $\operatorname{Lie}(J^k \mathbb{R}^2) \otimes \mathbb{C}$, and \mathfrak{g}^k is an infinite dimensional Lie subalgebra of $\operatorname{Lie}(J^k \mathbb{R}^2)$. If we consider $\mathfrak{g}^k \subset \operatorname{Lie}(J^k \mathbb{R}^2) \otimes \mathbb{C}$, then

$$(g\partial_z)^{(k)} = g\partial_z - \sum_{l=1}^k \frac{\partial^l g}{\partial z^l} \left(\sum_{m=l}^k \sum_{n=0}^{k-m} \binom{m}{l} u_{(m+1-l)\bar{n}} \partial_{u_{m\bar{n}}} \right), \tag{3.8}$$

$$V_g^{(k)} = (g\partial_z)^{(k)} + (\bar{g}\partial_{\bar{z}})^{(k)}.$$
(3.9)

Definition 12 Let \mathcal{H}_k denote the algebra of invariant functions under the action of \mathfrak{h} on $C^{\infty}(J^k \mathbb{R}^2) \otimes \mathbb{C}$

$$\mathcal{H}_{k} = \left\{ h \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \otimes \mathbb{C} \mid (g\partial_{z})^{(k)}(h) = 0, \ \forall g \in \mathcal{O} \right\}.$$

Definition 13 Let \mathcal{G}_k denote the algebra of invariant functions under the action of \mathfrak{g} on $C^{\infty}(J^k \mathbb{R}^2)$

$$\mathcal{G}_k = \left\{ h \in C^{\infty}_{loc}(J^k \mathbb{R}^2) \mid V_g^{(k)}(h) = 0, \ \forall g \in \mathcal{O} \right\}.$$

Proposition 14 The algebra of invariant functions under the action of $\mathfrak{g} \otimes \mathbb{C}$ on $C^{\infty}_{loc}(J^k \mathbb{R}^2) \otimes \mathbb{C}$ is

$$\mathcal{G}_k \otimes \mathbb{C} = \overline{\mathcal{H}}_k \cap \mathcal{H}_k.$$

Proof. \Longrightarrow For any function $f \in \overline{\mathcal{H}}_k \cap \mathcal{H}_k$

$$V_{q}^{(k)}(f) = (g\partial_{z})^{(k)}(f) + (\bar{g}\partial_{\bar{z}})^{(k)}(f) = 0, \ \forall g \in \mathcal{O}.$$

Hence

$$\mathcal{G}_k \otimes \mathbb{C} \supseteq \overline{\mathcal{H}}_k \cap \mathcal{H}_k.$$

$$(V_g - iV_{ig})^{(k)}(f) = 2(g\partial_z)^{(k)}(f) = 0, \ \forall g \in \mathcal{O},$$
$$(V_g + iV_{ig})^{(k)}(f) = 2(\bar{g}\partial_{\bar{z}})^{(k)}(f) = 0, \ \forall g \in \mathcal{O}.$$

Hence

$$\mathcal{G}_k\otimes\mathbb{C}\subseteq ar{\mathcal{H}}_k\cap\mathcal{H}_k.$$

3.3.1 The Distribution Π^k

It is known [KLR] that if M is a real (n+m)-dimensional smooth manifold and

$$\pi:TM\otimes\mathbb{C}\longrightarrow M$$

is the complexification of the tangent bundle, then a complex distribution P on M is a smooth field

$$P: a \in M \mapsto P_a = P(a) \subset T_a M \otimes \mathbb{C}$$

of complex subspaces of $\dim_{\mathbb{C}} P_a = m$.

A complex distribution P of rank m on a (n + m) –dimensional real manifold Mis called completely integrable if it has locally n functionally independent first integrals, i.e. complex-valued functions $I_j \in C^{\infty}(M) \otimes \mathbb{C}$ such that

$$Ann(P) = \langle dI_1, .., dI_n \rangle_{\mathbb{C}}.$$

A complex distribution P is involutive if $[X, Y] \in \mathcal{D}(P)$ for any $X, Y \in \mathcal{D}(P)$.

Theorem 15 [KLR] Let P be a complex involutive distribution such that $P + \bar{P}$ is an involutive distribution and $\dim_{\mathbb{C}}(P \cap \bar{P}) = const$. Then P is a completely integrable distribution.

Prolongations of the holomorphic vector fields define the following complex distribution on $J^k \mathbb{R}^2$

$$\Pi^{k} = \left\langle \left(g\partial_{z}\right)^{(k)} \mid g \in \mathcal{O}\right\rangle_{\mathbb{C}}.$$
(3.10)

It follows from Equation (3.8) that

$$\Pi^{k} = \left\langle \partial_{z}, \sum_{m=l}^{k} \sum_{n=0}^{k-m} \binom{m}{l} u_{(m+1-l)\bar{n}} \partial_{u_{m\bar{n}}}, \mid l \in \{1, \dots, k\} \right\rangle_{\mathbb{C}}.$$
(3.11)

Hence Π^k has complex dimension k+1.

The conjugate of the complex distribution Π^k is

$$\bar{\Pi}^{k} = \left\langle \left(\bar{g}\partial_{\bar{z}}\right)^{(k)} \mid g \in \mathcal{O} \right\rangle_{\mathbb{C}} = \left\langle \partial_{\bar{z}}, \sum_{m=l}^{k} \sum_{n=0}^{k-m} \binom{m}{l} u_{n\overline{(m+1-l)}} \partial_{u_{n\overline{m}}}, \mid l \in \{1, \dots, k\} \right\rangle_{\mathbb{C}}.$$
 (3.12)

Since

$$\Pi^k \cap \bar{\Pi}^k = 0,$$

it follows that the complex distribution

$$\Pi^{k} \oplus \overline{\Pi}^{k} = \left\langle ((h\partial_{z})^{(k)} + (\overline{g}\partial_{\overline{z}})^{(k)} \mid g, h \in \mathcal{O} \right\rangle_{\mathbb{C}} = \left\langle V_{g}^{(k)} \mid g \in \mathcal{O} \right\rangle_{\mathbb{R}} \otimes \mathbb{C}$$
(3.13)

has complex dimension 2(k+1).

Corollary 16 The distribution Π^k is completely integrable.

Proof. For any functions $g, h \in \mathcal{O}$

$$\left[(g\partial_z)^{(k)}, (h\partial_z)^{(k)} \right] = ((gh_z - hg_z)\partial_z)^{(k)} \in \Pi^k,$$

$$\left[V_g^{(k)}, V_h^{(k)}\right] = V_{[g,h]}^{(k)} \in \Pi^k \oplus \bar{\Pi}^k.$$

Hence the distributions Π^k and $\Pi^k \oplus \overline{\Pi}^k$ are involutive. So by Theorem 15 the distribution Π^k is completely integrable.

It follows from Equation (3.13) that the first integrals of the complex distribution $\Pi^k \oplus \overline{\Pi}^k$ are invariant functions under the action of $\mathfrak{g} \otimes \mathbb{C}$ on $C^{\infty}(J^k \mathbb{R}^2) \otimes \mathbb{C}$. By Proposition 9 the algebra of invariant functions under the action of $\mathfrak{g} \otimes \mathbb{C}$ on $C^{\infty}(J^k \mathbb{R}^2) \otimes \mathbb{C}$ is $\mathcal{G}_k \otimes \mathbb{C}$, where \mathcal{G}_k is the algebra of invariant functions under the action of \mathfrak{g} on $C^{\infty}(J^k \mathbb{R}^2)$. Therefore for K = (k+1)(k+2)/2 + 2, the complex distribution $\Pi^k \oplus \overline{\Pi}^k$ has locally K - 2(k+1)functionally independent real first integrals

$$\{J_j\}_{j=1}^{K-2(k+1)} \in C^{\infty}_{loc}(J^k \mathbb{R}^2).$$

Consider the inclusion defined in Subsection 3.2.6

$$\mathcal{G}_k \hookrightarrow \mathcal{G}_{k+1}$$

By the argument above the distribution $\Pi^k \oplus \overline{\Pi}^k$ has one first integral of order 0

$$I_0 \in C^{\infty}_{loc}(J^k \mathbb{R}^2)$$

and l-1 first integrals of order l

$$\{I_{l,j}\}_{j=2}^{l-1} \in C^{\infty}_{loc}(J^k \mathbb{R}^2)$$

for $1 \le l \le k$, such that locally the K - 2(k+1) functions

$$\{I_0\} \bigcup_{2 \le l \le k} \{I_{l,j}\}_{j=1}^{l-1}$$

are functionally independent.

It follows from Equation (3.10) that the first integrals of the distribution Π^k are invariant functions under the action of \mathfrak{h} on $C^{\infty}(J^k\mathbb{R}^2) \otimes \mathbb{C}$. By Equation (3.11) and (3.12)

$$\bar{z}, u_{0\bar{j}} \in C^{\infty}(J^k \mathbb{R}^2) \otimes \mathbb{C}, \ 1 \leq j \leq k$$

are first integrals of the distribution Π^k and not first integrals of $\overline{\Pi}^k$. Hence locally the K - (k+1) functionally independent functions

$$\{\bar{z}\} \cup \{u_{0\bar{j}}\}_{j=1}^k \cup \{I_0\} \bigcup_{2 \le l \le k} \{I_{l,j}\}_{j=1}^{l-1}$$

are first integrals of the distribution Π^k .

The following table shows the number of locally functionally independent first integrals of pure order from 0 to k for the distributions Π^k , $\overline{\Pi}^k$ and $\Pi^k \oplus \overline{\Pi}^k$.

Order	Π^k	$\bar{\Pi}^k$	$\Pi^k\oplus\bar\Pi^k$
k	k	k	k-1
÷	÷	÷	:
l	l	l	l-1
÷	÷	÷	:
1	1	1	0
0	2	2	1

The algebras of invariant functions under the action of \mathfrak{h} and $\overline{\mathfrak{h}}$ on $C^{\infty}(J^k\mathbb{R}^2)\otimes\mathbb{C}$ and \mathfrak{g} on $C^{\infty}(J^k\mathbb{R}^2)$ are

$$\mathcal{H}_{k} = \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \otimes \mathbb{C} \mid f = f(\bar{z}, u_{0\bar{1}}, ..., u_{0\bar{k}}, I_{0}, ..., I_{k,k-1}) \right\},$$

$$\bar{\mathcal{H}}_{k} = \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \otimes \mathbb{C} \mid f = f(z, u_{1\bar{0}}, ..., u_{1\bar{0}}, I_{0}, ..., I_{k,k-1}) \right\},$$

$$\mathcal{G}_{k} = \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \mid f = f(I_{0}, I_{2}, I_{3,1}, I_{3,2}, ..., I_{k,k-1}) \right\}.$$

3.3.2 Invariant Functions of Order 0, 1, 2 and 3

For any function $g \in \mathcal{O}$ the first, second and third prolongations of the vector fields $V_g \in \mathfrak{g}$ and $g\partial_z \in \mathfrak{h}$ are

$$V_g^{(1)} = g_1 \partial_x + g_2 \partial_y - (g_{1x} u_{10} - g_{1y} u_{01}) \partial_{u_{10}} - (g_{1x} u_{01} + g_{1y} u_{10}) \partial_{u_{01}}$$
$$(g \partial_z)^{(1)} = g \partial_z - g_z u_{1\bar{0}} \partial_{u_{1\bar{0}}},$$

,

$$V_g^{(2)} = g_1 \partial_x + g_2 \partial_y - (g_{1x} u_{10} - g_{1y} u_{01}) \partial_{u_{10}} - (g_{1x} u_{01} + g_{1y} u_{10}) \partial_{u_{01}} + (-2u_{20}g_{1x} + 2u_{11}g_{1y} - u_{10}g_{1xx} + u_{01}g_{1xy})\partial_{u_{20}} + (-u_{20}g_{1y} - 2g_{1x}u_{11} + g_{1y}u_{02} - u_{10}g_{1xy} - u_{01}g_{1xx})\partial_{u_{11}} + (-2u_{11}g_{1y} - 2u_{02}g_{1x} + u_{10}g_{1xx} - u_{01}g_{1xy})\partial_{u_{02}},$$

$$(g\partial_z)^{(2)} = g\partial_z - g_z u_{1\bar{0}}\partial_{u_{1\bar{0}}} + (-g_{zz}u_{1\bar{0}} - 2g_z u_{2\bar{0}})\partial_{u_{2\bar{0}}} - g_z u_{1\bar{1}}\partial_{u_{1\bar{1}}},$$

$$\begin{split} V_g^{(3)} &= V_g^{(2)} + (-3g_{1xx}u_{20} + 3g_{1xy}u_{11} - 3g_{1x}u_{30} + 3g_{1y}u_{21} - g_{1xxx}u_{10} + g_{1xxy}u_{01})\partial_{u_{30}} \\ &+ (-2g_{1xy}u_{20} - g_{1xx}3u_{11} - g_{1y}u_{30} + 2g_{1y}u_{12} - 3g_{1x}u_{21} + g_{1xy}u_{02} - g_{1xxy}u_{10} \\ &- g_{1xxx}u_{01})\partial_{u_{21}} \\ &+ (g_{1xx}u_{20} - g_{1xy}3u_{11} - 3g_{1x}u_{12} - 2g_{1y}u_{21} + g_{1y}u_{03} - 2g_{1xx}u_{02} \\ &+ g_{1xxx}u_{10} - g_{1xxy}u_{01})\partial_{u_{12}} \\ &+ (3g_{1xx}u_{11} - 3g_{1xy}u_{02} - 3g_{1x}u_{03} - 3g_{1y}u_{12} + g_{1xxy}u_{10} + g_{1xxx}u_{01})\partial_{u_{03}}, \end{split}$$

 $(g\partial_z)^{(3)} = (g\partial_z)^{(2)} - (g_{zzz}u_{1\bar{0}} + 3g_{zz}u_{2\bar{0}} + 3g_z u_{3\bar{0}})\partial_{u_{3\bar{0}}} - (g_{zz}u_{1\bar{1}} + 2g_z u_{2\bar{1}})\partial_{u_{2\bar{1}}} - g_z u_{1\bar{2}}\partial_{u_{1\bar{2}}},$

The algebras of invariant functions under the action of \mathfrak{h} and $\overline{\mathfrak{h}}$ on $C^{\infty}(J^3\mathbb{R}^2)\otimes\mathbb{C}$

and \mathfrak{g} on $C^{\infty}(J^3\mathbb{R}^2)$ are

$$\mathcal{H}_{3} = \left\{ f \in C^{\infty}_{loc}(J^{3}\mathbb{R}^{2}) \otimes \mathbb{C} \mid f = f\left(\bar{z}, u, u_{0\bar{1}}, \frac{u_{1\bar{1}}}{u_{0\bar{1}}u_{1\bar{0}}}, u_{0\bar{2}}, u_{0\bar{3}}, I_{3,1}, I_{3,2}\right) \right\},$$

$$\bar{\mathcal{H}}_{3} = \left\{ f \in C^{\infty}_{loc}(J^{3}\mathbb{R}^{2}) \otimes \mathbb{C} \mid f = f\left(z, u, u_{1\bar{0}}, \frac{u_{1\bar{1}}}{u_{0\bar{1}}u_{1\bar{0}}}, u_{2\bar{0}}, u_{3\bar{0}}, I_{3,1}.I_{3,2}\right) \right\},$$

$$\mathcal{G}_{3} = \left\{ f \in C^{\infty}_{loc}(J^{3}\mathbb{R}^{2}) \mid \tilde{f}\left(u, \frac{u_{20} + u_{02}}{u_{10}^{2} + u_{01}^{2}}, I_{3,1}, I_{3,2}\right) \right\},$$

where

$$I_{3,1} = \frac{-(u_{0\bar{1}}^2 u_{2\bar{1}} u_{1\bar{0}} - u_{0\bar{1}}^2 u_{1\bar{1}} u_{0\bar{1}} - u_{0\bar{2}} u_{1\bar{0}}^2 u_{1\bar{1}} + u_{1\bar{2}} u_{1\bar{0}}^2 u_{0\bar{1}})}{u_{1\bar{1}}^3}$$

$$= \frac{-2}{(u_{20} + u_{02})^3} (u_{10}^3 u_{30} + u_{10}^3 u_{12} - u_{10}^2 u_{20}^2 + u_{10}^2 u_{21} u_{01} + u_{10}^2 u_{02}^2 + u_{01}^2 u_{20}^2 + u_{10}^2 u_{21}^2 u_{01} + u_{10}^2 u_{02}^2 + u_{01}^2 u_{20}^2 + u_{01}^2 u_{20}^2 + u_{01}^2 u_{20}^2 + u_{01}^2 u_{02}^2 + u_{01}^2 + u_{01}^2 u_{02}^2 + u_{01}^2 +$$

$$\begin{split} I_{3,2} &= \frac{i(-u_{0\bar{1}}^2 u_{2\bar{1}} u_{1\bar{0}} + u_{0\bar{1}}^2 u_{1\bar{1}} u_{2\bar{0}} - u_{0\bar{2}} u_{1\bar{0}}^2 u_{1\bar{1}} + u_{1\bar{2}} u_{1\bar{0}}^2 u_{0\bar{1}})}{u_{1\bar{1}}^3} \\ &= \frac{2}{(u_{20} + u_{02})^3} (u_{10}^2 u_{30} u_{01} - u_{10} u_{01}^2 u_{21} + u_{10}^2 u_{12} u_{01} - u_{10} u_{01}^2 u_{03} + 2u_{10}^2 u_{20} u_{11} \\ &+ 2u_{10} u_{01} u_{02}^2 - 2u_{10} u_{01} u_{20}^2 + 2u_{10}^2 u_{02} u_{11} - 2u_{01}^2 u_{02} u_{11} - 2u_{01}^2 u_{20} u_{11} \\ &- u_{10}^3 u_{03} + u_{01}^3 u_{12} + u_{01}^3 u_{30} - u_{10}^3 u_{21}). \end{split}$$

Remark 17 It is not possible to find \mathfrak{g} -differential invariants of pure order 3 by standard methods with Maple 11. However, it is possible to find \mathfrak{h} -differential invariants of pure order 3. The function $h = \frac{-u_{0\bar{2}}u_{1\bar{0}}^2u_{1\bar{1}} + u_{1\bar{2}}u_{1\bar{0}}^2u_{0\bar{1}}}{u_{1\bar{1}}^3}$ and it conjugate \bar{h} are \mathfrak{h} -differential invariants. Hence $I_{3,1} = h + \bar{h}$ and $I_{3,2} = i(h - \bar{h})$ are \mathfrak{g} -differential invariants. The \mathfrak{h} -differential invariants of pure order 3 are computed in Maple Worksheet "h_diff_inv_3", see Appendix 6.

3.4 Invariant Differentiations and Differential Invariants

Let \mathfrak{q} be a Lie subalgebra of $\operatorname{Cont}(J^1\mathbb{R}^2)$, and let \mathcal{Q}_k be the algebra of invariant functions under the action of \mathfrak{q} on $C^{\infty}(J^k\mathbb{R}^2)$. Consider the derivation operator

$$\nabla = \lambda_1 \mathcal{D}_x + \lambda_2 \mathcal{D}_y,$$

where $\lambda_1, \lambda_2 \in C^{\infty}(J^p \mathbb{R}^2)$ and p is the maximum order of the functions λ_1 and λ_2 . The derivation operator ∇ is an invariant derivative of \mathfrak{q} if the following diagram commutes for all contact vector fields $X_f \in \mathfrak{q}$ and all integers $k \geq \max\{p-1, 1\}$

$$\begin{array}{cccc}
C^{\infty}(J^{k}\mathbb{R}^{2}) & \xrightarrow{X_{f}^{(k)}} & C^{\infty}(J^{k}\mathbb{R}^{2}) \\
\downarrow \nabla & & \downarrow \nabla \\
C^{\infty}(J^{k+1}\mathbb{R}^{2}) & \xrightarrow{X_{f}^{(k+1)}} & C^{\infty}(J^{k+1}\mathbb{R}^{2})
\end{array}$$

If ∇ is an invariant derivative of \mathfrak{q} , then

$$\left[X_f^{(\infty)}, \nabla\right] = 0, \ \forall X_f \in \mathfrak{q},\tag{3.14}$$

where

$$X_f^{(\infty)} = \sum_{m+n \ge 0} \left(\mathcal{D}_x \right)^m \left(\mathcal{D}_y \right)^n (f) \partial_{u_{mn}} - \partial_{u_1}(f) \mathcal{D}_x - \partial_{u_2}(f) \mathcal{D}_y$$

For any function $q \in \mathcal{Q}_k$

$$X_f^{(k+1)}(\nabla(q)) = \nabla\left(X_f^{(k)}(q)\right) = 0, \ \forall X_f \in \mathfrak{q}$$

Hence

$$abla : \mathcal{Q}_k \longrightarrow \mathcal{Q}_{k+1}.$$

Let \mathfrak{f} be a Lie subalgebra of Cont $(J^1\mathbb{R}^2)\otimes\mathbb{C}$, and let \mathcal{F}_k be the algebra of invariant functions under the action of \mathfrak{f} on $C^{\infty}(J^k\mathbb{R}^2)\otimes\mathbb{C}$. Consider the complex derivation operator

$$\nabla = \lambda_1 \mathcal{D}_x + \lambda_2 \mathcal{D}_y$$

where $\lambda_1, \lambda_2 \in C^{\infty}(J^p \mathbb{R}^2) \otimes \mathbb{C}$ and p is the maximum order of the functions λ_1 and λ_2 . The derivation operator ∇ is a complex invariant derivative of \mathfrak{f} if the following diagram commutes for all vector fields $X_f \in \mathfrak{f}$ and all integers $k \geq \max\{p-1,1\}$

$$\begin{array}{ccc} C^{\infty}(J^{k}\mathbb{R}^{2})\otimes\mathbb{C} & \xrightarrow{X_{f}^{(k)}} & C^{\infty}(J^{k}\mathbb{R}^{2})\otimes\mathbb{C} \\ \downarrow \nabla & & \downarrow \nabla \\ C^{\infty}(J^{k+1}\mathbb{R}^{2})\otimes\mathbb{C} & \xrightarrow{X_{f}^{(k+1)}} & C^{\infty}(J^{k+1}\mathbb{R}^{2})\otimes\mathbb{C} \end{array}$$

Moreover,

$$\begin{bmatrix} X_f^{(\infty)}, \nabla \end{bmatrix} = 0, \ \forall X_f \in \mathfrak{f},$$

$$\nabla : \mathcal{F}_k \longrightarrow \mathcal{F}_{k+1}.$$
(3.15)

It follows from Subsection 3.2.2 that if \mathfrak{q} is a Lie subalgebra of Cont $(J^1 \mathbb{R}^2)$, then \mathfrak{q} is a Lie subalgebra of Cont $(J^1 \mathbb{R}^2) \otimes \mathbb{C}$.

Proposition 18 Let \mathfrak{q} be a Lie subalgebra of Cont $(J^1 \mathbb{R}^2)$. If

$$\nabla = (\lambda_{11} + i\lambda_{12}) \mathcal{D}_x + (\lambda_{21} + i\lambda_{22}) \mathcal{D}_y$$

is a complex invariant derivative of q, then

$$\operatorname{Re}(\nabla) = \lambda_{11}\mathcal{D}_x + \lambda_{21}\mathcal{D}_y,$$
$$\operatorname{Im}(\nabla) = \lambda_{21}\mathcal{D}_x + \lambda_{22}\mathcal{D}_y,$$

are real invariant derivatives of q.

Proof. It follows from Equation(3.15) that

$$\begin{bmatrix} X_f^{(\infty)}, (\lambda_{11} + i\lambda_{12}) \mathcal{D}_x + (\lambda_{21} + i\lambda_{22}) \mathcal{D}_y \end{bmatrix}$$

=
$$\begin{bmatrix} X_f^{(\infty)}, \lambda_{11}\mathcal{D}_x + \lambda_{21}\mathcal{D}_y \end{bmatrix} + i \begin{bmatrix} X_f^{(\infty)}, \lambda_{12}\mathcal{D}_x + \lambda_{22}\mathcal{D}_y \end{bmatrix} = 0$$

for all contact vector fields $X_f \in \mathfrak{q}$. Hence

$$\left[X_f^{(\infty)}, \lambda_{11}\mathcal{D}_x + \lambda_{21}\mathcal{D}_y\right] = \left[X_f^{(\infty)}, \lambda_{12}\mathcal{D}_x + \lambda_{22}\mathcal{D}_y\right] = 0.$$

So by Equation (3.14) $\operatorname{Re}(\nabla)$ and $\operatorname{Im}(\nabla)$ are invariant derivatives of \mathfrak{q} .

3.4.1 Tresse Derivation

The total differential of a function $h\in C^\infty(J^k\mathbb{R}^2)$ is

$$dh = \mathcal{D}_x(h)dx + \mathcal{D}_y(h)dy.$$

It is known [KL1] that if the total differentials of two functions $h_1, h_2 \in$

 $C^\infty(J^k\mathbb{R}^2)\otimes\mathbb{C}$ are independent, i.e.

$$\hat{d}h_1 \wedge \hat{d}h_2 \neq 0$$

on a domain $U \in J^k \mathbb{R}^2$, then $\left\langle \hat{d}h_1, \hat{d}h_2 \right\rangle_{\mathbb{C}}$ is a cobasis of $(\pi_k)^* T \mathbb{R}^2|_U$. Hence for any function $h \in C^{\infty}(J^l \mathbb{R}^2)$ the total differential of h is

$$\hat{d}h = \left(\frac{\mathcal{D}h}{\mathcal{D}h_1}\right)\hat{d}h_1 + \left(\frac{\mathcal{D}h}{\mathcal{D}h_2}\right)\hat{d}h_2,$$

where

$$\begin{bmatrix} \frac{\mathcal{D}h}{\mathcal{D}h_1}\\ \frac{\mathcal{D}h}{\mathcal{D}h_2} \end{bmatrix} = \begin{bmatrix} \mathcal{D}_x(h_1) & \mathcal{D}_x(h_2)\\ \mathcal{D}_y(h_1) & \mathcal{D}_y(h_2) \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{D}_x(h)\\ \mathcal{D}_y(h) \end{bmatrix}$$

are the Tresse derivations of the function h.

Let \mathfrak{q} be a Lie subalgebra of Cont $(J^1 \mathbb{R}^2)$, and let \mathcal{Q} be the algebra of the \mathfrak{q} differential invariants. If the total differentials of two functions $q_1, q_2 \in \mathcal{Q}$ are independent,

$$\frac{\mathcal{D}q}{\mathcal{D}q_2}, \frac{\mathcal{D}q}{\mathcal{D}q_1} \in \mathcal{Q}$$

Hence the two derivation operators

$$\begin{bmatrix} \frac{\mathcal{D}}{\mathcal{D}q_1} \\ \frac{\mathcal{D}}{\mathcal{D}q_2} \end{bmatrix} = \begin{bmatrix} \mathcal{D}_x(q_1) & \mathcal{D}_x(q_2) \\ \mathcal{D}_y(q_1) & \mathcal{D}_y(q_2) \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{D}_x \\ \mathcal{D}_y \end{bmatrix}$$

are invariant derivatives of the Lie algebra q. Moreover, these invariant derivatives commute

$$\left[\frac{\mathcal{D}}{\mathcal{D}q_1}, \frac{\mathcal{D}}{\mathcal{D}q_2}\right] = 0$$

Let \mathfrak{f} be a Lie subalgebra of $\operatorname{Cont}(J^1\mathbb{R}^2)\otimes\mathbb{C}$, and let \mathcal{F} be the algebra of the complex valued \mathfrak{f} -differential invariants. If the total differentials of two functions $f_1, f_2 \in \mathcal{F}$ are independent, then the derivation operators

$$\begin{bmatrix} \frac{\mathcal{D}}{\mathcal{D}f_1} \\ \frac{\mathcal{D}}{\mathcal{D}f_2} \end{bmatrix} = \begin{bmatrix} \mathcal{D}_x (f_1) & \mathcal{D}_x (f_2) \\ \mathcal{D}_y (f_1) & \mathcal{D}_y (f_2) \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{D}_x \\ \mathcal{D}_y \end{bmatrix}$$

are complex invariant derivatives of f. Moreover,

$$\left[\frac{\mathcal{D}}{\mathcal{D}f_1}, \frac{\mathcal{D}}{\mathcal{D}f_2}\right] = 0.$$

3.4.2 Lie-Tresse Theorem

Let \mathfrak{q} be a Lie subalgebra of Cont $(J^1 \mathbb{R}^2)$. It is known [L, T, KL1] that there exist \mathfrak{q} -differential invariants, I_{g_1} , I_{g_2} , J_{k_1} , J_{k_2} , ..., J_{k_s} such that if J is an \mathfrak{q} -differential invariant, then

$$J = J\left(I_{g_1}, I_{g_2}, \left(\frac{\mathcal{D}}{\mathcal{D}I_{g_1}}\right)^{m_1} \left(\frac{\mathcal{D}}{\mathcal{D}I_{g_2}}\right)^{n_1} (J_{k_1}), ..., \left(\frac{\mathcal{D}}{\mathcal{D}I_{g_1}}\right)^{m_s} \left(\frac{\mathcal{D}}{\mathcal{D}I_{g_2}}\right)^{n_s} (J_{k_s})\right).$$

3.5 Invariant Derivatives of the Lie Algebra g

In this section we will find invariant derivatives of the Lie algebra \mathfrak{g} by using three different methods. The first two methods require \mathfrak{g} -differential invariants of order three, while in the third method we only need two \mathfrak{h} -differential invariants of order zero.

3.5.1 Invariant Derivatives of g, Method 1

In this subsection we will use the theory of Subsection 3.4.1 to find two invariant derivatives of \mathfrak{g} .

So far, we have found four invariant functions $I_0, I_2, I_{3,1}, I_{3,2} \in \mathcal{G}$ that are independent on some regular domains in $J^3 \mathbb{R}^2$

$$\begin{split} I_0 &= u, \\ I_2 &= \frac{u_{20} + u_{02}}{u_{10}^2 + u_{01}^2}, \\ I_{3,1} &= \frac{-2}{(u_{20} + u_{02})^3} (u_{10}^3 u_{30} + u_{10}^3 u_{12} - u_{10}^2 u_{20}^2 + u_{10}^2 u_{21} u_{01} + u_{10}^2 u_{02}^2 + u_{01}^2 u_{20}^2 \\ &\quad + u_{10} u_{01}^2 u_{30} + u_{10}^2 u_{03} u_{01} + u_{10} u_{01}^2 u_{12} + u_{01}^3 u_{03} + u_{01}^3 u_{21} - u_{01}^2 u_{02}^2 \\ &\quad - 4 u_{10} u_{01} u_{20} u_{11} - 4 u_{10} u_{01} u_{02} u_{11}), \\ I_{3,2} &= \frac{2}{(u_{20} + u_{02})^3} (u_{10}^2 u_{30} u_{01} - u_{10} u_{01}^2 u_{21} + u_{10}^2 u_{12} u_{01} - u_{10} u_{01}^2 u_{03} + 2 u_{10}^2 u_{20} u_{11} \\ &\quad + 2 u_{10} u_{01} u_{02}^2 - 2 u_{10} u_{01} u_{20}^2 + 2 u_{10}^2 u_{02} u_{11} - 2 u_{01}^2 u_{02} u_{11} - 2 u_{01}^2 u_{20} u_{11} \\ &\quad - u_{10}^3 u_{03} + u_{01}^3 u_{12} + u_{01}^3 u_{30} - u_{10}^3 u_{21}). \end{split}$$

The functions $I_{3,1}$ and $I_{3,2}$ have independent symbols

$$\left(\partial_{u_{30}}, \partial_{u_{21}}, \partial_{u_{12}}, \partial_{u_{03}}\right)\left(I_{3,1}\right) = 2\left(I_2(u_{20} + u_{02})^2\right)^{-1}\left(u_{10}, u_{01}, u_{10}, u_{01}\right),\tag{3.16}$$

$$\left(\partial_{u_{30}}, \partial_{u_{21}}, \partial_{u_{12}}, \partial_{u_{03}}\right)\left(I_{3,2}\right) = -2\left(I_2(u_{20} + u_{02})^2\right)^{-1}\left(u_{01}, -u_{10}, u_{01}, -u_{10}\right).$$
(3.17)

It follows from Subsection 3.4.1 that the two derivation operators

$$\begin{bmatrix} \frac{\mathcal{D}}{\mathcal{D}I_0} \\ \frac{\mathcal{D}}{\mathcal{D}I_2} \end{bmatrix} = \begin{bmatrix} \mathcal{D}_x(I_0) & \mathcal{D}_x(I_2) \\ \mathcal{D}_y(I_0) & \mathcal{D}_y(I_2) \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{D}_x \\ \mathcal{D}_y \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} \begin{bmatrix} \mathcal{D}_x \\ \mathcal{D}_y \end{bmatrix}$$

are invariant derivatives of \mathfrak{g} . The maximum order of λ_{ij} , for $i, j \in \{1, 2\}$, is 3. These invariant derivatives are computed in Maple Worksheet "tresse_inv_der", see Appendix 6.

It follows from Equation (3.16) and (3.17) that

$$\begin{split} \frac{\mathcal{D}}{\mathcal{D}I_{0}}(I_{3,1}) &= f_{01} + 2\left(I_{2}(u_{20} + u_{02})^{2}\right)^{-1} \\ & \left(\lambda_{11}\left(u_{10}u_{40} + u_{01}u_{31} + u_{10}u_{22} + u_{01}u_{13}\right) \\ & +\lambda_{12}\left(u_{10}u_{31} + u_{01}u_{22} + u_{10}u_{13} + u_{01}u_{04}\right)\right), \\ \frac{\mathcal{D}}{\mathcal{D}I_{0}}(I_{3,2}) &= f_{02} - 2\left(I_{2}(u_{20} + u_{02})^{2}\right)^{-1} \\ & \left(\lambda_{11}\left(u_{01}u_{40} - u_{10}u_{31} + u_{01}u_{22} - u_{10}u_{13}\right) \\ & +\lambda_{12}\left(u_{01}u_{31} - u_{10}u_{22} + u_{01}u_{13} - u_{10}u_{04}\right)\right), \\ \frac{\mathcal{D}}{\mathcal{D}I_{2}}(I_{3,1}) &= f_{21} + 2\left(I_{2}(u_{20} + u_{02})^{2}\right)^{-1} \\ & \left(\lambda_{21}\left(u_{10}u_{40} + u_{01}u_{31} + u_{10}u_{22} + u_{01}u_{13}\right) \\ & +\lambda_{22}\left(u_{10}u_{31} + u_{01}u_{22} + u_{10}u_{13} + u_{01}u_{04}\right)\right), \\ \frac{\mathcal{D}}{\mathcal{D}I_{2}}(I_{3,2}) &= f_{22} - \left(I_{2}(u_{20} + u_{02})^{2}\right)^{-1} \\ & \left(\lambda_{21}\left(u_{01}u_{40} - u_{10}u_{31} + u_{01}u_{22} - u_{10}u_{13}\right) \\ & +\lambda_{22}\left(u_{01}u_{31} - u_{10}u_{22} + u_{01}u_{13} - u_{10}u_{04}\right)\right), \end{split}$$

where f_{ij} are smooth functions of order less than 4, for $i \in \{0, 2\}, j \in \{1, 2\}$. Hence

$$g_1(I_0, I_2, I_{31}, I_{32}) \frac{\mathcal{D}}{\mathcal{D}I_{m_1}}(I_{3,j_1}) + g_2(I_0, I_2, I_{31}, I_{32}) \frac{\mathcal{D}}{\mathcal{D}I_{m_2}}(I_{3,j_2}) = 0$$

if and only if $g_1 = g_2 = 0$, for $m_1, m_2 \in \{0, 2\}$ and $j_1, j_2 \in \{1, 2\}$.

It follows from computations in Maple Worksheet "dep_inv" that

$$\frac{\mathcal{D}}{\mathcal{D}I_0}(I_{3,2}) = \frac{1}{2}I_2^2((I_{3,1}I_2 + 2)\frac{\mathcal{D}}{\mathcal{D}I_2}(I_{3,2}) - I_2I_{3,2}\frac{\mathcal{D}}{\mathcal{D}I_2}(I_{3,1})),$$

$$g_1(I_0, I_2, I_{31}, I_{32})\frac{\mathcal{D}}{\mathcal{D}I_2}(I_{3,1}) + g_2(I_0, I_2, I_{31}, I_{32})\frac{\mathcal{D}}{\mathcal{D}I_2}(I_{3,2}) + g_2(I_0, I_2, I_{31}, I_{32})\frac{\mathcal{D}}{\mathcal{D}I_0}(I_{3,2}) = 0,$$

if and only if $g_j = 0$, for $j \in \{1, 2, 3\}$. Hence

$$\mathcal{G}_{4} = \left\{ f \in C_{loc}^{\infty}\left(\mathbb{R}^{2}\right) | f = f\left(I_{0}, I_{2}, I_{3,1}, I_{3,2}, \frac{\mathcal{D}}{\mathcal{D}I_{0}}(I_{3,1}), \frac{\mathcal{D}}{\mathcal{D}I_{2}}(I_{3,1}), \frac{\mathcal{D}}{\mathcal{D}I_{2}}(I_{3,2})\right) \right\}.$$

Theorem 19 For any integer $m \in \mathbb{Z}_+$ the m + 2 functions

$$I_{m+3,m+2} = \left(\frac{\mathcal{D}}{\mathcal{D}I_2}\right)^m (I_{3,2}), \quad I_{m+3,j+1} = \left(\frac{\mathcal{D}}{\mathcal{D}I_0}\right)^{m-n} \left(\frac{\mathcal{D}}{\mathcal{D}I_2}\right)^n (I_{3,1}), \ n \in \{0, 1, ..., m\},$$

are \mathfrak{g} -differential invariants of order m + 3. Moreover, these \mathfrak{g} -differential invariants are independent, i.e.

$$\sum_{j=1}^{m+2} g_j I_{m+3,j} = 0, \ g_j \in \mathcal{G}_{m+2} \implies g_j = 0, \ j \in \{1, ..., m+2\}.$$

For any integer $k \in \mathbb{Z}_+$ the algebra of invariant functions under the action of \mathfrak{g} on $J^k(\mathbb{R}^2)$

is

$$\mathcal{G}_k = \left\{ f \in C^{\infty}_{loc}(J^k \mathbb{R}^2) \mid f = f(I_0, I_2, I_{3,1}, I_{3,2}, \dots, I_{k,k-1}) \right\}.$$

Theorem 19 will be proved in Subsection 3.5.3.

3.5.2 Invariant Derivatives of g, Method 2

In this subsection we are seeking invariant derivatives of order less than 3. The first step is to find derivation operators ∇_1 and ∇_2 such that

$$abla_1(I_2) = h_1(I_0, I_2, I_{3,1}),$$

 $abla_2(I_2) = h_2(I_0, I_2, I_{3,2}),$

where $\frac{\partial h_i}{\partial I_{3,i}} \neq 0$, for $i \in \{1, 2\}$, and the \mathfrak{g} -differential invariants $I_{3,1}$ and $I_{3,2}$ are as defined in Subsection 3.5.1.

The second step is to compute the commutator for $j \in \{1, 2\}$

$$\left[V_g^{(\infty)}, \nabla_j\right].$$

If the commutator is zero for any function $g \in \mathcal{O}$, then ∇_1 and ∇_2 are invariant derivatives.

Let us start at the first step and find a derivation operator ∇_1 such that $\nabla_1(I_2) = h_1(I_0, I_2, I_{3,1}).$

$$\begin{aligned} \nabla_1(I_2) &= \left(A\mathcal{D}_x + B\mathcal{D}_y\right)(I_2) \\ &= A\left(\frac{\partial I_2}{\partial x} + u_{10}\frac{\partial I_2}{\partial u} + u_{20}\frac{\partial I_2}{\partial u_{10}} + u_{11}\frac{\partial I_2}{\partial u_{01}}\right) + \\ &B\left(\frac{\partial I_2}{\partial y} + u_{01}\frac{\partial I_2}{\partial u} + u_{11}\frac{\partial I_2}{\partial u_{10}} + u_{02}\frac{\partial I_2}{\partial u_{01}}\right) + \\ &u_{30}\left(A\frac{\partial I_2}{\partial u_{20}}\right) + u_{21}\left(A\frac{\partial I_2}{\partial u_{20}} + B\frac{\partial I_2}{\partial u_{20}}\right) + \\ &u_{12}\left(A\frac{\partial I_2}{\partial u_{02}} + B\frac{\partial I_2}{\partial u_{11}}\right) + u_{03}\left(B\frac{\partial I_2}{\partial u_{02}}\right).\end{aligned}$$

The function $I_{3,1}$ is linear in the coordinate functions of third order. Hence the functions A and B must satisfy the four equations

$$A\frac{\partial I_2}{\partial u_{20}} = \frac{\partial I_{3,1}}{\partial u_{30}} f(I_0, I_2) = 2 \left(I_2 (u_{20} + u_{02})^2 \right)^{-1} u_{10} f(I_0, I_2),$$

$$A\frac{\partial I_2}{\partial u_{11}} + B\frac{\partial I_2}{\partial u_{20}} = \frac{\partial I_{3,1}}{\partial u_{21}} f(I_0, I_2) = 2 \left(I_2 (u_{20} + u_{02})^2 \right)^{-1} u_{01} f(I_0, I_2),$$

$$A\frac{\partial I_2}{\partial u_{02}} + B\frac{\partial I_2}{\partial u_{11}} = \frac{\partial I_{3,1}}{\partial u_{12}} f(I_0, I_2) = 2 \left(I_2 (u_{20} + u_{02})^2 \right)^{-1} u_{10} f(I_0, I_2),$$

$$B\frac{\partial I_2}{\partial u_{02}} = \frac{\partial I_{3,1}}{\partial u_{03}} f(I_0, I_2) = 2 \left(I_2 (u_{20} + u_{02})^2 \right)^{-1} u_{01} f(I_0, I_2),$$

for some smooth function f.

The four equations hold for the functions

$$B = \frac{u_{01}}{u_{10}^2 + u_{01}^2}, \ A = \frac{u_{10}}{u_{10}^2 + u_{01}^2}, \ f(I_0, I_2) = -I_2^3/2.$$

Hence we get the derivation operator

$$abla_1 = rac{u_{10}}{u_{10}^2 + u_{01}^2} \mathcal{D}_x + rac{u_{01}}{u_{10}^2 + u_{01}^2} \mathcal{D}_y.$$

Now, let us find ∇_2 such that $\nabla_2(I_2) = h_2(I_0, I_2, I_{3,2})$. By following the procedure above, we get the derivation operator

$$\nabla_2 = \frac{u_{01}}{u_{10}^2 + u_{01}^2} \mathcal{D}_x - \frac{u_{10}}{u_{10}^2 + u_{01}^2} \mathcal{D}_y.$$

Note that if ∇_1 and ∇_2 are invariant derivatives of \mathfrak{g} , then $\nabla_j(I_0) \in \mathcal{G}$ for $j \in \{0, 1\}$.

Let us check that this is true before we do the last step

$$\nabla_1(I_0) = \left(\frac{-u_{01}}{u_{10}^2 + u_{01}^2} \mathcal{D}_x + \frac{u_{10}}{u_{10}^2 + u_{01}^2} \mathcal{D}_y\right)(u) = 0 \in \mathcal{G},$$

$$\nabla_2(I_0) = \left(\frac{u_{10}}{u_{10}^2 + u_{01}^2} \mathcal{D}_x + \frac{u_{01}}{u_{10}^2 + u_{01}^2} \mathcal{D}_y\right)(u) = 1 \in \mathcal{G}.$$

Let us compute the commutator

$$[(V_g)^{\infty}, \nabla_j] = (g_1 \mathcal{D}_x(\lambda_{1j}) + g_2 \mathcal{D}_y(\lambda_{1j}) - \lambda_{1j} g_{1x} - \lambda_{2j} g_{1y}$$
$$- \sum_{1 \ge m+n \ge 0} (\mathcal{D}_x)^m (\mathcal{D}_y)^n (u_{10}g_1 + u_{01}g_2) \partial_{u_{mn}}(\lambda_{1j}) \mathcal{D}_x$$
$$+ (g_1 \mathcal{D}_x(\lambda_{2j}) + g_2 \mathcal{D}_y(\lambda_{2j}) + \lambda_{1j} g_{1y} - \lambda_{2j} g_{1x}$$
$$- \sum_{1 \ge m+n \ge 0} (\mathcal{D}_x)^m (\mathcal{D}_y)^n (u_{10}g_1 + u_{01}g_2) \partial_{u_{mn}}(\lambda_{2j}) \mathcal{D}_y$$

for $\nabla_j = \lambda_{1j} \mathcal{D}_x + \lambda_{2j} \mathcal{D}_y$. It follows from that Appendix ?? that

$$\left[V_g^{(\infty)}, \nabla_j\right] = 0, \ j \in \{1, 2\}, \ \forall g \in \mathcal{O}.$$

Hence the derivation operators

$$abla_1 = rac{1}{u_{10}^2 + u_{01}^2} \left(u_{10} \mathcal{D}_x + u_{01} \mathcal{D}_y
ight), \
abla_2 = rac{1}{u_{10}^2 + u_{01}^2} \left(-u_{01} \mathcal{D}_x + u_{10} \mathcal{D}_y
ight),$$

are invariant derivatives of \mathfrak{g} .

The commutator of ∇_1 and ∇_2 is

$$[\nabla_1, \nabla_2] = -I_2 \nabla_2.$$

Theorem 20 For any integer $m \in \mathbb{Z}_+$ the m + 1 functions

$$I_{m+2,j+1} = (\nabla_1)^{m-j} (\nabla_2)^j (I_2), \ j \in \{0, 1, ..., k\}$$

are \mathfrak{g} -differential invariants of order m + 2. Moreover, these \mathfrak{g} -differential invariants are independent, i.e.

$$\sum_{j=1}^{m+1} g_j I_{m+2,j} = 0, \ g_j \in \mathcal{G}_{m+1} \implies g_j = 0, \ j \in \{1, ..., m+1\}.$$

For any integer $k \in \mathbb{Z}_+$ the algebra of invariant functions under the action of \mathfrak{g} on $C^{\infty}(J^k \mathbb{R}^2)$ is

$$\mathcal{G}_{k} = \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \mid f = f(I_{0}, I_{2}, I_{3,1}, I_{3,2}, ..., I_{k,k-1}) \right\}.$$

Theorem 20 will be proved in Subsection 3.5.3.

Remark 21 For $k \geq 3$, the \mathfrak{g} -differential invariant $I_{k,j}$ defined in Theorem 20 is not equal to the \mathfrak{g} -differential invariant $I_{k,j}$ defined in Theorem 19. In the following sections $I_{k,j}$ will denote the \mathfrak{g} -differential invariant defined in Theorem 20. The two \mathfrak{g} -differential invariants of pure order three used in Subsection 3.5.1 are

$$I_{3,1}^{old} = -2 \frac{I_{3,1} + I_2^2}{I_2^3}, \ I_{3,2}^{old} = 2 \frac{I_{3,2}}{I_2^3}.$$

 $The \ computation \ is \ done \ in \ Maple \ Worksheet \ "dep_inv_n_o".$

3.5.3 Invariant Derivatives of g, Method 3

The methods used in Subsection 3.5.1 and 3.5.2 required \mathfrak{g} -differential invariants of order three to generate the algebra \mathcal{G} . In this subsection we will use two \mathfrak{h} - differential invariants of order zero

$$u, \bar{z} \in \mathcal{H},$$

to generate the algebra \mathcal{G} .

The derivation operators

$$\begin{bmatrix} \frac{\mathcal{D}}{\mathcal{D}\bar{z}} \\ \frac{\mathcal{D}}{\mathcal{D}u} \end{bmatrix} = \begin{bmatrix} \mathcal{D}_z(\bar{z}) & \mathcal{D}_z(u) \\ \mathcal{D}_{\bar{z}}(\bar{z}) & \mathcal{D}_{\bar{z}}(u) \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{D}_z \\ \mathcal{D}_z \end{bmatrix} = \begin{bmatrix} -\frac{u_{0\bar{1}}}{u_{1\bar{0}}} & 1 \\ \frac{1}{u_{1\bar{0}}} & 0 \end{bmatrix} \begin{bmatrix} \mathcal{D}_z \\ \mathcal{D}_{\bar{z}} \end{bmatrix}$$

are invariant derivatives of \mathfrak{h} .

The derivation operator $\mathcal{D}_{\bar{z}}$ is an invariant derivative of \mathfrak{h} . Hence $\mathcal{D}_{\bar{z}}(u) = u_{0\bar{1}}$ is an \mathfrak{h} -differential invariant.

Note that for any integers $k,j\in\mathbb{Z}_{\geq0}$ where $k\geq j$

$$\left(\frac{\mathcal{D}}{\mathcal{D}\bar{z}}\right)^{k-j} \left(\frac{\mathcal{D}}{\mathcal{D}u}\right)^{j} (u_{0\bar{1}})$$

$$= f + \left(\frac{1}{u_{1\bar{0}}}\right)^{j} \sum_{n=0}^{k-j} {\binom{k-j}{n}} \left(-\frac{u_{0\bar{1}}}{u_{1\bar{0}}}\right)^{k-j-n} (u_{(k-n)\overline{(1+n)}}),$$
(3.18)

where f is a smooth functions of order less than k + 1.

Theorem 22 For any integer $m \in \mathbb{Z}_{\geq 0}$ the m + 1 functions

$$Q_{m+1,j+1} = \left(\frac{\mathcal{D}}{\mathcal{D}\bar{z}}\right)^{m-j} \left(\frac{\mathcal{D}}{\mathcal{D}u}\right)^{j} (u_{0\bar{1}}), \ j \in \{0, 1, ..., m\}$$

are \mathfrak{h} -differential invariants of of order m + 1. Moreover, these \mathfrak{h} -differential invariants

are independent, i.e.

$$\sum_{j=1}^{m+1} g_j Q_{m+1,j} = 0, \ g_j \in \mathcal{H}_m \implies g_j = 0, \ j \in \{1, .., m+1\}$$

For any integer $k \in \mathbb{Z}_+$ the algebra of invariant functions under the action of \mathfrak{h} on $C^{\infty}(J^k \mathbb{R}^2) \otimes \mathbb{C}$ is

$$\mathcal{H}_{k} = \left\{ f \in C_{loc}^{\infty}(J^{k}\mathbb{R}^{2}) \mid f = f(\bar{z}, u, u_{0\bar{1}}, Q_{1,1}, ..., Q_{k,k}) \right\}.$$

Proof. The theorem follows from Subsection 3.3.1 and Equation (3.18).

Since the derivation operator $\mathcal{D}_{\bar{z}}$ is an invariant derivative of \mathfrak{h} and \mathcal{D}_{z} is an invariant derivative of $\bar{\mathfrak{h}}$, it follows that

$$\frac{\mathcal{D}}{\mathcal{D}u} = \frac{1}{u_{1\bar{0}}} \mathcal{D}_z, \quad \frac{\mathcal{D}}{\mathcal{D}u} = -\frac{1}{u_{0\bar{1}}} \mathcal{D}_{\bar{z}}$$

are invariant derivatives of both $\mathfrak h$ and $\bar{\mathfrak h}$ and hence also invariant derivatives of the Lie algebra

$$\mathfrak{g}\otimes\mathbb{C}=\mathfrak{h}\oplus\mathfrak{h}.$$

Moreover,

$$\left[\frac{\bar{\mathcal{D}}}{\mathcal{D}u},\frac{\mathcal{D}}{\mathcal{D}u}\right] = -I_2\left(\frac{\bar{\mathcal{D}}}{\mathcal{D}u} - \frac{\mathcal{D}}{\mathcal{D}u}\right)$$

It follows from Proposition 18 that the derivation operators

$$\nabla_1 = \frac{1}{2} \left(\frac{\bar{\mathcal{D}}}{\mathcal{D}u} + \frac{\mathcal{D}}{\mathcal{D}u} \right) = \frac{1}{u_{10}^2 + u_{01}^2} \left(u_{10}\mathcal{D}_x + u_{01}\mathcal{D}_y \right),$$

$$\nabla_2 = \frac{i}{2} \left(\frac{\mathcal{D}}{\mathcal{D}u} - \frac{\bar{\mathcal{D}}}{\mathcal{D}u} \right) = \frac{1}{u_{10}^2 + u_{01}^2} \left(u_{01}\mathcal{D}_x - u_{10}\mathcal{D}_y \right),$$

are invariant derivatives of $\mathfrak{g}.$

Lemma 23 For any integer $m \in \mathbb{Z}_{\geq 0}$ the m + 1 functions

$$I_{m+2,j+1} = (\nabla_1)^{m-j} (\nabla_2)^j (I_2), \ j \in \{0, 1, ..., m\}$$

are \mathfrak{g} -differential invariants of order m + 2. Moreover, these \mathfrak{g} -differential invariants are independent, i.e.

$$\sum_{j=0}^{k} g_j I_{m+2,j+1} = 0, \ g_j \in \mathcal{G}_{m+1} \implies g_j = 0, \ j \in \{0, ..., m\}.$$

For any integer $k \in \mathbb{Z}_+$ the algebra of invariant functions under the action of \mathfrak{g} on $C^{\infty}(J^k \mathbb{R}^2)$ is

$$\mathcal{G}_{k} = \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \mid f = f(I_{0}, I_{2}, I_{3,1}, I_{3,2}, ..., I_{k,k-1}) \right\}.$$

Proof. The lemma follows from Theorem 22 . \blacksquare

The invariant derivatives of \mathfrak{g} that we found in Subsection 3.5.2 are equal to ∇_1 and ∇_2 . Hence Theorem 20 follows from Lemma 23.

Theorem 24 Suppose that the invariant derivatives $\hat{\nabla}_1$ and $\hat{\nabla}_2$ are equal to

$$\begin{bmatrix} \hat{\nabla}_1 \\ \hat{\nabla}_2 \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \begin{bmatrix} \nabla_1 \\ \nabla_2 \end{bmatrix}$$

where the maximum order of the functions $f_{ij} \in \mathcal{G}$ is k+2 for $k \in \mathbb{Z}_{\geq 0}$ and

$$f_{11}f_{22} - f_{12}f_{21} \neq 0, \ f_{22} \neq 0.$$

Then the k + n + 1 functions

$$K_{n+k+2,i_1+1} = \hat{\nabla}_1^{n-i_1} \hat{\nabla}_2^{i_1}(I_{k+2,1}), \ i_1 \in \{0,..,n\},$$

$$K_{n+k+2,i_2+n+1} = \hat{\nabla}_2^n(I_{k+2,i_2+1}), \ i_2 \in \{1,...,k\},$$

are \mathfrak{g} -differential invariants of order n + k + 2. Moreover, these \mathfrak{g} -differential invariants are independent

$$\sum_{i_2=1}^k g_{i_1} \hat{\nabla}_2^n (I_{k+2,i_2+1}) + \sum_{i_1=0}^n g_{i_2} \hat{\nabla}_1^{n-i_1} \hat{\nabla}_2^{i_1} (I_{k+2,1}) = 0, \ g_{i_2}, g_{i_1} \in \mathcal{G}_{k+n+1} \implies g_{i_2} = g_{i_1} = 0.$$

For any integer $m \in \mathbb{Z}_+$ the algebra of invariant functions under the action of \mathfrak{g} on $C^{\infty}(J^m \mathbb{R}^2)$ is

$$\mathcal{G}_m = \left\{ f \in C^{\infty}_{loc}(J^m \mathbb{R}^2) \mid f = f(I_0, ..., I_{k,k-1}, K_{k+1,1...}K_{m,m-1}) \right\}$$

Proof. For $i_2 \in \{1, ..., k\}$

$$\hat{\nabla}_{2}^{n}(I_{k+2,i_{2}+1}) = (f_{21}\nabla_{1} + f_{21}\nabla_{2})^{n}(I_{k+2,i_{2}+1})$$

= $h_{i_{2}} + (f_{22})^{n}(I_{k+n+2,i_{2}+1+n}) + \sum_{j=1}^{n} h_{ji_{2}}(f_{22})^{n-j}(f_{21})^{j}(I_{k+n+2,i_{2}+n-j+1}),$

where $h_{i_2}, h_{ji_2} \in \mathcal{G}_{k+n+1}$. Hence

$$\sum_{i_2=1}^k g_{i_1} \hat{\nabla}_2^n (I_{k+2,i_2+1}) = 0, \ g_{i_2} \in \mathcal{G}_{k+n+1} \implies g_{i_2} = 0$$

We will prove that

$$\sum_{i_1=0}^{n} g_{i_2} \hat{\nabla}_1^{n-i_1} \hat{\nabla}_2^{i_1}(I_{k+2,1}) = 0, \ g_{i_1} \in \mathcal{G}_{k+n+1} \implies g_{i_1} = 0$$
(3.19)

by induction.

For
$$n = 1$$

$$\hat{\nabla}_1(I_{k+2,1}) = f_{11}I_{k+3,1} + f_{12}I_{k+3,2},$$

$$\hat{\nabla}_2(I_{k+2,1}) = f_{12}I_{k+3,1} + f_{22}I_{k+3,2}.$$

Since $f_{11}f_{22} - f_{12}f_{21} \neq 0$, it follows that Equation (3.19) holds for n = 1.

Suppose that Equation (3.19) holds for n = m. Then

$$\sum_{i_1=0}^{m} g_{i_2} \hat{\nabla}_1 \hat{\nabla}_1^{m-i_1} \hat{\nabla}_2^{i_1}(I_{k+2,1}) = 0, \ g_j \in \mathcal{G}_{k+m+2} \implies g_{i_1} = 0,$$
$$\sum_{i_1=0}^{m} g_{i_2} \hat{\nabla}_2 \hat{\nabla}_1^{m-i_1} \hat{\nabla}_2^{i_1}(I_{k+2,1}) = 0, \ g_j \in \mathcal{G}_{k+m+2} \implies g_{i_1} = 0.$$

Since

$$g_1 \hat{\nabla}_1^{m+1}(I_{k+2,1}) + g_2 \hat{\nabla}_2^{m+1}(I_{k+2,1}) = 0, \ g_1, g_2 \in \mathcal{G}_{k+m+2} \implies g_1 = g_2 = 0,$$

it follows that Equation (3.19) holds for n = m + 1. Hence Equation (3.19) holds for any integer $n \in \mathbb{Z}_{\geq 0}$.

It follows that

$$\sum_{i_2=1}^k g_{i_1} \hat{\nabla}_2^n (I_{k+2,i_2+1}) + \sum_{i_1=0}^n g_{i_2} \hat{\nabla}_1^{n-i_1} \hat{\nabla}_2^{i_1} (I_{k+2,1}) = 0, \ g_j \in \mathcal{G}_{k+n+1} \implies g_{i_2} = g_{i_1} = 0.$$

We have that the invariant derivatives defined in Subsection 3.5.1 are equal to

$$\begin{bmatrix} \frac{\mathcal{D}}{\mathcal{D}I_0} \\ \frac{\mathcal{D}}{\mathcal{D}I_2} \end{bmatrix} = \frac{1}{I_{3,2}} \begin{bmatrix} I_{3,2} & -I_{3,1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \nabla_1 \\ \nabla_2 \end{bmatrix}.$$

Hence Theorem 19 follows from Theorem 24.

3.5.4 Invariant Functions of the Lie Algebras $sl_2(\mathbb{C})_{\mathbb{R}}$ and co(2)

It follows from Subsection 2.2.1 and 2.2.4 that

$$\mathfrak{z} = \langle V_1, V_i, V_z, V_{iz}, V_{z^2}, V_{iz^2}
angle \subset \mathfrak{g},$$
 $\mathfrak{s} = \langle \partial_z, z \partial_z, z^2 \partial_z
angle \subset \mathfrak{h},$

56

are Lie algebras. Moreover,

$$\mathfrak{z} \otimes \mathbb{C} = \mathfrak{s} \oplus \bar{\mathfrak{s}}. \tag{3.20}$$

Let S denote the algebra of \mathfrak{s} -differential invariants and let Z denote the algebra of \mathfrak{z} -differential invariants. It follows from Equation (3.20) that

$$\mathcal{Z} \otimes \mathbb{C} = \mathcal{S} \cap \bar{\mathcal{S}}.\tag{3.21}$$

For an integer $k \in \{0, 1, 2\}$ the distribution defined in Subsection 3.3.1 is equal to

$$\Pi^{k} = \left\langle (\partial_{z})^{(k)}, (z\partial_{z})^{(k)}, (z^{2}\partial_{z})^{(k)} \right\rangle_{\mathbb{C}}$$

Hence

$$\mathcal{S}_k = \mathcal{H}_k, \ \mathcal{Z}_k = \mathcal{G}_k, \ k \in \{0, 1, 2\}.$$

For any integer $k \ge 3$ there exist locally k + 1 functionally independent $\mathfrak{s}-$ and $\mathfrak{z}-$ differential invariants of pure order k. Theorem 22 and Lemma 23 give us $k \mathfrak{s}-$ differential invariants and $k-1 \mathfrak{z}-$ differential invariants of pure order k. Hence we are seeking two real functions $\hat{I}_{k,1}$ and $\hat{I}_{k,2}$ of pure order k such that

$$\hat{I}_{k,1}, \hat{I}_{k,2} \in \mathcal{Z}_k, \ \hat{I}_{k,1}, \hat{I}_{k,2} \notin \mathcal{G}_k,$$

$$g_1\hat{I}_{k,1} + g_2\hat{I}_{k,2} = 0, \ g_1, g_2 \in \mathcal{Z}_{k-1} \implies g_1 = g_2 = 0,$$

for all integers $k \geq 3$. It follows from Equation (3.21) that

$$\hat{I}_{k,1}, \hat{I}_{k,2} \in \mathcal{S} \cap \bar{\mathcal{S}}.$$

Since there exist locally k functionally independent \mathfrak{h} – differential invariants of pure order

k, it follows that

$$g_1(\hat{I}_{k,1}, \hat{I}_{k,2}) = g_2(u_{1\bar{0}}, ..., u_{k\bar{0}}) \in \bar{\mathcal{H}},$$

$$g_3(\hat{I}_{k,1}, \hat{I}_{k,2}) = g_4(u_{0\bar{1}}, ..., u_{0\bar{k}}) \in \bar{\mathcal{H}},$$

for some nonzero functions $g_{1,g_3} \in C^{\infty}_{loc}(\mathbb{R}^2), g_{2,g_4} \in C^{\infty}_{loc}(\mathbb{R}^k).$

For k=3 it is well known [KL2] that the Schwarz derivative is a differential invariant of the Lie algebra \mathfrak{s}

$$SD = \frac{2u_{1\bar{0}}u_{3\bar{0}} - 3u_{2\bar{0}}^2}{u_{1\bar{0}}^4}.$$

Note that

$$SD \in \overline{\mathcal{H}}, \overline{SD} \in \mathcal{H}, \ SD \notin \mathcal{H}, \overline{SD} \notin \overline{\mathcal{H}}.$$

Hence

$$\hat{I}_{3,1}, \hat{I}_{3,2} \in \mathcal{Z}_k, \, \hat{I}_{3,1}, \hat{I}_{3,2} \notin \mathcal{G}_k,$$

 for

$$\begin{split} \hat{I}_{3,1} &= -\frac{1}{2} \left(SD + \overline{SD} \right) \\ &= \frac{1}{(u_{10}^2 + u_{01}^2)^4} (3u_{10}^4 u_{20}^2 + 6u_{01}^5 u_{21} - 2u_{01}^5 u_{03} - 12u_{10}^4 u_{11}^2 - 12u_{01}^4 u_{11}^2 + 48u_{10}^3 u_{01} u_{20} u_{11} \\ &- 48u_{10}^3 u_{01} u_{11} u_{02} + 72u_{10}^2 u_{01}^2 u_{11}^2 - 6u_{01}^4 u_{20} u_{02} + 36u_{10}^2 u_{01}^2 u_{20} u_{02} - 12u_{10}^2 u_{01}^3 u_{21} \\ &+ 4u_{10}^2 u_{01}^3 u_{03} + 6u_{10} u_{01}^4 u_{30} - 18u_{10} u_{01}^4 u_{12} - 48u_{10} u_{01}^3 u_{20} u_{11} + 48u_{10} u_{01}^3 u_{11} u_{02} \\ &- 6u_{10}^4 u_{20} u_{02} - 18u_{10}^2 u_{01}^2 u_{02}^2 + 3u_{01}^4 u_{20}^2 + 3u_{01}^4 u_{02}^2 - 18u_{10}^4 u_{01} u_{21} + 6u_{10}^4 u_{01} u_{03} \\ &+ 4u_{10}^3 u_{01}^2 u_{30} - 12u_{10}^3 u_{01}^2 u_{12} - 18u_{10}^2 u_{01}^2 u_{20}^2 - 2u_{10}^5 u_{30} + 6u_{10}^5 u_{12} + 3u_{10}^4 u_{02}^2), \end{split}$$

$$\begin{split} \hat{I}_{3,2} &= -\frac{i}{2} \left(SD - \overline{SD} \right) \\ &= \frac{1}{(u_{10}^2 + u_{01}^2)^4} (-2u_{10}^2 u_{01}^3 u_{30} + 6u_{10}^2 u_{01}^3 u_{12} - 6u_{10} u_{01}^3 u_{02}^2 - 24u_{10}^3 u_{01} u_{11}^2 - 6u_{10} u_{01}^3 u_{20}^2 \\ &+ u_{01}^5 u_{30} - 3u_{01}^5 u_{12} + 2u_{10}^3 u_{01}^2 u_{03} + 3u_{10} u_{01}^4 u_{03} - 9u_{10} u_{01}^4 u_{21} + 24u_{10} u_{01}^3 u_{11}^2 \\ &+ 6u_{01}^4 u_{11} u_{02} + 9u_{10}^4 u_{01} u_{12} - 3u_{10}^4 u_{01} u_{30} - 6u_{10}^4 u_{20} u_{11} + 6u_{10}^4 u_{11} u_{02} - 6u_{01}^4 u_{20} u_{11} \\ &+ 36u_{10}^2 u_{01}^2 u_{20} u_{11} - 36u_{10}^2 u_{01}^2 u_{11} u_{02} + 12u_{10} u_{01}^3 u_{20} u_{02} + 6u_{10}^3 u_{01} u_{20}^2 + 6u_{10}^3 u_{01} u_{02}^2 \\ &- 12u_{10}^3 u_{01} u_{20} u_{02} - 6u_{10}^3 u_{01}^2 u_{21} - u_{10}^5 u_{03} + 3u_{10}^5 u_{21}^5). \end{split}$$

It follows from Subsection 3.5.3 that the derivation operators

$$\nabla = \frac{\bar{\mathcal{D}}}{\mathcal{D}u} = \frac{1}{u_{1\bar{0}}}\mathcal{D}_z, \ \bar{\nabla} = \frac{\mathcal{D}}{\mathcal{D}u} = \frac{1}{u_{0\bar{1}}}\mathcal{D}_{\bar{z}},$$

are invariant derivatives of the Lie algebras $\mathfrak{h},\,\bar{\mathfrak{h}},\,\mathfrak{s}$ and $\bar{\mathfrak{s}}.$ Hence

$$\nabla^{k} (SD) \in \overline{\mathcal{H}}, \ S \cap \overline{S},$$
$$\overline{\nabla}^{k} (\overline{SD}) \in \mathcal{H}, \ S \cap \overline{S},$$
$$\nabla^{k} (SD) \notin \mathcal{H},$$
$$\overline{\nabla}^{k} (\overline{SD}) \notin \overline{\mathcal{H}}.$$

Hence the two functions

$$\hat{I}_{3+k,1} = \nabla^{k} (SD) + \bar{\nabla}^{k} (\overline{SD}) ,$$
$$\hat{I}_{3+k,2} = i \left(\nabla^{k} (SD) - \bar{\nabla}^{k} (\overline{SD}) \right) ,$$

are $\mathfrak{z}-\text{differential invariant}$ of pure order k+3.

Therefore the algebra of invariant functions under the action of \mathfrak{s} and $\overline{\mathfrak{s}}$ on $C^{\infty}(J^k\mathbb{R}^2)\otimes$

 $\mathbb C$ and $\mathfrak z$ on $C^\infty(J^k\mathbb R^2)$ are

$$\begin{split} \mathcal{S}_{k} &= \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \otimes \mathbb{C} \mid f = f(\bar{z}, u_{0\bar{1}}, .., u_{0\bar{k}}, u, , I_{2}, .., I_{k,k-1}, SD, .., \nabla^{k-3} \left(SD \right)) \right\}, \\ \bar{\mathcal{S}}_{k} &= \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \otimes \mathbb{C} \mid f = f(z, u_{1\bar{0}}, .., u_{1\bar{0}}, u, I_{2}, .., I_{k,k-1}, \overline{SD}, .., \overline{\nabla}^{k-3} \left(\overline{SD} \right)) \right\}, \\ \mathcal{Z}_{k} &= \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}^{2}) \mid f = f(u, I_{2}, .., I_{k,k-1}, \hat{I}_{3,1}, \hat{I}_{3,2}, .., \hat{I}_{k,1}, \hat{I}_{k,2}) \right\}, \end{split}$$

where the functions $I_{j,i}$ are as defined in Lemma 23.

The subspaces

$$\mathfrak{c} = \langle V_1, V_i, V_z, V_{iz} \rangle \subset \mathfrak{z},$$
$$\mathfrak{w} = \langle \partial_z, z \partial_z \rangle \subset \mathfrak{s},$$

are Lie algebras. There exist locally three functionally independent \mathfrak{c} - and \mathfrak{w} -differential invariants of pure order two. The function

$$\frac{u_{2\bar{0}}}{u_{1\bar{0}}^2} \in \bar{\mathcal{H}}$$

is a \mathfrak{w} -differential invariant. Hence the two functions

$$\frac{1}{2} \left(\frac{u_{2\bar{0}}}{u_{1\bar{0}}^2} + \frac{u_{0\bar{2}}}{u_{01}^2} \right) = \frac{(u_{20} - u_{02}) \left(u_{10}^2 - u_{01}^2 \right) + 4u_{11}u_{01}u_{10}}{\left(u_{10}^2 + u_{01}^2 \right)^2},$$

$$\frac{i}{2} \left(\frac{u_{2\bar{0}}}{u_{1\bar{0}}^2} - \frac{u_{0\bar{2}}}{u_{01}^2} \right) = \frac{2(u_{20} - u_{02})u_{01}u_{10} - 2u_{11} \left(u_{10}^2 - u_{01}^2 \right)}{\left(u_{10}^2 + u_{01}^2 \right)^2},$$

are $\mathfrak{c}\mathrm{-differential}$ invariants.

The function

$$\nabla\left(\frac{u_{2\bar{0}}}{u_{1\bar{0}}^2}\right) = \frac{1}{u_{1\bar{0}}}\mathcal{D}_z\left(\frac{u_{2\bar{0}}}{u_{1\bar{0}}^2}\right) = \frac{u_{3\bar{0}}}{u_{1\bar{0}}^3} - \left(\frac{u_{2\bar{0}}}{u_{1\bar{0}}^2}\right)^2$$

is an $\mathfrak{c}-\mathrm{differential}$ invariant of order three. Note that

$$SD = 2
abla \left(rac{u_{2ar 0}}{u_{1ar 0}^2}
ight) - \left(rac{u_{2ar 0}}{u_{1ar 0}^2}
ight)^2.$$

Chapter 4

Differential Invariants of the Deformed Representations of g

This chapter is a generalization of Chapter 3.

4.1 The Lie Algebra \mathfrak{g}_{Fb}

4.1.1 The Lie Algebra Homomorphism $K_{\lambda} : \mathfrak{h} \to \mathcal{D}(J^0 \mathbb{R}^2) \otimes \mathbb{C}$

In this subsection we are seeking a Lie algebra homomorphism

$$egin{aligned} & K_\lambda: \mathfrak{h} \longrightarrow \mathcal{D}\left(J^0\mathbb{R}^2
ight)\otimes\mathbb{C}, \ & K_\lambda(g\partial_z)=g\partial_z+\lambda(g,u)\partial_u, \end{aligned}$$

where $\lambda(z, u) \in C^{\infty}(J^0 \mathbb{R}^2) \otimes \mathbb{C}$. Hence the map K_{λ} must be linear and preserve the commutator bracket, i.e.

$$\lambda(\{g,h\},u) = gh_z\lambda_h(h,u) - hg_z\lambda_g(g,u) + \lambda(g,u)\lambda_u(h,u) - \lambda_u(g,u)\lambda(h,u), \qquad (4.1)$$

where $\{g, h\}$ is the bracket defined on \mathcal{O} in Subsection 2.2.1.

It follows from Equation (4.1) that for any constants $c_1, c_2 \in \mathbb{C}$

$$\lambda(\{c_1, c_2\}, u) = \lambda(c_1, u)\lambda_u(c_2, u) - \lambda_u(c_1, u)\lambda(c_2, u) = 0.$$

Hence the function $\lambda(z, u)$ is separable, i.e.

$$\lambda(z, u) = Z(z)U(u).$$

It follows from Equation (4.1) that

$$Z(\{1, z\}) = Z(1) = Z'(z).$$

Hence

$$Z(z) = zc, \ c \in \mathbb{C}.$$

Thus the map

$$K_{\lambda}:\mathfrak{h}\longrightarrow\mathcal{D}\left(J^{0}\mathbb{R}^{2}\right)\otimes\mathbb{C},$$
$$K_{\lambda}(g\partial_{z})=g\partial_{z}+\lambda(g,u)\partial_{u},$$

is a Lie algebra homomorphism if and only if

$$\lambda(z, u) = zU(u), \ U(u) \in C^{\infty}(J^0\mathbb{R}^2) \otimes \mathbb{C}.$$

Let $\mathfrak{h}_U = \operatorname{Im}(K_\lambda)$ denote the image of the Lie algebra homomorphism

$$\mathfrak{h}_U = \{ g \left(\partial_z + U(u) \partial_u \right) \mid g \in \mathcal{O} \}.$$

4.1.2 A Lie Algebra Isomorphism

In this subsection we are seeking functions $G(u) = G_1(u) + iG_2(u) \in C^{\infty} (J^0 \mathbb{R}^2) \otimes \mathbb{C}$ such that the \mathbb{R} -linear map

$$2\operatorname{Re}:\mathfrak{h}_G\longrightarrow\mathcal{D}\left(J^0\mathbb{R}^2\right)$$

is an injective Lie algebra homomorphism.

Since

$$g(\partial_{z} + G(u)\partial_{u})$$

$$= \frac{1}{2}(g_{1}\partial_{x} + g_{2}\partial_{y}) + (g_{1}G_{1}(u) - g_{2}G_{2}(u))\partial_{u} + i\left(\frac{1}{2}(g_{2}\partial_{x} - g_{1}\partial_{y}) + (g_{2}G_{1}(u) + g_{1}G_{2}(u))\partial_{u}\right)$$

we have

$$2\operatorname{Re}\left(g\left(\partial_z + G(u)\partial_u\right)\right) = V_g + 2(g_1G_1(u) - g_2G_2(u))\partial_u.$$

If the map 2 Re is a Lie algebra homomorphism when restricted to \mathfrak{h}_F , then

$$[2 \operatorname{Re} (g (\partial_z + G(u)\partial_u)), 2 \operatorname{Re} (h (\partial_z + G(u)\partial_u))]$$

$$= [V_g + 2(g_1G_1(u) - g_2G_2(u))\partial_u, V_h + 2(h_1G_1(u) - h_2G_2(u))\partial_u]$$

$$= V_{[g,h]} + 2 (V_g(h_1G_1(u) - h_2G_2(u)) - V_h(g_1G_1(u) - g_2G_2(u))) \partial_u$$

$$-4 (g_1h_2 - h_1g_2) (G_1(u)G_2'(u) - G_1'(u)G_2(u)) \partial_u$$

is equal to

$$2 \operatorname{Re} \left[g \left(\partial_z + G(u) \partial_u \right), h \left(\partial_z + G(u) \partial_u \right) \right]$$

= $V_{[g,h]} + 2 \left(V_g(h_1 G_1(u) - h_2 G_2(u)) - V_h(g_1 G_1(u) - g_2 G_2(u)) \right) \partial_u.$

Hence

$$G_1(u)G'_2(u) - G'_1(u)G_2(u) = 0.$$

So it follows that the linear map $2 \operatorname{Re} : \mathfrak{h}_G \longrightarrow \mathcal{D}(J^0 \mathbb{R}^2)$ is an injective Lie algebra homomorphism if and only if

$$G(u) = F(u)b,$$

where $F(u) \in C^{\infty}(J^0 \mathbb{R}^2)$ and $b = b_1 + ib_2 \in \mathbb{C}$.

Hence the three spaces

$$\begin{split} \mathfrak{h}_{Fb} &= \left\{ gW_{Fb} = g(z) \left(\partial_z + \frac{1}{2}F(u)b\partial_u \right) \mid g \in \mathcal{O} \right\}, \\ \bar{\mathfrak{h}}_{Fb} &= \left\{ \bar{g}\bar{W}_{Fb} = \bar{g}(z) \left(\partial_{\bar{z}} + \frac{1}{2}F(u)\bar{b}\partial_u \right) \mid g \in \mathcal{O} \right\}, \\ \mathfrak{g}_{Fb} &= \left\{ V_{Fbg} = V_g + F(u)(g_1b_1 - g_2b_2)\partial_u \mid g \in \mathcal{O} \right\}, \end{split}$$

are infinite dimensional Lie algebras.

If we consider \mathfrak{g}_{Fb} as a Lie subalgebra of $\mathcal{D}\left(J^0\mathbb{R}^2\right)\otimes\mathbb{C}$, then

$$V_{Fbg} = g(z) \left(\partial_z + \frac{1}{2} F(u) b \partial_u \right) + \bar{g} \left(\partial_{\bar{z}} + \frac{1}{2} F(u) b \partial_u \right), \ \forall g \in \mathcal{O}.$$

Moreover, the complexification of \mathfrak{g}_{Fb} is equal to the direct sum

$$\mathfrak{g}_{Fb}\otimes\mathbb{C}=\mathfrak{h}_{Fb}\oplus\overline{\mathfrak{h}}_{Fb}.$$

Consider the linear subspace of \mathfrak{h}_{Fb}

$$\mathfrak{s}_{Fb} = \left\langle z^j \left(\partial_z + \frac{1}{2} F(u) b \partial_u \right) \mid j \in \{0, 1, 2\} \right\rangle_{\mathbb{C}} \subset \mathfrak{h}_{Fb}.$$

Since

$$\left[z^{j}\left(\partial_{z}+\frac{1}{2}F(u)b\partial_{u}\right), z^{l}\left(\partial_{z}+\frac{1}{2}F(u)b\partial_{u}\right)\right]=(l-j)z^{j-l}\left(\partial_{z}+\frac{1}{2}F(u)b\partial_{u}\right)\in\mathfrak{s}_{Fb}$$

for $j, l \in \{0, 1, 2\}$, it follows that \mathfrak{s}_{Fb} is a 3-dimensional Lie subalgebra of \mathfrak{s}_{Fb} isomorphic to $\mathfrak{sl}_2(\mathbb{C})$. Hence the space

$$\mathfrak{z}_{Fb} = \langle V_{Fb_1}, V_{Fbi}, V_{Fbz}, V_{Fbiz}, V_{Fbz^2}, V_{Fbiz^2} \rangle \subset \mathfrak{g}_{Fb},$$

is a Lie algebra isomorphic to $sl_2(\mathbb{C})_{\mathbb{R}}$.

4.2 The Lie Algebra \mathfrak{g}_{Fb}^k

In this section we will use the results from Chapter 3.

Consider the spaces

$$\mathfrak{g}_{Fb}^{k} = \left\{ V_{Fbg}^{(k)} = V_{g}^{(k)} + \left((F(u)(b_{1}g_{1} - b_{2}g_{2}))\partial_{u} \right)^{(k)} \mid g \in \mathcal{O} \right\},\$$
$$\mathfrak{h}_{Fb}^{k} = \left\{ gW_{Fb}^{(k)} = \left(g(z) \left(\partial_{z} + \frac{1}{2}F(u)b\partial_{u} \right) \right)^{(k)} \mid g \in \mathcal{O} \right\}.$$

For $k \geq 1$ \mathfrak{h}_{Fb}^k is a Lie subalgebra of Lie $(J^k \mathbb{R}^2) \otimes \mathbb{C}$ and \mathfrak{g}_{Fb}^k is a Lie subalgebra of Lie $(J^k \mathbb{R}^2)$. Let \mathcal{H}^{Fb} denote the algebra of the \mathfrak{h}_{Fb} -differential invariants, and let \mathcal{G}^{Fb} denote the algebra of the \mathfrak{g}_{Fb} -differential invariants.

Proposition 25 We have that

$$\mathcal{G}^{Fb}\otimes\mathbb{C}=\mathcal{H}^{Fb}\capar{\mathcal{H}}^{Fb}$$

Proof. \Longrightarrow For any integer $k \in \mathbb{Z}_{\geq 0}$ and any function $f \in \mathcal{H}_k^{Fb} \cap \bar{\mathcal{H}}_k^{Fb}$

$$V_{Fbg}^{(k)}(f) = \left(g(z)\left(\partial_z + \frac{1}{2}F(u)b\partial_u\right)\right)^{(k)}(f) + \left(\bar{g}(z)\left(\partial_{\bar{z}} + \frac{1}{2}F(u)\bar{b}\partial_u\right)\right)^{(k)}(f) = 0, \ \forall g \in \mathcal{O}.$$

Hence

$$\mathcal{G}^{Fb}\otimes\mathbb{C}\supseteq\mathcal{H}^{Fb}\cap\bar{\mathcal{H}}^{Fb}$$

$$\left(g(z) \left(\partial_{z} + \frac{1}{2} F(u) b \partial_{u} \right) \right)^{(k)} (f) = V_{Fbg}^{(k)}(f) - i V_{Fbig}^{(k)}(f) = 0, \ \forall g \in \mathcal{O}$$
$$\left(\bar{g}(z) \left(\partial_{\bar{z}} + \frac{1}{2} F(u) \bar{b} \partial_{u} \right) \right)^{(k)} (f) = V_{Fbg}^{(k)}(f) + i V_{Fbig}^{(k)}(f) = 0, \ \forall g \in \mathcal{O}.$$

\sim	~
h	h
v	J

4.2.1 The Distribution Ω_{Fb}^k

In this subsection we will use the results from Subsection 3.3.1.

For every function $F(u) \in C^{\infty} (J^0 \mathbb{R}^2)$ and constant $b = b_1 + ib_2 \in \mathbb{C}$ the complex distribution

$$\Omega_{Fb}^{k} = \left\langle \left(g(z) \left(\partial_{z} + \frac{1}{2} F(u) b \partial_{u} \right) \right)^{(k)} \mid g \in \mathcal{O} \right\rangle_{\mathbb{C}}$$

has complex dimension k + 1 and

$$\Omega_{Fb}^{k} \oplus \bar{\Omega}_{Fb}^{k} = \left\langle V_{Fbg}^{(k)} \mid g \in \mathcal{O} \right\rangle \otimes \mathbb{C}$$

has complex dimension 2(k+1).

For any functions $g, h \in \mathcal{O}$

$$\left[\left(g(z) \left(\partial_z + \frac{1}{2} F(u) b \partial_u \right) \right)^{(k)}, \left(h(z) \left(\partial_z + \frac{1}{2} F(u) b \partial_u \right) \right)^{(k)} \right] \in \Omega_{Fb}^k,$$
$$\left[V_{Fbg}^{(k)}, V_{Fbh}^{(k)} \right] \in \Omega_{Fb}^k \oplus \bar{\Omega}_{Fb}^k.$$

Moreover

$$\Omega_{Fb}^k \cap \bar{\Omega}_{Fb}^k = 0.$$

Hence the distribution Ω_{Fb}^k is completely integrable.

The first integrals of the complex distribution $\Omega_{Fb}^k \oplus \bar{\Omega}_{Fb}^k$ are invariant functions under the action of \mathfrak{g}_{Fb} on $C^{\infty}(J^k\mathbb{R}^2) \otimes \mathbb{C}$. Hence the distribution $\Omega_{Fb}^k \oplus \bar{\Omega}_{Fb}^k$ has one first integral of order zero

$$J_0 \in C^{\infty}_{loc} \left(J^k \mathbb{R}^2 \right)$$

and l-1 first integrals of order l for $1\leq l\leq k$

$$\{J_{l,j}\}_{j=1}^{l-1} \in C_{loc}^{\infty}\left(J^k \mathbb{R}^2\right), \ 2 \le l \le k$$

66
such that locally the K - 2(k+1) functions

$$J_0 \bigcup_{2 \le l \le k} \{J_{l,j}\}_{j=1}^{l-1}$$

are functionally independent, where

$$K = (k+1)(k+2)/2 + 2.$$

The first integrals of the distribution Ω_{Fb}^k are invariant functions under the action of \mathfrak{h}_{Fb} on $C^{\infty}(J^k\mathbb{R}^2) \otimes \mathbb{C}$. Hence the distribution Ω_{Fb}^k has one first integral of pure order l

$$Q_l, \in C^{\infty}_{loc}\left(J^k \mathbb{R}^2\right) \otimes \mathbb{C}, \ 1 \le l \le k,$$

such that locally the K - (k + 1) functions

$$J_0 \underset{2 \le l \le k}{\cup} \{J_{l,j}\}_{j=1}^{l-1} \underset{1 \le m \le k}{\cup} Q_m$$

are functionally independent.

The algebras of invariant functions under the action of \mathfrak{h}_{Fb} and $\overline{\mathfrak{h}}_{Fb}$ on $C^{\infty}(J^k\mathbb{R}^2)\otimes\mathbb{C}$ and \mathfrak{g}_{Fb} on $C^{\infty}(J^k\mathbb{R}^2)$ are

$$\begin{aligned} \mathcal{H}_{k}^{Fb} &= \left\{ f \in C_{loc}^{\infty} \left(J^{k} \mathbb{R}^{2} \right) \otimes \mathbb{C} \mid f = f(J_{0}, J_{2}, J_{3,1}, J_{3,2}, ..., J_{k,k-1}, Q_{1}, ..., Q_{k}) \right\}, \\ \bar{\mathcal{H}}_{k}^{Fb} &= \left\{ f \in C_{loc}^{\infty} \left(J^{k} \mathbb{R}^{2} \right) \otimes \mathbb{C} \mid f = f(J_{0}, J_{2}, J_{3,1}, J_{3,2}, ..., J_{k,k-1}, \bar{Q}_{1}, ..., \bar{Q}_{k}) \right\}, \\ \mathcal{G}_{k}^{Fb} &= \left\{ f \in C_{loc}^{\infty} \left(J^{k} \mathbb{R}^{2} \right) \mid f = f(J_{0}, J_{2}, J_{3,1}, J_{3,2}, ..., J_{k,k-1}) \right\}. \end{aligned}$$

4.2.2 Invariant Derivatives of \mathfrak{g}_{Fb}

For any function $F(u) \neq 0 \in C^{\infty}(J^k \mathbb{R}^2)$ and constant $b = b_1 + ib_2 \neq 0 \in \mathbb{C}$, the following functions are \mathfrak{h}_{Fb} -differential invariants of order zero

$$\bar{z}, J_0 = \int \frac{1}{F(u)} du - \frac{1}{2}zb - \frac{1}{2}\bar{z}\bar{b} \in \mathcal{H}^{Fb}.$$

The derivation operators

$$\begin{bmatrix} \frac{\mathcal{D}}{\mathcal{D}\bar{z}} \\ \frac{\mathcal{D}}{\mathcal{D}J_0} \end{bmatrix} = \frac{-1}{\frac{u_{1\bar{0}}}{F(u)} - \frac{1}{2}b} \begin{bmatrix} \frac{u_{0\bar{1}}}{F(u)} - \frac{1}{2}\bar{b} & -\frac{u_{1\bar{0}}}{F(u)} + \frac{1}{2}b \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \mathcal{D}_z \\ \mathcal{D}_{\bar{z}} \end{bmatrix}$$

are invariant derivatives of \mathfrak{h}_{Fb} .

The derivation operator $\mathcal{D}_{\bar{z}}$ is an invariant derivative of \mathfrak{h}_{Fb} . Hence the following function is a \mathfrak{h}_{Fb} -differential invariant of order one

$$\mathcal{D}_{\bar{z}}(J_0) + \frac{1}{2}\bar{b} = \frac{u_{0\bar{1}}}{F(u)}.$$

Note that for any integers $k,j\in\mathbb{Z}_{\geq 0}$ such that $k\geq j$

$$\left(\frac{\mathcal{D}}{\mathcal{D}\bar{z}}\right)^{k-j} \left(\frac{\mathcal{D}}{\mathcal{D}J_0}\right)^j \left(\frac{u_{0\bar{1}}}{F(u)}\right)$$

$$= f + \frac{1}{F(u)} \left(\frac{-F(u)}{u_{1\bar{0}} - \frac{1}{2}F(u)b}\right)^k \sum_{n=0}^{k-j} \left(\frac{u_{0\bar{1}}}{F(u)} - \frac{1}{2}\bar{b}\right)^{k-j-n} \left(-\frac{u_{1\bar{0}}}{F(u)} + \frac{1}{2}b\right)^n u_{(k-n)\overline{(1+n)}},$$

$$(4.2)$$

where f is a smooth function of order less than k + 1.

Theorem 26 For any integer $k \in \mathbb{Z}_{\geq 0}$ the k + 1 functions

$$K_{k+1,j+1}\left(\frac{\mathcal{D}}{\mathcal{D}\bar{z}}\right)^{k-j}\left(\frac{\mathcal{D}}{\mathcal{D}J_0}\right)^j\left(\frac{u_{0\bar{1}}}{F(u)}\right), \ j \in \{0,..,k\}$$

are \mathfrak{h}_{Fb} -differential invariants of order k+1. Moreover,

$$\sum_{j=0}^{k} g_j \left(\frac{\mathcal{D}}{\mathcal{D}\bar{z}}\right)^{k-j} \left(\frac{\mathcal{D}}{\mathcal{D}J_0}\right)^j \left(\frac{u_{0\bar{1}}}{F(u)}\right) = 0, g_j \in \mathcal{H}_k^{Fb} \Longrightarrow g_j = 0, j \in \{0, ..., k\}.$$

For any integer $m \in \mathbb{Z}_+$ the algebra of invariant functions under the action of \mathfrak{h}_{Fb} on $C^{\infty}(J^m \mathbb{R}^2) \otimes \mathbb{C}$ is

$$\mathcal{H}_{m}^{Fb} = \left\{ f \in C_{loc}^{\infty} \left(J^{m} \mathbb{R}^{2} \right) \otimes \mathbb{C} \mid f = f(\bar{z}, J_{0}, K_{1,1}, K_{2,1}, K_{2,2}, ..., K_{m,m}) \right\}$$

Proof. The theorem follows from Equation (4.2) and Subsection 4.2.1.

Since $\mathcal{D}_{\bar{z}}$ is an invariant derivative of \mathfrak{h}_{Fb} and \mathcal{D}_z is an invariant derivative of $\bar{\mathfrak{h}}_{Fb}$ it follows that the derivation operators

$$\frac{\bar{\mathcal{D}}}{\mathcal{D}J_0} = \frac{1}{\frac{u_{1\bar{0}}}{F(u)} - \frac{1}{2}b} \mathcal{D}_z, \quad \frac{\mathcal{D}}{\mathcal{D}J_0} = \frac{1}{\frac{u_{0\bar{1}}}{F(u)} - \frac{1}{2}\bar{b}} \mathcal{D}_{\bar{z}},$$

are invariant derivatives for $\mathfrak{g}_{Fb} \otimes \mathbb{C}$. Since

$$\left[\frac{\bar{\mathcal{D}}}{\mathcal{D}J_0}, \frac{\mathcal{D}}{\mathcal{D}J_0}\right] = \frac{\mathcal{D}_z \mathcal{D}_{\bar{z}}(J_0)}{\mathcal{D}_z(J_0) \mathcal{D}_z(J_0)} \left(\frac{\bar{\mathcal{D}}}{\mathcal{D}J_0} - \frac{\mathcal{D}}{\mathcal{D}J_0}\right),$$

it follows that the function

$$J_2 = \frac{\mathcal{D}_z \mathcal{D}_{\bar{z}}(J_0)}{\mathcal{D}_z(J_0) \mathcal{D}_z(J_0)} = \frac{(-u_{01}^2 - u_{10}^2)F_u(u) + F(u)(u_{02} + u_{20})}{(b_1 F(u) - u_{10})^2 + (b_2 F(u) + u_{01})^2}$$

is an \mathfrak{g}_{Fb} -differential invariant of order two. Moreover,

$$\hat{\nabla}_{1} = \left(\frac{F(u)^{2}}{(u_{10} - b_{1}F(u))^{2} + (u_{01} + b_{2}F(u))^{2}}\right) \left(\left(\frac{u_{10}}{F(u)} - b_{1}\right)\mathcal{D}_{x} + \left(\frac{u_{01}}{F(u)} + b_{2}\right)\mathcal{D}_{y}\right),$$
$$\hat{\nabla}_{2} = \left(\frac{F(u)^{2}}{(u_{10} - b_{1}F(u))^{2} + (u_{01} + b_{2}F(u))^{2}}\right) \left(\left(\frac{u_{01}}{F(u)} + b_{2}\right)\mathcal{D}_{x} + \left(-\frac{u_{10}}{F(u)} + b_{1}\right)\mathcal{D}_{y}\right),$$

are invariant derivatives of \mathfrak{g}_{Fb} .

Theorem 27 For any integer $k \in \mathbb{Z}_{\geq 0}$ the k + 1 functions

$$J_{k+2,j+1} = \left(\hat{\nabla}_{1}\right)^{k-j} \left(\hat{\nabla}_{j}\right)^{j} (J_{2}), \ j \in \{0, ..., k\}$$

are \mathfrak{g}_{Fb} -differential invariants of order k + 2. Moreover, these \mathfrak{g}_{Fb} -differential invariants are independent, i.e.

$$\sum_{j=0}^{k} g_j \left(\hat{\nabla}_1 \right)^{k-j} \left(\hat{\nabla}_2 \right)^j (J_2) = 0, \ g_j \in \mathcal{G}_{k+1}^{Fb} \implies g_j = 0, \ j \in \{0, ..., k\}.$$

For any integer $m \in \mathbb{Z}_+$ the algebra of invariant functions under the action of \mathfrak{g}_{Fb} on $C^{\infty}(J^m \mathbb{R}^2)$ is

$$\mathcal{G}_{m}^{Fb} = \left\{ f \in C_{loc}^{\infty} \left(J^{m} \mathbb{R}^{2} \right) \otimes \mathbb{C} \mid f = f(J_{0}, J_{2}, J_{3,1}, J_{3,2}, ..., J_{m,m-1}) \right\}.$$

Proof. The theorem follows from Theorem 26 . \blacksquare

Remark 28 Note that for any nonzero function $F(u) \in C^{\infty}(J^0\mathbb{R}^2)$ and $b = b_1 + ib_2 \in \mathbb{C}$, we have that

$$\lim_{b \to 0} (V_g + F(u)(b_1g_1 + b_2g_2)) = V_g,$$

$$\begin{split} \lim_{b \to 0} J_0 &= \int \frac{du}{F(u)} = \int \frac{dI_0}{F(I_0)}, \\ \lim_{b \to 0} J_2 &= -F'(u) + F(u) \left(\frac{u_{20} + u_{02}}{u_{10}^2 + u_{01}^2}\right) = -F'(I_0) + F(I_0)I_2, \\ \lim_{b \to 0} \hat{\nabla}_1 &= \frac{F(u)}{u_{10}^2 + u_{01}^2} \left(u_{10}\mathcal{D}_x + u_{01}\mathcal{D}_y\right) = F(I_0)\nabla_1, \\ \lim_{b \to 0} \hat{\nabla}_2 &= \frac{F(u)}{u_{10}^2 + u_{01}^2} \left(u_{01}\mathcal{D}_x - u_{10}\mathcal{D}_y\right) = F(I_0)\nabla_2. \end{split}$$

Hence the results of Chapter 3 can be obtained from the results of this chapter.

4.2.3 Invariant Functions of the Lie Algebra \mathfrak{z}_{Fb} and \mathfrak{c}_{Fb}

For any function $F(u) \neq 0 \in C^{\infty}(J^k \mathbb{R}^2)$ and constant $b = b_1 + ib_2 \neq 0 \in \mathbb{C}$ consider the Lie algebras

$$\mathfrak{c}_{Fb} = \langle V_{Fb1}, V_{Fbi}, V_{Fbz}, V_{Fbiz} \rangle \subset \mathfrak{z}_{Fb} = \langle V_{Fb1}, V_{Fbi}, V_{Fbz}, V_{Fbiz} V_{Fbz^2}, V_{Fbiz^2} \rangle \subset \mathfrak{g}_{Fb},$$
$$\mathfrak{w}_{Fb} = \left\langle z^j \left(\partial_z + \frac{b}{2} F(u) \partial_u \right) \mid j \in \{0, 1\} \right\rangle \subset \mathfrak{s}_{Fb} = \left\langle z^j \left(\partial_z + \frac{b}{2} F(u) \partial_u \right) \mid j \in \{0, 1, 2\} \right\rangle \subset \mathfrak{h}_{Fb}$$

For any integer $k \ge 2$ there exist locally k + 1 functionally independent \mathfrak{c}_{Fb} - and \mathfrak{w}_{Fb} -differential invariants of pure order k. The function

$$W_2 = \frac{u_{2\bar{0}}F(u) - F'(u)u_{1\bar{0}}^2}{(-2u_{1\bar{0}} + bF(u))^2} \in \bar{\mathcal{H}}, \ W_2 \notin \mathcal{H},$$

is an \mathfrak{w}_{Fb} -differential invariant.

For any integer $k \ge 3$ there exist locally k + 1 functionally independent \mathfrak{z}_{Fb} and \mathfrak{z}_{Fb} -differential invariants of pure order k. The function

$$\nabla(W_2) = \frac{2}{(-2u_{1\bar{0}} + bF(u))^4} \left(2F_u(u)u_{2\bar{0}}u_{1\bar{0}}^2 + 3u_{1\bar{0}}F_u(u)u_{2\bar{0}}bF(u) - 2F_{uu}(u)u_{1\bar{0}}^4 + bF_{uu}(u)F(u)u_{1\bar{0}}^3 - 2bF_u(u)^2u_{1\bar{0}}^3 - 4u_{2\bar{0}}^2F(u) + 2F(u)u_{3\bar{0}}u_{1\bar{0}} - F(u)^2u_{3\bar{0}}b \right)$$

is an \mathfrak{w}_{Fb} -differential invariant, where $\nabla = \frac{\overline{\mathcal{D}}}{\mathcal{D}J_0}$ is the invariant derivative of \mathfrak{h} from Subsection 4.2.2. Since \mathfrak{w}_{Fb} is a Lie subalgebra of \mathfrak{s}_{Fb} , it follows that there must exist a function $W_3(W_2, \nabla(W_2))$ that is an \mathfrak{s}_{Fb} -differential invariant. Indeed, the function

$$W_3 = 2W_2^2 + \nabla(W_2)$$

is an \mathfrak{s}_{Fb} -differential invariant.

Since

$$\mathfrak{z}_{Fb}\otimes\mathbb{C}=\mathfrak{s}_{Fb}\oplusar{\mathfrak{s}}_{Fb},\ \ \mathfrak{c}_{Fb}\otimes\mathbb{C}=\mathfrak{w}_{Fb}\oplusar{\mathfrak{w}}_{Fb},$$

it follows that the functions

$$\hat{J}_{2,1} = W_2 + \bar{W}_2, \quad \hat{J}_{2,2} = i \left(W_2 - \bar{W}_2 \right),$$

are \mathfrak{c}_{Fb} -differential invariants and

$$\hat{J}_{3+k,1} = \nabla^k W_3 + \nabla^k \bar{W}_3, \quad \hat{J}_{3+k,2} = \nabla^k W_3 - \nabla^k \bar{W}_3, \quad k \in \mathbb{Z}_+$$

are $\mathfrak{z}_{Fb}-\text{differential invariants.}$

The algebras of invariant functions under the action of \mathfrak{c}_{Fb} and \mathfrak{z}_{Fb} on $C^{\infty}(J^k\mathbb{R}^2)$ are

$$\begin{aligned} \mathcal{C}_{k}^{Fb} &= \left\{ f \in C_{loc}^{\infty} \left(J^{k} \mathbb{R}^{2} \right) \mid f = f(J_{0}, ..., J_{k,k-1}, \hat{J}_{2,1}, \hat{J}_{2,2}, ..., \hat{J}_{k,1}, \hat{J}_{k,2}) \right\}, \\ \mathcal{Z}_{k}^{Fb} &= \left\{ f \in C_{loc}^{\infty} \left(J^{k} \mathbb{R}^{2} \right) \mid f = f(J_{0}, ..., J_{k,k-1}, \hat{J}_{3,1}, \hat{J}_{3,2}, ..., \hat{J}_{k,1}, \hat{J}_{k,2}) \right\}, \end{aligned}$$

where the functions $J_{i,j}$ are as defined in Subsection 4.2.2.

Chapter 5

Applications and Examples

5.1 Applications

For any function $Q \in C^{\infty}(J^k \mathbb{R}^2)$ the surface $\mathcal{E} = \{Q = 0\}$ is a *PDE*. A vector field $X_f \in \text{Cont}(J^1 \mathbb{R}^2)$ is a symmetry of \mathcal{E} if

$$X_f^{(k)}(f) = \lambda_{X_f} f, \ \lambda_{X_f} \in C^{\infty}\left(J^k \mathbb{R}^2\right).$$

Let θ_t be the flow of a symmetry vector field. If $h \in C^{\infty}(\mathbb{R}^2)$ is a solution of \mathcal{E} , then

$$\theta_t(x, y, h(x, y)) = (x_t, y_t, h_t(x_t, y_t)),$$

where $\hat{h}_t \in C^{\infty}(\mathbb{R}^2)$ is a family of solutions of the *PDE* \mathcal{E} .

The Lie group corresponding to the Lie algebra \mathfrak{g} consists of all conformal transformations of \mathbb{R}^2 . Therefore we have the following theorem:

Theorem 29 Let F be a \mathfrak{g} -differential invariant. If the function $h(x, y) \in C^{\infty}(\mathbb{R}^2)$ is a solution of the PDE $\mathcal{E} = \{F = 0\}$, then the function

$$u(x,y) = h(g_1(x,y), g_2(x,y))$$

is a solution of \mathcal{E} for every function $g(z) = g_1(x, y) + ig_2(x, y) \in \mathcal{O}$ on domains where $g_z \neq 0.$

Example 30 The function $I_2 = \frac{u_{20} + u_{02}}{u_{10}^2 + u_{01}^2} \in C^{\infty}(J^k \mathbb{R}^2)$ is a \mathfrak{g} -differential invariant. Therefore the PDE

$$\mathcal{E} = \{ u_{20} + u_{02} = 0 \}$$

is \mathfrak{g} -invariant. Moreover, \mathfrak{g} acts transitively on the space $\operatorname{sol}(\mathcal{E})$ of harmonic functions.

Example 31 The function $\frac{u_{20} + u_{02}}{u_{10}^2 + u_{01}^2} - \frac{1}{u}$ is a \mathfrak{g} -differential invariant.

$$h(x,y) = x^2 + y^2.$$

is a solution of the PDE

$$\mathcal{E} = \left\{ \frac{u_{11} + u_{22}}{u_2^2 + u_1^2} - \frac{1}{u} = 0 \right\}.$$

We will verify that the function

$$F(x,y) = h(g_1(x,y), g_2(x,y)) = g_1(x,y)^2 + g_2(x,y)^2$$

is a solution of \mathcal{E} for any function $g = g_1 + ig_2 \in \mathcal{O}$ on domains where $g_z \neq 0$:

$$\begin{aligned} & \frac{F_{xx} + F_{yy}}{F_x^2 + F_y^2} - \frac{1}{F} \\ &= \frac{2(g_1g_{1xx} + g_{1x}^2 - g_2g_{1xy} + g_{1y}^2) + 2(g_1g_{1yy} + g_{1x}^2 + g_2g_{1xy} + g_{2y}^2)}{4(g_1g_{1x} - g_2g_{1y})^2 + 4(g_1g_{1y} - g_2g_{1x})^2} - \frac{1}{g_1^2 + g_2^2} \\ &= \frac{4(g_{1x}^2 + g_{1y}^2)}{4(g_1^2 + g_2^2)(g_{1x}^2 + g_{1y}^2)} - \frac{1}{g_1^2 + g_2^2} = 0. \end{aligned}$$

Let as compute the flow of $V_{Fbg} \in \mathfrak{g}_{Fb}$

$$\begin{aligned} \frac{dx}{dt} &= g_1(x,y), \\ \frac{dy}{dt} &= g_2(x,y), \\ \frac{du}{dt} &= F(u) \left(b_1 g_1(x,y) - b_2 g_2(x,y) \right) = F(u) \left(b_1 \frac{dx}{dt} - b_2 \frac{dy}{dt} \right). \end{aligned}$$

For $F \neq 0$ we have

$$G(u) = \int \frac{du}{F(u)} = (b_1 x - b_2 y + c).$$

Hence

$$u = G^{-1} \left(b_1 x - b_2 y + G(u_0) - \left(b_1 x_0 - b_2 y_0 \right) \right).$$

Substituting

$$x_0 = g_1(x, y), \ y_0 = g_2(x, y), \ u_0 = h(x_0, y_0) = h(g_1, g_2)$$

we get the following theorem:

Theorem 32 Let J be a \mathfrak{g}_{Fb} -differential invariant for $F \neq 0$. If the function $h(x, y) \in C^{\infty}(\mathbb{R}^2)$ is a solution of the PDE $\mathcal{E} = \{J = 0\}$, then the function

$$u(x,y) = G^{-1}b_1(x - g_1(x,y)) - b_2(y - g_2(x,y)) + G(h(g_1(x,y), g_2(x,y))).$$

is a solution of \mathcal{E} for every function $g = g_1 + ig_2 \in \mathcal{O}$ on domains where $g_z \neq 0$.

Example 33 Let $F = c \in \mathbb{R} \setminus 0$. The function $\frac{(u_{20} + u_{02})}{(cb_1 - u_{10})^2 + (cb_2 + u_{01})^2}$ is a

 \mathfrak{g}_{Fb} -differential invariant. The function

$$h = \ln(xy) + c(b_1x - b_2y)$$

is a solution of the PDE

$$\mathcal{E} = \left\{ \frac{(u_{20} + u_{02})}{(cb_1 - u_{10})^2 + (cb_2 + u_{01})^2} + 1 = 0 \right\}.$$

We will verify that the function

$$H(x,y) = c(b_1x - b_2y) + \ln(g_1(x,y)g_2(x,y))$$

is a solution of \mathcal{E} for any function $g(z) = g_1(x, y) + ig(x, y)_2 \in \mathcal{O}$ on domains where $g_z \neq 0$.

We have that

$$H_x = \frac{g_{1x}g_2 - g_{1y}g_1}{g_1g_2} + cb_1,$$

$$H_y = \frac{g_{1y}g_2 + g_{1x}g_1}{g_1g_2} - cb_2,$$

$$H_{xx} = \frac{-g_{1x}^2g_2^2 - g_{1y}^2g_1^2 + g_{1xx}g_1g_2^2 - g_{1xy}g_1^2g_2}{g_1^2g_2^2},$$

$$H_{yy} = \frac{-g_{1y}^2g_2^2 - g_{1x}^2g_1^2 - g_{1xx}g_1g_2^2 + g_{1xy}g_1^2g_2}{g_1^2g_2^2}.$$

So it follows that

$$\frac{(H_{xx} + H_{yy})}{(cb_1 - u_{10})^2 + (cb_2 + u_{01})^2} + 1 = \frac{(-2g_{1x}^2g_2^2 - 2g_{1y}^2g_1^2)}{(g_{1x}g_2 - g_{1y}g_1)^2 + (g_{1y}g_2 + g_{1x}g_1)} + 1 = 0.$$

5.2 The Action of \mathfrak{g} on $J^k \mathbb{R}$

Consider the Lie algebra

$$\mathfrak{g} = \{g_1\partial_x + g_2\partial_u \mid g_{1x} = g_{2u}, \ g_{1u} = g_{2x}\} \subset \mathcal{D}(\mathbb{R}^2) = \mathcal{D}(J^0\mathbb{R}).$$

This canonical action on $J^0\mathbb{R}$ lifts to the action of \mathfrak{g} on $J^k\mathbb{R}$.

All scalar \mathfrak{g} -differential invariants are constants. However there exist \mathfrak{g} -invariant differential equations $\mathcal{E} \subset J^k \mathbb{R}$, see [G].

76

Consider the 3-dimensional Lie algebras

$$\mathfrak{t} = \langle \partial_x, \partial_u, u \partial_x - x \partial_u \rangle, \ \mathfrak{a} = \langle \partial_x, \partial_u, x \partial_x + u \partial_u \rangle \subset \mathfrak{g}$$

For $k \geq 2$ there exists k-1 functions that are invariant under the action of \mathfrak{t} and \mathfrak{a} on $J^k \mathbb{R}$.

The function u_1 is an \mathfrak{a} -differential invariant of order one and $\frac{u_2}{(1+u_1^2)^{3/2}}$ is a \mathfrak{t} -differential invariant of order two. The latter invariant is the well known curvature of a curve.

The spaces \mathfrak{t} and \mathfrak{a} are Lie subalgebras of the Lie algebra

$$\mathfrak{c} = \langle \partial_x, \partial_u, x \partial_x + u \partial_u, u \partial_x - x \partial_u \rangle \subset \mathfrak{g}.$$

For $k\geq 3$ there exists one $\mathfrak{c}-\text{differential invariant of pure order }k.$

The functions

$$I_{3} = \frac{u_{3}u_{1}^{2} - 3u_{2}^{2}u_{1} + u_{3}}{u_{2}^{2}},$$

$$I_{4} = \frac{u_{4}u_{1}^{4} - 10u_{1}^{3}u_{2}u_{3} + (2u_{4} + 15u_{2}^{3})u_{1}^{2} - 10u_{1}u_{2}u_{3} + u_{4}}{u_{2}^{3}},$$

are $\mathfrak{c}-\text{differential invariants.}$ Hence for any integer $k\in\mathbb{Z}_+$ the following function

$$I_{k+4} = \left(\frac{1}{\mathcal{D}_x(I_3)}\mathcal{D}_x\right)^k(I_4)$$

is a \mathfrak{c} -differential invariant of pure order 4 + k.

Consider the Lie algebra

$$\mathfrak{f} = \left\langle \partial_x, \partial_u, x \partial_x + u \partial_u, u \partial_x - x \partial_u, (x^2 - y^2) \partial_x + 2xy \partial_y, (x^2 - y^2) \partial_y + 2xy \partial_x \right\rangle \subset \mathfrak{g}$$

For $k \ge 5$ there exists one \mathfrak{f} -differential invariant of pure order k, denoted J_k . Since \mathfrak{c} is a Lie subalgebra of \mathfrak{f} it follows that

$$J_k = f_k(I_3, \dots, I_k).$$

Indeed, the functions

$$J_{5} = \frac{1}{4I_{3}^{3}}(45 + 4I_{3}I_{4}I_{5} - 12I_{3}^{2}I_{4} + 40I_{3}^{2} - 30I_{4} + 5I_{4}^{2} - 12I_{3}I_{5} - 8I_{5}I_{3}^{3}),$$

$$J_{6} = \frac{1}{4I_{3}^{9/2}}(1/4(-405 - 108I_{3}I_{4}I_{5} - 24I_{6}I_{3}^{2}I_{4} + 15I_{4}^{3} + 405I_{4} + 18I_{5}I_{4}^{2}I_{3} - 80I_{3}^{4} + 24I_{3}^{4}I_{4} - 42I_{4}^{2}I_{3}^{2} + 24I_{5}I_{3}^{5} + 16I_{6}I_{3}^{6} - 48I_{3}^{3}I_{4}I_{5} - 8I_{5}^{2}I_{3}^{4} + 4I_{5}^{2}I_{4}I_{3}^{2} - 16I_{6}I_{3}^{4}I_{4} + 36I_{6}I_{3}^{2} + 4I_{6}I_{4}^{2}I_{3}^{2} - 135I_{4}^{2} - 390I_{3}^{2} + 48I_{6}I_{3}^{4} + 144I_{5}I_{3}^{3} - 12I_{5}^{2}I_{3}^{2} + 256I_{3}^{2}I_{4} + 162I_{3}I_{5}),$$

are \mathfrak{f} -differential invariants of pure order five and six. Hence for any integer $k \in \mathbb{Z}_+$ the following function

$$J_{k+6} = \left(\frac{1}{\mathcal{D}_x(I_5)}\mathcal{D}_x\right)^k (J_5)$$

is an \mathfrak{f} -differential invariant of pure order 6 + k.

The algebra of invariant functions under the action of \mathfrak{t} , \mathfrak{a} , \mathfrak{c} and \mathfrak{f} on $J^k\mathbb{R}$ are, respectively

$$\begin{aligned} \mathcal{T}_{k} &= \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}) \mid f = f\left(\frac{u_{2}}{(1+u_{1}^{2})^{3/2}}, I_{3}, I_{4}, J_{5}, J_{6}, ..., J_{k}\right) \right\}, \\ \mathcal{A}_{k} &= \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}) \mid f = f\left(u_{1}, I_{3}, I_{4}, J_{5}, J_{6}, ..., J_{k}\right) \right\}, \\ \mathcal{C}_{k} &= \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}) \mid f = f\left(I_{3}, I_{4}, J_{5}, J_{6}, ..., J_{k}\right) \right\}, \\ \mathcal{F}_{k} &= \left\{ f \in C^{\infty}_{loc}(J^{k}\mathbb{R}) \mid f = f\left(J_{5}, J_{6}, ..., J_{k}\right) \right\}. \end{aligned}$$

All the computations of this section are done in Maple Worksheet "Lie_sa_fin" $\,$

$$y'' = K \left(1 + (y')^2\right)^{3/2}, \ K \in \mathbb{R},$$
(5.1)

determines a 1-dimensional distribution on the manifold of 1-jets $J^1\mathbb{R}$. The distribution is generated by the vector field

$$\mathcal{D} = \partial_x + u_1 \partial_u + K(1 + u_1^2)^{3/2} \partial_{u_1},$$

or by the Cartan differential 1-forms

$$\omega_1 = du - u_1 dx, \ \omega_2 = du_1 - K(1 + u_1^2)^{3/2} dx.$$

The function $\frac{u_2}{(1+u_1^2)^{3/2}}$ is a t-differential invariant, where

$$\mathfrak{t} = \langle \partial_x, \partial_u, u \partial_x - x \partial_u \rangle.$$

Hence the following vector fields

$$S_1 = \partial_u,$$

$$S_2 = \partial_x - \mathcal{D} = -\left(u_1\partial_u + K(1+u_1^2)^{3/2}\partial_{u_1}\right),$$

are commutative shuffling symmetries of the distribution.

Following the method of [KLR], we introduce the differential 1-forms for $K \neq 0$

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{u_1}{K(1+u_1^2)^{3/2}} \\ 0 & -\frac{1}{K(1+u_1^2)^{3/2}} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}.$$

The differential 1-forms $\langle dx, \theta_1, \theta_2 \rangle$ are the dual basis for $\langle \mathcal{D}, S_1, S_2 \rangle$. In addition the differential 1-forms θ_1 and θ_2 are closed, i.e.

$$\theta_1 = dH, \ \theta_2 = dG,$$

where

$$H = \int du - \int \frac{u_1}{K(1+u_1^2)^{3/2}} du_1 = u + \frac{1}{K(1+u_1^2)^{1/2}} + c_1, \ c_1 \in \mathbb{R},$$

$$G = \int dx - \int \frac{1}{K(1+u_1^2)^{3/2}} du_1 = x - \frac{u_1}{K(1+u_1^2)^{1/2}} + c_1, \ c_1 \in \mathbb{R}.$$

Since the functions H and G are first integrals of the distribution, we can express the solution as the curve

$$(x-c_1)^2 + (u-c_2)^2 = 1/K^2, \ c_1, c_2 \in \mathbb{R}.$$

This proves that the only curves of constant curvature $K \neq 0$ are circles of radius 1/K.

Chapter 6

Appendix

In this thesis we used DifferentialGeometry Package of Maple 11 to compute differential invariants and invariant derivatives. The program used are:

-Maple Worksheet "h_diff_inv_3",

-Maple Worksheet "tresse_inv_der",

- -Maple Worksheet "dep_inv",
- -Maple Worksheet "dep_inv_n_o",
- -Maple Worksheet "Lie_sa_fin".

They are available from the author on request.

Bibliography

- [G] V. Gauhman, The geometry of a second-order ordinary differential equation with respect to a conformal group of transformations in two variables (Russian), Dokl.
 Akad. Nauk SSSR 140 (1961), 15–18.
- [KL1] B.Kruglikov, V. Lychagin, Invariants of Pseudogroup Actions: Homological Methods and Finiteness Theorem, International Journal of Geometric Methods in Modern Physics Vol 3, (2006), 1131-1165.
- [KL2] B.Kruglikov, V. Lychagin, Handbook of Global Analysis, Ed. D.Krupka, D.Saunders, Elsevier, 725-771, 2007.
- [KN] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Volume 2, Wiley Classics Libary, 1996.
- [KLR] A. Kushner, V. Lychagin, V. Rubtsov, Contact Geometry and Nonlinear Differential Equations, Cambridge University Press, 2007.
- [KLV] I. Krasilschik, V. Lychagin, A. Vinogradov, Geometry of jet spaces and differential equations, Gordon and Breach, 1986.

- [L] S. Lie, Gesammelte Abhandlungen Zweiter Abschnitt (unter Mitwirkung von Prof.
 Dr. Friederich Engel), Teubner, Leipzig, 1890.
- [S] S. Sternberg, Lectures on Differential Geometry, (Prentice-Hall, Englewood Cliffs, 1964.
- [T] A. Tresse, Sur les invariants differentiels des groupes continus de transformations, Acta Math. 18 (1894) 1-88.