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Chapter 1

Introduction

The space

CO(2) =

8>><>>:
2664� cos(t) �� sin(t)

� sin(t) � cos(t)

3775 j t 2 S1 = R mod 2�; � 2 R+

9>>=>>;
is the linear conformal Lie group. The Lie algebra of CO(2) is

co(2) = h�y@x + x@y; x@x + y@yi :

Consider the 4�dimensional Lie group

CO(2)nR2 =
�
' 2 A�

�
R2;R2

�
: '(x) = Ax+ b j A 2 CO(2); b 2 R2

	
:

The Lie algebra of CO(2)nR2 is

co(2)nR2 = h�y@x + x@y; x@x + y@y; @x; @yi :

It is known [S, KL2] that the conformal Lie algebra

g = fVg = g1(x; y)@x + g2(x; y)@y j g1x = g2y; g1y = �g2xg � D(R2)
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is the completion of the 1�prolongation of co(2) n R2: Hence g is the Lie algebra that

corresponds to the Lie pseudogroup of all conformal transformations of R2

' : R2 �! R2; '(x; y) = ('1(x; y); '2(x; y));2664
@'1
@x

@'1
@y

@'2
@x

@'2
@y

3775 2 CO(2):
The conformal Lie algebra is canonically represented as the Lie algebra of vector

�elds in R2: In Chapter 4 we �nd all possible representations of g via vector �elds in

J0R2 = R2 � R = R3(x; y; u)

which project to the canonical representation. Namely, for any function F (u) 2 C1
�
J0R2

�
and constant b = b1 + ib2 2 C the inclusion map

IFb : g �!D(J0R2);

IFb(Vg) = Vg + F (u)(b1g1 � b2g2)@u;

is an injective Lie algebra homomorphism and these are all representations of the form

Vg 7! Vg + �@u. Let

gFb = Im(IFb) = fVg + F (u)(b1g1 � b2g2)@u j g1x = g2y; g1y = �g2xg

denote the image of the map.

In this thesis we will �nd the algebra of gFb�di¤erential invariants:

Theorem 1 The algebra GFb of gFb�di¤erential invariants is generated by I0; I2; r1 and
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r2; where for F = 0

I0 = u;

I2 =
u20 + u02
u210 + u

2
01

;

r1 =
1

u210 + u
2
01

(u10Dx + u01Dy) ;

r2 =
1

u210 + u
2
01

(u01Dx � u10Dy) ;

and for F 6= 0

I0 =

Z
du

F (u)
� b1x+ b2y;

I2 =
(�u201 � u210)Fu(u) + F (u)(u02 + u20)
(b1F (u)� u10)2 + (b2F (u) + u01)2

;

r1 =

�
F (u)2

(u10 � b1F (u))2 + (u01 + b2F (u))2

���
u10
F (u)

� b1
�
Dx +

�
u01
F (u)

+ b2

�
Dy
�
;

r2 =

�
F (u)2

(u10 � b1F (u))2 + (u01 + b2F (u))2

���
u01
F (u)

+ b2

�
Dx +

�
� u10
F (u)

+ b1

�
Dy
�
:

Hence, any function f 2 GFb of order m has the form

f = f (I0; I2; I3;1; I3;2; :::; Im;1; :::; Im;m�1) ;

where

Ik;j = rk�2�j1 rj2 (I2) ; j; k 2 Z�2; k > j:

The invariants fIk;jg are functionally independent.

We will also show that if f is a gFb�di¤erential invariant and h(x; y) 2 C1(R2)

is a solution of the PDE E = ff = 0g; then the function

u(x; y) = h(g1(x; y); g2(x; y)); F = 0; (1.1)

u(x; y) = G�1 (b1(x� g1(x; y))� b2(y � g2(x; y)) +G(h(g1(x; y); g2(x; y)))) ; (1.2)

F 6= 0; G(u) =

Z
du

F (u)
;
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is a solution of E for any analytic function g(z) = g1(x; y) + ig2(x; y) on domains where

gz 6= 0: Thus we get a collection of PDEs E with sym(E) � g. This provides a large family

of solutions for any di¤erential equation from this collection.

Structure of the thesis.

In Chapter 2 we collect some basic concepts from complex analysis and describe our main

object, the Lie algebra g:

In Chapter 3 we describe the the space of jets, the Cartan distribution, invariant di¤erenti-

ations and the Lie-Tresse theorem. In the last part of this chapter we will use three di¤erent

methods to �nd the di¤erential invariants of the canonical representation of g: The three

descriptions of the algebra turns out to be equivalent.

n Chapter 4 we will �nd the di¤erential invariants of the deformed representations of g:We

use the best method from Chapter 3 to generate the invariants.

In Chapter 5 we justify the above claim that Formulas (1.1) and (1.2) represent solutions of

the g�invariant equations. In the last part of this chapter we will represent g as a Lie alge-

bra of vector �elds in R2 = J0R; and �nd di¤erential invariants of some �nite dimensional

Lie subalgebras of g.

Conventions.

Most of the results in this thesis are de�ned locally, restricted to regular domains where the

g�di¤erential invariants are well de�ned. We will not specify locations in the text.

In this thesis we will extensively use complexi�cation, which work nicely with real-analytic

objects. Thus we adopt the following convention: depending on the context C1 can mean
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smooth or analytic functor. The coordinate function

z = x+ iy; �z = x� iy;

are used when we assume analyticity. The convention is helpful because the main results

concerning g�di¤erential invariants hold in smooth category. Thus we will be using the

freedom of extending and shrinking the space of functions, vector �elds etc.
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Chapter 2

The Lie Algebra g

2.1 Vector Bundles over a Complex Manifold

In this section we will describe some basic concepts that will be important in the

rest of the text. Most of the material is well known, see [KN].

2.1.1 Algebras of Functions on a Complex Manifold

Let M be a complex smooth manifold of dimension n. Consider the spaces of

functions

C1(M) = ff :M ! R j f is smoothg ;

O(M) = ff :M ! C j f is complex analyticg ;

C1(M;C) = ff :M ! C j f is smoothg .
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The spaces of functions C1(M;C) and O(M) are C�algebras, and the space of functions

C1(M) is an R�algebra. Moreover, C1(M;C) is equal to the tensor product

C1(M;C) = C1(M)
 C:

Let U �M be a chart with local coordinates

(z1 = x1 + iy1; ::::; zn = xn + iyn):

There exist projections (restrictions)

C1(M) �! C1(U);

O(M) �! O(U);

C1(M)
 C �! C1(U)
 C:

The functions f1 2 C1(U); f2 2 O(U) and f3 2 C1(U)
 C have the forms

f1 = f1(x1; y1; :::; xn; yn);

f2 = f2(z1; :::; zn);

f3 = F1(x1; y1; :::; xn; yn) + iF2(x1; y1; :::; xn; yn):

The inclusion map

O(M) ,!C1(M)
 C

is an injective C�algebra homomorphism. Hence O(M) is a C�subalgebra of C1(M)
C:

The inclusion R,!C induces the inclusion

I : C1(M) ,!C1(M)
 C;
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I(f) = f(x1; y1; :::; xn; yn) + i0:

The projection maps Re; Im : C! R induce the projections

Re : C1(M)
 C �! C1(M);

Re(f1(x1; y1; :::; xn; yn) + if2(x1; y1; :::; xn; yn)) = f1(x1; y1; :::; xn; yn);

Im : C1(M)
 C �! C1(M),

Im(f1(x1; y1; :::; xn; yn) + if2(x1; y1; :::; xn; yn)) = f2(x1; y1; :::; xn; yn);

with

Re I = Im(iI) = IdC1(M):

The inclusion I is an injective R�algebra homomorphism. Hence C1(M) is an R�

subalgebra of C1(M)
 C:

2.1.2 Vector Spaces and Vector Bundles

Let X1 be an R�linear map and X2 and X3 be C�linear maps

X1 : C
1(M) �! R;

X2 : O(M) �! C;

X3 : C
1(M)
 C �! C.

The linear map Xj ; for j 2 f1; 2; 3g; is a derivation if it satis�es the equation

Xj(fjgj) = fjXjgj + gjXjfj (2.1)

for all functions f1; g1 2 C1(M); f2; g2 2 O(M) and f3; g3 2 C1(M)
 C: The linear map

Xj is a derivation at the point p 2M if it satis�es Equation (2.1) at p:
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For any point p 2 M the spaces of all derivations at p of the algebras O(M) and

C1(M)
C are complex vector spaces, and the space of all derivations at p of the algebra

C1(M) is a real vector space.

Let us use the following notation for the spaces of all derivations at p of the algebras

C1(M) and O(M) :

TpM = DerR(C
1(M))p;

T 1;0p M = DerC(O(M))p:

Lemma 2 Let p be a point of the manifold M: Then the space of all derivations at p of the

algebra C1(M)
 C is equal to the tensor product

DerC(C
1(M)
 C)p = DerR(C1(M))p 
 C:

Proof. For all functions f 2 C1(M) 
 C there exist functions f1; f2 2 C1(M)

such that

f = f1 + if2:

Hence we have the C�linear inclusion map

I : DerR(C
1(M))p 
 C ,! DerC(C

1(M)
 C)p;

(IY ) (f) = Y (f1) + iY (f2):

The algebra C1(M) is an R�subalgebra of C1(M) 
 C: Hence if we restrict

~Y 2 DerC(C1(M)
 C)p to C1(M); then ~Y is an R�linear map

~Y jC1(M) : C
1(M) �! C
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such that for all functions f; g 2 C1(M)

~Y (fg)(p) = f(p) ~Y g(p) + g(p) ~Y f(p):

Hence we have the C�linear map

R : DerC(C
1(M)
 C)p �! DerR(C

1(M))p 
 C;

R( ~Y ) = ~Y jC1(M):

The map R is surjective since

RI = IdDerR(C1(M))p
C :

Suppose that for an element ~Y 2 DerC(C1(M) 
 C)p ~Y (fj) = 0 for all functions fj 2

C1(M): Then

~Y (f) = ~Y (f1) + i ~Y (f2) = 0; 8f = f1 + if2 2 C1(M)
 C:

Hence Ker(R) = f0g: It follows that the map R is bijective.

The inclusion map

T 1;0p M ,! TpM 
 C = DerC(C1(M)
 C)p

is an injective C�linear map. Hence T 1;0p M is a C�subspace of TpM 
 C:

The inclusion map

I : TpM ,! TpM 
 C

where

Re I = Im(iI) = IdTpM
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is an injective R�linear map. Hence TpM is an R�subspace of TpM 
 C:

Consider the C�subspace of TpM 
 C

T 0;1p M = T 1;0p M:

Lemma 3 [KN] TpM 
 C is equal to the direct sum

TpM 
 C = T 1;0p M � T 0;1p M:

Let

(U; (z1 = x1 + iy1; :::zn = xn + iyn))

be any smooth chart containing p. TpM is a real vector space of dimension 2n

TpM = h@x1 jp; @y1 jp::::@xn jp; @yn jpiR :

T 1;0p M and T 0;1p M are complex vector spaces of dimension n

T 1;0p M = h@z1 jp; ::::; @zn jpiC =


1
2(@x1 � i@y1)jp; :::;

1
2(@xn � i@yn)jp

�
C ;

T 0;1p M = h@�z1 jp; ::::; @�zn jpiC =


1
2(@x1 + i@y1)jp; :::;

1
2(@xn + i@yn)jp

�
C :

TpM 
 C is a complex vector space of dimension 2n

TpM 
 C = T 1;0p M � T 0;1p M = h@x1 jp; @y1 jp::::@xn jp; @yn jpiC

= h@z1 jp; ::; @zn jp; @�z1 jp; ::; @�zn jpiC :

Consider the spaces

TM = [
p2M

TpM;

T 1;0M = [
p2M

T 1;0p M;
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T 0;1M = [
p2M

T 0;1p M;

TM 
 C = [
p2M

TpM 
 C:

By standard topological arguments TM; T 1;0M; T 0;1M and TM 
 C are vector bundles

overM . The bundle TM is a real subbundle of TM
C; and T 1;0M and T 0;1M are complex

subbundles of TM 
 C:

Remark 4 [KN] The above constructions work as well for the case when M is an almost

complex manifold, i.e. M is a real manifold with a tensor �eld J which is, at every point p

of M; an endomorphism of the tangent space TpM such that J2 = �1; where 1 denotes the

identity transformation of TpM .

2.1.3 Vector Fields on a Complex Manifold

Consider the spaces of smooth sections of the vector bundles TM; T 1;0M; T 0;1M

and TM 
 C

D(M) = C1(TM) = DerR(C
1(M));

D1;0(M) = C1(T 1;0M);

D0;1(M) = C1(T 0;1M);

D(M)
 C = DerR(C1(M))
 C:

The space D(M) is a module over the algebra C1(M); and the spaces D1;0(M); D0;1(M)

and D(M)
 C are modules over the algebra C1(M)
 C:

Consider the space of C�analytic sections

C!(T 1;0M) = DerC(O(M)):
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The space C!(T 1;0M) is a module over O(M):

Let us write these vector �elds in local coordinates. There exist projections (re-

strictions) for ' 2 f(); (1; 0); (0; 1)g

D'(M) �! D'(U);

D(M)
 C �! D(U)
 C;

C!(T 1;0M) �! C!(T 1;0U).

For the vector �elds X1 2 D(U); X2 2 D(U) 
 C; X3 2 D1;0(U); X4 2 D0;1(U) and

X5 2 C!(T 1;0U) there exist functions f1j ; f2j 2 C1(U); h1j ; h2j ; q1j ; q2j 2 C1(U) 
 C

and gj 2 O(U) such that

X1 =
nP
j=1

f1j@xj + f2j@yj ;

X2 =
nP
j=1

h1j@xj + h2j@yj ;

X3 =
nP
j=1

q1j@zj ;

X4 =
nP
j=1

q2j@�zj ;

X5 =
nP
j=1

gj@zj :

The spaces C!(T 1;0M), D'(M) and D(M)
C are in�nite dimensional Lie algebras

with the Lie bracket being the commutator.

For � 2 f(1; 0); (0; 1)g the inclusion maps

C!(T 1;0M) ,! D1;0(M);

D�(M) ,! D(M)
 C;
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are Lie algebra homomorphisms. Hence C!(T 1;0M) is an in�nite dimensional Lie subalgebra

of D1;0(M); and D�(M) is an in�nite dimensional Lie subalgebra of D(M)
 C:

The inclusion map

I : D(M) ,! D(M)
 C;

where

Re I = Im (iI) = IdD(M);

is a Lie algebra homomorphism. Hence D(M) is an in�nite dimensional Lie subalgebra of

D(M)
 C:

2.2 The Lie Algebra g

Consider the subspace g � D(R2)

g = fg1@x + g2@yjg1x = g2y; g1y = �g2xg:

Any element of g has the form

Vg = g1@x + g2@y;

where g = g1 + ig2 2 O:

Proposition 5 The space g is a Lie algebra.

Proof. For any numbers a; b 2 R and any functions v; w 2 O

aVv + bVw = (av1 + bw1)@x + (av2 + bw2)@y = Vav+bw 2 g:
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Hence g is a linear subspace of D(R2).

[Vv; Vw] = ~u1@x + ~u2@y

= (v1w1x � v2w2x � w1v1x + w2v2x)@x + (v1w2x + v2w1x � w1v2x � w2v1x)@y:

It is left to show that the Cauchy-Riemann equations hold for the function ~u1 + i~u2:

@
@x ~u1 = v1w1xx � v2w2xx � w1v1xx + w2v2xx + v1xw1x � v2xw2x � w1xv1x + w2xv2x;

@
@x ~u2 = v1w2xx + v2w1xx � w1v2xx � w2v1xx + v1xw2x + v2xw1x � w1xv2x � w2xv1x;

@
@y ~u1 = �v1w2xx � v2w1xx + w1v2xx + w2v1xx � v2xw1x � v1xw2x + w2xv1x + w1xv2x;

@
@y ~u2 = v1w1xx � v2w2xx � w1v1xx + w2v2xx � v2xw2x + v1xw1x + w2xv2x � w1xv1x:

Thus we see that

~u1x = ~u2y; ~u1y = �~u2x;

and [Vv; Vw] 2 g: Hence g is closed under the commutator bracket.

2.2.1 Lie Algebra Structure on O

Consider the map

L : g �!O;

L(Vg) = Vg(z) = Vg(x) + iVg(y) = g:

L is an isomorphism of vector spaces over R. Since g is a Lie algebra we are able to introduce

a Lie algebra structure on the space of analytic functions. Namely, de�ne the bracket on O

by the following rule

[Vv; Vw]
def
= V[v;w]:
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In coordinates

[Vv; Vw] = Vv(Vw)� Vw(Vv)

= (v1w1x � v2w2x � w1v1x + w2v2x)@x + (v1w2x + v2w1x � w1v2x � w2v1x)@y:

Hence the bracket on O is

[v; w] = [Vv; Vw](z) = Vv(w)� Vw(v)

= (v1w1x � v2w2x � w1v1x + w2v2x) + i(v1w2x + v2w1x � w1v2x � w2v1x):

Note that the formula for the bracket on O in complex coordinates is

ff(z); g(z)g = f(z)g0(z)� f 0(z)g(z). (2.2)

This leads to an isomorphism of the space O equipped with the bracket de�ned in Equation

(2.2) with the space of linear in momenta holomorphic functions on T �C equipped with the

standard Poisson structure.

The Lie algebra (O; fg) is simple, i.e. it contains no ideals, but it does contain

subalgebras. For instance, consider the subspace

sl2 =


1; z; z2

�
� O:

The space sl2 is a linear subspace of O: Moreover, for j; k 2 f0; 1; 2g

n
zj ; zk

o
= (k � j)zk+j�1 2 sl2 :

Hence sl2 is a Lie subalgebra of O isomorphic to sl2(C): It follows that the subspace

hV1; Vi; Vz; Viz; Vz2 ; Viz2i � g

is a Lie subalgebra of g isomorphic to sl2(C)R:



17

2.2.2 The Manifold C

In this subsection we will use the theory of Section 2.1 for the manifold C: Note

that C is a complex manifold of dimension 1, and R2 ' C is a real manifold of dimension 2.

The space C1(R2)
 C is an algebra with subalgebras C1(R2) and O:

For any point z0 2 C we have the following vector spaces

Tz0R2 = h@xjz0 ; @yjz0iR ;

T 1;0z0 C = h@zjz0iC ; T 0;1z0 C = h@�zjz0iC ;

Tz0R2 
 C = h@xjz0 ; @yjz0iC = h@zjz0 ; @�zjz0iC :

The spaces of smooth sections of the vector bundles TR2; T 1;0C; T 0;1C and TR2
C

are

D
�
R2
�
=C1(TR2) =

�
f1@x + f2@y j f1; f2 2 C1

�
R2
�	
;

D1;0 (C) = C1(T 1;0C) =
�
f@z j f 2 C1(R2)
 C

	
;

D0;1 (C) = C1(T 0;1C) =
�
f@�z j f 2 C1(R2)
 C

	
;

D
�
R2
�

 C =C1(TR2)
 C =

�
f1@x + f2@y j f1; f2 2 C1(R2)
 C

	
:

Let h denote the space of all derivations of the space O

h = fg@z j g 2 Og :

The space h is a free 1-dimensional module over O.

The spaces D
�
R2
�
; D1;0 (C) ; D0;1 (C) and h are in�nite dimensional Lie subalge-

bras of D
�
R2
�

 C:
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Consider the space of anti-holomorphic functions

�O=
�
h = h1 + ih2 2 C1

�
R2
�

 C j h1x = �h2y; h2x = h1y

	
= f�g j g 2 Og :

The space �O is a subalgebra of C1(R2)
 C:

Let �h denote the space of all derivations of �O

�h = f�g@�z j g 2 Og :

The space �h is a free 1-dimensional module over �O and an in�nite dimensional

Lie subalgebra of D
�
R2
�

 C:

2.2.3 Almost Complex Structure on TR2

The tensor

J = @y 
 dx� @x 
 dy

is an almost complex structure on TR2

J(@x) = @y; J(@y) = �@x:

If the vector �eld

V = g1@x + g2@y 2 D(R2)

is a symmetry of the tensor J; then

LV (J) = � [V; @x]
 dy � @x 
 d (g2) + [V; @y]
 dx+ @y 
 d (g1)

= � (g2x + g1y) @x 
 dx+ (�g2y + g1x) @y 
 dx

+(g1x � g2y) @x 
 dy + (g2x + g1y) @y 
 dy = 0:

Hence g is the Lie algebra of symmetries of the tensor J: This shows that there must exist

a Lie algebra isomorphism between g and h. In the next subsection we will �nd it.
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2.2.4 A Relation Between the Lie Algebras g and h

Consider the R�linear map

2Re : D
�
R2
�

 C �! D

�
R2
�
:

We have that

2Re [ix@x; i@x] = 2@x 6= [2Re (ix@x) ; 2Re (i@x)] = 0:

Hence 2Re is not a Lie algebra homomorphism between the Lie algebras D
�
R2
�

 C and

D
�
R2
�
: We have that

g@z =
1
2(g1@x + g2@y + i(�g1@y + g2@x)):

Thus the map 2Re restricted to h is

2Re (g@z) = Vg:

Proposition 6 The R�linear map

2Re : h �! g

is a Lie algebra isomorphism.

Proof. Using the Poisson bracket de�ned on O in Subsection 2.2.1 we get

[2Re(g@z); 2Re(f@z)] = [Vg; Vf ] = Vfg;fg = 2Re((gzf � fzg)@z) = 2Re [g@z; f@z] :

Hence 2Re preserves the bracket.

By de�nition Vg 2 g if and only if g 2 O; i.e. g@z 2 h: Hence 2Re is bijective.
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Example 7 It was shown in Subsection 2.2.1 that

hV1; Vi; Vz; Viz; Vz2 ; Viz2i � g

is a Lie algebra: Hence

s =


@z; z@z; z

2@z
�
� h

is a Lie algebra: Moreover, s is isomorphic to sl2(C):

The R�linear map

2 Im : h �! g;

2 Im (g@z) = �Vig;

is an isomorphism of vector spaces over R: It follows from Proposition 6 that for any

functions g; h 2 O

[2 Im(g@z); 2 Im(h@z)] = [2Re(ig@z); 2Re(ih@z)] = �2Re [g@z; h@z] = �2 Im (i [g@z; h@z]) :

Hence the map is not a Lie algebra isomorphism.

The complexi�cation of the Lie algebra g and the direct sum of the Lie algebras h

and �h

g
 C = fVg + iVh j g; h 2 Og ;

h� �h =
�
g@z + �h@�z j g; h 2 O

	
;

are Lie subalgebras of D(R2)
C:

Theorem 8 The map

 : h� �h �! g
 C;
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 (g@z + �h@�z) = Re(g@z + �h@�z) + i Im(g@z + �h@�z) =
1
2

�
Vg+h + iVi(h�g)

�
;

is a C�linear Lie algebra isomorphism.

Proof. For any functions g; h 2 O

 (i
�
g@z + �h@�z

�
) =  (ig@z � ih@�z) = 1

2

�
Vig�ih + iVi(�ig�ih)

�
= i

2

�
Vg+h + iVi(h�g)

�
= i (g@z + �h@�z):

Hence the map  is C�linear.

For any function g 2 O

 (g@z + �g@�z) = Vg:

Hence  is bijective.

We see that

 (
�
g@z + �h@�z; f@z + �q@�z

�
) =  ([g@z; f@z] +

�
�h@�z; �q@�z

�
)

= 1
2

�
V[g;f ]+[h;q] + iVi(�[g;f ]+[h;q])

�
;

�
 
�
g@z + �h@�z

�
;  (f@z + �q@�z)

�
=

�
1
2

�
Vg+h + iVi(h�g)

�
; 12
�
Vf+q + iVi(q�f)

��
= 1

4

�
V[g+h;f+q]+[h�g;q�f ] + iVi([g+h;q�f ]+[h�g;q+f ])

�
= 1

2

�
V[g;f ]+[h;q] + iVi(�[g;f ]+[h;q])

�
:

Hence  preserves the bracket.
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Chapter 3

Invariant Functions of the Lie

Algebra gk

3.1 The Space of Jets

3.1.1 Quotient Algebras

For any point z0 = x0 + iy0 2 C the space

�z0 =
�
f 2 C1

�
R2
�
j f(x0; y0) = 0

	
is a maximal ideal of the algebra C1

�
R2
�
:

The space

�
�z0
�k+1

=
n
f 2 C1

�
R2
�
j f =

X
f1:::fk+1; fj 2 �z0

o
(3.1)

is an ideal of C1
�
R2
�
for any integer k 2 Z�0: It follows from Equation (3.1) that

�
�z0
�k+1 � ��z0�k ::: � ��z0�2 � �z0 :
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Hence for k > 0 the ideal
�
�z0
�k+1 is not maximal.

The quotient space

C1
�
R2
�
=
�
�z0
�k+1

is an R�algebra.

For any smooth function f(x; y) 2 C1
�
R2
�
the corresponding equivalence class

[f(x; y)]kz0 2 C
1 �R2� = ��z0�k+1 has the following representative

[f ]kz0 � f(x0; y0) +
X

m+n�k

m!n!

(m+ n)!

@m+nf

@xm@yn
(x0; y0)(x� x0)m(y � y0)n:

3.1.2 Algebra of Functions on the Space of Jets

For any pair of integers m;n 2 Z�0 such that m+ n � k there exists an R�linear

map

umn : C
1 �R2� =�kz0 �! R;

umn([f ]
k
z0) =

@m+nf

@xm@yn
(x0; y0):

The space

Jkz0R
2 = C1

�
R2
�
=
�
�z0
�k+1

is a real vector space of dimension (k + 1) (k + 2) =2

Jkz0R
2 ' humn j m+ n � kiR :

Consider the space

JkR2 = [
z02C

Jkz0R
2:
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By standard topological arguments JkR2 is a vector bundle over C: Its total space is dif-

feomorphic to

JkR2 ' R(k+1)(k+2)=2+2(x; y; umnjm+ n � k):

Consider the following spaces

C1
�
JkR2

�
=
n
f : JkR2 ! R j f is smooth

o
;

C1
�
JkR2;C

�
=
n
f : JkR2 ! C j f is smooth

o
:

The space C1
�
JkR2

�
is an algebra over R and C1

�
JkR2;C

�
is an algebra over C.

The algebra C1
�
JkR2;C

�
is equal to the tensor product

C1
�
JkR2;C

�
= C1

�
JkR2

�

 C:

The inclusion map

I : C1
�
JkR2

�
,! C1

�
JkR2

�

 C;

where

Re I = Im(iI) = IdC1(JkR2);

is an injective R�algebra homomorphism. Hence C1
�
JkR2

�
is an R�subalgebra of

C1
�
JkR2

�

 C:

3.1.3 The Tangent- and the Complexi�ed Tangent Bundle of JkR2

For any point p 2 JkR2 the space

Tp

�
JkR2

�
= DerR

�
C1

�
JkR2

��
p
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is a real vector space. It follows from Lemma 2 that

Tp

�
JkR2

�

 C = DerC

�
C1

�
JkR2

�

 C

�
p
:

The real dimension of Tp
�
JkR2

�
is (k + 1)(k + 2)=2 + 2

Tp

�
JkR2

�
= h@xjp; @yjp; @unm jp j m+ n � kiR :

The complex dimension of Tp
�
JkR2

�

 C is (k + 1)(k + 2)=2 + 2

Tp

�
JkR2

�

 C = h@xjp; @yjp; @unm jp j m+ n � kiC :

The inclusion map

I : Tp

�
JkR2

�
,! Tp

�
JkR2

�

 C;

where

Re I = Im(iI) = IdTp(JkR2);

is an injective R�linear map. Hence Tp
�
JkR2

�
is an R�linear subspace of Tp

�
JkR2

�

 C:

Consider the spaces

T
�
JkR2

�
= [
p2JkR2

Tp

�
JkR2

�
;

T
�
JkR2

�

 C = [

p2JkR2
Tp

�
JkR2

�

 C:

The space T
�
JkR2

�
is an R�vector bundle and T

�
JkR2

�

 C is a C�vector bundle over

JkR2: The bundle T
�
JkR2

�
is an R�subbundle of T

�
JkR2

�

 C:
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3.1.4 Vector Fields on JkR2

Consider the spaces of all smooth sections of the vector bundles T
�
JkR2

�
and

T
�
JkR2

�

 C

D
�
JkR2

�
= C1(T

�
JkR2

�
) = DerR

�
C1

�
JkR2

��
;

D
�
JkR2

�

 C = C1(T

�
JkR2

�
;C) = DerR

�
C1

�
JkR2

��

 C:

The space D
�
JkR2

�
is a module over the algebra C1

�
JkR2

�
; and the space

D
�
JkR2

�

 C is a module over the algebra C1

�
JkR2

�

 C

D(JkR2) =
(
~f1@x + ~f2@y +

P
m+n�k

fmn@umn j ~f1; ~f2; fmn 2 C1
�
JkR2

�)
;

D(JkR2)
 C =
(
~f1@x + ~f2@y +

P
m+n�k

fmn@umn j ~f1; ~f2; fmn 2 C1(JkR2)
 C
)
:

The spaces D(JkR2)
 C and D(JkR2) are in�nite dimensional Lie algebras with

the Lie bracket being the commutator. The inclusion map

I : D(JkR2) ,! D(JkR2)
 C;

where

Re I = Im(iI) = IdD(JkR2);

is an injective Lie algebra homomorphism. Hence D(JkR2) is an in�nite dimensional Lie

subalgebra of D(JkR2)
 C:
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3.2 The Contact Distribution and the Cartan Distribution

3.2.1 The Contact Distribution on J1R2

The 4�dimensional distribution on J1R2

C0 = Ker(!0); !0 = du� u10dx� u01dy

is called the contact distribution. The distribution is spanned by the four vector �elds

C0 = hX1 = @x + u10@u; X2 = @y + u01@u; Y1 = @u10 ; Y2 = @u01i : (3.2)

There exists no integral manifold of dimension four, since

[Yj ; Xj ] = @u =2 C0; j 2 f1; 2g:

Every smooth function f 2 C1(R2) determines a 2�dimensional submanifold of

J1R2

Lf =

�
u = f(x; y); u10 =

@f

@x
(x; y); u01 =

@f

@y
(x; y)

�
; (3.3)

which is an integral manifold of the contact distribution since

!0jLf = 0:

3.2.2 Contact Transformations and Contact Vector Fields

A di¤eomorphism

F : J1R2 �! J1R2

is called a contact transformation if it preserves the contact distribution, i.e.

F �(!0) = �F!0; �F 2 C1(J1R2):
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A vector �eld X 2 D(J1R2) is called a contact vector �eld if its �ow consists of

contact transformations. If X is a contact vector �eld, then

LX(!0) = �X!0; �X 2 C1(J1R2):

It is known that all contact vector �elds on J1R2 have the form

Xf = f@u +X1(f)Y1 +X2(f)Y2 � Y1(f)X1 � Y2(f)X2;

where Xj and Yj are given in Equation (3.2) and the function f 2 C1(J1R2) is equal to

f = !0(Xf ):

The space of all contact vector �elds is an in�nite dimensional Lie algebra denoted Cont(J1R2):

Consider the subspace of D(J1R2)
C that consists of all the complexi�ed vector

�elds that preserve the contact distribution

�
Y 2 D(J1R2)
C j LY (!0) = �Y !0; �Y 2 C1(J1R2)
C

	
� D(J1R2)
C: (3.4)

For any vector �eld Y 2 D(J1R2)
C there exist vector �elds Y1; Y2 2 D(J1R2) such that

Y = Y1 + iY2: Hence if Y preserve the contact distribution, then

LY (!0) = LY1(!0) + iLY2(!0) = �Y !0:

It follows that Y1 and Y2 are contact vector �elds. Hence there exist functions f1; f2 2

C1(J1R2) and f = f1 + if2 2 C1(J1R2)
C; such that

Y = Y1 + iY2 = Xf1 + iXf2 = Xf :

So the subspace described in Equation (3.4) is the complexi�cation of the Lie algebra of

contact vector �elds

Cont(J1R2)
C =
�
Y 2 D(J1R2)
C j Y = Xf ; f 2 C1(J1R2)
C

	
:
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The inclusion map

I : Cont(J1R2),!Cont(J1R2)
C,

where

Re I = Im(iI) = IdCont(J1R2);

is an injective Lie algebra homomorphism. Hence Cont(J1R2) is a Lie subalgebra of

Cont(J1R2)
C:

3.2.3 Prolongation of D(J0R2) and Cont(J1R2)

Consider the vector �eld W1 = a1@x + b1@y + c1@u 2 D(J0R2) and the complex

vector �eld W2 = a2@x + b2@y + c2@u 2 D(J0R2)
C. The �rst prolongation of W1 is

Xf1 2 Cont(J1R2) and the �rst prolongation of W2 is Xf2 2 Cont(J1R2)
C, where

fj = cj � aju10 � bju01; j 2 f1; 2g:

It is known [KL1] that the kth prolongation of the vector �elds Xf1 2 Cont(J1R2)

and Xf2 2 Cont(J1R2)
C is

X
(k)
fj
=

kX
m=0

k�mX
n=0

Dmx Dny (fj)@umn � @u1(fj)DxjJk � @u2(fj)DyjJk ; j 2 f1; 2g;

where

Dx = @x +
X
m;n�0

u(m+1)n@umn ; Dy = @y +
X
m;n�0

um(n+1)@umn ;

DxjJk = @x +

kX
m=0

k�mX
n=0

u(m+1)n@umn ; DxjJk = @y +

kX
m=0

k�mX
n=0

um(n+1)@umn :
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3.2.4 The Cartan Distribution on JkR2

The distribution on JkR2

Ck = Ker(!mn j m+ n < k); !mn = dumn � u(m+1)ndx� um(n+1)dy

is called the Cartan distribution. Note that when k = 1 the Cartan distribution is the

contact distribution.

It is known [KLV] that if L � JkR2 is an integral manifold of the Cartan distrib-

ution such that the map

�k : L �! R2

is a di¤eomorphism, then there exists a unique function h 2 C1(R2) such that L is equal

to the kth prolongation of the integral manifold Lh de�ned in Equation (3.3)

L = L
(k)
h :

3.2.5 Lie Transformations and Lie Vector Fields

A di¤eomorphism

F : JkR2 �! JkR2

is called a Lie transformation of JkR2 if for any pair of integers i; j 2 Z�0 with i+ j < k

F �(!ij) � 0 (mod h!nm j m+ n < ki) :

A vector �eld X 2 D(JkR2) is called a Lie vector �eld on JkR2 if its �ow consists

of Lie transformations. Let Lie(JkR2) denote the space of all Lie vector �elds on JkR2: If

Y 2 Lie(JkR2); then

LY (!ij) =
X

m+n<k

�Ymn!mn; �Ymn 2 C1(JkR2):
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It follows from the Lie-Bäcklund theorem that all Lie transformations are prolon-

gations of contact transformations, see [KLV]. Hence the space of Lie vector �elds on JkR2

is the kth prolongation of the space of contact vector �elds on J1R2

Lie(JkR2) = Cont(J1R2)k =
n
X
(k)
f j f 2 C1(J1R2)

o
:

Consider the subspace of D(JkR2)
C that consists of all vector �elds that preserve

the Cartan distribution(
Y 2 D(JkR2)
C j LY (!ij) =

X
m+n<k

�Ymn!mn; �Ymn 2 C1(JkR2)
C
)
� D(JkR2)
C:

(3.5)

For any vector �eld Y 2 D(JkR2)
C there exist vector �elds Y1; Y2 2 D(JkR2) such that

Y = Y1 + iY2: Hence if Y preserve the Cartan distribution, then

LY (!ij) = LY1(!ij) + iLY2(!ij) =
X

m+n<k

�Ymn!mn:

It follows that Y1; Y2 2 Lie(JkR2): Hence the subspace described in Equation (3.5) is the

complexi�cation of Lie(JkR2)

Lie(JkR2)
C =Cont(J1R2)k
C =
�
Cont(J1R2)
C

�k
=
n
X
(k)
f j f 2 C1(J1R2)
C

o
:

The inclusion map

I : Lie(JkR2),!Lie(JkR2)
C,

where

Re I = Im(iI) = IdLie(JkR2);

is an injective Lie algebra homomorphism. Hence Lie(JkR2) is a Lie subalgebra of

Lie(JkR2)
C:
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3.2.6 Invariant Functions and Di¤erential Invariants

Let f be a Lie subalgebra of Cont
�
J1R2

�
: The space of functions

Fk =
n
h 2 C1loc(JkR2) j X

(k)
f (h) = 0; 8Xf 2 f

o
(3.6)

is the algebra of invariant functions under the action of f on C1(JkR2):

Let j be a Lie subalgebra of Cont
�
J1R2

�

 C: The space of functions

Jk =
n
h 2 C1loc(JkR2)
 C j X

(k)
f (h) = 0; 8Xf 2 j

o
(3.7)

is the algebra of invariant functions under the action of j on C1(JkR2)
 C:

Proposition 9 Let q be any Lie subalgebra of Cont
�
J1R2

�
; and let Qk be the algebra

of invariant functions under the action of q on C1(JkR2): Then the algebra of invariant

functions under the action of q
 C on C1(JkR2)
 C is Qk 
 C.

Proof. =)For all functions h 2 Qk 
 C there exist functions h1; h2 2 Qk such

that

h = h1 + ih2:

Hence for all contact vector �elds Xf 2 q

X
(k)
f (h) = X

(k)
f (h1) + iX

(k)
f (h2) = 0:

(=Suppose that the function h 2 C1(JkR2)
 C is a q�di¤erential invariant

X
(k)
f (h) = 0; 8Xf 2 q:

There exist functions h1; h2 2 C1(JkR2) such that

h = h1 + ih2:
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Hence

X
(k)
f (h) = X

(k)
f (h1) + iX

(k)
f (h2) = 0; 8Xf 2 q:

It follows that h1; h2 2 Qk and

h 2 Qk 
 C:

The projection map for any integer k 2 Z+

�k;k�1 : J
kR2 �! Jk�1R2

induces the following exact maps for any point p 2 JkR2

0 �! C1(Jk�1R2)
��k;k�1�! C1(JkR2);

Tp(J
kR2)

(�k;k�1)��! Tp(J
k�1R2) �! 0;

0 �! C1(Jk�1R2)
 C
��k;k�1�! C1(JkR2)
 C;

Tp(J
kR2)
 C

(�k;k�1)��! Tp(J
k�1R2)
 C �! 0:

For any vector �elds X1 2 D(J0R2) and X2 2 D(J0R2)
 C; the kth prolongation

of X1 is a Lie vector �eld X
(k)
1 2 Lie(JkR2) and the kth prolongation of X2 is the complex-

i�cation of a Lie vector �eld X(k)
2 2 Lie(JkR2)
 C: Hence the vector �elds X1 and X2 are�

�k;k�1

�
�
�projectable. So for j 2 f1; 2g

(�k;k�1)�X
(k)
j = X

(k�1)
j :

It follows that for any smooth functions f1 2 C1(Jk�1R2) and f2 2 C1(Jk�1R2)
 C

X
(k�1)
j (fj) = (�k;k�1)�X

(k)
j (fj) = X

(k)
j (��k;k�1fj);
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for j 2 f1; 2g: Hence the map �k;k�1 induces the canonical inclusions

(�k;k�1)� : Fk�1 ,! Fk;

(�k;k�1)� : Jk�1 ,! Jk;

where Fk and Jk are the algebras de�ned in Equation (3.6) and (3.7):

De�nition 10 The algebra of f�di¤erential invariants is the following injective limit

F = lim
k!1

Fk = [
k2Z�0

Fk:

De�nition 11 The algebra of j�di¤erential invariants is the following injective limit

J = lim
k!1

Jk = [
k2Z�0

Jk:

3.3 The Lie Algebra gk

The inclusion maps

I1 : D(R2) ,! D(J0R2);

I2 : D(R2)
 C ,! D(J0R2)
 C;

Ij(f1@x + f2@y) = f1@x + f2@y + 0@u; j 2 f1; 2g;

are injective Lie algebra homomorphisms. Hence any Lie subalgebra of D(R2) is a Lie

subalgebra of D(J0R2) and any Lie subalgebra of D(R2)
 C is a Lie subalgebra of

D(J0R2)
 C:
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Consider the following spaces for k 2 Z+

hk =
n
(g@z)

(k) j g 2 O
o
;

�hk =
n
(�g@�z)

(k) j g 2 O
o
;

gk =
n
V (k)g j g 2 O

o
:

The spaces hk, �hk and gk
C are in�nite dimensional Lie subalgebras of Lie(JkR2)
C; and

gk is an in�nite dimensional Lie subalgebra of Lie(JkR2). If we consider gk � Lie(JkR2)
C;

then

(g@z)
(k) = g@z �

kP
l=1

@lg

@zl

�
kP

m=l

k�mP
n=0

�
m

l

�
u(m+1�l)�n@um�n

�
; (3.8)

V (k)g = (g@z)
(k) + (�g@�z)

(k): (3.9)

De�nition 12 Let Hk denote the algebra of invariant functions under the action of h on

C1(JkR2)
 C

Hk =
n
h 2 C1loc(JkR2)
 C j (g@z)(k)(h) = 0; 8g 2 O

o
:

De�nition 13 Let Gk denote the algebra of invariant functions under the action of g on

C1(JkR2)

Gk =
n
h 2 C1loc(JkR2) j V (k)g (h) = 0; 8g 2 O

o
:

Proposition 14 The algebra of invariant functions under the action of g
 C on

C1loc(J
kR2)
 C is

Gk 
 C = �Hk \Hk:

Proof. =)For any function f 2 �Hk \Hk

V (k)g (f) = (g@z)
(k)(f) + (�g@�z)

(k)(f) = 0; 8g 2 O:
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Hence

Gk 
 C � �Hk \Hk:

(=For any function f 2 Gk 
 C

(Vg � iVig)(k) (f) = 2(g@z)
(k)(f) = 0; 8g 2 O,

(Vg + iVig)
(k) (f) = 2(�g@�z)

(k)(f) = 0; 8g 2 O.

Hence

Gk 
 C � �Hk \Hk:

3.3.1 The Distribution �k

It is known [KLR] that if M is a real (n+m)�dimensional smooth manifold and

� : TM 
 C �!M

is the complexi�cation of the tangent bundle, then a complex distribution P on M is a

smooth �eld

P : a 2M 7! Pa = P (a) � TaM 
 C

of complex subspaces of dimC Pa = m.

A complex distribution P of rank m on a (n+m)�dimensional real manifold M

is called completely integrable if it has locally n functionally independent �rst integrals, i.e.

complex-valued functions Ij 2 C1(M)
 C such that

Ann(P ) = hdI1; ::; dIniC :

A complex distribution P is involutive if [X;Y ] 2 D(P ) for any X;Y 2 D(P ):



37

Theorem 15 [KLR] Let P be a complex involutive distribution such that P + �P is an invo-

lutive distribution and dimC(P \ �P ) = const: Then P is a completely integrable distribution.

Prolongations of the holomorphic vector �elds de�ne the following complex distri-

bution on JkR2

�k =
D
(g@z)

(k) j g 2 O
E
C
: (3.10)

It follows from Equation (3:8) that

�k =

�
@z;

kP
m=l

k�mP
n=0

�
m

l

�
u(m+1�l)�n@um�n ; j l 2 f1; ::::; kg

�
C
: (3.11)

Hence �k has complex dimension k + 1:

The conjugate of the complex distribution �k is

��k =
D
(�g@�z)

(k) j g 2 O
E
C
=

�
@�z;

kP
m=l

k�mP
n=0

�
m

l

�
u
n(m+1�l)@un �m ; j l 2 f1; ::::; kg

�
C
: (3.12)

Since

�k \ ��k = 0;

it follows that the complex distribution

�k � ��k =
D
((h@z)

(k) + (�g@�z)
(k) j g; h 2 O

E
C
=
D
V (k)g j g 2 O

E
R

 C (3.13)

has complex dimension 2 (k + 1) :

Corollary 16 The distribution �k is completely integrable.

Proof. For any functions g; h 2 O

h
(g@z)

(k); (h@z)
(k)
i
= ((ghz � hgz)@z)(k) 2 �k;
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h
Vg
(k); V

(k)
h

i
= V

(k)
[g;h] 2 �

k � ��k:

Hence the distributions �k and �k � ��k are involutive. So by Theorem 15 the distribution

�k is completely integrable.

It follows from Equation (3.13) that the �rst integrals of the complex distribution

�k� ��k are invariant functions under the action of g
 C on C1(JkR2)
C: By Proposition

9 the algebra of invariant functions under the action of g
 C on C1(JkR2)
C is Gk 
C;

where Gk is the algebra of invariant functions under the action of g on C1(JkR2). Therefore

for K = (k + 1)(k + 2)=2 + 2; the complex distribution �k � ��k has locally K � 2(k + 1)

functionally independent real �rst integrals

fJjgK�2(k+1)j=1 2 C1loc(JkR2):

Consider the inclusion de�ned in Subsection 3.2.6

Gk ,! Gk+1:

By the argument above the distribution �k � ��k has one �rst integral of order 0

I0 2 C1loc(JkR2)

and l � 1 �rst integrals of order l

fIl;jgl�1j=2 2 C
1
loc(J

kR2)

for 1 � l � k; such that locally the K � 2(k + 1) functions

fI0g [
2�l�k

fIl;jgl�1j=1

are functionally independent.
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It follows from Equation (3.10) that the �rst integrals of the distribution �k are

invariant functions under the action of h on C1(JkR2)
C: By Equation (3.11) and (3.12)

�z; u0�j 2 C1(JkR2)
 C; 1 � j � k

are �rst integrals of the distribution �k and not �rst integrals of ��k: Hence locally the

K � (k + 1) functionally independent functions

f�zg [
�
u0�j
	k
j=1

[ fI0g [
2�l�k

fIl;jgl�1j=1

are �rst integrals of the distribution �k:

The following table shows the number of locally functionally independent �rst

integrals of pure order from 0 to k for the distributions �k; ��k and �k � ��k:

Order �k ��k �k � ��k

k k k k � 1
...

...
...

...
l l l l � 1
...

...
...

...
1 1 1 0
0 2 2 1

The algebras of invariant functions under the action of h and �h on C1(JkR2)
C

and g on C1(JkR2) are

Hk =
n
f 2 C1loc(JkR2)
 C j f = f(�z; u0�1; :::; u0�k; I0; :::; Ik;k�1)

o
;

�Hk =
n
f 2 C1loc(JkR2)
 C j f = f(z; u1�0; :::; u1�0; I0; :::; Ik;k�1)

o
;

Gk =
n
f 2 C1loc(JkR2) j f = f(I0; I2; I3;1; I3;2; :::; Ik;k�1)

o
:
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3.3.2 Invariant Functions of Order 0, 1, 2 and 3

For any function g 2 O the �rst, second and third prolongations of the vector

�elds Vg 2 g and g@z 2 h are

V (1)g = g1@x + g2@y � (g1xu10 � g1yu01) @u10 � (g1xu01 + g1yu10) @u01 ;

(g@z)
(1) = g@z � gzu1�0@u1�0 ;

V (2)g = g1@x + g2@y � (g1xu10 � g1yu01) @u10 � (g1xu01 + g1yu10) @u01

+(�2u20g1x + 2u11g1y � u10g1xx + u01g1xy)@u20

+(�u20g1y � 2g1xu11 + g1yu02 � u10g1xy � u01g1xx)@u11

+(�2u11g1y � 2u02g1x + u10g1xx � u01g1xy)@u02 ;

(g@z)
(2) = g@z � gzu1�0@u1�0 + (�gzzu1�0 � 2gzu2�0)@u2�0 � gzu1�1@u1�1 ;

V (3)g = V (2)g + (�3g1xxu20 + 3g1xyu11 � 3g1xu30 + 3g1yu21 � g1xxxu10 + g1xxyu01)@u30

+(�2g1xyu20 � g1xx3u11 � g1yu30 + 2g1yu12 � 3g1xu21 + g1xyu02 � g1xxyu10

�g1xxxu01)@u21

+(g1xxu20 � g1xy3u11 � 3g1xu12 � 2g1yu21 + g1yu03 � 2g1xxu02

+g1xxxu10 � g1xxyu01)@u12

+(3g1xxu11 � 3g1xyu02 � 3g1xu03 � 3g1yu12 + g1xxyu10 + g1xxxu01)@u03 ;

(g@z)
(3) = (g@z)

(2) � (gzzzu1�0 + 3gzzu2�0 + 3gzu3�0)@u3�0 � (gzzu1�1 + 2gzu2�1)@u2�1 � gzu1�2@u1�2 ;

The algebras of invariant functions under the action of h and �h on C1(J3R2)
C



41

and g on C1(J3R2) are

H3 =

�
f 2 C1loc(J3R2)
 C j f = f

�
�z; u; u0�1;

u1�1
u0�1u1�0

; u0�2; u0�3; I3;1; I3;2

��
;

�H3 =

�
f 2 C1loc(J3R2)
 C j f = f

�
z; u; u1�0;

u1�1
u0�1u1�0

; u2�0; u3�0; I3;1:I3;2

��
;

G3 =

�
f 2 C1loc(J3R2) j ~f

�
u;
u20 + u02
u210 + u

2
01

; I3;1; I3;2

��
;

where

I3;1 =
�(u2

0�1
u2�1u1�0 � u20�1u1�1u0�1 � u0�2u

2
1�0
u1�1 + u1�2u

2
1�0
u0�1)

u3
1�1

=
�2

(u20 + u02)3
(u310u30 + u

3
10u12 � u210u220 + u210u21u01 + u210u202 + u201u220

+u10u
2
01u30 + u

2
10u03u01 + u10u

2
01u12 + u

3
01u03 + u

3
01u21 � u201u202

�4u10u01u20u11 � 4u10u01u02u11);

I3;2 =
i(�u2

0�1
u2�1u1�0 + u

2
0�1
u1�1u2�0 � u0�2u21�0u1�1 + u1�2u

2
1�0
u0�1)

u3
1�1

=
2

(u20 + u02)3
(u210u30u01 � u10u201u21 + u210u12u01 � u10u201u03 + 2u210u20u11

+2u10u01u
2
02 � 2u10u01u220 + 2u210u02u11 � 2u201u02u11 � 2u201u20u11

�u310u03 + u301u12 + u301u30 � u310u21):

Remark 17 It is not possible to �nd g�di¤erential invariants of pure order 3 by standard

methods with Maple 11: However, it is possible to �nd h�di¤erential invariants of pure

order 3: The function h =
�u0�2u21�0u1�1 + u1�2u

2
1�0
u0�1

u3
1�1

and it conjugate �h are h�di¤erential

invariants. Hence I3;1 = h + �h and I3;2 = i(h � �h) are g�di¤erential invariants. The

h�di¤erential invariants of pure order 3 are computed in Maple Worksheet "h_di¤_inv_3",

see Appendix 6.



42

3.4 Invariant Di¤erentiations and Di¤erential Invariants

Let q be a Lie subalgebra of Cont(J1R2), and let Qk be the algebra of invariant

functions under the action of q on C1(JkR2). Consider the derivation operator

r = �1Dx + �2Dy;

where �1; �2 2 C1(JpR2) and p is the maximum order of the functions �1 and �2: The

derivation operator r is an invariant derivative of q if the following diagram commutes for

all contact vector �elds Xf 2 q and all integers k � maxfp� 1; 1g

C1(JkR2)
X
(k)
f�! C1(JkR2)

# r # r

C1(Jk+1R2)
X
(k+1)
f�! C1(Jk+1R2)

.

If r is an invariant derivative of q; then

h
X
(1)
f ;r

i
= 0; 8Xf 2 q; (3.14)

where

Xf
(1) =

X
m+n�0

(Dx)m (Dy)n (f)@umn � @u1(f)Dx � @u2(f)Dy:

For any function q 2 Qk

X
(k+1)
f (r(q)) = r

�
X
(k)
f (q)

�
= 0; 8Xf 2 q

Hence

r : Qk �! Qk+1:

Let f be a Lie subalgebra of Cont
�
J1R2

�

C; and let Fk be the algebra of invariant

functions under the action of f on C1(JkR2)
C. Consider the complex derivation operator

r = �1Dx + �2Dy
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where �1; �2 2 C1(JpR2) 
 C and p is the maximum order of the functions �1 and �2:

The derivation operator r is a complex invariant derivative of f if the following diagram

commutes for all vector �elds Xf 2 f and all integers k � maxfp� 1; 1g

C1(JkR2)
 C
X
(k)
f�! C1(JkR2)
 C

# r # r

C1(Jk+1R2)
 C
X
(k+1)
f�! C1(Jk+1R2)
 C

.

Moreover, h
X
(1)
f ;r

i
= 0; 8Xf 2 f; (3.15)

r : Fk �! Fk+1:

It follows from Subsection 3.2.2 that if q is a Lie subalgebra of Cont
�
J1R2

�
; then

q is a Lie subalgebra of Cont
�
J1R2

�

 C:

Proposition 18 Let q be a Lie subalgebra of Cont
�
J1R2

�
: If

r = (�11 + i�12)Dx + (�21 + i�22)Dy

is a complex invariant derivative of q; then

Re(r) = �11Dx + �21Dy;

Im(r) = �21Dx + �22Dy;

are real invariant derivatives of q:

Proof. It follows from Equation(3.15) that

h
X
(1)
f ; (�11 + i�12)Dx + (�21 + i�22)Dy

i
=

h
X
(1)
f ; �11Dx + �21Dy

i
+ i
h
X
(1)
f ; �12Dx + �22Dy

i
= 0
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for all contact vector �elds Xf 2 q: Hence

h
X
(1)
f ; �11Dx + �21Dy

i
=
h
X
(1)
f ; �12Dx + �22Dy

i
= 0:

So by Equation (3.14) Re(r) and Im(r) are invariant derivatives of q:

3.4.1 Tresse Derivation

The total di¤erential of a function h 2 C1(JkR2) is

d̂h = Dx(h)dx+Dy(h)dy:

It is known [KL1] that if the total di¤erentials of two functions h1; h2 2

C1(JkR2)
 C are independent, i.e.

d̂h1 ^ d̂h2 6= 0

on a domain U2JkR2; then
D
d̂h1; d̂h2

E
C
is a cobasis of (�k)�TR2jU : Hence for any function

h 2 C1(J lR2) the total di¤erential of h is

d̂h =

�
Dh
Dh1

�
d̂h1 +

�
Dh
Dh2

�
d̂h2;

where 2664
Dh
Dh1
Dh
Dh2

3775 =
2664Dx (h1) Dx (h2)

Dy (h1) Dy (h2)

3775
�1 2664Dx (h)

Dy (h)

3775
are the Tresse derivations of the function h:

Let q be a Lie subalgebra of Cont
�
J1R2

�
, and let Q be the algebra of the q�

di¤erential invariants. If the total di¤erentials of two functions q1; q2 2 Q are independent,
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it is known [KL1] that for any function q 2 Q the Tresse derivations of q are q�di¤erential

invariants

Dq
Dq2

;
Dq
Dq1

2 Q:

Hence the two derivation operators2664
D
Dq1
D
Dq2

3775 =
2664Dx (q1) Dx (q2)

Dy (q1) Dy (q2)

3775
�1 2664Dx

Dy

3775
are invariant derivatives of the Lie algebra q:Moreover, these invariant derivatives commute�

D
Dq1

;
D
Dq2

�
= 0:

Let f be a Lie subalgebra of Cont
�
J1R2

�

 C, and let F be the algebra of the

complex valued f�di¤erential invariants. If the total di¤erentials of two functions f1; f2 2 F

are independent, then the derivation operators2664
D
Df1
D
Df2

3775 =
2664Dx (f1) Dx (f2)

Dy (f1) Dy (f2)

3775
�1 2664Dx

Dy

3775
are complex invariant derivatives of f: Moreover,�

D
Df1

;
D
Df2

�
= 0:

3.4.2 Lie-Tresse Theorem

Let q be a Lie subalgebra of Cont
�
J1R2

�
: It is known [L, T, KL1] that there

exist q�di¤erential invariants, Ig1 ; Ig2 ; Jk1 ; Jk2 ; :::; Jks such that if J is an q�di¤erential

invariant; then

J = J

�
Ig1 ; Ig2 ;

�
D
DIg1

�m1
�
D
DIg2

�n1
(Jk1) ; :::;

�
D
DIg1

�ms
�
D
DIg2

�ns
(Jks)

�
:
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3.5 Invariant Derivatives of the Lie Algebra g

In this section we will �nd invariant derivatives of the Lie algebra g by using three

di¤erent methods. The �rst two methods require g�di¤erential invariants of order three,

while in the third method we only need two h�di¤erential invariants of order zero.

3.5.1 Invariant Derivatives of g, Method 1

In this subsection we will use the theory of Subsection 3.4.1 to �nd two invariant

derivatives of g:

So far, we have found four invariant functions I0; I2; I3;1; I3;2 2 G that are inde-

pendent on some regular domains in J3R2

I0 = u;

I2 =
u20 + u02
u210 + u

2
01

;

I3;1 =
�2

(u20 + u02)3
(u310u30 + u

3
10u12 � u210u220 + u210u21u01 + u210u202 + u201u220

+u10u
2
01u30 + u

2
10u03u01 + u10u

2
01u12 + u

3
01u03 + u

3
01u21 � u201u202

�4u10u01u20u11 � 4u10u01u02u11);

I3;2 =
2

(u20 + u02)3
(u210u30u01 � u10u201u21 + u210u12u01 � u10u201u03 + 2u210u20u11

+2u10u01u
2
02 � 2u10u01u220 + 2u210u02u11 � 2u201u02u11 � 2u201u20u11

�u310u03 + u301u12 + u301u30 � u310u21):

The functions I3;1 and I3;2 have independent symbols

(@u30 ; @u21 ; @u12 ; @u03) (I3;1) = 2
�
I2(u20 + u02)

2
��1

(u10; u01; u10; u01) ; (3.16)

(@u30 ; @u21 ; @u12 ; @u03) (I3;2) = �2
�
I2(u20 + u02)

2
��1

(u01;�u10; u01;�u10) : (3.17)
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It follows from Subsection 3.4.1 that the two derivation operators2664
D
DI0
D
DI2

3775 =
2664Dx(I0) Dx(I2)

Dy(I0) Dy(I2)

3775
�1 2664Dx

Dy

3775 =
2664�11 �12

�21 �22

3775
2664Dx
Dy

3775
are invariant derivatives of g: The maximum order of �ij ; for i; j 2 f1; 2g; is 3: These

invariant derivatives are computed in Maple Worksheet "tresse_inv_der", see Appendix 6.

It follows from Equation (3.16) and (3.17) that

D
DI0

(I3;1) = f01 + 2
�
I2(u20 + u02)

2
��1

(�11 (u10u40 + u01u31 + u10u22 + u01u13)

+�12 (u10u31 + u01u22 + u10u13 + u01u04)) ;

D
DI0

(I3;2) = f02 � 2
�
I2(u20 + u02)

2
��1

(�11 (u01u40 � u10u31 + u01u22 � u10u13)

+�12 (u01u31 � u10u22 + u01u13 � u10u04)) ;

D
DI2

(I3;1) = f21 + 2
�
I2(u20 + u02)

2
��1

(�21 (u10u40 + u01u31 + u10u22 + u01u13)

+�22 (u10u31 + u01u22 + u10u13 + u01u04)) ;

D
DI2

(I3;2) = f22 �
�
I2(u20 + u02)

2
��1

(�21 (u01u40 � u10u31 + u01u22 � u10u13)

+�22 (u01u31 � u10u22 + u01u13 � u10u04)) ;

where fij are smooth functions of order less than 4, for i 2 f0; 2g; j 2 f1; 2g: Hence

g1(I0; I2; I31; I32)
D

DIm1

(I3;j1) + g2(I0; I2; I31; I32)
D

DIm2

(I3;j2) = 0
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if and only if g1 = g2 = 0; for m1;m2 2 f0; 2g and j1; j2 2 f1; 2g:

It follows from computations in Maple Worksheet "dep_inv" that

D
DI0

(I3;2) =
1
2I
2
2 ((I3;1I2 + 2)

D
DI2

(I3;2)� I2I3;2
D
DI2

(I3;1));

g1(I0; I2; I31; I32)
D
DI2

(I3;1) + g2(I0; I2; I31; I32)
D
DI2

(I3;2) + g2(I0; I2; I31; I32)
D
DI0

(I3;2) = 0;

if and only if gj = 0; for j 2 f1; 2; 3g: Hence

G4 =
�
f 2 C1loc

�
R2
�
jf = f

�
I0; I2; I3;1; I3;2;

D
DI0

(I3;1);
D
DI2

(I3;1);
D
DI2

(I3;2)

��
:

Theorem 19 For any integer m 2 Z+ the m+ 2 functions

Im+3;m+2 =

�
D
DI2

�m
(I3;2) ; Im+3;j+1 =

�
D
DI0

�m�n� D
DI2

�n
(I3;1) , n 2 f0; 1; :::::;mg ;

are g�di¤erential invariants of order m+ 3: Moreover, these g�di¤erential invariants are

independent, i.e.

m+2X
j=1

gjIm+3;j = 0; gj 2 Gm+2 =) gj = 0, j 2 f1; :::;m+ 2g:

For any integer k 2 Z+ the algebra of invariant functions under the action of g on Jk(R2)

is

Gk =
n
f 2 C1loc(JkR2) j f = f(I0; I2; I3;1; I3;2; :::; Ik;k�1)

o
:

Theorem 19 will be proved in Subsection 3.5.3.

3.5.2 Invariant Derivatives of g, Method 2

In this subsection we are seeking invariant derivatives of order less than 3. The

�rst step is to �nd derivation operators r1 and r2 such that

r1(I2) = h1(I0; I2; I3;1);

r2(I2) = h2(I0; I2; I3;2);
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where
@hi
@I3;i

6= 0; for i 2 f1; 2g; and the g�di¤erential invariants I3;1 and I3;2 are as de�ned

in Subsection 3.5.1.

The second step is to compute the commutator for j 2 f1; 2g

h
Vg
(1);rj

i
:

If the commutator is zero for any function g 2 O; then r1 and r2 are invariant derivatives.

Let us start at the �rst step and �nd a derivation operator r1 such that r1(I2) =

h1(I0; I2; I3;1):

r1(I2) = (ADx +BDy) (I2)

= A

�
@I2
@x

+ u10
@I2
@u

+ u20
@I2
@u10

+ u11
@I2
@u01

�
+

B

�
@I2
@y

+ u01
@I2
@u

+ u11
@I2
@u10

+ u02
@I2
@u01

�
+

u30

�
A
@I2
@u20

�
+ u21

�
A
@I2
@u20

+B
@I2
@u20

�
+

u12

�
A
@I2
@u02

+B
@I2
@u11

�
+ u03

�
B
@I2
@u02

�
:

The function I3;1 is linear in the coordinate functions of third order. Hence the functions

A and B must satisfy the four equations

A
@I2
@u20

=
@I3;1
@u30

f(I0; I2) = 2
�
I2(u20 + u02)

2
��1

u10f(I0; I2);

A
@I2
@u11

+B
@I2
@u20

=
@I3;1
@u21

f(I0; I2) = 2
�
I2(u20 + u02)

2
��1

u01f(I0; I2);

A
@I2
@u02

+B
@I2
@u11

=
@I3;1
@u12

f(I0; I2) = 2
�
I2(u20 + u02)

2
��1

u10f(I0; I2);

B
@I2
@u02

=
@I3;1
@u03

f(I0; I2) = 2
�
I2(u20 + u02)

2
��1

u01f(I0; I2);

for some smooth function f:
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The four equations hold for the functions

B =
u01

u210 + u
2
01

; A =
u10

u210 + u
2
01

; f(I0; I2) = �I32=2:

Hence we get the derivation operator

r1 =
u10

u210 + u
2
01

Dx +
u01

u210 + u
2
01

Dy:

Now, let us �nd r2 such that r2(I2) = h2(I0; I2; I3;2): By following the procedure

above, we get the derivation operator

r2 =
u01

u210 + u
2
01

Dx �
u10

u210 + u
2
01

Dy:

Note that ifr1 andr2 are invariant derivatives of g, thenrj(I0) 2 G for j 2 f0; 1g:

Let us check that this is true before we do the last step

r1(I0) =
�

�u01
u210 + u

2
01

Dx +
u10

u210 + u
2
01

Dy
�
(u) = 0 2 G;

r2(I0) =
�

u10
u210 + u

2
01

Dx +
u01

u210 + u
2
01

Dy
�
(u) = 1 2 G:

Let us compute the commutator

[(Vg)
1;rj ] = (g1Dx(�1j) + g2Dy(�1j)� �1jg1x � �2jg1y

�
X

1�m+n�0
(Dx)m (Dy)n (u10g1 + u01g2)@umn(�1j)

1ADx
+(g1Dx(�2j) + g2Dy(�2j) + �1jg1y � �2jg1x

�
X

1�m+n�0
(Dx)m (Dy)n (u10g1 + u01g2)@umn(�2j)

1ADy
for rj = �1jDx + �2jDy: It follows from that Appendix ?? that

h
Vg
(1);rj

i
= 0; j 2 f1; 2g; 8g 2 O.
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Hence the derivation operators

r1 =
1

u210 + u
2
01

(u10Dx + u01Dy) ; r2 =
1

u210 + u
2
01

(�u01Dx + u10Dy) ;

are invariant derivatives of g.

The commutator of r1 and r2 is

[r1;r2] = �I2r2:

Theorem 20 For any integer m 2 Z+ the m+ 1 functions

Im+2;j+1 = (r1)m�j (r2)j (I2) ; j 2 f0; 1; :::; kg

are g�di¤erential invariants of order m+ 2: Moreover, these g�di¤erential invariants are

independent, i.e.

m+1X
j=1

gjIm+2;j = 0; gj 2 Gm+1 =) gj = 0, j 2 f1; :::;m+ 1g:

For any integer k 2 Z+ the algebra of invariant functions under the action of g on C1(JkR2)

is

Gk =
n
f 2 C1loc(JkR2) j f = f(I0; I2; I3;1; I3;2; :::; Ik;k�1)

o
:

Theorem 20 will be proved in Subsection 3.5.3.

Remark 21 For k � 3; the g�di¤erential invariant Ik;j de�ned in Theorem 20 is not

equal to the g�di¤erential invariant Ik;j de�ned in Theorem 19. In the following sections

Ik;;j will denote the g�di¤erential invariant de�ned in Theorem 20. The two g�di¤erential

invariants of pure order three used in Subsection 3.5.1 are

Iold3;1 = �2
I3;1 + I

2
2

I32
; Iold3;2 = 2

I3;2
I32

:

The computation is done in Maple Worksheet "dep_inv_n_o".
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3.5.3 Invariant Derivatives of g; Method 3

The methods used in Subsection 3.5.1 and 3.5.2 required g�di¤erential invariants

of order three to generate the algebra G: In this subsection we will use two h� di¤erential

invariants of order zero

u; �z 2 H;

to generate the algebra G.

The derivation operators2664
D
D�z
D
Du

3775 =
2664Dz(�z) Dz(u)

D�z(�z) D�z(u)

3775
�1 2664Dz

D�z

3775 =
26664�

u0�1
u1�0

1

1

u1�0
0

37775
2664Dz
D�z

3775
are invariant derivatives of h:

The derivation operator D�z is an invariant derivative of h: Hence D�z(u) = u0�1 is

an h�di¤erential invariant.

Note that for any integers k; j 2 Z�0 where k � j

�
D
D�z

�k�j � D
Du

�j
(u0�1)

= f +

�
1

u1�0

�j k�jX
n=0

�
k � j
n

��
�u0�1
u1�0

�k�j�n
(u
(k�n)(1+n)); (3.18)

where f is a smooth functions of order less than k + 1:

Theorem 22 For any integer m 2 Z�0 the m+ 1 functions

Qm+1;j+1 =

�
D
D�z

�m�j � D
Du

�j
(u0�1) ; j 2 f0; 1; ::::;mg

are h�di¤erential invariants of of order m + 1: Moreover, these h�di¤erential invariants
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are independent, i.e.

m+1X
j=1

gjQm+1;j = 0; gj 2 Hm =) gj = 0; j 2 f1; ::;m+ 1g:

For any integer k 2 Z+ the algebra of invariant functions under the action of h on

C1
�
JkR2

�

 C is

Hk =
n
f 2 C1loc(JkR2) j f = f(�z; u; u0�1; Q1;1; :::; Qk;k)

o
:

Proof. The theorem follows from Subsection 3.3.1 and Equation (3.18).

Since the derivation operator D�z is an invariant derivative of h and Dz is an

invariant derivative of �h; it follows that

�D
Du =

1

u1�0
Dz;

D
Du = �

1

u0�1
D�z

are invariant derivatives of both h and �h and hence also invariant derivatives of the Lie

algebra

g
 C = h� �h:

Moreover, � �D
Du;

D
Du

�
= �I2

� �D
Du �

D
Du

�
:

It follows from Proposition 18 that the derivation operators

r1 = 1
2

� �D
Du +

D
Du

�
=

1

u210 + u
2
01

(u10Dx + u01Dy) ;

r2 = i
2

�
D
Du �

�D
Du

�
=

1

u210 + u
2
01

(u01Dx � u10Dy) ;

are invariant derivatives of g:
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Lemma 23 For any integer m 2 Z�0 the m+ 1 functions

Im+2;j+1 = (r1)m�j (r2)j (I2) ; j 2 f0; 1; ::::;mg

are g�di¤erential invariants of order m+ 2: Moreover, these g�di¤erential invariants are

independent, i.e.

kX
j=0

gjIm+2;j+1 = 0; gj 2 Gm+1 =) gj = 0; j 2 f0; ::;mg:

For any integer k 2 Z+ the algebra of invariant functions under the action of g on C1(JkR2)

is

Gk =
n
f 2 C1loc(JkR2) j f = f(I0; I2; I3;1; I3;2; :::; Ik;k�1)

o
:

Proof. The lemma follows from Theorem 22 :

The invariant derivatives of g that we found in Subsection 3.5.2 are equal to r1

and r2: Hence Theorem 20 follows from Lemma 23.

Theorem 24 Suppose that the invariant derivatives r̂1 and r̂2 are equal to2664r̂1
r̂2

3775 =
2664f11 f12

f21 f22

3775
2664r1
r2

3775
where the maximum order of the functions fij 2 G is k + 2 for k 2 Z�0 and

f11f22 � f12f21 6= 0; f22 6= 0:

Then the k + n+ 1 functions

Kn+k+2;i1+1 = r̂n�i11 r̂i12 (Ik+2;1); i1 2 f0; ::; ng;

Kn+k+2;i2+n+1 = r̂n2 (Ik+2;i2+1); i2 2 f1; :::; kg;
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are g�di¤erential invariants of order n + k + 2: Moreover, these g�di¤erential invariants

are independent

kX
i2=1

gi1r̂
n
2 (Ik+2;i2+1) +

nX
i1=0

gi2r̂
n�i1
1 r̂i12 (Ik+2;1) = 0; gi2 ; gi1 2 Gk+n+1 =) gi2 = gi1 = 0:

For any integer m 2 Z+ the algebra of invariant functions under the action of g on

C1(JmR2) is

Gm =
�
f 2 C1loc(JmR2) j f = f(I0; :::; Ik;k�1;Kk+1;1::::Km;m�1)

	
Proof. For i2 2 f1; :::; kg

r̂n2 (Ik+2;i2+1) = (f21r1 + f21r2)n(Ik+2;i2+1)

= hi2 + (f22)
n(Ik+n+2;i2+1+n) +

nX
j=1

hji2(f22)
n�j(f21)

j(Ik+n+2;i2+n�j+1);

where hi2 ; hji2 2 Gk+n+1: Hence

kX
i2=1

gi1r̂
n
2 (Ik+2;i2+1) = 0; gi2 2 Gk+n+1 =) gi2 = 0:

We will prove that

nX
i1=0

gi2r̂
n�i1
1 r̂i12 (Ik+2;1) = 0; gi1 2 Gk+n+1 =) gi1 = 0 (3.19)

by induction.

For n = 1

r̂1(Ik+2;1) = f11Ik+3;1 + f12Ik+3;2;

r̂2(Ik+2;1) = f12Ik+3;1 + f22Ik+3;2:

Since f11f22 � f12f21 6= 0; it follows that Equation (3.19) holds for n = 1:
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Suppose that Equation (3.19) holds for n = m: Then

mX
i1=0

gi2r̂1r̂
m�i1
1 r̂i12 (Ik+2;1) = 0; gj 2 Gk+m+2 =) gi1 = 0;

mX
i1=0

gi2r̂2r̂
m�i1
1 r̂i12 (Ik+2;1) = 0; gj 2 Gk+m+2 =) gi1 = 0:

Since

g1r̂
m+1
1 (Ik+2;1) + g2r̂

m+1
2 (Ik+2;1) = 0; g1; g2 2 Gk+m+2 =) g1 = g2 = 0;

it follows that Equation (3.19) holds for n = m + 1:Hence Equation (3.19) holds for any

integer n 2 Z�0:

It follows that

kX
i2=1

gi1r̂
n
2 (Ik+2;i2+1) +

nX
i1=0

gi2r̂
n�i1
1 r̂i12 (Ik+2;1) = 0; gj 2 Gk+n+1 =) gi2 = gi1 = 0:

We have that the invariant derivatives de�ned in Subsection 3.5.1 are equal to2664
D
DI0
D
DI2

3775 = 1

I3;2

2664I3;2 �I3;1

0 1

3775
2664r1
r2

3775 :
Hence Theorem 19 follows from Theorem 24.

3.5.4 Invariant Functions of the Lie Algebras sl2(C)R and co(2)

It follows from Subsection 2.2.1 and 2.2.4 that

z = hV1; Vi; Vz; Viz; Vz2 ; Viz2i � g;

s =


@z; z@z; z

2@z
�
� h;
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are Lie algebras: Moreover,

z
 C = s� �s: (3.20)

Let S denote the algebra of s�di¤erential invariants and let Z denote the algebra

of z�di¤erential invariants. It follows from Equation (3.20) that

Z 
 C = S \ �S. (3.21)

For an integer k 2 f0; 1; 2g the distribution de�ned in Subsection 3.3.1 is equal to

�k =
D
(@z)

(k); (z@z)
(k); (z2@z)

(k)
E
C
:

Hence

Sk= Hk; Zk= Gk; k 2 f0; 1; 2g:

For any integer k � 3 there exist locally k + 1 functionally independent s� and

z�di¤erential invariants of pure order k: Theorem 22 and Lemma 23 give us k s� di¤erential

invariants and k� 1 z�di¤erential invariants of pure order k: Hence we are seeking two real

functions Îk;1 and Îk;2 of pure order k such that

Îk;1; Îk;2 2 Zk, Îk;1; Îk;2 =2 Gk,

g1Îk;1 + g2Îk;2 = 0; g1; g2 2 Zk�1 =) g1 = g2 = 0;

for all integers k � 3: It follows from Equation (3.21) that

Îk;1; Îk;2 2 S \ �S.

Since there exist locally k functionally independent h� di¤erential invariants of pure order
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k; it follows that

g1(Îk;1; Îk;2) = g2(u1�0; ::; uk�0) 2 �H;

g3(Îk;1; Îk;2) = g4(u0�1; ::; u0�k) 2 �H;

for some nonzero functions g1;g3 2 C1loc(R2); g2;g4 2 C1loc(Rk):

For k = 3 it is well known [KL2] that the Schwarz derivative is a di¤erential

invariant of the Lie algebra s

SD =
2u1�0u3�0 � 3u22�0

u4
1�0

:

Note that

SD 2 �H; SD 2 H, SD =2 H; SD =2 �H.

Hence

Î3;1; Î3;2 2 Zk, Î3;1; Î3;2 =2 Gk,

for

Î3;1 = �1
2

�
SD + SD

�
=

1

(u210 + u
2
01)

4
(3u410u

2
20 + 6u

5
01u21 � 2u501u03 � 12u410u211 � 12u401u211 + 48u310u01u20u11

�48u310u01u11u02 + 72u210u201u211 � 6u401u20u02 + 36u210u201u20u02 � 12u210u301u21

+4u210u
3
01u03 + 6u10u

4
01u30 � 18u10u401u12 � 48u10u301u20u11 + 48u10u301u11u02

�6u410u20u02 � 18u210u201u202 + 3u401u220 + 3u401u202 � 18u410u01u21 + 6u410u01u03

+4u310u
2
01u30 � 12u310u201u12 � 18u210u201u220 � 2u510u30 + 6u510u12 + 3u410u202);
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Î3;2 = � i
2

�
SD � SD

�
=

1

(u210 + u
2
01)

4
(�2u210u301u30 + 6u210u301u12 � 6u10u301u202 � 24u310u01u211 � 6u10u301u220

+u501u30 � 3u501u12 + 2u310u201u03 + 3u10u401u03 � 9u10u401u21 + 24u10u301u211

+6u401u11u02 + 9u
4
10u01u12 � 3u410u01u30 � 6u410u20u11 + 6u410u11u02 � 6u401u20u11

+36u210u
2
01u20u11 � 36u210u201u11u02 + 12u10u301u20u02 + 6u310u01u220 + 6u310u01u202

�12u310u01u20u02 � 6u310u201u21 � u510u03 + 3u510u21):

It follows from Subsection 3.5.3 that the derivation operators

r =
�D
Du =

1

u1�0
Dz; �r =

D
Du =

1

u0�1
D�z;

are invariant derivatives of the Lie algebras h; �h; s and �s: Hence

rk (SD) 2 �H; S \ �S,

�rk
�
SD
�
2 H, S \ �S,

rk (SD) =2 H;

�rk
�
SD
�

=2 �H.

Hence the two functions

Î3+k;1 = rk (SD) + �rk
�
SD
�
;

Î3+k;2 = i
�
rk (SD)� �rk

�
SD
��
;

are z�di¤erential invariant of pure order k + 3:

Therefore the algebra of invariant functions under the action of s and �s on C1(JkR2)
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C and z on C1(JkR2) are

Sk =
n
f 2 C1loc(JkR2)
 C j f = f(�z; u0�1; ::; u0�k; u; ; I2; ::; Ik;k�1; SD; ::;rk�3 (SD))

o
;

�Sk =
n
f 2 C1loc(JkR2)
 C j f = f(z; u1�0; ::; u1�0; u; I2; ::; Ik;k�1; SD; ::; �r

k�3 �
SD
�
)
o
;

Zk =
n
f 2 C1loc(JkR2) j f = f(u; I2;::; Ik;k�1; Î3;1; Î3;2; ::; Îk;1; Îk;2)

o
;

where the functions Ij;i are as de�ned in Lemma 23.

The subspaces

c = hV1; Vi; Vz; Vizi � z;

w = h@z; z@zi � s;

are Lie algebras. There exist locally three functionally independent c� and w�di¤erential

invariants of pure order two: The function

u2�0
u2
1�0

2 �H

is a w�di¤erential invariant. Hence the two functions

1
2

 
u2�0
u2
1�0

+
u0�2
u201

!
=

(u20 � u02)
�
u210 � u201

�
+ 4u11u01u10�

u210 + u
2
01

�2 ;

i
2

 
u2�0
u2
1�0

� u0�2
u201

!
=

2(u20 � u02)u01u10 � 2u11
�
u210 � u201

��
u210 + u

2
01

�2 ;

are c�di¤erential invariants.

The function

r
 
u2�0
u2
1�0

!
=

1

u1�0
Dz

 
u2�0
u2
1�0

!
=
u3�0
u3
1�0

�
 
u2�0
u2
1�0

!2
is an c�di¤erential invariant of order three. Note that

SD = 2r
 
u2�0
u2
1�0

!
�
 
u2�0
u2
1�0

!2
:
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Chapter 4

Di¤erential Invariants of the

Deformed Representations of g

This chapter is a generalization of Chapter 3.

4.1 The Lie Algebra gFb

4.1.1 The Lie Algebra Homomorphism K� : h!D (J0R2)
 C

In this subsection we are seeking a Lie algebra homomorphism

K� : h �!D
�
J0R2

�

 C;

K�(g@z) = g@z + �(g; u)@u;

where �(z; u) 2 C1(J0R2) 
 C: Hence the map K� must be linear and preserve the com-

mutator bracket, i.e.

�(fg; hg ; u) = ghz�h(h; u)� hgz�g(g; u) + �(g; u)�u(h; u)� �u(g; u)�(h; u); (4.1)
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where fg; hg is the bracket de�ned on O in Subsection 2.2.1.

It follows from Equation (4.1) that for any constants c1; c2 2 C

�(fc1; c2g ; u) = �(c1; u)�u(c2; u)� �u(c1; u)�(c2; u) = 0:

Hence the function �(z; u) is separable, i.e.

�(z; u) = Z(z)U(u):

It follows from Equation (4.1) that

Z(f1; zg) = Z(1) = Z 0(z):

Hence

Z(z) = zc; c 2 C:

Thus the map

K� : h �!D
�
J0R2

�

 C;

K�(g@z) = g@z + �(g; u)@u;

is a Lie algebra homomorphism if and only if

�(z; u) = zU(u); U(u) 2 C1
�
J0R2

�

 C:

Let hU = Im(K�) denote the image of the Lie algebra homomorphism

hU = f g (@z + U(u)@u) j g 2 Og :
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4.1.2 A Lie Algebra Isomorphism

In this subsection we are seeking functionsG(u) = G1(u)+iG2(u) 2 C1
�
J0R2

�

C

such that the R�linear map

2Re : hG �! D
�
J0R2

�
is an injective Lie algebra homomorphism.

Since

g (@z +G(u)@u)

= 1
2 (g1@x + g2@y) + (g1G1(u)� g2G2(u))@u + i

�
1
2 (g2@x � g1@y) + (g2G1(u) + g1G2(u))@u

�
we have

2Re (g (@z +G(u)@u)) = Vg + 2(g1G1(u)� g2G2(u))@u:

If the map 2Re is a Lie algebra homomorphism when restricted to hF ; then

[2Re (g (@z +G(u)@u)) ; 2Re (h (@z +G(u)@u))]

= [Vg + 2(g1G1(u)� g2G2(u))@u; Vh + 2(h1G1(u)� h2G2(u))@u]

= V[g;h] + 2 (Vg(h1G1(u)� h2G2(u))� Vh(g1G1(u)� g2G2(u))) @u

�4 (g1h2 � h1g2)
�
G1(u)G

0
2(u)�G01(u)G2(u)

�
@u

is equal to

2Re [g (@z +G(u)@u) ; h (@z +G(u)@u)]

= V[g;h] + 2 (Vg(h1G1(u)� h2G2(u))� Vh(g1G1(u)� g2G2(u))) @u:

Hence

G1(u)G
0
2(u)�G01(u)G2(u) = 0:
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So it follows that the linear map 2Re : hG �! D
�
J0R2

�
is an injective Lie algebra homo-

morphism if and only if

G(u) = F (u)b;

where F (u) 2 C1
�
J0R2

�
and b = b1 + ib2 2 C.

Hence the three spaces

hFb =
�
gWFb = g(z)

�
@z +

1
2F (u)b@u

�
j g 2 O

	
;

�hFb =
�
�g �WFb = �g(z)

�
@�z +

1
2F (u)

�b@u
�
j g 2 O

	
;

gFb = fVFbg = Vg + F (u)(g1b1 � g2b2)@u j g 2 Og ;

are in�nite dimensional Lie algebras.

If we consider gFb as a Lie subalgebra of D
�
J0R2

�

 C; then

VFbg = g(z)
�
@z +

1
2F (u)b@u

�
+ �g

�
@�z +

1
2F (u)b@u

�
; 8g 2 O:

Moreover, the complexi�cation of gFb is equal to the direct sum

gFb 
 C = hFb � �hFb:

Consider the linear subspace of hFb

sFb =


zj
�
@z +

1
2F (u)b@u

�
j j 2 f0; 1; 2g

�
C � hFb:

Since

h
zj
�
@z +

1
2F (u)b@u

�
; zl
�
@z +

1
2F (u)b@u

�i
= (l � j)zj�l

�
@z +

1
2F (u)b@u

�
2 sFb

for j; l 2 f0; 1; 2g; it follows that sFb is a 3�dimensional Lie subalgebra of sFb isomorphic

to sl2(C): Hence the space

zFb = hVFb1 ; VFbi; VFbz; VFbiz; VFbz2 ; VFbiz2i � gFb;
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is a Lie algebra isomorphic to sl2(C)R.

4.2 The Lie Algebra gkFb

In this section we will use the results from Chapter 3.

Consider the spaces

gkFb =
n
V
(k)
Fbg = V (k)g + ((F (u)(b1g1 � b2g2))@u)(k) j g 2 O

o
;

hkFb =
n
gW

(k)
Fb =

�
g(z)

�
@z +

1
2F (u)b@u

��(k) j g 2 Oo :
For k � 1 hkFb is a Lie subalgebra of Lie

�
JkR2

�

C and gkFb is a Lie subalgebra of Lie

�
JkR2

�
:

LetHFb denote the algebra of the hFb�di¤erential invariants, and let GFb denote the algebra

of the gFb�di¤erential invariants.

Proposition 25 We have that

GFb 
 C = HFb \ �HFb

Proof. =)For any integer k 2 Z�0 and any function f 2 HFbk \ �HFbk

V
(k)
Fbg(f) =

�
g(z)

�
@z +

1
2F (u)b@u

��(k)
(f) +

�
�g(z)

�
@�z +

1
2F (u)

�b@u
��(k)

(f) = 0; 8g 2 O.

Hence

GFb 
 C � HFb \ �HFb

(=For any integer k 2 Z�0 and any function f 2 GFbk 
 C

�
g(z)

�
@z +

1
2F (u)b@u

��(k)
(f) = V

(k)
Fbg(f)� iV

(k)
Fbig(f) = 0; 8g 2 O�

�g(z)
�
@�z +

1
2F (u)

�b@u
��(k)

(f) = V
(k)
Fbg(f) + iV

(k)
Fbig(f) = 0; 8g 2 O.
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4.2.1 The Distribution 
kFb

In this subsection we will use the results from Subsection 3.3.1.

For every function F (u) 2 C1
�
J0R2

�
and constant b = b1 + ib2 2 C the complex

distribution


kFb =
D�
g(z)

�
@z +

1
2F (u)b@u

��(k) j g 2 OE
C

has complex dimension k + 1 and


kFb � �
kFb =
D
V
(k)
Fbg j g 2 O

E

 C

has complex dimension 2(k + 1):

For any functions g; h 2 O

h�
g(z)

�
@z +

1
2F (u)b@u

��(k)
;
�
h(z)

�
@z +

1
2F (u)b@u

��(k)i 2 
kFb;
h
V
(k)
Fbg; V

(k)
Fbh

i
2 
kFb � �
kFb:

Moreover


kFb \ �
kFb = 0:

Hence the distribution 
kFb is completely integrable.

The �rst integrals of the complex distribution 
kFb � �
kFb are invariant functions

under the action of gFb on C1
�
JkR2

�

C: Hence the distribution 
kFb � �
kFb has one �rst

integral of order zero

J0 2 C1loc
�
JkR2

�
and l � 1 �rst integrals of order l for 1 � l � k

fJl;jgl�1j=1 2 C
1
loc

�
JkR2

�
; 2 � l � k
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such that locally the K � 2(k + 1) functions

J0 [
2�l�k

fJl;jgl�1j=1

are functionally independent, where

K = (k + 1)(k + 2)=2 + 2:

The �rst integrals of the distribution 
kFb are invariant functions under the action

of hFb on C1
�
JkR2

�

C: Hence the distribution 
kFb has one �rst integral of pure order l

Ql; 2 C1loc
�
JkR2

�

 C; 1 � l � k;

such that locally the K � (k + 1) functions

J0 [
2�l�k

fJl;jgl�1j=1 [
1�m�k

Qm

are functionally independent.

The algebras of invariant functions under the action of hFb and �hFb on

C1
�
JkR2

�

 C and gFb on C1

�
JkR2

�
are

HFbk =
n
f 2 C1loc

�
JkR2

�

 C j f = f(J0; J2; J3;1; J3;2; ::; Jk;k�1; Q1; :::; Qk)

o
;

�HFbk =
n
f 2 C1loc

�
JkR2

�

 C j f = f(J0; J2; J3;1; J3;2; :::; Jk;k�1; �Q1; ::; �Qk)

o
;

GFbk =
n
f 2 C1loc

�
JkR2

�
j f = f(J0; J2; J3;1; J3;2; :::; Jk;k�1)

o
:

4.2.2 Invariant Derivatives of gFb

For any function F (u) 6= 0 2 C1
�
JkR2

�
and constant b = b1 + ib2 6= 0 2 C; the

following functions are hFb�di¤erential invariants of order zero

�z; J0 =

Z
1

F (u)
du� 1

2zb�
1
2 �z
�b 2 HFb:
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The derivation operators2664
D
D�z
D
DJ0

3775 = �1
u1�0
F (u)

� 1
2b

2664
u0�1
F (u)

� 1
2
�b � u1�0

F (u)
+ 1

2b

�1 0

3775
2664Dz
D�z

3775
are invariant derivatives of hFb:

The derivation operator D�z is an invariant derivative of hFb: Hence the following

function is a hFb�di¤erential invariant of order one

D�z(J0) + 1
2
�b =

u0�1
F (u)

:

Note that for any integers k; j 2 Z�0 such that k � j

�
D
D�z

�k�j � D
DJ0

�j � u0�1
F (u)

�
(4.2)

= f +
1

F (u)

 
�F (u)

u1�0 � 1
2F (u)b

!k k�jX
n=0

�
u0�1
F (u)

� 1
2
�b

�k�j�n�
� u1�0
F (u)

+ 1
2b

�n
u
(k�n)(1+n);

where f is a smooth function of order less than k + 1:

Theorem 26 For any integer k 2 Z�0 the k + 1 functions

Kk+1;j+1

�
D
D�z

�k�j � D
DJ0

�j � u0�1
F (u)

�
; j 2 f0; ::; kg

are hFb�di¤erential invariants of order k + 1: Moreover,

kX
j=0

gj

�
D
D�z

�k�j � D
DJ0

�j � u0�1
F (u)

�
= 0; gj 2 HFbk =) gj = 0; j 2 f0; ::; kg:

For any integer m 2 Z+ the algebra of invariant functions under the action of hFb on

C1
�
JmR2

�

 C is

HFbm =
�
f 2 C1loc

�
JmR2

�

 C j f = f(�z; J0;K1;1;K2;1;K2;2; :::;Km;m)
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Proof. The theorem follows from Equation (4.2) and Subsection 4.2.1.

Since D�z is an invariant derivative of hFb and Dz is an invariant derivative of �hFb

it follows that the derivation operators

�D
DJ0

=
1

u1�0
F (u)

� 1
2b
Dz;

D
DJ0

=
1

u0�1
F (u)

� 1
2
�b
D�z;

are invariant derivatives for gFb
C: Since

� �D
DJ0

;
D
DJ0

�
=

DzD�z(J0)
Dz(J0)Dz(J0)

� �D
DJ0

� D
DJ0

�
;

it follows that the function

J2 =
DzD�z(J0)

Dz(J0)Dz(J0)
=
(�u201 � u210)Fu(u) + F (u)(u02 + u20)
(b1F (u)� u10)2 + (b2F (u) + u01)2

is an gFb�di¤erential invariant of order two. Moreover,

r̂1 =
�

F (u)2

(u10 � b1F (u))2 + (u01 + b2F (u))2

���
u10
F (u)

� b1
�
Dx +

�
u01
F (u)

+ b2

�
Dy
�
;

r̂2 =
�

F (u)2

(u10 � b1F (u))2 + (u01 + b2F (u))2

���
u01
F (u)

+ b2

�
Dx +

�
� u10
F (u)

+ b1

�
Dy
�
;

are invariant derivatives of gFb:

Theorem 27 For any integer k 2 Z�0 the k + 1 functions

Jk+2;j+1 =
�
r̂1
�k�j �

r̂j
�j
(J2) ; j 2 f0; ::; kg

are gFb�di¤erential invariants of order k + 2: Moreover, these gFb�di¤erential invariants

are independent, i.e.

kX
j=0

gj

�
r̂1
�k�j �

r̂2
�j
(J2) = 0; gj 2 GFbk+1 =) gj = 0, j 2 f0; ::; kg:
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For any integer m 2 Z+ the algebra of invariant functions under the action of gFb on

C1
�
JmR2

�
is

GFbm =
�
f 2 C1loc

�
JmR2

�

 C j f = f(J0; J2; J3;1; J3;2; :::; Jm;m�1)

	
:

Proof. The theorem follows from Theorem 26 .

Remark 28 Note that for any nonzero function F (u) 2 C1
�
J0R2

�
and b = b1 + ib2 2 C;

we have that

lim
b!0
(Vg + F (u)(b1g1 + b2g2)) = Vg;

lim
b!0

J0 =

Z
du

F (u)
=

Z
dI0
F (I0)

;

lim
b!0

J2 = �F 0(u) + F (u)
�
u20 + u02
u210 + u

2
01

�
= �F 0(I0) + F (I0)I2;

lim
b!0
r̂1 =

F (u)

u210 + u
2
01

(u10Dx + u01Dy) = F (I0)r1;

lim
b!0
r̂2 =

F (u)

u210 + u
2
01

(u01Dx � u10Dy) = F (I0)r2:

Hence the results of Chapter 3 can be obtained from the results of this chapter.

4.2.3 Invariant Functions of the Lie Algebra zFb and cFb

For any function F (u) 6= 0 2 C1
�
JkR2

�
and constant b = b1 + ib2 6= 0 2 C

consider the Lie algebras

cFb = hVFb1; VFbi; VFbz; VFbizi � zFb = hVFb1; VFbi; VFbz; VFbizVFbz2 ; VFbiz2i � gFb;

wFb=


zj
�
@z +

b
2F (u)@u

�
j j 2 f0; 1g

�
� sFb =



zj
�
@z +

b
2F (u)@u

�
j j 2 f0; 1; 2g

�
� hFb:

For any integer k � 2 there exist locally k + 1 functionally independent cFb� and

wFb�di¤erential invariants of pure order k: The function
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W2 =
u2�0F (u)� F 0(u)u21�0
(�2u1�0 + bF (u))2

2 �H, W2 =2 H,

is an wFb�di¤erential invariant:

For any integer k � 3 there exist locally k + 1 functionally independent zFb� and

sFb�di¤erential invariants of pure order k: The function

r(W2)

=
2

(�2u1�0 + bF (u))4
�
2Fu(u)u2�0u

2
1�0 + 3u1�0Fu(u)u2�0bF (u)� 2Fuu(u)u

4
1�0+

bFuu(u)F (u)u
3
1�0 � 2bFu(u)

2u31�0 � 4u
2
2�0F (u) + 2F (u)u3�0u1�0 � F (u)

2u3�0b
�

is an wFb�di¤erential invariant, where r =
�D
DJ0

is the invariant derivative of h from

Subsection 4.2.2. Since wFb is a Lie subalgebra of sFb; it follows that there must exist a

function W3 (W2;r(W2)) that is an sFb�di¤erential invariant. Indeed, the function

W3 = 2W
2
2 +r(W2)

is an sFb�di¤erential invariant.

Since

zFb 
 C = sFb � �sFb; cFb 
 C = wFb � �wFb;

it follows that the functions

Ĵ2;1 =W2 + �W2; Ĵ2;2 = i
�
W2 � �W2

�
;

are cFb�di¤erential invariants and

Ĵ3+k;1 = rkW3 +rk �W3; Ĵ3+k;2 = rkW3 �rk �W3; k 2 Z+
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are zFb�di¤erential invariants.

The algebras of invariant functions under the action of cFb and zFb on C1
�
JkR2

�
are

CFbk =
n
f 2 C1loc

�
JkR2

�
j f = f(J0; ::; Jk;k�1; Ĵ2;1; Ĵ2;2; :::; Ĵk;1; Ĵk;2)

o
;

ZFbk =
n
f 2 C1loc

�
JkR2

�
j f = f(J0; ::; Jk;k�1; Ĵ3;1; Ĵ3;2; :::; Ĵk;1; Ĵk;2)

o
;

where the functions Ji;j are as de�ned in Subsection 4.2.2.
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Chapter 5

Applications and Examples

5.1 Applications

For any function Q 2 C1
�
JkR2

�
the surface E = fQ = 0g is a PDE: A vector

�eld Xf 2 Cont
�
J1R2

�
is a symmetry of E if

X
(k)
f (f) = �Xf f; �Xf 2 C1

�
JkR2

�
:

Let �t be the �ow of a symmetry vector �eld: If h 2 C1
�
R2
�
is a solution of E , then

�t(x; y; h(x; y)) = (xt; yt; ht(xt; yt));

where ĥt 2 C1
�
R2
�
is a family of solutions of the PDE E .

The Lie group corresponding to the Lie algebra g consists of all conformal trans-

formations of R2: Therefore we have the following theorem:

Theorem 29 Let F be a g�di¤erential invariant. If the function h(x; y) 2 C1
�
R2
�
is a

solution of the PDE E = fF = 0g ; then the function

u(x; y) = h(g1(x; y); g2(x; y))
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is a solution of E for every function g(z) = g1(x; y) + ig2(x; y) 2 O on domains where

gz 6= 0:

Example 30 The function I2 =
u20 + u02
u210 + u

2
01

2 C1
�
JkR2

�
is a g�di¤erential invariant.

Therefore the PDE

E = fu20 + u02 = 0g

is g�invariant. Moreover, g acts transitively on the space sol(E) of harmonic functions.

Example 31 The function
u20 + u02
u210 + u

2
01

� 1

u
is a g�di¤erential invariant.

h(x; y) = x2 + y2:

is a solution of the PDE

E =
�
u11 + u22
u22 + u

2
1

� 1

u
= 0

�
:

We will verify that the function

F (x; y) = h(g1(x; y); g2(x; y)) = g1(x; y)
2 + g2(x; y)

2

is a solution of E for any function g = g1 + ig2 2 O on domains where gz 6= 0 :

Fxx + Fyy
F 2x + F

2
y

� 1

F

=
2(g1g1xx + g

2
1x � g2g1xy + g21y) + 2(g1g1yy + g21x + g2g1xy + g22y)
4(g1g1x � g2g1y)2 + 4(g1g1y � g2g1x)2

� 1

g21 + g
2
2

=
4(g21x + g

2
1y)

4(g21 + g
2
2)(g

2
1x + g

2
1y)

� 1

g21 + g
2
2

= 0:
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Let as compute the �ow of VFbg 2 gFb

dx

dt
= g1(x; y);

dy

dt
= g2(x; y);

du

dt
= F (u) (b1g1(x; y)� b2g2(x; y)) = F (u)

�
b1
dx

dt
� b2

dy

dt

�
:

For F 6= 0 we have

G(u) =

Z
du

F (u)
= (b1x� b2y + c) :

Hence

u = G�1 (b1x� b2y +G(u0)� (b1x0 � b2y0)) :

Substituting

x0 = g1(x; y); y0 = g2(x; y); u0 = h(x0; y0) = h(g1; g2)

we get the following theorem:

Theorem 32 Let J be a gFb�di¤erential invariant for F 6= 0. If the function h(x; y) 2

C1
�
R2
�
is a solution of the PDE E = fJ = 0g ; then the function

u(x; y) = G�1b1(x� g1(x; y))� b2(y � g2(x; y)) +G(h(g1(x; y); g2(x; y))):

is a solution of E for every function g = g1 + ig2 2 O on domains where gz 6= 0:

Example 33 Let F = c 2 Rn0: The function (u20 + u02)

(cb1 � u10)2 + (cb2 + u01)2
is a

gFb�di¤erential invariant. The function

h = ln(xy) + c(b1x� b2y)
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is a solution of the PDE

E =
�

(u20 + u02)

(cb1 � u10)2 + (cb2 + u01)2
+ 1 = 0

�
:

We will verify that the function

H(x; y) = c(b1x� b2y) + ln(g1(x; y)g2(x; y))

is a solution of E for any function g(z) = g1(x; y)+ ig(x; y)2 2 O on domains where gz 6= 0:

We have that

Hx =
g1xg2 � g1yg1

g1g2
+ cb1;

Hy =
g1yg2 + g1xg1

g1g2
� cb2;

Hxx =
�g21xg22 � g21yg21 + g1xxg1g22 � g1xyg21g2

g21g
2
2

;

Hyy =
�g21yg22 � g21xg21 � g1xxg1g22 + g1xyg21g2

g21g
2
2

:

So it follows that

(Hxx +Hyy)

(cb1 � u10)2 + (cb2 + u01)2
+ 1 =

(�2g21xg22 � 2g21yg21)
(g1xg2 � g1yg1)2 + (g1yg2 + g1xg1)

+ 1 = 0:

5.2 The Action of g on JkR

Consider the Lie algebra

g = fg1@x + g2@u j g1x = g2u; g1u = g2xg � D(R2) = D(J0R):

This canonical action on J0R lifts to the action of g on JkR:

All scalar g�di¤erential invariants are constants. However there exist g�invariant

di¤erential equations E �JkR; see [G].
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Consider the 3�dimensional Lie algebras

t = h@x; @u; u@x � x@ui ; a = h@x; @u; x@x + u@ui � g:

For k � 2 there exists k�1 functions that are invariant under the action of t and a on JkR:

The function u1 is an a�di¤erential invariant of order one and
u2

(1 + u21)
3=2

is a

t�di¤erential invariant of order two. The latter invariant is the well known curvature of a

curve.

The spaces t and a are Lie subalgebras of the Lie algebra

c = h@x; @u; x@x + u@u; u@x � x@ui � g:

For k � 3 there exists one c�di¤erential invariant of pure order k:

The functions

I3 =
u3u

2
1 � 3u22u1 + u3

u22
;

I4 =
u4u

4
1 � 10u31u2u3 + (2u4 + 15u32)u21 � 10u1u2u3 + u4

u32
;

are c�di¤erential invariants. Hence for any integer k 2 Z+ the following function

Ik+4 =

�
1

Dx(I3)
Dx
�k
(I4)

is a c�di¤erential invariant of pure order 4 + k:

Consider the Lie algebra

f=


@x; @u; x@x + u@u; u@x � x@u; (x2 � y2)@x + 2xy@y; (x2 � y2)@y + 2xy@x

�
� g.
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For k � 5 there exists one f�di¤erential invariant of pure order k; denoted Jk: Since c is a

Lie subalgebra of f it follows that

Jk = fk(I3; :::; Ik):

Indeed, the functions

J5 =
1

4I33
(45 + 4I3I4I5 � 12I23I4 + 40I23 � 30I4 + 5I24 � 12I3I5 � 8I5I33 );

J6 =
1

4I
9=2
3

(1=4(�405� 108I3I4I5 � 24I6I23I4 + 15I34 + 405I4 + 18I5I24I3 � 80I43 + 24I43I4

�42I24I23 + 24I5I53 + 16I6I63 � 48I33I4I5 � 8I25I43 + 4I25I4I23 � 16I6I43I4 + 36I6I23

+4I6I
2
4I
2
3 � 135I24 � 390I23 + 48I6I43 + 144I5I33 � 12I25I23 + 256I23I4 + 162I3I5);

are f�di¤erential invariants of pure order �ve and six. Hence for any integer k 2 Z+ the

following function

Jk+6 =

�
1

Dx(I5)
Dx
�k
(J5)

is an f�di¤erential invariant of pure order 6 + k:

The algebra of invariant functions under the action of t; a; c and f on JkR are,

respectively

Tk =

�
f 2 C1loc(JkR) j f = f

�
u2

(1 + u21)
3=2

; I3; I4; J5; J6; :::; Jk

��
;

Ak =
n
f 2 C1loc(JkR) j f = f (u1; I3; I4; J5; J6; :::; Jk)

o
;

Ck =
n
f 2 C1loc(JkR) j f = f (I3; I4; J5; J6; :::; Jk)

o
;

Fk =
n
f 2 C1loc(JkR) j f = f (J5; J6; :::; Jk)

o
:

All the computations of this section are done in Maple Worksheet "Lie_sa_�n"
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Example 34 The ordinary di¤erential equation

y00 = K
�
1 +

�
y0
�2�3=2

; K 2 R; (5.1)

determines a 1�dimensional distribution on the manifold of 1�jets J1R: The distribution

is generated by the vector �eld

D = @x + u1@u +K(1 + u
2
1)
3=2@u1 ;

or by the Cartan di¤erential 1�forms

!1 = du� u1dx; !2 = du1 �K(1 + u21)3=2dx:

The function
u2

(1 + u21)
3=2

is a t�di¤erential invariant, where

t = h@x; @u; u@x � x@ui :

Hence the following vector �elds

S1 = @u;

S2 = @x �D = �
�
u1@u +K(1 + u

2
1)
3=2@u1

�
;

are commutative shu ing symmetries of the distribution.

Following the method of [KLR], we introduce the di¤erential 1-forms for K 6= 02664�1
�2

3775 =
26664
1 � u1

K(1 + u21)
3=2

0 � 1

K(1 + u21)
3=2

37775
2664!1
!2

3775 :
The di¤erential 1-forms hdx; �1; �2i are the dual basis for hD, S1; S2i : In addition the

di¤erential 1-forms �1 and �2 are closed, i.e.

�1 = dH; �2 = dG;
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where

H =

Z
du�

Z
u1

K(1 + u21)
3=2

du1 = u+
1

K(1 + u21)
1=2

+ c1; c1 2 R;

G =

Z
dx�

Z
1

K(1 + u21)
3=2

du1 = x� u1

K(1 + u21)
1=2

+ c1; c1 2 R:

Since the functions H and G are �rst integrals of the distribution, we can express the solution

as the curve

(x� c1)2 + (u� c2)2 = 1=K2; c1; c2 2 R:

This proves that the only curves of constant curvature K 6= 0 are circles of radius 1=K:
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Chapter 6

Appendix

In this thesis we used Di¤erentialGeometry Package of Maple 11 to compute dif-

ferential invariants and invariant derivatives. The program used are:

-Maple Worksheet "h_di¤_inv_3",

-Maple Worksheet "tresse_inv_der",

-Maple Worksheet "dep_inv",

-Maple Worksheet "dep_inv_n_o",

-Maple Worksheet "Lie_sa_�n".

They are available from the author on request.
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