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Abstract 

Objective:  The objective of this study was to analyse intraspecific sequence variation of Atlantic cod mitochondrial 
DNA, based on a comprehensive collection of completely sequenced mitochondrial genomes.

Results:  We determined the complete mitochondrial DNA sequence of 124 cod specimens from the eastern and 
western part of the species’ distribution range in the North Atlantic Ocean. All specimens harboured a unique mito-
chondrial DNA haplotype. Nine hundred and fifty-two polymorphic sites were identified, including 109 non-synon-
ymous sites within protein coding regions. Eighteen variable sites were identified as indels, exclusively distributed in 
structural RNA genes and non-coding regions. Phylogeographic analyses based on 156 available cod mitochondrial 
genomes did not reveal a clear structure. There was a lack of mitochondrial genetic differentiation between two 
ecotypes of cod in the eastern North Atlantic, but eastern and western cod were differentiated and mitochondrial 
genome diversity was higher in the eastern than the western Atlantic, suggesting deviating population histories. 
The geographic distribution of mitochondrial genome variation seems to be governed by demographic processes 
and gene flow among ecotypes that are otherwise characterized by localized genomic divergence associated with 
chromosomal inversions.
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Introduction
The Atlantic cod (Gadus morhua) is one of the most 
important species for fisheries in the North Atlantic 
Ocean [1], and recently the nuclear genome was reported 
[2, 3]. The mitochondrial genome (mitogenome) is con-
sidered the second genome of the cell, and its gene con-
tent is conserved among most vertebrates [4]. The 16.7 kb 
Atlantic cod mitogenome encodes the standard set of 
13 hydrophobic membrane proteins, 2 ribosomal RNAs 
(rRNAs), 22 transfer RNAs (tRNAs), as well as peptides 
and long non-coding RNAs, and is organized similarly to 
that of humans [5–7].

On average, the Atlantic cod mitogenome evolves 
about 14 times more rapidly at the nucleotide level than 

the nuclear genome [8], and mitochondrial sequence 
variation in cod was previously used to trace population 
structures and patterns of mitogenome evolution [8–12]. 
Árnason [9] investigated sequence variants of a 250-bp 
cytochrome b (CytB) gene fragment in 1278 Atlantic 
cod specimens throughout the distribution range, and 
identified trans-Atlantic haplotype clines with more 
diversity in northeastern and mid-Atlantic cod as com-
pared to northwestern cod. Carr et al. [10, 12] reported 
on mitogenome variation based on 32 cod specimens 
and identified 298 single nucleotide polymorphic (SNP) 
sites. They found similar diversities in northwest and 
northeast Atlantic cod, but their sample from the north-
east Atlantic consisted of six specimens only [10]. In the 
present study, we sequenced the complete mitogenome 
of 124 individuals, generating a mitochondrial sequence 
resource for future studies of Atlantic cod. We analysed 
relationships among the 156 cod mitogenomes currently 
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available and compared mitogenome variation of the 
offshore migratory and stationary coastal cod ecotypes 
[11], both from the northeast Atlantic, and cod from the 
northwest Atlantic.

Main text
Methods
Tissue samples, nucleic acid extraction, PCR amplification, 
and plasmid cloning
Atlantic cod tissue samples were collected from the 
western (off Nova Scotia and Newfoundland) and east-
ern parts (off the British Isles, in the Baltic Sea, Irish 
Sea, North Sea, along the Norwegian coast and fjords, 
and in the Barents Sea) of the North Atlantic Ocean 
(Additional file  1: Table  S1). DNA was extracted from 
fresh muscle tissue or ethanol preserved tissue (stored 
at − 20 °C) using the High Pure PCR Template Prepara-
tion kit (Roche) or the MasterPure™ Complete DNA and 
RNA Purification Kit (Epicentre®) according to the man-
ufacturer’s protocols. Complete mitogenomes were PCR 
amplified in five overlapping fragments of approximately 
4–4.5  kb in size using LaTaq polymerase (TAKARA 
BIO INC). The PCR products were purified using USB® 
ExoSAP-IT® reagent (Affymetrix). Agarose gel electro-
phoresis and gel extraction using Invitrogen™ PureLink® 
Quick Gel Extraction Kit or Invitrogen™ PureLink® PCR 
Purification Kit were performed according to the manu-
facturer’s protocols. PCR and sequencing primers used 
in this study have been described previously [13]. Plas-
mid cloning of the control region (CR) was performed 
by using Invitrogen™ TOPO® TA Cloning® Kit with One 
Shot® TOP10 E. coli competent cells. Positive clones 
were cultivated and plasmid DNA was purified using Inv-
itrogen™ PureLink® Quick Plasmid Miniprep Kit.

Mitogenome sequencing and data analysis
The complete mitogenome sequences of 124 Atlantic 
cod specimens were determined, using Sanger, Illumina, 
and Roche 454 technologies (117, six, and one speci-
men, respectively). The latter, based on pyrosequenc-
ing, was reported previously [2]. The Illumina GAII 
sequencing was performed according to protocols in 
[14] using 2 × 108 bp paired end reads, library inserts of 
550–575 bp, and 3.1–6.6 times (average 4.8 times) whole 
genome coverage (Norwegian Sequencing Centre—Oslo, 
Norway). Ninety-five mitogenomes were determined by 
Sanger sequencing provided by Eurofins MWG Operon 
(Germany). Two Sanger sequenced mitogenomes (NF1 
and NC3) have been reported previously [8, 15]. The 20 
remaining mitogenomes were sequenced in-house by 
Sanger technology directly on purified PCR products or 
plasmid DNA using the BigDye kit (Applied Biosystems). 
The complete 16,696-bp NC3 Atlantic cod mitogenome 

(HG514359) was used as a reference for assembly and 
mapping of mitogenome sequences and reads. Com-
puter analyses of Sanger-generated mitogenomes were 
performed using DNASTAR​® Lasergene software. For 
mitogenome sequences generated by Roche 454 and Illu-
mina platforms, reference mappings were performed on 
the CLC Genomics Workbench (QIAGEN®).

A total of 156 available mitogenomes were used to cal-
culate population genetic parameters and reconstruct 
molecular relationships among Atlantic cod specimens. 
The CR, tRNA-Phe, and half of the tRNA-Pro sequence 
were excluded from these comparisons, as these 
sequences were not available for the 32 specimens pre-
viously reported [10]. Population genetic statistics and 
measures of genetic differentiation were estimated for 
the following three subsets of specimens, defined by their 
geographic origin and ecotype: cod from the northwest 
Atlantic (NW; N = 32), cod from the north east Atlantic 
of the coastal stationary ecotype (NC; N = 25), and Arc-
tic cod from the Barents Sea of the migratory ecotype 
(NA; N = 97) (Additional file 1: Table S1). Two specimens 
from the Baltic Sea were excluded from these analyses, 
since differentiation from NC due to vicariance is likely. 
Nucleotide sequence alignments were generated using 
T-coffee v/9 software [16] with manual refinements. The 
tree-building method of maximum likelihood (ML) in 
MEGA version 6 [17] was used to reconstruct molecu-
lar relationships. The ML trees were built from best-fit 
models of nucleotide evolution generated by MEGA6 
[Bayesian information criterion calculations resulted in 
TN93+I+G as best-fit model]. The topologies of the ML 
trees were evaluated by bootstrap analyses (2000 replica-
tions). We analysed nucleotide diversity indices, Tajima’s 
D statistic, and genetic differentiation indices FST and Da 
(the average number of net nucleotide substitutions), as 
implemented in the DnaSP version 6 software [18].

Results
Sequence variation among Atlantic cod mitogenomes
Complete mitogenome sequences of approximately 
16.7  kb were obtained for 124 cod specimens sampled 
in the western and eastern parts of the North Atlantic 
Ocean. Mitochondrial sequence variation was initially 
assessed by considering nucleotide variants of the CytB 
gene fragment (250  bp) previously reported for 1278 
Atlantic cod specimens throughout the species’ range 
[9]. Eleven haplotypes from that study, including all main 
haplotypes (A, C, D, E and G) were identified among the 
124 specimens, as well as 12 other singleton haplotypes 
(Additional file 2: Table S2).

The 124 mitogenome sequences were unambiguously 
aligned using the Norwegian costal NC3 (HG514359) [8] 
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as an Atlantic cod reference, resulting in an alignment 
of 16,551 positions. The total number of polymorphic 
sites was 952 (5.7% of mitogenome positions), and these 
were distributed across the two rRNA genes, all 13 pro-
tein coding genes, 18 of the 22 tRNA genes, and major 
non-coding regions (TP-spacer and CR) (Fig. 1). Only 18 
variable sites (1.9%) were identified as indels (6 in struc-
tural RNA genes and 12 in non-coding regions). Protein 
coding genes contained 756 (79.4%) substitutions, of 
which 109 were non-synonymous (14.4%), resulting in 
amino acid changes in all 13 proteins (Additional file 3: 
Table S3).

Key features of mitogenome sequence variation are 
summarized in Additional file  4: Table  S4, and several 
features are noted. Protein coding genes have 2.3 times 
more SNPs per nucleotide position than RNA genes. 

This reflect high sequence conservation in RNA genes 
at the species level. An interesting observation is that 
variable sites in the mitochondrial small subunit rRNA 
gene are mainly clustered within the 3′M structural 
domain (Additional file 5: Figure S1). A similar feature 
was not noted in the mitochondrial large subunit rRNA 
(Additional file  6: Figure S2). The cytochrome oxidase 
(CO) genes and proteins (Complex IV) are generally 
more conserved than the NADH dehydrogenase (ND) 
genes and proteins (Complex I). Here, the ND2 gene 
contains 7.2 times more polymporphic sites per posi-
tion than, e.g. COII or the RNA genes. The ND2, ND4, 
ND5, and CytB genes contain the highest density of 
polymorphic sites.
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Fig. 1  Gene content and variability of Atlantic cod mitogenomes. Mitogenome presented as a linear map of the circular mtDNA. Single nucleotide 
polymorphisms (SNPs per 100 bp) in gene regions detected among the 124 completely sequenced mitogenomes are indicated above the gene 
map. Grey horizontal line denotes the average number of SNP (5.5) per 100 bp that include all genes. Genes above and below this average are 
shown as orange and green bars, respectively. Amino acid substitutions in mitochondrial proteins are presented below the gene map. Grey 
horizontal line denotes the average number of substitutions (2.9) per 100 amino acids that include all proteins. Proteins above and below this 
average are shown as red and blue bars, respectively. mtSSU and mtLSU mitochondrial small- and large-subunit ribosomal RNA genes, ND1-6 NADH 
dehydrogenase subunit 1–6, COI-III cytochrome c oxidase subunit I to III, A6 and A8 ATPase subunit 6 and 8, Cyt B cytochrome b, MOTS putative 
MOTS-c peptide, HN putative humanin peptide, lncCR-H and lncCR-L long non-coding RNAs coded by the control region (CR). See [5–7] for more 
details about mitochondrial gene products. tRNA genes are indicated by the standard one-letter symbols for amino acids. All genes are H-strand 
encoded, except Q, A, N, C, Y, S1, E, P, ND6, and lncCR-L (L-strand encoded)
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Mitogenome diversity, intraspecific relationships and genetic 
differentiation
The alignment of 156 available cod mitogenomes resulted 
in 15,592 common sites following the exclusion of align-
ment gaps. There were 1002 polymorphic sites, and 1034 
substitutions in total among the mitogenome sequences. 
The nucleotide diversity index was slightly lower for cod 
in the northwest Atlantic (0.203%) compared to station-
ary and migratory cod in the northeast Atlantic (0.291 
and 0.285%, respectively; Table  1). Tajima’s D statis-
tic was significantly negative for all population subsets, 
rejecting the null hypothesis of stable populations with 
no selection. A representative maximum likelihood (ML) 
tree is shown in Fig. 2. Twelve clades were supported in 
> 80% of bootstrap replications, but there was not a clear 
geographic structuring of clades. However, while some 
clades were dominated by NA and NC cod individuals, 
others harboured mainly NW cod (Fig.  2). Measures of 
pairwise genetic differentiation were negative (inter-
preted as nil) between NA and NC cod in the northeast 
Atlantic, while NW cod were differentiated from both 
NC and NA cod (FST of approximately 0.06 and 0.09, 
respectively; Additional file 7: Table S5).

Discussion
Here we provide a comprehensive SNP map of the 
Atlantic cod mitochondrial genome based on 124 com-
pletely sequenced mtDNAs. The 952 variable sites iden-
tified among 124 specimens were not evenly distributed 
throughout the mitogenome. Structural RNA genes have 
a significantly lower density of overall SNPs per site and 
variable sites per position compared to protein coding 
genes. Furthermore, the ND2 gene and the COII gene 
were the least and most conserved, respectively, among 
the protein coding genes. This feature was also observed 
at the protein level. Thus, the Atlantic cod mitogenome 

follow a similar pattern of conservation as seen for, e.g. 
zebrafish [19] or humans [20, 21].

One hundred and twenty-four cod individuals har-
boured substantial sequence variation in their mitog-
enomes, including 349 phylogenetically informative 
parsimony sites. Phylogenetic analysis of 156 available 
mitogenomes identified ten haplotype clusters supported 
by high bootstrap values, but little phylogeographic 
structuring. Mitogenome evolution in cod seems to be 
nearly neutral [8, 12], suggesting that the significantly 
negative Tajima’s D statistic mainly signifies recent demo-
graphic change, rather than selection. The differentiation 
of certain cod populations into so-called ecotypes defined 
by migratory and stationary behaviour, most notably NC 
and NA cod in the northeastern Atlantic, has long been 
a conundrum [11]. Recently, it was shown that these 
ecotypes are associated with genomic islands of differen-
tiation, inferred to reside within chromosomal inversions 
in at least four linkage groups [22, 23]. It is conceivable 
that such genomic regions could preclude recombina-
tion and break-up of co-adapted genes within them, and 
thus make it possible for locally adapted ecotypes to per-
sist in the face of continued gene flow. Similar chromo-
somal inversions, suggesting a common ancestry, were 
subsequently found to contribute to ecotype divergence 
in the western Atlantic as well [24]. The mitogenome data 
indicate some differentiation between western and east-
ern cod, but a lack of differentiation between NC and NA 
cod. This would be consistent with isolation by distance 
and some gene flow between ecotypes in their mitochon-
drial genes and neutrally evolving parts of the nuclear 
genome. Thus, the geographic structuring of mitoge-
nome variation in cod seems to be governed mainly by 
demographic and stochastic processes in a species with 
high fecundity and variance in offspring number, much in 
line with Árnason’s conclusions based on CytB sequences 
[9].

Conclusion
Our study provides a mitochondrial genome resource 
obtained from Atlantic cod tissue samples collected at 
site of fisheries in the North Atlantic Ocean. Phylogeo-
graphic analyses based on 156 mitochondrial genomes 
did not reveal a clear structure, but eastern and western 
cod were differentiated. Mitochondrial genome diversity 
was higher in the eastern than the western Atlantic, sug-
gesting deviating population histories.

Limitations
The SNP map of the Atlantic cod mitochondrial 
genome consisted of 952 polymorphic sites among 
the 124 specimens studied here, and 1002 polymor-
phic sites among 156 available mitogenomes from 

Table 1  Population genetic parameters of  Atlantic cod 
based on the alignment of nearly complete mitochondrial 
DNA sequences

Sites with alignment gaps were excluded from the alignment of 16,551 positions 
in all subsets resulting in 15,592 common sites. NW, cod from the north west 
Atlantic (N = 32); NC, cod from the north east Atlantic of the coastal stationary 
ecotype (N = 25); NA, Arctic cod from the Barents Sea of the migratory ecotype 
(N = 97); π %, percent nucleotide diversity; S, number of segregating sites; 
η, total number of substitutions; k, average number of pairwise nucleotide 
differences; TD, Tajima’s D statistic. * P < 0.05; ** P < 0.01; *** P < 0.001

π % S η k TD

NW 0.203 306 308 31.60 − 2.26**

NC 0.291 339 344 45.41 − 2.01*

NA 0.285 724 743 44.47 − 2.36**

Total (N = 156) 0.276 1002 1034 42.99 − 2.51***
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Fig. 2  Mitogenome relationships in Atlantic cod. Maximum likelihood (ML) phylogenetic tree based on complete mitogenome haplotype 
sequences (15,592 common nucleotide positions) of 156 Atlantic cod specimens. Theragra finnmarchica (Norwegian Pollock; AM489718) 
mitogenome was used as an outgroup in tree construction. Bootstrap values (%) from 2000 replicates, all over 70%, are shown at branches. Red 
filled circles indicate highly significant branch points of bootstrap values above 80% in ML analysis. Closely related haplotype clades are collapsed 
(bootstrap values above 60%). NA Northeast Arctic cod, NC Norwegian costal cod, NW Northwest cod, BS Baltic Sea cod, IS Irish Sea cod, NS North 
Sea cod
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the western and eastern parts of the Atlantic Ocean. 
A more exhaustive SNP map of the cod mitogenome 
would most certainly require a substantial increase in 
the number of mitogenomes collected from the vast 
distribution range of the species.
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