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ABSTRACT 23 

Variation in space-use is common within mammal populations. In polar bears Ursus 24 

maritimus, some individuals follow the sea ice (offshore bears) whereas others remain 25 

nearshore yearlong (coastal bears). We studied pollutant exposure in relation to space-use 26 

patterns (offshore vs coastal) in adult female polar bears from the Barents Sea equipped with 27 

satellite collars (2000-2014, n=152). First, we examined the differences in home range (HR) 28 

size and position, body condition, and diet proxies (nitrogen and carbon stable isotopes, 29 

n=116) between offshore and coastal space-use. Second, we investigated how HR, space-use, 30 

body condition and diet were related to plasma concentrations of polychlorinated biphenyls 31 

(PCBs), organochlorine pesticides (OCPs) (n=113), perfluoroalkyl substances (PFASs; n=92), 32 

and hydroxylated-PCBs (n=109). Offshore females were in better condition and had a more 33 

specialised diet than did coastal females. PCBs, OCPs, and hydroxylated-PCB concentrations 34 

were not related to space-use strategy, yet PCB concentrations increased with increasing 35 

latitude, and hydroxylated-PCB concentrations were positively related to HR size. PFAS 36 

concentrations were 30-35% higher in offshore bears compared to coastal bears and also 37 

increased eastward. Based on the results we conclude that space-use of Barents Sea female 38 

polar bears influences their pollutant exposure, in particular plasma concentrations of PFAS. 39 

  40 
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INTRODUCTION 41 

Anthropogenic activities have affected wildlife health and habitat at numerous levels. 42 

Industrialisation has accelerated global warming (http://www.ipcc.ch) and is responsible for 43 

the release of toxic compounds into the environment that have become imbedded in food 44 

webs from tropical to polar ecosystems
1
. For higher trophic species, the main source of 45 

exposure occurs via diet and levels of persistent organic pollutants (POPs) are biomagnified in 46 

marine food webs
2–5

. Polar bears Ursus maritimus are amongst the most polluted animals
6,7

 47 

and there are concerns about the negative impact of climate change on their population 48 

dynamics due to the recent decreases in Arctic sea ice coverage
8–10

, which constitute their 49 

main habitat for feeding, travel, and mating
11

. Habitat fragmentation and extended ice-free 50 

seasons associated with climate change may decrease prey encounter rates and increase 51 

energy expenditure during hunting and travel
12

. Polar bears preferentially feed on ringed seals 52 

Pusa hispida, bearded seals Erignathus barbatus, and harp seals Pagophilus groenlandicus 53 

but they are also opportunistic feeders who prey upon other various mammals and birds 54 

including terrestrial species such as reindeer Rangifer tarandus platyrhynchus and ground-55 

nesting waterfowl
13–21

.  56 

The distributions, geographic ranges and therefore diets of species are largely influenced by 57 

climate, and the spatial and temporal patterning of the resources of the habitat
22–24

. Animals 58 

often display circannual seasonal movements, particularly in changing environments and in 59 

numerous instances, feeding strategies appear to be plastic
25

. For instance, when experiencing 60 

resource competition or abrupt environmental change, animals often transition to a more 61 

varied diet and use both optimal and alternative food sources
25–27

, which has been observed 62 

within populations in several mammals
28–30

. Individual specialisation in diet, and in selection 63 

of habitat, can be beneficial if it confers higher or similar fitness in comparison to previous 64 
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behaviour
31–33

 but can also influence the species negatively by reducing its energy intake, and 65 

increasing exposure to pathogens and anthropogenic pollutants
28–30

.  66 

Polar bears display divergent space-use patterns within some of the 19 subpopulations found 67 

in the Arctic. In the Barents Sea area, home range size of offshore female polar bears, which 68 

migrate seasonally to follow the sea-ice retreat and advance, may be 100 times larger 69 

compared to that of coastal females that mostly remain on land or nearshore
34,35

. The offshore 70 

ecotype is used as the equivalent to what Mauritzen et al.
35

 termed as “pelagic” polar bears. 71 

Repeatability of movement patterns over years indicate that an individual’s specialisation is a 72 

recurrent behaviour
34–36

. Changes in the proportions of coastal versus offshore polar bears 73 

have been related to recent climate changes. For instance, in the Southern Beaufort and 74 

Chukchi sea subpopulations, the proportion of polar bears using the coastal strategy has 75 

increased from 10% to 35% and from 20% to 38%, respectively, between pre-2000 and post-76 

2000 periods
37,38

. In the Southern Beaufort Sea subpopulation, the diet of coastal bears 77 

changed towards consumption of a larger proportion of bowhead whale Balaena mysticetus 78 

carcasses, while the diet of the offshore bears was consistently seal-dominated during the 79 

same period
17

. It is however, unclear if the observed changes were due to behavioural 80 

plasticity (individuals adjusting their behaviour in response to climate change) or to selection 81 

(higher reproductive success of one ecotype). In contrast, within the Barents Sea area, the 82 

number of coastal bears in Svalbard was similar in the autumns of 2004 and 2015, with an 83 

estimated number of ~250 bears in both years
39,40

.  84 

Pollutant levels in polar bears within European and Russian Arctic vary spatially. Studies 85 

conducted in 1987-1998 revealed that female polar bears from Franz Josef Land (belonging to 86 

the Barents Sea subpopulation) and the Kara Sea subpopulation (Figure S1) were among the 87 

most polluted with respect to polychlorinated biphenyls (PCBs), oxychlordane, trans-88 

nonachlor and dichlorodiphenylchloroethylene (DDE) compared to polar bears from other 89 
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areas including Svalbard, East-Siberian Sea and Chukchi Sea
41,42

. Furthermore, Olsen et al.
43

 90 

reported that PCB concentrations were highest in polar bears from the Barents Sea 91 

subpopulation exploiting eastern habitats and having larger annual home range size, while 92 

PCB concentrations were lowest in polar bears using northern habitats. The authors proposed 93 

that polar bears with large home range sizes in the eastern Barents Sea consumed more prey 94 

and consequently ingested more pollutants compared to bears with smaller home range 95 

sizes
43

. In contrast, in the 2000s, PCBs were neither related to home range size, longitude nor 96 

latitude
44

. Van Beest et al.
44

 also reported higher per- and polyfluoroalkyl substances (PFAS) 97 

concentrations in female polar bears from the Barents Sea using eastern habitats, but 98 

hydroxylated PCBs (OH-PCBs) and polybrominated diphenyl ethers (PBDEs) were higher in 99 

females using northern habitats. The discrepancies between these two studies
43,44

 could be 100 

related to ongoing changes in sea ice conditions. Confounding factors not considered in these 101 

studies could also explain pollutant variation. For example, body condition index (BCI)
45

, 102 

which represents the nutritional state of an individual, is a stronger predictor than diet for the 103 

concentrations of lipophilic pollutants such as organochlorine pesticides (OCPs), PCBs and 104 

PBDEs in polar bears
46

. In contrast, feeding habits (inferred from stable isotope ratios) were 105 

strong predictors of PFAS concentrations in polar bears
47

.  106 

The aim of the present study was to investigate if space-use strategy influences pollutant 107 

concentrations in polar bears in the Barents Sea. Our first hypothesis was that offshore bears 108 

with larger home ranges, located further east, ingest a larger proportion of marine prey 109 

(inferred from nitrogen [δ
15

N] and carbon [δ
13

C] stable isotope values) compared to coastal 110 

bears which may ingest a larger proportion of terrestrial food. In addition, the habitat 111 

advantages conferred to offshore bears could be offset by ongoing climate change, they would 112 

therefore expend more energy to encounter their prey and have lower body condition, as 113 

compared to coastal bears. Yet, if climate change does not modify prey encounter probability, 114 
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we predict that offshore bears would be in better condition than coastal bears. Our second 115 

hypothesis was that offshore bears, compared to coastal bears, would have 1) higher 116 

concentrations of lipophilic pollutants and their metabolites (PCBs, OCPs, PBDEs, OH-117 

PCBs) as a consequence of larger home ranges which have a higher energetic demand, 118 

resulting in lower body condition, and 2) higher PFASs concentrations, as higher energetic 119 

demands involves greater intake and potentially greater exposure to pollutants as a 120 

consequence of a more marine diet.  121 

METHODS 122 

Field sampling 123 

One hundred and fifty-two adult female polar bears (estimated age 4-28 years) from the 124 

Barents Sea subpopulation were captured throughout Svalbard between March 26
th

 and April 125 

27
th

 in 2000 and from 2002 to 2014 (Figure S2, Table S1). Immobilization, blood collection 126 

and conservation, age determination, and female classification according to reproductive 127 

status are detailed in supporting information. BCI (n=150) was calculated as described for 128 

polar bears
45

, for females not weighed in the field and for which body measurements were 129 

available (n=38), body mass was estimated
48

 before BCI calculation. The females, all with 130 

body weights >100 kg, were collared with satellite transmitters (Table S1).  131 

Space-use strategy 132 

We obtained 152 polar bear tracks of varying duration (1 month - 1 year) in 2000-2014 133 

(excluding 2001 as no satellite collars were deployed that year). The 152 samples represented 134 

112 individual females, among which 17 were captured in two different years, eight were 135 

captured during three different years and two during four different years. Due to different 136 

sampling regimes, we resampled all tracks to a 24h resolution to achieve a common temporal 137 

scale across all years. For statistical analyses, we either used the entire dataset or we used 138 
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subsets with females that were tracked for >30% or >90% of the year when annual home 139 

range size and position were included in the analyses (detailed in Statistics, for sample sizes 140 

see Table S1). Seasonal split is detailed in supporting information (Methods-Space-use 141 

strategy, Figure S3). 142 

Annual home range size was calculated using 50%, 75%, and 95% minimum convex 143 

polygons (MCP), which represent the smallest convex polygon enclosing all daily locations of 144 

an individual. The 50% MCPs were used to attribute an offshore or coastal space-use strategy 145 

for each seasonal or annual track, based on the geographic overlap between the MCP of each 146 

individual and the Svalbard polygon. This polygon includes the four biggest islands in the 147 

Svalbard archipelago (Spitsbergen, Nordaustlandet, Edgeøya, Barentsøya) and a 20 km buffer 148 

around each island. A bear was assumed to be coastal if > 50% of its home range was within 149 

the Svalbard polygon and offshore if this condition was not met. Attribution to offshore or 150 

coastal strategy was thereafter checked using individual annual track maps. In this study, 151 

annual home ranges and geographical locations were not significantly related to reproductive 152 

status and the age distribution was not related to space-use strategy (p>0.35 for all tests). 153 

Analyses of pollutants  154 

Plasma samples were analysed for PCBs, OCPs, PBDEs (n=113), OH-PCBs (n=109), and 155 

PFASs (n=92). Methods for lipophilic pollutants, OH-PCBs and PFAS determination in 156 

plasma and quality assurance have been detailed elsewhere
46,49–53

.  157 

Only pollutants that were analysed and detected in >60% of the individuals were considered 158 

for statistical analyses. This included three OCPs: hexachlorobenzene (HCB), oxychlordane, 159 

p,p’- dichlorodiphenyldichloroethylene (p,p’-DDE); four PCB congeners: PCBs-118, -138, -160 

153, -180; six phenolic compounds: 4 OH-CB107, 3’OH-CB138, 4 OH-CB146, 4’OH-161 

CB159, 3’OH-CB180, 4 OH-CB187; one PBDE: BDE-47; two perfluoroalkyl sulfonates 162 
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(PFSAs: perfluorohexane sulfonate PFHxS and perfluorooctane sulfonate PFOS); and four 163 

perfluoroalkyl carboxylates (PFCAs: perfluorooctanoate PFOA, perfluorononanoate PFNA, 164 

perfluorodecanoate PFDA, perfluoroundecanoate PFUnDA). Concentrations for these 165 

compound groups are given in Table S2 and QA/QC are detailed in Table S3. For statistical 166 

analyses, we used concentrations in lipid weight (ng/g lw) for lipophilic pollutants, whereas 167 

proteinophilic pollutants (PFASs, OH-PCBs) concentrations are given in wet weight (ng/g 168 

ww). 169 

Nitrogen and carbon stable isotopes in red blood cells  170 

Nitrogen and carbon stable isotope ratios (δ
15

N and δ
13

C) were determined in red blood cells 171 

(n=116) as described elsewhere
17

. The combustion analyses were conducted at the 172 

Environment and Natural Resources Institute - Stable Isotope Laboratory at the University of 173 

Alaska, Anchorage (http://www.uaa.alaska.edu/enri/labs/sils). QA/QC for the data used in this 174 

study is reported elsewhere
53

. Because δ
15

N values increase with increasing trophic level, they 175 

reflect trophic position of individual polar bears
54,55

. In contrast, δ
13

C varies marginally as a 176 

function of trophic level but rather indicates the sources of primary production in the 177 

particular food web, for example marine vs terrestrial, pelagic vs benthic, inshore vs 178 

offshore
54,55

. Thus, polar bears with high δ
15

N values have been feeding at a higher trophic 179 

level than bears with low δ
15

N values. In addition, low δ
13

C values indicate a larger 180 

proportion of terrestrial prey in polar bears diet in comparison with bears with high δ
13

C 181 

values. In polar bear red blood cells, half-life for δ
13

C is ~1.5 months whereas half-life for 182 

δ
15

N is at least twice as long
56

. Polar bear red blood cells provide a retrospective record of diet 183 

sources over several months
17,20

. 184 

Statistics 185 
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We conducted statistical analyses using R version 3.2.5
57

. First, we examined the effect of 186 

space-use strategy (coastal or offshore) on mean annual home ranges size and position, body 187 

condition and feeding habits in female polar bears  that were tracked ≥90% of the year (n=50, 188 

see Table S1). Specifically, we used generalized linear mixed models (GLMM, R-package 189 

nlme version 3.1-121
58

) with 50%, 75%, and 95% MCPs, longitude and latitude of home 190 

range centroids, BCI, δ
15

N and δ
13

C as response variables, and offshore vs coastal strategy as 191 

a predictor variable. We included sampling year and reproductive status (solitary, with COYs, 192 

with yearlings, or with older cubs) as random factors to account for temporal variation in 193 

feeding habits and fluctuations in body condition according to reproductive status
53,59

. We 194 

also added female identity as a random factor to account for repeated sampling. We used the 195 

following code “lme(log(Response.variable)~1+Predictor.variable, random=list(Year=~1, 196 

Female.Identity=~1, Breeding.status=~1), data=data.set, na.action=na.omit, method="ML")”, 197 

response variables were ln-transformed when necessary. In addition, in all individuals 198 

(n=152) we tested if prey selectivity differed according to space-use strategy by performing 199 

Levene variance tests, lawstat R package
60

 on δ
13

C and δ
15

N values in red blood cells and 200 

assuming a smaller variance within a group reflects a more specialised diet. 201 

Secondly, we investigated how annual home range size, annual home range position, body 202 

condition, and feeding habits influenced pollutant concentrations of females that were tracked 203 

for at least 30% of the year (n=126, see Table S1, S3). Sensitivity tests on the relationships 204 

between space-use strategy characteristics and pollutants were conducted to keep the largest 205 

sample size without modifying the results (Table S4). We performed a redundancy analysis, 206 

RDA, R-package vegan version 2.4-3
61

, to illustrate these relationships. RDA is a method to 207 

extract and summarize the variation in a set of constrained variables that can be explained by 208 

a set of constraining variables 
62,63

. We performed the RDA on the 64 polar bears for which 209 

data on pollutants, space-use strategy, home range size, position, BCI, δ
15

N, and δ
13

C were 210 
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available. Constraining variables included home range size (50%, 75%, and 95% MCPs), 211 

home range position (longitude and latitude of home range centroids), BCI, and stable isotope 212 

values, whereas concentrations of pollutants were constrained variables. We illustrated the 213 

effect of space-use strategy on the RDA axes 1 and 2 with an ordination plot.  214 

We further tested and quantified the effects of space-use strategy (offshore vs coastal), home 215 

range size (95% MCP), home range position (latitude and longitude of centroids), BCI, and 216 

feeding habits (δ
15

N and δ
13

C) on pollutant concentrations using GLMMs on females that 217 

were tracked for ≥30% of the year (n=126, see Table S1, S3). Continuous variables were 218 

standardized (mean = 0, SD = 1) before analysis to facilitate the comparison of effect sizes
64

. 219 

We defined sampling year, reproductive status, and female identity as random factors, to 220 

account for temporal and lactation-related variations of POP and PFAS concentrations
49,53,65,66

 221 

and variation in pollutant concentrations according to reproductive status
46

. To reduce the 222 

number of response variables, we selected pollutants with scores on RDA1 or RDA2 above 223 

|0.40| and summed the selected pollutants based on contaminant groups: ΣOH-PCBs, ΣPCBs, 224 

ΣPFSAs, and ΣPFCAs, whereas OCPs were analysed individually. Pollutant concentrations 225 

were log transformed (ln) because of left-skewed distributions.  226 

We used eight models with the following predictors: 1) space-use strategy, 2) 95% annual 227 

home range, 3) annual home range centroid longitude, 4) annual home range centroid latitude, 228 

5) BCI, 6) δ
15

N, 7) δ
13

C, and 8) the null model. An information-theoretic approach
67

 was used 229 

based on Akaike’s information criterion corrected for small sample size (AICc, R package 230 

MuMIn
68

). We obtained the number of parameters (K), the difference in AICc values between 231 

the “best” model and the model at hand (∆AICc) and a normalized weight of evidence in 232 

favor of the specific model, relative to the whole set of candidate models, derived by e
(-233 

0.5(∆AICc))
 (AICc weights). Conditional model averaging was used to make inference from all 234 

the models. This method produces averaged estimates of all predictor variables in the 235 

Page 11 of 32

ACS Paragon Plus Environment

Environmental Science & Technology



 12

candidate model list, weighted using the AICc weights
69,70

. From this, we obtained 236 

conditional parameter-averaged estimates (β) and 95% confidence intervals (CIs) for all the 237 

predictors included in the models. To determine if parameters were significantly different 238 

from 0 at the 5% level, we used 95% CI of the model averaged estimates, 95% CI provide 239 

information about a range in which the true value lies with a certain degree of probability, and 240 

about the direction and strength of the demonstrated effect
71

; if it does not include the value of 241 

zero effect, it can be assumed that the result is statistically significant. Model fit was assessed 242 

by using residual diagnostic plots (Figure S4, S5). 243 

RESULTS AND DISCUSSION 244 

Effects of space-use strategy (offshore or coastal) on home range size and position, body 245 

condition and feeding habits  246 

Seventy seven percent of the females (n=152) were coastal. Among females for which track 247 

length covered ≥90% of the year (n=50, 62% coastal), between 2000 and 2014, the 95% 248 

annual home range of coastal female polar bears from the Barents Sea subpopulation was 249 

17,381 ± 4,373 km
2
 (mean ± standard error) ranging from 560 km

2
 to 95,578 km

2
, whereas 250 

offshore female polar bears had a 95% annual home range that was ~8-times larger (140,285 251 

± 32,404 km
2
) ranging from 4,930 km

2
 to 514,377 km

2 
(Figure 1A, Table S5).  252 

Annual home range sizes of coastal and offshore females were comparable to those reported 253 

in this area between 1988 and 1998 (185–373,539 km
2
)
35

. Home range sizes of the present 254 

offshore females were comparable to the annual home range of polar bears from Hudson Bay 255 

(~260,000 km
2
 in the 1990s and ~350,000 km

2
 in the 2000s)

72
, Southern and Northern 256 

Beaufort sea (149,465 km
2
 and 76,696 km

2
, respectively)

73
 and from the Canadian 257 

Archipelago (~125,100 km
2
)
74

. The mean annual home range position for coastal females was 258 

expectedly located on Svalbard Archipelago 78°43'N, 19°51'E whereas it was located further 259 
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north and east for offshore females (79°07'N, 26°84'E, Table S5). Long-term monitoring of 260 

mean annual home range position for each strategy could inform on whether space-use shifts 261 

can be measured over time. 262 

BCI was measured in 150 females (Table S5), among which 71% were coastal. Offshore 263 

females had higher BCI than coastal females (Figure 1A), which suggests that although 264 

offshore females hunt over a larger area to find their key prey, the net energy intake of 265 

offshore bears is larger than that of coastal females. This is likely because offshore bears 266 

spend a larger proportion of the year in a hunting area with higher access to prey than coastal 267 

bears
36

. In addition, since 2010, habitat quality has been described as more optimal in the 268 

offshore area east of Svalbard than in habitats surrounding the coastline of Svalbard based on 269 

a resource selection function computing the number of days with optimal polar bear habitat
75

. 270 

This result suggests that climate change has not yet offset the advantages conferred to 271 

offshore polar bears. However, diet of offshore females inferred from the δ
15

N and δ
13

C 272 

values did not differ from coastal females (n=116, among which 74% were coastal, Figure 273 

1A, Table S5). Nevertheless, variance tests on stable isotope values indicated that offshore 274 

females were more selective in terms of diet choices: δ
15

N values had a narrower range in 275 

offshore than in coastal females (Levene statistic tests=5.34, p=0.023, Figure 1B) and a 276 

similar trend was indicated by the δ
13

C values (Levene statistic tests=3.75, p=0.055, Figure 277 

1B). Whereas coastal bears use lower trophic level and less marine prey to their diet to meet 278 

energetic needs, offshore bears have access to seals through most of the year.  279 

Effects of space-use strategy on pollutant exposure 280 

According to the RDA, variables related to space-use strongly explained (scores ≥|0.40|, 281 

Table S6) concentrations of the following pollutants: HCB, oxychlordane, PCB-138, -153, -282 

180, 4 OH-CB107, 3’OH-CB138, 4 OH-CB146, 4’OH-CB159, 3’OH-CB180, 4 OH-CB187, 283 

PFHxS, PFOS, PFOA, and PFNA. Specifically, as indicated in the RDA plot, PFOS, PFHxS, 284 

Page 13 of 32

ACS Paragon Plus Environment

Environmental Science & Technology



 14

PFOA, PFNA, 4 OH-CB107, 3’OH-CB138, 4 OH-CB146, and 4 OH-CB187 were positively 285 

related to home ranges, the longitude of the home range centroid, δ
13

C and δ
15

N (Figure 2A). 286 

In contrast, HCB, oxychlordane, PCB-138, -153, -180, 4’OH-CB159, 3’OH-CB180 were 287 

negatively related to BCI (Figure 2A). Pollutant signature differed between offshore and 288 

coastal bears according to the RDA (Figure 2B). The difference between the coastal and the 289 

offshore clusters seem to be driven by higher PFAS concentrations in offshore females. In 290 

further analyses, we summed pollutants that were the most related to space-use, feeding 291 

habits, and body condition (RDA score ≥|0.40|). This resulted in Σ3PCBs: PCBs-138, -153, -292 

180; Σ2PFSAs: PFHxS, PFOS; Σ2PFCAs: PFOA, PFNA, Σ6OH-PCBs: 4’OH-CB159, 3’OH-293 

CB180, 4 OH-CB107, 3’OH-CB138, 4 OH-CB146, 4 OH-CB187. Because 50%, 75%, and 294 

95% home ranges were strongly correlated (Figure 2A), we used the largest home range 295 

(95%) in GLMMs. 296 

Mixed models supported the relationships visually assessed from the RDA plots (Figure 2A-297 

B, Table 1, S7). Specifically, when adjusted for sampling year, reproductive status and 298 

female identity, we were able to identify two patterns according to the pollutant classes.  299 

a. Lipophilic pollutants and OH-PCB concentrations according to space-use 300 

strategy 301 

According to model averaged estimates from GLMMs, concentrations of lipophilic pollutants 302 

were best explained by BCI, with higher pollutant concentrations in thinner bears (Table 1, 303 

Table S7). This is in accordance with Tartu et al.
46

 showing that body condition is more 304 

important than diet (i.e., δ
13

C and δ
15

N values) to predict concentrations of lipophilic 305 

pollutants in female polar bears from the Barents Sea. Concentrations of lipophilic pollutants 306 

were not related to space-use strategy or longitude (Table 1), which contrasts with our 307 

hypothesis as well as previous findings on polar bears captured in the Barents Sea during the 308 

1990s
43

. The lack of differences in concentrations of lipophilic pollutants between offshore 309 
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and coastal females in our study is likely related to body condition (Figure 1, Table S5). In 310 

comparison to coastal females, offshore females likely have greater access to more 311 

contaminated prey for longer each year. Therefore, contaminant intake of offshore females 312 

should be higher, yet this effect could be masked by better body condition which may dilute 313 

lipophilic pollutants in the tissues. Olsen et al.
43

 did not detect differences in body condition 314 

according to habitat use and home range size based on a subjective scale (ranging from 1-5), 315 

whereas BCI used in our study
45

 provided a more precise body fat metric.  316 

Model averaged estimates indicated that Σ3PCB concentrations were higher in female polar 317 

bears foraging further north regardless space-use strategy (Table 1, Figure 3). In contrast, 318 

Σ5PCBs (CB99, -153, -156, -180, and -194 ) was negatively related to latitudinal position in 319 

Barents Sea polar bears sampled in the 1990s
43

. The authors suggested that PCB 320 

concentrations were likely higher in polar bears feeding at the sea ice edge during spring and 321 

summer when sea ice is melting and pollutants are taken-up by the food web. The same 322 

hypothesis could also explain our results, as the spring/summer sea ice edge in the Barents 323 

Sea is moving northward
76,77

. It is noteworthy that the effect of latitude on Σ3PCB 324 

concentrations disappears when reducing the sample size to bears for which tracks covered 325 

≥90% of the year (Table S4). This may occur because fewer coastal females were included in 326 

this subset and the latitudinal gradient in PCB could be more pronounced around Svalbard. 327 

We are therefore cautious in interpreting this result.  328 

The best predictor of Σ6OH-PCBs was δ
13

C values (Table S7). Model averaged estimates 329 

indicated that Σ6OH-PCB increased with 95% annual home range size and with increasing 330 

δ
13

C and δ
15

N values indicating that bears with an intake of marine prey high in the food web 331 

had higher levels of PCB metabolites (Table 1). Furthermore, Σ6OH-PCBs tended to be 332 

higher in offshore than coastal bears (0.30 [-0.01; 0.60]; Table 1). In polar bears, OH-PCBs 333 

mainly originate from biotransformation, as concentrations of these compounds in seal 334 
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blubber are negligible
78

. According to the RDA plot (Figure 2A), 4 OH-CB107, 3’OH-335 

CB138, 4 OH-CB146 and 4 OH-CB187 were the phenolic compounds that were best 336 

explained by polar bears’ feeding habits. Parent compounds to these OH-PCBs such as PCB-337 

105, -118, -138, -153, -187 and -183
49

 are highly bioaccumulative
79

. We may therefore 338 

assume that the higher Σ6OH-PCBs result from biotransformation of their parent compounds, 339 

which increase with marine prey that are at a higher trophic level. These parent compounds 340 

were likely more available or the intake of these compounds was higher due to larger net 341 

energy intake gradually off the coasts of Svalbard as indicated by the positive relationship 342 

between Σ6OH-PCBs and the 95% annual home range size (Figure 3). 343 

b. PFAS concentrations according to space-use strategy 344 

Median PFSA and PFCA concentrations were 30% [6; 60] and 35% [14; 46] (values are 345 

exponential transformed estimates and 95% CI) higher in offshore than in coastal female 346 

bears. Moreover, PFAS concentrations increased from west to east (i.e., towards Russian 347 

territories) (Table 1, Figure 3). Plasma PFAS concentrations in polar bears were affected by 348 

diet
47

. We therefore hypothesized that offshore bears had higher concentrations of PFASs as a 349 

consequence of a higher proportion of marine items in their diet. Although in our study, δ
13

C 350 

and δ
15

N values did not significantly differ between offshore and coastal females (Table S5), 351 

variance analyses indicated a larger proportion of lower trophic level and terrestrial prey in 352 

coastal bears diet (Figure 1B). Considering the biomagnifying properties of PFASs in marine 353 

food web
2,80

 the more varied diet of coastal females could contribute to their lower PFAS 354 

concentrations.  355 

Abiotic conditions such as sea ice extent, concentration, and melting can influence the amount 356 

of PFAS released into the ocean, and thus affect the PFAS concentrations in offshore vs 357 

coastal bears. PFASs are more concentrated in surface snow than in seawater, due to a 358 

dilution effect
81,82

. When sea ice melts, large amounts of PFASs can be released in the ocean, 359 
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accumulated in the phytoplankton which is concomitantly blooming, and thus 360 

biomagnified
2,83,84

. Consequently, in areas with more sea ice, such as those used by offshore 361 

bears, environmental PFAS levels were likely higher than in areas with less sea ice such as the 362 

coast of Svalbard.  363 

The positive relationship between PFAS concentrations and home range longitude position in 364 

polar bears accords with a study that showed that PFOA, PFNA, and PFHxS concentrations in 365 

ivory gull Pagophila eburnea eggs from more eastern colonies at Franz Josef Land were 366 

slightly higher than concentrations in eggs from Svalbard
85,86

. The geographical differences 367 

could be related to locality of emission sources. Releases of PFCAs from fluoropolymer 368 

production sites in China, Russia, Poland and India have been estimated to be the major 369 

contributors to global PFCA emissions in 2003-2015
87

. For example, two Russian factories 370 

situated ~1000 km from the Arctic coast produced seven thousand tons of fluoropolymers in 371 

2010 (http://www.halopolymer.com/about) and PFSA emissions from China have increased 372 

since 2003
88

. Emissions of volatile PFSA and PFCA precursors from Russia or China can be 373 

transported to the Arctic through air currents as shown for aerosols and black carbon
89

. The 374 

long-range transport of aerosols such as mineral dust and coal fly ash is a potential PFCA 375 

source to the Arctic
90

.  376 

Implications 377 

Offshore females were in better condition than coastal females, so we could assume that an 378 

offshore space-use strategy would be more advantageous in terms of fitness and that climate 379 

change to 2014 has not affected the condition of offshore bears. Yet, one has to remain 380 

cautious on this conclusion due to the difference between offshore and coastal bears with 381 

regard to time of sampling versus start-time for feeding. It is possible that the offshore bears 382 

were in better condition in spring because they built up more fat the year before since they 383 

spend a larger proportion of the year in a feeding habitat. Although offshore females were in 384 
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better condition than coastal females, they were exposed to higher concentrations of PFASs. 385 

Information on the effects of PFAS in polar bears is scarce, however modelling and 386 

correlative field studies suggest that PFASs interact with polar bear physiology and 387 

metabolism at various levels
91–93

. Further studies examining the transport of legacy and 388 

emerging pollutants in the Arctic, as well as more precise measures for diet and metabolism 389 

of lipophilic POPs, would help clarify the absence of difference in lipophilic pollutant 390 

concentrations between coastal and offshore bears.   391 

  392 
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Supporting Information 393 

The Supporting information is available free of charge. 394 

Biological information of the study animals, detailed method descriptions, overview of the 395 

available data, pollutant concentrations, quality assurance for pollutant analyses, statistical 396 

analyses testing the effects of space-use strategy, RDA scores, model selection tables, polar 397 

bear subpopulations distribution, sampling locations map, seasonal movements map, 398 

diagnostic residual plots. 399 
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Figure Caption 685 

Figure 1. A- Effect of space-use strategy on annual home range (HR) size and position 686 

(longitude, latitude), body condition (BCI) and feeding habits (δ15
N and δ

13
C). The values 687 

represent estimates and 95% confidence intervals derived from GLMM with sampling year, 688 

reproductive status and female identity as random factors. Asterisks denote significant 689 

differences between coastal and offshore females whereas non-significant effects are noted as 690 

‘n.s.’. B- Diet selectivity inferred from stable isotope values in red blood cells according to 691 

space-use strategy. Female polar bears were captured between 2000 and 2014 in the Barents 692 

Sea subpopulation.  693 

 694 

Figure 2. Relationships between feeding habits, body condition, home range size and 695 

position, and pollutants in female polar bears (n=80) from the Barents Sea captured between 696 

2000 and 2014. In the RDA scatter plot (A) constraining variables are represented in red 697 

(mean annual home range centroid latitude: HR Latitude; mean annual home range centroid 698 

longitude: HR Longitude; δ
15

N: d15N; δ
13

C: d13C; 50%, 75% and 95% mean annual home 699 

ranges: MCP50, MCP75 and MCP95; body condition index: BCI), constrained variables 700 

(pollutants) in black and dots represent individuals. The ordination plot (B) separates 701 

individual RDA scores according to space-use strategy (offshore females in blue and coastal 702 

females in orange). The first two RDA axes accounted for 70.6% of the total variance (RDA1: 703 

52.9%, RDA2: 17.8%). The contribution of each variable to RDA 1 and RDA 2 is given in 704 

supporting information Table S6.  705 

 706 

Figure 3. A - Significant relationships between pollutant concentrations in plasma, body 707 

condition (BCI) and space-use strategy components. Dots are partial residuals derived from 708 

mixed models with year, reproductive status and female identity as random factors, blue dots 709 

are the partial residuals and dashed line a loess smooth of the partial residuals. The black solid 710 

line is the parameter estimate and the grey area represents its 95% confidence interval. 711 

Removal of the extreme value did not change the results. B - Schematic view of how space-712 

use strategy can explain pollutant concentrations, the red end of the arrows represents the 713 

higher pollutant concentrations, blue dotted lines represent hypothetical annual home range 714 

extent with PFAS concentrations being lower in bears using small home ranges than those 715 
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using large ones. Yellow and blue dots represent home range centroid positions in spring for 716 

coastal and offshore females, respectively. 717 

Page 28 of 32

ACS Paragon Plus Environment

Environmental Science & Technology



 29

Table 1. Effects of feeding habits (δ
15

N and δ
13

C), annual latitudinal and longitudinal home 718 
range position, body condition (BCI), annual 95% home range size, and space-use strategy, on 719 
pollutant concentrations in plasma of female polar bears from the Barents Sea (2000-2014). 720 
The sample size used for each list of models is represented by ‘n’. Values are parameter 721 
estimates and 95% confidence intervals derived from conditional model averaging of general 722 
linear mixed models that included female identity, sampling year (14 years), and reproductive 723 
status (solitary, with cubs of the year, with yearlings, with older cubs) as random factors. 724 
Pollutant concentrations were ln transformed. Values in bold are significantly different from 0 725 
at the 5% level.  726 

 727 

Predictors 
HCB 

(n=92) 

Oxychlordan

e (n=92) 

Σ3PCB 

(n=92) 

Σ6OH-

PCB 

(n=89) 

Σ2PFSA 

(n=72) 

Σ2PFCA 

(n=72) 

Intercept 
3.86 [1.86; 

5.86] 

5.42 [1.82; 

9.02] 

6.82 [6.47; 

7.17] 

10.7 [6.19; 

15.21] 

5.05 [4.74; 

5.37] 

2.66 [2.19; 

3.13] 

δ15N 
0.01 [-

0.08; 0.11] 
0 [-0.14; 0.15] 

0.01 [-0.08; 
0.11] 

0.18 [0.09; 

0.27] 

0.08 [0.001; 

0.155] 

0.06 [0.002; 

0.116] 

δ
13

C 

0.05 [-0.1; 

0.21] 

-0.04 [-0.26; 

0.19] 

0.07 [-0.09; 

0.22] 
0.33 [0.20; 

0.47] 

0.09 [-0.04; 

0.21] 
0.10 [0.01; 

0.19] 

Home range 

centroid 

latitude 

 -0.021 [-

0.14; 0.10] 

0.02 [-0.15; 

0.20] 
0.14 [0.02; 

0.26] 

0.05 [-0.07; 

0.16] 

-0.01 [-0.09; 

0.07] 

0.02 [-0.04; 

0.08] 

Home range 
centroid 

longitude 

-0.01 [-

0.02; 0.01] 

-0.01 [-0.04; 

0.01] 

-0.01 [-

0.03; 0.01] 

0.01 [-0.01; 

0.03] 

0.025 

[0.014; 

0.035] 

0.015 

[0.006; 

0.024] 

BCI 

-0.27 [-

0.49; -

0.06] 

-0.34 [-0.65; -

0.02] 

-0.58 [-

0.78; -0.39] 

-0.02 [-
0.24; 0.19] 

0.05 [-0.10; 
0.20] 

0.05 [-0.07; 
0.17] 

95% Home 
range (km2)  

1.39E-06 [-

3.78E-07; 

3.16E-06] 

2.41E-07 [-

2.35E-06; 

2.83E-06] 

3.32E-07 [-

1.53E-06; 

2.19E-06] 

1.97E-06 

[3.07E-07; 

3.64E-06] 

1.90E-06 

[8.88E-07; 

2.92E-06] 

1.46E-06 

[6.33E-07; 

2.28E-06] 

Space use 

strategy (ref: 

Coastal)   

0.09 [-

0.23; 0.4] 

-0.14 [-0.6; 

0.31] 

0.05 [-0.28; 

0.38] 

0.30 [-0.01; 

0.60] 
0.26 [0.06; 

0.47] 

0.30 [0.14; 

0.46] 

 728 

 729 
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Figure 1. A- Effect of space-use strategy on annual home range (HR) size and position (longitude, latitude), 
body condition (BCI) and feeding habits (δ15N and δ13C). The values represent estimates and 95% 

confidence intervals derived from GLMM with sampling year, reproductive status and female identity as 
random factors. Asterisks denote significant differences between coastal and offshore females whereas non-
significant effects are noted as ‘n.s.’. B- Diet selectivity inferred from stable isotope values in red blood cells 
according to space-use strategy. Female polar bears were captured between 2000 and 2014 in the Barents 

Sea subpopulation.  
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Figure 2. Relationships between feeding habits, body condition, home range size and position, and pollutants 
in female polar bears (n=80) from the Barents Sea captured between 2000 and 2014. In the RDA scatter 
plot (A) constraining variables are represented in red (average annual home range centroid latitude: HR 

Latitude; average annual home range centroid longitude: HR Longitude; δ15N: d15N; δ13C: d13C; 50%, 
75% and 95% average annual home ranges: MCP50, MCP75 and MCP95; body condition index: BCI), 

constrained variables (pollutants) in black and dots represent individuals. The ordination plot (B) separates 
individual RDA scores according to space-use strategy (offshore females in blue and coastal females in 

orange). The first two RDA axes accounted for 70.6% of the total variance (RDA1: 52.9%, RDA2: 17.8%). 
The contribution of each variable to RDA 1 and RDA 2 is given in supporting information Table S5.  
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A - Significant relationships between pollutant concentrations in plasma, body condition (BCI) and space-use 
strategy components. Dots are partial residuals derived from mixed models with year, reproductive status 
and female identity as random factors, blue dots are the partial residuals and dashed line a loess smooth of 
the partial residuals. The black solid line is the parameter estimate and the grey area represents its 95% 
confidence interval. Removal of the extreme value did not change the results. B - Schematic view of how 
space-use strategy can explain pollutant concentrations, the red end of the arrows represents the higher 
pollutant concentrations, blue dotted lines represent hypothetical annual home range extent with PFAS 

concentrations being lower in bears using small home ranges than those using large ones. Yellow and blue 

dots represent home range centroid positions in spring for coastal and offshore females, respectively.  
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