

F

Frame

sensor

M

work

r servi

 D

Un

Master t

for de

ices in

p

Tom A

Fac

Departmen

niversity of

hesis in

n inf-39881

evelop

n the A

latform

ment o

Argos m

m

of rule

middl

e base

eware

d

e

Arild Jakkobsen

Jan. 7, 20088

culty of scieence

nt of Computer Sciencce

f Tromsø, NN-9037 Trommsø

2

3

ABSTRACT

Argos is a middleware platform developed at the University of Tromsø. It provides tailored,

flexible and extensible middleware support. In this thesis we suggest a new approach to

creating user services for Argos by using a rule engine to setup the program flow for

components in Argos. The users are provided with a graphical tool where they can set up rules

that can trigger an action. The input, called a fact, to the rule and the action that is triggered

has to be picked from the methods of the components in Argos. These fact/ action-methods

are component methods annotated with fact/action annotation which is part of the created rule

engine system service for Argos.

The created rule engine system service also provides an API that is available to all

programmers that want to use rules in their Argos components. There are many advantages to

expressing functionality trough rules opposed to conventional declarative programming. By

only telling the program what to do and not how to do it, rules are more easily understood by

humans. This can benefit both the experienced programmer and the non-technical partner in a

project.

Lifestyle diseases are a growing problem in Western Europe and North-America. An

application, realized trough the rule editor tool, for monitoring a user’s activity and give

feedback will also be presented.

4

5

ACKNOWLEDGEMENTS

I would like to thank my supervisor Arne Munch-Ellingsen for all his help. Together we

brought this thesis to new heights trough our discussions. Also thanks to Gunnvald Bendix

Svendsen (Telenor) for supplying me with specifications for the application where the Rule

Editor can be used.

I would also like to thank my family, Hjørdis Solstad, Thorfinn Jakobsen and Mai Linn

Jakobsen for all the love, support and food I’ve gotten while being busy with my thesis. Last I

would like to thank my wonderful girlfriend Linda Kayseas for the inspiration in my heart to

go and create something beautiful.

6

7

CONTENTS

1 Introduction .. 11

1.1 Background .. 11

1.2 Problem Description .. 12

1.3 Specifications and limitations .. 12

1.4 Method and approach .. 13

1.4.1 Scrum ... 13

1.5 Applying the system to a real task ... 14

1.5.1 The lifestyle project .. 15

1.5.2 The experiment ... 15

1.5.3 Using the rule editor to create this service ... 17

2 Related Work .. 19

2.1 Combining rule engines with sensors .. 19

2.2 Lifestyle ... 21

2.2.1 Major lifestyle problems .. 21

2.2.2 Problems with traditional intervention programs ... 22

2.2.3 Mobile persuasion .. 22

2.2.4 Some lifestyle tools available ... 24

3 Requirements ... 27

3.1 Drools system component ... 27

3.2 Drools user component .. 30

3.3 Real life application ... 33

3.4 Non-Functional requirements .. 35

4 Technology .. 37

4.1 Argos ... 37

4.1.1 Component model of Argos ... 37

4.1.2 Java Management Extensions (JMX) ... 39

4.1.3 Argos system services .. 39

4.1.4 Argus .. 40

4.2 Rules engines ... 40

4.2.1 Declarative programming ... 41

4.2.2 Rete algorithm .. 41

8

4.3 Drools .. 43

4.4 JSP ... 44

4.5 AJAX with Scriptaculous .. 44

5 Design ... 47

5.1 !!Drools system service ... 47

5.1.1 Drools role in Argos ... 47

5.2 !!DroolsComponent ... 48

5.2.1 Annotations to specify facts and actions .. 48

5.2.2 XML file to specify facts and actions .. 49

5.3 User services in general ... 50

5.4 Rule Editor user service ... 50

5.4.1 The graphical user interface (GUI) .. 51

6 Implementation .. 53

6.1 Drools system component ... 53

6.1.1 !!Drools .. 53

6.1.2 !!DroolsComponent .. 54

6.2 RuleEditor .. 55

6.2.1 User component with web-based interface .. 55

6.2.2 Component Icon ... 58

7 Evaluation ... 59

7.1 Functional requirement evaluation .. 59

7.2 Non-Functional requirement evaluation .. 61

7.3 Method - Scrum ... 62

7.4 Technical solutions .. 63

7.4.1 Rule Engines .. 63

7.4.2 Graphical User Interface .. 64

7.5 Remaining work .. 66

Hibernate .. 66

8 Conclusion .. 67

8.1 Achievements .. 67

8.2 Future work .. 67

8.3 Conclusion ... 68

9 Bibliography .. 71

9

LIST OF FIGURES

Example 4.1: Contents of a service jar ... 38

Example 4.2: Rule code ... 42

Example 4.3: Rete nodes .. 42

Example 5.1: Program flow in Argos with Drools ... 47

Example 5.2: Fact annotation ... 49

Example 5.3: Acton annotation .. 49

Example 5.4: action_components.xml ... 50

Example 6.1: Simplified architecture ... 54

Figure 1.1: The factors of motivation (7) ... 16

Figure 3.1: Use-case diagram for the system component .. 27

Figure 3.2: Use-case for user components ... 30

Figure 3.3: Use-case diagram from user view .. 33

Figure 3.4: Use-case diagram from Researcher perspective .. 34

Figure 4.1: Rule engine architecture .. 40

Figure 5.1: Component diagram of !!Drools and Rule Editor ... 51

Figure 6.1: Web based GUI .. 56

Table 1.1 Scrum terminology ... 14

Table 1.2: Description of elements .. 16

Table 2.1:Key design points of FACTS ... 19

Table 2.2: Fact properties in FACTS ... 20

Table 2.3: Applications for proactive health care .. 23

Table 2.4: Lifestyle improvement tools (7) ... 25

Table 3.1: DS-1: Run Drools in Argos ... 28

Table 3.2: DS-2: Add rules and facts ... 28

Table 3.3: DS-3: Add rules and facts ... 28

Table 3.4: DS-4: Facts and action-annotations .. 29

Table 3.5: DS-5: Add rules and facts ... 29

10

Table 3.6: DS-6: Persistence .. 30

Table 3.7: DU-1: Establish connection .. 31

Table 3.8: DU-2: Create rules .. 31

Table 3.9: DU-3: Add statements and actions .. 31

Table 3.10: DU-4: Remove facts, statements and acitons .. 32

Table 3.11: DU-5: Facts and action listings ... 32

Table 3.12: DU-6: Support a basic set of operations ... 33

Table 3.13: DU-7: Drag-and-drop GUI .. 33

Table 3.14: RL-1: Input data about person into system ... 34

Table 3.15: RL-2: Monitor user training .. 35

Table 3.16: RL-3: Motivate user .. 35

Table 3.17: NF-1: Generic ... 35

Table 3.18: NF-2: Simplicity ... 36

Table 3.19: NF-3: Use Argos functionality .. 36

Table 4.1: Files and file types found in a component .. 38

Table 4.2: Relevant system components .. 39

Table 5.1: Supported annotations ... 49

Table 5.2: Areas of interest in the GUI .. 52

Table 6.1: Files in the web folder ... 55

Table 6.2: Parameters in dropable.jsp .. 57

Table 6.3: Description of the parameters ... 58

Table 7.1: Evaluation of functional requirements for the Drools system service 60

Table 7.2:Evaluation of functional requirements for the Drools user service 60

Table 7.3:Evaluation of the Real life usage of the User service .. 61

Table 7.4:Evaluation of non-functional requirements .. 61

Table 8.1: Future work ... 68

11

1 INTRODUCTION

1.1 Background

Computer programmers write code to express how a program will work. There are multitudes

of languages to choose from that lets us create very complex applications. Professionals in

areas other than computer science, in general, do not have detailed insight in how to create

computer programs. They do however have deep insight into the business logic of their trade.

This is one area where rules and the rule engines can be of help (1). Rules engines simplify

applications by separating business policy or rules logic from process, infrastructure, and

presentation logic (2). Rules that are expressed in a rule language, such as drl, are simple

enough for non-programmers to understand and verify. In the hands of an experienced

programmer, expressing the business logic as rules as opposed to traditional code, can reduce

the time used developing, deploying, modifying and managing a system.

Argos is a personal middleware system with focus on tailored, flexible and extendable

solutions. The Argos platform is a lightweight microkernel implemented in Java. It offers a

service and component model, component lifecycle management and hot deployment of new

service into the system. The services are categorized as system services and user services,

where a system service extends the Argos core and a user service can use one or more system

services to create user applications. The Argos component model combined with a rule engine

gives a very natural dataflow trough a service. First a component in Argos takes in some

sensor data that is pushed into the rule engine as a fact. The rule engine will then do an

evaluation of the rules to see if the new facts trigger an action. If an action is triggered the rule

engine will trough Argos call a method in another component that gives the user some output.

By combining the simplicity and expressiveness of rules with the easy access of input and

output sources in Argos, component programmers can more effectively create new

functionality. This is particularly true if the programmer is working with non-technical

partners, who will now more easily gain a deeper understanding of the inner workings of the

component, since rules are much easier to understand than regular program code. (3)

12

1.2 Problem Description

The main goal of this work is to develop a system service for Argos that combines the rule

engine with the existing functionality to get data from sensors to an integrated system. The

goal is that it should be simpler to create services that combine sensors and rules in a natural

program flow. There will also be developed user service in Argos that offers access to the to

the Rule engine trough a simplified GUI.

1.3 Specifications and limitations

Due to time limitations, the software will be designed and developed as a prototype. One can

divide the project into three parts. The system component offers Drools functionality to other

components. The user component is the Rule Editor tool that can be used to create a generic

rule service. The third part of the project is setting up the Rule Editor so it can be used by

Researchers at Telenor R&I for a specific project. The system component is the central part in

integrating Drools into Argos, but it will to a large extend be an overlay over existing

functionality in Drools, so it will only require a smaller piece of the combined workload for

the project. The Rule Editor will be the most work intensive part of the project. Setting up the

system for use by Telenor R&I will not be a priority unless time allows for it. The Rule Editor

will be created in such a way that it should be easy to create a vide range of new services

based on rules. The difficulty in setting up a system for Telenor is that it relies on there being

other components in the system to provide input and output (facts and actions). Creating such

other components will not be considered a priority.

Neither the system-component nor the user-component will support the entire functionality of

Drools. They will provide a basic set of operations, but the implementation will be generic

enough to extend the functionality at a later point if the need for more complex services

arises.

13

1.4 Method and approach

1.4.1 Scrum

The chosen method for managing the programming process in this thesis is Scrum. Scrum is

described more closely in Agile Software Development with Scrum (4). Scrum was first

described by Takeuchi and Nonaka in (5) where they pointed out that projects using small,

cross-functional teams historically produce the best results. The name Scrum refers to a

strategy in rugby for getting an out-of-play ball back into play. In the 1990’s several different

projects helped develop Scrum further. Ken Schwaber used it in his company Advanced

Development Methods, and Jeff Sutherland, John Scumniotales, and Jeff McKenna developed

a similar approach at Easel Corporation. Schwaber and Sutherland collaborated during the

following years to merge their experiences, and industry best practices into what is now

known as Scrum. Scrum is a management and control process that cuts trough complexity to

focus on building software that meets business needs. Scrum is an empirical1 approach that

improves flexibility, adaptability and productivity in a project (4) (6).

Concept Description

Team In scrum terminology a team is a self-organizing autonomous group

working together. In the case of this thesis there was only one person

in the team.

Task A task is one isolated piece of work that has to be done. A task

should not be longer then 8-10 hours.

Product backlog This is an evolving prioritized queue of business and technical

functionality that need to be developed into a system.

Sprint backlog The sprint backlog contains the items taken from the product backlog

that has to be done within this sprint.

Sprint A sprint is a given time in which the tasks of the sprint backlog are to

be done. The sprint time used in this thesis was two weeks.

Scrum master The scrum master is the person responsible of a project. In a

company he will represent the management and the team to each

1 based on observation or experience

14

other. His job is to make sure that nothing is keeping the developer

from doing his job. In this thesis my supervisor has taken the role as

scrum master.

Daily scrum The daily scrum is a short meeting between the scrum master and

team. It is used to shed light on things that might be keeping the team

from doing their jobs. The daily scrum has in this project been held at

least once a week (so it hasn’t been daily).
Table 1.1 Scrum terminology

To help managing Scrum a program called Scrumworks2 has been used to setup the tasks in

the backlogs and sprints. It is also used by the scrum master to monitor the progress of the

team. The whole project started with thinking of as many as possible tasks that had to be done

in the duration of the thesis period. These tasks where added to the “product backlog”. Items

were then picked from the product backlog into the sprint. And there you go, the tasks for the

first sprint are ready, and the sprint is ready to begin. As time goes by more tasks that must be

done will show up. The important thing here is that these tasks go into the product backlog

and not into the ongoing sprint. To give predictability and continuity trough the sprint it must

be kept the same, except for when all the tasks in a sprint is done, then you can of course go

and pick more items from the top of the product backlog. It is generally the task of the scrum

master to keep the product backlog sorted by importance. The team can then go and pick from

the top to get the most important task to be done first. Architecture and design emerges in

Scrum across multiple sprints, rather then being developed completely during the first sprints.

At the end of a sprint the team and scrum master (and management if any) comes together to

review the progress of the sprint. The backlog is then revised and sorted by importance before

picking tasks for the next sprint backlog.

1.5 Applying the system to a real task

The university collaborates with Telenor R&I and this thesis will be used as part of a research

project at Telenor R&I called “Lifestyle change by divine intervention”. After a series of talks

with the psychologist at Telenor we have together found an application that the Rule Editor

2 http://www.danube.com/scrumworks

15

service is well suited for. The goal is that a researcher should be able to use the Rule Editor to

describe a service in Argos without having to bother with any programming, only using a

simple tool to set up the connections between the different components running in Argos.

1.5.1 The lifestyle project

The main assumption behind the “Lifestyle change by divine intervention” project is that

users receive information trough mobile phones and that this will help them in changing their

lifestyle. Mobile phones are supposed to be more effective than PC in this regard, because

they are with the user all the time and thus are able to target the behaviour in question at

appropriate times during the day. A further assumption is that automatic gathering of

information, e.g. via step counters or other activity measures, will be fruitful in helping users

be more active. The assumption made is that it’s not easy to keep track of and have a

conceptual grip on ones own physical activity over a period of time. So by giving the user a

tool to measure actively and summarize the activity, it can be used as a goal for change.

Measurements like this will help the user change his behaviour by giving him a traceable

handle to his own behaviour (7).

1.5.2 The experiment

A simplified explanation of the flow of the experiment will be described in this sub-chapter.

A user will start by answering a standardized questionnaire containing 20 questions. The

answers from this give tell something about the importance of each of the five elements in

Figure 1.1. Later when the user takes the questionnaire again the results can be compared to

the initial one to see where the motivation is slipping and what feedback is necessary to get

the user back on track again. Which feedback the user will get is connected to what is

happening with the five elements the user has chosen from a list in advance, or that the user

himself has written the feedback message to make it more personalized (7).

Figure 1.1: The factors of motivation (7)

Element Description

BI The users stated behavioral intention to act according to a set of goals.

PU The user’s opinion of the usefulness for the user to act in this way.

PEU The user’s opinion of how easy it is for her or him to act in this way.

SN The user’s opinion of what persons important to her or him think (s)he ought to

act.

FUN The user’s opinion of how fun it is to act in this way.

EFF The users opinion of his or hers ability to change the target behaviour
Table 1.2: Description of elements

There must be some kind of measure for the behaviour of the user. This measure is time

stamped and might be aggregated over different time periods. If the target behaviour is

physical activity, the behaviour will both be measured by user reports and a sensor (e.g. strep

counter). The user has a set of goals that he wants to reach. This goal is connected to the

measurement done in some way. So that if a step counter is used the goal has to be that the

user should walk x number of steps in a given time. To keep track of the goals the user has a

daily schedule. SMS on a mobile phone will be used to give the user the questionnaire to

16

17

answer, and also to give feedbacks to the user reminding him of his ultimate goals if the goals

are not reached. Computers can also be used to give the user the questionnaire form (7).

1.5.3 Using the rule editor to create this service

The question is then: can the simplest possible generic rule editor help create such a service as

the on outlined above? Well, hopefully throughout this thesis we will get a little closer to

answering that question. By having a specific service in mind when making the rule editor

one can discover things that the system will need to be useful in the creation of real services.

18

19

2 RELATED WORK

2.1 Combining rule engines with sensors

There are other systems than ours out there that are using rule-based middleware architecture

with sensors. One such system is FACTS (8) where they have used rule-engine middleware in

a sensor network. Since it was built to be run on nodes in a sensor network the whole

premises of the system is different then that of the one in this thesis, but the motivation behind

is very much the same. Both projects are using a rule engine to react to sensor input.

The developers of FACTS have also created a new rule-based language tailored to their needs.

Their objective is to combine event-centric processing with rule-based execution while also

preserving low resource usage. The main criteria for the design of the FACTS system can be

listed with these key points:

Design feature Motivation

Event-centric architecture Sensor nodes detect changes in the environment and react to

them. With no changes it should stay in low-power mode. This

is a triggered action, thus a push mechanism is favorable.

Rule-based language Captures trigger/action semantics and allowing local decision

to be made.

Minimalistic architecture The architecture should be minimalistic. To extend

functionality the system can be enhanced at runtime according

to application specific services.

Distributed shared memory The fact repository supports software relying on any kind of

grouping or clustering mechanism.

Cross-layer optimization Algorithms operating on different layers according to the

ISO/OSI layering model3 can also exchange information to use

it as a means to coordinate and tune themselves.
Table 2.1:Key design points of FACTS

3 The Open Systems Interconnection Basic Reference Model (OSI Model) is a layered, abstract description for
communications and computer network protocol design. It has seven layers: Physical, Data link, Network,
Transport, Session, Presentation and Application.

20

FACTS use rules to express algorithms and reactions to external events in the system. A rule

is a named structure containing both a set of conditions and an ordered list of statements4. A

statement modifies the fact repository or generally interacts with the rest of the system. A rule

will fire a statement/list of statements when all conditions are evaluated to true and at least

one of the facts used in the conditions are tagged as modified. The modify flag is set

whenever one property of a fact is changed, either caused by external events or the execution

of statements of a previous run of the rule engine. Facts are the central means of representing

any kind of data in the system. Facts are not only used inside the rule engine, but are also the

central means of transmitting information between nodes of the sensor network. A fact has a

set of read-only properties that are set by the system. These properties are:

Property Type Description

owner int The network wide unique ID of the sensor node that was the last

to modify this fact.

time int The time at when the fact was last modified.

id String The network wide unique ID of this fact. It is implemented as the

dot-separated concatenation of the IF of the owning sensor node

and the time of last modification (which is unique to the local

node).

modified Boolean This Boolean flag indicates whether a fact has been modified

since the last run of the rule engine.
Table 2.2: Fact properties in FACTS

Unlike the Drools rule engine used in the thesis, FACTS does not support local variables to

which a specific fact cam be bound within a rule. This would be too expensive in terms of

memory usage. FACTS use its own system with something they call slots-filtering to provide

the same functionality. (8)

4 Note that there is a difference in the terminology used in FACTS and the rest of this thesis. A statement in
FACTS is what we call an action. And what FACTS call a condition is what we call a statement.

21

2.2 Lifestyle

There has been done some research about the use of technology to change people’s lifestyle.

In (9) Telenor and Tromsø Telemedicine Laboratory5 (TTL), thay have looked into how

technology can help improve a person’s lifestyle. This is very interesting for the part of this

thesis where we look at the application area of the Rule Editor (see chapter 5.4 for more

details).

2.2.1 Major lifestyle problems

Lifestyle diseases are a growing problem in Western Europe and North-America. They

include:

• Alzheimer’s disease

• Atherosclerosis

• Cancer

• Chronic liver disease or cirrhosis

• Chronic Obstructive Pulmonary Disease

• Type 2 diabetes

• Heart disease

• Nephritis or Chronic renal failure

• Osteoporosis

• Acne

• Stroke

• Depression

• Obesity

Factors concerning diet and lifestyle are thought to influence susceptibility to the diseases

listed above. The focus in this chapter will be lifestyle diseases based on overweight and

obesity. Studies indicate that more then 50% of adults are defined as either being overweight

or obese in ten western OECD countries. The economic costs of obesity have been assessed in

several developed countries to be in the range 2 – 7% of the total health costs. These are

conservative estimates but it clearly shows that obesity represents one of the largest items of

expenditure in national health care budgets. There is also studies telling us that overweight

among children and adolescents are becoming more and more common. One of the reasons

for the drastic increase on obesity, both among children and adults is that people live a more

5 http://www.telemed.no/ttl/

22

inactive lifestyle today then we did before and that the time pressure makes people choose fast

and inexpensive food. This food often contains more fat and carbohydrates then is

recommended on a daily basis (9).

2.2.2 Problems with traditional intervention programs

A health intervention is an effort to promote good health behaviour such as physical exercise

or to prevent bad health behaviour, e.g. promoting healthier eating and be more physical

active. Traditional health intervention programs have traditionally focused on behaviour

change in specific populations such as a work place or school. This means that it doesn’t

reach out to everyone, but only a narrow part of the population. Critiques have pointed out

that the long term effects are missing because people can’t adhere to the programs. So the

billions of dollars put into such programs give very little result. One of the flaws behind many

health intervention programs is that they have forgotten that there are so many factors that

control a persons behaviour. Desired behaviours must be modelled, rehearsed and reinforced.

Tailoring has been the answer to much of this criticism. Tailoring is basically to individually

assess a person to find out which type of information and change strategy will give the wanted

outcome for that individual. (9).

2.2.3 Mobile persuasion

After the introduction of the Internet, early in the 1990’s, technology, and in particular

computers has started to be used as a device to change health behaviour. More recently one

has started to try out mobile phones in the same area. The advantage with mobile phones is

that they are more accessible to most people and easy to use. (10) The effect of tailoring is

often bigger because it’s easier to reach people trough their phones then trough their

computer. Research has been done in trying to use your mobile phone as your lifestyle coach

by help of sensors, Internet, and various applications. It is also clamed that the use of mobile

phones will increase adherence even more by tailored messages to users. (9)

The timing of messages to the user is also of great importance. The system can use sensors

and user input to determine when to present messages to motivate healthy behaviour. The

medical systems of many other countries face an impending crisis in a few years: how to pay

23

for an aging population. To ease the burden on the health care system it is necessary to try to

help people stay healthy and living independently of the medical system as long as possible.

Applications for proactive health care can be organised as in Table 2.3 (11).

System Description

System that detect crisis Detecting crisis require good sensors, like biometric sensors on

the body, that can get help if a critical situation comes up.

System that detects

declines in health

Detecting a gradual change in health status will generally require

multiple, multi-modal sensors. A sensor system that can detect

changes in everyday activity in the home would enable a new

generation of home-based and institutionally based services for

the aging. Changes in everyday activity can often precede decline

in health.

Systems that motivate

healthy behaviour

If a computer can identify everyday activity, then it can not only

monitor changes, but it can also proactively present information

that may lead to behaviour changes that help people stay healthy.
Table 2.3: Applications for proactive health care

Let’s look a bit closer on the third kind of systems: systems that motivate healthy behaviour.

Researchers in a number of fields have demonstrated the power of point-of-decision

messaging (e.g. improving safety at the workplace, encouraging seat belt use, increasing

public recycling, reducing electricity consumption and encouraging exercise in public spaces).

Studies have show that context-sensitive information presentation can make a difference.

There are four components to effectively motivate behaviour change:

1. Present a simple message that is easy to understand
2. At just the right time
3. At just the right place
4. In a non‐annoying way

To present the messages at just the right time requires computational sensing that can infer

context from sensor data. It also requires that the user have some device that gives the output

where the user is, like a mobile phone or a PDA. To present the information in a non-

annoying way means that the information must be relevant given the context and the

24

presentation of information must not disrupt ongoing activity. It may be better to present more

subtle information that the user is receptive to. Rather then attempting to command the user

what to do, the system can give positive reinforcement. If the user took a unusually long walk

the system can inform the user of the health benefits. This is perceived as less annoying then

having a system that tells the user that he/she hasn’t taken a walk in a long time. (11)

2.2.4 Some lifestyle tools available

You can see some of the lifestyle tools on the marked listed up in Table 2.4.

Lifestyle tool Description

BeWell Mobile BeWell Mobile develops and sells wireless mobile technology to

improve patient’s health. They focus on diabetes, smoking cessation

and asthma. The company is doing research on physical activity

measurement.

Qualcomm Qualcomm produce wireless devices which can be used for personal

entertainment, productivity and lifestyle. When the mobile phone is

equipped with committed sensors it can monitor both biological and

physiological information about a user. The phone can also remind a

person of his activities trough the day.

myFoodPhone myFoodPhone Nutrition, Inc. is a mobile health application service

provider. Its flagship product is myFoodPhone, is a camera-phone

food-journaling feedback service. When the user eats something they

must first take a picture of it and send it in, so that their food intake

can be monitored, and feedback given on the bases of that.

Card Guard Card Guard AG is developing health care delivery platforms for

consumers, high-risk and cronically ill patients, and to home health,

disease management, eHealth and wellness/fitness markets. Their

flagship is the HealthePod that measures 1-Lead ECG, heart rate,

body fat, body temperature and blood glucose levels. Each parameter

that is measured can be uploaded to a wireless handheld devise for

display and to be transmitted to a web-based server for analysis by

professionals.

25

HealthPia HealthPia is a prototype system of a diabetes phone. It is the world’s

first all-in-one glucometer cell phone and service for managing

diabetes remotely. It provides patients and professionals with 24/7

support and emergency intervention trough a GlucoPhone

subscription.
Table 2.4: Lifestyle improvement tools (9)

26

3 REEQUIREMEENTS

In this c

based se

will run

generic

rule eng

rules for

function

actually

system

compon

chapter we w

ensor servic

n in Argos. A

part where

gine support

r Argos trou

nality to oth

y gives func

components

nent and last

will look int

ces”. One of

Another pre

the rule eng

t, and one p

ugh a GUI.

her compone

tionality to

s, then we w

t we will lo

to the requi

f the precon

econdition i

gine is host

part that use

The first pa

ents while t

the user. W

will look at

ok at non-fu

irements for

nditions of t

s that the ap

ed and can

s that funct

art will be a

the second p

We will now

the user com

functional re

r our “frame

the software

pplication is

be used by

ionality to g

a system com

part will be

take a look

mponent, a

equirements

ework for d

e that will b

s to be split

other comp

give the use

mponent, si

a user comp

k at the requ

real life sce

s.

development

e created is

into two pa

ponents need

er a way to d

nce it only

ponent sinc

uirements fo

enario for th

t of rule

s that it

arts. One

ding

design

renders

ce it

or the

he user

3.1 DDrools systemm componeent

The Dro

engine.

working

compon

system

ools system

It will offer

g memory o

nents view a

component

m component

r an interfac

of the rule en

as it uses the

that Argos

t is meant to

ce to add fa

ngine. In Fi

e system co

needs.

o give other

cts as well a

igure 3.1 yo

omponent. Y

r componen

as adding an

ou can see a

You can also

nts easily ac

nd removin

a use-case di

o see functi

cess to a ru

ng rules in th

iagram from

onality in th

ule

he

m a user

he

Figure 3.1

1: Use-case diaagram for the ssystem compon

27

nent

28

Requirement Id DS-1

Requirement name Run Drools in Argos

Priority High

Goal Have instance of a drools rule engine running in Argos

Testing See requirement D-2

Description Set up the core system component for Argos. Set up a rule engine

with one working memory that rules can be run in.
Table 3.1: DS-1: Run Drools in Argos

Requirement Id DS-2

Requirement name Add rules and facts

Priority High

Goal Insert a rule base and facts into Drools in Argos

Testing 1. Run insert simple test rule base
2. Insert fact
3. Get correct response

Description We need to be able to add a rule base and facts into Drools running

under Argos.
Table 3.2: DS-2: Add rules and facts

Requirement Id DS-3

Requirement name Remove rules

Priority Medium

Goal Remove rules from the rule engine

Testing 1. Delete a rule
2. Check if it still exists

Description Sometimes there is a need to modify the rule base as we go along;

this makes the user component able to remove a unwanted rule.
Table 3.3: DS-3: Add rules and facts

29

Requirement Id DS-4

Requirement name Facts and action-annotations

Priority Medium

Goal Use annotations to show which components can be used as facts

and actions in Drools applications.

Testing 1. Annotate demo component
2. Check that the demo component is in fact registered

Description Make it possible to annotate components that can be used as facts

or actions in Drools context.
Table 3.4: DS-4: Facts and action-annotations

Requirement Id DS-5

Requirement name Specify facts and action components

Priority Medium

Goal Setup an already existing component in Argos to be able to be a fact

or action in Drools.

Testing 1. Create configuration file specifying a component to be a fact or
action

2. Check if the component was in fact registered as such

Description Use a configuration file to specify already existing components in

Argos to be facts or actions in Drools
Table 3.5: DS-5: Add rules and facts

Requirement Id DS-6

Requirement name Persistence

Priority Low

Goal Save working memory persistent

Testing 1. Create rules in the component
2. Restart Argos
3. See if the rules still exist

Descrip

Table 3.6:

3.2 D

The use

This rul

compon

from a u

rules.

Figure 3.2

Require

Require

Priority

Goal

ption

: DS-6: Persist

Drools user c

er componen

le editor wil

nents. In Fig

user’s persp

2: Use-case for

ement Id

ement name

y

Ther

Arg

sess
tence

component

nt that will b

ll enable a u

gure 3.2 we

pective, and

r user compone

DU-

e Esta

High

Use

func

re is a need

gos so that u

sion.

be impleme

user to set u

can see the

d shows the

ents

U-1

ablish conne

h

er componen

ctionality.

30

d to save the

users will no

ented to use

up simple ru

e use case di

functionalit

ection

nt accesses

e working m

ot loose the

 the system

ules that use

iagram of th

ty that the u

system com

memory betw

rules that h

ween restart

has been ma

ts of

ade in a

m component

es the metho

he rule edito

user needs to

t is a rule ed

ods found in

or. It is view

o set up sim

mponent for

Drools

ditor.

n other

wed

mple

31

Testing 1. Have user component connect to system component
2. User component creates rule and fact
3. Get correct response

Description The user component should connect to the system component using

JMX to get access to the Drools functionality trough that.
Table 3.7: DU-1: Establish connection

Requirement Id DU-2

Requirement name Create rules

Priority High

Goal The user must be able to create a new rule

Testing 1. Create new rule
2. Transfer rule to system component
3. Put fact into the system component
4. Get correct response

Description The user should be able to create a new rule with a unique name,

one or more statements that has to be true before one or more

actions will trigger.
Table 3.8: DU-2: Create rules

Requirement Id DU-3

Requirement name Add statements6 and actions

Priority High

Goal Can add statements and actions to a rule.

Testing 1. Add a statement or an action
2. Check with the rule base in the system component if it was

successful

Description It is possible to add more statements and actions to a single rule.
Table 3.9: DU-3: Add statements and actions

6 With a statement we here mean a Boolean expression that is part of a rule. A statement consists of two facts
and an operation. There can several statements in a rule.

32

Requirement Id DU-4

Requirement name Remove facts, statements and actions

Priority High

Goal The user can remove facts, statements and actions.

Testing 1. Remove a fact, statement and action
2. Check with the rule base in the system component if it was

successful

Description The user should be able to remove facts that he doesn’t need. He

should also be able to remove statements and actions in facts that

are unneeded.
Table 3.10: DU-4: Remove facts, statements and acitons

Requirement Id DU-5

Requirement name Facts and action listings

Priority High

Goal Get lists of the suitable components that are suitable as actions and

facts.

Testing 3. Query Drools system component for lists of facts and actions
4. Display the list

Description We need to get lists of which components are specified as facts and

actions in the Drools component. These will be listed up so that the

user can pick which to use with the drag-and-drop GUI.
Table 3.11: DU-5: Facts and action listings

Requirement Id DU-6

Requirement name Support a basic set of operations

Priority High

Goal The rules should be able to include operations such as equals,

greater then, smaller then, not.

Descrip

Table 3.12

Require

Require

Priority

Goal

Testing

Descrip

Table 3.13

3.3 R

We will

specific

interven

real scen

user’s p

Figure 3.3

ption

2: DU-6: Supp

ement Id

ement name

y

ption

3: DU-7: Drag

Real life app

l now take a

cations are t

ntion (7)”. T

nario. In Fig

perspective.

3: Use-case dia

To b

set o
port a basic set

DU-

e Dra

High

The

The

Arg
g-and-drop GU

lication

a look at on

o be used b

The goal her

gure 3.3 we

agram from us

be able to cr

of operation
of operations

U-7

g-and-drop

h

e user is be a

1. Drag and
2. Execute
3. Get corr

e user of the

gos system b
UI

ne applicatio

y the Telen

re is to see i

e can see a u

er view

33

reate rules

ns to enable

GUI

able to build

d drop a rule
it
rect response

 component

by using the

on area of th

nor R&I proj

if the rule e

use case dia

the system m

e the user to

d rules by d

e

e

t should be

e drag-and-d

he rule edito

ject “Lifesty

ditor is pow

agram show

must suppor

o create mos

rt at least a

st rules.

a basic

drag and dro

able to crea

drop interfa

op

ate new rule

ce.

es in the

or. The follo

yle change

werful enoug

wing the app

owing

by divine

gh to be use

lication from

ed in a

m the

In Figur

research

compon

trough o

or found

DS-5.

re 3.4 you c

hes perspect

nent. In addi

other compo

d in an alrea

can see a use

tive. This fu

ition there i

onents. This

ady existing

e-case diagr

unctionality

is need for s

s functional

g componen

ram for the

y can be view

some input

lity must eit

nt and speci

same applic

wed as an o

(facts) and

ther be prog

fied in the w

cation but th

overlay over

out (actions

grammed as

way describ

his time fro

r the Rule E

s) that is gai

s a new com

bed in requir

om the

Editor

ined

mponent

rement

Figure 3.4

Require

Require

Priority

Goal

Descrip

Table 3.14

4: Use-case dia

ement Id

ement name

y

ption

4: RL-1: Input

agram from Re

RL-

e Inpu

Low

Get

ques

Nee

com
t data about pe

esearcher persp

1

ut data abou

w

user data w

stions) spec

ed to get the

mpared again
erson into syst

34

pective

ut person int

with his grou

cified.

e personal d

nst rules.
em

to system

up and perso

ata of a per

onal prefere

son into the

ences (20

e rule engine to be

35

Requirement Id RL-2

Requirement name Monitor users training

Priority Low

Goal Receive sensor data about the users training.

Description Use a sensor (e.g. step counter) to monitor if the user does his

training and put result into rule engine.
Table 3.15: RL-2: Monitor user training

Requirement Id RL-3

Requirement name Motivate user

Priority Low

Goal Motivates user based on his personal specifications

Description Use the person’s specifications and send motivational text-message

based on whether he has done his training or not this day.
Table 3.16: RL-3: Motivate user

3.4 Non-Functional requirements

The non-functional requirements will here describe the other non-functional aspects of the

system. These requirements are valid for all the parts of the system.

Requirement Id NF-1

Requirement name Generic

Priority Medium

Goal Don’t limit the usage of components to one scenario, but make

them generic

Description Both the system and user service should be as generic as possible.

The system component should be able to be used by a wide range of

components, while the user component should be able to make

many very different scenarios.
Table 3.17: NF-1: Generic

36

Requirement Id NF-2

Requirement name Simplicity

Priority Medium

Goal Save time by choosing the technology that is easiest to use

Description When it comes to technology choices the simplest solution of

several suiting choices should be picked.
Table 3.18: NF-2: Simplicity

Requirement Id NF-3

Requirement name Use existing Argos functionality

Priority Medium

Goal Save time by using already existing functionality in Argos

Description If there is several choices of technology to use, and one is already

supported by Argos, don’t spend time on adding new functionality

when the existing can be used.
Table 3.19: NF-3: Use Argos functionality

37

4 TECHNOLOGY

In this section we will describe the different technologies used in this thesis. We will first take

a look at Argos which is the framework the applications are running in. Then we will take a

look at rule engines in general and the Drools rule engine in particular. And last there will be

a little bit about JSP and AJAX with Scriptaculous, which is used for the graphical user

interfaces.

4.1 Argos

The Argos platform is a personal middleware platform implemented in Java and developed at

the University of Tromsø. The difference between Argos and enterprise systems such as

JBoss or Enterprise Java Beans (EJB) is that it was created to host smaller and more personal

services. This lets it disregard the strict requirements of scalability found in enterprise

systems. This results in more freedom for developers when creating components, e.g. creating

threads, reading files and loading native libraries. Argos provides tailored, flexible and

extensible middleware support using reflection, dependency injection, Java Management

Extensions (JMX) notifications and hot deployment (3).

4.1.1 Component model of Argos

Argos is often referred to as a container. This is because it is the “box” that we put services

and components into. A component is a POJO (Plain Old Java Object) where the application

programmer can use annotations on operations and attributes to change how a component will

behave. It is up to the Argos container to extract annotations from components and handle the

components as specified by the annotations. A service may consist of zero or more

components, a deployment descriptor, external applications, desktop widget and dashboards

(see Table 4.1 for common file types found in an Argos component) (3).

Name File type

Components Class files

Deployment descriptor XML file

Web content (in the “web” folder) JSP files,

Graphical representation of the component PNG file (in web-folder)
Table 4.1: Files and file types found in a component

System components may also extend this component model with more functionality. An

example of this is how the !!Jetty6 system component deploys the contents of the “web”

directory in a service in a Jetty6 web container. The files included in a service are packed in a

Jar file called the service file. To deploy a service the Jar file has to be copied to Argos’

“deploy” folder. Argos will discover and deploy it automatically. See Example 4.1 for the

layout of a service file.

service.jar

web deploy.xml

component.class index.jsp

icon.png component.class

component.class

38

 Example 4.1: Contents of a service jar

As already mentioned Argos has looser restrictions then those found in enterprise systems

(such as EJB). For instance the Argos component model allows components to create threads,

open sockets and read from files. This is a real benefit when collecting sensor data. It can

simplify the application programmers’ job when he is able to create threads, open sockets and

read from and write to local files. (3).

39

4.1.2 Java Management Extensions (JMX)

Argos is built around Java Management Extensions (JMX) which is the Java standard for

management of application resources (12). JMX helps with monitoring and management of

the components. Communication to and between components in Argos is also done using

JMX. There is a notification model that lets the Argos components broadcast and receive

notifications internally in the container or even between containers (3). A managed bean

(MBean) is an application or system resource that has been instrumented to be manageable

trough JMX. In Argos all the components become MBeans. All MBeans follow a set of

specifications, but this is not something the Argos component programmer has to worry

about. Argos will make the component an MBean by interpreting the deployment descriptor

and the annotations in the component files. (3) (12)

4.1.3 Argos system services

Argos also comes with a number of ready to use functionality called system services. These

services are notated with a !! (bangbang) in the front of the name. Table 4.2 shows the most

relevant system components.

Name Functionality

!!jetty6 Jetty 6 is a web container that has support for normal HTML pages as

well as JSP and servlets. It will automatically deploy the contents of

the “web” directory in a component to the Uniform Resource Locator

(URL) http://localhost:8080/ServiceName (3).

!!jmxconnector Provides functionality to use JMX.

!!hibernate Hibernate is an object/relational mapping (ORM) tool for Java

environments. ORM is a technique of mapping a data representation

from an object model to a relational data model with a SQL-based

schema (13).
Table 4.2: Relevant system components

4.1.4 Argus

Argus7 is a graphical management tool for JMX implemented using Java Swing. It can be

used to view the components inside the Argos container, and the also to call the attributes and

operations of those components. Argus is generic enough to work with all JMX enabled

systems. Argus can be a very useful tool when debugging.

4.2 Rules engines

The three most important aspects of a rule engine are facts, pattern and the rules themselves.

The rules and facts are taken into the rules engine and if the rules are proved true by the facts,

a list of actions will be triggered.

A rule engine gives a programmer a way to separate the decision-making logic from the rest

of the program. One can think of it as hiding the imperative programming (telling it how), and

focus more on declarative programming (telling it what). The most prominent reason for

using a rules engine is that it provides the programmer with a very quick and simple and cost

efficient way to change the logic of a program, without having to dive deeply into the code.

So instead of using long chains of if...else statements, using a rule engine lets you express

it by declarative programming which is more structured, intelligible and flexible (14).

Figure 4.1: Rule engine architecture

40

7 http://sourceforge.net/projects/argusjmx

41

4.2.1 Declarative programming

In procedural programming, the programmer tells the computer what to do, how to do it, and

in what order. Procedural programming is well suited for problems in which the inputs are

well specified and for which a known set of steps can be carried out to solve the problem.

Mathematical computations, for example, are best written procedurally. In a purely

declarative program the programmer tells the program what to do, and omits much of the

instructions on how to do it. This means that declarative programs must be executed in some

kind of runtime system that knows how to fill in the blanks and use the declarative

information to solve the problems.

Since declarative programs only include important details of the solution they can more easily

be understood by humans then their procedural counterparts. Declarative programs are

particularly good at solving problems without clear algorithmic solutions like control,

diagnosis, prediction, classification, pattern recognition, or situational awareness (15).For

most simple Argos services procedural programming can be quite enough. But when met with

a service that takes input from a number of different sources, and where the relationship

between these sources are very complex or difficult to solve with an algorithm, then

declarative programming can save you a lot of unnecessary work.

4.2.2 Rete algorithm

Rete is a pattern matching algorithm for implementing production rule systems and was

designed by Dr. Charles Forgy at Carnegie Mellon University in 1979. It is by far the most

efficient algorithm for production rule systems ever written. Rete is Latin for net. The Rete

algorithm is implemented by building a network of interconnecting nodes. Every node

representing one or more tests found on the statement part (when-part) of a rule. Facts that are

being added or removed from the working memory are processed by this network of nodes.

You can say that it filters data as it propagates trough the network (15) (16).

Let’s take a quick look at an example of how the nodes are created from a rule. In Example

4.2 you can see the code for a simple rule. We have two types of facts here: Clock and

Person. What is expressed in this rule is that if the time of the clock is 10 the check if the

person is supposed to start a workout at 10. If this is true, print out "Time to go jogging

<name>".

 rule
when
 Clock($time : time == 10)
 $person : Person (startWorkout == $time)
then
 System.out.println("Time to go jogging " +

$person.getName());

end

Example 4.2: Rule code

System.out.println(
"Time to go jogging "
+ $person.getName());

Person Clock

ObjectTypeNode

Person.startWorkout ==
Clock.time

Clock.time == 10

TerminalNode

JoinNode

LeftInputAdapterNode

AlphaNode

Example 4.3: Rete nodes

In Example 4.3 we can see Example 4.2 drawn up as Rete nodes. We can see that we have

two ObjectTypeNodes: Clock and Person. The Clock ObjectTypeNode is propagated into an

AlphaNode that is used to evaluate a literal expression. In this case the literal expression is

42

43

“Clock.time == 10”, and the literal expression must be satisfied before it can proceed to the

next node. The JoinNode is used to compare two Objects, their fields, to each other. By

convention we call these two inputs left and right. The left input is usually a list of Objects8,

while the right is a single object. This list of Objects is created in the LeftInputNodeAdapter.

A TerminalNode is used to indicate that a single rule has matched all its conditions. We say

that the rule has a “full match” at this point (16).

4.3 Drools

The rule engine chosen for this thesis is the Drools (also called JBoss Rules9) rule engine.

The Drools project was started by Bob McWhirter in 2001 and registered a SourceForge10.

Drools 1.0 was never released as the limitations of a brute force linear search approach were

soon realised, and work was started on Drools 2.0, which was loosely based on the Rete

Algorithm (see chapter 4.2.2), and the project was moved to Codehaus11. In October 2005

Drools was federated into JBoss and rebranded JBoss Rules, but in May 2007 it was found

that the community was still predominantly calling the system Drools. So even if it is

technically called JBoss Rules today, we will also in this thesis refer to it as Drools as the rest

of the community does. Having become federated by JBoss and with financial backing

version 4.012 of Drools was rewritten with a complete and enhanced Rete implementation

with a GUI tool. Note that version 4.0 was not backwards compatible with older versions

(17).

The Drools rule engine gives us great way to collect complex decision-making logic and work

with data sets too large for humans to effectively use (2). Drools is a forward chaining rule

engine, also called a production rule system (17). Forward chaining starts with the available

data and uses inference rules to extract more data until an optimal goal is reached. It will

search trough the rules until it finds one where the “when-part” is true, then the “then-part” is

8 In Drools this is called a tuple
9 http://www.jboss.com/products/rules
10 http://sourceforge.net/projects/drools/
11 Codehaus in an open-source project repository with a strong emphasis on Java. See http://codehaus.org for
more information.
12 The current version of Drools (Jboss Rules) is 4.0.3

44

triggered. This can result in new facts for the working memory, or an external action to be

taken (18).

4.4 JSP

To display the Graphical User Interface (GUI) of the Rule Editor user component, the choice

fell on making it web-based using JavaServer Pages (JSP). There where two main

motivations behind choosing a web-based approach. Firstly web-pages are an easy way to

make quite complex input mechanisms, and secondly there is already a built in web-server in

Argos.

JSP technology provides an easy way to create to create dynamic web pages and simplify the

task of building web applications (19). Argos can supply us with a finished web-server

component: !!Jetty . Jetty is a full featured web server written in Java. The web server also

includes a servlet container based on Tomcats Jasper engine (3). Since all the things needed to

run JSP pages are readily available we can go right to the programming of the pages, instead

of having setup anything more in Argos. The only thing the component programmer has to do

is to put the JSP files a folder named “web” in the component to have the pages deployed in

Argos. The pages can be found at http://localhost:8080/ServiceName. Another clear

advantage by using a web interface compared to a traditional GUI (e.g. Java Swing) for the

service is that it can be accessed from remote computers. This makes the user able to work

against the service from anywhere in the world with an internet connection.

4.5 AJAX with Scriptaculous

JSP is not in itself enough to create responsive web pages. Asynchronous JavaScript

Technology and XML (Ajax) can be used to create more responsive web-interfaces. With

Ajax it is possible to make web applications that look and act very similar to traditional

desktop applications without relying on plug-ins or browser specific features. Web

applications have traditionally been a set of HTML pages that must be reloaded to change any

portion of the content. Technologies such as JavaScript and cascading style sheets (CSS) have

http://localhost:8080/%5bService

45

matured to the point where they can be used efficiently to create very dynamic web

applications that will work on all of the major browsers (20).

Scriptaculous is a JavaScript library that can be used in combination with Ajax to give

advanced responsive GUI functionality. A developer can import the Scriptaculous libraries

into a web page and use JavaScript to access a simple API that with a few lines of code visual

effects such as drag-and-drop (21).

46

5 DESIGN

In this section we will first look at the Drools system service which provides user services

with rule engine support. Note that “!!Drools” is both the name of the system service and the

main component in that service. The !!Drools system service also contains the

!!DroolsCompont component. It is responsible for listing up the components compatible with

Drools. We will then look at the two parts of such a user service; the Rule Editor user service

and the web-based Rule Editor client that belongs to it.

5.1 !!Drools system service

The !!Drools system service provides other Argos components with a Drools rule engine.

The component is built so that it will give components access to one instance of one drools

rule base that again is used to initialize one drools working memory. A rule base is a set of

rules specified in the drl rule language. It is against these rules that the facts are tested to see if

any action need to be taken. When the rule base has been updated it is realized as a drools

working memory. It is in this working memory that facts are inserted into to try to fire the

rules.

5.1.1 Drools role in Argos

In Argos a rule engine simplifies the data flow trough a service (see fig.Example 5.1) by

getting the input from other components, checking if this new input makes a rules become

true, and if it does start an action operation in an other component.

Input component
(acquiring facts)

Output component
(doing action)

!!Drools
(system component)

Component using
rule engine

User service tier

System service tier

Example 5.1: Program flow in Argos with Drools

47

48

5.2 !!DroolsComponent

For certain types of components that uses the !!Drools there will be a need to list up other

suitable components that can be used as facts or actions. If the component developer knows

which components he wants to use, there is no need for the !!DroolsComonent functionality,

but in the cases where he needs to either let the end user pick the input or output, or they are

handled in a dynamic way, there will be a need to list up all the components in Argos that can

be used for this. A component that can supply the input to a service using drools we will call a

fact-component, since it supplies us with a fact for the rules engine. In the same way a

component that supplies us with an output method we will call an action-component, since it

will supply the drools component with an action that can be taken when new facts fire a rule.

This will create a very natural flow of data trough the system. Input comes from a sensor to a

component in Argos; this input will be a fact that can trigger predefined rules in Drools that

will cause an action. This action will be a method that may give the user some output, and is

also implemented as another component in Argos. We can here see that the component using

drools in a very natural way, takes us from sensor input, trough rules, to a response to the user

by invoking another component.

5.2.1 Annotations to specify facts and actions

In principle any method at all that returns a value may be used as a fact, same as every

method that “does” something can be used as an action. But if we imagine that the Argos

container can theoretically contain thousands of components, it will be quite unruly to pick

out which are suitable as rules or actions. This is why !!DroolsComponent contains a method

to get out a list of components and their methods that are suitable as facts or actions. To

populate this list with components a set of java annotations has been created so that

component programmers easily can annotate their code to pick out drools compatible methods

in their components (see Table 5.1 for supported annotations).

Annotation Meaning

@DroolsFact This class has methods that can be used as Drools facts

@DroolsFactMethod This method can be used as a Drools fact

@DroolsAction This class has methods that can be used as Drools actions

@DroolsActionMethod. This method can be used as a Drools action
Table 5.1: Supported annotations

As of Java release 5.0, the platform has a general purpose annotation facility that permits you

to define and use your own annotation types. Annotations do not directly affect program

semantics, but they do affect the way programs are treated by tools and libraries, which can in

turn affect the semantics of the running program. Annotations can be read from source files,

class files, or reflectively at run time (22). In Argos annotations are read as the component is

loaded in. By use of notifications !!DroolsComponent is notified that a new component is

loaded and checks if any relevant annotations are in the file. If it is it keeps record over which

components can be used as facts and actions based on the annotations. In example Example

5.2 and Example 5.3 you can see how the annotations have been used in a java-file to show

that a class’ methods can be used either as facts or as actions.

49

@DroolsFact
public class MyComponent{
 @DroolsFactMethod
 public String myFactMethod(){ … }
}

 Example 5.2: Fact annotation

@DroolsAction
public class MyComponent{
 @DroolsActionMethod
 public String myActionMethod(){ … }
}

Example 5.3: Acton annotation

5.2.2 XML file to specify facts and actions

Most components are not written to be specifically used with Drools. You wouldn’t simplify

anything if you would have to go into the code of existing components to add annotations just

to be able to use them with drools. This is why there is a second way of specifying which

components are compatible with Drools components. For system components or components

written by other people, you can write the specifications into one of two xml files. For fact

components you may use fact_components.xml and for action components use

action_components.xml (see example Example 5.4) to give information on which components

are to be set as Drools compatible.

<?xml version=”1.0”?>
<Drools>
 <Class name=”MyComponent”>
 <Method name=”myFactMethod” />
 </Class>
</Drools>

 Example 5.4: action_components.xml

5.3 User services in general

The !!Drools does not by itself provide any functionality to the Argos user, but rather gives

component programmers a new tool. This tool may be used by component programmers to

easily set up a program flow involving getting input from a component, using the !!Drools

component to set up the rules and facts, and fire some operation in a component that gives

output. The whole program flow, including getting the facts from sensors, doing operations

against !!Drools and returning output can be done in one component. But the more elegant

solution is using other components for input and output as explained above.

5.4 Rule Editor user service

50

The Rule Editor component uses this new tool to provide the user with a generic tool to create

Drools services for Argos. It lets the users select facts to be used in a Boolean statement.

When the statement is true an action is triggered. As described in the previous chapter both

facts and actions are chosen from methods in the components in Argos. The chosen

statements and actions are then turned into a rule that can be understood by Drools and sent

into the !!Drools system component. See Figure 5.1 for an overview of the system as a whole.

Figure 5.1

5.4.1 T

The Rul

many di

created

compon

Area

Canvas

Facts

Actions

1: Component

The graphic

le Editor co

ifferent con

so that a pr

nents and tri

s

diagram of !!D

cal user inte

omponent w

ntexts. The s

rogrammer c

iggering act

Drools and Ru

erface (GUI

was written t

same thing g

can sit down

tion to happ

Functional

The canvas

listed. The

of three bo

The facts a

populated b

specificatio

methods ca

operator bo

The action

right side.

specificatio

actions-me

51

le Editor

I)

to be as gen

goes for the

n and create

pen. See Tab

lity

s is the mid

rules have

oxes and one

are listed on

by the facts

ons from th

an be pulled

ox in the sta

ns that can b

The list is p

ons from th

ethods can b

neric as poss

e GUI of the

e a service i

ble 5.2 for a

ddle area of

two parts. O

e action par

n the left sid

s specified b

e fact_comp

d to the two

atement part

be triggered

populated by

e acton_com

be pulled to

sible to be a

e Rule Edito

in Argos us

areas of inte

the screen w

One stateme

rt that has on

de of the scr

by annotatio

ponents.xml

 boxes on e

t of the rule

by the rule

y annotation

mponents.xm

the action p

able to be us

or. The GUI

ing input fr

erest in the G

where the ru

ent part con

ne box.

reen. The fa

ons and the

l file. The fa

each side of

e.

are listed o

ns and the

ml file. The

part of the r

sed in

I is

rom

GUI.

ules are

nsisting

act list is

fact-

f the

on the

e

rule in

52

the canvas.

Operators The operators are listed on the top of the screen. They decide

the relationship between two facts if a rule should be triggered.

They can be pulled into the operator box between the two fact

boxes on the canvas.
Table 5.2: Areas of interest in the GUI

53

6 IMPLEMENTATION

In this chapter the implementation will be outlined. First there will be a closer description of

implementation of the !!Drools system service. Then we will look closer at the

implementation of the Rule Editor user component that uses the system service.

6.1 Drools system component

6.1.1 !!Drools

The !!Drools component starts one instance of a Drools working memory in Argos. The user

may fill it with rule sets and facts and this will again trigger other components in Argos to do

their work as described in previous chapters. When creating this component there was a

question if there should one working memory for each component using !!Drools or if there

should just be one working memory where everything is put into. The conclusion fell on using

a singe working memory because it gives us a simpler model. Like in the Argos container it

gives us one “box” to put everything into and the contents will live their own life in there. The

question is: can using only a singe working memory lead to problems with naming or slow

down the system? Naming can only be a problem as long as the user is using the class as base

for facts, because the components wouldn’t be able to tell a difference between who the facts

are meant for. On the other hand, if two components are using the same class for the rules

coming in it’s more likely that these components are waiting from input from the same

source, and it’s a good thing that the input is sent to only one working memory. When it

comes to slowing the system down by having very many rules and facts in one working

memory it should scale well enough for Argos’ purposes.

The operations provided by the !!Drools component are basically a wrapping over the basic

functions for a working memory in Drools. The operations called are passed on to the

instantiated working memory running in the component. See Example 4.1 for a simplified

model of the system.

JMX
Rule Editor

Working
memory

!!Drools

 Example 6.1: Simplified architecture

6.1.2 !!DroolsComponent

As described in chapter 5.2 there are two different ways to register a component to be

compatible with Drools. When writing a new component that is suitable to be used as a fact-

or action-component in another component using !!Drools the easiest way is to use the

annotations framework provided by the !!DroolsComponent class. When a component is

launched by Argos a notification will be sent out to the components running, and it will be

picked up by !!DroolsComponents notification handler class

(DroolsComponent.handler(Notification n)). This class will then check if the newly launched

classes contain any of the Drools notifications: @DroolsFact, @DroolsFactMethod,

@DroolsAction, @DroolsActionMethod. If any of these annotations are present the

components name and the name of the methods that are suitable for facts or actions are stored

in a list for later use. When another component at some later point wonders which

components are available as facts then can easily just query DroolsComponent.facts() or

DroolsComponents.actions() to get lists over the facts-components and action-components in

the system.

The second way to specify that a component is suitable to be used as a fact or action is to use

one of the two configuration files: action_components.xml (see Example 5.4) or

fact_components.xml. These files are only parsed when the !!Drools component is first

loaded, so if the files are updated the component has to be reloaded for the changes to take

effect. The argos.bangbang.drools.Config class is responsible for reading in and parsing these

54

55

XML-files. The files are parsed using the Simple API for XML (SAX13) which is a standard

interface for event-based XML parsing.

6.2 RuleEditor

6.2.1 User component with web-based interface

The Rule Editor is where the user can set up relations between facts from fact-components to

trigger the actions in action-components. There are two parts of the rule editor, the component

that basically just sends requests on to the !!Drools component, and the web-based interface.

The web-based interface is coded with JSP and uses Scriptaculous (see chapter 4.5) to get the

drag-and-drop functionality. The JSP files are automatically deployed from the components

web folder to the Jetty web-server in Argos when the component is deployed. The web files

consists of a index page that displays menus for facts, actions and operands for facts, as well

as a canvas in the middle where operations from the menus can be dropped into (see Table 6.1

for more info on the web-files).

Filename Function

index.jsp The framework page that again calls the menus and dropable page.

dropable.jsp This page is the heart of the application. It is where the rules are listed

and where the facts and actions can be “dropped” into by using drag-

and-drop.

factmenu.jsp This is the menu where the fact-components are displayed. The methods

can be dragged and dropped on the appropriate field in the statements.

actionmenu.jsp This is the menu where the action-components are displayed. The

methods can be dragged and dropped on the fields for actions.

operatormenu.jsp This is where the user can pick the operator to use to compare the facts

with.

drools.css The style sheet for the layout of the pages.
Table 6.1: Files in the web folder

13 http://www.saxproject.org

In Figur

files des

!!Drool

http://lo

wanted

without

you hav

you hav

method

from the

test we

triggere

happen

stateme

re 6.1 we ca

scribed in T

s.jar fine de

ocalhost:808

name of the

t writing a n

ve added a n

ve dropped s

from the fa

e operator-m

are making

ed. Drag a m

when a rule

nts (facts an

an see the fi

Table 6.1. To

eployed and

80/RuleEdit

e rule in the

name or with

new rule you

something i

act-menu or

menu and dr

between th

method from

e triggers. Y

nd operands

inished web

o open this

d open your

tor/ . To star

e text field a

h an already

u will get fo

into each of

r set a value

rop it into th

he facts. If t

m the action-

You may als

s) or more a

b-based GUI

page you ju

browser (M

rt setting up

and press “A

y existing n

our orange b

f the four bl

e to drop int

he second o

that test turn

-menu and d

so use the o

actions in a

Figure 6.1

14 http://w

fa

1: Web based G

www.firefox.c

actmenu.jsp

GUI

com

p

operator

dropable

56

rmenu.jsp

I with red la

ust have to r

Mozilla Firef

p rules the u

Add new rul

ame you wi

blocks in th

ocks you ha

o the first a

orange box.

ns out to be

drop it in th

range links

single rule.

abels corres

run Argos w

fox14 is reco

user must fir

le”. If you p

ill get a erro

he middle of

ave created

and third box

This operat

e true then a

he forth box

under the r

sponding wi

with the

ommended)

rst write in

press the bu

or message.

f the screen

a rule. Pick

x. Drag an o

tor will sho

an action wi

x to show wh

rules to crea

ith the

) to

the

utton

 When

. When

k a

operator

ow the

ll be

hat will

ate more

e.jsp

aactionmenu

u.jsp

http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/
http://localhost:8080/RuleEditor/

57

The components shown in the action-menu and fact-menu are those that have been specified

to be suitable facts or actions by the !!DroolsComponent (see 0). The menu pages uses JMX

in the JSP page to open a connection to Argos. It then invokes !!DroolsComponent.fact() or

!!DroolsComponent.action() to get the appropriate lists over suitable components their

suitable methods. The components are listed in small green boxes where the names of the

components are shown as id and the names of the components methods are put in orange

boxes and made draggable. It is these orange boxes that can be pulled into the rule boxes in

the middle. When an item is dropped into one of the boxes in the middle the droppable.jsp

page is actually reloaded. This is hidden from the user by the use of AJAX (see chapter 4.5).

The user will only see the new rule pop into the list. When the page is reloaded parameters are

also sent into the new page. The content of these parameters will trigger what happens in the

JSP page when it’s loaded. Here is a list of the parameters that are used:

f r e s d Description

submitRules Sends rules to the Rule Editor Argos component

addRule x Adds another rule

addStatement x Adds another statement a rule

addAction x Adds another action to a rule

removeRule x Removes a rule

removeStatement x x Removes a statement

removeAction x x Removes an action

setOption x x x x Sets a given field to be the value of what was

dropped into it.
Table 6.2: Parameters in dropable.jsp

In Table 6.2 you can see the functions that can be triggered, the parameters that is used in the

different functions, and a small description of the function. Five of the columns the table only

represented with a letter. These letters represent parameters used by the page. See Table 6.3

for a description of these parameters.

58

Symbol Name Description

f function The f parameter has the name of the function that is to be used when

the page is reloaded.

r rule The r parameter contains the name (used as id) of the rule. In

addRule the r parameter is used to set the name of the rule. In all the

other cases it is used to look up that same rule.

e element The e parameter points out a statement or action in a rule that should

either be removed or be set to a specific value.

s slot The s parameter says which slot in a rule should be modified. The

slots are numbered 0 to 3 where 0 is the first operand, 1 is the

operator, 2 is the second operand and 3 is the action.

d drop The d parameter contains the name of the fact/operator/action that

was dropped into this slot.
Table 6.3: Description of the parameters

6.2.2 Component Icon

The component model in Argos was expanded with an icon to be a graphical representation of

the components in GUIs. To add this feature to Argos with the least bit of hassle, the icon

would simply be a file called icon.png in the web folder. Components that need a graphical

representation of other components can now easily find it there. Since the RuleEditor

component has a graphical user interface that uses the icons of other components we get the

real advantage of putting it in the web folder. The icon.png file of each component will then

naturally be made accessible trough the built in Jetty web-server in Argos. So to get the icon

of one component you need only use the URL of that component + “icon.png”. An example

can be http://localhost:8080/RuleEditor/icon.png. An advantage with extending the

component model in this way is that there are no new rules that are forced on component

programmers; rather we are establishing a new convention. It remains to be seen if this

convention will be picked up by other Argos developers, but a suggestion has been made on

the Argos mailing list.

59

7 EVALUATION

In this chapter we will go over the finished project and evaluate it against the requirements

described in chapter 3. We will look at both the functional and non-functional requirements.

We will also evaluate how the scrum worked out as a method, and look at why the technology

used was chosen over some of its competitors.

7.1 Functional requirement evaluation

Table 7.1, Table 7.2 and Table 7.3 provides listings of the functional requirements. We will

first look at the functional requirements for the system component (!!Drools). Then we will

look at the requirements for the user component (Rule Editor) and last at the requirements for

the application that can be created in the Rule Editor. The functional requirements were

specified in chapters 3.1, 3.2 and 3.3.

Requirement Status Evaluation

DS-1 Success Creating a component that runs Drools under Argos was a

success. Note that there was a bug in Argos for the loading of the

library that was worked around for now, and will be fixed in a

later release of Argos.

DS-2 Success The !!Drools component provides support for adding rule bases

and facts into the rule engine.

DS-3 Success The !!Drools component provides support for removing rules

from the rule engine. To remove a rule a String containing the

name of that rule must be provided.

DS-4 Success There has been provided support for annotating files to specify

that they can be used as facts or actions by another component in

Argos. The !!Drools service provides a operation to get a list of

fact-components and action-components.

60

DS-5 Success There is support for reading a configuration file that lists the

already existing components as facts or actions.

DS-6 Failure Persistence has not been implemented yet (see chapter 7.5).
Table 7.1: Evaluation of functional requirements for the Drools system service

Requirement Status Evaluation

DU-1 Success A JMX connecting can be opened between the user component

and the system component.

DU-2 Success The Rule Editor has support for creating new rules with unique

names.

DU-3 Success More statements and actions can be added to a rule by use of the

Rule Editor. There are links in the web-interface under the list of

statements and actions in the rule for adding more statements and

rules.

DU-4 Success Facts, statements and actions can be removed again in the Rule

Editor. There is an “x” in the upper corner of each of these

elements in the web-interface for removing them again.

DU-5 Success The components suitable to use as facts or actions are listed in

each side of the web-interface. They can be dragged-and-dropped

into the rule setup.

DU-6 Success There is support for the basic Boolean operations in the Rule

Editor. It supports equals, greater then, smaller then and not.

DU-7 Success A Drag-and-drop GUI has been implemented in the web-interface.
Table 7.2:Evaluation of functional requirements for the Drools user service

Requirement Status Evaluation

RL-1 Failure This requirement has only been partially implemented. In the end

the focus had to be at finishing the Rule Editor while the end

service had to suffer. There is a Person component that will

become a fact in Drools, but all the input methods have not been

finished.

61

RL-2 Failure There has not been created any component for getting the sensor

data from the user.

RL-3 Failure This requirement was partially implemented, since there is already

a component for Argos for sending SMS. It could be used directly

as a fact, but the Rule Editor doesn’t yet support parameters.
Table 7.3:Evaluation of the Real life usage of the User service

7.2 Non-Functional requirement evaluation

We will in this chapter take a look at the non functional requirements listed in chapter 3.4.

Requirement Status Evaluation

NF-1 Success This requirement stated that the both the system- and user-service

should be as generic as possible. This requirement has been met.

The system service was designed and implemented so that any

component can use the !!Drools component to get basic rule

engine support, while the Rule Editor component lets the user

create any type of rule based service.

NF-2 Success When having a choice between several solutions the simplest

should be chosen. Of the well suited technologies looked at for

this project it is our opinion that the technology chosen is the

simplest of the pack.

NF-3 Success It was a requirement to use the already existing technology in

Argos when it existed. This is shown in the general design of the

Rule Editor when it requires the user to use the components in

Argos as facts and actions. It also shows in the choice of GUI

when it was decided to use the built in web-server functionality

instead of creating a new free standing GUI.
Table 7.4:Evaluation of non-functional requirements

62

7.3 Method - Scrum

As described in chapter 0 the method used in this thesis was Scrum. The book Agile Software

development with Scrum (4) was used as a reference both before starting and during the work.

Software from Scrumworks was used to manage the scrum project and setup the backlogs.

The project started with identifying as many tasks as possible for the product backlog. Items

were then picked from the product backlog, and put into the first sprint backlog and work

could start on the tasks in the first sprint. A rule in Scrum is that no new backlog items should

be added to the sprint backlog after the sprint had started. This was practically impossible in

the first couple of sprints since new important tasks appeared, that was critical just to get the

project on the way. After the initial few sprints experience had been gained in using Scrum,

and the backlogs had been filled a bit more out with the important tasks to do. It was now

easier to stay true to the sprint backlog. We didn’t have daily scrums, but rather a set weekly

meeting on Fridays and discussions whenever it was needed with the Scrum master. This is

also not completely in accordance with the scrum way, but because of the situation around

writing a thesis, Scrum had to be adapted to the realities at hand. A sprint lasted two weeks

and then sprint review was held to discuss the previous sprint and plan the next one. It worked

very well to have sprints as short as two weeks. And it was motivating to have a short

deadline to work against.

The biggest challenge with using Scrum was that the team member continuously needs to

estimate the time left on a task or a sprint. When a day’s work has been done the team

member uses the Scrumworks program to modify the number of hours left on a task. The

difficulty here is to be accurate enough. If the task is finished with time to spare, then good

and well, but as soon as there is much more work in a task then anticipated, then it can even

mean that the sprints goals aren’t reached. One reason for wrongly estimating the time needed

for a programming task can be that the time for learning new technology was not taken into

consideration when estimating the time usage for a task. This happened during the

implementation on one sprint in this thesis, and all the tasks were not finished at the end of the

sprint. The only logical thing to do was to move the remaining tasks to make them part of the

next sprint. Not a very big deal really, but it is easy to become unmotivated when you don’t

reach a set goal for a sprint. A small motivation talk with the scrum master was luckily all that

was needed in my case to get the motivation up again. There is no reason to dwell on not

63

reaching a goal at one sprint, just continue the work and get on. There is enough room in

Scrum to adapt if something doesn’t go exactly as planned. There may of course be a deeper

underlying problem if goals are not reached sprint after sprint.

In conclusion, Scrum is a very straight forward method, and it feels very intuitive to use. To

get the full benefits of Scrum you will need to acquire a certain amount of experience in

estimating the number of hours a specific task will take. It is obvious that dividing a task up

into as many subtasks as possible, in the planning stage, simplifies this. Even though this

project was a “solo scrum” with only one team member, one can see the benefits it would

bring when working in a larger team too.

7.4 Technical solutions

Because of the objective of the thesis was to create rule engine support for Argos, the Argos

middleware framework was a given technology for the development, but some of the other

technologies used wasn’t as given in the beginning. We will here take a look at some of the

technologies that was chosen to be used, and some of the technologies that was chosen to be

used.

7.4.1 Rule Engines

Since Argos components are implemented in Java can simplify the implementation to use a

rule engine that in Java too. Luckily there is a vide range of rule engines in Java available. To

name a few there is Drools, Jess, SweetRules, Mandarax and JRuleEngine (23). There have

been done some tests with both Drools and Jess in Argos before, so these two were the most

likely rule engines to use as a starting point. These two rule engines are some of the most

widely used and it is a good for a programmer to know that the libraries used in an application

is well tested and used in production before. There have already been said a lot about Drools

in this thesis, so we will first look a bit closer on the Jess rule engine.

64

7.4.1.1 Jess is a popular rule engine and scripting language developed at Sandia National

Laboratories in Livermore, California in the late 1995. The CLIPS15 system shell, an open-

source rule engine written in C, was the original inspiration for Jess. Jess and CLIPS have

very different implementations, and Jess also have support for Java’s powerful APIs for

networking, graphics and database access, but the rule languages in these two systems are still

very similar. A downside with Jess is that unlike CLIPS it’s not licensed as Open Source. Jess

do provide educational licences free so it could have been used as part of this thesis, but if the

application were to live on, Open Source is clearly preferred. An advantage with using Jess is

that it has support for enterprise environments like J2EE (15). This may have been a great

advantage when pairing it with JMX in Argos, but since Jess was not the rule engine chosen

for this thesis it has not been looked closer into.

7.4.1.2 Drools was the rule engine chosen to be used in Argos (see chapter 0 for an

introduction rule engines and Drools). Drools have for several years been a leading Java Open

Source Rule Engine and it also has a strong online community. (17) A key factor in picking

Drools as the chosen rule engine was that there has already been some work done with

combining Drools with Argos by Eystein Måløy Stenberg. Unfortunately it turned out that

this work was too interleaved with the application it was made for to be of much use for

implementing the kind of generic service wanted in this thesis.

7.4.2 Graphical User Interface

7.4.2.1 Java Swing was one of the original candidates when it came to choosing a GUI. Swing

is part of JFC (Java Foundation Classes) and which encompass a group of features for

building graphical user interfaces and adding rich graphics functionality and interactivity to

Java applications. (24) An advantage with Swing is that NetBeans IDE has support for

creating interfaces trough a graphical WYSIWYG16 editor. Unfortunately drag-and-drop

(requirement DU-7) does not have very good support when creating Swing under NetBeans.

The advantage of Swing under NetBeans then disappears. Creating Swing-interfaces with

15 http://www.ghg.net/clips/CLIPS.html
16 What you see is what you get

65

traditional Java programming can be very complex for systems as advanced as this and this

would be a disadvantage under requirement NF-2.

7.4.2.2 JSP and a web-based approach were chosen as the GUI in the end. The non-functional

requirement NF-2 states that: “when it comes to technology choices the simplest solution of

several suiting choices should be picked”. Web-pages give a very strong tool to simply create

very complex user interfaces. The use of Cascading Style Sheets (CSS) lets the programmer

separate the functionality completely from the layout, yielding code that is both easy to read

and to extend with more functionality. JSP also have very good built in support to work with

JavaBeans. This is very useful when creating more complex classes, and lets the programmer

test out the JavaBeans in the developer environment of his choice before putting it into the

web interface. It can be challenging to debug web-interfaces, but having the advantages

described above, it is not a hinder in the development. Non-functional requirement NF-3

states that already built in technology in Argos should be chosen instead of writing new

technology that does the same. In Argos there is no real convention for creating user

interfaces. But since Argos already have support for JSP, NF-3 points us in that direction. In

retrospect I don’t think much time was saved or wasted by choosing JSP over Swing, but the

solution of using JSP is more elegant, since it builds on what is already in Argos. A web-

based interface can also be accessed from any computer on the Internet, which enables the

user to work remotely against the service.

7.4.2.3 Scriptaculous was the library chosen to get drag-and-drop functionality, according to

requirement DU-7, in the web-interface. It was obvious that some kind of JavaScript should

be used to get drag-and-drop in JSP, and Scriptaculous gives exactly that in a few lines of

code. There are a few libraries like Scriptaculous available for free online (e.g. DragLib,

WebToolkit, Django). The advantage with Scriptaculous is that it only takes a couple of lines

of code to get all the functionality needed, and that they had several examples on their web-

page that was close to what was needed in this project. Non-functional requirement NF-2 says

that the simplest solution should be picked and in this case Scriptaculous appeared to be the

simplest.

66

7.5 Remaining work

There was some functionality that there wasn’t time to finish implementing.

Remaining work Description

Hibernate There was originally a plan to use Hibernate to give the rule engine

persistence according to requirement DS-6. In the end it was decided

that it wasn’t necessary for demonstrating the core functionality of the

system, even if it’s necessary to have in real practical use.

Input for

actions/facts

As the system is now, only fact-methods an action-methods without

parameters can be used. The system needs a popup window to input

the parameter in the user interface, like the functionality found in

Argus.

67

8 CONCLUSION

8.1 Achievements

The problem definition in chapter 1.2 states:

The main goal of this work is to develop a system service for Argos that combines the

rule engine with the existing functionality to get data from sensors to an integrated

system. The goal is that it should be simpler to create services that combine sensors and

rules in a natural program flow. There will also be developed user service in Argos that

offers access to the to the Rule engine trough a simplified GUI.

During this thesis we have developed a prototype of the system service described in the

problem definition above. The !!Drools system service offers an API to other components so

that they can add and remove rules and add facts to a running rule engine. To get the data

from a sensor, the facts are input from other components in the rule engine. This covers both

components getting input from sensors and any other kind of components that returns some

value.

The Rule Editor user service offers a simple tool for inputting rules into the rule engine

running in !!Drools. The user can pick from lists of components methods to use as facts in the

rule expressions and from a separate list of component methods to specify the action that is

triggered when a rule fires. We now get a very natural flow of data trough the system. We use

a fact-component already in the system to get the input. The rule engine in the !!Drools

component can use the action to trigger the action-component that gives the user some output.

8.2 Future work

In this section we will present some areas in which there could be interesting to do some

future work on the system. See Table 8.1 for a list over suggestions for future work.

68

Future work Description

Set up the Lifestyle service with

the Rule editor

The Lifestyle service that has been described in this

thesis has only been partially implemented. It needs more

components to give it facts and the SMS component for

Argos has to be supported by the Rule Editor in full.

Support more drools functionality The system component should be extended to support a

bigger part of the functionality that Drools offers. The

Rule Editor can also be extended to support the same

functions that the system component has been extended

with.

Simplify input further in system

component

The functionality in the rule editor that compiles the rule

could probably be moved to the system component. This

method would take two facts one operator and one action

as input and compile this to a String that is put into the

rule base as a new rule.

Combine Drools graphical input

tool with system component

The newest version of Drools is bundled with a graphical

input tool that is more complex and generic then the one

created in this thesis. It would be interesting to design

and set up a workflow where that tool is used to create

the rules.
Table 8.1: Future work

8.3 Conclusion

Throughout this thesis a system service and a user service for Argos have emerged. We have

showed how the Rule Editor user service lets a user graphically orchestrate the program flow

of a new service by using already existing components and the !!Drools system component.

We have also looked into creating a Lifestyle service using the rule editor.

We have learned about how Rule engines work, and how to write rules in the drl rule

language. By designing and implementing components for Argos we are also left with a much

deeper understanding of Argos and its component model. Taking advantage of the built in

69

features and components from 3rd party developers can cut down on the development time of

projects.

To work trough the process of creating software from the conception phase until the result

you see today have also been very rewarding. The Scrum method of developing software

gives us a good tool to manage projects. And even if it was done solo this time I feel better

prepared to go out into the industry and work in scrum teams after this experience.

70

71

9 BIBLIOGRAPHY

1. Getting Started With the Java Rule Engine API (JSR 94): Toward Rule-Based

Applications. http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html. [Online]

2. Jboss Rules factsheet. http://www.jboss.com/pdf/jboss_rules_fact_sheet_04_07.pdf.

[Online]

3. Eriksen, Dan Peder. Argos Container, Core and Extension Framework. s.l. : University of

Tromsø, 2007.

4. Schwaber, Ken and Beedle, Mike. Agile Software Development with Scrum. 2002.

5. Takeuchi, Hirotaka and Nonaka, Ikujiro. The New New Product Development Game.

http://harvardbusinessonline.hbsp.harvard.edu/b02/en/common/item_detail.jhtml?id=86116.

[Online] Jan-Feb 1986.

6. Scrum (development) - Wikipedia. http://en.wikipedia.org/wiki/Scrum_(development).

[Online] 2007.

7. Svendsen, Gunvald Bendix. Lifestyle change by divine intervention. 2007.

8. FACTS - A Rule-based Middleware Architecture for Wireless Sensor Networks. Terfloth,

Kirsten, Wittenburg, Georg and Schiller, Jochen. s.l. : IEEE, 2006.

9. Marked research about lifestyle tools. Almås-Sørensen, Live. s.l. : Telenor R&I, 2007.

10. Mobile Persuasion: 20 Perspectives on the Future of Behavior Change. Fogg, BJ and

Eckles, Dean. s.l. : Stanford Captology Media, 2007.

11. Ubiquitous Computing Technology for Just-in-Time Motivation of Behavior Change.

Intille, Stephen S. 2003.

12. Perry, J. Steven. Java Management Extensions. 2002.

13. Hibernate Reference Documentation.

http://www.hibernate.org/hib_docs/v3/reference/en/html/. [Online]

14. Rules-based Programming with JBoss Rules/Drools.

http://www.codeodor.com/index.cfm/2007/9/10/Rules-based-Programming-with-JBoss-

RulesDrools/1600. [Online] 2007.

15. Friedman-Hill, Ernest. Jess in Action. s.l. : Manning Publication Co., 2003.

16. Proctor, Mark. Drools Documentation. [Online]

17. Drools - Wikipedia. http://en.wikipedia.org/wiki/JBoss_Rules. [Online] Dec 2007.

18. Forward chaining - Wikipedia. http://en.wikipedia.org/wiki/Forward_chaining. [Online]

Dec 2007.

72

19. JavaServer Pages Technology. http://java.sun.com/products/jsp/. [Online]

20. Asyncronous JavaScript Technology and XML (AJAX).

http://java.sun.com/developer/technicalArticles/J2EE/AJAX/. [Online]

21. Scriptaculous documentation. http://wiki.script.aculo.us/scriptaculous/. [Online]

22. Java Annotations.

http://java.sun.com/javase/6/docs/technotes/guides/language/annotations.html. [Online]

23. Open Source Rule Engines in Java. http://java-source.net/open-source/rule-engines.

[Online]

24. Creating a GUI with JFC/Swing. http://java.sun.com/docs/books/tutorial/uiswing/.

[Online] Sun Microsystems, Inc., 2007.

	1 INTRODUCTION
	1.1 Background
	1.2 Problem Description
	1.3 Specifications and limitations
	1.4 Method and approach
	1.4.1 Scrum

	1.5 Applying the system to a real task
	1.5.1 The lifestyle project
	1.5.2 The experiment
	1.5.3 Using the rule editor to create this service

	2 RELATED WORK
	2.1 Combining rule engines with sensors
	2.2 Lifestyle
	2.2.1 Major lifestyle problems
	2.2.2 Problems with traditional intervention programs
	2.2.3 Mobile persuasion
	2.2.4 Some lifestyle tools available

	3 REQUIREMENTS
	3.1 Drools system component
	3.2 Drools user component
	3.3 Real life application
	3.4 Non-Functional requirements

	4 TECHNOLOGY
	4.1 Argos
	4.1.1 Component model of Argos
	4.1.2 Java Management Extensions (JMX)
	4.1.3 Argos system services
	4.1.4 Argus

	4.2 Rules engines
	4.2.1 Declarative programming
	4.2.2 Rete algorithm

	4.3 Drools
	4.4 JSP
	4.5 AJAX with Scriptaculous

	5 DESIGN
	5.1 !!Drools system service
	5.1.1 Drools role in Argos

	5.2 !!DroolsComponent
	5.2.1 Annotations to specify facts and actions
	5.2.2 XML file to specify facts and actions

	5.3 User services in general
	5.4 Rule Editor user service
	5.4.1 The graphical user interface (GUI)

	6 IMPLEMENTATION
	6.1 Drools system component
	6.1.1 !!Drools
	6.1.2 !!DroolsComponent

	6.2 RuleEditor
	6.2.1 User component with web-based interface
	6.2.2 Component Icon

	7 EVALUATION
	7.1 Functional requirement evaluation
	7.2 Non-Functional requirement evaluation
	7.3 Method - Scrum
	7.4 Technical solutions
	7.4.1 Rule Engines
	7.4.2 Graphical User Interface

	7.5 Remaining work
	Hibernate

	8 CONCLUSION
	8.1 Achievements
	8.2 Future work
	8.3 Conclusion

	9 BIBLIOGRAPHY

