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 9 

The distribution of ice rafted detritus (IRD) is studied in three cores from the western 10 

Svalbard slope (1130–1880 m water depth, 76–78° N) covering the period 74–0 ka. The aim 11 

is to provide new insight in the dynamics of the Svalbard-Barents Sea Ice Sheet during 12 

Marine Isotope Stages (MIS) 4–1 to get a better understanding of ice-sheet interactions with 13 

changes in ocean circulation and climate on orbital and millennial (Dansgaard-Oeschger 14 

events of stadial-interstadial) time scales. The results show that concentration, flux, 15 

composition and grain-size of IRD vary with climate and ocean temperature on both orbital 16 

and millennial time scales. The IRD consists mainly of fragments of siltstones and mono-17 

crystalline transparent quartz (referred to as “quartz”). IRD dominated by siltstones has a 18 

local Svalbard-Barents Sea source, while IRD dominated by quartz is from distant sources. 19 

Local siltstone-rich IRD predominates in warmer climatic phases (interstadials), while the 20 

proportion of allochthonous quartz-rich IRD increases in cold phases (glacials and 21 

stadials/Heinrich events). During the Last Glacial Maximum and early deglaciation at 24–16.1 22 

ka, the quartz content reached up to >90%. In warm climate, local iceberg calving apparently 23 

increased and the warmer ocean surface caused faster melting. During the glacial maxima 24 
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(MIS 4 and MIS 2) and during cold stadials and Heinrich events, the local ice sheets must 25 

have been relatively stable with low ablation. During ice retreat phases of the MIS 4/3 and 26 

MIS 2/1 transitions, maxima in IRD deposition were dominated by local coarse-grained IRD. 27 

These maxima correlate with episodes of climate warming, indicating a rapid, stepwise retreat 28 

of the Svalbard-Barents Sea Ice Sheet in phase with millennial-scale climate oscillations. 29 
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The glacial climate was unstable and oscillated on millennial time scales between cold 39 

(Greenland stadial) and warm (Greenland interstadial (GIS)) climate (Bond et al. 1993; 40 

Dansgaard et al. 1993), the so-called Dansgaard-Oeschger events. Stadial-interstadial cycles 41 

were characterized by rapid changes in the activity of ice sheets, the extent and distribution of 42 

sea ice and ocean circulation in and around the North Atlantic. Icebergs and sea ice are 43 

thought to have played a significant role in modulation of past ocean circulation and climate 44 

on both orbital and suborbital time scales (e.g. Broecker et al. 1990; Alley & MacAyeal 1994; 45 

Gildor & Tziperman 2001; Zhang et al. 2014).  46 

Sand-sized mineral grains deposited in deep-ocean hemipelagic sediments are an 47 

indication of presence of sea-ice and/or icebergs and are labeled Ice Rafted Detritus (IRD). 48 

The IRD is most often used as a proxy for ice-sheet calving activity (e.g. Ruddiman 1977; 49 

Heinrich 1988; Bond et al. 1993). The distribution of IRD in the central and eastern North 50 

Atlantic indicates almost synchronous calving from the Fennoscandian Ice Sheet (Fronval et 51 

al. 1995; Moros et al. 2004), the Icelandic Ice Sheet (Bond et al. 1992; 1993, 1997, 1999; 52 

Bond & Lotti 1995; Lackschewitz et al. 1998; van Kreveld et al. 2000) and probably also the 53 

Greenland Ice Sheet (Lackschewitz et al. 1998; van Kreveld et al. 2000) with increased 54 

calving during cold stadial phases. During the longer lasting Greenland stadials (called 55 

‘Heinrich events’), the Laurentide Ice Sheet launched armadas of icebergs into the North 56 

Atlantic. Heinrich events (H7–H1) occurred at 6–10 ka intervals during MIS 4–MIS 2 (e.g. 57 

Heinrich 1988; Broecker et al. 1992; Bond et al. 1993; Alley & MacAyeal 1994). A 58 

conceptual model based on five detailed records of IRD from the British margin showed high 59 

IRD flux during the cold stadials/Heinrich events and sharp increases in the flux during the 60 

rapid warmings to the interstadials (Scourse et al. 2009). 61 

Here, we present a detailed study of the distribution and composition of IRD from the 62 
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western Svalbard slope, northeastern Greenland Sea in the polar North Atlantic in centennial 63 

resolution in three core records with detailed age models (piston cores JM03-374PC, JM03-64 

373PC2 and JM04-025PC from 1130 m, 1485 m, and 1880 m water depth, respectively). 65 

Together, the cores provide long sequences of undisturbed sediments dating back to 74 ka. 66 

We study the concentration, flux, mineral composition and grain-size of the IRD. Combined 67 

with previously published data of sedimentation rates (Rasmussen et al. 2007; Jessen et al. 68 

2010), we investigate the calving activity of the western part of the Svalbard-Barents Sea Ice 69 

Sheet during the glacial build-up phase in early MIS 2 and during peak glaciations of the shelf 70 

in MIS 4 and late MIS 2. Further, we study the impact of changes in surface water 71 

temperature on the concentration, grain-size, mineral composition and provenance of the IRD 72 

and ice sheet activity in relation to millennial-scale climate changes from warm interstadials 73 

to cold stadials and Heinrich events. The aim is to reconstruct the activity of the Svalbard-74 

Barents Sea Ice Sheet on orbital and millennial time scales to improve the understanding of 75 

timing and patterns of ice-sheet retreat and advance in relation to both gradual and abrupt 76 

oceanographic and climatic changes. 77 

 78 

Physical setting 79 

 80 

Glacial settings and potential IRD sources 81 

 82 

Today, 60% of the Svalbard archipelago is covered by glaciers. In MIS 4 and 2, the Svalbard-83 

Barents Sea region was fully glaciated (e.g. Hebbeln &Wefer 1997; Mangerud et al. 1998; 84 

Vogt et al. 2001). The major part of the Svalbard-Barents Sea Ice Sheet was marine-based and 85 

located on the present-day seafloor of the Barents Sea and on the shelf off Svalbard (e.g. 86 
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Siegert & Dowdeswell 2002, 2004; Lambeck 2004; Ottesen et al. 2005, 2007). The last peak 87 

glaciation occurred at 24 ka and the retreat of the ice sheet began shortly thereafter (e.g. 88 

Jessen et al. 2010 and references therein; Hormes et al. 2013; Patton et al. 2015). 89 

The IRD deposited on the western Svalbard slope consists mainly of fragments of 90 

siltstones and mono-crystalline quartz (Goldschmidt et al.  1995) (hereafter referred to as 91 

“quartz”). The bedrock and most of the sediments on the seafloor of the Barents Sea consist of 92 

fine-grained sedimentary rocks (Kelly 1988). The shallow Spitsbergen Bank between 93 

Spitsbergen and Bjørnøya (Fig. 1) is a well-known local source of siltstones including black 94 

shales dating from the Jurassic (Edwards 1975; Kelly 1988; Goldschmidt et al. 1995; 95 

Andersen et al. 1996; Vogt et al. 2001). Thus, dark coloured siltstones including black shales 96 

are used as indicators for icebergs coming from Svalbard and the Barents Sea (Spielhagen 97 

1991; Wagner & Henrich 1994; Andersen et al. 1996). Hebbeln & Wefer (1997) distinguished 98 

between three main source areas of IRD in the Fram strait: i) the Svalbard-Barents Sea Ice 99 

Sheet, ii) the Fennoscandian Ice Sheet and iii) the shelves of the Arctic Ocean. 100 

 101 

Oceanographic setting 102 

 103 

The western Svalbard continental slope is draped with contouritic sediments deposited by the 104 

relatively strong bottom currents flowing along the western Svalbard margin (Eiken & Hinz 105 

1993; Howe et al. 2008; Rebesco et al. 2014). Today, Atlantic surface Water flows northward 106 

into the Arctic Ocean together with Greenland Sea Intermediate Water (Fig. 1) (Hopkins 107 

1991). The inflow to the Arctic Ocean through the eastern part of the Fram Strait is counter-108 

balanced by outflow of sea-ice loaded Polar surface water of the East Greenland Current 109 

together with return Atlantic water and Arctic Ocean Deep water in the western Fram Strait 110 



6 
 

 

(e.g. Eldevik et al. 2009). In the northeastern Fram Strait, the Atlantic water submerges and 111 

flows into the Arctic Ocean as a warm (>2 °C) subsurface current under a cold, fresh and sea-112 

ice covered layer of Polar surface water (<-1 °C).  During the Last Glacial Maximum the 113 

circulation pattern of the western Svalbard slope was comparable to the present day, but with 114 

colder Atlantic water at the surface (Rasmussen et al. 2007). During the last deglaciation from 115 

North Atlantic Heinrich Event 1 and to the Early Holocene, Atlantic water flowed along the 116 

slope, but as a subsurface current below cold polar meltwater (Rasmussen et al. 2007; 117 

Ślubowska-Woldengen et al. 2007). In the Early Holocene at 10.2±0.2 ka, Atlantic water re-118 

appeared at the surface west of Svalbard. 119 

  120 

Material and methods 121 

 122 

Three high-resolution piston cores were taken from the western Svalbard slope during cruises 123 

with RV Jan Mayen (now RV Helmer Hanssen) in 2003 and 2004: JM03-373PC2 (Rasmussen 124 

et al. 2007; Jessen et al. 2010), JM03-374PC (Jessen 2005), and JM04-025PC (Jessen et al. 125 

2010; Jessen & Rasmussen 2015) (Fig. 1). Core JM03-373PC was taken from Storfjorden Fan 126 

at 1485 m water depth. The core contains a debris flow deposit dated to 24 ka at the bottom 127 

(Rasmussen et al. 2007; Jessen et al. 2010). Core JM03-374PC is located north of Storfjorden 128 

Fan at 1130 m water depth. This core is the most proximal to the former ice sheet on Svalbard 129 

of the three studied cores. Core JM04-025PC is located at 1880 m water depth at the lower 130 

part of the Isfjorden Fan. This core is the most ice-distal of the three investigated cores.  131 

Wet bulk density was measured with a GEOTEK Multi Scanner Core Logger before 132 

opening of the cores (Jessen et al. 2010). Core JM03-373PC2 has previously been AMS 14C 133 

dated and investigated for the distribution of benthic and planktic foraminiferal faunas, 134 
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concentration of IRD >150 μm, stable isotope composition of shells of benthic and planktic 135 

foraminifera (Rasmussen et al. 2007), and IRD >500 μm (Jessen et al. 2010). The upper part 136 

of core JM04-025PC (30–0 ka) has been investigated for AMS 14C dates, magnetic 137 

susceptibility and concentration of IRD >500 μm (Jessen et al. 2010). The whole core has 138 

been studied for stable isotope values and grain-size of sortable silt (Jessen & Rasmussen 139 

2015). For core JM03-374PC, AMS 14C dates have been published by Jessen et al. (2010) and 140 

IRD concentrations in the size fractions >150 μm, >250 μm and >500 μm and proportion of 141 

quartz grains were treated in Jessen (2005).  142 

Samples were taken in 2 or 2.5 cm (cores JM04-025PC, JM03-374PC) or 5 cm 143 

intervals (core JM03-373PC) in 1-cm thick slices, weighed, dried and weighed again and 144 

subsequently wet sieved over mesh-sizes 63 and 100 μm (Jessen 2005; Rasmussen et al. 145 

2007; Jessen et al. 2010). For the present study of core JM04-025PC, the residues >100 µm 146 

were dry sieved into grain-size fractions 150–250 µm, 250–500 µm, and >500 µm. The 147 

fractions 250–500 µm and >500 µm were counted on a picking tray under a binocular 148 

microscope. At least 300 grains were counted in each sample. In samples with less than ~500 149 

grains all grains were counted. Mineral classes were determined in the size-fraction 250–500 150 

µm. Twelve different mineral classes were quantified, but in the present study we only focus 151 

on the two dominant mineral classes, quartz and siltstones. The % quartz and % siltstones 152 

were calculated relative to total IRD content in a sample. Thereafter, the IRD of the 100–500 153 

μm size fraction was dry sieved over a 150-µm mesh-size sieve and the IRD counted in the 154 

fraction 150–500 µm. For IRD in cores JM03-374PC and JM03-373PC2, the same procedures 155 

for counting as in core JM04-025PC were followed. IRD concentrations (no. of mineral 156 

grains/g) are given relative to dry weight. The IRD flux (no. grains cm-2 ka-1) is calculated 157 

using: IRD counts in no. grains g-1 dry weight x dry bulk density (g cm-3) x sedimentation rate 158 
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(cm ka-1). 159 

Core JM03-373PC is presented on the age model from Jessen et al. (2010) re-160 

calibrated using the calibration program Calib7.02 and the Marine13 database (Stuiver & 161 

Reimer 1993; Reimer et al. 2013). Data from JM03-374PC and JM03-373PC are likewise 162 

presented with re-calibrated 14C ages (Table 1; see Section ‘Age control’). A reservoir age 163 

correction of -405 years inherent in the calibration program was used. 164 

 165 

Grain-size of IRD 166 

 167 

A grain-size ratio was calculated to perform a first order quantitative measure of changes in 168 

the grain-size of the IRD. The ratio between the counts of IRD in two different grain-size 169 

fractions, >500 µm and 150–500 µm was calculated for each sample and normalized to the 170 

average of the core. The grain-size of 500 µm was chosen as the cut-off size, because IRD 171 

coarser than 500 µm is generally considered to be mainly iceberg rafted (e.g. Dowdeswell & 172 

Dowdeswell 1989; Pfirman et al. 1989; Hebbeln 2000). Sea ice can transport sediments of 173 

any grain-size (e.g. Bischof 2000), however, iceberg-rafted IRD is on average more coarse 174 

grained than sea-ice rafted IRD (e.g. Dowdeswell & Dowdeswell 1989): 175 

 No. >500 µm x no. (150–500 µm)sample-1     (1) 176 
No. >500 µm x no. (150–500 µm)average-1 177 

A grain-size ratio >1 indicates a relatively coarse-grained sample with a higher 178 

proportion of coarse-grained IRD than the normal for the core, while a grain-size ratio <1 179 

indicate a relatively fine-grained sample. A high grain-size ratio should indicate a higher 180 

proportion of iceberg-rafted IRD than the normal, and vice versa, a low grain-size ratio should 181 

indicate a high proportion of sea-ice rafted grains.  182 

In addition, in core JM04-025PC, the grain-size of IRD is determined from end-183 
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member modelling based on the counts in the two grain-size fractions >500 µm and 150–500 184 

µm. The counts of the two grain-size classes are plotted in a scatter-plot and a coarse-grained 185 

end-member and a fine-grained end-member is determined from the grouping of the data 186 

points (see Section ‘Fine-grained versus coarse-grained IRD’). Only samples with at least 20 187 

grains of IRD >500 μm are used to define end-members.  188 

 189 

Results and interpretations 190 

 191 

Age control 192 

 193 

The age models of cores JM03-373PC and JM04-025PC have been published before in Jessen 194 

et al. (2010) and Jessen & Rasmussen (2015), respectively. The age models for all three cores 195 

are based on calibrated AMS 14C dates, magnetic susceptibility (MS), lithology and MS tie-196 

points 1–9 defined by Jessen et al. (2010) (Fig. 2; Table 1). In addition, correlation of the 197 

δ18O records (Fig. 3) and the location of the Laschamps geomagnetic excursion in cores 198 

JM04-025PC and JM03-374PC is used (Snowball et al. 2007) (Figs 2, 3). One extra MS tie-199 

point has been defined in all three records, MS tie-point 6.1 (Fig. 2), by a distinct decline in 200 

magnetic susceptibility correlating with a peak in concentration of IRD and a coarsening of 201 

the IRD seen as a grain-size ratio >1 (Fig. 4). The age model of JM03-373PC sets the age of 202 

the tie-point to 20.17±0.170 ka (Fig. 4; Table 1). In general, linear sedimentation rates 203 

between dating points and tie-points were assumed except between tie-points 6 and 7, where 204 

the sedimentation rate changes at c. 20 ka (Jessen et al. 2010) (Fig. 5).  205 

After establishing the initial age model, the part of the age model older than 24 ka in 206 

core JM04-025PC has been tied to the GICC05 ice-core age scale based on the grain-size of 207 
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sortable silt and the δ18O record (Jessen & Rasmussen 2015) (Fig. 6). North Atlantic Heinrich 208 

events 6 and 1 (H6 and H1) that occur at isotope stage transitions MIS 2/1 and MIS 4/3, 209 

respectively are particularly well-defined in marine records (e.g. Bond et al. 1993). In core 210 

JM04-025PC, these two events stand out by very low δ18O values in both planktic and benthic 211 

foraminifera (Rasmussen et al. 2007; Rasmussen & Thomsen 2013) (Fig. 3). Heinrich Events 212 

H7, H6, H5.2, H5, H4, H3, H2 and H1, stadials and Dansgard/Oeschger events are identified 213 

mainly based on the correlation between the sortable silt record and the NorthGRIP ice core 214 

δ18O record together with excursions to low planktic δ18O values (Jessen & Rasmussen 2015) 215 

(Figs 3, 6). The tuning was done to account for the possibility of changing sedimentation rates 216 

along with the changing climate on both orbital and millennial time scales. In this study in 217 

core JM04-025PC, we use the GICC05 age scale for the part older than 30 ka, and the re-218 

calibrated magnetic susceptibility chronology adapted from Jessen et al. (2010) for the part 219 

younger than 30 ka.  220 

Two AMS 14C dates from core JM05-031GC have been transferred to JM03-374PC 221 

based on correlation of the magnetic susceptibility records and the benthic oxygen isotope 222 

records of the two cores (Figs 2, 3). By linear interpolation the age of the bottom of core 223 

JM03-374PC is calculated to c. 45.8 ka. The part of core JM03-374PC older than 30 ka has 224 

been graphically correlated to JM04-025PC based on magnetic susceptibility and the 225 

concentrations and grain-sizes of IRD (Fig. 6). According to this, core JM03-374PC reaches 226 

back to c. 47.5 ka on the GICC05 age scale. The age estimate based on the correlation to the 227 

age model of core JM04-025PC is not significantly different from the initially calculated age 228 

of 45.8 ka. Thus, core JM03-374PC is also tied to the GICC05 ice core chronology. 229 

 230 

Distribution of IRD: General trends in concentration, size and composition 231 
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 232 

In core JM04-025PC, quartz and siltstones constitute 87% of all counted grains (Figs 7B,C, 233 

8A). Siltstones and quartz also dominate the IRD in cores JM03-373PC and JM03-374PC 234 

(Jessen 2005). In the two glacial stages (MIS 4 and MIS 2, 74–63 ka and 30–16.1 ka, 235 

respectively), the IRD concentration is relatively high (Fig. 7A). In MIS 2 in core JM04-236 

025PC, the IRD mainly consists of quartz, with percentages exceeding 90% (Fig. 7B) (and 237 

70% in JM03-374PC (Jessen 2005)). Increasing IRD concentrations generally coincide with 238 

fining of the IRD (Fig. 7A,D), except at c. 24 ka, where IRD is abundant, coarse grained, and 239 

rich in siltstones. In MIS 4, the IRD was mainly fine-grained and less rich in quartz compared 240 

to MIS 2. Quartz is still more abundant than siltstones with the exception of two short-lived 241 

peaks in % siltstones at c. 69 and 64 ka (Fig. 7C,D). 242 

In MIS 3 (60–30 ka BP), the concentration of IRD is very variable. The composition 243 

and grain-size of the IRD vary on 1–2 ka time scales (Fig. 8B,C). Between 56 and 46 ka, the 244 

IRD concentration is higher, and the IRD coarser grained and richer in siltstone fragments 245 

than between 46 and 30 ka, when the IRD is mainly fine grained, of generally lower 246 

concentration and rich in quartz (Fig. 7D).  247 

The deglaciations (MIS 4/3 and MIS 2/1 transitions at 56–46 and 16.1-c. 10.2 ka, 248 

respectively) are characterized by deposition of relatively coarse-grained, often siltstone-rich 249 

IRD (Fig. 7B,D). The IRD concentration during the MIS 2/1 transition was lower than during 250 

MIS 2, but because the sedimentation rate was 3.6 to 15 times higher during the deglaciation 251 

(MIS 2/1 transition) than during MIS 2, the flux of IRD was in fact on average four times 252 

higher (Jessen et al. 2010). One high peak in concentration of siltstone-rich and coarse-253 

grained IRD is seen around 61 ka in the MIS 4/3 transition interval followed by several 254 

similar peaks in early MIS 3 (56–46 ka) (Fig. 7A,C,D). Both the MIS 4/3 and MIS 2/1 255 
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transitions on the western Svalbard slope are characterized by low flux and concentrations of 256 

foraminifera, probably because of the high sedimentation rates creating difficult 257 

environmental conditions (see Rasmussen et al. 2007, 2014). 258 

In the earliest Holocene, between 11.7 and 10.2 ka, the concentration and flux of IRD 259 

are high similarly to the deglaciation and with a high content of coarse-grained siltstones. A 260 

minimum in the concentration of IRD occurs in the Early Holocene (10.2–8.5 ka). Thereafter, 261 

the IRD concentration increases steadily towards the Late Holocene (Figs 4E, 7A).  262 

 263 

IRD provenance 264 

  265 

Evidence from mass-transport deposits. – All three cores contain mass-transport deposits 266 

dating to c. 24 ka (Rasmussen et al. 2007; Jessen et al. 2010) (Figs 2–5). These sediments 267 

have been in direct or close contact with the local ice sheet (e.g. Vorren et al. 1989; Vorren & 268 

Laberg 1997; Elverhøi et al. 1995). The sand grains can thus provide evidence for the 269 

composition and grain-size of locally derived material and can serve as a form of ‘ground 270 

truthing’ for the distinction between local IRD and IRD from elsewhere.   271 

The mass-transported sediments in core JM04-025PC, the most ice-distal of the cores, 272 

contain more than 45% siltstones (Figs 7C, 8A). In core JM03-374PC, the ice-proximal 273 

record, the siltstone content reaches up to >80% (Jessen 2005). In JM03-373PC from 274 

Storfjorden Fan, the coarse material is dark coloured (Rasmussen et al. 2007; Jessen et al. 275 

2010) and consists mainly of black shales. Andersen et al. (1996) in cores from the western 276 

Svalbard margin, found a generally higher content of “dark mudstones” in the upper slope 277 

records closer to land than on the lower slope further offshore. The content in the sediments of 278 

black shales decreases towards Greenland, which also points to that Svalbard and the Barents 279 
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Sea are the main source (Spielhagen 1991).  280 

 281 

Local versus allochthonous IRD. – Samples from the mass-transport deposit and samples 282 

from the MIS 4/3 and MIS 2/1 transitions have high proportions of siltstones. We use the 283 

lowest observed amount of siltstones in samples of mass-transported grains, 45%, as a cut-off 284 

value for a local end-member of siltstones (Fig. 8A).  285 

In JM04-025PC, the quartz content occasionally exceeds 90% (Fig. 8A). Even though 286 

outcrops of Lower Cretaceous sandstones with local quartz percentages exceeding 90% are 287 

found in Svalbard, the average quartz percent for these stratigraphic units is considerably 288 

lower, <70% (e.g. Maher et al. 2004). They are mostly located in southeastern Svalbard 289 

facing Storfjorden (e.g. Maher et al. 2004; Grundvåg & Olaussen 2017) (Fig. 1B). Triassic 290 

sandstones also occur in Svalbard, but with lower quartz percentages than the Cretaceous 291 

deposits. Highest quartz content is found in Triassic deposits of northern Norway (Lundschien 292 

et al. 2014). Thus, there is no likely large local source from Svalbard for such high quartz 293 

content and IRD with a very high content of quartz is considered allochthonous IRD. We 294 

note, that the proportion of quartz is lowest in the most ice-proximal core JM03-374PC, 295 

which except for a few peaks reaching 70%, generally remains below 50–60% quartz (Jessen 296 

2005; see also Discussion). Quartz-rich IRD may originate from Scandinavia (e.g. Kolla et al. 297 

1979; Leinen et al. 1986) and IRD in cores from the Vøring Plateau off western Norway are 298 

reported to consist mainly of quartz (Dahlgren & Vorren 2003). Quartz percentages above 299 

90% in the >250 µm size fraction have been observed in records from the Arctic Ocean, 300 

where the shallow shelf of the Kara Sea area is suggested as the main source together with the 301 

small Ellef Ringnes Island north of Canada (Bischof & Darby 1997). Thus, ice entering the 302 

Fram Strait from the Arctic Ocean is a potential source for very quartz-rich IRD west of 303 
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Svalbard.  304 

High quartz percentages are accompanied by low siltstone percentages and the 305 

allochthonous end-member is calculated from low abundance of siltstones (Fig. 8A). The cut-306 

off value for 100% allochthonous IRD is arbitrarily set at 5% siltstones, because some 307 

fragments of siltstones are likely to originate from foreign sources. Thus, samples with ≤5% 308 

siltstones are defined as 100% allochthonous. Samples with ≥45% siltstones are defined as 309 

100% local. The amount of allochthonous versus local IRD in samples with siltstone content 310 

between 5% and 45% are calculated as a linear mixing product of the two end-members. 311 

 312 

Fine-grained versus coarse-grained IRD. – A scatter plot of counts of grains in the two size 313 

fractions >500 µm and 150–500 µm show two groups of samples that differ from the 314 

majority. One group of samples shows relatively high amount of IRD >500 µm relative to 315 

IRD in the size-fraction 150–500 µm, and one group of samples shows a relatively high 316 

amount of IRD 150–500 µm relative to IRD >500 µm (Fig. 8B). From these two clusters of 317 

samples, we define two end-members, a coarse-grained end-member and a fine-grained end-318 

member. The coarse-grained end-member is calculated from the distribution of grains in 319 

samples of the mass-transport deposit, because some of these are among the coarsest material 320 

in the cores and group in the upper left part of the diagram (Fig. 8B). The fine-grained end-321 

member is primarily determined from a cluster of data points in the lower right part of the 322 

diagram with grain-size ratio <0.5. A sample plotting on or below the fine-grained end-323 

member is treated as 100% fine grained, samples plotting on or above the coarse-grained end-324 

member are treated as 100% coarse grained. Samples plotting between the end-members are 325 

described as a linear mixing product of the two end-members. 326 

 327 
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A four end-member model for IRD. – By combining the two end-member models, the IRD 328 

record can be divided into four end-members (Fig. 9A): 1. Local coarse grained, 2. Local fine 329 

grained, 3. Allochthonous coarse grained, and 4. Allochthonous fine grained (Fig. 9B–E).  330 

 331 

Discussion 332 

 333 

Orbital scale variations in IRD deposition and activity of the Svalbard-Barents Sea Ice Sheet 334 

 335 

Vogt et al. (2001) noted that the two deglaciations of the Svalbard-Barents Sea Ice Sheet at 336 

the MIS 4/3 and MIS 2/1 transitions were very similar. This is also apparent in the record of 337 

JM04-025PC with high IRD concentrations during deglaciations and high input of local 338 

coarse-grained IRD (Figs 9A,D, 10A,D). As also observed by Vogt et al. (2001), the glacial 339 

stages MIS 4 and MIS 2 likewise show clear similarities in the IRD content and are 340 

characterized by high input of allochthonous, fine-grained IRD (Figs 9C,D, 10C,D). Based on 341 

these and other similarities, we divide the records into three general time intervals: i) Ice-sheet 342 

advance and peak glaciations (MIS 4 and MIS 2), ii) Intervals of glacial retreat (MIS 4/3 and 343 

MIS 2/1 transitions and early MIS 3), and iii) Intervals with a small-sized ice sheet, when the 344 

Barents Sea and most of the Svalbard fjords were free or nearly free of ice (the Holocene and 345 

mid-late MIS 3). One extreme event at c. 24 ka with down-slope mass wasting and intense ice 346 

rafting occurs within MIS 2 (see Section ‘The 24 ka event’). 347 

 348 

Ice-sheet advance and peak glaciation (including H6 and H1), 74–56 ka and c. 30–16.1 ka. – 349 

At c. 30 ka, a high peak in local coarse-grained IRD is seen (Fig. 9D). Earlier reconstructions 350 

of advance of the Svalbard-Barents Sea Ice Sheet indicate that it reached the coast around this 351 
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time (Andersen et al. 1996; Mangerud et al. 1998). After 30 ka, a low percentage of local IRD 352 

(Fig. 10D,E) and low sedimentation rates (Jessen et al. 2010) point to low local calving 353 

activity or that the locally calved-off icebergs melted elsewhere. Between 24 ka and 16.1 ka 354 

local IRD was nearly absent (Figs 9D,E, 10D,E). Generally high δ18O values point to very 355 

limited meltwater production from the local ice sheet (cf. Bond et al. 1993) (Fig. 3A,B). The 356 

presence of allochthonous, coarse-grained IRD (Fig. 9B) shows that icebergs were present 357 

and melted over the slope. Thus, the absence of local, coarse-grained IRD either reflects little 358 

local iceberg production during the ice-sheet advance or that icebergs did not reach as far as 359 

the site of JM04-025PC. In core JM03-374PC from 1130 m water depth, generally high 360 

quartz percentages with peaks of up to 60–70% also point to mainly allochthonous IRD at 24–361 

16.1 ka (Fig. 11B). Between 28.5 and 26 ka low quartz percentages in JM03-374PC point to 362 

some deposition of local IRD, but with very low flux (Fig. 11A). In core JM03-373PC, the 363 

concentration of IRD >500 μm is continuously low at 24–16.1 ka (Fig. 4A), while the peaks 364 

in IRD >150 μm mainly consist of quartz (Jessen 2005). IRD from the three cores together 365 

point toward low local iceberg production during MIS 2. Similarly, during MIS 4 at 74–63 ka 366 

local, coarse-grained IRD is almost absent (Figs 9E, 10E) and planktic δ18O values are 367 

generally high (Fig. 3B) indicating little local iceberg and meltwater production. In a core 368 

from north of Svalbard, absence of IRD, low sedimentation rates and high δ18O values at c. 369 

34–24 ka were taken as an indication that minimal ice loss accelerated the final glacial growth 370 

of the ice sheet (Knies et al. 1999). Based on numerical modelling, Hughes (1996, 2002) 371 

proposed that limited calving of icebergs was a necessity for the build-up of the Svalbard-372 

Barents Sea Ice Sheet. Our observations of very low amounts of local, coarse-grained IRD 373 

together with high planktic δ18O similarly indicate minimal ice loss, i.e. low ablation from the 374 

western margin of the Svalbard-Barents Sea Ice Sheet during MIS 2 and 4. A coarse-grained 375 
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layer in core JM02-460GC/PC from Storfjorden Trough on the shelf dating to between c. 18.8 376 

and 18.1 ka was probably related to a glacier re-advance (Rasmussen et al. 2007). This 377 

correlates in time with early H1 and a well-documented event of huge and rapid meltwater 378 

discharges from southern Norway (Hjelstuen et al. 2004; Lekens et al. 2005). In JM04-379 

025PC, the local end-members are completely lacking at 18.7–18.1 ka and the IRD is mainly 380 

allochthonous and fine-grained (Fig. 10 C–E). In JM03-373PC, IRD in the size-fraction 150–381 

500 μm is abundant, while IRD >500 μm is nearly absent (Fig. 4A). The IRD pattern is 382 

consistent with a stable and probably re-advancing local ice sheet not losing mass and a 383 

fresher, sea-ice covered surface water over the slope. A recent study based on in-situ 10Be and 384 

14C measurements suggests a significant thinning of the outlet glaciers in Hornsund (south-385 

western Svalbard coast) as early as 18 ka (Young et al. 2018). Core JM04-374PC on the slope 386 

off Hornsund shows a clear increase in flux of local coarse IRD at c. 18 ka (Fig. 11A–C). 387 

Local coarse IRD is also present in JM04-025PC (Figs 9C, 10D, 11A–C). 388 

MIS 2 is the only interval with abundant allochthonous, coarse-grained IRD 389 

constituting 40–75% of the total IRD (Figs 9B, 10B). Large ice sheets were present all around 390 

the Nordic Seas and the Arctic Ocean ensuring several potential distant iceberg sources (e.g. 391 

Spielhagen 1991; Hebbeln et al. 1994; Svendsen et al. 2004; Scourse et al. 2009; Mangerud et 392 

al. 2011).  393 

 394 

The 24 ka event (H2/GIS2): ice stream activity and rapid ice-sheet retreat. – Mass-transport 395 

deposits are interpreted as monitors for ice-stream activity at the shelf break (e.g. Laberg & 396 

Vorren 1995; Vorren & Laberg 1997; Elverhøi et al. 1998; Dimakis et al. 2000). The 397 

numerous mass-transport deposits dating to c. 24 ka in cores from the western Svalbard slope 398 

show that the shelf must have been fully glaciated at that time (e.g. Jessen et al. 2010) (Figs 2, 399 
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3). In all cores, the mass-transport deposits are overlain by a layer of local, coarse-grained 400 

IRD (Figs 2, 3, 7). The magnetic susceptibility records show that both the mass-transport 401 

deposits and the IRD layer on top have very low magnetic susceptibility values all along the 402 

western Svalbard slope (Jessen et al. 2010; Sztybor & Rasmussen 2017) including the 403 

Yermak Plateau, northwest Svalbard (Chauhan et al. 2014).  404 

A likely explanation for major iceberg calving events is increase in activity of ice 405 

streams seen as well-preserved mega-scale glacial lineations in troughs and fjords of western 406 

Svalbard (e.g. Ottesen et al. 2005, 2007). Increased ice-stream flow would lead to ice-sheet 407 

thinning and intensified iceberg calving (Benneth 2003). Recent land-based investigations 408 

also indicate thinning of the west Svalbard part of the ice sheet between 26±2.3 and 20.1±1.6 409 

ka (Gjermundsen et al. 2013; Hormes et al. 2013). Glacial retreat prior to 20 ka is indicated 410 

from core studies of the western Svalbard margin. Hemipelagic sediments in cores from 411 

troughs dating to >19 ka show that the outer part of Storfjorden and Bellsund troughs has 412 

been ice free since at least c. 20 ka (Cadman 1996; Rasmussen et al. 2007; Ślubowska-413 

Woldengen et al. 2007). IRD originating from the Barents Sea shelf is found in a deep-sea 414 

core off Jan Mayen dating to between 25.3 and 23.3 ka (Bauch et al. 2001) (Fig. 1A), which 415 

also points to increased activity of the Svalbard-Barents Sea ice streams. Together, the 416 

evidence indicate intensified ice-stream activity at c. 24 ka resulting in increased ablation via 417 

iceberg calving, thinning of the ice sheet and rapid glacial retreat from the outer shelf. 418 

Remnants of the ice sheet seem to have remained between the troughs for several millennia 419 

(e.g. Landvik et al. 2005, 2013, 2014; Alexanderson et al. 2011). The timing apparently 420 

correlates with North Atlantic Heinrich Event 2 (H2) or Greenland interstadial 2. The eustatic 421 

sea level rise following Heinrich events was 10–15 m (Chappell 2002). Both a sea level rise, 422 

ocean warming or a combination of the two are possible triggers of instability of the ice sheet 423 
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(e.g. Hulbe 1997; Hulbe et al. 2004; Shaffer et al. 2004; Marcott et al. 2011). 424 

 425 

Intervals of glacial retreat 56–46 ka and 16.1–10.2 ka. – The two intervals of glacial retreat, 426 

the MIS 4/3 and MIS 2/1 transitions show very similar patterns in the IRD record, but differ 427 

in the duration of the events (Figs 9, 10). Both periods are characterized by episodic 428 

deposition of local, coarse-grained IRD indicating local calving and ice-sheet retreat (Figs 9D, 429 

10D). Series of glacigenic bed shapes in the Barents Sea display a very dynamic MIS 2/1 430 

transition with cycles of glacial still-stands and re-advances (Andreassen et al. 2008; Hogan et 431 

al. 2010; Winsborrow et al. 2010; Rüther et al. 2011; Bjarnadóttir et al. 2012; Nielsen & 432 

Rasmussen 2018). The most conspicuous episode of the deglaciation was probably at c. 14.5 433 

ka, when a thick package of fine-grained laminated sediments was deposited along the 434 

western Svalbard and Barents Sea continental slope (e.g. Jessen et al. 2010 and references 435 

therein). The southern Barents Sea is a likely source (Lucchi et al. 2013). Contemporaneous 436 

glacial re-advances have been suggested for Isfjorden and Kongsfjorden (Svendsen et al. 437 

1996; Landvik et al. 2005). 438 

While the main deglaciation of the MIS 2/1 transition into earliest Holocene lasted c. 6 439 

ka (16.1–10.2 ka), the MIS 4/3 transition lasted longer according to the IRD record (Fig. 9). 440 

The deglaciation was apparently much slower and continued into early MIS 3 with pulsed 441 

deposition of local coarse-grained IRD for at least 10 ka (56–46 ka). Laminated sediments 442 

were also deposited during the MIS 4/3 transition (Vogt et al. 2001; Rasmussen & Thomsen 443 

2013; Jessen & Rasmussen 2015), but were not as prominent as the layers dated to c. 14.5 ka. 444 

The slower deglaciation was probably a response to lower insolation and consistent with the 445 

less intense eustatic sea level rise of the MIS 4/3 transition (e.g. Martinson et al. 1987; 446 

Lambeck & Chappell 2001; Peltier & Fairbanks 2006).  447 
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 448 

Intervals of reduced ice-sheet size 46–30 ka and 10.2–0 ka. – The total IRD concentration in 449 

JM04-025PC was higher during the mid-late MIS 3 at 46–30 ka than during the Holocene 450 

(10.2–0 ka) (Fig. 9A). The cause is mainly a much higher abundance of allochthonous, fine-451 

grained IRD in MIS 3, possibly due to higher inflow of sea ice from the Arctic Ocean, and a 452 

colder sea surface consistent with reduced ocean circulation and reduced inflow of Atlantic 453 

surface water (e.g. Ganopolski & Rahmstorf 2001; Hald et al., 2001; Rasmussen et al. 2003; 454 

van Meerbeck et al. 2009; Ezat et al. 2014) (Figs 6B, 9C). 455 

Dates from molluscs from Novaya Zemlja indicate an ice-sheet extent similar to the 456 

present at c. 35 ka and probably even earlier (Mangerud et al. 2008). Local coarse-grained 457 

IRD was almost absent in core JM04-025PC during late MIS 3 (40–30 ka) indicating a rather 458 

passive ice margin and reduced ice-stream activity (Figs 9E, 10E). However, recent results 459 

from the upper slope of the northwestern Svalbard margin indicate a dynamic ice sheet with 460 

IRD deposition and deposition of laminated sediments from local meltwater plumes during 461 

MIS 3 and 4 (Rasmussen & Thomsen 2013). Also, studies of the activity of the 462 

Fennoscandian Ice Sheet (Olsen et al. 2002, 2013; Rørvik et al. 2010; Mangerud et al. 2011) 463 

and the British Ice Sheet (Scourse et al. 2009) indicate generally more active ice sheets than 464 

hitherto acknowledged. Between 39 and 36 ka, core JM03-374PC from the upper slope (1130 465 

m water depth) displays significantly higher flux of IRD, lower percentages of quartz and 466 

higher grain-size ratio than at the site of core JM04-025PC indicating more iceberg rafting 467 

from local sources on the upper slope than further offshore (Fig. 11A–C). Between 34 and 31 468 

ka the same differences in IRD flux and quartz percentages are seen (Fig. 11A,B). Thus, the 469 

reduction in local coarse-grained IRD in JM04-025PC at 40–30 ka could reflect that only a 470 

smaller proportion of local icebergs reached the outer slope (Fig. 10D). For example, local 471 
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icebergs could have been relatively small and melting rapidly in Atlantic water over the upper 472 

part of the slope. Millennial-scale variability is still discernible in the IRD records as well as 473 

in the δ18O records and in the magnetic susceptibility values (Figs 2B,C, 3B, 10B–E, 11A–C) 474 

(see also discussion below). 475 

In core JM04-025PC in the Middle Holocene, an IRD pulse at c. 7.5 ka with more than 476 

50% local, coarse-grained IRD is seen (Figs 4E,F, 9A,D, 10A,D). This event coincides with a 477 

rise in flux of mainly angular iceberg-rafted IRD in Isfjorden (Forwick & Vorren 2009). The 478 

icebergs apparently travelled far out over the slope. The event is not seen in core JM03-479 

373PC further south (Fig. 4A,B), probably reflecting that the event was restricted to western 480 

Svalbard fjords and shelf, and that the prevailing surface current direction was south-to-north 481 

as today (e.g. Ślubowska et al. 2005; Rasmussen et al. 2007; Ślubowska-Woldengen et al. 482 

2007; Skirbekk et al. 2010). The glaciers continued to grow during the Late Holocene with a 483 

culmination during the Little Ice Age (c. AD 1600–1850), when some glaciers were even 484 

larger than during the Younger Dryas (Svendsen & Mangerud 1997). The increase in IRD 485 

concentration is clearest in the fine-grained IRD composed of 50–60% quartz and 25–35% 486 

siltstones (Figs 4A,E, 7B,C, 9C,E, 10C,E). Coarse-grained IRD is almost absent (Figs 9B,D, 487 

10B,D). Increasing IRD concentrations >150 μm have previously been interpreted as a sign of 488 

glacier growth, the neo-glaciation (Ślubowska et al. 2005; Ślubowska-Woldengen et al. 2007; 489 

Werner et al. 2011). However, based on the small grain-size, we suggest that a large 490 

proportion of the IRD in the Holocene sediments more likely is sea-ice rafted, and rather 491 

reflect the general cooling of the climate leading to the glacier growth.  492 

 493 

Millennial-scale rhythm in IRD patterns 494 

 495 
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Interstadials and stadials. – The composition and grain-size ratio of the IRD show distinct 496 

millennial-scale variability (Figs 4B,D,F, 9B–E, 10B–E, 11). Periods of ice advance and peak 497 

glaciations (>74–63 ka and 30–16.1 ka) are dominated by allochthonous IRD. The few short-498 

lived pulses of local IRD occur during interstadial warm inceptions GIS19 at c. 69 ka, GIS18 499 

at 64 ka, GIS2 at 24–22 ka and at 18 ka. The latter event probably indicates a warming, which 500 

has also been recorded in the NGRIP ice core (Figs 9D, 10D).  501 

During glacial retreat phases (56–46 and 16.1–10.2 ka) allochthonous IRD is rare (Fig. 502 

9 B,C). Here we observe a distinct millennial-scale variation in the grain size of local IRD, 503 

most likely reflecting a change in the abundance of iceberg versus sea-ice rafted IRD. When 504 

the ice sheet was restricted to the Svalbard Archipelago (c. 46–30 and 10.2–0 ka), we observe 505 

a rhythmic shift between allochthonous, fine-grained IRD and local IRD (Fig. 10C–E). This 506 

millennial-scale pattern can to a large extent be caused by ocean temperature changes as also 507 

indicated by the distribution of IRD on orbital timescale (see above). In general, the cold 508 

stadial phases are nearly devoid of local, coarse-grained IRD.  509 

According to the correlation to the Greenland ice core δ18O (Fig. 6A,B), the local IRD 510 

peaks occur either during the early phase of the Greenland interstadials (GIS1; the Bølling–511 

Allerød interstadials, GIS2, GIS4, GIS5, GIS10, GIS11, GIS14, GIS16 and GIS17) and/or 512 

well within the Greenland interstadials (GIS5, GIS9, GIS12, GIS13, GIS14, GIS15, GIS18, 513 

GIS19) (Fig. 10D). During all Greenland interstadials (except GIS6) local, coarse-grained 514 

IRD increase relative to local, fine-grained IRD (Fig. 10D,E) showing a coarsening of local 515 

IRD during warm intervals. Grain sizes of the IRD should be temperature independent and the 516 

coarsening probably signifies an increase in local iceberg calving and ice-sheet activity. The 517 

increased proportion and coarsening of local IRD during interstadials in combination with 518 

evidence of warm surface water flow over the upper slope (Rasmussen & Thomsen 2013), 519 
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suggest increased calving and melting, when climate warmed. In general, the Svalbard-520 

Barents Sea Ice Sheet was more dynamic under warmer climatic conditions (e.g. Elverhøi et 521 

al. 1995), which is supported by our data (Figs 9, 10, 11).  522 

 523 

North Atlantic Heinrich Events. – During some Heinrich events (H5.2, H5, H4, H2 and H1), 524 

the presence of local coarse-grained IRD points to higher local calving activity than during 525 

the non-Heinrich stadials (Fig. 10D). However, the IRD concentration and flux is relatively 526 

low (with one exception of a short-lived spike during H4) and the actual calving rate of local 527 

icebergs was probably small (Figs 10A, 11A). Eventual calving events would have occurred 528 

in cold water (e.g. Bond et al. 1992, 1993; Dokken & Hald 1996) with low melting potential, 529 

and thus the IRD record might underestimate the calving and/or sediment load of icebergs. 530 

Calving of sediment-loaded icebergs into cold water would result in IRD from the Svalbard-531 

Barents Sea Ice Sheet being deposited further away from Svalbard, which to our knowledge 532 

has only been reported for the above mentioned 24 ka IRD event (Bauch et al. 2001), and 533 

briefly during the last deglaciation at c. 14.5 ka (Bischof 1994). The high percentage of local, 534 

fine-grained IRD in some Heinrich events (H7, H5.2, H5, H4, H3 and H1) indicates extensive 535 

local sea-ice production in the Barents Sea and Svalbard western margin (Fig. 10E).  536 

The distribution patterns of IRD in relation to climate at the western Svalbard margin 537 

is in contrast to most results from the Nordic Seas and North Atlantic. At the British margin, 538 

maxima in IRD occur at the end of stadials at the rapid warmings to interstadial climate 539 

(Scourse et al. 2009). A record from the central North Atlantic also showed maximum IRD 540 

deposition during warmings to the interstadials (Rasmussen et al. 2016), while in the western 541 

Irminger Sea it seems random if the IRD maxima (>150 μm) occur during stadial or 542 

interstadial climate (Elliott et al. 2001). Otherwise, the majority of IRD records from the 543 
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North Atlantic and southern Norwegian Sea show intensified ice rafting during the cold 544 

stadials (e.g. Heinrich 1988; Bond et al. 1992, 1993, 1999; Fronval et al. 1995; Bond & Lotti 545 

1995; Rasmussen et al. 1996; Lackschewitz et al. 1998; van Kreveld et al. 2000; Moros et al. 546 

2004). Most of these studies are based on cores more distal to iceberg sources than our cores 547 

from the western Svalbard slope, and from much lower latitudes. High IRD content recorded 548 

in cold climate in cores far away from ice sources and at low latitudes could be a result of the 549 

cold surface water allowing more icebergs to travel long distances and reach far (e.g. Bond & 550 

Lotti 1995; Bischof 2000). The melting of one iceberg can result in slower melting of the 551 

next. The extreme example is the Heinrich events, when IRD from Canada made it all the way 552 

to the southern Iberian margin (d’Errico & Sánchez Goñi 2003). A well-dated high-resolution 553 

core record from the margin off northern Portugal shows increased meltwater supply and cold 554 

surface temperatures a few centuries before the deposition of IRD (Naughton et al. 2009). 555 

Cooling of the surface waters was apparently necessary for icebergs to survive the travel 556 

across the North Atlantic. Similarly, the release of meltwater and icebergs from Svalbard, the 557 

British Ice sheet (Scourse et al. 2009) and possibly other ice sheets (Lekens et al. 2006) may 558 

have assisted in the long-distance transportation of IRD from Scandinavia, Iceland and 559 

Greenland to the North Atlantic during stadials by lowering of the surface water temperature 560 

in the Nordic seas and northeastern North Atlantic.  561 

  562 

Influence of ocean temperature and travel routes for IRD provenance 563 

 564 

 The regional ocean surface temperature appears to play a significant part in the composition 565 

and provenance of the IRD west of Svalbard. In warmer surface water, the IRD melts out 566 

nearer its source, which will favour local IRD over allochthonous IRD. In colder surface 567 
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water, icebergs and sea ice can transport IRD over long distances favouring the deposition of 568 

allochthonous IRD (see discussion above). The melting potential increases by an order or two 569 

of magnitude, when the surface water temperature rises from below 0 °C to +1–2 °C (Russel-570 

Head 1980). Even a slight warming of regional surface water temperature can significantly 571 

increase the concentration of local IRD, and simultaneously restrict the deposition of 572 

allochthonous IRD since the higher melting rate reduces the distance ice can travel. Between 573 

56 and 45 ka allochthonous IRD was absent in core JM04-025PC (Fig. 10B,C). The sea 574 

surface temperature in the North Atlantic during early MIS 3 was according to Kandiano et al. 575 

(2004), only 2 °C lower than today and probably too high for allochthonous IRD to reach 576 

Svalbard. Subsurface warming may trigger instability of outlet glaciers and ice shelves as 577 

recently suggested by Marcott et al. (2011), and as also observed in modern studies (e.g. 578 

Holland et al. 2008; Jeong et al. 2016). The peak in mainly local IRD and meltwater release 579 

during the warming phase would lead to surface water cooling (Rasmussen & Thomsen 2013) 580 

and subsequent gradual decrease in IRD concentration together with an increase in relative 581 

abundance of IRD from more distant sources due to reduced ice melt. The IRD patterns on the 582 

western Svalbard slope we present here during MIS 3 support this scenario. It is most clearly 583 

seen between H5 and H4. The Greenland interstadials GIS12–9 show a peak in local, coarse-584 

grained IRD during peak interstadial warmth followed by a lowering of the IRD concentration 585 

and a peak in the relative abundance of allochthonous and fine grained IRD during the gradual 586 

cooling phase of the interstadials (Figs 9C,D, 10C,D). 587 

 588 

Sea surface temperature and stadial-interstadial patterns in deposition of IRD 589 

 590 

Even though the higher proportion of local, coarse-grained IRD points to more iceberg rafted 591 
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IRD during warm interstadial climate, it is uncertain if the increase is a sign of increased local 592 

calving activity or of warming of the ocean. A change in the thermal regime from cold-based 593 

to warm-based ice sheet should increase the calving rate and sediment load of icebergs by an 594 

order of magnitude (Elverhøi et al. 1995). However, the changing ocean temperature alone is 595 

also likely to affect IRD release, provenance and deposition, since a cold ocean surface can 596 

restrict the release of sediment-loaded icebergs to the open ocean (Andrews 2000). For 597 

example, during the cold stadials/Heinrich events and peak glaciations the fjords and shelf of 598 

Svalbard may have been covered with perennial sea ice, which potentially could have blocked 599 

the pathway for local icebergs and/or restricted the calving of icebergs (cf. Andrews 2000; Ó 600 

Cofaigh & Dowdeswell 2001; Hald & Korsun 2008; Forwick & Vorren 2009; Jongma et al. 601 

2013). Before the icebergs are released, most of the sediment could have dropped out and 602 

icebergs would be ‘clean’ (Andrews 2000). Similarly, in a floating ice shelf, bottom melting 603 

can lead to a melt-out of most of the sediments prior to iceberg calving (e.g. Dowdeswell & 604 

Murray 1990; Domack et al. 1998). Together with the effect of slow ice melt in cold water, 605 

these mechanisms could significantly reduce the deposition of local IRD on the slope during 606 

cold, stadial climate independent of the iceberg calving rate. During the Greenland interstadial 607 

phases with Atlantic water at the surface (e.g. Rasmussen & Thomsen 2013), ice shelves 608 

would have retreated (cf. Sutter et al. 2016), fjords would be seasonally ice-free and icebergs 609 

could be released into the open ocean every year. The ice would thus melt close to its 610 

source with increased deposition of local IRD on the slope as a result. 611 

The combination of high proportion, low concentration, and small grain-size of the 612 

allochthonous IRD during stadial climate (Fig 10A–C) mainly signifies that the sea surface 613 

temperature was cold enough for long-transportation of icebergs and sea ice. The high relative 614 



27 
 

 

amount of allochthonous IRD during stadial phases is thus probably not directly proportional 615 

to the calving rate in distant places.  616 

The overall IRD pattern on the west Svalbard slope with more local iceberg-IRD 617 

during Greenland interstadials and more allochthonous IRD during cold phases is probably a 618 

result of increased local glacial instability during warm interstadial climate. It is also very 619 

likely a result of regional changes in sea surface temperature affecting the transport and 620 

deposition of ice rafted sediment. 621 

 622 

 623 

Conclusions 624 

 625 

The grain-size and mineral composition of ice rafted detritus (IRD) on the west Svalbard 626 

slope was studied in three marine core records spanning 1130–1880 m water depth, covering 627 

together the last 74 ka (Marine isotope stages (MIS) 4–1). The results show that IRD shifted 628 

consistently on orbital- and millennial scales from allochthonous sources with dominance of 629 

fine and/or coarse quartz to predominantly IRD from local Svalbard-Barents Sea sources 630 

dominated by coarse Jurassic shales and siltstones.  631 

During the glacial maxima of MIS 4 (74–56 ka) and MIS 2 (30–16.1 ka) including 632 

Heinrich events H6 and H1, respectively, the IRD on the western Svalbard margin was 633 

dominated by coarse, allochthonous IRD consisting of up to > 90% quartz and with almost no 634 

contributions from local sources. The Svalbard-Barents Sea Ice Sheet appeared to be stable 635 

with low ablation and we suggest that the modest ice loss during these cold glacial maxima 636 

facilitated the growth and stability of the ice sheet. At c. 24 ka increased ice stream activity 637 

caused a thinning of the Svalbard-Barents Sea Ice Sheet and a following intense calving of 638 

icebergs lead to rapid deglaciation of the outer shelf. 639 
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 Calving of icebergs from the Svalbard-Barents Sea Ice Sheet and a high degree of 640 

instability of the ice sheet mainly occurred in relatively warm climate, for example during 641 

deglaciations and warm interstadials. During intervals of rapid deglaciation and ice retreat at 642 

the MIS 4/3 (56–46 ka) and MIS 2/1 (16.1–10.2 ka) transitions, ice rafting peaked over the 643 

western Svalbard slope and was dominated by deposition of local, coarse IRD, except for 644 

short time intervals of deposition of fine, laminated sediments. After these transitions, calving 645 

activity was low at 46–30 ka (mid-late MIS 3) and 10.2–0 ka (Holocene) and the IRD mostly 646 

consisted of fine-grained quartz deposited from sea ice interrupted by short events of 647 

deposition of coarse-grained, local IRD. In general, in MIS 4, MIS 3 and MIS 2 a clear 648 

millennial-scale pattern in ice rafting was observed with allochthonous quartz being deposited 649 

during cold Greenland stadials and Heinrich events and local shales/siltstones being deposited 650 

during the warm Greenland interstadials. The results show that the changes in ocean 651 

temperature probably enlarged these shifts in source of the IRD along with the 652 

stadial/interstadial climate cycles by prolonging the travel distance for ice and sediments 653 

during cold periods (allochthonous IRD) and shortening the distance in warm periods (local 654 

IRD). 655 
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Figure captions 1067 

 1068 

Fig. 1. (A) Map of Nordic seas showing main surface (red) and bottom (blue) currents and 1069 

locations of investigated cores (black circles). Location of core PS1243 discussed in the text 1070 

(purple circle) (Bauch et al. 2001) is also marked. (B) Location of investigated cores (black 1071 

circles) and core JM05-031GC used for correlation and age models (blue circle) (Rasmussen 1072 

et al. 2014). Northward flow path of Atlantic Water is indicated (red arrow). Areas of Jurassic 1073 

shales and siltstones at Spitsbergen Bank (blue-green) and Lower Cretaceous quartz-rich 1074 

deposits (orange) are indicated (sketched after Edwards (1975), Maher et al. (2004) and 1075 

Grundvåg & Olausson (2017)). 1076 

 1077 

Fig. 2. Magnetic susceptibility records of (A) JM03-373PC, (B) JM04-025PC, (C) JM03-1078 

374PC correlated with (D) JM05-031GC from Rasmussen et al. (2014). AMS14C dated levels 1079 
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are marked with red diamonds. Magnetic susceptibility tie-points (tp) 1–9 from Jessen et al. 1080 

(2010) are marked. Also, a diatom-rich layer, laminated meltwater deposits (light grey bars) 1081 

and mass-transport deposits (dark grey bar) are shown (Jessen et al. 2010). The location of the 1082 

Laschamps event (semi-dark grey bar) (Snowball et al. 2007) and North Atlantic Heinrich 1083 

Event 1 and 6 (H1 and H6) (light blue bars) are indicated. An additional MS correlation point 1084 

is shown (dotted line). Marine Isotope Stages (MIS) are shown in column to the left. 1085 

 1086 

Fig. 3. Previously published oxygen Isotope records of (A) JM03-373PC (Rasmussen et al. 1087 

2007; Jessen et al. 2010), (B) JM04-025PC (Jessen & Rasmussen 2015), (C) JM03-374PC 1088 

(Jessen & Rasmussen 2015) correlated with JM05-031GC from Rasmussen et al. (2014) 1089 

(D,E). Records (A,B) and (E) are measured on planktic foraminiferal species 1090 

Neogloboquadrina pachyderma s (NPS), while (C) and (D) are measured on benthic 1091 

foraminiferal species. AMS14C dated levels are marked with red diamonds. Additional 18O 1092 

correlation points are shown with dotted lines. Legend otherwise as in Fig. 2. 1093 

 1094 

Fig. 4. Concentration of Ice Rafted Detritus (IRD) >500 μm and 150–500 μm in number per 1095 

gram dry weight sediment and normalized grain-size ratio (see text for explanation) on cm 1096 

scale for (A,B) JM03-373PC, IRD concentration >150 μm from Rasmussen et al. (2007), IRD 1097 

concentration >500 μm from Jessen et al. (2010), (C,D) JM03-374PC (IRD concentrations 1098 

from Jessen (2005)) and (E,F) JM04-025PC (IRD concentration >500 μm, 500–0 cm from 1099 

Jessen et al. (2010)). Tie points (tp, including new tie point tp 6.1; see legend Fig. 2) and 1100 

selected AMS 14C dates are indicated.  1101 

 1102 

Fig. 5. Age-depth plots of JM03-373PC, JM04-025PC and JM03-374PC with lithologic units 1103 
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(Jessen et al. 2010) and Laschamps event (Snowball et al. 2007) indicated. See also legend to 1104 

Fig. 2. 1105 

. 1106 

Fig. 6. Correlation between (A) δ18O record of Greenland NGRIP ice core (data from NGRIP 1107 

Members 2004) and (B) grain-size of sortable silt in core JM04-025PC with horizontal green 1108 

bars marking location of laminated clay layers (data from Jessen & Rasmussen 2015). Marine 1109 

isotope stages (MIS) are indicated (right column). 1110 

 1111 

Fig. 7. IRD data of core JM04-025PC plotted versus age. A. Concentration of IRD in  number 1112 

per gram dry weight sediment. B,C. % quartz and % siltstones of total IRD. D. Normalized 1113 

grain-size ratio, where 1 is average of the core and >1 is coarser than average and <1 is finer 1114 

than average. Marine Isotope Stages (MIS) are marked in right column. Location of a mass-1115 

transport deposit at 24 ka is marked with grey bar. 1116 

 1117 

Fig. 8. A. Scatter plot of % siltstones versus % quartz in JM04-025PC. B. Scatter plot of 1118 

concentration of IRD 150–500 μm versus IRD >500 μm in JM04-025PC. For explanation see 1119 

text in Section ‘Local versus allochthonous IRD’.  1120 

 1121 

Fig. 9. A. Concentration of IRD >250 μm in number per gram dry weight sediment divided 1122 

into four end-members: (B) allochthonous, coarse grained, (C) allochthonous, fine grained, 1123 

(D) local, coarse grained, and (E) local, fine grained. Marine isotope stages (MIS) are shown 1124 

to the right. Periods of increased contribution of local IRD are highlighted to the far right. 1125 

 1126 

Fig. 10. A. Total IRD concentration >250 μm in number per gram dry weight sediment. B–E. 1127 
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Relative contribution of the four end-members presented in Fig. 9. F. δ18O record of 1128 

Greenland NGRIP ice core (NGRIP Members 2004). Greenland interstadials and Heinrich 1129 

events are numbered. Peak interstadials are marked by pink bars, Heinrich stadials and other 1130 

selected cold climate intervals are indicated by blue bars. Marine isotope stages (MIS) are 1131 

shown to the right. LIA=‘Little ice age’; YD=Younger Dryas. 1132 

 1133 

Fig. 11. Zoom-in on the period 50–15 ka for cores JM04-025PC (025PC, red) and JM03-1134 

374PC (374PC, blue) of (A) flux of IRD, (B) % quartz (indicating influence of local IRD 1135 

versus allochthonous IRD), and (C) grain-size ratio (interpreted as indicator for influence of 1136 

icebergs versus sea ice as transport mechanism). Location of Heinrich Events are marked with 1137 

blue bars and Greenland interstadial and Heinrich events are numbered.  1138 

 1139 

Table 1. Conventional AMS 14C dates, calibrated ages and magnetic susceptibility (MS) Tie-1140 

points (in italics). 1141 
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Table 1 

 Depth (cm) AMS14C date Cal. age (ka) Lab. Reference Reference 

JM03-373PC 

25 1595 ±40 1155 ±50 AAR-8925 Rasmussen et al., 2007 

55 2505 ±40 2175 ±60 AAR-8926 Rasmussen et al., 2007 

146 7310 ±45 7775 ±55 AAR-8927 Rasmussen et al., 2007 

155 7790 ±60 8255 ±65 AAR-8768 Rasmussen et al., 2007 

185 8505 ±60 9134 ±80 AAR-8928 Rasmussen et al., 2007 

220 9275 ±65 10,060 ±90 AAR-8796 Rasmussen et al., 2007 

258 9355 ±55 10,215 ±75 AAR-10741 Jessen et al,. 2010 

307 12,020 ±70 13,485 ±90 AAR-13139 Jessen et al,. 2010 

323 12,210 ±100 13,665 ±120 AAR-13140 Jessen et al,. 2010 
350 13,310 ±180 14,730 ±425 AAR-8769 Rasmussen et al., 2007 

365 12,890 ±110 14,650 ±235 AAR-8918 Rasmussen et al., 2007 

461 13,180 ±140 15,200 ±275 Tua-3977 Rasmussen et al., 2007 

499 13,450 ±90 15,610 ±160 AAR-8762 Rasmussen et al., 2007 

510 14,370 ±100 16,930 ±185 AAR-8770 Rasmussen et al., 2007 

560 16,920 ±120 19,960 ±170 AAR-8771 Rasmussen et al., 2007 

567 17,110 ±120 20,170 ±170 MS Tie-point 6.1 This study 

625 18,690 ±120 22,135 ±140 AAR-8772 Rasmussen et al., 2007 

650 19,310 ±140 22,780 ±170 AAR-8773 Rasmussen et al., 2007 

JM03-374PC 

142 16,520 ±110 19,440 ±160 AAR-8765 Jessen et al,. 2010 

152 17,110 ±120 20,170 ±170 MS Tie-point 6.1 This study 

220 19,630 ±150 23,165 ±205 AAR-8766 Jessen et al,. 2010 

311 22,840 ±190 26,900 ±340 AAR-9070 Jessen et al,. 2010 

361 25,470 ±250 29,140 ±280 AAR-10624 Jessen et al,. 2010 

JM04-025PC 

6.3 1125 ±40 680 ±35 AAR-10851 Jessen et al., 2010 

95 5220 ±55 5580 ±65 AAR-10855 Jessen et al., 2010 

139 7945 ±50 8400 ±50 AAR-10748 Jessen et al., 2010 

171 9215 ±60 10,030 ±100 AAR-11989 Jessen et al., 2010 

193 9390 ±150 10,270 ±200 MS Tie-point 3 Jessen et al., 2010 

277 12,590 ±150 14,110 ±255 MS Tie-point 4 Jessen et al., 2010 

289 12,840 ±150 14,550 ±320 MS Tie-point 5 Jessen et al., 2010 

319 13,140 ±150 15,130 ±290 MS Tie-point 6 Jessen et al., 2010 

341 15,020 ±90 17,790 ±115 AAR-10852 Jessen et al., 2010 

360 17,110 ±120 20170 ±170 MS Tie-point 6.1 This study 

399 19,670 ±130 23,210 ±135 AAR-10749 Jessen et al., 2010 

435 20,570 ±150 24,230 ±180 AAR-10750 Jessen et al., 2010 

445 23,340 ±200 27,280 ±190 MS Tie-point 9 Jessen et al., 2010 

455 24,790 ±210 28,420 ±240 AAR-10856 Jessen et al., 2010 

555 Laschamp 39 Snowball et al., 2007 

575 Laschamp 41 Snowball et al., 2007 

609 44,840 ±1900 47,770 ±1590 AAR-10857 Jessen and Rasmussen, 2015 

861 MIS 4/3 63 Jessen and Rasmussen, 2015 

935 MIS 4 72 Jessen and Rasmussen, 2015 
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