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II. Thesis abstract 

During trawling, fish become stressed through exercise, interactions with fishing gear and 

crowding in the cod-end. As catches are dropped on deck and exposed to air, light and 

temperature differences, fish are exposed to cumulative stress as well as potential bruising and 

death by asphyxiation. There is increasing evidence suggesting that pre-mortem stress is of 

great importance to muscle quality of fish, and this may explain why the catches from trawl 

fisheries have variable quality. Yet, little is known about how individual steps of the trawling 

process affect the muscle quality of the fish. 

In this thesis, an experimental swim tunnel and cod-end was used as a model to investigate how 

stress during various stages of trawl capture affects fillet quality in terms of residual blood, time 

and hardness of post-mortem muscle stiffness and muscle colour of cod and haddock. In 

addition, the effect of stress on the importance of timing of euthanasia was also addressed.  

The first stage of trawl capture that was chosen to study was the herding of fish in front of the 

trawl mouth. Two experiments were conducted to address this issue; the first involved 

exhaustive swimming of cod and the second focused on critical swimming speed of haddock. 

These studies showed that exhaustive swimming causes a moderate stress response, recovery 

takes longer than 6 hours and that exercise has a short-lasting effect on muscle texture, with 

little or no effect on muscle colouration. It was concluded that other stages of trawl capture 

have a higher impact on fillet quality.  

The third study for this thesis aimed to investigate how extreme crowding for 1 or 3 hours in 

the cod-end, following exhaustive swimming, would affect the physiology and muscle quality 

of cod. Findings from this study showed that crowding caused a severe stress response and that 

fish probably suffered from hypoxia due to a significantly reduced ability to move their 

opercula. In addition, fillet quality was significantly reduced due to increased amount of 

residual blood in the muscles. Moreover, the detrimental effects of crowding are not fully 

reversed after 6 hours of recuperation. 

In the last investigation, the final stage of trawl capture process, i.e. the effect of air exposure 

on deck, was studied. Fish were stressed by mild crowding and then exposed to air for 15 or 30 

minutes, or directly euthanised by terminal blow to the head and then left in air for 0, 15 or 30 

minutes before exsanguination. We found that stress/crowding triggered a stronger response to 

the air exposure by faster increase in residual blood in the muscles, resulting in lower fillet 

quality. However, direct euthanasia stopped blood flow to the muscle and quality was 

significantly improved.  

Together these four studies show that there is a strong connection between the type of stress 

inflicted on the fish during capture and the quality of the fish product (fillets). Measures that 

may secure top quality fish from trawlers, include reducing crowding time in the cod-end and 

implementing direct euthanasia or live recuperation for more than 6 hours. 
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Introduction 

Ethical and economical aspects of quality improvements in white fish 

fisheries 

Fish as food represents an important resource for human nutrition and health and is also 

appreciated for cultural and gastronomic reasons. Globally, regionally, nationally and locally, 

the use and importance of aquatic foods vary greatly. Production of wild captured seafood has 

more or less stabilized the last two-three decades (Fig 1), with most fish stocks assessed by 

FAO to be fully, but sustainably exploited (FAO 2018). However, the global demand for aquatic 

food sources are expected to increase faster than population growth, due to an increasing 

proportion of middle-class people with greater spending power who typically consume more 

animal protein than people with lower income. Therefore, it becomes more important to ensure 

that harvested fish are utilised in such a way that the proportion of the fish suitable for human 

consumption is maximized. That is, by reducing waste that is caused by quality impairment 

activities.  

 

Figure 1. Trends in world capture fisheries and aquaculture production the last ~70 years. Aquaculture production is both 

food fish (~80 tons) and aquatic plants (~30 tons).  
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In Norway, governmental authorities, sales organizations, industry and researchers often 

emphasize the need for quality improvement of white fish. Nevertheless, the quality of landed 

fish from the coastal fisheries shows a negative trend (Akse et al. 2014, Akse et al. 2004). This 

is especially true for fish caught by gillnet and Danish sein, whereas fish caught by line are 

stable, and overall, have good quality. Furthermore, the difference in quality of fish caught by 

different gears is often not reflected in the ex-vessel price of fresh fish, where the trend is that 

vessels delivering the largest quanta per time unit get the highest price (The Norwegian 

Fishermen’s Sales Organization, 2018). However, this may lead to a direct financial loss for the 

fish processors. A study comparing high and low quality cod and haddock showed that poor 

quality fish could lead to a potential value loss of 13% in the filleting industry, which 

corresponds to about NOK 100 million (EURO 11 million) based on the export value in 2013 

(Svorken et al. 2015).  

It is important to keep in mind that the gadoid fishery is diverse, extending from small coastal 

vessels utilizing hand-baited long-lines, gillnets, and jig machines with daily deliveries of fresh 

catches to local fish plants, to massive ocean going bottom trawlers and auto liners that process 

and freeze the catch at sea. The frozen fish is usually sold at auctions, which presents the 

opportunity to evaluate product quality and raise complaints when quality standards are not 

met. This creates a better, but not perfect, correlation between quality and price and emphasizes 

the fact that quality does matter. For example, fish caught by trawls and Danish seine are known 

to yield more variable quality than fish caught by auto line. In an ongoing study of prices for 

frozen cod and haddock covering a period of nine years (2009-2017), it is found that for Atlantic 

cod, fish caught by autoline gain 9.5% and 16.1% higher prices than trawl and Danish seine, 

respectively, controlled for the influence of fish size and season (Sogn-Grundvåg, unpublished 

data). For haddock, autoline get 22.5% higher price compared with Danish seine. Trawl, 

considered to be one of the most catch efficient fishing gears, lands the largest quantum of cod 

and haddock in Norway (Fig 2), and hence improvement to the quality of trawl-caught cod and 

haddock may therefore have a great ethical and financial impact on the fishery industry.  
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Figure 2. Metric tons landed haddock (a) and cod (b) by fishing gear. Period 01.01.2018 - 01. 10. 2018. Source: The Norwegian 

Fishermen’s Sales Organization, 2018.  

Fillet quality 

There are many factors which determine the quality of a fish or a fish product (Fig 3). Fillet 

quality is a complex set of characters involving intrinsic factors such as chemical composition, 

texture, fat content and colour which in turn are influenced by extrinsic factors such as feeding 

regime, diet composition and pre- or post-slaughter handling procedures. The term ‘quality’ 

frequently refers to the visual appearance and freshness or degree of spoilage the fish has 

undergone. These features often have bearing on food safety in terms of harmful bacteria, 
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viruses, parasites or chemicals, that can create an off odour and bad taste, soft texture or altered 

muscle colour. Many quality traits of a fish product also depend on other biotic and abiotic 

factors such as fish species, season (Botta et al. 1987b), gender (Ageeva et al. 2017), and type 

of food eaten (Ageeva et al. 2018).  

 

Figure 3. Overview over multiple factors influencing the quality of fish products. Modified from Olafsdóttir et al. (1997). 

Texture of fish muscle is a highly important quality parameter, as softness may cause 

downgrading in the processing industry (Michie 2001). The texture of a fish muscle is 

influenced by inherent characteristics such as amount and composition of connective tissue and 

muscle fibres density, which in turn undergo substantial seasonal variations (Botta et al. 1987b). 

For the fish, white muscle with its high protein content, constitutes an important energy 

resource, and seasonal events like spawning, periods with starvation and prolonged stress may 

reduce protein content of the muscle (Ageeva et al. 2017, Ladrat 2000, Ageeva et al. 2018). 

These changes can alter contractile properties and metabolic characteristics of the muscles, and 

may ultimately influence the flesh quality (Delbarre-Ladrat et al. 2006). Post-mortem 

proteolysis in fishes is not considered beneficial to flesh quality, as fish meat generally does not 

need to be tenderized. Rather, the protease mediated muscle tissue degradation contributes to 

softening of the meat, increased drip loss, and increased gaping (Bahuaud et al. 2010, Mørkøre 

et al. 2008, Ofstad et al. 1996, Roth et al. 2006, Sigholt et al. 1997, Thomas et al. 1999). 

The colour of fish muscle is another important quality parameter. When potential consumers 

evaluate fillets, they expect white fish to be white and may therefore reject pinkish or dark 

https://www.sciencedirect.com/topics/food-science/drip-loss
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fillets. Residual blood in the fillets is the main factor responsible for colour change in white 

fish (Olsen et al. 2008). The haem pigments in red blood cells contain iron molecules, which 

bind oxygen and makes the blood cells appear red. Hence, residual blood in the muscles makes 

the fillet appear pink or reddish. In addition, large amounts of haemoglobin may accelerate lipid 

oxidation, causing an unpleasant odour (Maqsood and Benjakul 2011, Richards and Hultin 

2002, Terayama and Yamanaka 2000). Therefore, exsanguination of fish by cutting the throat 

or gills is decreed by Norwegian legislation (FOR-2013-06-28-844). 

The type of fishing gear can also greatly influence the quality of the fish product (Botta et al. 

1987a, Digre et al. 2010, Esaiassen et al. 2004, Huse et al. 2000, Larsen and Rindahl 2008, 

Rotabakk et al. 2011). Some quality defects are directly related to the gear, such as gaffing 

damages from longline (Larsen and Rindahl 2008) and bruising and net marks from trawls 

(Digre et al. 2010). Other quality issues may arise as an effect of the stress inflicted on to the 

fish by the capture process itself and are not necessarily notable until the fish is processed into 

fillets. These issues involve increased amount of residual blood in fillets and faster onset of 

rigor mortis, followed by textural changes such as gaping and dry flesh (Stien et al. 2005, 

Hultmann et al. 2016, Aursand et al. 2010, Digre et al. 2017, Olsen et al. 2008). These effects 

are most likely related to altered physiological characteristics of the fish, due to pre-mortem 

stress.  

Trawls  

The use of trawl to catch fish triggers a complex sequence of behavioural responses by the 

captured fish. A large part of the knowledge on behavioural patterns of trawl-caught fish is 

based on studies from the 1960s, using underwater observations of fish during trawling (Glass 

and Wardle 1989, Beamish 1969, Reviewd in Winger et al. 2010).  

The trawl itself is a cone shaped net made from two, four or more panels, which is towed by 

one or two boats. The net is wide at the opening and then narrows to a bag called the cod-end, 

where the fish become trapped (Fig 4). The net opening is held open by beams, otter boards 

(doors) or distance between two towing vessels (pair trawling). 



9 

Figure 4. Schematic overview of a bottom trawl. Modified from and image by Institute of Marine research, Norway.  

Otter trawl is the most commonly used type in Norway. The boards rest on the sea bottom and 

creates large mud clouds when they are dragged along the sea floor. These clouds are important 

for the catch efficiency, as they mask the visual appearance of the netting and footgear, making 

the fish swim towards the net instead of escaping to the side (Sistiaga et al. 2015). When these 

components become visible to the fish, the fish tend to alter course, turn around and if towing 

speed allows it, start swimming in the direction of the tow in the net opening. This behaviour 

occurs when light intensities are high enough for the fish to see the movement of the 

approaching net and is most likely an optomotor reflex (Winger et al. 2010). Normal towing 

speeds vary from 1-7 knots depending on target species. Common towing speeds for cod and 

haddock is 2-5 knots (1 to 2.5 m s-1). These towing speeds exceed the sustained swimming 

speed of the target species (Breen et al. 2004, He 1991), suggesting that the fish may be 

exhausted or fatigued as they enter the cod-end. 

Fish swimming in the net opening 

Before ending up in the cod-end, fish engage in numerous behaviours that all involve 

swimming. These behaviours include reacting to and trying to avoid an approaching trawl, 

fleeing from the net opening and avoiding the gear or actively trying to escape once inside 

(Suuronen et al. 2005, Suuronen et al. 1996). In general, the swimming performance has been 

classified into three distinct categories: sustained, prolonged and burst swimming. Sustained 

swimming speed are speeds which can be maintained for more than 200 minutes, whereas 



10 

prolonged activity, as classified by Beamish (1978), can be maintained for 20 seconds – 200 

minutes. Speeds which cannot be maintained for more than 20 seconds are classified as burst 

swimming (Beamish 1978). The endurance of cod is highly sensitive to changes in towing 

speed, with higher towing speeds reducing how long time the cod can swim in the trawl opening 

(Winger et al. 2010). By choosing a towing speed higher than the sustained swimming speed 

of the target species, the fish in front of the net opening will eventually drift back into the net. 

However, the extent to which fish are able to maintain their position in front of a trawl opening, 

is highly species specific and also depend the on physical (i.e. size and length) (Suuronen et al. 

2005) and physiological conditions of the fish when presented with the trawl opening (Winger 

et al. 2010).  

Video footage from a trawl opening shows that fish engage in a burst and glide behaviour before 

drifting into the net. This behaviour represents an intermediate mode between prolonged and 

burst swimming and has a predicted energy savings of about 50% (Weihs 1974). It is however, 

not an endless swimming mode as fish eventually terminate this swimming behaviour. Most 

likely, fish cease swimming due to a combination of metabolic exhaustion and accumulation of 

anaerobic waste products in combination with a behavioural decision of the fish to stop 

swimming (Tudorache et al. 2013). For example, Breen et al. (2004) found that exhausted 

haddock where in fact not exhausted, but were seemingly ‘unwilling’ to continue swimming 

under laboratory conditions. It has since been clearly shown that ‘exhaustion’ and ‘fatigue’ are 

not interchangeable descriptions and that ‘exhaustion’ relates to a condition in which the energy 

stores of the fish are fully depleted, whereas ‘fatigue’ is a behavioural decision of the fish that 

may occur before the fish has depleted its energy stores (Farrell 2007).  

Crowding in the cod-end 

As fish are captured they accumulate in the cod-end and eventually become the catch, and the 

same time, crowding pressure increases. The intensity of the crowding situation vary with the 

amount of fish entering and exiting the cod-end and the water flow in the cod-end. The water 

flow in the cod end depends on the type of twine used, mesh-type and amount of fish (Winger 

et al. 2010). There are few studies on the extent and exact measurements of crowding pressure 

inside a cod-end. However, large catch sizes (15–30 metric tons) and visual observation 

strongly indicate that the degree of crowding pressure is sever (Fig 5). The most dramatic 

crowding probably occurs during the haul back when lifting of the cod-end reduces ambient 

pressure, causing the swim bladder, and hence the whole fish, to expand (Tytler and Blaxter 
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1973, Taylor et al. 2010, Ferter et al. 2015). Swim bladder expansion occurs in cod and haddock 

because they have a physoclist (i.e. closed) type of swim bladder. Fish with this type of swim 

bladder can only adjust the gas inside by actively secreting gas from the blood to the swim 

bladder via the gas gland (rete mirable) and reabsorb gas by controlled passive diffusion over 

a highly vascularised area, called the oval. Both the secretion into the bladder and reabsorption 

of gas from the swim bladder are slow processes which take several hours to complete (Midling 

et al. 2012).  

 

Figure 5. Recently captured gadoids crowded in the cod end on deck of the fishing vessel. Photo by Jesse Brinkhof. 

Furthermore, because the Northeast Atlantic cod tend to be found in high abundance and in 

dense aggregation, massive catches can be obtained during short towing times (10-20 minutes). 

This has led to a practice among Norwegian trawlers, called ‘buffer towing’. This practice 

involves deploying the trawl immediately after the catch is on board. In the case when the 

desired amount of fish is caught prior to completion of processing of the catch from the previous 

haul, the trawl is simply lifted off the seabed and towed at low speed (~1-2 knots). This tactic 

is employed in order to ensure a continuous supply of fish for processing, but has negative 
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effects on quality and will lengthen the time the fish are crowded in the cod-end (Brinkhof et 

al. 2018).  

Post-capture air exposure 

Processing of live fish to food necessarily involves a moment of slaughter. The most commonly 

employed slaughtering technique of wild fish involves cutting the throat followed by 

exsanguination. However, large catches and vigorous fish can make bleeding challenging. It is 

therefore common practice on many fishing vessels that the fish are exposed to air prior to 

exsanguination, as fish then become moribund and easier to handle. For this reason, bleeding 

of the fish is often performed after a period of air exposure, which lead to asphyxiation (Van 

De Vis et al. 2003).  

Asphyxia is characterized by a prolonged period with suffocation before death. The time it takes 

for fish to die from asphyxiation before bleeding depends on the hypoxia resistance of the 

species and temperature (Poli et al. 2005). Furthermore, previous recommendations states that 

the fish should be bled within 30 minutes of slaughter in order to ensure proper exsanguination 

(Olsen et al. 2014). However, cod and haddock show brain activities up to 2 hours after being 

taken on board and kept in dry tanks (Lambooij et al. 2012). Hence, air exposure cannot be 

considered a slaughter method for these fish species, but is rather an additional stressor in the 

capturing process which can potentially lead to reduced quality and shorter shelf life of the fish 

product (Lambooij et al. 2012). In addition, the practice with air exposure is considered 

unacceptable in terms of animal welfare (Van De Vis et al. 2003).  

Live storage of fish on board fishing vessels 

Storing live fish after catch may improve the quality of the captured fish. In Norway, live cod 

captured by demersal seine are placed into capture based aquaculture to supply markets with 

fish throughout the year, and thus increase the value of the catches (Ottolenghi et al. 2004, 

Midling et al. 2012). During the last decade, a similar procedure has been investigated for short-

term storage of trawl-captured cod and haddock (Olsen et al. 2013, Lambooij et al. 2012, Digre 

et al. 2017). Short-term storage involves keeping fish in water-filled tanks until the crew is 

prepared for slaughter. The main advantages of this practice are improved fish welfare and 

potentially higher product quality. Keeping fish alive for as long as possible may increase shelf-

life of the product, as less time will pass from slaughter to market. Furthermore, because time 

from slaughter to bleeding is important for proper exsanguination, live storage could be a 

practical approach allowing better control of the timing of slaughter. Furthermore, the study by 
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Olsen et al., (2013) showed that muscle quality of cod and haddock improved after 6 hours of 

live storage, although Digre et al., (2017) found that quality only improved marginally with 

recuperation in water with variable oxygen saturation (46 - 117% dissolved oxygen).  

Fish musculature and cardiovascular system 

White and red muscles 

The fish skeletal muscles are organized in segments (myotomes) shaped like a sideways W and 

arranged in series so that they stack like cones (Fig 6). The myotomes are separated by 

connective tissue (the myoseptum) and are easily visible in heat treated fish, as high 

temperatures breaks down the connective tissue allowing separation of the muscle blocks. Fish 

swim with two types of muscle fibres, the metabolically aerobic red muscles and the 

metabolically anaerobic white muscles. The red muscles typically represent maximum 10% of 

the total muscle mass and is used for slow to moderate, sustained swimming. The white muscles 

constitutes about 90% of the total muscle mass (and sometimes over 50% of the total body 

mass) and is used for brief burst and high speed swimming, such as predator-pray chase (Nelson 

2011).  

The red muscles are located directly under the skin, parallel to the length of the fish. They get 

their colour from a high myoglobin content, which functions as an internal oxygen transport 

system. The red muscles are made up primarily from slow-twitched oxidative fibres generating 

their ATP by mitochondrial oxidative phosphorylation, which produces 36 ATP for each 

glucose equivalent. This process require fuel in forms of substrates (lipids, carbohydrates or 

protein) and oxygen as terminal electron acceptor. Oxygen and substrates are provided via rich 

blood supply (Wang and Richards 2011).  

White muscles are composed of fast glycolytic fibres that produce most power at high 

contraction frequencies and which rely almost exclusively on intracellular fuel stores to 

generate ATP anaerobically via substrate-level phosphorylation (predominantly glycolysis). 

Glycolysis produces two ATP in the conversion of glucose to pyruvate and then lactate. White 

muscles are poorly vascularised and contain no or little myoglobin. Although oxidation of 

glucose in the mitochondria yields more ATP then fermentation (30-36 vs 2 ATP), there are at 

least two physiological conditions where anaerobic pathways are preferred over aerobic, both 

of which occurs when mitochondria meets their limit to generate ATP.  
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Figure 6. Myotomal muscle anatomy. (a) Lateral view of typical teleost. One myotome of the body axis is shown in situ with 

adjacent tissue removed to illustrate its three-dimensional structure. (b) Component part of the myotome. (c) Body cross section 

revealing muscle fibre types and myosepta. Modified from Nelson (2011).  

The first involves lack of oxygen, for example due to exposure to a hypoxic environment. The 

second situation is where there is the requirement for a high generation rate of ATP in order to 

support intensive muscle contractions, for example during periods of intensive exercise. This is 

because ATP can be produced about twice as fast by anaerobic metabolism compared to aerobic 

metabolism (Wang and Richards 2011). Anaerobic metabolism leads to a rise in lactate levels, 

which can more than double in situations that cause the body to shift from aerobic metabolism 

to anaerobic metabolism. Therefore, lactate is frequently used as a stress indicator in fish. The 

rate of production and disposal of lactate is dependent on the stressor itself. For example, 

exercise may cause a more rapid formation and disposal of lactate than hypoxia does (Weber et 

al. 2016). This can be explained by differences in blood flow and in metabolic rate of the tissues 

that metabolize lactate.  

Muscle contraction and development of rigor mortis 

Although the anatomical structure of fish muscles is different from those of mammals, the 

process of muscle contraction by the striated muscles is the same. Production of force from 

shortening of the skeletal muscles is caused by myosin cross-bridge cycling, which involves a 

sequence of molecular events that underlie the sliding filament theory (Huxley and Hanson 
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1954, Huxley and Niedergerke 1954). In short, the myosin (thick) filaments of muscle 

fibres slide past the actin (thin) filaments during muscle contraction, while the two groups of 

filaments remain at relatively constant length. This process requires ATP energy and the 

binding and release of Ca2+ from troponin C, which is a protein component of thick myosin 

filaments. Crossbridge cycling can continue as long as there are sufficient amounts of ATP 

and Ca2+ in the cytoplasm 

In the first hours to days following slaughter, the texture of fish muscle is particularly influenced 

by the process of rigor mortis. After death, fish cease respiration and aerobic production of 

ATP is no longer possible. However, the tissue will continue to produce ATP via anaerobic 

glycolysis until the glycogen stores are depleted. Following glycogen depletion, the ATP 

concentration declines and the body enters rigor mortis because there is no ATP available to 

break the crossbridges. Additionally, Ca2+ enters the intracellular fluids after death, due to the 

deterioration of the sarcoplasmic reticulum. Ca2+ allow the myosin heads to bind to the active 

sites of actin proteins and the muscle is unable to relax until further enzyme activity degrades 

the complex. Rigor completion has been achieved when cross-bridge affinity and tension are at 

their maximum. During rigor, nearly 100% of all possible binding sites form cross-bridges, as 

opposed to about 20% during normal muscle contraction. Muscle tension will decrease as a 

result of proteolytic degradation.  

The process of rigor mortis has consequences for the processing of the fish as traditionally 

captured fish are often delivered in rigor. Mechanical handling of such fish by gutting or 

filleting machines can cause severe quality defects such as gaping and reduced fillet yield (Love 

1988, Stroud 1969). It is therefore common practice to halt production until rigor is completed. 

This evidently has consequences for freshness and shelf life of the fish product as rigor may 

last for several days. Prolonging the time before onset of rigor opens up for pre-rigor filleting 

and production of exceptionally fresh fish that can have longer marketing time and may serve 

additional benefits in terms of less weight and thus energy for transport (fillet vs. whole fish). 

With that said, there are some issues related to pre-rigor filleting such as lower water holding 

capacity and increased drip loss, strong fillet contraction and fillet shrinkage (Kristoffersen et 

al. 2006, Kristoffersen et al. 2007).  

 

https://en.wikipedia.org/wiki/Skeletal_muscle
https://en.wikipedia.org/wiki/Skeletal_muscle
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Circulation 

The fish circulatory system consists of two major vascular beds, the respiratory gill and the 

systemic circulation. The heart of the fish is situated in the pericardium, which is a membranous 

sac. Within the pericardium, there are four distinct chambers that constitute the fish heart: the 

Sinus venous, the atrium, the ventricle, and an outflow tract (Bulbus arteriosus) (Farrell and 

Pieperhoff 2011). The heart pumps deoxygenated blood through a short arterial network into 

the gills via Aorta ventralis. After passing through the capillary network of the gills, oxygenated 

blood is collected into A. dorsalis and distributed to the peripheral tissue via the systemic 

vessels. The venous system returns deoxygenated blood from the peripheral tissues to the heart 

(Olson 2011a).  

White and red muscles are supplied with oxygenated blood by the segmental arteries. These 

arteries branch off A. dorsalis at each vertebra, usually in alternating myosepta. There are three 

groups of segmental arteries: dorsal, lateral and ventral (Fig 7). Dorsal and lateral arteries travel 

in the septa between the myotomes and branches leave to enter myotomes and perfuse the 

capillaries of muscle fibres. Circulation of the peripheral tissue is regulated by vessel diameter, 

which affects the resistance and hence the rate of blood flow through the tissue. The vessel 

diameter in turn is regulated by layers of smooth muscle cells wrapped around the arteries. 

Large arteries can be heavily innervated, but the degree of innervation becomes progressively 

less in smaller vessels (Olson 2011a).  

The resistance is under the influence of two control systems; the remote system and the local 

system. The remote system includes the autonomic part (both the sympathetic and 

parasympathetic division) of the central nervous system and circulating catecholamines (CA; 

noradrenalin and adrenalin) released primarily from the chromaffin cells in the head kidney. 

Both components operate throughout the entire circulatory system and may affect blood flow 

through the heart (cardiac output), the gills as well as the arteries and some veins. In general, 

increased sympathetic activity will lead to increased blood flow and redistribution of blood 

from the intestinal tract to oxygen consuming tissues, including the red swimming muscles. 

This system is usually activated both during exercise and during hypoxia.  
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Figure 7. Major systemic arteries (top) and veins (bottom) in fish. AB v., abdominal vein; AC v., anterior cardinal vein; AP, 

afferent pseudobranch; CA, caudal artery; CA v., caudal vein (central vein); CM, celiacomesenteric artery; DA, dorsal 

aorta; DC, ductus cuvieri; DI, dorsal intestinal artery; DISeg, dorsal intersegmental; DS, duodenosplenic artery; Dseg v., 

dorsal segmental vein; EG v., epigastric vein; EG, epigastric artery; EP, efferent pseudbranch artery; GA, gastric artery; 

GI, gastrointestinal artery; GS, astrosplenic artery; H, hepatic artery; H v., hepatic vein, HB, hypobranchial artery; HP v., 

hepatic portal vein; IA, intercostal artery; IN, intestinal artery; J v., jugular vein; LC v., lateral cutaneous vein; LISeg, 

lateral intersegmental; Lseg, lateral segmental,; OP, ophthalmic artery; P, pseudobranch; PC v., posterior cardinal vein; 

RA, renal artery; RP v., renal portal vein; S, spleen; SA, swim bladder artery; SC, subclavian artery; SC v., subclavian vein; 

VI, ventral intestinal artery; VISeg, ventral intersegmental artery. Modified from Olson (2011a).  

 

The local system, on the other hand, regulate blood flow locally in the peripheral tissue in 

response to production of metabolic waste products, which acts directly on smooth muscle cells 

in precapillary sphincters, causing vasodilation and increased blood flow in the tissue. This 

mechanism is referred to as local hyperemia and is important to ensure adequate oxygen supply 

locally in response to increased metabolism (e.g. muscle activity). Some of the putative 

vasodilatory agents include, but are not restricted to, H+, CO2, ATP, ADP, AMP and nitric oxide 

(NO) (Satchell 1991). 

During sustained swimming, blood flow to the skeletal muscle of fish can increase four-fold 

due to local regulatory mechanisms, and blood is directed to the red muscles at the expense of 
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the white muscles (Satchell 1991). At higher swimming speeds, blood flow to the 

gastrointestinal tract is reduced due to increased vascular resistance triggered by sympathetic 

activity (Axelsson and Fritsche 1991). The redistribution of blood from the gastrointestinal tract 

to the red muscles ensures that the heart can maintain supply of oxygen to the working muscles. 

Temperature and hypoxia will also affect vascular resistance in fish through local mechanisms. 

For example, a decrease in temperature will lower metabolism, thereby increasing resistance. 

Furthermore, stimulation of vascular smooth muscle cells by circulating catecholamines may 

be blocked locally by NO, which is synthesized by the endothelium and the perivascular nerves 

and is a potent dilator of fish blood vessels (Olson 2011b).  

The stress response in fish  

Capture and transport are acknowledged causes of acute stress in fish (Sampaio and Freire 

2016). All stages of trawl capture, including exhaustive swimming during the initial stage of 

trawling, crowding in the cod-end during trawling and air exposure after the fish are landed on 

deck, have the potential to induce stress in fish. Hence, each stage of the trawling operation 

may be considered a stressor, which can potentially affect the physiology of the fish and 

eventually also the quality of the flesh.  

 

Figure 8. Overview over the primary, secondary and tertiary stress responses. CRH, Corticotropin releasing hormone, ACTH; 

Ardenocorticotropic hormone. Modified from Schreck and Tort (2016).  
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The term ‘stress’ is often a loosely used expression without consensus on its definition. 

Originally, stress was defined as the non-specific response of the body to any noxious stimuli 

(Selye 1950a). Later, this concept was revised and a distinction was made between a ‘stressor’ 

and a ‘stress response’. The stressor is the stimulus that jeopardize homeostasis and the stress 

response is how the organism copes with the stressor to regain or defend homeostasis (Chrousos 

2009). The concept of homeostasis was first used to describe the physiological inner 

equilibrium (Cannon 1932) in terms of maintaining e.g. blood pressure, fluid volume, pH, salt 

concentrations etc. However, as nearly all activities of an organism relate directly or indirectly 

to the defence of homeostasis, the definition of stress as a threat to homeostasis seem illogical. 

For example, feeding will increase blood sugar and the mere action of waking up will cause a 

rise in level of the ‘stress hormone’ cortisol, but neither of these actions are considered stressors. 

Activities such as feeding and waking up are more or less predictable actions, and a more recent 

suggestion is that physiological stress is either the absence of an anticipatory response or a 

reduced recovery of the neuroendocrine reaction (Koolhaas et al. 2011).  

Selye (1950b) made the distinction between primary, secondary and tertiary responses, 

collectively known as the General Adaptation Syndrome (GAS). The concept of GAS describes 

the overall stress response as a cascade of responses consisting of a primary response (alarm 

stage) which includes neural and endocrine responses, a secondary response (resistance stage) 

which covers changes in metabolic, respiratory, osmoregulatory, haematological and 

immunological responses, and a tertiary response in which the animal can no longer maintain 

homeostasis (Fig 8). The primary and secondary responses are considered adaptive, enabling 

the organism to mobilize sufficient energy to cope with the stressor, while the tertiary response 

is considered maladaptive leading to long-term detrimental effects. Behaviourally, the stress 

response triggers the organism to either move away from the stressor or to stay and fight the 

stressor, known as the ‘fight-or-flight’ reaction. Energy is attained via a set of catabolic 

reactions that brake down organic compounds such as carbohydrates, fats or protein in order to 

generate adenosine triphosphate (ATP) (Nelson 2011). ATP is a universal metabolic carrier of 

chemical bond potential energy and can be produced aerobically by mitochondrial oxidative 

phosphorylation and anaerobically via anaerobic glycolysis. To match the energy demand 

associated with stress, physiological mechanisms must be activated to ensure the availability of 

sufficient energy substrates. This is accomplished by a two-way communication between the 

central nervous system (CNS), the cardiovascular system, the immune system and other 
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systems via neural and endocrine mechanisms that are responsible for increasing concentrations 

of circulating glucose and lipids.  

Primary stress response 

Briefly, the CNS perceives the stressor and CAs are secreted from chromaffin cells, which are 

located in the walls of the posterior cardinal vein with the highest concentration of cells found 

in the rostral region of the vein in the head kidney (Reid et al. 1998). Circulating CAs rises 

rapidly and act on the heart to increase both heart rate and stroke volume, as well as on blood 

vessels to alter resistance and blood flow. In the gills, CAs enhance O2 uptake. Furthermore, 

CAs increases the blood oxygen transport capacity and causes the spleen to contract, thereby 

releasing more erythrocytes into the blood stream. This together with erythrocyte swelling 

increases the haematocrit in stressed fish (Reid and Perry 2003). CAs also have a direct effect 

on the swimming performance (Moon 2011), although the exact underlying mechanism for how 

CAs are involved in muscle contractions is unclear. In the liver, CAs stimulate gluconeogenesis 

and glycogenolysis, while in adipose tissue they stimulate lipolysis. Gluconeogenesis is the 

metabolic pathway responsible for glucose production from non-carbohydrate sources such as 

amino acids, whereas glycogenolysis is the production of glucose from glycogen.  

Cortisol has a broad range of functions in fish and important target tissues are gills, intestine 

and liver. These organs reflect some of its major purposes, namely regulation of hydromineral 

balance and energy metabolism. In addition, cortisol has immune suppressive effects. 

Furthermore, cortisol may stimulate a proteolytic function in white muscle cells, and possibly 

also in the liver, which can fuel gluconeogenesis (Moon 2011). Cortisol is produced in the head 

kidney, more specifically in interrenal cells. The production and secretion cortisol is regulated 

via the brain-pituitary-interrenal axis (Fig 8). During acute stress, the concentration of plasma 

cortisol tends to increase rapidly, within a minute to an hour, followed by a gradual decrease to 

pre-stress levels within a day. Cortisol is perhaps the most commonly used indicator for stress 

in fish because basal levels are low (<5 ngL-1) for most fish species and usually increases by 

10-100 folds during stressful situations, depending on the stressor and the species (Sopinka et 

al. 2016). Some of the critiques on using only cortisol as a stress indicator comes from the fact 

that circulating glucocorticoids respond rapidly (i.e. often within 3–5 min) to capture and 

handling (Romero and Reed 2005), and so it is often difficult to obtain baseline levels in wild 

animals.  

https://www.sciencedirect.com/topics/neuroscience/glucose
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Secondary stress response 

The secondary stress response in fish involves metabolic changes such as increase in circulating 

glucose and lactate and decrease in tissue glycogen (Barton 2002), as well as osmoregulatory 

disturbances by altering levels of plasma chloride, plasma sodium and water balance. These 

changes are caused by the release of hormones during the primary stress response.  

Glucocorticoids (primarily cortisol) also increases circulating levels of glucose by stimulating 

gluconeogenesis and glycogenolysis (Moon 2011). Glucose is an important oxidative substrate 

to many cells and tissues in fishes. In fishes, glucose is most likely subordinate to lipids and 

protein and blood glucose levels varies tremendously between fish species and even within 

species. The variations depend on life stage, temperature, feeding regimes etc., and baseline 

values of glucose can therefore be difficult to interpret. The role of glucose increases with 

stressful situations, where energy requirements are high and urgent, because glucose have the 

potential to create energy in the form of ATP quickly and in the absence of oxygen. Therefore, 

glucose can be useful for assessing the acute stress response to specific stressors (Sopinka et al. 

2016). 

There are also studies reporting that both cortisol and CAs may affect glycogenesis in fish 

skeletal muscle (Pagnotta and Milligan 1991, Girard et al. 1992, Milligan and Girard 1993). 

Glycogenesis is the process of glycogen synthesis, and production of glycogen from lactate is 

one is the main end-points of lactate in fish. The white muscles of rainbow trout can retain as 

much as 80-85% of the lactate produced during exercise (Milligan and Girard 1993) and this 

retention of lactate is stimulated by catecholamines (Wardle 1978). Lactate is an important 

metabolite in fish that serves as an oxidative fuel, a glycolytic end-product, a gluconeogenic 

precursor, and an intracellular signalling molecule, and can also be a useful stress indicator 

because the rate of appearance is faster than the rate of disposal during situations where ATP 

supply is limited, such as during stress (Sopinka et al. 2016).  

Acute stress also has a pronounced effect on cardiovascular function and tends to cause an 

increase in heart rate and stroke volume. In addition CAs lead to a rise in blood haematocrit by 

causing erythrocytes to swell and increasing the number of red blood cells and reducing blood 

clotting time due to higher levels of circulating thrombocytes (Tavares-Dias et al. 2009). The 

circulating CAs also stimulate branchial blood flow and oxygen diffusing capacity and 

increased oxygen transport capacity of the blood. Furthermore, vascular resistance of the 

systemic blood vessels are affected by high levels of circulating CAs (Wendelaar Bonga 1997).  
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The primary and secondary stress responses are highly adaptive in fish, in terms of mobilizing 

and distributing energy, thus preparing the fish for fight or flight. However, it may influence 

the quality of final fish product because it changes the chemistry of the muscle tissue and may 

influence the efficiency of bleeding fish (Jørpeland et al. 2015, Olsen et al. 2013, Olsen et al. 

2008, Digre et al. 2017).  
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Aims of the study 

During trawl capture, fish are exposed to a number of stressors which may reduce the quality 

of the final product. These stressors involve swimming to exhaustion, crowding in the cod end, 

severe barotrauma, and lack of controlled killing and bleeding. Identifying or singling out the 

most important factors is very challenging on board trawlers, due to weather conditions, 

differences in haul size and duration. Therefore, the overall aim of this thesis is to isolate and 

experimentally test how exhaustive swimming, exhaustive swimming followed by crowding 

and traditional slaughtering techniques (asphyxiation) effects the physiology and the fillet 

quality of haddock and Atlantic cod, and to see how short-term recuperation affect these 

parameters.  
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General results and discussion  

Trawlers land the largest quantum of cod and haddock in Norway. Understanding why quality 

from trawl-caught fish varies will have great ethical and financial impact on the fishery 

industry, as it sets the base for development of technologies to prevent or reverse impairment 

of fish quality.  

Swimming  

Capture of cod and haddock by trawl involves an initial phase where the fish swim in the net 

opening for some time before capture. The duration of this phase is dependent on towing speed, 

water temperature and condition of the fish (Winger et al. 2010). At some stage, the fish usually 

change its swimming behaviour from sustained to burst-and-glide swimming, which is an 

indication of a switch from the use of aerobic red muscles to anaerobic white muscles. During 

swimming, blood flow to the red muscles may increase four-fold (Satchell 1991). In Atlantic 

cod, exercise is reported to induce a decrease in the total vascular resistance and redistribution 

of blood from the intestinal tract to the other parts of the systemic vasculature (Axelsson and 

Fritsche 1991). This can be explained by hyperaemia in the working muscles, due to release of 

metabolites, which leads to increased blood flow to the muscles. We therefore hypothesized 

that an increase in blood flow to the working muscles could lead to deposition of residual blood 

and hence an increase in fillet redness after exhaustive exercise. Furthermore, Olsen et al., 

(2013) observed an increase in fillet redness after 3 hours of recuperation from trawl capture. 

Blood flow to both white and red muscles have been documented to increase after muscular 

activity (Neumann et al. 1983), and therefore we speculated whether short-term recuperation 

would reduce residual blood in fillets. We addressed these issues by using a large-scale swim 

tunnel to physically exhaust haddock (Paper I) and Atlantic cod (Paper II and III), followed by 

recuperation for 0, 3 or 6 hours (paper I) or 0, 2, 4, 6 or 10 hours (paper II).  

When comparing the swimming experiments of haddock (paper I) and cod (paper II) to studies 

done on commercial trawlers (Digre et al. 2010, Olsen et al. 2013) it was clear that the changes 

we found in muscle pH, blood lactate and fillet redness were less pronounced than had been 

observed previously. This indicates that the exhaustive swimming procedure we used should 

probably be considered a moderate stressor. Yet, the observed swimming behaviour in the 

experimental set-up with kick and glide just before the fish ceased swimming, were similar to 

that observed in the net opening of a trawl (Beamish 1969).  
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We further concluded that exhausted swimming is not the main cause of reduced quality in 

terms of fillet colour. However, exhaustive swimming did have a significant effect on time and 

strength of post-mortem muscle stiffness. We found the time it took for haddock to reach 

maximum muscle stiffness was significantly reduced (paper I) and that swum cod had a higher 

maximum muscle stiffness during rigor mortis than rested cod (paper II). This indicates that, 

although swimming is not a severe stressor, it reduces the white muscle stores of glycogen, 

thereby causing a faster and stronger onset of rigor mortis (Stroud 1969). This effect was 

reversed sometime between 0 and 3 hours of recuperation for haddock (paper I) and 0 and 2 

hours for cod (paper II), indicating that muscle energy stores are beginning to recover. 

However, a full recovery may take up to 12 hours (Kieffer 2000), as indicated by elevated blood 

glucose levels throughout the whole recovery period (6 hours for haddock, paper I) and (10 

hours for cod, paper II).  

Although exercise-induced hyperaemia may result in increased blood flow to the working 

muscles, we did not detect any increase in fillet redness for either haddock (paper I) or cod 

(paper II and III). It seems therefore that the amount of blood entering the working muscles 

during exercise is removed at the same rate as it appears. We concluded that exhaustive exercise 

probably has an effect on the textural quality of the fillets of both cod and haddock, but no 

effect on visual residual blood in the muscle. Hence, swimming in front of the net is not the 

major source of the quality impairment frequently seen in trawl-captured cod and haddock. 

Crowding 

In paper I and II, we concluded that the stress associated with exhaustive swimming had a low 

overall impact on fillet quality. Several studies have reported a relationship between the 

duration of trawl hauls and the frequency of fillet quality defects, and literature suggests that 

crowding may trigger a severe stress response in fish (Bahuaud et al. 2010, Lerfall et al. 2015, 

Montero et al. 1999, Ortuno et al. 2001, Pickering and Stewart 1984, Skjervold et al. 2001, Tort 

et al. 1996, Wedemeyer 1976). There is, however, little information on the timing of the stress 

response associated with the ‘crowding’ stage of the trawling operation, and we therefore 

addressed this issue by swimming commercially sized cod to exhaustion followed by extreme 

crowding (736 ± 50 kg m3) of the fish for 0, 1 or 3 hours in an experimental cod-end. The fish 

were then allowed to recuperate for 0, 3 or 6 hours in a net pen prior to slaughter, in order to 

assess if any potential impairment of fillet quality could be reversed within a reasonable 

timeframe (Olsen et al. 2013).  



26 

We found that exhaustive swimming combined with crowding was associated with a marked 

metabolic stress response, as indicated by high levels of plasma cortisol, blood lactate and blood 

haematocrit levels, as well as a reduction of fillet quality in terms of increased visual redness 

and a drop in muscle pH. The severity of the metabolic stress response, as judged from the 

metabolic markers, was comparable to that reported for lengthy (>5 hrs) and large (>20 tons) 

trawl hauls (Olsen et al. 2013) . Furthermore, the evaluation of fillet redness presented in paper 

III indicated that the fillets of our fish were assessed as having even more red colouration than 

fillets of commercially caught fish (Fig 9). 

 

Figure 9. Comparison of five different experiments with sensory evaluation of fillet redness. All numbers have been transformed 

to the same scale (0-2), 0 being perfectly white, 2 being very red and blood filled. Stress in this setting is defined as either 

exhaustive exercise, exhaustive exercise followed by crowding or commercial trawl capture.  
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However, this result must be interpreted with caution, as the sensory evaluation of redness may 

be better suited for evaluating relative differences within the same experiment, rather than 

making comparisons across experiments. 

Short-term recuperation only had positive effects on quality in terms of time to maximum 

muscle stiffness (paper I), the level of maximum muscle stiffness (paper II) in the process of 

rigor mortis and increase in muscle pH (paper III), but did not have a large impact on quality 

in terms of fillet redness (paper III). Studies conducted on board commercial trawlers, found 

that fillet redness tended to increase during the first 3 hours of recuperation after capture and 

then decreased to at-capture levels after 6 hours (Olsen et al. 2013, Digre et al. 2017) (Fig 9). 

Notably, no such increase was found in experimental setting (paper III), where redness 

remained unchanged throughout the recuperation period. Based on these findings, recuperation 

for 6 hours in our experiments had little effect on quality in terms of fillet redness.  

Air exposure 

On board trawlers, the final phase of the trawling operation include hauling the catch from the 

water and on-board the fishing vessel, where the catch is usually stored dry in bins until further 

processing or exsanguination. During this stage, the fish is normally exposed to air for some 

time prior to exsanguination, so they become asphyxiated and easier to handle in terms of 

bleeding (Van De Vis et al., 2003). In paper IV we investigated the effects of asphyxiation on 

stress parameters (muscle and blood pH, lactate and glucose) and fillet quality in terms of 

amount of haemoglobin in muscle of cod.  

As clearly stated in paper III, and previously shown in studies on board commercial trawlers, 

the trawling operation represents a strong overall stressor that affects the fillet quality of cod. 

We therefore hypothesized that the accumulation of stress throughout the trawl capture, from 

swimming to crowding to air exposure, is the major cause of variable quality of trawl captured 

gadoids. The last paper of this thesis (paper IV) investigated how pre-mortem stress by mild 

crowding followed by air exposure for 0, 15 or 30 minutes effected metabolic stress parameters, 

blood coagulation time and muscle haemoglobin concentrations (as a measure of residual blood 

in the fillet).  

As in paper III, paper IV also showed that stress from crowding resulted in increased levels of 

muscle haemoglobin in the fillets. Furthermore, we found that air exposure had an additional 

negative effect on fillet quality, which was stronger when the fish were crowded prior to air 
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exposure. However, by euthanising the fish before air exposure, the accumulation of residual 

blood was delayed. Interestingly, crowding for four hours did not cause a significant increase 

in lactate or pH. Nevertheless, we did find significantly higher concentrations of haemoglobin 

in muscles of crowded individuals, indicating that ‘mild’ crowding may already affect the 

quality of the fish in terms of residual blood in the fillet.  

Previous recommendation states that fish should be bled within 30 minutes of slaughter. 

However, the study asserting that recommendation is done on unstressed fish. In our study, we 

found that the effect of crowding on haemoglobin concentration in the muscles masked the 

effect of bleeding fish. This suggests that the practice of leaving fish in air may be detrimental 

to the fillet quality and should be avoided.  

Why is crowding important for fillet redness? 

It was surprising to us that mild to moderate stress from exercise (paper I and II) did not cause 

any increase in muscles redness, whereas stress from mild crowding (paper IV) did. It appears 

as if the amount residual blood in fillets is dependent on whether stress is induced from exercise 

or crowding. It should be noted that the evaluation of residual blood in these three papers is not 

the same; sensory evaluation in paper I and II versus VIS/NIR spectroscopy in paper and IV. 

In paper III, we tested the correlation between spectroscopy and sensory evaluation of fillet 

redness and found a significant positive correlation between fillet redness and muscle 

haemoglobin (Fig 10). Furthermore, both the spectroscopic and the sensory evaluation in paper 

III indicated that swimming did not cause an increase in redness, whereas crowding did. It is 

therefore worth speculating on why crowding appears to have the highest impact on fillet 

redness, even when it is done in such a way that it does not induce a severe stress response.  

It is tempting to assume that the fillet redness is directly linked to the degree of stress. In paper 

III we found a positive correlation between cortisol and fillet redness. However, a correlation 

is not the same as causality and, in paper II the increase in cortisol was not linked to the increase 

in redness. Furthermore, metabolic stress parameters such as glucose, lactate and pH measured 

in crowded fish in paper IV indicated that the fish were only mildly stressed, yet haemoglobin 

concentration in the muscles was significantly increased.  
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Figure 10. Correlation between filet redness and muscle haemoglobin. Continuous lines are trend lines estimated from the 

GLM and dotted lines indicate 95% confidence intervals (Paper III).  

Previous studies have shown that blood is redistributed to white muscles during swimming 

(Neumann et al. 1983). However, as discussed in paper I and II, no increase in visual redness 

was found in fillets of cod or haddock during exercise, whereas crowded fish (paper III and 

paper IV) were evaluated as having a greater red colouration than swum or rested fish. It has 

been suggested that fillet redness is due to increased blood flow to the muscles to flush out 

waste products and protect against acidosis (Olsen et al. 2013). But, this does not explain why 

there is a difference between exhaustive exercise and crowding in terms of redness. It is 

interesting to speculate on some possible contributing reasons for increased fillet redness and 

why it occurs in crowded, but not exercising fish.  

As previously mentioned, hyperaemia is the process by which the body adjusts blood flow to 

meet the metabolic needs of its different tissues (Satchell 1991). Functional, or active, 

hyperaemia leading to increased blood flow, is mediated by a rise in vasodilatory agents during 
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periods of increased cellular metabolism. A possible 

explanation for the difference in residual blood 

content of white muscle in exercised, compared to 

exercised and crowded fish, is that accumulation of 

residual blood in the crowded fish is caused by 

insufficient emptying/return of venous blood from the 

segmental veins, due to impaired movement of the 

swimming muscles. The venous blood from the 

swimming muscles of fish is passed to the central 

veins via the segmental veins and depends on the 

alternating movement of the lateral muscles, which 

squeezes the blood out of the segmental veins and into 

the central veins when the ipsilateral muscles contract. The segmental veins, in turn, are guarded 

by ostial valves (Fig 11), which prevents backflow of blood when the ipsilateral muscles relax. 

Hence, return of venous blood from the swimming muscles is dependent on the continuous, 

alternating sideways muscular movement of the body of the fish. This mechanism is similar to 

the muscular pump of the lower limb in humans (Ludbrook 1966), which also depend on muscle 

contraction to facilitate the return of venous blood to the heart. It is possible therefore that in 

situations where the alternating contraction/relaxation of the swimming muscles is blocked, e.g. 

when the fish is tightly packed in the cod end (paper III), that the return of the venous blood 

from the swimming muscles is impaired, resulting in accumulation of blood in the muscles. 

This may also be the case during recuperation in the crowding experiment (paper III), where 

the fish laid still on the bottom of the cage during the first few hours of hours of recuperation 

(unpublished observations). Interestingly, the fish in this experiment began to swim slowly 

sometime between 3 and 6 hours of recuperation, corresponding to the time when fillet redness 

began to decrease.  

  

Figure 11. Location of the ostial valve on a large 

longitudinal (central ) vein. 
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Conclusions 

Together these four studies show that there is a connection between type of stressor affecting 

the fish during capture and the quality of the fish product (fillets) in terms of colour. Crowding 

and air-exposure cause an increase in fillet redness and concentration of haemoglobin in the 

muscle that was not seen for exercised fish. It is suggested that the accumulation of residual 

blood in the white muscles of crowded fish may be the result of insufficient emptying of 

segmental veins due to the static condition of the muscles during crowding. Measures that may 

secure top quality fish from trawlers, include reducing crowding in the cod-end and 

implementing direct slaughter. Recuperation may have beneficial effects on fillet quality by 

reducing air exposure time and gaining control over slaughter time. However, in terms of fillet 

colour, recuperation must be longer than 6 hours.  
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