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ABSTRACT 
This work presents a method for the solution of fundamental governing 

equations of computational fluid dynamics (CFD) using the Semi-Implicit 

Method for Pressure-Linked Equations (SIMPLE) in MATLAB®. The 

fundamental governing equations of fluid mechanics are based on three 

laws of conservation, referred to as the law of conservation of mass, the law 

of conservation of momentum and the law of conservation of energy. The 

continuity equation represents the law of conservation of mass, the Navier-

Stokes equations represent the law of conservation of momentum, and the 

energy equation represents the law of conservation of energy. In SIMPLE, 

the continuity and Navier-Stokes equations are required to be discretized 

and solved in a semi-implicit way. This article presents the discretization and 

method of solution applied to the flow around a 2-D square body. Code is 

written in MATLAB®. The results show the pressure and velocity fields of the 

converged solution.  

 

 
1. INTRODUCTION  
Computational fluid dynamics (CFD) is based on three basic physical principles: conservation 
of mass, of momentum and of energy. The governing equations in CFD are based on these 
conservation principles. The continuity equation is based on conservation of mass, as shown 
in Equation (1), 
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where 𝜌𝜌 is fluid density, 𝑢𝑢 is fluid velocity in the x-direction, 𝑣𝑣 is fluid velocity in the y-
direction, 𝑤𝑤 is fluid velocity in the z-direction and 𝑡𝑡 is time. 
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in Equation (3) for the y-direction,  
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and in Equation (4) for the z-direction, 
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where 𝑝𝑝 represents pressure, 𝑈𝑈��⃗  the velocity vector (𝑢𝑢𝑢𝑢 + 𝑣𝑣𝑣𝑣 + 𝑤𝑤𝑤𝑤), 𝑓𝑓 = 𝑓𝑓𝜕𝜕𝑢𝑢 + 𝑓𝑓𝜕𝜕𝑣𝑣 + 𝑓𝑓𝜕𝜕𝑤𝑤 the 
body force vector and 𝜏𝜏 is the shear stress tensor as shown in Equation (5), 
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The effect of volumetric viscosity is ignored. If the fluid is considered to be a Newtonian 

fluid, then shear stress is as shown in Equation (6), 
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where 𝜇𝜇 is the dynamic viscosity, 𝛿𝛿𝑖𝑖𝑖𝑖 is the kronecker delta, and subscripts 𝑢𝑢, 𝑣𝑣 and 𝑤𝑤 refer 
to linear dimensions x, y and z.  

The equation based on the conservation of total energy is shown in Equation (7), 
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where 𝑒𝑒 = 𝑐𝑐𝜌𝜌𝑇𝑇 is internal energy, 𝑈𝑈2 = 𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 is the magnitude of velocity vector, 
�̇�𝑞 is the energy source, 𝑤𝑤 is the thermal diffusion coefficient and 𝑇𝑇 is temperature.  

By subtracting the product of momentum equations with their corresponding velocity from 
the total energy equation, an equation for the conservation of internal energy can be written 
as shown in Equation (8), 
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where 𝜆𝜆 =  −2

3
𝜇𝜇 and 𝜇𝜇 is the coefficient of dynamic viscosity.    
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These governing equations can be applied to a physical system in a closed volume. 
Equations (1) to (8) are non-linear partial differential equations and difficult to solve 
analytically. The numerical method of solution involves the discretization in time and space 
(closed volume) domains. The solution is achieved using iterative numerical techniques such 
as the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE).  

A SIMPLE algorithm is a widely used numerical procedure in computational fluid 
dynamics (CFD) to solve the fundamental governing equations of fluid mechanics. Prof. Brian 
Spalding and Suhas Patankar developed the SIMPLE algorithm at Imperial College, London, 
in the early 1970s [1]. Since then, it has been extensively used by many researchers to solve 
different kinds of fluid flow and heat transfer problems [2-4]. The literature on computational 
fluid dynamics discusses the SIMPLE algorithm in detail [5]. A modified variant is the 
SIMPLER algorithm (SIMPLE Revised) introduced by Patankar in 1979 [6]. 

In order to be solved using numerical techniques, CFD problems need to be discretized in 
space dimensions [2, 7-15]. For such numerical problems to be solved, they need to be 
discretized in nodes and elements [16-18]. The nodes represent the position in space where 
parameters are being calculated (for example, pressure, velocities), and the elements define 
the equations relating to the parameters (for example, continuity and Navier-Stokes) [19]. The 
geometry of the element defines the extent of calculations regarding space dimensions. These 
space dimensions categorize one-dimensional (1-D), two-dimensional (2-D) or three-
dimensional (3-D) elements, as shown in Fig. 1 [20]. 

 

 
Figure 1. One-dimensional (1-D), two-dimensional (2-D) or three-dimensional (3-D) 
elements [20].  

 
This physical behavior of various real-time structures and physical phenomena allows 

engineers and mathematicians to assume a realistic 3-D situation to be a 2-D or even a 1-D 
problem. The advantage of reducing the dimensions is that it allows complex equations to be 
solved much more easily and relatively faster [7].  

This paper provides a step by step methodology for SIMPLE, defining the problem, giving 
the assumptions, degrees of freedom, discretization, and method of solution. The methodology 
also discusses the flow chart of the method written in MATLAB®. The results section of the 
paper discusses the pressure and velocity fields obtained from the solution. The paper 
concludes by discussing the effectiveness and limitations of the given method.   
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2. METHODOLOGY 
The methodology is divided into two sections: setting up the SIMPLE and the method of 
solution in MATLAB®. Setting up the SIMPLE includes: assumptions, degrees of freedom, 
discretization, and pressure and velocity corrections. The method of solution is given in the 
form of a flowchart. 

This work assumes the CFD problem to be incompressible. This means that the density 
does not change in time and space and, henceforth, can be considered as a constant value. This 
assumption is very valid in a range of problems when flow velocities are not too high. In 
addition, the given CFD problem does not constitute any thermal effects. This assumption 
allows us to simplify the problem to the extent that there is no need to solve the energy 
equation.  

The domain is defined as 2-D space, as shown in Fig. 2, presenting a 2-D problem of flow 
around a square. The variables constituting continuity and Navier-Stokes are pressure, x-
velocity and y-velocity.  

 

 
Figure 2. Domain of a 2-D problem of flow around a square. 

 
With the above-given assumptions, continuity and Navier-Stokes equations can be 

simplified as shown in Equations (9) to (11), 
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where 𝑢𝑢 is the fluid velocity in the x-direction, 𝑣𝑣 is the fluid velocity in the y-direction, 𝑝𝑝 
is the fluid pressure, 𝜌𝜌 is the fluid density, 𝜇𝜇 is the coefficient of dynamic viscosity of the 
fluid, and 𝑡𝑡 is time. 

  

constant 
velocity at 

inlet 

no-slip 
boundary 
condition 
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In order to apply a numerical scheme such as SIMPLE for the solution of Equations (9) to 
(11), each term needs to be discretized. Discretization is the mathematical process of 
transforming continuous equations into their discrete counterparts. This process is a first step 
toward making equations suitable for a numerical solution and for implementation on digital 
machines. In this work, the 2-D domain has been discretized in a staggered grid, as shown in 
Fig. 3. 

 

 
Figure 3. 2-D domain discretized in a staggered grid. 

 
The transient terms from Navier-Stokes equations (Equations (10) and (11)) can be 

discretized using the forward difference method as shown in Equations (12) and (13), 
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where ∆𝑡𝑡 is the value of the timestep.  

Different methods can be used for the discretization of the convective term. The decision 
as to which method to select is based on the Reynolds number. This non-dimensional number 
is the ratio of convection and diffusion. If this number is small enough, we can use the central 
difference method; however, if the Reynolds number is higher, it is better to use the upwind 
scheme. Convective terms discretized using the central difference method are shown in 
Equations (14) to (17), 
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while convective terms discretized using the upwind scheme are shown in Equations (18) 
to (21),  

 

−𝜌𝜌𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= −𝑚𝑚𝑚𝑚𝑚𝑚 �
𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖−1)�𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖−1)+𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)�

2∆𝜕𝜕
, 0� +    

𝑚𝑚𝑚𝑚𝑚𝑚 �−
𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖+1)�𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖+1)�

2∆𝜕𝜕
, 0�                  (18) 

 

−𝜌𝜌𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= −𝑚𝑚𝑚𝑚𝑚𝑚 �
𝜌𝜌𝑡𝑡(𝑖𝑖−1,𝑖𝑖)�𝜌𝜌𝑡𝑡(𝑖𝑖−1,𝑖𝑖)+𝜌𝜌𝑡𝑡(𝑖𝑖−1,𝑖𝑖+1)�

2∆𝜕𝜕
, 0� +  

 𝑚𝑚𝑚𝑚𝑚𝑚 �−
𝜌𝜌𝑡𝑡(𝑖𝑖+1,𝑖𝑖)�𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖+1)�

2∆𝜕𝜕
, 0�                      (19) 

 

−𝜌𝜌𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= −𝑚𝑚𝑚𝑚𝑚𝑚 �
𝜌𝜌𝑡𝑡(𝑖𝑖−1,𝑖𝑖)�𝜌𝜌𝑡𝑡(𝑖𝑖−1,𝑖𝑖)+𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)�

2∆𝜕𝜕
, 0� +      

𝑚𝑚𝑚𝑚𝑚𝑚 �−
𝜌𝜌𝑡𝑡(𝑖𝑖+1,𝑖𝑖)�𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+𝜌𝜌𝑡𝑡(𝑖𝑖+1,𝑖𝑖)�

2∆𝜕𝜕
, 0�                  (20) 

 

−𝜌𝜌𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= −𝑚𝑚𝑚𝑚𝑚𝑚 �
𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖−1)�𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖−1)+𝜌𝜌𝑡𝑡(𝑖𝑖+1,𝑖𝑖−1)�

2∆𝜕𝜕
, 0� +     

𝑚𝑚𝑚𝑚𝑚𝑚 �−
𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖+1)�𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+𝜌𝜌𝑡𝑡(𝑖𝑖+1,𝑖𝑖)�

2∆𝜕𝜕
, 0�                      (21) 

 
where ∆𝑚𝑚 and ∆𝑦𝑦 are the values representing the size of space in the discretized domain.  

The pressure terms are discretized using the forward difference method, as shown in 
Equations (22) and (23), 

 

−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  −𝜕𝜕𝑡𝑡(𝑖𝑖,𝑖𝑖)−𝜕𝜕𝑡𝑡(𝑖𝑖,𝑖𝑖+1)
∆𝜕𝜕

                                   (22) 

 

−𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  −𝜕𝜕𝑡𝑡(𝑖𝑖,𝑖𝑖)−𝜕𝜕𝑡𝑡(𝑖𝑖+1,𝑖𝑖)
∆𝜕𝜕

                                   (23) 
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The diffusion terms are discretized using the central difference method, as shown in 
Equations (24) to (27), 

 
𝜕𝜕2𝜌𝜌
𝜕𝜕𝜕𝜕2

 = 𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖+1)− 2𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+ 𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖−1)
∆𝜕𝜕2

                             (24) 
 

𝜕𝜕2𝜌𝜌
𝜕𝜕𝜕𝜕2

 = 𝜌𝜌𝑡𝑡(𝑖𝑖+1,𝑖𝑖)− 2𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+ 𝜌𝜌𝑡𝑡(𝑖𝑖−1,𝑖𝑖)
∆𝜕𝜕2

                             (25) 
 

𝜕𝜕2𝜌𝜌
𝜕𝜕𝜕𝜕2

 = 𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖+1)− 2𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+ 𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖−1)
∆𝜕𝜕2

                             (26) 
 

𝜕𝜕2𝜌𝜌
𝜕𝜕𝜕𝜕2

 = 𝜌𝜌𝑡𝑡(𝑖𝑖+1,𝑖𝑖)− 2𝜌𝜌𝑡𝑡(𝑖𝑖,𝑖𝑖)+ 𝜌𝜌𝑡𝑡(𝑖𝑖−1,𝑖𝑖)
∆𝜕𝜕2

                             (27) 

 
The discretized terms can be substituted in Navier-Stokes Equations (10) and (11), 

resulting in the following forms, as shown in Equations (28) and (29), 
 

𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) =  𝑢𝑢𝜕𝜕(𝑢𝑢, 𝑣𝑣) +  
∆𝑡𝑡 �𝑓𝑓𝑢𝑢𝑓𝑓𝑐𝑐𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓(𝑢𝑢𝜕𝜕, 𝑣𝑣𝜕𝜕 ,𝜌𝜌 , 𝜇𝜇 ,∆𝑚𝑚,∆𝑦𝑦) − (𝜕𝜕(𝑖𝑖,𝑖𝑖)−𝜕𝜕(𝑖𝑖,𝑖𝑖+1))

∆𝜕𝜕
�             (28) 

 
𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) =  𝑣𝑣𝜕𝜕(𝑢𝑢, 𝑣𝑣) +  

∆𝑡𝑡 �𝑓𝑓𝑢𝑢𝑓𝑓𝑐𝑐𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓(𝑢𝑢𝜕𝜕, 𝑣𝑣𝜕𝜕 ,𝜌𝜌 , 𝜇𝜇 ,∆𝑚𝑚,∆𝑦𝑦) − (𝜕𝜕(𝑖𝑖,𝑖𝑖)−𝜕𝜕(𝑖𝑖+1,𝑖𝑖))
∆𝜕𝜕

�             (29) 

 
The continuity equation (Equation (9)) is discretized using the forward difference method, 

as shown in Equation (30), 
 

 (𝜌𝜌𝑡𝑡+1(𝑖𝑖,𝑖𝑖−1)−𝜌𝜌𝑡𝑡+1(𝑖𝑖,𝑖𝑖))
∆𝜕𝜕

 + (𝜌𝜌𝑡𝑡+1(𝑖𝑖+1,𝑖𝑖)−𝜌𝜌𝑡𝑡+1(𝑖𝑖,𝑖𝑖))
∆𝜕𝜕

= 𝑟𝑟𝑒𝑒𝑟𝑟𝑢𝑢𝑟𝑟𝑢𝑢𝑚𝑚𝑟𝑟             (30) 

 
where 𝑟𝑟𝑒𝑒𝑟𝑟𝑢𝑢𝑟𝑟𝑢𝑢𝑚𝑚𝑟𝑟 indicates the extent of convergence. Although its ideal value is zero, a small 
number is acceptable for a numerical solution.  

It is to be noted that Navier-Stokes equations (Equations (28) and (29)) are discretized in 
time domain t. However, the continuity equation (Equation (30)) has been discretized in time 
domain t+1. This is because the velocities in the new domain are calculated using Navier-
Stokes discretized equations (Equations (28) and (29)) and checked in the discretized 
continuity equation (Equation (30)). The solution is iterated until the residual reduces to a 
small number.  

Since the solution is calculated via Navier-Stokes discretized equations (Equations (28) 
and (29)), it always conforms with the law of conservation of momentum. However, it may 
not conform with the law of conservation of mass as defined by the discretized continuity 
equation (Equation (30)). In order to obtain convergence for both, laws of conservation of 
momentum and mass, corrections need to be applied to velocities and pressure variables, as 
shown in Equations (31) to (33), 
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𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐  =  𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) +  𝑟𝑟𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)                         (31) 
 

𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐  =  𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) + 𝑟𝑟𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)                          (32) 
 

𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐  =  𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)  + 𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)                         (33) 
 
where 𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐 , 𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐, and 𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐  are the corrected values 
of velocity 𝑢𝑢, velocity 𝑣𝑣 and pressure 𝑝𝑝 that satisfy both continuity and Navier-Stokes 
discretized equations (Equations (28) to (30)). 𝑟𝑟𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣), 𝑟𝑟𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣), and 𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) are 
the differences between the corrected values and are calculated for velocity 𝑢𝑢, velocity 𝑣𝑣 
and pressure 𝑝𝑝, respectively.  

Substituting the corrected values in the discretized Navier-Stokes equations (Equations 
(28) and (29)) results in Equations (34) and (35), 

 

− 𝑟𝑟𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) =  ∆𝑡𝑡 �𝑐𝑐𝜕𝜕
𝑡𝑡+1(𝑖𝑖,𝑖𝑖)– 𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖,𝑖𝑖+1)

∆𝜕𝜕
�                        (34) 

 

− 𝑟𝑟𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) =  ∆𝑡𝑡 �𝑐𝑐𝜕𝜕
𝑡𝑡 +1(𝑖𝑖,𝑖𝑖)– 𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖+1,𝑖𝑖)

∆𝜕𝜕
�                        (35) 

 
Substituting Equations (34) to (35) in the discretized continuity equation (Equation (30)) 

results in Equation (36), 
 

∆𝑡𝑡 �
�𝑐𝑐𝜕𝜕

𝑡𝑡+1(𝑖𝑖,𝑖𝑖−1)− 𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖,𝑖𝑖)−𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖,𝑖𝑖)𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖,𝑖𝑖+1)
∆𝜕𝜕2

� +

�𝑐𝑐𝜕𝜕
𝑡𝑡+1(𝑖𝑖−1,𝑖𝑖)− 𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖,𝑖𝑖)−𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖,𝑖𝑖)+ 𝑐𝑐𝜕𝜕𝑡𝑡+1(𝑖𝑖+1,𝑖𝑖)

∆𝜕𝜕2
�
� = 𝑟𝑟𝑒𝑒𝑟𝑟𝑢𝑢𝑟𝑟𝑢𝑢𝑚𝑚𝑟𝑟       (36) 

 
Equation (36) can be rearranged in Equation (37), 

 
𝛼𝛼𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) + 𝛽𝛽𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢 + 1, 𝑣𝑣) + 𝛽𝛽𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢 − 1, 𝑣𝑣) 

+ 𝛽𝛽𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣 + 1) +  𝛽𝛽𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣 − 1) = − 𝑐𝑐𝜌𝜌𝑟𝑟𝑖𝑖𝑐𝑐𝜌𝜌𝑟𝑟𝑙𝑙
∆𝜕𝜕

                      (37) 

 
where 𝛼𝛼 and 𝛽𝛽 are given in Equations (38) and (39), 

 

𝛼𝛼 =  2 � 1
∆𝜕𝜕2

+ 1
∆𝜕𝜕2

�                                            (38) 
 

𝛽𝛽 =  − 1
∆𝜕𝜕2

                                                           (39) 

 
Equation (37) can be rearranged, as shown in Equation (40), 
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𝛼𝛼𝛽𝛽 �
𝛼𝛼/𝛽𝛽 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 𝛼𝛼/𝛽𝛽

� �
𝑟𝑟𝑑𝑑𝜕𝜕+1(1,1)

⋮
𝑟𝑟𝑑𝑑𝜕𝜕+1(𝑓𝑓, 𝑓𝑓)

�  = − 𝑐𝑐𝜌𝜌𝑟𝑟𝑖𝑖𝑐𝑐𝜌𝜌𝑟𝑟𝑙𝑙
∆𝜕𝜕

�
1
⋮
1
�                    (40) 

 
where 𝛼𝛼 and 𝛽𝛽 can be rearranged in the form of a sparse matrix.  

The above equation allows solving for residuals in an implicit manner. The obtained 
pressure corrections can be substituted for velocity corrections (Equations (41) and (43)). To 
stabilize the solution, the 𝑟𝑟𝑒𝑒𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓_𝑓𝑓𝑚𝑚𝑐𝑐𝑡𝑡𝑓𝑓𝑟𝑟 is introduced with a value between 0 to 1. 

 
𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐  =  𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣) +  𝑟𝑟𝑒𝑒𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓_𝑓𝑓𝑚𝑚𝑐𝑐𝑡𝑡𝑓𝑓𝑟𝑟.𝑟𝑟𝑢𝑢𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)                 (41) 

 
𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐  =  𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)  +  𝑟𝑟𝑒𝑒𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓_𝑓𝑓𝑚𝑚𝑐𝑐𝑡𝑡𝑓𝑓𝑟𝑟.𝑟𝑟𝑣𝑣𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)                (42) 

 
𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜌𝜌𝑐𝑐𝜕𝜕𝜌𝜌𝑐𝑐  =  𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)  +  𝑟𝑟𝑒𝑒𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓_𝑓𝑓𝑚𝑚𝑐𝑐𝑡𝑡𝑓𝑓𝑟𝑟.𝑟𝑟𝑝𝑝𝜕𝜕+1(𝑢𝑢, 𝑣𝑣)                (43) 

 
In addition, for stability and accuracy, it is vital to choose the correct timestep value. In 

this work, the Courant–Friedrichs–Lewy (CFL) condition [1, 21] is used to decide the timestep 
size. The CFL condition is given in Equation (44), 

 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢, 𝑣𝑣) .∆𝑡𝑡 ≤ 𝑚𝑚𝑢𝑢𝑓𝑓(∆𝑚𝑚,∆𝑦𝑦)                                      (44) 

 
The given method of solution is solved and post-processed in MATLAB® [22]. The flow 

chart of the code, which can be accessed from the Mathworks repository [23], is given in Fig. 
4. The results are discussed in the next section. 
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Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) – solution in MATLAB®     

 

 
 

 
Figure 4. Flowchart of the code.  
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3. RESULTS AND DISCUSSION 
The pressure and velocity fields are obtained in a 2-D domain, as shown in Fig. 5. The velocity 
vectors show that the flow was diverted at the corners of the square. Pressure fields 
demonstrate that the high pressures were developed in front of the square and low pressure 
behind the square. 

 

 
Figure 5. Pressure and velocity fields around a square in the 2-D domain.  

 
In the given case, the maximum value of the residual value dropped below 10-4. The 

maximum values of residuals from the continuity equation are plotted against the iteration 
number, as shown in Fig. 6.   
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Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) – solution in MATLAB®     

 

 
 

 
Figure 6. Convergence plot: the maximum value of the residual is plotted against 
the iteration number. 

 
4. CONCLUSION 
The presented study demonstrates that flow around a square in a 2-D domain can be 
successfully solved using the SIMPLE algorithm. The paper offers an explanation of the 
SIMPLE algorithm, detailing assumptions, degrees of freedom, discretization, as well as 
pressure and velocity corrections. The method of solution is given in the form of a flowchart 
and the code is implemented in MATLAB® and can be accessed from [23]. 
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