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ABSTRACT 

The Fracture Risk Assessment Tool (FRAX) is widely used to identify individuals at increased 

risk for fracture. However, cortical porosity is associated with risk for fracture independent of 

FRAX and is reported to improve the net reclassification of fracture cases. We wanted to test 

the hypothesis that women with fracture who are unidentified by high FRAX score, but 

identified by high cortical porosity, have a set of characteristics that contribute to their fracture 

risk beyond high FRAX score and high cortical porosity. We quantified FRAX score with 

femoral neck areal bone mineral density (FN aBMD), and femoral subtrochanteric architecture, 

in 211 postmenopausal women aged 54-94 years with non-vertebral fractures, and 232 fracture-

free controls in Tromsø, Norway, using StrAx software. Of 211 fracture cases, FRAX score 

>20% identified 53 women (sensitivity 25.1% and specificity 93.5%), while cortical porosity 

cut-off >80th percentile identified 61 women (sensitivity 28.9% and specificity 87.9%). The 43 

(20.4%) additional fracture cases identified by high cortical porosity alone, had lower FRAX 

score (12.3 vs. 26.2%) than those identified by FRAX alone, they were younger, had higher FN 

aBMD (806 vs. 738 mg/cm²), and fewer had a prior fracture (23.3 vs. 62.9%), all p < 0.05. They 

had higher cortical porosity (48.7 vs. 42.1%), thinner cortices (3.75 vs. 4.12 mm), lower cortical 

and total volumetric BMD (942 vs. 1053 and 586 vs. 699 mg HA/cm³), larger medullary and 

total cross-sectional areas (245 vs. 190 and 669 vs. 593 mm²), and higher cross-sectional 

moment of inertia (2619 vs. 2388 cm4) all p < 0.001. When the fracture cases and controls with 

high cortical porosity were compared, cases had higher cortical porosity, lower cortical vBMD, 

lower total vBMD, smaller cortical CSA/Total CSA, larger medullary CSA and larger total 

CSA than controls (all p ≤ 0.05). Thus, fracture cases, unidentified by FRAX, but identified by 

cortical porosity, had an architecture where the positive impact of larger bone size did not offset 

the negative effect of thinner cortices with increased porosity. A measurement of cortical 
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porosity may be a marker of other characteristics that capture additional fracture risk 

components, not captured by FRAX. 
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1. Introduction 

The Fracture Risk Assessment Tool (FRAX) is widely used in many countries and has improved 

fracture risk prediction compared to areal bone mineral density (aBMD) alone [1-3]. Despite of 

the inclusion of several well-known risk factors for fracture, this tool has limitations in terms 

of lack of sensitivity [4,5]. For this reason, there are ongoing discussions concerning which of 

the included risk factors may not be needed, as well as which factors could be added to FRAX 

to improve the fracture prediction [3]. This is an important discussion because low aBMD is 

one of the key components of high FRAX score, while a majority of those individuals who 

suffer fractures have either normal or only slightly reduced aBMD. Many bone features 

contribute to bone strength, such as the bone architecture and geometry, which could aid finding 

those who do not have the traditional risk factors such as older age and low aBMD [6,7]. A 

larger size is important for bone strength, because the resistance to bending increases to the 

fourth power of its radius [8]. Moreover, deterioration of both the cortical as well as the 

trabecular architecture compromises bone strength [8,9]. However, in an experimental study, 

which examined the contribution of cortical versus trabecular bone using biomechanical testing, 

trabecular bone contributed to only 7% of bone strength in the femoral neck [10]. Trabecular 

bone score can be used in the FRAX calculation, but it results in only a modest improvement 

of fracture risk prediction [3,11]. Cortical porosity is a potential risk factor for fracture as 

cortical bone constitute 80% of the skeleton [12], and contribute over 90% to bone strength 

[10], still, cortical porosity or other cortical bone parameters are not included in the FRAX.  

Several cross-sectional studies have reported that increased cortical porosity assessed using 

high-resolution peripheral quantitative computed tomography (HR-pQCT) and clinical CT 

technology, is associated with prevalent fracture in women and men [13-17]. In contrast, no 

association was confirmed between cortical porosity at distal tibia and fracture risk in a 

prospective study of elderly men using HR-pQCT software [18]. In another study using HR-
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pQCT and StrAx software, cortical porosity of the inner transitional zone at the ultra-distal 

radius was associated with incident fracture in postmenopausal women independent of femoral 

neck (FN) aBMD and FRAX score, but only marginally after adjustment for ultra-distal radius 

aBMD [19]. Our research group has previously reported that increased cortical porosity at the 

proximal femur was associated with fracture independent of FN aBMD and FRAX [15,20]. 

Using a cortical porosity threshold >80th percentile identified 20% additional fracture cases who 

were unidentified by FRAX, and improved the net reclassification of fracture cases [20]. This 

suggests that a measurement of cortical porosity captures other important skeletal properties 

not captured by the FRAX score. The reasons why some women are identified by FRAX, while 

others are identified by a measurement of cortical porosity is not clear. To the best of our 

knowledge, no previous study have reported the characteristics of those additional individuals 

with fractures who are identified by cortical porosity independently of FRAX. We reanalyzed 

the data, and explored the differences in clinical characteristics, cortical architecture, bone 

geometry and a strength estimate between the women with fracture identified by high FRAX 

score alone, those identified by a measurement of high cortical porosity alone, those who were 

unidentified by either, and control groups who had the same criteria as each of the groups of 

cases. We wanted to test the hypothesis that women with fracture who are unidentified by high 

FRAX score, but identified by high cortical porosity, have a set of characteristics that contribute 

to their fracture risk beyond high FRAX score and high cortical porosity. 

 

2. Materials and methods 

2.1. Study population 

The Tromsø Study is a single-center, population-based study in Northern Norway, which 

conducted six surveys between 1974 and 2008 [21]. During the Tromsø 4 survey in 1994–95, 

37,558 eligible inhabitants in Tromsø over 24 years old were invited to participate, and 27,158 
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(72%) agreed. Within these participants, all nonvertebral fractures that occurred between 

January 1, 1994 and January 1, 2010 were registered from the University Hospital of North 

Norway, Tromsø x-ray archives [22]. Participants with a vertebral fracture were not included 

in this x-ray based fracture registry, as few of them came to the hospital for an x-ray. 

In 2011 we designed a nested case-control study and identified 1250 women from the 

x-ray-based fracture registry that suffered at least one fracture of the hip, wrist, or proximal 

humerus after the age of 50 years [15,20,23-25]. We invited all 760 women who were still alive 

and living in Tromsø. All women who were willing to participate had a pre-screening phone 

call to determine whether they were eligible for participation in accordance with the inclusion 

and exclusion criteria. Those who were premenopausal, received bisphosphonates, or had hip 

prostheses or metal screws in the hip region were excluded from the study. Since metal on one 

hip can create noise in the CT images on both sides, many women with a hip fracture could not 

be included unless they had the metal removed. After screening, 264 fracture cases were 

included in the study [15,20,23,24]. Age-matched, fracture-free women, who were within the 

same 5-year age groups, were randomly selected from the Tromsø 4 participants, and 1186 were 

invited. After a pre-screening phone call to determine whether they were eligible and fracture-

free, 260 controls were included. Of these 524 participants, we excluded 15 women who were 

currently receiving hormone replacement therapy and 66 women due to motion artifacts during 

CT scanning. This left 443 women included in the final analyses: 232 fracture-free controls and 

211 fracture cases (4 hip, 181 wrist, and 26 proximal humerus). The median time since last 

fracture was 6.6 years (range, 1–25). All variables included in the analysis were based on 

information obtained at the time of study enrollment between November 2011 and January 

2013, CT scanning was performed between March 2012 and January 2013. All participants 

provided written informed consent. The study was approved by the Regional Committee for 
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Medical and Health Research Ethics (REK Sør-Øst, 2010/2282) and was conducted in 

accordance with the World Medical Association Declaration of Helsinki. 

 

2.2. Variables and measurements 

At enrollment of the study, the participants filled in a questionnaire that included information 

concerning all fractures after the age of 50 years (number and type of fracture), diseases, use of 

medication and lifestyle. Height and weight were measured while wearing light clothing and 

without shoes. Body mass index (BMI) was calculated as weight/height². FN aBMD was 

measured using dual-energy x-ray absorptiometry (DXA) (GE Lunar Prodigy, Lunar 

Corporation, Madison, WI, USA) and the coefficients of variation (CV) was 1.7%. 

We entered the data collected at enrollment into the online country-specific FRAX 

algorithm for Norway to calculate the individual 10-year probability of a major osteoporotic 

fracture (http://www.shef.ac.uk/FRAX/). An age of 90 years was entered into the calculation 

tool in women older than 90 years of age, and we included FN aBMD in the calculation of 

FRAX score [20]. The index fractures used as inclusion criteria for this study were not included 

as a “previous” fracture in the calculation of the FRAX score, because the aim was to assess the 

10-year probability of fracture before the event, not the probability of fracture after this event 

[14,15]. Whereas the “previous fractures” (before the index fracture) and “subsequent fractures” 

(after the index fracture) were used equally in the calculation of FRAX score [20]. 

CT scans (Siemens Somatom Sensation 16, Erlangen, Germany) of the non-dominant 

hip were performed at the Department of Radiology at the University Hospital of North Norway 

[15]. The CT machine had an in-plane resolution of 0.74 mm and the slice thickness was set at 

0.6 mm. The hip was scanned from just above the femoral head to 2 cm below the lesser 

trochanter, and the exposure dose of radiation was ~1.5 mSv [15]. CT scans of the hip were 

performed at 120 kV, with a pitch of 0.75, using 90 mA, and reconstructed using a fixed field 

http://www.shef.ac.uk/FRAX/
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of view at 120 mm [26]. Quality control was carried out by scanning a phantom containing rods 

of hydroxyapatite (QRM Quality Assurance in Radiology and Medicine GmbH, Moehrendorf, 

Germany). The CT images were sent to Melbourne, Australia, and analyzed by collaborators, 

who were blinded to the fracture status, using the StrAx software (StraxCorp Pty Ltd, 

Melbourne, Australia). As cortices are thin at the most proximal femur (femoral head, neck and 

trochanter), analyses were confined to a 3.7 mm subtrochanteric region of interest (ROI) with 

thicker cortices, which started at the tip of the lesser trochanter [15,27]. 

The StrAx software is a non-thresholding method that automatically selects attenuation 

profile curves and segments the bone within the ROI into its compartments, the compact-

appearing cortex, outer (OTZ) and inner transitional zone (ITZ), and trabecular compartment 

[28]. This was achieved by quantification of the attenuation produced by background (i.e., 

muscle) and fully mineralized bone matrix, which has a density of 1200 mg hydroxyapatite 

(HA)/cm3) and assigned a value of 100% [27,28]. Voxels that were completely empty and had 

an attenuation equivalent to background were assigned a value of 0%. The volume fraction of 

a voxel that is void (i.e., porosity) is 100% minus the mineralized bone matrix fraction. Once 

deposited, osteoid is rapidly mineralized to become ‘bone’, reaching 80% of full mineralization 

(1200 mg HA/cm3) within a few days. Voxels with attenuation values of 80% are unlikely to 

contain a pore or part of a pore, because porosity results in voxel attenuation values < 80% of 

the maximum. Variations in attenuation within 80% to 100% of full mineralization are likely 

to reflect heterogeneity in secondary mineralization of the matrix, thus these voxels are 

excluded from the calculation of porosity [28]. Voxels with attenuation < 80% may contain a 

pore or part of a pore [28]. 

Porosity within the total cortex and each cortical compartment was quantified 

automatically throughout the ROI using the StrAx software [15]. The porosity quantified by 

this algorithm is the average proportion of emptiness within each voxel or the fraction of the 
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bone that is void, with CV of 0.3-2.3% [15]. StrAx quantifies porosity in low-resolution images 

[15,27], as in high-resolution images [13,28,29], even though pores are not visible. It is a 

density-based, indirect measure of porosity, and the size and number of pores are not 

determined [15,28,30]. Of the total cortex at this subtrochanteric site, 70.0% was compact-

appearing cortex, while 22.3% and 11.7% was OTZ and ITZ, respectively. The agreement (R2) 

between CT and HR-pQCT ranged from 0.86 to 0.96 for quantification of porosity (ranging 

from 40 to 95%), at the same femoral subtrochanteric site [15,27]. The StrAx software 

quantifies porosity as a fraction of void, regardless of size of the pores, and indirectly captures 

porosity produced by large and small pores. It is more inclusive than traditional methods by 

capturing porosity of the compact cortex and the TZ, and by taking into account the partial 

volume effect by including void within completely empty and partly empty voxels, and the 

porosity is therefore higher than what is reported using other methods [27,28,30]. 

 

2.3. Statistical analyses 

Sensitivity and specificity for fracture were explored at selected thresholds for FRAX score above 15%, 

20%, and 25%, and cortical porosity above the 75th, 80th, and 90th percentile. We chose specificity above 

85% as a reasonable criterion for selection of thresholds for each of the variables for further analysis 

[20]. We present mean and standard error of the mean (SE) for the following variables: FRAX 

score, age, height, weight, BMI, FN aBMD, hours of physical activity per week, the femoral 

subtrochanteric cortical porosity, thickness, volumetric BMD (vBMD) and cross-sectional area 

(CSA), and cortical CSA as a proportion of the total CSA (cortical CSA/total CSA), trabecular 

bone volume per tissue volume (BV/TV), medullary CSA, total vBMD and CSA and the bone 

strength estimate cross-sectional moment of inertia (CSMI). We present the number and 

proportion of women with a prior fracture, parental hip fracture history, rheumatoid arthritis, 

oral corticosteroid use, and currently smokers in six groups. 
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Group 1: 35 fracture cases with high FRAX score (threshold >20%), without high cortical 

porosity (threshold ≤80th percentile). Group 2: 10 controls with high FRAX score, without high 

cortical porosity. Group 3: 43 fracture cases without high FRAX score (≤20%), with high 

cortical porosity (>80th percentile). Group 4: 23 controls without high FRAX score, with high 

cortical porosity. Group 5: 115 fracture cases unidentified by either. Group 6: 194 controls 

without either high FRAX score or high cortical porosity. The characteristics of the women in 

each of the groups were compared using age-adjusted analysis of variance, and the bone 

parameters were compared after additionally adjustment for FN aBMD, height and weight. We 

used SAS Software, v9.4 (SAS Institute Inc., Cary, NC, USA) and p ≤ 0.05 was considered 

significant. 

 

3. Results 

3.1. Sensitivity and specificity for fracture 

Of all 211 fracture cases, FRAX score >20% identified 53 women, with a sensitivity of 25.1% 

and specificity of 93.5%, while a measurement of femoral subtrochanteric cortical porosity with 

cut-off >80th percentile identified 61 women, with a sensitivity of 28.9% and specificity of 

87.9% (Fig. 1). Of 211 fracture cases, 35 (16.6%) (Group 1) were identified only by high FRAX 

score, and 43 (20.4%) (Group 3) were identified only by high cortical porosity. There was an 

overlap for 18 (8.5%) women with fracture who had both high FRAX score and high cortical 

porosity, and 115 (54.5%) (Group 5) fracture cases were unidentified by either. Of 232 fracture-

free controls, 10 (4.3%) (Group 2) had FRAX score >20% and cortical porosity ≤80th percentile, 

23 (9.9%) (Group 4) had FRAX score ≤20% and cortical porosity >80th percentile, and 194 

(83.6%) (Group 6) had FRAX score ≤20% and cortical porosity ≤80th percentile. 

 

3.2. Characteristics of fracture cases identified by high FRAX score alone 
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Fracture cases identified by high FRAX score alone, had a higher FRAX score (26.2 vs. 12.3%), 

were 4 years older (71.7 vs. 67.6), had 8.4% lower FN aBMD (738 vs. 806 mg/cm²), and more 

had a prior fracture (22 vs. 10%) and a parental history of hip fracture (16 vs. 4%) compared to 

those identified by high cortical porosity alone (Group 1 vs. Group 3, all p < 0.05, Table 1 and 

Fig. 2). Similar differences were found between fracture cases identified with high FRAX score 

and cases unidentified by either (Group 1 vs. Group 5). No differences were found between 

fracture cases and fracture-free controls with high FRAX score alone (Group 1 vs. Group 2). 

 

3.3. Characteristics of fracture cases identified by high cortical porosity alone 

Women with fracture who were identified by high cortical porosity alone, had 15.7% higher 

cortical porosity (48.7 vs. 42.1%), 9.0% thinner cortices (3.75 vs. 4.12 mm), 10.5% lower 

cortical vBMD (942 vs. 1053 mg HA/cm³), 16.2% lower total vBMD (586 vs. 699 mg HA/cm³), 

28.9% larger medullary CSA (245 vs.190 mm²), 12.8% larger total CSA (669 vs. 593 mm²), 

and 9.7% higher CSMI (2619 vs. 2388 cm4), compared to cases identified by high FRAX score 

alone (Group 3 vs. Group 1, all p < 0.001, Table 1, Fig. 3). Similar differences were found 

between fracture cases identified with high cortical porosity and cases unidentified by either 

(Group 3 vs. Group 5). When we compared fracture cases and fracture-free controls with high 

cortical porosity alone, cases had higher cortical porosity, lower cortical vBMD, lower total 

vBMD, smaller cortical CSA/total CSA, larger medullary CSA and larger total CSA than 

controls after adjustment for age, height, weight and aBMD (Group 3 vs. Group 4, all p ≤ 0.05). 

 

3.4. Characteristics of fracture cases unidentified by either high FRAX or cortical porosity 

When we compared fracture cases and controls who were unidentified by either high FRAX or 

cortical porosity, cases had higher FRAX score, were taller and had lower FN aBMD than 

controls (Group 5 vs. Group 6, all p < 0.01). Otherwise, fracture cases unidentified by either 
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had significantly thinner cortices, smaller cortical CSA, smaller cortical CSA/total CSA, larger 

medullary CSA and lower total vBMD than controls before (p < 0.05) but not after adjustment 

for FN aBMD. 

 

4. Discussion 

We report that fracture cases unidentified by FRAX but identified by cortical porosity, differed 

from cases identified by FRAX, beyond high FRAX score and cortical porosity. Cases 

identified by cortical porosity alone, had lower FRAX score, were younger, with higher FN 

aBMD, fewer had a prior fracture and parental history of hip fracture, and they had a larger 

medullary cavity and bone size, thinner and more porous cortices at the femoral subtrochanteric 

site, than cases identified by FRAX alone. When we compared fracture cases and controls who 

had high cortical porosity, cases still had higher cortical porosity, lower cortical and total 

vBMD, smaller cortical CSA/total CSA (relatively thinner cortices), larger medullary and total 

bone area than controls. From these results we infer that a measurement of cortical porosity 

captured a set of additional fracture risk components, not captured by FRAX or porosity. 

As expected, fracture cases identified by FRAX were older, with lower FN aBMD, and 

more had a prior fracture, as these are the key components of the FRAX tool. We further 

confirmed that FRAX captured the risk factors related to diseases as rheumatoid arthritis and 

oral use of corticosteroids. Still, only 25% of the fracture cases were identified by FRAX, and 

several other bone traits reflecting risk components of the multifactorial condition bone fragility 

seem not to be well captured by this tool [5]. A proportion of only 8.5% of the fracture cases 

were identified by both FRAX and cortical porosity in this study. This small overlap suggests 

that there probably are major differences between the characteristics of these two groups of 

fracture cases. In addition, cortical porosity improved the net reclassification of fracture cases 
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when cortical porosity was added to FRAX, which support the notion that cortical porosity 

makes an important and independent contribution to identification of fracture risk [20]. 

Of the 75% of fracture cases who were unidentified by FRAX, 20% were identified by 

cortical porosity. They did not have the characteristic risk factors identified by FRAX, but they 

had a set of bone parameters that differed from those identified by FRAX. In addition to high 

cortical porosity, they had thinner cortices, both are well-known risk factors for fracture [31]. 

They had a larger total bone CSA and increased CSMI, which would be expected to reduce the 

risk for fracture [8,9]. The increased risk for fracture in these women, suggest that the strength 

gained by larger bone size, did not offset the strength lost by the thinner cortices with higher 

cortical porosity [24]. Larger bone size is associated with higher cortical porosity [13,32] and 

taller individuals who on average have longer and wider bones, have increased risk for fracture 

[33,34]. The increased porosity combined with relatively thinner cortices, may partly explain 

why taller individuals, despite of their larger bone size, have increased risk for fracture [13,32]. 

Fracture cases identified by high cortical porosity, had lower total bone vBMD, so their 

larger bones were more empty, because they had thinner cortices with higher porosity, smaller 

cortical CSA/total CSA, and thus larger medullary CSA/total CSA and larger medullary CSA, 

than other fracture cases and controls. Our research group has reported that women with fracture 

had increased bone turnover markers, and the increased levels of bone turnover markers were 

associated with higher cortical porosity, thinner cortices, larger marrow cavity and larger bone 

size [24]. Bone turnover occurs on all endosteal surfaces; intracortical, endocortical and 

trabecular surfaces [12]. Increased bone turnover i) on the intracortical surfaces results in larger 

pores and increased porosity within the cortical compartment, ii) on the endocortical surfaces 

results in a larger medullary cavity and thinning of the cortex, and iii) on the trabecular surfaces 

it results in thinning and loss of trabeculae  [35,36]. All these changes result in reduced bone 

strength [6,12]. A measurement of cortical porosity may be a marker for this whole set of the 
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above-mentioned bone traits, and it can be useful for identification of individuals at risk for 

fracture, beyond those traits that is captured by FRAX. 

In women with fracture identified by high cortical porosity, the high porosity in the 

cortical bone may cause an important loss of strengths as it is located distant to the neutral axis, 

given the high stress on the outer part of the bone during a trauma [35]. This may partly explain 

their increased risk for fracture. Cortical bone microstructure, especially cortical porosity has a 

major impact on bone strengths [37,38]. An increase in porosity from 4 to 20% decrease the 

ability of bone to resist fracture by three-fold [39]. In addition, 70-80% of the variation in 

stiffness as examined in the femoral cortex, can be explained by changes in cortical porosity 

[38,40]. High cortical porosity can appear as giant pores in cross-sectional images, which 

decrease the ability of the cortex to withstand stress [41] and resist crack propagation especially 

under tensile loading [42-44]. Moreover, microcracks located near intracortical pores 

compromise fracture resistance [45]. 

Different genetic variants associated with cortical and trabecular bone traits are 

identified [46], and up to 80% of the variance in cortical and trabecular microarchitecture are 

determined by genetic factors [29]. The implication of those findings is that the heterogeneous 

pathophysiology behind bone fragility, is not only a result of age-related changes, but genetic 

variation that is established during growth early in life, and may contribute to fracture risk in 

younger age [35]. The fracture cases who were unidentified by either high FRAX or cortical 

porosity, had higher FRAX score than controls, they were taller and had lower FN aBMD. This 

confirmed that well-known risk factors operate below the chosen threshold for FRAX ≤20%. 

In addition, they may have other risk factors for fracture beyond those we have quantified in 

this study, or their fracture might have occurred due to the trauma involved during their fall. 

The strength of this nested case-control study is that it is based on a general population, 

x-ray verified fractures, and the bone parameters are quantified at the proximal femur, a central 
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site. The benefit and novelty of using this non-threshold based software lie in how it is different 

from traditional porosity measurements. It is more inclusive than traditional methods by 

capturing porosity not only of the compact cortex but also the TZ, and by taking into account 

the partial volume effect [28]. The study has several limitations. The index fracture occurred at 

a median of 6.6 years before the women had their measurements performed, and most of the 

women with hip fractures could not be included, as metal can generate noise in the CT images. 

The subtrochanteric region contained little trabecular bone, so its contribution to fracture risk 

could not be evaluated, and StrAx software is vulnerable to motion artifact. Moreover, porosity 

produced by smaller pores may not be identified with the image resolution used in this study, 

and may have resulted in a small error in the quantification of porosity [27]. Routine CT 

scanning of the proximal femur is not feasible in clinical practice to screen for fracture risk 

because of the high dose of radiation involved due to the large amount of soft tissue, but CT 

images obtained for other reasons as a hip fracture or osteoarthritis can be used. 

In conclusion, fracture cases identified by high cortical porosity alone had a set of 

different characteristics compared to those identified by FRAX alone and compared to controls. 

In the relatively younger fracture cases unidentified by FRAX, the larger bone size did not offset 

the thinner cortices with higher cortical porosity. Such a set of characteristics is of interest for 

three reasons, firstly these women broke their bones without having the traditional risk factors 

as high age and low aBMD, secondly, they constitute a separate group of women that otherwise 

would not have been identified by calculation of FRAX, and thirdly, we have recently reported 

that cortical porosity improved the net reclassification of fracture cases [20]. This may explain 

why some women break their bone in relatively younger age, and may help identify those who 

are at risk for fracture before they have their first fracture. It demonstrate the challenges of 

predicting fracture at the individual level. A measurement of cortical porosity may be a marker 

of a combination of characteristics, which can identify additional women at risk for fracture, 
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not captured by FRAX. Adding cortical porosity to FRAX may be of help to improve fracture 

risk assessment, not only for secondary, but also primary fracture prevention. 
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Figure legends 

 

Fig. 1. Fractures cases identified by high cortical porosity alone, high Fracture Risk Assessment 

Tool (FRAX) score alone, the overlap, and cases unidentified by either of these measurements.  

 

Fig. 2. Fracture Risk Assessment Tool (FRAX) score, age, femoral neck areal bone mineral 

density (FN aBMD) and proportion with a prior fracture in six groups. Group 1: fracture cases 

with high FRAX score (>20%), without high cortical porosity (≤80th percentile). Group 2: 

controls with high FRAX score, without high cortical porosity. Group 3: fracture cases without 

high FRAX score (≤20%), with high cortical porosity (>80th percentile). Group 4: controls 

without high FRAX score, with high cortical porosity. Group 5: fracture cases without either. 

Group 6: controls without either. 

 

Fig. 3. Cortical porosity, cortical thickness, medullary and total cross-sectional area (CSA) and 

Cross-sectional Moment of Inertia (CSMI) at the femoral subtrochanteric site in six groups. 

Group 1: fracture cases with high FRAX score (>20%), without high cortical porosity (≤80th 

percentile). Group 2: controls with high FRAX score, without high cortical porosity. Group 3: 

fracture cases without high FRAX score (≤20%), with high cortical porosity (>80th percentile). 

Group 4: controls without high FRAX score, with high cortical porosity. Group 5: fracture cases 

without either. Group 6: controls without either. 

 



 

Table 1.  Characteristics of fracture cases identified by high FRAX score or high cortical porosity alone, unidentified by either, and controls 

 FRAX score >20% Porosity >80th percentile Unidentified by either methods 

Groups (Gr.) of cases and controls Gr. 1 cases Gr. 2 controls Gr. 3 cases Gr. 4 controls Gr. 5 cases Gr. 6 controls 

n 35 10 43 23 115 194 

FRAX score (%) 26.2 (1.2)c,f 24.0 (0.9) 12.3 (0.6) 11.4 (0.7) 11.2 (0.3)i 9.7 (0.3) 

Age (years) 71.7 (1.3)a,f 74.9 (1.3) 67.6 (1.1) 67.7 (1.0) 66.6 (0.7) 67.9 (0.5) 

Height (cm) 162.3 (1.2) 160.5 (2.3) 164.1 (0.8) 164.3 (0.9) 162.8 (0.6)h 160.8 (0.5) 

Weight (kg) 69.7 (1.3) 67.1 (4.0) 70.3 (1.8) 72.9 (2.1) 69.3 (1.0) 69.9 (0.8) 

Body mass index (BMI) (kg(m²) 26.6 (0.6) 26.2 (1.7) 26.1 (0.7) 27.0 (0.8) 26.1 (0.4) 27.1 (0.3) 

Femoral neck aBMD (mg/cm²) 738 (11.9)b,f 733 (27.1) 806 (12.7) 809 (15.4) 825 (9.1)i 877 (7.8) 

Physical activity (hours/week) 2.2 (0.2) 2.3 (0.5) 2.8 (0.3) 2.7 (0.4) 2.7 (0.2) 2.5 (0.1) 

History of previous fracture, n (%) 22 (62.9)c,f 0 10 (23.3) 0 18 (15.7) 0 

Parental hip fracture history, n (%) 16 (45.7)c,f 5 (50.0) 4 (9.3) 4 (17.4) 12 (10.4) 25 (12.9) 

Currently smoking, n (%) 6 (17.1) 2 (20.0) 7 (16.3) 3 (13.0) 14 (12.2) 19 (9.8) 

Rheumatoid arthritis, n (%) 5 (14.3)a,e 2 (20.0) 2 (4.7) 1 (4.3) 3 (2.6) 5 (2.6) 

Oral corticosteroid use, n (%) 6 (17.1)c,f 2 (20.0) 1 (2.3) 0 1 (0.9) 0 

       

Femoral subtrochanteric parameters      

Cortical porosity (%) 42.1 (0.4)c 41.0 (0.8) 48.7 (0.4)f,h 47.3 (0.2) 41.4 (0.2) 40.9 (0.2) 

Cortical thickness (mm) 4.12 (0.08)c 4.34 (0.17) 3.75 (0.09)f 3.96 (0.08) 4.27 (0.04) 4.42 (0.04) 

Cortical vBMD (mg HA/cm³) 1053 (6.7)c 1071 (13.0) 942 (6.6)f,h 967 (4.1) 1065 (3.8) 1073 (3.2) 

Cortical CSA  (mm2) 403 (6.4)b 408 (9.8) 424 (5.8) 430 (6.6) 410 (3.7) 417 (2.9) 

Cortical CSA/Total CSA  0.68 (0.01)c,d 0.70 (0.02) 0.64 0.01)f,g 0.67 (0.06) 0.71 (0.005) 0.73 (0.003) 

Trabecular BV/TV (%) 0.24 (0.03) 0.17 (0.05) 0.36 (0.04)d 0.43 (0.07) 0.24 (0.02) 0.26 (0.02) 

Medullary CSA (mm2) 190 (7.2)c 172 (12.8) 245 (10.5)f,g 213 (5.4) 169 (4.3) 156 (2.7) 

Total bone vBMD (mg HA/cm³) 699 (12.5)c,d 736 (23.2) 586 (12.6)f,h 633 (8.2) 743 (7.9) 769 (5.7) 

Total bone CSA (mm2) 593 (10.0)c 580 (10.9) 669 (12.2)f,g 644 (8.8) 578 (5.9) 573 (4.2) 

Cross-sectional Moment of Inertia 2388 (56)c 2335 (51) 2619 (56)f 2570 (53) 2332 (31) 2335 (23) 
Values are mean (standard error of the mean) or number (%). FRAX = Fracture Risk Assessment Tool for calculation of the 10-year probability of a major osteoporotic 

fracture; aBMD = areal bone mineral density; vBMD = volumetric BMD; HA = hydroxyapatite; CSA = cross sectional area; BV/TV = bone volume per tissue volume. 

Analysis of variance is used for comparisons of groups, all comparisons are age-adjusted, and comparisons of bone traits are additionally adjusted for aBMD, height and 

weight. ap ≤ 0.05, bp ≤ 0.01, cp ≤ 0.001 compared to group 3, dp ≤ 0.05, ep ≤ 0.01, fp ≤ 0.001 compared to group 5, gp ≤ 0.05, hp ≤ 0.01, ip ≤ 0.001 compared to controls. 
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