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INTRODUCTION

Calanoid copepods of the genus Calanus dominate
the mesozooplankton communities of Arctic and
sub-Arctic seas in terms of biomass (Kosobokova &
Hirche 2009). They play a major role in the Arctic
marine ecosystem, converting their algal diet into
energy-rich lipid storages and thus facilitating the
transfer of energy from primary production to higher
trophic level organisms such as fishes, sea birds and
marine mammals (Falk-Petersen et al. 2009). Due to
their importance in the marine ecosystem, Calanus
species are probably the most studied copepod taxa,

not only in the Arctic but also in sub-Arctic and
boreal seas. A number of publications have de -
scribed the spatial distribution of Calanus species in
these regions (e.g. Conover 1988, Hirche & Koso -
bokova 2007, Falk-Petersen et al. 2009, Wassmann et
al. 2015, Choquet et al. 2017) and there is a good
understanding of different aspects of their life history
such as timing of reproduction (Niehoff et al. 2002,
Søreide et al. 2010, Daase et al. 2013), vertical mi -
gration, juvenile development, and energy require-
ments for reproduction and growth (e.g. Niehoff
2004, Søreide et al. 2008, 2010, Falk-Petersen et al.
2009).
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ABSTRACT: Adult males of Calanus copepods in the Arctic are mainly observed between late au-
tumn and late spring, and are seldom recorded during summer. Due to logistical constraints, there
are still relatively few studies on zooplankton in high-latitude regions during the winter, and subse-
quently, little is known about Calanus males. Here, we present data on abundance, spatial distribu-
tion, prosome length, lipid content, respiration and swimming activity of Calanus adults, along with
adult sex ratios in Calanus populations from 5 Arctic fjords in Svalbard, Norway (78−80° N) during
the polar night in January 2015, 2016 and 2017. Adult males and females of Calanus were observed
at all locations and occurred throughout the entire water column. Morphological examination and
molecular identification of Calanus males proved that all males encountered belong to Calanus
glacialis, even in the fjords where overwintering copepodite stage CV of C. finmarchicus dominated
at the time. Adult sex ratios in C. glacialis populations varied from 1 male per 4 females to 2 males per
female. From 3 to 18% of females carried spermatophores attached to the genital segment. Lipid con-
tent in males was slightly higher than in females. Shipboard experiments showed that males had
higher swimming activity and respiration rates than females. Our observations indicate that adult
males of C. glacialis stay active and demonstrate active mating behavior in mid-winter, and that the
mating phenology of C. glacialis is decoupled from that of C. finmarchicus in the study area in January.
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Three species of Calanus co-occur in the Atlantic-
influenced part of the Arctic Ocean: the North
Atlantic species C. finmarchicus, the arctic shelf
 species C. glacialis and the arctic oceanic species C.
hyperboreus (Conover 1988, Choquet et al. 2017).
The basic life cycle of Calanus species in Arctic and
Sub-Arctic seas includes a seasonal migration, with
the main developmental and growth phase occurring
near the surface during spring and summer and an
overwintering phase at depth with reduced metabo-
lism (diapause) in winter (Falk-Petersen et al. 2009).
The final developmental step towards adulthood
takes place sometime between late autumn and spring,
with the largest and most lipid-rich CVs moulting to
adults first, and males appearing before females
(Østvedt 1955, Kosobokova 1999, Bailey 2010). The 3
Calanus species have tuned their life-history strate-
gies in relation to the timing and predictability of the
spring bloom, ice cover and other factors in their
main area of distribution (Falk-Petersen et al. 2009).
C. finmarchicus is advected to the Arctic mainly with
Atlantic water currents. In the northernmost part of
its distribution range, C. finmarchicus has a 1 yr life
cycle and relies on external energy supplied by the
spring bloom to fuel reproduction (i.e. income breed-
ing). The ability of C. finmarchicus to survive and
colonize the Arctic Ocean, however, is hampered by
short algae growing seasons and low temperatures
(Jaschnov 1970, Tande et al. 1985, Ji et al. 2012), and
hence the species largely fails to reproduce in the
Arctic Ocean and surrounding shelf seas (Hirche et
al. 2006). The larger C. glacialis is very productive
along the entire shelf break and surrounding shelf
seas of the Arctic (Kosobokova & Hirche 2001,
Ashjian et al. 2003, Hirche & Kosobokova 2003). C.
glacialis has a 1−2 yr life cycle (Kosobokova 1999,
Søreide et al. 2010, Daase et al. 2013) and is efficient
at utilizing the 2 available food sources in seasonal
ice-covered seas (ice algae and phytoplankton) for
reproduction and growth. The early ice algae bloom
is primarily utilized to fuel gonad maturation and egg
production (income breeding) while the later phyto-
plankton bloom supports growth and development
of its new generation (Hirche 1989, Tourangeau &
Runge 1991, Søreide et al. 2010, Wold et al. 2011).
However, egg production can also occur before any
algal food is present, being fuelled by internal re -
sources only (i.e. capital breeding). The flexible re -
productive strategies observed in C. glacialis may
explain its wide distribution in seasonally ice-covered
Arctic shelf seas (Daase et al. 2013), a region of high
inter-annual variability in the timing of ice break-up
and bloom phenology. The largest of the 3 species, C.

hyperboreus, has its centre of distribution in the
Greenland Sea and the Central Arctic Ocean, and is
specialized to the highly unpredictable timing of the
spring bloom in the Arctic Ocean. It is a pure capital
breeder, producing eggs at depth in winter decou-
pled from the spring bloom (Hirche & Niehoff 1996,
Hirche 2013).

Given the key role of Calanus spp. in the food web,
discussions of their fate in a warming Arctic has
become a research priority in recent years (e.g. Ji et
al. 2012, Kjellerup et al. 2012, Kwasniewski et al.
2012, Grote et al. 2015, Wilson et al. 2016). However,
winter studies are still scarce and knowledge on
Calanus males and their biology is basically non-
existent from the Arctic, hindering a thorough under-
standing of Calanus  life-history strategies needed to
assess their response to Arctic warming.

Calanus males seem to have a rather short life
span, similar to males of many other copepod species
(Bogorov 1939, Mednikov 1961). Kosobokova (1999)
reported that males of C. glacialis have only a 3−4 mo
life span in the White Sea, and Marshall & Orr (1955)
suggested that the life span of C. finmarchicus males
does not exceed 7 mo even at high latitudes. In com-
parison, the life span of females of C. glacialis may
vary from 9−10 mo up to 1.5 yr, and it has been sug-
gested that C. glacialis females may even be itero -
parous (Kosobokova 1999).

The absence of C. glacialis males is noteworthy dur-
ing the period of most active biological sampling from
late spring to autumn (e.g. Kosobokova 1999, Ashjian
et al. 2003, Darnis & Fortier 2014), while females are
found year-round (e.g. Kosobokova 1999, Wold et al.
2011, Daase et al. 2013). Males start to appear in
northern polar waters in early autumn and can persist
until May−June, with most studies observing maxi-
mum abundance and highest proportion of C. glacialis
males between December and February (Madsen et
al. 2001, Niehoff et al. 2002, Wold et al. 2011, Estrada
et al. 2012, Darnis & Fortier 2014). Periods of peak
abundance thus coincide with the polar night, a
period that is traditionally understudied due to logisti-
cal constraints of conducting fieldwork at high lati-
tudes in darkness, extreme low temperatures and in
often ice-covered seas. As a result, male abundance,
size range and structure, feeding habits, metabolic
rates and lipid content have been poorly documented,
and their life span remains uncertain.

Here, in order to fill knowledge gaps on Calanus
spp. reproductive strategies due to the lack of data on
males, we collected zooplankton samples in the mid-
dle of winter in the Arctic archipelago of Svalbard,
during the supposed peak of Calanus male abun-
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dance (Bailey 2010). Although it is likely that males
of all 3 Calanus species are present in the studied
area, we focused only on C. finmarchicus and C.
glacialis since abundance of C. hyperboreus is gener-
ally low in the fjords and on the shelf (Daase & Eiane
2007, Blachowiak-Samolyk et al. 2008, Søreide et
al. 2008). The vertical distribution, abundance, mor-
phology, activity and physiology of Calanus spp.
adults were investigated together with the females’
gonad maturation state in order to understand and
document for the first time the details of the mating
phase of Calanus spp. in the Arctic.

MATERIALS AND METHODS

Study area

Zooplankton samples were collected in January
2015, 2016 and 2017 in fjords along the western and
northern coast of the Svalbard archipelago (Fig. 1,
Table S1 in the Supplement at www.int-res.com/
articles/suppl/m607p053_supp.pdf) onboard the R/V
‘Helmer Hanssen’. In January 2015, samples were
collected at 3 stations in Kongsfjorden: the outer
(KF1), the middle (KF3) and the innermost part of the
fjord close to the glacier front (KF5). In January 2016,

samples were collected in Kongsfjorden (KF3 and
KF5), Is fjorden (IF), Billefjorden (BF), Smeerenburg -
fjorden (SMF) and Rijpfjorden (RF), and in January
2017, sampling was repeated at IF, KF3, SMF and RF
(Fig. 1, Table S1).

Isfjorden, Kongsfjorden and Smeerenburgfjorden
are located on the western coast of Svalbard and may
be affected by inflow of At lantic water from the West
Spitsbergen Current (Cottier et al. 2005, Nilsen et al.
2008). Billefjorden is a sill fjord in the inner part of
Isfjorden and is largely unaffected by inflowing
Atlantic water but dominated by locally formed cold
water (less than −0.5°C year-round), providing a
refuge for Arctic zooplankton species (Arnkværn et
al. 2005). Rijpfjorden is a north-facing fjord domi-
nated by cold Arctic water masses, but inflow of
Atlantic water may occur (Wallace et al. 2010). All
fjords were ice-free during our study in January
2015, 2016 and 2017.

Hydrography

Measurements of temperature and salinity were
obtained at all stations by a ship-board conductivity,
temperature and depth profiler (SBE911plus, Sea-
Bird Electronics).

Zooplankton abundance and
 vertical distribution

Zooplankton were sampled by ver-
tical net hauls (towing speed 0.5 m
s−1) from close (10−20 m) to the
seafloor up to the surface using a mul-
tiple opening/ closing net (Multinet;
Hydrobios: mouth opening 0.25 m2,
mesh size 180 µm). Up to 5 depth
strata were sampled at each location
(Table S1). Samples were preserved
in a 4% hexamethylenetetramine-
buf fered formaldehyde-in-seawater
solution and analyzed under a Leica
stereomicroscope at institutional home
laboratories. Samples were examined
by subsampling with aliquots ob -
tained by 5 ml automatic pipette, with
the pipette tip cut at 5 mm diameter
to allow free collection of mesozoo-
plankton. Prior to taking subsamples,
large (total length >5 mm) organisms
were picked out using forceps. The
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number of subsamples analyzed was chosen so that
at least 150 individuals of Calanus copepodites were
counted. Samples with low abundances were exam-
ined in their entirety. Adult males (AM) and females
(AF) of Calanus were counted from the entire sam-
ples. The prosome length of all counted individuals of
Calanus spp. was measured from the tip of cephalo-
some to the distal lateral end of the last thoracic seg-
ment with precision of ±50 µm.

Calanus species identification

To distinguish between the morphologically similar
C. glacialis and C. finmarchicus from formalin-pre-
served samples, we used size classes derived for each
developmental stage (copepodites CIII−CVI) from
prosome length frequency analyses for the study
region (Daase & Eiane 2007) (Table 1), which were
readjusted after considering molecular-based studies
(Gabrielsen et al. 2012, Choquet et al. 2018, Renaud
et al. 2018). These molecular investigations have
indicated a much higher overlap in prosome length
be tween the 2 species than previously assumed,
resulting in a regionally variable potential for mis -
identification. In our study area, misidentifications
based on size classes seemed, for the most part, to be
uni directional (Gabrielsen et al. 2012, Choquet et al.
2018) and biased towards an underestimation of C.
glacialis and a comparative overestimation of C. fin-
marchicus. Since prosome length measurements of
genetically identified Calanus CV and females indi-
cate a discrepancy between previously published
size classes for the study area (e.g. Daase & Eiane
2007, Kwasniewski et al. 2003) and observed pro-
some length (Gabrielsen et al. 2012, Renaud et al.
2018), we adjusted the size classes and defined CV ≥
2.9 mm and AF ≥ 2.95 mm as C. glacialis (Table 1).

In living Calanus, the presence or absence of red
pigmentation of the antennules has been genetically

confirmed as useful to distinguish between CIV, CV
and AF of C. finmarchicus (pale antennules) and C.
glacialis (antennules with red pigmentation) (Nielsen
et al. 2014, Choquet et al. 2018). This characteristic
was used to identify C. glacialis from digital images
taken to estimate lipid content (see below) and when
selecting AF for respiration and swimming activity
measurements (see below). The pigmentation of an -
ten nules is, however, not present in AM of either
 species.

The morphology of the 5th thoracic leg (swimming
leg P5) can also be used to identify Calanus to  species
following descriptions by Jaschnov (1955), Frost (1974)
and Brodskii (1967), although the method has re -
cently been proven to be unreliable for CVs and AF
(Choquet et al. 2018). For males, the morphological
characteristics are more clearly de fined than in
females, and we used this morphological feature to
identify a subset of Calanus males (those sampled in
Rijpfjorden) to species as described in  Choquet et al.
(2018) to check the reliability of size classes derived
for AM in this study.

Another subset of Calanus males was identified to
species using molecular tools. A total of 80 Calanus
males sampled at KF3 in January 2015 using a MIK
net (mouth opening 3.14 m2, mesh size 1500 µm), and
40 males from BF and 74 males from RF sampled in
January 2016 using the Multinet were preserved
individually in 96% ethanol. Prosome length of each
individual was measured from digital images taken
prior to preservation. Individuals were genetically
identified to species following procedures described
in Choquet et al. (2017). To compare the size struc-
ture and species composition of Calanus males in
January with that of Calanus males found in spring,
we used the same methods on 42 randomly selected
Calanus males collected with a WP3 net (1 m2 mouth
opening, 1000 µm mesh size) during a cruise in May
2017 north-west of Svalbard (Fig. 1, Table S1).

Estimation of lipid content

In 2015 and 2016, additional Multinet samples
were taken at BF, KF3, SMF and RF from which live
Calanus were sorted out to estimate the lipid content
of individuals (see Table S1 for sample depth). Digital
images (lateral view) of all specimens in subsamples
containing at least 100 Calanus were taken following
procedures described in Daase et al. (2014) using a
Leica stereomicroscope with a camera Leica DFC420
or Sony HDR_HC7 video camera. Copepodite stage
of each individual was determined while taking the
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C. finmarchicus C. glacialis

CIII 1.12−1.47 1.47−2.07
CIV 1.6−2.01 2.01−3.63
CV 1.92−2.9  2.9−3.99
AF 2.4−2.95 2.95−4.63

Table 1. Size ranges (prosome length, mm) used to differen-
tiate between copepodite stages CIII−CV and adult females
(AF) of Calanus finmarchicus and C. glacialis based on
Daase & Eiane (2007). Size classes for CV and AF have been
readjusted based on molecular identification (Gabrielsen et 

al. 2012, Renaud et al. 2018)
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pictures. The digital images were used to measure
lipid sac area, prosome length and prosome area of
specimens using ImageJ, an open source graphics
program (Rasband 1997−2009). Lipid content of indi-
vidual Calanus specimens was calculated from lipid
sac area according to Vogedes et al. (2010).

The variance in lipid content and lipid sac area/
prosome area ratio (LA/PA; an indication of the full-
ness of the body) was not homogenous. We therefore
applied the non-parametric Kruskal-Wallis test to test
for differences in lipid content and LA/PA be tween
copepodite stages, followed by the post hoc test ac -
cording to Nemenyi for pairwise multiple compar-
isons of the ranked data. Statistical analyses were
done in RStudio v.1.0.143.

Gonad maturation status and spermatophore counts

The gonad maturation stage (GS) of adult Calanus
females and CVs were examined using  formalin-
preserved samples. A total of 30 randomly selected
females and CVs from each fjord sampled in 2016
were stained with 2% borax carmine solution (Tande
& Hopkins 1981), dehydrated and stored in glycerine.
The GS of females was assessed according to the
classification scheme suggested by Niehoff & Hirche
(1996). Four stages of gonad maturation (GS1−GS4)
were distinguished. The gonads in CVs were exam-
ined to discriminate between sexually undifferenti-
ated specimens and potential females/males, accord-
ing to Kosobokova (1998, 1999). The number of AF
bearing spermatophores was assess in all Multinet
samples collected in January 2015 and 2016.

Swimming activity and respiration

Measurements of swimming activity of Calanus
AM and AF were taken using a modified LAM10
locomotor activity monitor (LAM; Trikinetics) con-
nected to a laptop computer. The LAM monitors use
infrared light beam arrays to detect the motion of ani-
mals in test chambers (2.5 ml clear acrylic tubes);
beam breaks are recorded on the computer. For
activity experiments, animals were collected in Janu-
ary 2017 in Krossfjorden (a side-fjord of Kongsfjor-
den; Fig. 1) and at RF using a Hydrobios WP2 net
(mesh size 180 µm, mouth opening 0.25 m2), vertically
hauled from 100 m to the surface. Net contents were
immediately transferred to a shipboard temperature-
controlled room at 4.5°C, where sorting was under-
taken by stereomicroscope under a dim red light.

Sorted animals were individually transferred into the
LAM monitor tubes, each containing ~2 ml of 0.5 µm
filtered  seawater. Animals were left undisturbed and
under constant darkness in the shipboard temp -
erature-controlled room at 4.5°C for ~2 d and their
activity logged, after which each copepod was photo -
graphed to confirm species and stage (see methods
described above). Rayleigh’s tests were used to
determine whether bouts of swimming activity were
clustered over the diel cycle, while rank sum tests
were used to compare variance of swimming activity
between AM and AF at Krossfjorden and RF.

From net collections at RF we also measured weight-
specific oxygen consumption rates in individual adult
C. glacialis males (n = 11) and females (n = 8). Respi-
ration rates were measured in darkness at 4.5°C in
1 min intervals over ~10 h using a 24-well microplate
respirometry system (Loligo Instruments). Individual
copepods were tested in 200 µl wells, with respira-
tion rates calculated over an interval where partial
pressures were 90−80% air saturation in each well,
ensuring measurements considered only independ-
ent respiration. Copepods were photographed fol-
lowing experiments, from which prosome length was
calculated and used to derive dry weight (M. Daase &
J. E. Søreide unpubl. data) for correcting respiration
by copepod size:

DW = e2.25PL3.31

where DW is dry weight (mg) and PL is prosome
length (mm).

Respiration rates were compared between AM and
AF by a rank sum test. While both copepod activity
and respiration in the experiments described above
could be influenced by tank enclosure effects in
these relatively small volumes, we ensured that our
methods were consistent between individuals and
therefore any differences are very likely due to
inherent differences among sexes/sites as opposed to
experimental artefacts.

RESULTS

Hydrography

Atlantic and Transformed Atlantic water prevailed
in Kongsfjorden and Isfjorden during our studies
(Fig. 2). The water column in Kongsfjorden was well-
mixed and homogenous in 2015, and stratified,
warmer and fresher in 2016 and 2017. Water masses
in Isfjorden were similar to Kongsfjorden in 2016 and
2017. Cooler and fresher waters were observed in
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Billefjorden and Rijpfjorden, indicating the
presence of Arctic or locally formed water
cooled during the winter. Smeerenburgfjor-
den was warmer than Rijpfjorden and Bille-
fjorden, but not as warm as Kongsfjorden
and Isforden.

Calanus stage composition, length
 frequency and genetics

Abundance of the larger and easily mor-
phologically distinguishable Calanus hy per -
boreus was low in the study area (0.16−
2.5 ind. m−3) and we therefore only report
data on C. finmarchicus and C. gla cialis,
which were abundant in all fjords.

The Calanus population in January was
dominated by copepodite stages CIV and CV
(Fig. 3). CVs  dominated at all stations in 2015
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and 2017, while CIVs were more abundant in 2016,
except at RF. The prosome length frequency of cope-
podite stage IV (CIV) was biomodal but skewed to-
wards larger individuals at almost all locations, in -
dicating a  dominance of C. glacialis among CIVs

(Fig. 4). Exceptions were Kongsfjorden in 2015 and
2017, where the majority of CIV fell into the size
classes assigned to C. finmarchicus, and Rijpfjorden
in 2017, which showed equal numbers of CIVs for
both size classes. In contrast, the length distribution of
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CVs was skewed towards smaller sizes, indica-
ting a dominance of C. finmarchicus CVs at most
locations (Fig. 4), with the exception of BF and
SMF in 2016 (Fig. 3). The length distribution of
AF was largely unimodal, with only few smaller
AF present (Fig. 4). The size range and length
frequency distribution pattern of AM closely re-
sembled that of AF, but no AM smaller than 2.7
mm were observed. All 194 AM identified to spe-
cies using molecular tools (corresponding to 10%
of all measured males) were found to be C.
glacialis. Prosome length of these genetically
identified AMs varied from 3.00 to 3.84 mm and
the length frequency dis tribution overlapped en-
tirely with the length frequency distribution of
AM not identified genetically (Fig. 4). Morpho-
logical examination of the fifth pair of swimming
legs (P5) of AM from RF in 2016 indicated that
only C. glacialis AM were present there, ranging
in prosome length from 2.85− 4.05 mm. In contrast,
Calanus AM sampled north-west of Svalbard in
May 2017 were smaller than those observed in
Jan uary. They were all identified as C. finmar -
chicus  using molecular tools and displayed a uni-
modal length frequency distribution with pro-
some length varying from 2.40− 3.14 mm (Fig. 5).
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Calanus vertical distribution and abundance

At almost all stations, the Calanus population was
distributed throughout the entire water column
(Fig. 3). Exceptions were KF1 in 2015 and BF in
2016, where the bulk of the Calanus population was
concentrated in the deeper layers. Total Calanus
abundances were highest in RF, BF and IF in 2016
(Fig. 3); low Calanus abundance was observed in
Kongsfjorden in 2015 (Fig. 4).

Both AM and AF were distributed throughout the
entire water column (Fig. 6). The highest abundance
of Calanus AF was observed in KF3 in 2015 (2328
ind. m−2; Table 2), which was 2−3 times higher than
maximum AF abundance re corded in 2016 and
2017. The contribution of C. glacialis AM to the total
C. glacialis population was highest in 2015, at
12−25%. In 2016 and 2017, AM contributed 2−12
and 5−11%, respectively.

Sex ratios and proportion of females with
 spermatophores

The sex ratio in the C. glacialis population varied
from 1.6 (ca. 2 AM AF−1) in RF in 2016 to a pro-
nounced prevalence of AF in BF (0.04−0.2 AM AF−1)
and SMF (0.1−0.3 AM AF−1) in 2016, especially in the
deeper layers (Fig. 6, Table 2).

Between 3 and 18% of the Calanus AF carried sper-
matophores (Table 2). The highest proportion of such
females was observed in Kongsfjorden in 2015 (where

we also observed the highest AF abundance),
and at IF in 2016. The lowest proportion of
AF with sperma tophores was found at BF in
2016 (Table 2). AF carrying spermatophores
were not counted in 2017. Length measure-
ments of AF with spermatophores showed
that the majority fell within the size class of
C. glacialis, with 18% (24 ind., most of them
ob served in KF in 2015) being slightly
smaller (2.6−2.9 mm) but still within a size
range that may include AF of C. glacialis (Re-
naud et al. 2018) (Fig. S1 in the Supplement).
There was no relationship between the pro-
portion of AF with spermatophores and the
number of AM, AF or the sex ratio, but there
was a positive correlation between the pro-
portion of AF with spermatophores and the
proportion of C. glacialis AM relative to the
total C. glacialis abundance (Pearson corre-
lation, r = 0.811, p = 0.015).

Gonad status and CV sex ratios

We assessed the gonad stage of AF and the CV sex
ratios from samples taken in 2016. The majority of
both C. glacialis and C. finmarchicus AF were im -
mature (>95% with gonad stage GS1) (Table 3). The
majority of CVs (75%) in both species were classified
as potential females except for CVs from RF and BF,
where up to 50% of CV specimens still had sexually
undifferentiated gonads (Table 4). Overall, only a
small portion (<5%) of CVs were developing male
gonads and could be classified as potential males.

Lipids

The adults of C. glacialis had higher lipid content
and a higher LA/PA compared to CIV and CV in Jan-
uary (Fig. 7). Differences in lipid content and LA/PA
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Station No. AM No. AF Sex ratio adults % AF with 
(ind. m−2) (ind. m−2) males:females spermatophores

2015
KF1 200 276 0.7 13.9
KF3 636 2328 0.3 9.2
KF5 116 128 0.9 17.6

2016
KF3 384 532 0.7 8.1
KF5 68 176 0.4 nd
IF 356 969 0.4 9.2
BF 256 1048 0.2 3.3
SMF 88 272 0.3 8.3
RF 1240 784 1.6 7.3

2017
KF3 56 64 0.9 nd
IF 356 328 1.1 nd
SMF 484 784 0.6 nd
RF 260 608 0.4 nd

Table 2. Abundance of adult males (AM) and females (AF) of Calanus
glacialis (ind. m–2), and sex ratios and percentage of C. glacialis

females observed with spermatophores. nd: not determined

GS1 GS2 Undifferentiated 
gonads

KF3 99.1 0.9 0.0
IF 100.0 0.0 0.0
BF 98.1 0.0 1.9
SMF 94.0 1.5 4.5
RF 100 0 0

Table 3. Gonad maturation stage (GS) of Calanus glacialis
(% of adult females [AF] with GS1, GS2 or undifferentiated 

gonads) in January 2016
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between stages were significant (Kruskal-Wallis, p <
0.0001). For lipid content, these differences were due
to significant differences between adults and CIV
and CV, while there was no significant difference in
lipid content between AF and AM (Nemenyi post hoc
test, p = 0.24). However, LA/PA was significantly dif-
ferent among all stages (p < 0.001), i.e. AM had a
higher LA/PA ratio than AF. Additionally, there was
a higher variability of lipid content in AM than in AF
(Fig. 7).

Swimming activity and respiration

Swimming activity in adult C. glacialis varied with
sex and collection site (Fig. 8). AF from both sites
showed little variation in swimming activity over the
duration of the experiment. AM from both sites, how-
ever, displayed bouts of elevated swimming activity.
For Krossfjorden, these activity bouts were clustered
at intervals over the diel cycle, while for RF the activ-
ity bouts were uniformly distributed (Rayleigh’s test,
p < 0.001 and p = 0.211, respectively). The variance

of swimming activity in individuals across time was
greater for AM than AF, both in Krossfjorden and RF
(rank sum tests, p < 0.001 and p = 0.003, respec-
tively). This is reflected in bouts of swimming activity
up to 381 beam breaks per 30 min in AM from Kross-
fjorden, and 1118 beam breaks per 30 min for AM
from RF. Overall, activity levels were higher at RF
than Krossfjorden (19−25 beam versus 5−7 breaks
per 30 min). Consistent with activity, weight-specific
respiration rates were 2.2-fold higher for AM from RF
than for AF (38.6 ± 8.6 SE versus 17.5 ± 4.0 pmol O2

µg−1 DW h−1) (p = 0.019, rank sum test).

DISCUSSION

Adult males of Calanus were present in all 5 Sval-
bard fjords during our winter studies in January 2015,
2016 and 2017. Given the unimodal length frequency
distribution of males, molecular results and additional
examination of the morphology of the 5th swimming
leg of individuals from RF in 2016, we conclude that
only C. glacialis AM were present in the study region
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Station C. glacialis C. finmarchicus
N % undiff. % female % male Sex ratio N % undiff. % female % male Sex ratio

KF3 137 5.1 91.2 3.6 0.04 15 26.7 73.3 0.0 0.00
IF 132 9.1 88.6 2.3 0.03 15 53.3 46.7 0.0 0.00
BF 97 38.1 59.8 2.1 0.03 52 78.8 21.2 0.0 0.00
SMF 102 9.8 86.3 3.9 0.05 38 39.5 60.5 0.0 0.00
RF 25 16.0 68.0 16.0 0.24 134 78.4 20.9 0.7 0.04

Table 4. Gonad differentiation in Calanus glacialis and C. finmarchicus CVs in January 2016 (% of CVs with sexually 
undifferentiated gonads, potential female and potential male gonads). N: number of individuals examined
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in January along with a high proportion of AF of the
same species. In contrast, C. finmarchicus males were
absent in January, female abundance was low and
late copepodite stages, in particular CV, dominated
the overwintering population.

Male size and species identification

There are very few published data
on body size of Calanus AM (Table 5),
presumably because of their scarcity
in historic sampling campaigns. Pro-
some lengths for C. glacialis AM
measured during this study are simi-
lar to those previously obtained in
Billefjorden, but they are smaller
than records from the North At -
lantic, Arctic Ocean and the White
Sea (Table 5). The size structure of
C. finmarchicus AM sampled in May
2017 differed from those identified
as C. glacialis in January (Fig. 5,
Table 5) confirming that we most
likely did not encounter C. finmar -
chicus AM during the January cam-
paigns, and that C. finmarchicus
moults later into AM than C. gla -
cialis in Svalbard waters. Similar
observations were made in Disko
Bay, were AM of C. glacialis were
present between September and
February with highest proportions in
December and January, while C. fin-
marchicus AM were found from
February to May, with maximum
proportions between March and

May (Madsen et al. 2001, Niehoff et al. 2002). In the
Norwegian Sea, a similar timing of occurrence of AM
as in Disko Bay was observed by Østvedt (1955).
However, observations from lower latitudes indicate
that moulting of C. finmarchicus to adults may have
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Location C. finmarchicus C. glacialis Reference
Prosome length (mm)

Svalbard fjords – 2.7−4.25 (3−3.84a) This study
80° N, western Svalbard 2.43−3.14a – This study
Greenland Sea, Barents Sea, Norwegian 2.34−3.16 3.16−4.1 Frost (1971)
Sea, Central Arctic Ocean
Disko Bay, Greenland 2.16−2.92 2.88−3.62 Swalethorp et al. (2013)
Loch Striven, Clyde area, UK 2.35−2.67 – Marshall et al. (1934)
White Sea – 3.5−4.1 Kosobokova (1999)
Billefjorden, Svalbard – 2.7−3.95 Bailey (2010)

Total length (mm)

North Sea (Isle of Man) 2.7−3.2 – Gunther (1934)
North Sea (L4, UK) 3.01−3.37 – Russell (1928)

aSizes confirmed by molecular analysis

Table 5. Overview of available information on size ranges (mm) for adult males of Calanus finmarchicus and C. glacialis
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already begun in December or January. Adults have
been recorded in January and February in all regions
from the English Channel to East Greenland (Mar-
shall & Orr 1955), and Marshall et al. (1934) observed
highest abundance of AM in January−February in
the North Sea/Scotland, followed by a low constant
presence of AM between April and August. Recently,
Choquet (2017) observed AM of both C. glacialis and
C. finmarchicus co-occurring in January and Febru-
ary in 2 northern Norwegian fjords (67° N). This
 suggests that C. finmarchicus moults earlier into
males at lower  latitudes compared to in Svalbard
waters, where this species is at the northern border
of its distributional range (Conover 1988, Choquet
et al. 2017).

Our molecular results from January and May show
that there is an overlap in size between AM of C. fin-
marchicus and C. glacialis, with maximum length of
3.14 mm of C. finmarchicus AM (Table 5, Fig. 5). A
size overlap between these 2 species is common in all
copepodite stages and constitutes a challenge when
identifying these species (Choquet et al. 2017, 2018).
For AM, this problem may be seasonally limited in
our study area, since AM of both species did not
seem to co-occur in January and May. However, this
is likely to differ as soon as C. finmarchicus AM start
to appear. From our data on prosome length associ-
ated with molecular identification (Fig. 5), we sug-
gest C. finmarchicus AM may be correctly identified
as individuals smaller than 3 mm, and C. glacialis
as individuals larger than 3.2 mm, which is similar

to Frost (1971) and Madsen et al. (2001) (Table 5).
A larger data set is needed to improve taxonomic
 resolution within the overlapping size range.

Male abundance

The presence of AM in the C. glacialis population
in January confirms previous observations from Sval-
bard and other high latitude locations (Fig. 9).
Calanus AM have been observed from September to
June in the White Sea (Kosobokova 1999), the Cana-
dian Arctic (Wold et al. 2011, Estrada et al. 2012, Dar-
nis & Fortier 2014) and western Greenland (Madsen
et al. 2001, Niehoff et al. 2002), with peak abundance
usually observed from November to February (Fig. 9).
In Svalbard, Calanus AM have been observed be -
tween October and May in Billefjorden (Bailey 2010)
and in January in Rijpfjorden (Daase et al. 2014),
while Leu et al. (2011) did not observe a single male
of Calanus in Rijpfjorden between March and Octo-
ber. Despite Kongsfjorden being one of the most
studied fjords in Svalbard, occurrence of Calanus
AM has never been reported (e.g. Kwasniewski et al.
2003, 2013, Daase et al. 2013). In our study, we found
a high variability in AM abundance among the dif-
ferent fjords and years. Peak abundances observed
in Rijpfjorden were comparable to winter abundance
previously observed in Billefjorden, while the lower
abundance estimates were in the same order of mag-
nitude as estimates from the Canadian Arctic (Fig. 9).
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Sex ratios

Adult sex ratios observed during this study were
relatively consistent, varying from 0.3−0.9 in all years
(1−3 females male−1). Exception were in RF in 2016,
where AM dominated over AF during our study (sex
ratio of 1.6, i.e. 1−2 males female−1), and BF in 2016,
where AM were rare (sex ratio of 0.2, i.e. 4−5 females
male−1). Such high proportions of males have not
been observed in the study area during any other
season (Bailey 2010). In other northern geographical
locations, Calanus AF usually substantially outnum-
ber AM in all other seasons (Marshall & Orr 1955,
Conover 1965, Crain & Miller 2000). For C. glacialis,
the only record of seasonal variability in the sex ratio
is from the White Sea, where Kosobokova (1999)
reported maximum ratio of 0.5−0.6 males:females in
October and November, which is comparable to our
observations (Table 3).

The sex ratios of the pre-adult stage CV were
clearly skewed towards females during our study.
According to published data, moulting of CVs to AM
precedes moulting of CVs to AF (Marshall & Orr
1955, Kosobokova 1999), and males seem to gener-
ally differentiate from the largest CVs (Grigg et al.
1985, 1987, Miller et al. 1991). This is supported by
our observations. The prevalence of potential fe -
males in CVs indicates that sex differentiation in
males and moulting of potential CV males to adults
was largely completed by the time of our January
sampling period, with the remaining CVs in the over-
wintering population presumably developing and
moulting to AF later in the season.

The high proportion of sexually undifferentiated
CVs in BF indicate that the reproductive phenology
may have been delayed in BF compared to the other
4 fjords in 2016. The majority of the sexually undiffer-
entiated CVs from BF were C. finmarchicus (Table 4,
Fig. S2 in the Supplement). However, 38% of the
CVs in the size range of C. glacialis were also sexu-
ally undifferentiated at the time of sampling. Bille-
fjorden also had the lowest percentage of females
with spermatophores and the lowest adult sex ratio.
Of all the fjords, the C. glacialis population in Bille-
fjorden is the most isolated, since it resides in the
inner basin of Billefjorden which experiences reduced
water exchange with the outer fjord system and the
lowest water temperature (less than −0.5°C). The
delay of maturation and moulting of Calanus CVs in
this fjord may therefore be due to low water temper-
atures compared to the other locations, as develop-
ment time is known to increase with decreasing tem-
peratures (Campbell et al. 2001).

In our study, C. finmarchicus males were absent
in January and the abundance of C. finmarchicus
females was very low while the proportion of
 sexually undifferentiated C. finmarchicus was high
(e.g. in Rijpfjorden). This indicates that the time of
moulting into adults and mating does not coincide
between C. finmarchicus and C. glacialis. These
elements suggest there is a very low potential for
inter-species mating and consequently hybridiza-
tion is unlikely, which supports results from recent
molecular-based studies (Nielsen et al. 2014, Cho-
quet et al. 2017).

Females with spermatophores

In 2015 and 2016, 3−18% of Calanus AF had
spermatophores attached, indicating that active
mating occurred during the studied period. Copu-
lation usually occurs at an early stage in the fe -
male’s gonad development with a male attaching
a spermato phore to the genital segment of a fe -
male (Marshall et al. 1934, Marshall & Orr 1955).
Our data support these observations, as we found
mainly immature C. glacialis AF bearing sperma -
tophores in January. The spermatophore is re -
tained by Calanus AF only for a short time, while
sperm may be stored in spermatheca for a rather
long period (i.e. several months), and eggs are pre-
sumably fertilized while spawning (Marshall et al.
1934, Marshall & Orr 1955). The highest proportion
of C. glacialis AF with spermatophores occurred in
Kongsfjorden in January 2015, where abundance
of AF was also highest (Figs. 4 & 5), as was the rel-
ative contribution of AF (28−46%) and AM (12−
25%) to the total C. glacialis population. In Janu-
ary 2016, AF and AM contributed only 1−7 and
0.3−10%, re spectively, to the total C. glacialis pop-
ulation, as a much higher proportion of overwinter-
ing CIVs was observed (Fig. 4). The high propor-
tion of AF and AM in Kongsfjorden in 2015 likely
increased the encounter rate between AM and AF,
thus leading to a higher percentage of AF bearing
spermatophores that year.

Overall, 18% of females bearing spermatophores
fell within the size range defined as C. finmarchicus
(<2.95 mm). However, the length frequency distribu-
tion of females bearing spermatophores was uni-
modal, with the smallest individuals being 2.6 mm
(Fig. S1). Given that C. glacialis females may also be
of that size (Choquet et al. 2018, Renaud et al. 2018),
we find it likely that all females bearing sper-
matophores were indeed C. glacialis.
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Vertical distribution and metabolism

It has been proposed that in some calanoid species
with extended seasonal migrations AMs concentrate
in mesopelagic layers, which ensures high encounter
rates and copulation success when AF pass through
this layer on their ascent from the overwintering
depths (Spiridonov & Kosobokova 1997). Tsuda &
Miller (1998) suggested that AF and AM of Calanus
spp. would benefit from gathering in rather narrow
layers of the water column to attract and search for a
mate, and that pycnocline or thermohaline stratifica-
tion would provide favorable conditions for ‘painting’
pheromone tracks. However, we found that adults of
C. glacialis did not concentrate at any particular
depths in January. They seemed to avoid the very
deepest layer but were otherwise present throughout
most of the water column. Such a distribution pattern
suggests that both sexes are actively swimming in
search of a mate for copulation rather than waiting at
a certain depth for a mate to swim by. However,
males did display higher swimming activity levels
and respiration rates than females, indicating that
males engage more than females in actively seeking
a mate. This fits with observational (Tsuda & Miller
1998, Kiørboe & Bagøien 2005) and theoretical (Kiør-
boe 2008) studies in other calanoids suggesting that
ritualized, directed swimming of males facilitates
locating females.

Interestingly, the lipid content of AM was slightly
higher than that of AF and much higher than that of
the overwintering stages CV and CIV. AM also had
significantly higher lipid sac area relative to their
body area compared to AF, CVs and CIVs. The rela-
tively high lipid content of AMs observed in January
suggests that AMs just recently started to actively
mate and thus had not yet depleted their lipid re -
serves. It may also indicate that AMs may start out
with a higher lipid content after moulting to adults
compared to AFs, supporting observations from the
White Sea that the largest and most lipid-rich CVs
are the ones that moult to AMs (Kosobokova 1999).
Future studies need to assess the seasonal variability
in lipid content between CVs, AM and AF, especially
during the moulting period.

Winter abundance and distribution data for Cala -
nus from the Arctic are still scarce. Our data on verti-
cal distribution of both C. glacialis and C. finmarchi-
cus confirm recent observations from the polar night
in Svalbard (Daase et al. 2014, Berge et al. 2015,
 Błachowiak-Samołyk et al. 2015) that overwintering
stages and adults of Calanus are distributed through-
out the entire water column in January instead of

being concentrated at depth. These observations
were made in the same study area as our study
(Rijpfjorden, Kongsfjorden) but also in the off-shelf
waters north of Svalbard, indicating that such a dis-
tribution pattern is not characteristic to fjord popula-
tions only. For adults, this may be an indication of a
mid-winter ascent from overwintering depth in order
to search for a mate. It also suggests an earlier sea-
sonal ascent of the overwintering population from
depths than traditionally believed. There is a marked
increase in ambient light from the winter solstice to
mid-January that may be sufficient enough to func-
tion as a visual cue for Calanus to trigger the sea-
sonal ascent (Båtnes et al. 2015, Cohen et al. 2015).

CONCLUSIONS

Males of Calanus glacialis were much more abun-
dant in mid-winter in Svalbard fjords compared to all
other previously studied seasons. The absence of C.
finmarchicus AM, low abundance of AF and a high
proportion of sexually undifferentiated CVs indicate
a distinct reproductive phenology in the 2 species,
reducing the likelihood of their interbreeding and
hybridization in the study area. The presence of C.
glacialis AF with spermatophores and elevated
swimming activity levels in AM relative to AF re -
vealed that active mate seeking and mating occurs in
mid-winter. Furthermore, Calanus populations were
distributed throughout the water column and not
confined to overwintering depths, corroborating
recent studies showing that the polar night is a much
more biologically active period than previously
assumed (Berge et al. 2015, Ludvigsen et al. 2018). It
is apparent that for C. glacialis the polar night is an
important reproductive period. We suggest that fur-
ther studies with increased seasonal and vertical
 resolution address gaps in our understanding of the
life-history strategies of northern Calanus males.
Specifically, a better understanding of the timing and
energetic costs of the moult to adult, mating and
spermatophore production, and the sensitivity of
these costs and activities to increased winter temper-
atures, is now required.
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