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TWO-SIDED ESTIMATES OF THE LEBESGUE
CONSTANTS WITH RESPECT TO VILENKIN SYSTEMS
AND APPLICATIONS

I. BLAHOTA, L.E. PERSSON, G. TEPHNADZE

ABSTRACT. In this paper we derive two-sided estimates of the Lebesgue
constants for bounded Vilenkin systems, we also present some applica-
tions of importance e.g. we obtain a characterization for the bounded-
ness of a subsequence of partial sums with respect to Vilenkin-Fourier
series of H; martingales in terms of n’s variation. The conditions given
in this paper are in a sense necessary and sufficient.
2000 Mathematics Subject Classification. 42C10.
Key words and phrases: Vilenkin system, partial sums, Lebesgue con-
stant, two-sided estimates, n’s variation, modulus of continuity, martingale
Hardy space.

1. INTRODUCTION

It is known that for every Vilenkin systems
Ly := ||Dul, < clogn

holds. For the definitions of D,,, the Vilenkin systems and other objects in
this Section (e.g. v(n) and v* (n)) we refer to our Section 2.

For some concrete systems it is possible to write two-sided estimations
of Lebesgue constants L, . In particular, for every bounded Vilenkin sys-
tems Lukyanenko [4] proved two-sided estimates for the Lebesgue constants
L,, for some concrete indices ny € N. Lukomskii 3] generalized this result
and proved two-sided estimates for the Lebesgue constants L,, without the
conditions on the indexes. He showed that for n = Z]O‘io n;M; and ev-
ery bounded Vilenkin systems we have the following two-sided estimates of
Lebesgue constants:

1 1 1 3
(1) oY (n) + XU* (n)+ o\ <L,< v (n) +4v* (n) — 1.
It is well-known that (see e.g. [1| and |2]) Vilenkin systems do not form
bases in the space Li. Moreover, there exists a function in the dyadic Hardy

space Hi, such that the partial sums of f are not bounded in Lj-norm.

Supported by TAMOP 4.2.2.A-11/1/KONV-2012-0051 and by Shota Rustaveli Na-
tional Science Foundation grant no. 52/54 (Bounded operators on the martingale Hardy
spaces).

1

http://journals.cambridge.org/GMJ



Glasgow Mathematical Journal

2 I. BLAHOTA, L.E. PERSSON, G. TEPHNADZE

Onneweer [6] showed that if the modulus of continuity of f € L [0, 1) satisfies
the condition

1
2 f)=o|l ————= 0—0
() wl(?f) 0(10g(1/(5))’ as Y
then its Vilenkin-Fourier series converges in Lij-norm. He also proved that
condition (2) can not be improved.
In [8] (see also [9]) it was proved that if f € H; and

(3) WH, (]\;,f) =0 <TIL> , as n — 00,

then Sy f converge to f in Li-norm. Moreover, there was showed that con-
dition (3) can not be improved.

It is also known that any subsequence S,, is bounded from L; to L
if and only if nj; has uniformly bounded variation and as a corollary the
subsequence Sp» of partial sums is bounded from Hardy space H), to the
Hardy space H,, for all p > 0.

In this paper we improve the upper bound in (1) and also prove a new
similar lower bound by using a completely different new method. By apply-
ing this results we also find the characterizations of boundedness (or even
the ratio of divergence of the norm) of the subsequence of partial sums of
the Vilenkin-Fourier series of H; martingales in terms of n’s variation. We
also derive a relationship of the ratio of convergence of the partial sum of
the Vilenkin series with the modulus of continuity of a martingale. The
conditions given in the paper are in a sense necessary and sufficient.

Our main results (Theorem 1) is presented and proved in Section 3. The
mentioned applications especially Theorems 2 and 3 can be in Section 4.
Section 2 is reserved for necessary definitions, notations and some Lemmas
(Lemmas 2 and 3 are new).

2. PRELIMINARIES

Let Nt denote the set of the positive integers, N := N, U {0}.

Let m := (mg, mq,...) denote a sequence of the positive numbers not less
than 2.

Denote by

Ty, = {0,1,...,my, — 1}

the additive group of integers modulo my, k € N.

Define the group G, as the complete direct product of the group Z,,,
with the product of the discrete topologies of Z,,, ‘s.

The direct product p of the measures

HE <{]}) = 1/mk7(j € ka)

is the Haar measure on G,,, with p (Gp,) = 1.

http://journals.cambridge.org/GMJ

Page 3 of 18



Page 4 of 18 Glasgow Mathematical Journal

TWO-SIDED ESTIMATES OF THE LEBESGUE CONSTANTS... 3

In this paper we discuss bounded Vilenkin groups only, that is

sup my < Q.
neN

The elements of G, are represented by sequences
= (T, %1, Thy...), (T € Zp,) -
It is easy to give a base for the neighbourhood of G,, :
Iy (z) := G,
I(z) ={y € Gn|yo=20,- - Yn-1=2Tn-1},(x € Gp,n € N).

Denote I, := I, (0), for n € N and I_n =G \In.
The norm (or quasi-norm) of the spaces L,(G,) is defined by

1/p
T (/G !fpdu> (0<p<oo).

If we define the so-called generalized number system based on m in the
following way:

Mo =1, Mgy := my My (k € N),
oo
then every n € N can be uniquely expressed as n = ) nipMj, where ng €
k=0
Zpm, (k € N) and only a finite number of ny‘s differ from zero. Let |n| :=
max{k € N: ny # 0}.
For the natural number n = Z?io n;M;, we define
dj := sign(n;) = sign (Sny), 6 = |on; —1|J;,
where & is the inverse operation for
ar ® by = (ax +br) mod my.

We define functions v and v* by

(o9} e o]
v(n):= Z 10j41 — 65| + 6, v* (n) := 25}‘,
J=0 Jj=0
Next, we introduce on G,, an orthonormal system, which is called the
Vilenkin system. At first define the complex valued functions 7y (z) : G, —
C, the generalized Rademacher functions, by

ri, (z) := exp (2mzy/my), (1P = -1, € G,k €N).
Let x € Z,,,. It is well-known that

mp—1
) er;(x):{o o 70,

m z, = 0.
k:O n n

http://journals.cambridge.org/GMJ
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Now, define the Vilenkin systems 1 := (¢, : n € N) on G, as:

oo
() = H ref(x), (neN).
k=0
Specifically, we call this system the Walsh-Paley one if m = 2.
The Vilenkin systems are orthonormal and complete in Ly (Gy,) (see e.g.
[1, 10]).
Next we introduce analogues of the usual definitions in Fourier-analysis.
If f € L1 (Gy,) we can establish the Fourier coefficients, the partial sums,
the Dirichlet kernels, with respect to Vilenkin systems in the usual manner:

Fin) = /G fondu, (k€N),

n—1
Sf =Y F(k) ¢, (keN),
k=
and _10
Dn =Yt (ke N).
k=0

Let n € N. Then

n—1 /mp—1
(5) D, (z) =] <Z r;é(as))

k=0 s=0
| M, zel,,
10 zé¢I,,
and
o0 mj—l
(6) D=t |3 Duy Do 7
7=0 U= =N

The o-algebra generated by the intervals {I, (x):z € G} is denoted
by Fn(neN). Let f := (f(”),n € N) be a martingale with respect to
Frn(neN). (for details see e.g. [12]).

The maximal function of a martingale f is defined by

= sup [ F™].

neN

In the case f € L1(Gy,) the maximal functions are also be given by

/ () 1 ()
In(z)

For 0 < p < oo the Hardy martingale spaces H), consist of all martingales
for which

N _ 1
J7 @) = sup ]

11, = 117, < o0

http://journals.cambridge.org/GMJ

Page 5 of 18



Page 6 of 18 Glasgow Mathematical Journal

TWO-SIDED ESTIMATES OF THE LEBESGUE CONSTANTS... 5

The martingale f = (f("),n € N) is said to be L,-bounded (0 < p < 00)
if £ e L, and

11, = sup | 7| < oc.
neN p

If f € L1 (Gp) , then it is easy to show that the sequence F' = (Sy, f : n € N)
is a martingale. This type of martingales is called regular. If 1 < p < oo
and f € L, (Gp,) then f = (f("),n € N) is L,-bounded and

lim {|Sar, f = fll, =0,
n—oo
consequently |[F||, = [|f]|,, (see [5]). The converse of the latest statement

holds also if 1 < p < oo (see [5]): for an arbitrary L,-bounded martingale
f = (f™,n € N) there exists a function f € Ly, (Gy,) for which f(™ = Sy, f.
If p = 1, then there exists a function f € L; (G,,) of the preceding type if
and only if f is uniformly integrable (see [5]) namely if

lim sup/ ) (x du (x) = 0.
Y—=OpeN {|f(")‘>y}’ ( )’ ( )

Thus the map f — f := (Sm,f:n € N) is isometric from L, onto the
space of Ly-bounded martingales when 1 < p < oo. Consequently, these two
spaces can be identified with each other. Similarly, the space Ly (G,,) can
be identified with the space of uniformly integrable martingales.

A bounded measurable function a is a p-atom if there exists an interval
such that

[ adu =0 Jall < u(D77, supp @) < 1

Iff= ( ) ne N) is a martingale, then the Vilenkin-Fourier coefficients
must be defined in a slightly different manner:

J?(Z) = lim f(k)%dlh

k—o00 Gm

The best approximation of f € L,(Gy,) (1 < p € 00) is defined as
Bu (L) = inf |f =l

where p,, is the set of all Vilenkin polynomials of order less than n € N.
The integrated modulus of continuity of f € L, is defined by

oo (3 d) = s I () = 1O

hely,

The concept of modulus of continuity in H, (0 < p < 1) can be defined in
the following way:

WH, (iA;ﬁ’lf> :::|Lf _'E;NblfH1¥p'

http://journals.cambridge.org/GMJ
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Watari [11] showed that there are strong connections between

Wp (j\;'n“f) ) EMn (vap)

and
If = Su, fll,» p>1, neN.

In particular,

™ gon (3700) <1 = Swadly < (57

and
1
3 1f = San, fll, < Enr, (F, Lp) < If = Sar fl -

The Hardy martingale spaces H,, (Gy,) for 0 < p < 1 have atomic charac-
terizations (see [12], [13]):

Lemma 1. A martingale f = (f(”),n €N) € H,(0<p<1) if and only if
there exist a sequence (ap,k € N) of p-atoms and a sequence (ug,k € N) of
real numbers such that, for every n € N,

oo
(8) > eSaar = £, ace.
k=0
o
> lul? < oo
k=0
Moreover,

o] 1/p
£, - inf (Z w) ,

k=0
where the infimum is taken over all decomposition of f of the form (8).

For the proof of main result we also need the following new Lemmas of
independent interest:

Lemma 2. Let k,s € N and x € G,,. Then

sp—1

> i (@)

u=1

_cos (msgxy/my) sin (7 (s — 1) 21/ my) )

sin (mxy/my;)

sin (wsgxy/my) sin (7 (sg — 1) z/my,)
sin (mxy /my) '

http://journals.cambridge.org/GMJ
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Proof. Since
-1 -1 sp—1
s “ T 2TuTy < . 2muzy
Zrk(m):Zcos +Zzsm ,

if we apply the following well-known identities

(9) Z i sin & 2 cos (nzl)x
coskx = T
k=1 2
and
(n+1)
sin %% sin
10 kx = 2
(10) ;sm x = Sz

we immediately get the proof.

Lemma 3. Let k,N, 2 < s < my and xp = 1. Then

skl . sin (7 (s — 1) g /my,)

nz:l "k (m)‘ - sin (way/my) =1
Proof. Since

sin (7 (my, — 1) /mg)  sin (7/my) -1

sin (7 /my,) ~ sin (7/my)
if we take graph of sinz into accout we obtain that

sin (7 (sg — 1) /my)
sin (w/my;)

> 1, for 2 < s <my.

Let x; = 1. By using Lemma 2 we get that

(11)

_ (cos2 (mspxy/my) sin? ( (s, — 1) zp/my)
sin? (rx/mp)

N sin? (ﬂSkﬂJk/mk)QSln (7 (s — 1)xk/mk)>1/2

sin® (wag/myg)

_ sin (7 (sp, — 1) 2 /my)  sin(m (s — 1) /my)

sin (wxy/my) B sin (7 /my,) =1

The proof is complete.

http://journals.cambridge.org/GMJ
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3. THE MAIN RESULT
Our main result reads:

Theorem 1. Let n =) " njM;. Then

(12)

1 1
oY (n) + 5
where X\ 1= sup, ey Mp.-

Proof. First we choose indices 0 < /1 < a1 < fly < ag < ... <ty < a5 <
lsy1 = 00, such that o +1 < £, for j =1,2,...;5, n =0, for 0 < k < /¢4,
np € {1,2,...,my — 1}, for ¢; <k < ojand n, =0, for o < k < £j41.
According to (6) we have that

9 mp—1 [eS) mp—ng—1

1) b= (X 0w S ) e (Tow 3 )

k=0 u=1 k=0 u=1

S Qg mg—1 s  Qy ong—1
=n | 222 Dane Do rk | = ¥a | D> Dan D 7
j=1k=¢; u=1 j=1k=t; u=1
=1—-11.
Since
k—1
(14) Mk—lz (mj—l)Mj
=0
if we apply again (6) we get that
k—1 mj—l
Dy —1 = Y1 Dy, Z i
7=0 u=1
Hence,
s aj my—1 ;-1 my—1

(15)  I=va (D (D Dae Y rii= Y Dy D vk

j=1 \ k=0 u=1 k=0 u=1

—n [ (ot

= My, 41-1 wM,Z].—l
_ i DMaj+1 - wMajH—l _ Dsz - ¢sz—1
! j=1 wMaj-&-l*l 1/)ng71

= wn i ( DMa'j+1 DMZJ' )

j=1 ¢Maj+l_1 Qng].—l

http://journals.cambridge.org/GMJ
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and
S
12 <3 (|| Drtay ]|, + | Do, [|) =25 <0 ).
j=1
Moreover,
s g
1171, < D7D 1en; — 116 || Da ||,
J=1j=¢4;
s 9y
:ZZ\@nj—l\éj <v*(n).
J=1j=t;
The proof of the upper estimate in 1 follows by combining the last two
estimates.

Let x € Iy1q (xxer), where 1 <z <mp—1and e :=(0,...,0,1,0,...) €
G, where only the k-th coordinate is one, the others are zero. Then, by the
definition of Vilenkin functions, if we apply (14) and equalities g = x1 =
.. =x,_1 = 0, we find that

(1) b Hrmt 1
-1

_H€27rzztmt 1)) /mt_He =1,
t=0

for any 0 <[ < k.
Let {; <k < oj and x € Ij41 (zgex), where 1 <z, < ny — 1. Then, in
view of (5) and (15) we get that

DM@ (z)
wMe —1()

[ Duor (@) Dugy, (@)
(@ (lz: (¢Mal+1 1 () ¢Mgl—1($))>

1
= Y (x (MeJrZ w1 — My,

I:_wn( )

By using Lemma 2 we have that

)
%)

1T = 4, (2) (DMk( ) Z

k—1 @nl—l 71—1 as on;—1
+in (@ Dag (x) Y v (@) +) > D () Y rf(x)
I=t; u=1 s=0[=/ls u=1

cos (m (6ng) xg/my) sin (7 (Eng — 1) ffk/mk)Z

= ¥ () My, sin (7 /my)

http://journals.cambridge.org/GMJ
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ksin (m (enk) . /my) sin (7 (©ng, — 1) z/my;)

M,

¥n (@) sin (wag/my)
k—1 J—1 as

+ihp (x ZMZ ong — 1) + Yy, (x ZZMl on;—1).
1=¢; s=0 =5

Let « € Ij41 (ex) and X := sup,, ey my,. Since x; = 1 and

sin (7 (©ng) zg/my) sin (7 (Sng — 1) z/my;)
sin (wxy/my)

>0

if we apply Lemma 3 we obtain that

iI—11|>

((Mk cos (1 (&nyg) x/my) sin (7 (Eng, — 1) xk/mk)>2

sin (7w /my)

>

n (Mk sin (7T (@nk) xk/mk) sin (7T (@nk _ 1) $k/mk) > 2) 1/2

sin (wxy/my)

o Misin (m (Sn — 1) wi/m) > > M [©n — 1]
sin (wxzy /my) A

Let © € In,+2 (,Iaj+1€aj+1), where 1 < Taj4+1 < Mo 41 — 1 Then, by
using (6) if we invoke equalities (13), (15) and (16) we get that

|Dn| =

J i « m;—n;—1
(ot (£5075

i \YMagn—1 Vg —1 k=1 1=y, u=1

j ak
Z Moy 41 — My,,) — Z |en; — 1| M;
k=

1 -
J g
k=1 1=y,
J
= Z (Mak+1 Mék Z M1 +2 Z M,
k=1 1=}, =0,
J ook
- Z My > Ma;.
k=1 1=¢j,
Hence,
s Qp
> / My |ong 1‘d
1=0 k=0,+1 7 Te+1(ex) A

http://journals.cambridge.org/GMJ
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Mo, dp
7=0 o, 11=1 "1, +2 (e +160;41)

S S

i My |en, — 1] 1 (Ma,+1 — 1) Mo,

> +
1=0 k=¢; A M1 =0 Mo+
>§:Z|6nk_1’+§:i>iv*(n)+fv(n)
= = A2 = 2) T A2 4
The proof is complete. O

The next result for Vilenkin systems is known (see e.g. [1]) but it also
follows from our result.

Corollary 1. Let q,= Ma, + Moy_o + ...+ My. Then

where X 1= sup,,cy Mn.-

Proof. First we observe that

(17) v (qn) = 2n.
By using Theorem 1 we get that

n

1Dl = 50 (an) = 55

Moreover, since

n

o) =3 (myj —2) < (A -2 3 1< (A= 2)n

J=0 J=0

3

if we apply (17) we readily obtain that
[Dg lly < v (an) +v(gn) < (A=2)n+2n = An.
The proof is complete. U

Finally, we mention that the following well-known results for the Walsh
systems (see the book [7]) also follows directly from our main result.

Corollary 2. For the Walsh system the inequality
1
gv(n) <L,<wv(n),
holds.

http://journals.cambridge.org/GMJ
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4. APPLICATIONS

First we use our main result to find a characterizations for the boundedness
(or even the ratio of divergence of the norm) of a subsequence of partial sums
of the Vilenkin-Fourier series of H; martingales.

Theorem 2. a)Llet f € H; and My < n < Myy1. Then there exists an
absolute constant ¢ such that

10 fll gz, < ¢(vn)+0" () [[flla, -

b) Let {®,, : n € N} be any non-decreasing and non-negative sequence sat-
isfying condition

lim &,, = ©
n—oo

and {ni >2:k € N} be a subsequence such that

lim v (ng) + v (ng) _ ~

k—o0 (I)nk

Then there exists a martingale f € Hy such that

Snyf

— 00, when k — oo.
®,,,

1

sup
k

Proof. In view of Theorem 1 we can conclude that
1Snflly < L)1y < L () [[f ]|,
<c(v(n)+ov" () [, -

Let us consider the following martingale:
Fi = (Sa,Sufs k> 1)
=(Smo S, S foeoy Sufo S, o)

It is easy to see that

10 flla, < 1 f#llg, < + [15n Iy

sup S, f]
0<I<k )

< g, + 1Sn 1y
S e, + e (n) + 0" () [ £l
<c(vn)+v () [ fllg, -
b) Under the conditions of Theorem 2 there exists an increasing sequence
{ag : k € Ny} C {ng : k € N.} of the positive integers such that

(18) 25 < 0.
Let
fo = Z Ak Qs
{k: |og|<n}

http://journals.cambridge.org/GMJ
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where
(19) e = — D D
= —_— apr = — .
T T T et T My

By combining (18) and Lemma 1 we conclude that the martingale f € Hj.
It is easy to see that

(20) F9)
%’ if j € {Mjay)s s Miggs1 — 1}, k€N
= oo
0, if j gékUO{M‘aH,...,Mm‘H—1}.
It follows that
LD, m P Do D
Sa f: ~ X + Yk .
' ; Plo| Ploy|
Hence, if we invoke (18) for sufficiently large k we can conclude that
Dy k—1 || D —
||Dak||1 1 ‘&k‘ 1 |O‘i|+1 ‘O‘z‘ 1
1S, flly = - —~
T @y Py Z; Pla
k
[ Dy 4 2} 1
Doy ~ O,

S a (v (o) + 0" (ag) ¢y — 00, when k — oo.

The proof is complete. O
At first we prove the following estimation:

Corollary 3. Let f € Hy and My < n < Mpy1. Then there exists an
absolute constant ¢ such that

(21) H&J—thS0@00+WOmwm(£QJ)-

Proof of Theorem 3. By using Theorem 2 and obvious estimates we find that

1Snf = Flla, < 1Snf = Sa fll g, + 150 f = Fllg,
= 150 (Saa f = Dl + 15w f = fll g,

< (v (n) +v* (n) + 1) wi, <A2kf>

1
<c(v(n)+v*(n)w —,f).
(0 ()4 0" ) (371
Thus, the proof is complete. O

http://journals.cambridge.org/GMJ
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Next we use Corollary 3 to derive necessary and sufficient conditions for
the modulus of continuity of martingale Hardy spaces H,, for which the
partial sums of Vilenkin-Fourier series convergence in L,-norm. We also
point out the sharpness of this result.

Theorem 3. a) Let f € Hy and {ny, : k € N} be a sequence of non-negative
integers such that

1 1
i (Mm’f) - (v(nk>+v* <nk>>’ a5 oo

[Snf = fllg, — 0, when k — oc.

Then

b) Let {ny : k > 1} be sequence of non-negative integers such that

sup (v (ng) +v* (nk)) = oo.
keN

Then there exists a martingale f € Hy and a sequence {ay : k € N} C {ny, :€

N} for which
1 1
o (707) = (s v an)

(22) limsup || Sa, f — fll; > ¢ > 0 when k — oo.

k—o00

and

Proof. The proof of part a) follows immediately from (21) in Corollary 3.
Under the conditions of part b) of Theorem 3, there exists a sequence
{ap : k € N} C {ny : k € N} such that

(23) v (ag) + v* (ag) T oo when k — oo
and
(24) (0 (o) + v ()2 < 0 (@s1) + v (gs).
Let
fe= 3" N,
{k:|ag|<n}
where )
A v (ag) +v* (ag)’ h My |+1 M|

By combining (23), (24) and Lemma 1 we conclude that the martingale
feH.
It is easy to see that

(25) F)
1 e
weotr@n I E{ M- Mgyt — 1}, KEN, ..
) o, ifj¢kL_JO{Mmk‘,...,M‘akHl*1}.

http://journals.cambridge.org/GMJ
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It follows that

k—1 -DM‘ ‘+1 DM| | Dak _DM| |
26 o 4 g + oy .
(26) Sorf = Z e T vy o (o)
Since
Su, f=f™, for f= (f(”) ‘n € N) c H,
and

(SM%ﬂm:kmzN>
= (SMkSMnf,k' S N)
= (SMOf,...,SMn_lf, S, |, SMnf,...)
F— (f(O)""7f(n_1)7f(n)7f(n)7"')
we obtain that
f—=5Su,f = (f —Sm, f: keN)

is a martingale for which

k) _ ) 0, k=0,....,n,
(27) (f - SMnf) S { f(k:) _ f(n)7 k>n+1,
According to Lemma 1 we get that
If = SManH1
< - . 4
zzn;-l Oé )

=0 (v (o) _:U* (an)> when n — oo.

By combining (5), (25) and (26) with Theorem 1 we obtain that

1f = Sy fll
| Mieader ~ D fj DMeyjor ~ Py
—vag) + vt (an) v(a )+v( i)

i=k+1

HDM|0%|+1 B

D D | >
[ Doy |11 I Moy 42111
_ ) _ E

v(ag) +v* ()  v(og)+v* (o S () + v* (o

1 — 1
= w(og) Fot(ar) 31:%;11) () +v* ()
3

=¢ v (ag) + v (o)

Hence,
limsup |[Sqa, f — fll; > ¢>0as k — oo.

k—o00
The proof is complete.

http://journals.cambridge.org/GMJ
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This known results can be found in [§].

Corollary 4. Let f € Hy and
1 1
WH, ﬁn,f =o0 - , when n — oo.

1Sxf — fllg, = 0, when k — oo.

Then
b) Then there exists a martingale f € Hy for which
1 1
wH, E,f =0 - when n — oo

ISk f — fll; = 0 when k — oo.

and
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