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Abstract Scalability is increasingly important for bioin-

formatics analysis services, since these must handle larger

datasets, more jobs, and more users. The pipelines used to

implement analyses must therefore scale with respect to the

resources on a single compute node, the number of nodes

on a cluster, and also to cost-performance. Here, we survey

several scalable bioinformatics pipelines and compare their

design and their use of underlying frameworks and

infrastructures. We also discuss current trends for bioin-

formatics pipeline development.
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1 Introduction

Bioinformatics analyses are increasingly provided as ser-

vices that end users access through a web interface that has

a powerful backend that executes the analyses. The ser-

vices may be generic, such as those provided by research

institutes such as EMBL-EBI (http://www.ebi.ac.uk/ser

vices), commercial companies such as Illumina (https://

basespace.illumina.com/home/index), and research pro-

jects such as Galaxy (https://usegalaxy.org/). However,

they can also be specialized and targeted, for example, to

marine metagenomics as our marine metagenomics portal

(https://mmp.sfb.uit.no/).

Scalability is increasingly important for these analysis

services, since the cost of instruments such as next-gener-

ation sequencing machines is rapidly decreasing [1]. The

reduced costs have made the machines more available

which has caused an increase in dataset size, the number of

datasets, and hence the number of users [2]. The backend

executing the analyses must therefore scale up (vertically)

with respect to the resources on a single compute node,

since the resource usage of some analyses increases with

dataset size. For example, short sequence read assemblers

[3] may require TBs of memory for big datasets and tens of

CPU cores [4]. The analysis must also scale out (horizon-

tally) to take advantage of compute clusters and clouds. For

example, the widely used BLAST [5] is computationally

intensive but scales linearly with respect to the number of

CPU cores. Finally, to efficiently support many users it is

important that the analyses scale with respect to cost-per-

formance [6].

The data analysis is typically implemented as a pipeline

(workflow) with third-party tools that each processes input

files and produces output files. The pipelines are often

deep, with 10 or more tools [7]. The tools are usually

implemented in a pipeline framework ranging from simple

R scripts to full workbenches with large collections of tools

(such as the Galaxy [8] or Apache Taverna [9]). A review

of pipeline frameworks is in [10], but it does not focus on

scalability. Here, we survey several scalable bioinformatics

pipelines and compare their design and deployment. We

describe how these scale to larger datasets or more users,

how they use infrastructure systems for scalable data pro-

cessing, and how they are deployed and maintained.

Finally, we discuss current trends in large-scale bioinfor-

matics analyses including containers, standardization,

reproducible research, and large-scale analysis-as-a-service

infrastructures.
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2 Scalable Pipelines

We focus our review on scalable pipelines described in

published papers. Many of the pipelines are configured and

executed using a pipeline framework. It is difficult to dif-

ferentiate between the scalability of a pipeline framework

and the scalability of individual tools in a pipeline. If a

pipeline tool does not scale efficiently, it may be necessary

to replace it with a more scalable tool. However, an

important factor for pipeline tool scalability is the infras-

tructure service used by the pipeline framework for data

storage and job execution (Fig. 1). For example, a

columnar storage system may improve I/O performance,

but many analysis tools are implemented to read and write

regular files and hence cannot directly benefit from

columnar storage. We therefore structure our description of

each pipeline as follows:

1. We describe the compute, storage, and memory

requirements of the pipeline tools. These influence

the choice of the framework and infrastructure

systems.

2. We describe how the pipelines are used. A pipeline

used interactively to process data submitted by end

users has different requirements than a pipeline used to

batch process data from a sequencing machine.

3. We describe the pipeline framework used by the

pipeline, how the pipeline tools are executed, how the

pipeline data are stored, and the execution

environment.

4. We describe how the pipeline tools scale out or up,

how the pipeline framework supports multiple users or

jobs, and whether the execution environment provides

elasticity to adjust the resources allocated for the

service.

5. We discuss limitations and provide comparisons to

other pipelines.

2.1 META-Pipe 1.0 Metagenomics Pipeline

Our META-pipe pipeline [11, 12] provides preprocessing,

assembly, taxonomic classification, and functional analysis

for metagenomics samples. It takes as input short reads

from a next-generation sequencing instrument and outputs

the organisms found in the metagenomics sample, pre-

dicted genes, and their corresponding functional annota-

tions. The different pipeline tools have different resource

requirements. Assembly requires a machine with at least

256 GB RAM, and it cannot run efficiently on distributed

resources. Functional analysis requires many cores and has

parts that are I/O intensive, but it can be run efficiently

distributed on a cluster with thin nodes. Taxonomical

classification has low resource requirements and can be run

on a single node. A typical dataset is 650 MB in size and

takes about 6 h to assemble on 12 cores and 20 h for

functional annotation on 384 cores.

A Galaxy [13] interface provides META-pipe 1.0 to

Norwegian academic and industry users (https://nels.

bioinfo.no/). The pipeline is specified in a custom Perl-

script-based framework [14]. It is executed on the Stallo

supercomputer, which is a traditional HPC cluster with one

job queue optimized for long-executing batch jobs. A

shared global file system provides data storage. We man-

ually install and maintain the pipeline tools and associated

database versions on a shared file system on Stallo.

The job script submitted to the Stallo job scheduler

describes the resources requested on a node (scale up) and

the number of nodes requested for the job (scale out). Both

Galaxy and the job scheduler allow multiple job submis-

sions from multiple users at the same time, but whether the

jobs run simultaneously depends on the load of the cluster.

HPC clusters are typically run with a high utilization, so

jobs are often queued for a long time and therefore jobs

submitted at the same time may not run at the same time.

HPC clusters are not designed for elastic resource provi-

sion, so it is difficult to efficiently scale the backend to

support the resource requirement variations of multi-user

workloads.

Fig. 1 Scalable pipeline components. A pipeline consists of third-

party tools, data parsers, and data transformations. The pipeline tools

and their dependencies are specified using a workflow language or

implemented as a program or script. A pipeline framework executes

the pipeline tools on a cluster or cloud using a big data processing

engine or a supercomputer job scheduler. The pipeline framework

stores the data as files, objects, or matrices in a columnar storage. The

execution environment allocates the resources needed for the pipeline,

and a user interface provides access for end users to the pipeline
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META-pipe 1.0 has several limitations as a scalable

bioinformatics service. First, the use of a highly loaded

supercomputer causes long wait times and limits elastic

adjustment of resources for multi-user workloads. We

manually deploy the service on Galaxy and Stallo, which

makes updates time-consuming and prone to errors.

Finally, our custom pipeline framework has no support for

provenance data maintenance nor failure handling. For

these reasons, we have re-implemented the backend in

META-pipe 2.0 using Spark [15] so that it can take

advantage of the same features as the pipelines described

below do.

2.2 Genome Analysis Toolkit (GATK) Variant

Calling Reference Pipeline

The GATK [16] best practices pipeline for germline SNP

and indel discovery in whole-genome and whole-exome

sequence (https://software.broadinstitute.org/gatk/best-

practices/bp_3step.php?case=GermShortWGS) is often

used as reference for scalable genomics data analysis

pipelines. This pipeline provides preprocessing, variant

calling, and callset refinement. (The latter usually is not

included in benchmarking.) It takes as input short reads and

outputs annotated variants. Some tools have high CPU

utilization (BWA and HaplotypeCaller), but most steps are

I/O bound. An Intel white paper [17] recommends using a

server with 256 GB RAM and 36 cores for the pipeline,

and they achieved the best resource utilization by running

analysis jobs for multiple datasets at the same time and

configuring the jobs to only use a subset of the resources.

The pipeline is well suited for parallel execution as

demonstrated by the MapReduce programming models

used in [16] and the Halvade [18] Hadoop MapReduce

implementation that analyzes a 86 GB (compressed) WGS

dataset in less than 3 h on Amazon Elastic MapReduce

(EMR) using 16 workers with a total of 512 cores.

The first three versions of GATK are implemented in

Java and optimized for use on local compute infrastruc-

tures. Version 4 of GATK (at the time of writing in Beta)

uses Spark to improve I/O performance and scalability

(https://software.broadinstitute.org/gatk/blog?id=9644). It

uses GenomicsDB (https://github.com/Intel-HLS/Geno

micsDB) for efficiently storing, querying, and accessing

(sparse matrix) variant data. GenomicsDB is built on top of

Intel’s TileDB (http://istc-bigdata.org/tiledb/index.html)

which is designed for scalable storage and processing of

sparse matrices. To support tertiary (downstream) analysis

of the data produced by GATK, the Hail framework

(https://hail.is/) provides interactive analyses. It optimizes

storage and access of variant data (sparse matrices) and

provides built-in analysis functions. Hail is implemented

using Spark and Parquet.

Tools in the GATK can be run manually through the

command line, specified in the workflow definition language

(WDL) and run in Cromwell, or use written in Scala and run

on Queue (https://software.broadinstitute.org/gatk/doc

umentation/pipelines). GATK provides multiple approaches

to parallelize tasks: multi-threading and scatter–gather.

Users enablemulti-threadingmode by specifying command-

line flags and use Queue or Cromwell to run GATK tools

using a scatter–gather approach. It is also possible to com-

bine these approaches (https://software.broadinstitute.org/

gatk/documentation/article.php?id=1988).

2.3 ADAM Variant Calling Pipeline

ADAM [6] is a genomics pipeline that is built on top of the

Apache Spark big data processing engine [15], Avro

(https://avro.apache.org/) data serialization system, and

Parquet (https://parquet.apache.org/) columnar storage

system to improve the performance and reduce the cost of

variant calling. It takes as input next-generation sequencing

(NGS) short reads and outputs sites in the input genome

where an individual differs from the reference genome.

ADAM provides tools to sort reads, remove duplicates, do

local realignment, and do base quality score recalibration.

The pipeline includes both compute and I/O-intensive

tasks. A typical dataset is 234 GB (gzip compressed) and

takes about 74 min to run on 128 Amazon EC2 r3.2xlarge

(4 cores, 30.5 GB RAM, 80 GB SSD) instances with 1024

cores in total.

ADAM focuses on backend processing, and hence, user-

facing applications need to be implemented as, for exam-

ple, Scala or Python scripts. ADAM uses Spark to scale out

parallel processing. The data are stored in Parquet, a

columnar data storage using Avro serialized file formats

that reduce I/O load by providing in-memory data access

for the Spark pipeline implementation. The pipeline is

implemented as a Spark program.

Spark is widely supported on commercial clouds such as

Amazon EC2, Microsoft Azure HDInsight, and increas-

ingly in smaller academic clouds. It can therefore exploit

the scale and elasticity of these clouds. There are also

Spark job schedulers that can run multiple jobs

simultaneously.

ADAM improves on MapReduce-based pipeline

frameworks by using Spark. Spark solves some of the

limitations of the MapReduce programming model and

runtime system. It provides a more flexible programming

model than just the map-sort-reduce in MapReduce, better

I/O performance by better use of in-memory data structures

between pipeline stages and data streaming, and reduced

job startup time for small jobs. Spark is therefore becoming

the de facto standard for big data processing, and pipelines

implemented in Spark can take advantage of Spark libraries
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such as GraphX [19] for graph processing and MLlib [20]

for machine learning.

ADAM has two main limitations. First, it implemented

as part of research projects that may not have the long-term

support and developer efforts required to achieve the

quality and trust required for production services. Second,

it requires re-implementing the pipeline tools to run in

Spark and access data in Parquet, which is often not pos-

sible for analysis services with multiple pipelines with tens

of tools each.

2.4 GESALL Variant Calling Pipeline

GESALL [21] is a genomic analysis platform for unmod-

ified analysis tools that use the POSIX file system interface.

An example pipeline implemented with GESALL is their

implementation of the GATK variant calling reference

pipeline that was used as an example in the ADAM paper

[6]. GESALL is evaluated on fewer but more powerful

nodes (15, each with 24 cores, 64 GB RAM, and 3 TB

disk) than the ADAM pipeline. A 243 GB compressed

dataset takes about 1.5 h to analyze.

GESALL pipelines are implemented and run as

MapReduce programs on resources allocated by YARN

(https://hadoop.apache.org/). The pipeline can run

unmodified analysis tools by wrapping these using their

genome data parallel toolkit. The tools access their data

using the standard file system interface, but GESALL

optimizes data access patterns and enables correct dis-

tributed execution. It stores data in HDFS (https://hadoop.

apache.org/) and provides a layer on top of HDFS that

optimizes storage of genomics data type, including custom

partitioning and block placement.

Like Spark, MapReduce is widely used in both com-

mercial and academic clouds and GESALL can therefore

use the horizontal scalability, elasticity, and multi-job

support features of these infrastructures. The unmodified

tools executed by a GESALL pipeline may also be multi-

threaded. A challenge is therefore to find the right mix of

MapReduce tasks and per-tool multi-threading.

2.5 Toil: TCGA RNA-Seq Reference Pipeline

Toil is a workflow software to run scientific workflows on a

large scale in cloud or high-performance computing (HPC)

environments [22]. It is designed for large-scale analysis

pipelines such as The Cancer Genome Atlas (TCGA) [23]

best practices pipeline for calculating gene- and isoform-

level expression values from RNA-seq data. The memory-

intensive STAR [24] aligner requires 40 GB of memory.

As with other pipelines, the job has a mix of I/O- and CPU-

intensive tasks. In [22], the pipeline runs on a cluster of

AWS c3.8xlarge (32 cores, 60 GB RAM, 640 GB SSD

storage) nodes. Using about 32.000 cores, they processed a

108 TB with 19,952 samples in 4 days.

Toil can execute workflows written in both the Common

Workflow Language (CWL, http://www.commonwl.org/),

the Workflow Definition Language (WDL, https://github.

com/broadinstitute/wdl), or Python. Toil is written in

Python, so it is possible to interface it from any Python

application using the Toil Application Programming

Interface (API). Toil can be used to implement any type of

data analysis pipeline, but it is optimized for I/O-bound

NGS pipelines. Toil uses file caching and data streaming,

and it schedules work on the same portions of a dataset to

the same compute node. Toil can run workflows on com-

mercial cloud platforms, such as AWS, and private cloud

platforms, such as OpenStack (https://www.openstack.org/

), and it can execute individual pipeline jobs on Spark.

Users interface with Toil through a command-line tool that

orchestrates and deploys a data analysis pipeline. Toil uses

different storage solutions depending on platform: S3

buckets on AWS, the local file system on a desktop com-

puter, network file systems on a high-performance cluster,

and so on.

3 Current Trends

In addition to the scalability considerations discussed

above, we see several other trends in pipelines developed

for scalable bioinformatics services.

Containers are increasingly used to address the challenges

of sharing bioinformatics tools and enabling reproducible

analyses in projects such as BioContainers (http://biocontai

ners.pro/).A bioinformatics pipeline is often deep,withmore

than 15 tools [7]. Each tool typically has many dependencies

on libraries and especially reference databases. In addition,

some tools are seldom updated. Pipelines therefore often

require a large effort to install, configure, and run bioinfor-

matics tools. Software containerization packages an appli-

cation and its dependencies in an isolated execution

environment. One popular implementation of software

container is Docker [25]. With Docker, developers can build

a container from a configuration file (Dockerfile) that

includes machine and human-readable instructions to install

the necessary dependencies and the tool itself. Both the

Dockerfile and the resulting container can bemoved between

machines without installing additional software, and the

container can be rerun later with the exact same libraries.

Containers can be orchestrated for parallel execution using,

for example, Kubernetes (https://kubernetes.io/) or Docker

Swarm (https://github.com/docker/swarm), and there are

now multiple pipelining tools that use Docker or provide

Docker container support includingNextflow [26], Toil [22],

Pachyderm (http://www.pachyderm.io/), Luigi (https://
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github.com/spotify/luigi) [27], Rabix/bunny [28], and our

own walrus system (http://github.com/fjukstad/walrus).

There are several efforts to standardize pipeline speci-

fications to make it easier to port pipelines across frame-

works and execution environments (including Toil

described above). For example, the Common Workflow

Language (CWL) is an effort supported by many of the

developers of the most popular pipeline frameworks. CWL

is a standard for describing data analysis pipelines.

Developers can describe a data analysis pipeline in YAML

or JSON files that contain a clear description of tools, input

parameters, input and output data, and how the tools are

connected. There are multiple systems that implement the

CWL standard, including Galaxy [13], Toil, Arvados

(https://arvados.org/), and AWE [29], making it possible to

write a single description of a pipeline and run it in the

most suitable pipeline execution environment. It is an open

challenge to implement support for the standardized pipe-

line descriptions on execution environments such as Spark.

The needs and challenges for reproducible analyses [30]

require a standardized way to specify and document

pipelines and all their dependencies, in addition to main-

taining all provenance information of pipeline executions

[31]. Specifications such as CWL can be used to stan-

dardize the specification, and for example, Spark has built-

in data lineage recording. However, there is not yet an

analysis standard that describes the minimum information

required to recreate bioinformatics analyses [32].

Finally, there are several large infrastructures and plat-

forms that provide scalable bioinformatics services. The

European ELIXIR (https://www.elixir-europe.org/) dis-

tributed infrastructure for life science data resources, anal-

ysis tools, compute resources, interoperability standards, and

training. The META-pipe pipelines described above are

developed as part of the ELIXIR project. Another example is

the Illumina BaseSpace Sequence Hub (https://basespace.

illumina.com/home/index), which is a cloud-based geno-

mics analysis and storage platform provided by the producer

of the currently most popular sequencing machines. Other

commercial cloud platforms for bioinformatics analyses are

DNAnexus (https://www.dnanexus.com/), Agave (https://

agaveapi.co), and SevenBridges (https://www.sevenbridges.

com/platform/). We believe the efforts required to maintain

and provide the resources needed for future bioinformatics

analysis services will further consolidate such services in

larger infrastructures and platforms.

4 Summary and Discussion

We have provided a survey of scalable bioinformatics

pipelines. We compared their design and use of underlying

infrastructures. We observe several trends (Table 1). First,

there are few papers that describe the design, implemen-

tation, and evaluation of scalable pipeline frameworks and

pipelines, especially compared to the number of papers

describing bioinformatics tools. Of those papers, most

focus on a specific type of analysis (variant calling) using

mostly the same tools. This suggests that there is a need to

address the scalability and cost-effectiveness of other types

of bioinformatics analysis.

Most papers focus on the scalability of a single job.

Only our META-pipe paper evaluates the scalability of the

pipeline with respect to multiple users and simultaneous

jobs. With analyses provided increasingly as a service, we

believe multi-user job optimizations will become increas-

ingly important. Staggered execution of multiple pipeline

jobs can also improve resource utilization as shown in

[17, 27].

It is becoming common to standardize pipeline

descriptions and use existing pipeline frameworks rather

than implementing custom job execution scripts. An open

challenge is how to optimize the execution of pipelines

specified in, for example, CWL. Frameworks such as

GESALL provide genomic dataset optimized storage

which can be difficult to utilize from a generic pipeline

specification. ADAM uses an alternative approach where

the pipeline is a Spark program like for data analyses in

many other domains.

In addition to standardizing pipeline description, there is

a move to standardize and enable completely reproducible

execution environments through software containers such

as Docker. Although not yet widely adopted, containerized

bioinformatics tools simplify deployment, sharing, and

reusing of tools between research groups. We believe that

standardizing the execution environment, together with

standardizing the pipeline descriptions, is a key feature for

reproducible research in bioinformatics.

Most pipelines save data in a traditional file system

since most analysis tools are implemented to read and write

files in POSIX file systems. GESALL provides a layer that

enables using HDFS for data storage by wrapping tools and

providing optimized genomic data-specific mapping

between POSIX and HDFS. ADAM uses a different, data-

oriented approach, with a layered architecture for data

storage and analysis that exploits recent advancement in

big data analysis systems. Like ADAM, GATK4 is also

built on top of Spark and a columnar data storage system.

ADAM requires re-implementing the analysis tools, which

may be practical for the most commonly used tools and

pipelines such as the GATK reference pipelines, but is

often considered impractical for the many other tools and

hence pipelines.

Pipeline frameworks such as GESALL and ADAM use

MapReduce and Spark to execute pipeline jobs on clouds

or dedicated clusters, and Toil supports job execution on
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HPC clusters with a job scheduler, which is important since

most bioinformatics analysis pipelines are not implemented

in MapReduce or Spark. HPC job schedulers are also

provided on commercial and private clouds, so also these

pipelines can take advantage of the elasticity provided by

these infrastructures.

In addition to enabling and evaluating horizontal scal-

ability, the cost of an analysis and the choice of virtual

machine flavors are becoming increasingly important for

efficient execution of bioinformatics analysis, since

pipelines are increasingly deployed and evaluated on

commercial clouds [6, 21, 22]. However, even on dedicated

clusters it is important to understand how to scale a pipe-

line up and out on the available resources to improve the

utilization of the resources. However, with the exception of

[17], none of the reviewed papers have evaluated multiple

pipeline job executions from the cluster provider’s point of

view.

We believe deployment, provenance data recording, and

standardized pipeline descriptions are necessary to provide

easy-to-maintain and reproducible bioinformatics pipelines

in infrastructures such as ELIXIR or platforms such as

BaseSpace. These three areas are typically not addressed in

the reviewed papers, suggesting that more research is

required to address these areas in the context of scalable

bioinformatics pipelines.

Summarized, we have described many scalability

problems and their solutions in the reviewed papers. These

include: scaling up nodes to run tools with large memory

requirements (META-pipe), scale out for parallel execution

(all reviewed pipelines), use of optimized data structures

and storage systems to improve I/O performance (GATK

4.0, ADAM, GESALL), and the choice of machine flavor

to optimize either the execution or cost (GATK, ADAM,

GESALL). Although many of the pipelines have the same

scalability issues, such as I/O performance for variant

calling, the infrastructure system and optimizations differ

depending on overall design choices (e.g., the use of

unmodified vs modified analysis tools) and the software

stack (e.g., Spark vs HPC schedulers and file systems). We

therefore believe there is no right solution or platform that

solves all scalability problems, and that more research is

needed to scale up and cost-optimize the many types of

bioinformatics data analyses. The increasing use of stan-

dardized layers, standards, and interfaces to implement

these analyses should allow reusing the developed solu-

tions across pipelines and pipeline frameworks.
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