
Faculty of Science and Technology
Department of Computer Science
Toward Reproducible Analysis and Exploration ofHigh-Throughput Biological Datasets
—

Bjørn Fjukstad
A dissertation for the degree of Philosophiae Doctor – 2018

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2018 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Ta aldri problemene på forskudd, for da får du dem to ganger, men ta gjerne
seieren på forskudd, for hvis ikke er det altfor sjelden du får oppleve den.”

–Ivar Tollefsen

Abstract
There is a rapid growth in the number of available biological datasets due
to the advent of high-throughput data collection instruments combined with
cheap compute infrastructure. Modern instruments enable the analysis of
biological data at different levels, from small DNA sequences through larger
cell structures, and up to the function of entire organs. These new datasets have
brought the need to develop new software packages to enable novel insights
into the underlying biological mechanisms in the development and progression
of diseases such as cancer.

The heterogeneity of biological datasets require researchers to tailor the explo-
ration and analyses with a wide range of different tools and systems. However,
despite the need for their integration, few of them provide standard inter-
faces for analyses implemented using different programming languages and
frameworks. In addition, because of the many tools, different input parame-
ters, and references to databases, it is necessary to record these correctly. The
lack of such details complicates reproducing the original results and the reuse
of the analyses on new datasets. This increases the analysis time and leaves
unrealized potential for scientific insights.

This dissertation argues that we can develop unified systems for reproducible
exploration and analysis of high-throughput biological datasets. We propose
an approach, Small Modular Entities (SMEs), for developing data analysis
pipelines and data exploration applications in cancer research. We realize smes
using software container technologies together with well-defined interfaces,
configuration, and orchestration. It simplifies developing such applications,
and provides detailed information needed to reproduce the analyses.

Through this approach we have developed different applications for analyzing
high-throughput dna sequencing datasets, and for exploring gene expression
data integrated with questionnaires, registry, and online databases. The evalua-
tion shows howwe effectively capture provenance in analysis pipelines and data
exploration applications. Our approach simplifies the sharing of methods, data,
tools, and applications, all fundamental to enable reproducible science.

Acknowledgements
First I would like to thankmy advisor, Professor Lars Ailo Bongo for his relentless
support and encouragement during my time as a PhD student. He has indeed
shown me what tough love is, and I am grateful for that.

I would like to thank my co-advisors Professor Eiliv Lund and Associate Profes-
sor Karina Standahl Olsen for their wonderful ideas and warm welcome into a
research field that was not my own.

I would like to extend my gratitude to Professor Michael Hallett and Vanessa
Dumeaux for their hospitality when I visited their lab in Montreal in 2016. I do
not think this thesis would have been as interesting without the projects I was
fortunate enough to be a part of. Thank you!

I would like to thank my long time office wife Einar, Morten, Nina, and the
BDPS lab at UiT.

Thank you to past or current students at UiT: Jan-Ove, Vegard, Helge, Mag-
nus, Erlend, Kristian, Martin, Amund, Michael, and many more. You have all
contributed to nine wonderful years at the University!

I would like to thank my colleagues at the Department of Computer Science,
especially the technical staff, led by Maria Wulff Hauglann.

Thank you to everyone in the nowac research group, you have all been
wonderful to collaborate with!

Thank you to the PhD students at Nordlandssykehuset in Bodø who have been
my closest colleagues during the final push of my PhD.

I would like to thank my mom and dad, and my younger brother for their
ever-present support.

Finally, Ane for her continuous love and support, and her endurance through
all of my big or small projects.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Problems with Data Analysis and Exploration in Bioinformatics 4
1.2 Small Modular Entities (SMEs) 5

1.2.1 Data Management and Analysis 5
1.2.2 Interactive Data Exploration Applications 7
1.2.3 Deep Analysis Pipelines 8
1.2.4 Similarity . 9

1.3 Applications Developed with SMEs 9
1.3.1 Data Management and Analysis 9
1.3.2 Interactive Data Exploration Applications 9
1.3.3 Deep Analysis Pipelines 10

1.4 Summary of Results . 11
1.5 List of papers . 11
1.6 Dissertation Plan . 15

2 Modern Biological Data Management and Analysis 17
2.1 High-Throughput Datasets for Research and Clinical Use . . 18
2.2 Norwegian Women and Cancer (NOWAC) 19

2.2.1 Data Management and Analysis 20
2.3 Enabling Reproducible Research 20

2.3.1 The nowac Package 22
2.4 Standardized Data Analysis 23

2.4.1 Pippeline . 25
2.5 Best Practices . 25

vii

viii CONTENTS

2.6 Discussion . 28
2.7 Conclusion . 30

3 Interactive Data Exploration Applications 33
3.1 Motivating Use Cases . 35

3.1.1 High and Low Plasma Ratios of Essential Fatty Acids . 35
3.1.2 Tumor-Blood Interactions in Breast Cancer Patients . 35

3.2 Requirements . 36
3.3 Kvik Pathways . 36

3.3.1 Analysis Tasks . 37
3.3.2 Architecture . 37
3.3.3 Implementation . 38
3.3.4 Use Case: Analysis of Renin-Antiotensin Pathway . . 40

3.4 Building Data Exploration Applications with Kvik 40
3.4.1 Design Priciples . 42
3.4.2 Compute Service . 42
3.4.3 Database Service . 43

3.5 Matched Interactions Across Tissues (MIxT) 43
3.5.1 Analysis Tasks . 43
3.5.2 Architecture . 44
3.5.3 Implementation . 45
3.5.4 Evaluation . 46
3.5.5 Tumor Epithelium-Stroma Interactions in Breast Cancer 47
3.5.6 air:bit . 48

3.6 Related Work . 48
3.6.1 Data Exploration Applications 48
3.6.2 Enabling Approaches 49

3.7 Discussion . 50
3.8 Future Work . 52

3.8.1 MIxT . 53
3.9 Conclusion . 53

4 Deep Analysis Pipelines 55
4.1 Use Case and Motivation 55

4.1.1 Initial Data Analysis Pipeline 56
4.2 walrus . 58

4.2.1 Pipeline Configuration 59
4.2.2 Pipeline Execution 60
4.2.3 Data Management 61
4.2.4 Pipeline Reconfiguration and Re-execution 62

4.3 Results . 62
4.3.1 Clinical Application 63
4.3.2 Example Dataset . 64
4.3.3 Performance and Resource Usage 64

CONTENTS ix
4.4 Related Work . 66
4.5 Discussion . 69
4.6 Future Work . 71
4.7 Conclusions . 72

5 Conclusion 73
5.1 Lessons Learned . 75
5.2 Future Work . 76

Bibliography 79

Paper 1 89

Paper 2 97

Paper 3 105

Paper 4 133

Paper 5 141

Paper 6 149

List of Figures
1.1 The applications and their underlying systems discussed in

this thesis. 6
1.2 The SME approach in different systems. 6

2.1 A screenshot of the user interface of R Studio. 24
2.2 Standardized data processing pipeline 26
2.3 A screenshot of the web-interface of Pippeline. 27

3.1 Screenshot of the renin-angiotensin pathway in Kvik Pathways 38
3.2 The three-tiered architecture of Kvik Pathways. 39
3.3 Visualizing gene expression data on KEGG pathway maps. . . 40
3.4 MIxT module overview page. 45
3.5 The architecture of the MIxT system. 46

4.1 Screenshot of the web-based visualization in walrus 63
4.2 DOT representations of a pipeline in walrus 65

xi

List of Tables
3.1 The REST interface to the Data Engine. For example, use

/genes/ to retrieve all available genes in our dataset. 38
3.2 Time to retrieve a gene summary for a single gene, comparing

different number of concurrent requests. 47
3.3 Time to complete the benchmark with different number of

concurrent connections. 47

4.1 Runtime and storage use of the example variant-calling pipeline
developed with walrus. 66

xiii

List of Abbreviations
API Application Programming Interface

CLI Command-line Interface

CRAN Comprehensive R Archive Network

CSV comma-separated values

CWL Common Workflow Language

DAG directed acyclic graph

DNA Deoxyribonucleic acid

GATK Genome Analysis Toolkit

GB Gigabyte

GPU graphical processing unit

GUI Graphical User Interface

HPC high-performance computing

HTS High-throughput Sequencing

IDE integrated development environment

JSON JavaScript Object Notation

KEGG Kyoto Encyclopedia of Genes and Genomes

KGML KEGG Markup Language

xv

xvi L IST OF ABBREV IAT IONS

MIxT Matched Interactions Across Tissues

NGS Next-generation Sequencing

NOWAC Norwegian Women and Cancer

PFS Pachyderm File System

PPS Pachyderm Processing System

REST Representational state transfer

RNA Ribonucleic acid

SCM source code management

SME Small Modular Entity

SNP Single Nucleotide Polymorphism

SR Systemic Response

VM Virtual Machine

WES whole-exome sequencing

WGCNA Weighted Gene Co-expression Network Analysis

WGS whole-genome sequencing

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

1
Introduction
There is a rapid growth in the number of available biological datasets due to
the decreasing costs of data collection. This brings opportunities for gaining
novel insights into the underlying biological mechanisms in the development
and progression of diseases such as cancer, possibly leading to the development
of new diagnostic tests or drugs for treatment. The wide range of different
biological datasets has led to the development of hundreds of software packages
and systems to explore and analyze these datasets. However, there are few
systems that are designed with the full analysis process in mind, from raw
data into interpretable and reproducible results. While existing systems are
used to provide novel insights in diseases, there is little emphasis on reporting
and sharing detailed information about the analyses. This leads to unnecessary
difficulties when reusing known methods, and reproducing the analyses, which
in turn leads to a longer analysis process and therefore unrealized potential for
scientific insights. For clinicians, inaccurate results from improperly developed
analyses can lead to negative consequences for patient care.[1]

We have identified four main challenges for application developers to under-
take when building systems for analyzing and exploring biological datasets in
research and the clinic. These challenges are common for large datasets such
as high-throughput sequencing data that require long-running, deep analysis
pipelines, as well as smaller datasets, such as microarray data, that require
complex, but short-running analysis pipelines. The first challenge is managing
datasets and analysis code in data exploration applications and data analysis
pipelines. This includes storing all information that is necessary to a data ana-

1

2 CHAPTER 1 INTRODUCT ION

lyst when he or she is interpreting the data, as well as any analysis code that was
used to analyze the data. The second challenge is to develop data exploration
applications that provide sufficient information to fully document every step
that went into the analyses up to an end result. This includes reporting input
parameters, tool versions, database versions, and dataset versions. The third
challenge is developing applications that require the integration of disparate
systems. These are often developed using different programming languages
and provide different functionality, e.g., the combination of a web-based visual-
ization with a graphical processing unit (gpu) accelerated statistical method,
or the integration of a remote biological database. The final challenge is to
develop applications and systems so that they can be easily shared and reused
across research institutions.

As a result, there is a wealth of specialized approaches and systems to man-
age and analyze modern biological data. Systems such as Galaxy[2] provide
simple Graphical User Interfaces (guis) for setting up and running analysis
pipelines. However, it is difficult to install and maintain, and less flexible for
explorative analyses where it is necessary to try out new tools and different tool
configurations.[3] With R and its popular package repository Bioconductor,[4]
researchers can select from a wide range of packages to tailor their analyses.
These provide specialized analysis environments, but makes it necessary for
the analyst to manually record information about data, tools, and tool ver-
sions. Systems such as Pachyderm[5] or the Common Workflow Language
(cwl)[6] and its different implementations, can help users with standardiz-
ing the description and sharing of analysis pipelines. However, many of these
require complex compute infrastructure and are too cumbersome to set up
for institutions without dedicated technical staff. Shiny[7] and OpenCPU[8]
provide frameworks for application developers to build systems to interactively
explore results from statistical analyses. These are useful for building explo-
ration applications that integrate with statistical analyses. With the addition of
new datasets and methods every year, it seems that analysis of biological data
requires a wide array of different tools and systems.

This dissertation argues that, instead, we can facilitate the development of
reproducible data analysis and exploration systems for high-throughput bio-
logical data, through the integration of disparate systems and data sources. In
particular, we show how software container technologies together with well-
defined interfaces, configurations, and orchestration provide the necessary
foundation for these systems. This allows for easy development and sharing of
specialized analysis systems.

The resulting approach, which we have called Small Modular Entities (SMEs),
argues that applications for analyzing and exploring biological datasets should
bemodeled as a composition of individual systems and tools. We believe that the

3
Unix philosophy to "Do one thing and do it well"[9] appropriately summarizes
many existing tools in bioinformatics, and we should aim to build applications
as compositions of these tools. Our sme approach resembles the traditional
Unix-like pipelines, in combination with the service-oriented architecture[10]
or themicroservice architectural style now popularized byweb-scale distributed
systems.[11]

The approach has several key advantages when implementing systems to
analyze and explore biological data:

• It enables and simplifies the development of applications that integrate
disparate tools.

• It enables reproducible research by packaging applications and tools
within containerized environments.

• With well-defined interfaces it is a simple task to add new components
to a system, or modify existing ones.

• Through software container technology it becomes a simple task to deploy
and scale up such applications.

In collaborationwith researchers in systems epidemiology andprecisionmedicine
we developed a set of applications and systems necessary to organize, analyze,
and interpret their datasets. From these systems we extrapolated a set of gen-
eral design principles to form a unified approach. We evaluate this approach
through these systems using real datasets to show its viability.

From a longer-term perspective we discuss the general patterns for implement-
ing reproducible data analysis systems for use in biomedical research. As more
datasets are produced every year, research will depend on the simplicity of the
systems for analyzing these, and that they provide the necessary functionality
to reproduce and share the analysis pipelines.

Thesis statement: A unified development model based on software container
infrastructure can efficiently provide reproducible and easy to use environments
to develop applications for exploring and analyzing biological datasets.

4 CHAPTER 1 INTRODUCT ION

1.1 Problems with Data Analysis and Exploration
in Bioinformatics

High-throughput technologies for cheaper and faster data generation, as well
as simpler access to the datasets have revolutionized biology.[12, 13] While
these datasets can reveal the genetic basis of disease in patients, they require
the collaborative efforts of experts from different fields to design and perform
the analyses, and to to interpret the results.[14] Since interpretations are only
as good as the information they are based on, researchers have to constantly
ensure the quality of the underlying data and analyses.[15]

Today shell scripts are often used for building analysis pipelines in bioinfor-
matics. This comes from the familiarity of the shell environment and the
Command-line Interface (cli) of the different tools. However, there is a move
towards using more sophisticated approaches for analyzing biological datasets
using workflow and pipeline mangers such as Snakemake[16], and the different
implementations of the cwl[6] such as Galaxy[2] and Toil[17]. These simplify
setting up and executing the analysis pipeline. However, these tools still have
their limitations, such as maintenance and tool updates. Other programming
environments and scripting languages such as Python or R both provide a wide
variety of software packages to read and process biological datasets. Especially
the package repository Bioconductor[4] provides a long list of well-maintained
software packages. Both these languages require the researchers to set up
their own analyses, but can be tailored to fit their data precisely. For visually
exploring biological data there are a range of tools, such as Cytoscape[18] and
Circos[19], that support importing an already-analyzed dataset to visualize
and browse the data. One problem with these are that they are decoupled from
the analysis, making it difficult to retrace the underlying analyses.

Although there are efforts to develop tools to help researchers explore and
analyze biological datasets, they current tools have several drawbacks:

1. Standardization: Because of the specialized nature of each data analysis
tool, a full workflow for exploring or analyze biological data will have
to combine multiple tools. The tools provide different interfaces and
processing data often require data wrangling between the tools.

2. Decoupling: Data exploration tools are often decoupled from the statis-
tical analyses. This often makes it a difficult to document and retrace the
analyses through the full workflow.

3. Complexity: Analyses that start as a simple script quickly become more
complex to maintain and develop as developers add new functionality

1.2 SMALL MODULAR ENT IT IES (SMES) 5
to the analyses.

4. Reusability: Data exploration tools are often developed as a single
specialized application,making it difficult to reuse parts of the application
for other analyses or datasets. This leads to duplicate development effort
and abandoned projects.

5. Reproducibility: While there are tools for analyzing most data types
today, these require the analyst to manually record versions, input pa-
rameters, and reference databases. This makes analysis results difficult
to reproduce because of the large number of variables that may impact
the results.

Because of these drawbacks, a approach for unifying reproducible data analysis
and exploration systems would reduce the time-to-interpretation of biological
datasets significantly.

1.2 Small Modular Entities (SMEs)
In collaboration with researchers in systems epidemiology and biology we have
developed an approach for designing applications for three specific use cases.
The first is to manage and standardize the analysis of datasets from a large
population-based cohort, nowac.[20]. The second is to enable interactive
exploration of these datasets. The final use case is to develop pipelines for
analyzing sequencing datasets for use in a precision medicine setting. Although
these use cases require widely different systemswith different requirements, the
applications share common design patterns. Figure 1.1 shows the applications
we have developed and the underlying systems.

We discuss how the approach is suitable for different use cases before high-
lighting why it is suitable for all of them. Figure 1.2 shows the three different
use cases and one such sme. We can use it in data exploration applications,
analysis pipelines, and for building data management systems.

1.2.1 Data Management and Analysis
Modern epidemiological studies integrate traditional questionnaire data with
information from public registries and biological datasets. These often span
multiple biological levels, i.e., different data types and collection sites. While
traditional survey based datasets require few specialized analysis tools because
of the relatively simple nature of the data, biological datasets require specialized

6 CHAPTER 1 INTRODUCT ION

Application

Underlying
System

Pippeline Kvik
Pathways MIxT

Clinical Sequencing
Analysis

NOWAC
R Package Kvik walrus

Data
management
and analysis

Interactive
exploration

Deep analysis
pipelines

Chapter 2 Chapter 3 Chapter 4

Figure 1.1: The applications and their underlying systems discussed in this thesis.

R
package

R
package

Analysis pipelineData exploration application

Data management and
analysis

R
package

Figure 1.2: An illustration of how we envision the sme approach in data manage-
ment systems, data exploration applications and analysis pipelines. In this
example we reuse an R package for all use cases.

1.2 SMALL MODULAR ENT IT IES (SMES) 7
tools for reading, analyzing, and interpreting the data. Package repositories
such as Bioconductor[4] provide a wealth of packages for analyzing these
datasets. These packages typically provide analysis tools, example data, and
comprehensive documentation. While the analysis code can be shared within
projects, the datasets are often stored in in-house databases or shared file
systems with specialized permissions. Together the packages and datasets form
building blocks that researchers can develop their analyses on top of. They can
compose their analyses using packages that fit their specific needs. The analysis
code in the nowac study may constitute such a building block. Therefore, we
combined the datasets from the nowac cohort with documentation, analysis
scripts, and integration with registry datasets, into a single package. This
approach simplifies the researcher’s first steps in the analysis of the different
data in our study. On top of the nowac package we then implemented a
user-friendly preprocessing pipelining tool named Pippeline.

Inspired by the ecosystem of packages in the R programming language we
implemented our approach as the nowac R package. Users simply install the
package and get access to documentation, datasets, and utility functions for
analyzing datasets related to their area of research. We use version control
for both code and the data, making it possible to track changes over time as
the research study evolves. Pippeline is a web-based interface for running the
standardized preprocessing steps before analyzing gene expression datasets in
the nowac cohort.

1.2.2 Interactive Data Exploration Applications
The final results from an analysis pipeline require researchers to investigate
and evaluate the final output. In addition, it may be useful to explore the
analysis parameters and re-run parts of the analyses. As with analysis pipelines,
there are complete exploration tools as well as software libraries to develop
custom applications for exploration of analysis results. The tools often require
users to import already analyzed datasets but provide interactive visualizations
and point-and-click interfaces to explore the data. Users with programming
knowledge can use the wealth of software packages for visualization within
languages such as R or Python. Frameworks such as BioJS[21] now provide
developers with tools to develop web applications for exploring biological
datasets. It is apparent that these types of systems also consist of multiple
smaller components that together can be orchestrated into a single application.
These applications typically include of three major parts: (i) data visualization;
(ii) integration with statistical analyses and datasets; and (iii) integration
with online databases. While each of these are specialized for each type of
data exploration application, they share components that can be reused across
different types of applications.

8 CHAPTER 1 INTRODUCT ION

To facilitate the integration with statistical analyses and datasets, we wrote
an interface to the R programming language, that would allow us to interface
with the wealth of existing software packages, e.g., the nowac package, for bi-
ological data analyses from a point-and-click application. New data exploration
applications could access analyses directly through this interface, removing
the previous decoupling between the two. We followed the same approach to
integrate with online databases. We could standardize the interface from the
applications to the different databases, and implement an application on top
of these.

We implemented all components as a part of Kvik, a collection of packages to
develop new data exploration applications.[22] Kvik allows applications written
in any modern programming language to interface with the wealth of bioin-
formatics packages in the R programming language, as well as information
available through online databases. To provide reproducible execution environ-
ments we packaged these interfaces into software containers that can be easily
deployed and shared. We have used Kvik to develop the mixt system[23] for
exploring and comparing transcriptional profiles from blood and tumor samples
in breast cancer patients, in addition to applications for exploring biological
pathways[22].

1.2.3 Deep Analysis Pipelines
Analysis of high-throughput sequencing datasets requires deep analysis pipelines
with many steps that transform raw data into interpretable results.[24] There
are many tools available that perform the different processing steps, written
in a wide range of programming languages. The tools and their dependencies,
can be difficult to install, and they require users to correctly manage a range
of input parameters that affects the output results. With software container
technology it is a simple task for developers to share container images with
analysis tools pre-installed. Then, by designing a text-based specification for
the analyses, we can orchestrate the execution of an entire analysis pipeline
and record the flow of data through the pipeline. As with the previous use case,
we develop an analysis pipeline by composing smaller entities, or tools, into a
complete pipeline.

We implemented the approach in walrus, a tool that lets users create and
run analysis pipelines. In addition, it tracks full provenance of the input,
intermediate, and output data, as well as tool parameters. With walrus we have
successfully built analysis pipelines to detect somatic mutations in breast cancer
patients, as well as an Ribonucleic acid (rna)-seq pipeline for comparison with
gene expression datasets. walrus has also been successfully used to analyze
DNA methylation and microRNA datasets.

1.3 APPL ICAT IONS DEVELOPED W ITH SMES 9
1.2.4 Similarity
The above approaches for building data analysis and exploration applications
share the same design principles. In all areas we decompose the system, into
small modular entities, and package these into software containers which are
then orchestrated together. These containers are configured and communicate
using open protocols that make it possible to interface with them using any
programming language. We track the configuration of the containers and their
orchestration using software versioning systems, and provide the necessary
information to set up the system and reproduce their results. We believe that
the sme approach is applicable to every step in the long process from raw
data collection to interpretable results, and that it makes this process more
transparent.

1.3 Applications Developed with SMEs
In this section we outline the different systems we have built using smes. We
detail how we implemented sme in the nowac package, walrus, and Kvik,
and show applications that use these.

1.3.1 Data Management and Analysis
To standardize the preprocessing of biological datasets in the nowac study.
With the nowac package we could implement a preprocessing pipeline on
top of it that used its datasets and utility functions to generate analysis-ready
datasets for the researchers. This preprocessing pipeline called Pippeline was
developed as a web application which allows the data managers in our study
to generate datasets for researchers. The pipeline performs all necessary steps
before researchers can perform their specialized analyses.

1.3.2 Interactive Data Exploration Applications
The first interactive data exploration application that we built was Kvik Path-
ways. It allows users to explore gene expression data from the nowac cohort
in the context of interactive pathway maps.[22] It is a web application that
integrates with the R programming language to provide an interface to the
statistical analyses. We used Kvik Pathways to repeat the analyses in a previous
published project that compared gene expression in blood from healthy women
with high and low plasma ratios of essential fatty acids.[25]

10 CHAPTER 1 INTRODUCT ION

From the first application it became apparent that we could reuse parts of the
application in the implementation of later systems. In particular, the interface
to run analyses as well as the integration with the online databases could be
implemented as services, packaged into containers, and reused in the next
application that we developed. Both of these were designed and implemented
in Kvik, which could then be used and shared later.

The second application that we built was the mixt web application. A system
to explore and compare transcriptional profiles from blood and tumor samples
in breast cancer patients. The application is built to simplify the exploration of
results from the Matched Interactions Across Tissues (MIxT) study. Its goal was
to identify genes and pathways in the primary breast tumor that are tightly
linked to genes and pathways in the patient blood cells.[26] Theweb application
interfaces with the methods implemented as an R package and integrates the
results together with information from biological databases through a simple
user interface.

A third application that we developed was a simple re-deployment of the
mixt web application with a new dataset. In this application that we simply
replaced the R package with a new package that interfaced with different
data. All the other components are reused. It demonstrates the flexibility of
the approach.

1.3.3 Deep Analysis Pipelines
The first system that we built on top of walrus was a pipeline to analyze
a patient’s primary tumor and adjacent normal tissue, including subsequent
metastatic lesions.[27] We packaged the necessary tools for the analyses into
software containers and wrote a pipeline description with all the necessary
data processing steps. Some steps required us to develop specialized scripts
to generate customized plots, but these were also wrapped in a container.
From the analyses we discovered, among other findings, inherited germline
mutations that are recognized to be among the top 50 mutations associated
with an increased risk of familial breast cancer. These were then shared with
the treating oncologists to aid the treatment plan.

The second analysis pipeline we implemented was to enable comparison of
a rna-seq dataset to microarray gene expression values collected from the
same samples. The pipeline preprocesses the rna dataset for all samples, and
generates transcript quantifications. Like the first pipeline, we used existing
tools together with specialized analysis scripts packaged into a container to
ensure that we could reproduce the execution environments.

1.4 SUMMARY OF RESULTS 11
Combined these systems and applications demonstrate how small modular
entities are useful for both batch processing of datasets and interactive appli-
cations.

1.4 Summary of Results
We show the viability of our approach through real-world applications in
systems epidemiology and precision medicine. Through our nowac package
and Pippeline,we demonstrate its usefulness for enabling reproducible analyses
of biological datasets in a complex epidemiological study. We demonstrate its
usefulness for building interactive data exploration application, implemented
in Kvik. We show the applicability of small modular entities in deep analysis
pipelines, as implemented in walrus.

We have used walrus to analyze a whole-exome dataset to from a sample in the
McGill Genome Quebec [MGGQ] dataset (GSE58644)[28] to discover Single
Nucleotide Polymorphisms (snps), genomic variants and somatic mutations.
Using walrus to analyze a dataset added 10% to the runtime and doubled the
space requirements, but reduced days of compute time down to seconds when
restoring a previous pipeline configuration.

We have used the packages in Kvik to develop a web application, MIxT blood-
tumor, for exploring and comparing transcriptional profiles from blood and
tumor samples in breast cancer patients. In addition, we have used it to build
an application to explore gene expression data in the context of biological
pathways. We show that developing an application using a microservice ap-
proach allows us to reduce database query times down to 90%, and that we
can provide an interface to statistical analyses that is up to 10 times as fast as
alternative approaches.

Together the results show that our approach, small modular entities, can be
used to enable reproducible data analysis and exploration of high-throughput
biological datasets while still providing the required performance.

1.5 List of papers
This section contains the list of papers along with short descriptions and my
contributions to each paper.

12 CHAPTER 1 INTRODUCT ION

Paper 1
Title Kvik: three-tier data exploration tools for flexible anal-

ysis of genomic data in epidemiological studies
Authors Bjørn Fjukstad, Karina Standahl Olsen, Mie Jareid,

Eiliv Lund, and Lars Ailo Bongo
Description The initial description of Kvik, and howwe used it to im-

plement Kvik Pathways, a web application for browsing
biologicap pathway maps integrated with gene expres-
sion data from the nowac cohort.

Contribution I designed, implemented, and deployed Kvik and
Kvik Pathways. Evaluated the system and wrote the
manuscript.

Publication date 15 March 2015
Publication venue F1000
Citation [22] B. Fjukstad, K. S. Olsen, M. Jareid, E. Lund, and

L. A. Bongo, “Kvik: three-tier data exploration tools
for flexible analysis of genomic data in epidemiological
studies,” F1000Research, vol. 4, 2015

Paper 2
Title Building Applications For Interactive Data Exploration

In Systems Biology.
Authors Bjørn Fjukstad, Vanessa Dumeaux, Karina Standahl

Olsen,Michael Hallett, Eiliv Lund, and Lars Ailo Bongo.
Description Describes how we further developed the ideas from

Paper 1 into an approach that we used to build the
mixt web application.

Contribution I designed, implemented, and deployed Kvik and the
mixtweb application. Evaluated the system and wrote
the manuscript.

Publication date 20 August 2017.
Publication venue The 8th ACM Conference on Bioinformatics, Compu-

tational Biology, and Health Informatics (ACM BCB)
August 20–23, 2017.

Citation [23] B. Fjukstad, V. Dumeaux, K. S. Olsen, E. Lund,
M. Hallett, and L. A. Bongo, “Building applications
for interactive data exploration in systems biology,” in
Proceedings of the 8th ACM International Conference
on Bioinformatics, Computational Biology, and Health
Informatics. ACM, 2017, pp. 556–561

1.5 L IST OF PAPERS 13

Paper 3

Title Interactions Between the Tumor and the Blood Sys-
temic Response of Breast Cancer Patients

Authors Vanessa Dumeaux,Bjørn Fjukstad, Hans E Fjosne, Jan-
Ole Frantzen, Marit Muri Holmen, Enno Rodegerdts,
Ellen Schlichting, Anne-Lise Børresen-Dale, Lars Ailo
Bongo, Eiliv Lund, Michael Hallett.

Description Describes themixt systemwhich enables identification
of genes and pathways in the primary tumor that are
tightly linked to genes and pathways in the patient
Systemic Response (sr).

Contribution I designed, implemented, and deployed the mixt
web application. Contributed to the writing of the
manuscript.

Publication date 28 September 2017.
Publication venue PLoS Computational Biology
Citation [26] V. Dumeaux, B. Fjukstad, H. E. Fjosne, J.-O.

Frantzen, M. M. Holmen, E. Rodegerdts, E. Schlichting,
A.-L. Børresen-Dale, L. A. Bongo, E. Lund et al., “Inter-
actions between the tumor and the blood systemic re-
sponse of breast cancer patients,” PLoS Computational
Biology, vol. 13, no. 9, p. e1005680, 2017

Paper 4
Title A Review of Scalable Bioinformatics Pipelines
Authors Bjørn Fjukstad, Lars Ailo Bongo.
Description This review survey several scalable bioinformatics

pipelines and compare their design and their use of
underlying frameworks and infrastructures.

Contribution I performed the literature review and wrote the
manuscript.

Publication date 23 October 2017
Publication venue Data Science and Engineering
Citation [29] B. Fjukstad and L. A. Bongo, “A review of scalable

bioinformatics pipelines,” Data Science and Engineering,
vol. 2, no. 3, pp. 245–251, 2017

14 CHAPTER 1 INTRODUCT ION

Paper 5
Title nsroot: Minimalist Process Isolation Tool Implemented

With Linux Namespaces.
Authors Inge Alexander Raknes, Bjørn Fjukstad, Lars Ailo

Bongo.
Description Describes a tool for process isolation built using Linux

namespaces.
Contribution I contributed to the writing of the manuscript, specifi-

cally to the literature review and related works.
Publication date 26 November 2017
Publication venue Norsk Informatikkonferanse 2017.
Citation [30] I. A. Raknes, B. Fjukstad, and L. Bongo, “nsroot:

Minimalist process isolation tool implemented with
linux namespaces,” Norsk Informatikkonferanse, 2017

Paper 6
Title Reproducible Data Analysis Pipelines for Precision

Medicine
Authors Bjørn Fjukstad, Vanessa Dumeaux, Michael Hallett,

Lars Ailo Bongo
Description This paper outlines how we used the smes approach

to build walrus.
Contribution I designed, implemented, and performed the evaluation

of walrus. I also wrote the manuscript.
Publication To appear in the proceedings of the 2019 27th Euromi-

cro International Conference On Parallel, Distributed
and Network-based Processing (PDP).

Citation [27] B. Fjukstad, V. Dumeaux, M. Hallett, and L. A.
Bongo, “Reproducible data analysis pipelines for pre-
cision medicine,” To appear in the proceedings of
2019 27th Euromicro International Conference On Par-
allel, Distributed and Network-based Processing (PDP).
IEEE, 2019

In addition to the above papers I have also contributed to the following papers
during the project:

• Y. Kiselev, S. Andersen, C. Johannessen, B. Fjukstad, K. S. Olsen, H. Sten-
vold, S. Al-Saad, T. Donnem, E. Richardsen, R. M. Bremnes et al., “Tran-

1.6 D ISSERTAT ION PLAN 15
scription factor pax6 as a novel prognostic factor and putative tumour
suppressor in non-small cell lung cancer,” Scientific reports, vol. 8, no. 1,
p. 5059, 2018

• B. Fjukstad, N. Angelvik, M. W. Hauglann, J. S. Knutsen, M. Grønnesby,
H. Gunhildrud, and L. A. Bongo, “Low-cost programmable air quality
sensor kits in science education,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, 2018, pp. 227–232

These are not included in the thesis but they demonstrate other usage examples
of our approach.

1.6 Dissertation Plan
This thesis is organized as follows. Chapter 2 describes the characteristics of
state-of-the-art biological datasets in systems epidemiology and how we have
developed an approach to analyze these. In Chapter 3 we describe howwe used
the same ideas and model to develop applications for interactively exploring
results from statistical analyses. Chapter 4 explores howwe can develop analysis
pipelines for high-throughput sequencing datasets in precision medicine. It
describes in detail how we use a container centric development model to
build a tool, walrus, to develop and execute these pipelines. Finally, Chapter 5
concludes the work and discusses future directions.

2
Modern Biological DataManagement and Analysis
From the discovery of the dna structure by Watson and Crick in 1953[33]
to the sequencing of the human genome in 2001,[34, 35] and the massively
parallel sequencing platforms in the later years[36], the scientific advances
have been tremendous. Today, single week-long sequencing runs can produce as
much data as did entire genome centers just years ago.[12] These technologies
allow researchers to produce data faster, cheaper and more efficiently, now
making it possible to sequence the entire genome of a patient in less than a
day. In addition to faster data generation, the new datasets are also of higher
quality.

Ensuring reproducibility through sharing of analysis code and datasets is
necessary to advance science.[37] From the many obstacles to replicate results
from the most influential papers in cancer research[38], it is apparent that it
is important to thoroughly document the entire workflow from data collection
to interpretable results. This requires implementing best practices for data
storage and processing. Such best practices are also necessary for large and
complex research studies where data collection, analysis, and interpretation
may span decades, and therefore be done in several iterations.

Ensuring reproducible science is important to individual researchers, research
groups, and to the greater society. It is not just about simplifying the replication

17

18 CHAPTER 2 MODERN B IOLOG ICAL DATA MANAGEMENT AND ANALYS IS

of results, but is also related to advancing science from known results and
methods. Within science, it is important to individual researchers and research
groups not to waste time and effort to re-apply previous results to new datasets
because of poorly documented studies and results. Outside of science, it is
problematic to trust science when studies are difficult or impossible to replicate
or reproduce.

In this chapter we describe our efforts to establish an approach for reproducible
analysis of biological data in a complex epidemiological study. We first give a
short introduction to high-throughput datasets, before describing the needs of
the researchers in the nowac study. While we have used the nowac study as
a motivating example, we believe that these needs are found in other complex
research studies. We describe the previous practice for data management
and analysis, and propose a new approach to achieve reproducible analyses.
Continuing, we show that our approach to manage research data and code can
be used to develop a standardized data analysis pipeline. Further we provide
best practices for data analysis and management.

2.1 High-Throughput Datasets for Research and
Clinical Use

High-throughput technologies that are now widely used to study complex
diseases such as cancer. dna sequencing is the process of determining the
order of nucleotides within a strand of dna. High-throughput Sequencing
(hts), or Next-generation Sequencing (ngs), is a term used to describe newer
technology that enablesmassively-parallel sequencing ofdna.hts instruments
sequencemillions of short base pairs, andwe assemble these in the data analysis
process. Typical sequencing datasets are in the size of hundreds of Gigabytes
(gbs) per sample.

While hts can study the sequence of bases, microarrays have been used to
study the transcriptome, or the genes actively expressed. While the genome
is mostly fixed for an organism, the transcriptome is continuously changing.
These instruments report the expression levels of many target genes, and by
profiling these we can study which genes are active in the biological sample.
Microarray datasets are in the size of megabytes per sample.

Another technique to study the transcriptome is to use rna-seq technology
based on hts. rna-seq instruments also read millions of short base pairs in
parallel, and can be used in gene expression analysis. Because of its higher qual-
ity output, rna-seq is the successor to microarray technology. These datasets

2.2 NORWEG IAN WOMEN AND CANCER (NOWAC) 19
are also in the size of hundreds of gbs.

Precision medicine uses patient-specific molecular information to diagnose and
categorize disease to tailor treatment to improve health outcome.[39] Impor-
tant research goal in precision medicine are to learn about the variability of the
molecular characteristics of individual tumors, their relationship to outcome,
and to improve diagnosis and therapy.[40] International cancer institutions are
therefore offering dedicated personalized medicine programs, but while the
data collection and analysis technology is emerging, there are still unsolved
problems to enable reproducible analyses in clinical settings. For cancer,hts is
the main technology to facilitate personalized diagnosis and treatment, since it
enables collecting high quality genomic data from patients at a low cost.

2.2 Norwegian Women and Cancer (NOWAC)
In this thesis we have used data from thenowac study extensively. Thenowac
study is a prospective population-based cohort that tracks 34% (170.000) of
all Norwegian women born between 1943–57.[20] The data collection started
in nowac in 1991 with surveys to cover, among others, the use of oral con-
traceptives and hormonal replacement therapy, reproductive history, smoking,
physical activity, breast cancer, and breast cancer in the family. The datasets are
also integrated with data from The Norwegian Cancer Registry, and The Cause
of Death Registry in Statistics Norway. In addition to the questionnaire data,
the study includes blood samples from 50.000 women, as well as more than
300 biopsies. From the biological samples the first gene expression dataset
was generated in 2009, and the study now also features miRNA, methylation,
metabolomics, and rna-seq datasets.

The data in the nowac cohort allows for a number of different study designs.
While it is a prospective cohort study, we can also draw a case-control study
from the cohort, or a cross-section study from the cohort. From the nowac
cohort there has been published a number of research papers that investigate
the questionnaire data together with the gene expression datasets.[25, 41]
We have also used the gene expression datasets to explore gene expression
signals in blood and interactions between the tumor and the blood systemic
response of breast cancer patients.[42, 26]. Some analyses have resulted in
patents[43] and commercialization efforts. While many interesting patterns
and results have been studied, there are still many unexplored areas in the
available datasets.

In thenowac studywe are a traditional group of researchers, PhD and Post-Doc
students, and administrative and technical staff. Researchers have backgrounds

20 CHAPTER 2 MODERN B IOLOG ICAL DATA MANAGEMENT AND ANALYS IS

from statistics, medicine, or epidemiology, and now also computer science. The
administrative and technical staff is responsible for managing the data, both
data collection and data delivery to researchers.

2.2.1 Data Management and Analysis
Surveys are the traditional data collection method in epidemiology. But to-
day, questionnaire responses are increasingly integrated with molecular data.
However, surveys are still important for designing a study that can answer
particular research questions. In this section we describe how such integrated
data analysis was done in nowac prior to this work. We believe many studies
have, or are still, analyzing epidemiological data using a similar practice.

In the nowac study we have stored the raw survey and registry data in
an in-house database backed up to an independent storage node. Previously,
researchers had to apply to get data exported from the database by an engineer.
This was typically done through SAS scripts that did some preprocessing,
e.g. selecting applicable variables or samples, before the data was sent to
researchers as SAS data files. The downstream analysis was typically done in
SAS. Researchers used e-mail to communicate and send data analysis scripts,
so there was not a central hub with all the scripts and data.

In addition to the questionnaire data, the nowac study also integrates with
registries which are updated regularly. The datasets from the different registries
are typically delivered as comma-separated values (csv) files to our scientific
staff, which are then processed into a standardized format. Since the nowac
study is a prospective cohort, a percentage of the women are expected to get
a cancer and move from the list of controls into the list of cases.

In the nowac study we have processed our biological samples outside our
research institution. The received raw datasets were then stored on a local
server andmade available to researchers on demand. Because of the complexity
of the biological datasets,many of these require extensive pre-processing before
they are ready for analysis.

2.3 Enabling Reproducible Research
To enable reproducible research in the nowac study we have developed a
system for managing and documenting the available datasets, a standardized
data preprocessing and preparation system, and a set of best practices for data
analysis and management. We designed our management and analysis system

2.3 ENABL ING REPRODUC IBLE RESEARCH 21
as a sme that we could later use in the Pippeline system for standardizing
thes extensive pre-processing steps. To determine the demands of the users,
we collaboratively identified issues with the previous practice and a set of
requirements for a system to solve these issues.

The issues with the previous practice were:

• It was difficult to keep track of the available datasets, and to determine
how these had been processed. We had no standard data storage platform
or structure, and there were limited reports for exported datasets used
in different research projects.

• There was no standard approach to preprocess and initiate data analysis.
This was because the different datasets were analyzed by different re-
searchers, and there was little practice for sharing reusable code between
projects.

• It became difficult to reproduce the results reported in our published
research manuscripts. This was because the lack of standardized prepro-
cessing, sharing of analysis tools, and full documentation of the analysis
process.

To solve these issues and enable reproducible research in the nowac study, we
had to develop a system for managing the data, code, and our proposed best
practices for analyzing the data. We started with identifying a set of require-
ments for a system to manage and document the different datasets:

• It should provide users with a single interface to access the datasets, their
respective documentation, and utility functions to access and analyze
the data.

• It should provide version history for the data and analysis code.

• The system should provide reproducible data analysis reports1 for any
dataset that has been modified in any way.

• It should be portable and reusable by other systems or applications.

To satisfy the above requirements we developed the nowac R package, a
software package in the R programming language that provides access to
all data, documentation, and utility functions. Since it is a requirement that

1. Such as an R Markdown file which, when executed, generates the output data and optional
documentation including plots, tables etc.

22 CHAPTER 2 MODERN B IOLOG ICAL DATA MANAGEMENT AND ANALYS IS

it should be reusable we could then implement a data preparation system,
Pippeline, ontop of this R package. We identified a set of requirements for this
data preprocessing and preparation system as well:

• The data preprocessing and preparation system should provide users
with an interactive point-and-click interface to generate anlaysis-ready
datasets from the nowac study.

• It should use the nowac R package to retrieve datasets.

• It should provide users with a list of possible options for filtering, normal-
ization, and other options required to preprocess a microarray dataset.

• It should genererate a reproducible report along with any exported
dataset.

Finally, we developed a set of best practices for data analysis in our study. In
the rest of the section we detail how we built the nowac package, the Pippeline,
and the best practices for data analysis.

2.3.1 The nowac Package
The nowac R package is our solution for storing, documenting, and providing
analyis functions to process the datasets in the nowac study. We use git to
version control the analysis code and datasets, and store the repository on a self-
hosted git server. We bundle together all datasets in the nowac package. This
includes both questionnaire, registry, and gene expression datasets. Because
none of these are particularly large (no single dataset being more than tens
of gbs) we are able to distribute them with our R package. Some datasets
require pre-processing steps such as outlier removal before the analysts can
explore the datasets. For these datasets we store the raw datasets, processed
data, and the analysis-ready clean datasets. We store the raw datasets in their
original format, while clean and processed datasets are stored as R data files to
simplify importing them in R. In addition to the datasets themselves we store
the R code we used to generate the datasets. For clarity, we decorate the scripts
with specially formatted comments that can be used with knitr[44] to generate
reproducible data analysis reports. These highlight the transformation of the
data from raw to clean, with information such as removed samples or data
normalization methods.

We have documented every dataset in R package. The documentation includes
information such as data collection date, instrument types, the persons involved
with data collection and analysis, pre-processing methods etc. When users

2.4 STANDARD IZED DATA ANALYS IS 23
install the nowac package the documentation is used to generate interactive
help pages which they can browse in R, either through a command line or
through an integrated development environment (ide) such as RStudio. We can
also export this documentation to a range of different formats, and researchers
can also view them in the R interface. Figure 2.1 shows the user interface of
RStudio where the user has opened the documentation page for one of the
gene expression dataset.

In the nowac package we also provide utility functions to get started with
the analysis of our datasets. Because of the specialized nature of the different
research project the nowac package only contains helper functions to start
analyzing nowac data, e.g. retrieving questionnaire data.

We use a single repository for the R package, but have opted to use git
submodules for datasets in the R package. This allows us to separate the
access to the datasets, and the documentation and analysis code. Everyone
with access to the repository can view the documentation and analysis code,
but only scientific staff have access to the data. There are however drawbacks
to creating one large repository for both data and code. Since git stores every
version of a file, these types of repositories may become large if the datasets are
changing a lot over time, and are stored in binary formats, e.g. gene expression
datasets. We have explored different techniques to minimize our repository
and have opted to store all datasets as git submodules[45]. Submodules allow
us to keep the main repository size down while still versioning the data. There
are extensions to git for versioning large datasets. git-raw[46], git-annex[47]
git-lfs[48] all provide extensions that essentially replace large files in a git
repository with pointers or other metadata, and store the actual files in an
external storage server. Since our datasets are relatively small and static, we did
not opt for any of these. Future versions may investigating these extensions, but
the key point is to version all datasets using a familiar tool, namely git.

2.4 Standardized Data Analysis
Analyzing the biological data in thenowac study consists of fourmajor parts as
show on Figure 2.2. First, as explained above, the raw datasets are added to the
nowac R package and documented thoroughly by a data manager. Second, we
manually examine the biological datasets to detect outliers. We add information
about outliers to the nowac R package along with reports that describe why
an observation is marked as an outlier. Third, the data manager generates an
analysis-ready dataset for a research project using the interactive Pippeline tool.
This dataset is preprocessed, and integrated with questionnaire and registry
datasets. Fourth, researchers analyze the dataset with their tools of choice, but

24 CHAPTER 2 MODERN B IOLOG ICAL DATA MANAGEMENT AND ANALYS IS

Figure 2.1: A screenshot of the user interface of R Studio viewing the documentation
help page for the "Biopsies" dataset in the nowac study. The right-hand
panel shows the documentation generated by the code in the top left panel.
The bottom left panel shows the R command that brought up the help
page.

2.5 BEST PRACT ICES 25
following our best practices for data analysis.

2.4.1 Pippeline
We have developed our preprocessing pipeline for gene expression data as a
point-and-click web application called Pippeline. The web application is stand-
alone and does not require the users to use any command-line tools or have
any programming knowledge. Pippeline generates an analysis-ready dataset by
integrating biological datasets togetherwith questionnaire and registry data, all
found in our nowac package. It uses pre-discovered outliers to exclude samples,
and presents the user with a list of possible processing options. It exports the
analysis-ready R data files together with a reproducible data analysis report,
an R script, that describes all processing steps. Figure 2.3 shows the filtering
step in Pippeline where users define at what level they wish to exclude gene
expression probes in the dataset.

The web application is implemented in R using the Shiny framework. It uses
the nowac R package to retrieve all datasets.

2.5 Best Practices
From our experiences we have developed a set of best practices for data analysis.
These apply both to researchers, developers, and the technical staff managing
the data in a research study:

Document every step in the analysis. Analysis of modern datasets is a com-
plex exercise with the possibility of introducing an error in every step. Analysts
often use different tools and systems that require a particular set of input
parameters to produce results. Thoroughly document every step from raw data
to the final tables that go into a manuscript.

In the nowac study we write help pages and reports for all datasets, and the
optional pre-processing steps.

Generate reports and papers using code. With tools such as RMarkdown[49]
and kntir there are few reasons for decoupling analysis code with the presen-
tation of the results through reports or scientific papers. Doing so ensures the
correctness reported results from the analyses, and greatly simplifies reproduc-
ing the results in a scientific paper.

In the nowac study we produce reports from R code. These include pre-

26 CHAPTER 2 MODERN B IOLOG ICAL DATA MANAGEMENT AND ANALYS IS

Figure 2.2: The standardized data processing pipeline for gene expression data analy-
sis in the nowac study. Steps with a dashed line are optional, while steps
marked with a solid line are mandatory.

2.5 BEST PRACT ICES 27

Figure 2.3: A screenshot of the web-interface of Pippeline. In the screenshot, users can
define at what level they want to filter out probes in the gene expression
dataset. Users can define that the output dataset will only include gene
expression probes that are present in a percent of the observation.

28 CHAPTER 2 MODERN B IOLOG ICAL DATA MANAGEMENT AND ANALYS IS

processing and data delivery of datasets to researchers. One example of a
report is the analyses done in [31] where we documented the association
between PAX6 gene expression and PAX6 target genes. Through a simple R
script we could share the results and underlying analyses.

Version control everything. Both code and data changes over the course of
a research project. Version control everything to make it possible to retrace
changes and the person responsible for them. It is often necessary to roll back
to previous versions or a dataset or analysis code, or to identify the researches
that worked on specific analyses.

In the nowac study we encourage the use of git to version control both source
code and data.

Collaborate and share code through source code management (scm) sys-
tems. Traditional communication through e-mail makes it difficult to keep track
of existing analyses and their design choices both for existing project members
and new researchers. With scm hosting systems such as Github developing
analysis code becomes more transparent to other collaborators, and encourages
collaboration. It also simplifies the process or archiving development decisions
such as choosing a normalization method.

In the nowac study we collaborate on data analysis through a self-hosted
Gitlab[50] installation. We also open-source code on Github.

2.6 Discussion
In this chapterwe have proposed an approach to enable reproducible analyses in
a complex epidemiological study. While we applied our approach to a specific
epidemiological research study, we believe that it is generalizable to other
biomedical analyses and even other scientific disciplines.

Reproducible scientific experiments are fundamental to science. In many sci-
entific disciplines there is now a growing concern for the current level of
reproducibility.[51] In this chapter we outlined the main best practices from
our experiences in systems epidemiology research, and believe that these are
generalizable to other fields as well. The best practices we arrived at follow
the lines of other have described before us,[52] and we believe that these are
necessary for both our research group, but also to the scientific community, to
follow.

Bundling and sharing the analysis code together with the datasets behind a

2.6 D ISCUSS ION 29
research paper is not a new idea. Sharing these collections, or compendia, of
data, text, and code have been described more than a decade ago.[53] It is now
becoming standard for researchers to submit the code and data along with
their research manuscripts. There are many examples of studies that put in
significant efforts to develop tools in R for transparent data science, to produce
better science in less time.[54, 55, 56] In common is the explicit documentation
of the final results using reproducible data analysis reports, and functions from
shared R packages to generate these. They also structure the datasets and
document these in a standardized manner to simplify the analysis.

While the majority of the researchers in nowac have previously used the
closed-source and heavily licensed SAS or STATA for their analyses of the
questionnaire data, all researchers working on molecular data are using R.
We developed an R package for researchers in our study to simplify their
analyses on both questionnaire and molecular datasets. With the R package
researchers could investigate the available datasets and analyze them in the
same environment. The great strength of R comes from its many up-to-date
and actively maintained packages for analyzing, plotting, and interpreting
data. Bioconductor[4] and the Comprehensive R Archive Network (cran)[57]
provide online hosing for many packages, and users can mix and match these
packages to fit their need. In addition, R is open-source and free to use on a
wide range of operating systems and environments. Providing a single software
package in nowac simplifies the startup time for researchers to start analyzing
datasets within the study. In addition, it standardizes the analyses and makes
the data analysis process more transparent. We believe that our solution can
be applied to other datasets and projects within different scientific disciplines,
enabling more researchers to take advantage of the many collected, but not
yet analysis-ready datasets.

While taking advantage of powerful computational tools is beneficial, they
often require trained users. A potential drawback of using an R package that is
version controlled in git to manage, document, and analyze research datasets
is the prerequisite programming skills for researchers. This may be an obstacle
for many researchers, but once they master the skills needed to analyze their
data programmatically, not just through a point-and-click interface, we believe
that it provides deeper knowledge into the analyses. While programming
skills may be absent in the training of many researchers, we believe that it is
just a matter of time before programming skills are common in the scientific
community.

There are many approaches to store and analyze biological datasets. One major
drawback with the implementation of our approach in the nowac R package is
its size. While microarray datasets are relatively small compared to sequencing
data, when these datasets grow in number the total size grows as well. This

30 CHAPTER 2 MODERN B IOLOG ICAL DATA MANAGEMENT AND ANALYS IS

will impact the build time for the R package, and also its size when it is shared
with other researchers. Others have also reported that package size is an
issue, but are also investigating alternatives.[56] With larger datasets we might
experiment with extensions to git, e.g. git-lfs, as we have done in Chapter
4.

Since we developed the Pippeline to preprocess our gene expression datasets, it
has been expanded to work with RNA-seq, Methylation and microRNA datasets
as well. By using the Pippeline with new datasets researchers now have access
to the full preprocessing history behind each dataset available in the research
study.

As mentioned,we believe that our approach is applicable data management and
anlysis in other research groups as well. Other research groups can follow the
steps as described in this chapter to organize datasets and code in a software
package, e.g. an R package, and share this both within and outside the research
group. Sharing the analysis software through websites such as Github will help
other researchers apply the techniques on their own datasets. While we aim to
make all our code, documentation, and datasets public, we are unfortunately
not there yet. We are working on a public version of the nowac R package and
the Pippeline, but we must guarantee that the respective repositories do not
contain any sensitive information from the datasets. Even without the datasets,
the R package provides valuable information on how to structure analysis code
within a research study. This is ongoing work, and an important step toward
making the research more transparent.

2.7 Conclusion
In summary, we believe that there are four general rules toward reproducible
analyses. We believe that they apply to both our research study and other
similar epidemiological studies:

• Document and version control datasets and analysis code within the
study.

• Share datasets and analysis code through statistical software packages.

• Share and report findings through reproducible data analysis reports.

• Standardize and document common data preprocessing and wrangling
steps.

2.7 CONCLUS ION 31
In this chapter we have demonstrated one approach for reproducible manage-
ment and analysis of biological data. The needs of the users that we describe
in this chapter helped form the work in the next two chapters.

3
Interactive DataExploration Applications
Visualization is central in both the analysis and understanding of biological
functions in high-throughput biological datasets.[58] Because of the complexity
of the biological data and analyses,we need specialized software to analyze and
generate understandable visual representations of the complex datasets.[59]
While more tools are becoming available, application developers still face multi-
ple challenges when designing these tools.[59, 60] In addition to visualizing the
relevant data, tools often integrate with online databases to allow researchers
to study the data in the context of previous knowledge.[58, 59]

Data analysis tools in systems biology are greatly reliant on programming
languages specially tailored to these domains.[23] Languages such as Python
or R both provide a wealth of statistical packages and frameworks. However,
these specialized programming environments often do not provide interactive
interfaces for researchers that want to explore the results from the analyses
without using a programmatic interface. Frameworks such as Shiny[7] and
OpenCPU[8] allow application developers to build systems to interactively
explore results from statistical analyses in R. These systems can then provide
understandable graphical user interfaces on top of complex statistical software
that require programming skills to navigate. To interpret data, experts regu-
larly exploit prior knowledge via database queries and the primary scientific
literature. There are a wealth of online databases, some of which provide open

33

34 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

Application Programming Interfaces (apis) in addition to web user interfaces
that application developers can make use of. For visually exploring biological
data there are a range of tools, such as Cytoscape[18] and Circos[19], that
support importing an already-analyzed dataset to visualize and browse the
data. One problem with these are that they are decoupled from the analysis,
making it difficult to retrace the data processing prior to the end results.

One of the main issues for developing these types of data exploration applica-
tions is that they require the integration of disparate systems and tools. The
datasets require specialized analysis software, often with large computational
resources, and the end users require simple point-and-click interface available
on their device. In addition it is crucial for reproducibility to keep track of the
data processing steps that were used to generate end visualizations.

We have developed two data exploration applications, Kvik Pathways[22] and
MIxT[23, 26] for exploring transcriptional profiles in the nowac study through
interactive visualizations integrated with biological databases. We first de-
veloped Kvik Pathways to explore transcriptional profiles in the context of
biological pathway maps. It is a three-tiered web application consisting of three
central components, that we later refactored into three separate microservices
for use in other applications. These three microservices make up the smes
in our approach for building data exploration applications. With these mi-
croservices we implemented the MIxT web application, and generalized our
efforts into general design principles for data exploration applications. While
our applications provide specialized user interfaces, we show how the design
patterns and ideas can be used in a wide range of use cases. We also provide an
evaluation that shows that our approach is suitable for this type of interactive
applications.

This chapter is based on Papers 1 and 2, as well as the general descriptions of
the MIxT system in Paper 3. The rest of the chapter is organized as follows:
First we present the two motivating use cases for our applications. We then
detail the requirements for these types of interactive applications. Following
the requirements we detail the Kvik Pathways application, including its archi-
tecture and implementation. We then show how we use this first application to
generalize its design principle and show we can use them to build applications
that follow the sme approach. Following is a description of the implementation
of the smes approach in the microservices in Kvik. We present how we used
these to develop the MIxT web application. Finally we discuss our approach in
context of related work, and provide a conclusion.

3.1 MOT IVAT ING USE CASES 35
3.1 Motivating Use Cases
The need for interactive applications has come from two different previous
projects in the nowac study. Both of these rely on advanced statistical analyses
and produce comprehensive results that are interpreted by researchers in
the context of related information from online biological databases. The end
results from the statistical analyses are typically large tables that require
manual inspection and linking with known biology. Below we describe the two
applications before we detail the requirements, design and implementation of
the applications.

3.1.1 High and Low Plasma Ratios of Essential Fatty Acids
The aim of the first application was a to explore the results from a previous
published project that compared gene expression in blood from healthy women
with high and low plasma ratios of essential fatty acids.[25] Gene expression
differences where assessed and determined that there were 184 differentially
expressed genes. When exploring this list of 184 genes, functional information
was retrieved from GeneCards and other repositories, and the list was analyzed
for overlap with known pathways using MSigDB 1. The researchers had to
manually maintain overview of single genes, gene networks or pathways, and
gather functional information gene by gene while assessing differences in gene
expression levels. With this approach, researchers were limited by their own
capacity to retrieve information manually from databases and keep it up to
date. An application could automate the retrieval and ensure that the data is
correct and up to date.

3.1.2 Tumor-Blood Interactions in Breast Cancer Patients
The aim of the Matched Interactions Across Tissues (MIxT) study was to
identify genes and pathways in the primary breast tumor that are tightly
linked to genes and pathways in the patient blood cells.[26] We generated
and analyzed expression profiles from blood and matched tumor cells in 173
breast cancer patients included in the nowac study. The MIxT analysis starts
by identifying sets of genes tightly co-expressed across all patients in each
tissue. Each group of genes or modules were annotated based on a priori
biological knowledge about gene functionality. Then the analyses investigate
the relationships between tissues by asking if specific biologies in one tissue are
linked with (possibly distinct) biologies in the second tissue, and this within
different subgroup of patients (i.e. subtypes of breast cancer).

1. Available online at broadinstitute.org/gsea/msigdb

36 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

3.2 Requirements
From these two studies we identified a set of requirements that the data
exploration applications should satisfy. These are all based on the needs of the
researchers in the nowac study, and we believe that they are generalizable to
other studies.

Interactive The applications should provide interactive exploration of datasets
through visualizations and integration with relevant information.

Familiar The applications should use familiar visual representations to present
information to researchers. By using familiar or intuitive conventions we
can reduce the cognitive load needed to read a visualization and gain
insight from it.[59]

Simple to use Researchers should not need to install software to explore
their data through the applications. The applications should protect the
researcher from the burden of installing and keeping an application up
to date.

Lightweight Data presentation and computation should be separated to make
it possible for researchers to explore data without having to have the
computational power to run the analyses. With the growing rate data
is produced at, we cannot expect that researchers have the resources to
store and analyze data on their own computers.

With these requirements in mind we set out to develop two applications for
interactively explore the results from the studies along with information from
online databases.

3.3 Kvik Pathways
The first application we developed was Kvik Pathways. Kvik Pathways allows
users to interactively explore a molecular dataset, such as gene expression,
through a web application.[22] It provides pathway visualizations and detailed
information about genes and pathways from the KEGG database. Figure 3.1
shows a screenshot of the user interface of Kvik Pathways. Through pathway
visualizations and integration with the KEGG databases, users can perform
targeted exploration of pathways and genes to get an overview of the biological
functions that are involved with gene expression from the underlying dataset.
Kvik Pathways gathers information about related pathways and retrieves rele-
vant information about genes, making it unnecessary for researchers to spend

3.3 KV IK PATHWAYS 37
valuable time looking up this information manually. Previously researchers had
to manually retrieve information from kegg while browsing pathway maps,
interrupting the visual analysis process. Kvik Pathways retrieves information
about genes without the researcher having to leave the pathway visualization
to retrieve relevant information.

3.3.1 Analysis Tasks
To efficiently develop the application we designed 3 analysis tasks that the
application supports.

A1: Explore gene expression in the context of kegg pathway maps. It provides
users with a list of pathway maps to choose from, and the application will
generate an interactive visualization including gene expression values.

A2: Investigate and retrieve relevant biological information. It provides users
with direct links to online databases with up to date information.

A3: Explore relationships between pathway maps. When users select a gene
from a pathway map they get a list of other pathway maps that this gene is
found in, in addition to their similarity. This allows users to investigate the
biological processes the genes are a part of.

3.3.2 Architecture
Kvik Pathways has a three-tiered architecture of independent layers (Figure
3.2). The browser layer consists of the web application for exploring gene
expression data and biological pathways. A front-end layer provides static
content such as HTML pages and stylesheets, as well as an interface to the
data sources with dynamic content such as gene expression data or pathway
maps to the web application. The backend layer contains information about
pathways and genes, as well as computational and storage resources to process
genomic data such as the nowac data repository. We have used the packages
in Kvik to develop the backend layer. These are discissed in detail in Section
3.4.

The Data Engine in the backend layer provides an interface to the nowac
data repository stored on a secure server on our local supercomputer. In Kvik
Pathways all gene expression data is stored on the computer that runs the Data
Engine. The Data Engine runs an R session accessible over remote procedure
calls (RPCs) from the front-end layer using RPy2[61] to interface with R. To
access data and run analyses the Data Interface exposes a HTTP api to the

38 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

Figure 3.1: Screenshot of the renin-angiotensin pathway (KEGG pathway id hsa04614)
in Kvik Pathways. Researchers can visually explore the pathways and read
relevant information about genes in the right-hand panel.

Table 3.1: The REST interface to the Data Engine. For example, use /genes/ to
retrieve all available genes in our dataset.

URL Description

/fc/[genes...] Calculate and retrieve fold-change for the specified genes
/pvalues/[genes...] Calculate and retrieve p-values for the specified genes
/exprs/[genes...] Get the raw gene expression values from the dataset
/genes Get a list of all genes in the dataset

browser layer (Table 3.1 provides the interfaces).

3.3.3 Implementation
To create pathway visualizations the Kvik backend retrieves and parses the
KEGG Markup Language (KGML) representation and pathway image from
KEGG databases through its REST api.[62] This KGML representation of a

3.3 KV IK PATHWAYS 39

Web Application

Data
Interface

Web
Server

KEGG Data Engine

Kvik PathwaysKvik Framework

Browser

Frontend

Backend

Figure 3.2: The three-tiered architecture of Kvik Pathways.

pathway is an XML file that contains a list of nodes (genes, proteins or com-
pounds) and edges (reactions or relations). Kvik parses this file and generates
a JSON representation that Kvik Pathway uses to create pathway visualiza-
tions. Kvik Pathways uses Cytoscape.js[63] to create a pathway visualization
from the list of nodes and edges and overlay the nodes on the pathway image.
See Figure 3.3 for a graphical illustration of the process. To reduce latency
when using the kegg Representational state transfer (rest) api, we cache
every response on our servers. We use the average fold change between the
groups (women with high or low plasma ratios of essential fatty acids) in the
dataset to color the genes within the pathway maps. To highlight p-values,
the pathway visualization shows an additional colored frame around genes.
We visualize fold change values for individual samples as a bar chart in a side
panel. This bar chart gives researchers a global view of the fold change in the
entire dataset.

Kvik provides a flexible statistics backend where researchers can specify the
analyses they want to run to generate data for later visualization. For example,
in Kvik Pathways we retrieve fold change for single genes every time a pathway
is viewed in the application. These analyses are run ad hoc on the backend
servers and generates output that is displayed in the pathways in the client’s
web browser. The data analyses are implemented in an R script and can make
use of all available libraries in R, such as Bioconductor.

Researchers modify this R script to, for example, select a normalization method,
or to tune the false discovery rate (FDR) used to adjust the p-values that Kvik
Pathways uses to highlight significantly differentially expressed genes. Since
Kvik Pathways is implemented as a web application and the analyses are run
ad hoc, when the analyses change, researchers get an updated application by
simply refreshing the Kvik Pathways webpage.

40 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS�� CHAPTER � DESIGN AND IMPLEMENTATION

(a) Original static pathway image from
����, placed as a background node

(b) Overlaying graph nodes from the ����
representation of the pathway

(c) Final visualization

Figure �.�: Visualizing gene expression data on ���� pathway maps

�.�.� Visualizing Gene Expression Data
In addition to the coloring of nodes in the pathway maps, Kvik is capable of
visualizing gene expression profiles for the entire underlying dataset. When
users want to inspect a single gene, the Kvik Browser opens an information
panel containing a visualization of the gene expression profile using the D�
JavaScript library. Bar plots visualizes the difference between cases and con-
trols. As with the gene expression values added to the pathway maps, Kvik
uses the same approach to retrieve the gene expression profiles.

�.�.� Visualizing Research Data
The Kvik browser adds information from the ���� database to the info panel
that opens when a user selects a gene. This info panel contains information
such as the description of a gene and other background information about it.
The Kvik Browser also adds a list of pathways this specific gene is a member
of. To indicate their similarity to the pathway in the main view, a small bar

Figure 3.3: Visualizing gene expression data on kegg pathway maps.

3.3.4 Use Case: Analysis of Renin-Antiotensin Pathway
As an example of practical use of Kvik Pathways, we chose one of the sig-
nificant pathways from the overlap analysis, the renin-angiotensin pathway
(Supplementary table S5 in [25]). The pathway contains 17 genes, and in the
pathway map we could instantly identify the two genes that drive this result.
The color of the gene nodes in the pathway map indicates the fold change, and
the statistical significance level is indicated by the color of the node’s frame.
We use this image of a biological process to see how these two genes (and
their expression levels) are related to other genes in that pathway, giving a
biologically more meaningful context as compared to merely seeing the two
genes on a list.

3.4 Building Data Exploration Applications with
Kvik

Through the experiences developing the Kvik Pathways we identified a set of
components and features that are central to building data exploration applica-

3.4 BU ILD ING DATA EXPLORAT ION APPL ICAT IONS W ITH KV IK 41
tions:

1. A low-latency language-independent approach for integrating, or em-
bedding, statistical software, such as R, directly in a data exploration
application.

2. A low-latency language-independent interface to online reference databases
in biology that users can query to explore results in context of results in
context of known biology.

3. A simple method for deploying and sharing the components of an appli-
cation between projects.

We used these to design and implement Kvik which in turn formed the basis
of the sme approach that the mixt web application builds upon.

Kvik is a collection of software packages in the Go programming language. It
is designed for developers that want to develop interactive data exploration
applications. It is the foundation in our two data exploration applications,
and has been iteratively developed through the last years.2 Kvik provides an
interface to the R statistical programming language, both as a stand-alone
service, a client library, and through an OpenCPU server. It provides an R-based
pipelining tool that allows useres to specify and run statistical analysis pipelines
in R. Kvik also contains a Javascript package for visualizing KEGG pathways
using d3.[64] In addition it provides an interface with online databases such
as MsigDB[65] and kegg[66].

We used the experience building Kvik Pathways to completely re-design and re-
implement the R interface in Kvik. From having an R server that can run a set of
functions from an R script, it now has a clean interface to call any function from
any R package, not just retrieving data as a text string but in a wide range of
formats. We also re-built the database interface,which is now a separate service.
This makes it possible to leverage its caching capabilities to improve latency.
This transformed the application from being a single monolithic application into
a system that consists of a web application for visualizing biological pathways,
a database service to retrieve pathway images and other metadata, and a
compute service for interfacing with the gene expression data in the nowac
cohort. We could then re-use the database and the compute service in the MIxT
application.

We have used these packages to develop the sme approach through services
that provide open interfaces to the R programming language and the online

2. In [22] we refer to Kvik as Kvik Framework, but we have since shortened its name.

42 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

databases. We outline these services in 3.4.1. In short the interfaces are ac-
cessible through an HTTP interface and can be used from any programming
language.

3.4.1 Design Priciples
We generalized our efforts from Kvik Pathways into the following design prin-
ciples for building applications in bioinformatics:

Principle 1: Build applications as collections of language-agnostic microser-
vices. This enables re-use of components and does not enforce any specific
programming language on the user interfaces or the underlying components
of the application.

Principle 2: Use software containers to package each service. This has a number
of benefits: it simplifies deployment, ensures that dependencies and libraries
are installed, and simplifies sharing of services between developers.

3.4.2 Compute Service
We have built a compute service that provides an open interface directly to the
R programming language, thus providing access to a wealth of algorithm and
statistical analysis packages that exists within the R ecosystem. Application
developers can use the compute service to execute specialized analyses and
retrieve results either as plain text or binary data such as plots. By interfacing
directly with R, developers can modify input parameters to statistical methods
directly from the user-facing application.

The compute service offers three main operations to interface with R: i) to call
a function with one or more input parameters from an R package, ii) to get the
results from a previous function call, and iii) a catch-all term that both calls a
function and returns the results. We use the same terminology as OpenCPU[8]
and have named the three operations Call, Get, and RPC respectively. These
three operations provide the necessary interface for applications to include
statistical analyses in the applications.

The compute service is implemented as an HTTP server that communicates with
a pre-set number of R processes to execute statistical analyses. At initiation of
the compute service, a user-defined number of R worker sessions are launched
for executing analyses (default is 5). The compute service uses a round-robin
scheduling scheme to distribute incoming requests to the workers. We provide
a simple FIFO queue for queuing of requests. The compute service also provides

3.5 MATCHED INTERACT IONS ACROSS T ISSUES (MIXT) 43
the opportunity for applications to cache analysis results to speed up subsequent
calls.

3.4.3 Database Service
We have built a database service to interface with online biological databases.
The service provides a low latency interface, it minimizes the number of
queries to remote databases, and stores additional metadata to capture query
parameters and database information. The database service provides an open
HTTP interface to biology databases for retrieving meta-data on genes and
processes. We currently have packages for interfacing with E-utilities[67],
MSigDB, HGNC[68], and KEGG.

3.5 Matched Interactions Across Tissues (MIxT)
The mixt system is an online web application for exploring and comparing
transcriptional profiles from blood and tumor samples.[23, 26] It provides users
with an interface to explore high-throughput gene expression profiles of breast
cancer tumor data with matched profiles from the patients blood. We have used
the microservices in Kvik to interface with statistical analyses and information
from online biology databases.

3.5.1 Analysis Tasks
To efficiently develop the application we defined six analysis tasks (A1-A6) that
the application supports:

A1: Explore co-expression gene sets in tumor and blood tissue. Users can
explore gene expression patterns together with clinicopathological variables
(e.g. patient or tumor grade, stage, age) for each module. In addition we enable
users to study the underlying biological functions of each module by including
gene set analyses between the module genes and known gene sets.

A2: Explore co-expression relationships between genes. Users can explore
the co-expression relationship as a graph visualization. Here genes are repre-
sented in the network with nodes and edges represent statistically significant
correlation in expression between the two end-points.

A3: Explore relationships between modules from each tissue. We provide two
different metrics to compare modules, and the web application enables users to

44 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

interactively browse these relationships. In addition to providing visualizations
the compare modules from each tissue, users can explore the relationships, but
for different breast cancer patient groups.

A4: Explore relationships between clinical variables andmodules. In addition to
comparing the association between modules from both tissues, users also have
the possibility to explore the association with a module and a specific clinical
variable. It is also possible to explore the associations after first stratifying
the tumors by breast cancer subtype (an operation that is common in cancer
related studies to deal with molecular heterogeneity).

A5: Explore association between user-submitted gene lists and computed mod-
ules. We want to enable users to explore their own gene lists to explore them
in context of the co-expression gene sets. The web application must handle
uploads of gene lists and compute association between the gene list and the
MIxT modules on demand.

A6: Search for genes or gene lists of interest. To facilitate faster lookup of genes
and biological processes, the web application provides a search functionality
that lets users locate genes or gene lists and show association to the co-
expression gene sets.

3.5.2 Architecture
We structured the MIxT application with a separate view for each analysis task.
To explore the co-expression gene sets (A1), we built a view that combines
both static visualizations from R together with interactive tables for gene
overlap analyses. Figure 3.4 shows the web page presented to users when they
access the co-expression gene set ’darkturquoise’ from blood. To explore the
co-expression relationship between genes (A2) we use an interactive graph
visualization build with Sigma.[69] We have built visualization for both tissues,
with graph sizes of 2705 nodes and 90 348 edges for the blood network, and
2066 nodes and 50 563 edges for the biopsy network. To visualize relationships
between modules from different tissues (A3), or their relationship to clinical
variables (A4) we built a heatmap visualization. We built a simple upload
page where users can specify their gene sets (A5). The file is uploaded to the
web application which redirects it to a backend service that runs the analyses.
Similarly we can take user input to search for genes and processes (A6).

For the original analyses we built an R package, mixtR,3 with the statistical
methods and static visualizations for identifying associations between mod-

3. Available online at github.com/vdumeaux/mixtR.

github.com/vdumeaux/mixtR.

3.5 MATCHED INTERACT IONS ACROSS T ISSUES (MIXT) 45

Figure 3.4: MIxT module overview page. The top left panel contains the gene expres-
sion heatmap for the module genes. The top right panel contains a table of
the genes found in the module. The bottom panel contains the results of
gene overlap analyses from the module genes and known gene sets from
MSigDB.

ules across tissues. The mixtR package is based on the Weighted Gene Co-
expression Network Analysis (wgcna) R package to compute the correlation
networks[70]. To make the results more easily accessible we built a web appli-
cation that interfaces with the R package, but also online databases to retrieve
relevant metadata. To make it possible to easily update or re-implement parts
of the system without effecting the entire application, and we developed it
using a microservice architecture. The software containers allowed the appli-
cation to be deployed on a wide range of hardware, from local installations to
cloud systems.

3.5.3 Implementation
From the six analysis tasks we designed and implemented MIxT as a web
application that integrates statistical analyses and information from biological
databases together with interactive visualizations. Figure 3.5 shows the system
architecture of MIxT which consists of three parts i) the web application
itself containing the user-interface and visualizations; ii) the compute service

46 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

performing theMIxT analyses developed in an R package, delivering data to the
web application; and iii) the database service providing up-to-date information
from biological databases. Each of these components run in Docker containers
making the process of deploying the application simple.

Figure 3.5: The architecture of the MIxT system. It consists of a web application,
the hosting web server, a database service for retrieving metadata and
a compute service for performing statistical analysis. Note that only the
web application and the R package are specific to MIxT, the rest of the
components can be reused in other applications.

The web application is hosted by a custom web server. This web server is
responsible for dynamically generating the different views based on data from
the statistical analyses and biological databases, and serve these to users. It also
serves the different JavaScript visualization libraries and style sheets.

3.5.4 Evaluation
We evaluate the MIxT application by investigating response times for a set of
queries to each of its two supporting services.

To evaluate the database service we measure the query time for retrieving
information about a specific gene with and without caching.⁴ This illustrates
how we can improve performance in an application by using a database service
rather than accessing the database directly. We use a AWS EC2 t2.micro⁵
instance to host and evaluate the database service. The results in Table 3.2
confirm a significant improvement in response time when the database service
caches the results from the database lookups. In addition by serving the results

4. More details online at github.com/fjukstad/kvik.
5. See aws.amazon.com/ec2/instance-types for more information about AWS EC2

instance types.

github.com/fjukstad/kvik
aws.amazon.com/ec2/instance-types

3.5 MATCHED INTERACT IONS ACROSS T ISSUES (MIXT) 47
out of cache we reduce the number of queries to the online database down to
one.

Table 3.2: Time to retrieve a gene summary for a single gene, comparing different
number of concurrent requests.

1 2 5 10 15
No cache 956ms 1123ms 1499ms 2147ms 2958ms
Cache 64ms 64ms 130ms 137ms 154ms

We evaluate the compute service by running a benchmark consisting of two
operations: first generate a set of 100 random numbers, then plot them and
return the resulting visualization.⁶ We use two c4.large instances on AWS
EC2 running the Kvik compute service and OpenCPU base docker containers.
The servers have caching disabled. Table 3.3 shows the time to complete the
benchmark for different number of concurrent connections. We see that the
compute service in Kvik performs better than the OpenCPU⁷ alternative. We
believe that speedup is because we keep a pool of R processes that handle
requests. In OpenCPU a new R process is forked upon every request that
results in any computation executed in R. Other requests such as retrieving
previous results do not fork new R processes.

In summary our results show that the interface to the R programming language
provides faster latencies, and that implementing a service for database lookups
have clear benefits with regards to latency.

Table 3.3: Time to complete the benchmark with different number of concurrent
connections.

1 2 5 10 15
Kvik 274ms 278ms 352ms 374ms 390ms
OpenCPU 500ms 635ms 984ms 1876ms 2700ms

3.5.5 Tumor Epithelium-Stroma Interactions in BreastCancer
The MIxT web application is usable with other datasets as well. As already
mentioned, the web application retrieves datasets from an R package in a Kvik
compute service. If developers replace the datasets the web application will in
turn generate visualizations based on this data. Since we have open-sourced
every part of the system, application developers can download the respective

6. More details at github.com/fjukstad/kvik.
7. Built using the opencpu-server Docker image.

github.com/fjukstad/kvik

48 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

repositories where they will find instructions on how to deploy the system with
their own data.

In addition to the MIxT web application for exploring the link between breast
tumor and primary blood, we have also deployed a web application that in-
vestigates the link in another dataset.[71] We have deployed the application
online at mixt-tumor-stroma.bci.mcgill.ca. The web application is identical,
but the underlying dataset is different.

3.5.6 air:bit
We have also used the microservice architecture in an application where users
can upload and explore air pollution data from Northern Norway.[32] In the
project, air:bit, students from upper secondary schools in Norway collect air
quality data from sensor kits that they have built and programmed. The web
application lets the students upload data from their kits, and provides a graph-
ical interface for them to explore data from their own, and other participating
schools. The system consists of a web server frontend that retrieves air pollution
data from a backend storage system to build interactive visualizations. It also
integrates the data with other sources such as the Norwegian Institute for Air
Research and the The Norwegian Meteorological Institute.

3.6 Related Work
There are different technologies for developing data exploration applications.
We have surveyed comparable applications for exploring similar datasets to
the ones we describe in this chapter, and underlying technology for developing
these applications.

3.6.1 Data Exploration Applications
There are a wealth of resources for exploring biological pathway maps. kegg
provides a large collection of static pathway maps that users can navigate
through and download.[66] They provide both static images of the pathways, as
well as a textual representation of the pathway in the KEGG Markup Language
(kgml). kegg provides a rest api that developers can use to integrate both
pathwaymaps and other information in their application. In kegg Pathways we
heavily rely on the data from kegg. Reactome is an open-source peer-reviewed
online knowledgebase of biomolecular pathways.[72] Users can download
the entire graph database or explore it in their pathway visualization tool.

mixt-tumor-stroma.bci.mcgill.ca

3.6 RELATED WORK 49
They have not yet made an api open for developers, but are planning to do
so. Libraries such as KEGGViewer[73] allow developers to integrate pathway
visualization maps in web applications, but these are generated using the
kgml representations, that do not include additional visual cues found in the
static kegg pathway maps. enRoute[74] is a desktop application for exploring
pathway maps from kegg that combines the static pathway maps from kegg
in an interactive application. Pathview is both an R package and an online
web application for exploring pathway maps.[75] The online web application is
built on top of the R package and provides the same functionality, but through
a gui. Pathview generates static pathway visualizations based on pathway
maps from kegg.

There are few related systems that provide visualizations of the correlation
networks from wgcna results. The R package from the original paper pro-
vides a wide range of different utility functions for visualization, but it is only
accessible within the R environment. The wgcna Shiny app⁸ is an interactive
application for performing, and exploring results from, wgcna. The online
version allows users to explore two demo datasets, and it is possible to down-
load the application and change out the datasets locally. In short it is a web
implementation of the wgcna R package that allows users without any R
experience perform wgcna. It is developed and maintained by the eTRIKS
platform.[76]

3.6.2 Enabling Approaches
Developers can pick and choose from various frameworks and libraries to build
interactive data exploration applications. OpenCPU is a system for embedded
scientific computing and reproducible research.[8] Similar to the compute
service in Kvik, it offers an HTTP api to the R programming language to
provide an interface with statistical methods. It allows users to make function
calls to any R package and retrieve the results in a wide variety of formats such
as JSON or PDF. OpenCPU provides a JavaScript library for interfacing with R,
as well as Docker containers for easy installation, and has been used to build
multiple applications.⁹. The compute service in Kvik follows many of the design
patterns in OpenCPU. Both systems interface with R packages using a hybrid
state pattern over HTTP. Both systems provide the same interface to execute
analyses and retrieve results. Because of the similarities in the interface to R in
Kvik we provide packages for interfacing with our own R server or OpenCPU
R servers.

8. Online a shiny.etriks.org/wgcna
9. opencpu.org/apps.html.

opencpu.org/apps.html

50 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

Shiny is a web application framework for R1⁰ It allows developers to build web
applications in R without having to have any knowledge about HTML, CSS, or
Javascript. While it provides an easy alternative to build web applications on
top of R, it cannot be used as a service in an application that implements the
user-interface outside of R.

Renjin is a JVM-based interpreter for the R programming language.[77] It
allows developers to write applications in Java that interact directly with R
code. Thismakes it possible to use Renjin to build a service for running statistical
analyses on top of R. One serious drawback is that existing R packages must
be re-built specifically for use in Renjin.

Cytoscape is an open source software platform for visualizing complex net-
works and integrating these with any type of attribute data.[78] Through
a Cytoscape App, cyREST, it allows external network creation and analysis
through a REST api[79], making it possible to use Cytoscape as a service. To
bring the visualization and analysis capabilities to the web applications the
creators of Cytoscape have developed Cytoscape.js11, a JavaScript library to
create interactive graph visualizations. Another alternative for biological data
visualization in the web browser is BioJS It provides a community-driven on-
line repository with a wide range components for visualizing biological data
contributed by the bioinformatics community.[21] BioJS builds on node.js12
providing both server-side and client-side libraries. In MIxT we have opted to
build the visualizations from scratch using sigma.js and d3 to have full control
over the appearance and functionality of the visualizations.

3.7 Discussion
In this chapterwe have given a description of howwe successfully built two data
exploration applications for high-throughput biological datasets. We have iter-
atively developed these, and through our experiences we formed an approach
for developing such applications using disparate systems.

The most clear distinction between our systems and the alternatives, is our
focus on integrating the user-facing visualizations with the underlying data
sources. We have put emphasis on this integration to allow users to thoroughly
investigate the underlying data behind the discoveries they make. While some
systems, such as Shiny, allow developers to build web applications that maintain

10. shiny.rstudio.com.
11. js.cytoscapejs.org.
12. nodejs.org.

shiny.rstudio.com
js.cytoscapejs.org
nodejs.org

3.7 D ISCUSS ION 51
this integration, it is not possible to interface with the analyses from outside
their system. With our approach in Kvik, we could have first implemented the
MIxT web application, before later developing an native desktop application
that re-used the same data interfaces. The main idea here is to create a
platform independent interface between the different parts that make up a
data exploration application, to facilitate reuse and transparency. With Kvik
we provide a language-independent interface between a data exploration
application and the underlying statistical analyses and online databases.

As we have seen in 3.6 there aremany applications that provide the functionality
to view and browse pathway maps, where most of which use kegg as its main
data source. The applications then either reuse the pathwaymaps, and augment
them with gene expression data, or use the underlying kgml description and
generate their own graphical representation with gene expression data. Using
the first method will provide the additional visual ques found in the static
pathway images, but the visualizations are less flexible with regards to node
and edge placement. Using the second method provides more flexible graphs
with regards to layout, but this could make the visualizations less familiar to
the users interpreting them. As mentioned in [59], familiar representations
provide easier to understand visualizations to the users.

With both of these techniques the underlying gene expression datasets are
retrieved using different techniques. Most systems allow users to specify gene
expression values in some table format and render the values in top of the
pathwaymap. These values are typically the end result of a long analysis process
which users have to track manually. By integrating the visualization with the
analysis software, typically R, it is possible to access data from anywhere in the
analysis process, and also provide detailed information to the user regarding
the underlying data analysis process. What separates our approach in Kvik
Pathways to the other related systems, is this integration between the end
visualization and the gene expression datasets. By using Kvik it is possible
to develop applications that automatically lets users access the underlying
data analysis, and thereby connecting the interpretable end results with the
analyses.

Of the related technologies, OpenCPU provides the most similar interface
to analyze datasets as the R interface in Kvik. While we started to explore
OpenCPU for use in our applications, we found through our benchmarking
that it did not provide satisfactory performance for our applications. It does
however provide a richer set of functionality, such as exporting data in many
more formats and running user-submitted scripts. We did not find it necessary
for these additions and implemented our own R interface that could provide the
necessary interface for us to implement data exploration applications.

52 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

The wgcna Shiny app provides similar visualizations as our MIxT web appli-
cation, but the application is limited to that of a web application. Shiny lets its
users develop applications written purely in R, including the backend server
and the user interfaces. In MIxT we developed an R package with a set of
resources, or endpoints, for application developers to access through a Kvik R
service. This allows application developers to develop the user-facing logic us-
ing any type of technology or framework. The resources are available through
the HTTP API in Kvik making it possible for anyone to develop an application
on top of the dataset and analyses. We acknowledge the strength of R for data
analysis, but not for developing complex user-facing web applications.

There are several advantages with reusing and sharing microservices over
libraries in bioinformatics applications, that would justify the cost of hosting an
maintaining a set of distributedmicroservices. The most apparent disadvantage
withmicroservices is having to potentially orchestrate tens, or even hundreds, of
services running in different distributed environments. Container orchestration
systems such as Kubernetes can help simplify this task, but technical staff are
still required to keep these systems operational. By implementing a system
using different microservices it will however become possible for different
research groups to share computational resources. In the case of the MIxT web
application, the compute service runs on a powerful compute node, while the
web application can run on a lightweight compute node. Other applications
that interface with R could have used our compute service, and would not
require the local resources to run and host it themselves. This could prove
valuable for institutions that do not have the required resources available.
Another argument for using a microservice approach is the possibility for using
different programming languages for each part of an application. This allows
for developers to use the best tools for each problem, e.g. R for biomedical data
analysis, and HTML and Javascript for interactive visualizations.

3.8 Future Work
We hope to continue development on applications for interactively exploring
biological datasets. Through our approach, and especially the interface to R,
we are now able to develop applications that can use any function or retrieve
datasets from any R package. This includes the nowac package in Chapter 2.
We believe that there is a large potential in the available datasets, and that
researchers would benefit from being able to interactively explore these.

3.9 CONCLUS ION 53
3.8.1 MIxT
We intend to address few points in future work, both in the MIxT web appli-
cation as well as the supporting microservices. The first issue is to improve
the user experience in the MIxT web application. Since it is executing many of
the analyses on demand, the user interface may seem unresponsive. We are
working on mechanisms that gives the user feedback when the computations
are taking a long time, but also reducing analysis time by improving the per-
formance the underlying R package. The database service provides a sufficient
interface for the MIxT web application. While we have developed the software
packages for interfacing with more databases, these haven’t been included
in the database service yet. In future versions we aim to make the database
service an interface for all our applications. We also aim to improve how we
capture data provenance. We aim to provide database versions and meta-data
about when a specific item was retrieved from the database.

One large concern that we haven’t addressed in this chapter is security. In
particular one security concern that we aim to address in Kvik is the restrictions
on the execution of code in the compute service. We aim to address this in
the next version of the compute service, using methods such as AppArmor[80]
that can restrict a program’s resource access. In addition to code security we
will address data access, specifically put constraints on who can access data
from the compute service. We also aim to explore different alternatives for
scaling up the compute service. Since we already interface with R we can use
the Sparklyr[81] or SparkR[82] packages to run analyses on top of Spark.[83]
Using Spark as an execution engine for data analyses will enable applications
to explore even larger datasets.

3.9 Conclusion
We have designed an approach for building data exploration applications in
cancer research. We first implemented Kvik Pathways, a web application for
exploring a gene expression dataset in the context of pathway maps. We used
our experiences to generalize our efforts into a set of central components
that these types of applications require. Further we realized these in our
sme approach implemented as a set of microservices. Using these services
we have built a web application, MIxT, that integrates statistical analyses,
interactive visualizations, and data from biological databases. While we have
used our approach to build an application in cancer research, we believe
that the microservice architecture is suitable for data exploration systems in
other disciplines as well. This is because they can compose applications from
specialized tools and services required to visualize and analyze the different

54 CHAPTER 3 INTERACT IVE DATA EXPLORAT ION APPL ICAT IONS

possible datasets. From our experiences, the primary takeaway is to compose
and develop a data exploration system from independent parts. We chose to
implement our systems using three separate services. A compute service to
provide statistical analyses, a database service to provide access to biological
databases, and the user interface. Thismakes it possible to quickly re-implement
parts of the system, but also allow others to interface with its underlying
components, not just the user interface.

4
Deep Analysis Pipelines
In this chapter we discuss our approach to analyzing high-throughput genomic
datasets through deep analysis pipelines, and its implementation in walrus.[27]
We also evaluate the performance of walrus and show its usefulness in a
precision medicine setting. While walrus was developed in this context we also
show its usefulness in other areas, specifically for rna-seq analyses.

4.1 Use Case and Motivation
Precision medicine uses patient-specific molecular information to diagnose
and categorize disease to tailor treatment to improve health outcome.[39]
Important goals in precision medicine are to learn about the variability of the
molecular characteristics of individual tumors, their relationship to outcome,
and to improve diagnosis and therapy.[40] Cancer institutions are therefore
now offering dedicated personalized medicine programs.

For cancer, high throughput sequencing is an emerging technology to facilitate
personalized diagnosis and treatment since it enables collecting high quality
genomic data from patients at a low cost. Data collection is becoming cheaper,
but the downstream computational analysis is still time-consuming and thereby
a costly part of the experiment. This is because of the manual efforts to
set up, analyze, and maintain the analysis pipelines. These pipelines consist
of many steps that transform raw data into interpretable results.[24] These

55

56 CHAPTER 4 DEEP ANALYS IS P IPEL INES

pipelines often consists of in-house or third party tools and scripts that each
transform input files and produce some output. Although different tools exist,
it is necessary to carefully explore different tools and parameters to choose
the most efficient to apply for a dedicated question.[84] The complexity of the
tools vary from toolkits such as the Genome Analysis Toolkit (gatk) to small
custom bash or R scripts. In addition, some tools interface with databases
whose versions and content will impact the overall result.[85]

Improperly developed analysis pipelines for precision medicine may generate
inaccurate results, which may have negative consequences for patient care.[1]
Users and clinicians therefore need systems that can track pipeline tool versions,
their input parameters, and data. Both to thoroughly document what produced
the final clinical reports, and to iteratively improve the quality of the pipeline
during development. Because of the iterative process of developing the analysis
pipeline, it is necessary to use analysis tools that facilitate modifying pipeline
steps and adding new ones with little developer effort.

Developing a system that enables researchers to write and share reproducible
analysis pipelineswill enable the scientific community to analyze high-throughput
genomic datasets faster and more unified. By combining versioning of datasets
and pipeline configurations, a pipeline management system will provide in-
terpretable and reproducible results long after the initial data analysis will
have completed. These features will together promote reproducible science
and improve the overall quality of the analyses.

4.1.1 Initial Data Analysis Pipeline
As part of a patient’s treatment, we have analyzed DNA sequence data from the
patient’s primary tumor and adjacent normal cells to identify the molecular
signature of the patient’s tumor and germline. When the patient later relapsed
we analyzed sequence data from the patient’s metastasis to provide an extensive
comparison against the primary and to identify the molecular drivers of the
patient’s tumor.

We used whole-genome sequencing (wgs) to sequence the primary tumor and
adjacent normal cells at an average depth of 20, and whole-exome sequencing
(wes) at an average depth of 300. The biological samples were sequenced at
the Genome Quebec Innovation Centre, and we stored the raw datasets on our
in-house server. From the analysis pipelines we generated reports with end
results, such as detected somatic mutations, that was distributed to both the
patient and the treating oncologists. These could be used to guide diagnosis and
treatment, and give more detailed insight into both the primary and metastasis.
When the patient relapsed we analyzed wes data using our own pipeline

4.1 USE CASE AND MOT IVAT ION 57
manager, walrus, to investigate the metastasis and compare it to the primary
tumor.

For the initialwgs analysis we developed a pipeline to investigate somatic and
germline mutations based on Broad Institute’s best practices. We developed the
analysis pipeline on our in-house compute server using a bash script under ver-
sion control with git to track changes as we developed the analysis pipeline. The
pipeline consisted of tools including picard[86], fastqc[87], trimmomatic[88],
and the gatk.[89] While the analysis tools themselves provide the necessary
functionality to give insights in the disease, ensuring that the analyses could
be fully reproduced later left areas in need of improvement.

We chose a command-line script over more complex pipelining tools or work-
benches such as Galaxy[90] because of its fast setup time on our available
compute infrastructure, and familiar interface. More complex systems could be
beneficial in larger research groups with more resources to compute infrastruc-
ture maintenance, whereas command-line scripting languages require little
infrastructure maintenance over normal use. In addition, while there are off-
site solutions for executing scientific workflows, analyzing sensitive data often
put hard restrictions on where the data can be stored and analyzed.

After we completed the first round of analyses we summarized our efforts and
noted features that pipeline management systems should satisfy:

• Datasets and databases should be under version control and stored along
with the pipeline description. In the analysis script we referenced to
datasets and databases by their physical location on a storage system,
but these were later moved without updating the pipeline description
causing extra work. A solution would be to add the data to the same
version control repository hosting the pipeline description.

• The specific pipeline tools should also be kept available for later use.
Often in bioinformatics, just installing a tool is a time-consuming process
because of their many dependencies.

• It should be easy to add new tools to an existing pipeline and execution
environment. This includes installing the specific tool and adding to
an existing pipeline. Bundling tools within software containers, such
as Docker, and hosting them on an online registry simplifies the tool
installation process since the only requirement is the container runtime.

• While bash scripts have their limitations, using a well-known format
that closely resembles the normal command-line use clearly have its
advantages. It is easy to understand what tools were used, their input

58 CHAPTER 4 DEEP ANALYS IS P IPEL INES

parameters, and the data flow. However, from our experience when these
analysis scripts grow too large they become too complex to modify and
maintain.

• While there are new and promising state-of-the art pipeline managers,
many of these also require state-of-the-art computing infrastructure to
run. This may not be the case at cancer research and clinical institutions.

The above problem areas are not just applicable to our research group, but
common to other research and precision medicine projects as well. Especially
when hospitals and research groups aim to apply personalized medicine efforts
to guide therapeutic strategies and diagnosis, the analyses will have to be
able to be easily reproducible later. We used the lessons learned to design
and implement walrus, a command line tool for developing and running
data analysis pipelines. It automatically orchestrates the execution of different
tools, and tracks tool versions and parameters, as well as datasets through the
analysis pipeline. It provides users a simple interface to inspect differences
in pipeline runs, and retrieve previous analysis results and configurations. In
the remainder of the chapter we describe the design and implementation of
walrus, its clinical use, its performance, and how it relates to other pipeline
managers.

4.2 walrus

walrus is a tool for developing and executing data analysis pipelines. It stores
information about tool versions, tool parameters, input data, intermediate
data, output data, as well as execution environments to simplify the process of
reproducing data analyses. Users write descriptions of their analysis pipelines
using a familiar syntax and walrus uses this description to orchestrate the
execution of the pipeline. In walrus we package all tools in software containers
to capture the details of the different execution environments. While we have
used walrus to analyze high-throughput datasets in precision medicine, it is a
general tool that can analyze any type of data, e.g. image datasets for machine
learning. It has few dependencies and runs on any platform that supports
Docker containers. While other popular pipeline managers require the use of
cluster computers or cloud environment, we focus on single compute node
systems often found in smaller clinical research environments.

walrus is implemented as a command-line tool in the Go programming lan-
guage. We use the popular software container implementation Docker[91] to
provide reproducible execution environments, and interface with git together
with git-lfs[48] to version control datasets and pipeline descriptions. By

4.2 walrus 59
choosing Docker and git we have built a tool that easily integrates with current
bioinformatic tools and workflows. It runs both natively or within its own
Docker container to simplify its installation process.

With walrus we target pipeline developers that are familiar with command-
line tools and scripting languages to build and run analysis pipelines. Users
can use existing Docker containers from sources such as BioContainers[92]
or build containers with their own tools. We have created an open repository
that currently contains 18 different Docker images with different tools for high-
throughput data analysis.1 We integrate with the current workflow using git
to version control analysis scripts, and use git-lfs for versioning of datasets
as well. The pipeline description format in walrus resembles standard com-
mand line syntax. In addition, walrus automatically track and version input,
intermediate, and output files without users having to explicitly declare these
in the description.

4.2.1 Pipeline Configuration
Users configure analysis pipelines by writing pipeline description files in a hu-
man readable format such as JavaScript Object Notation (json) or YAML Ain’t
Markup Language (yaml). A pipeline description contains a list of stages, each
with inputs and outputs, along with optional information such as comments or
configuration parameters such as caching rules for intermediate results. Listing
4.1 shows an example pipeline stage that uses MuTect[93] to detect somatic
point mutations. Users can also specify the tool versions by selecting a specific
Docker image, for example using MuTect version 1.1.7 as in Listing 4.1, line
3.

Users specify the flow of data in the pipeline within the pipeline description, as
well as the dependencies between the steps. Since pipeline configurations can
become complex, users can view their pipelines using an interactive web-based
tool, or export their pipeline as a DOT file for visualization in tools such as
Graphviz.[94]

Listing 4.1: Example pipeline stage for a tool that detects somatic point mutations.
It reads a reference sequence file together with both tumor and normal
sequences, and produces an output file with the detected mutations.

{
"Name ": " mutect ",
" Image ": " fjukstad / mutect :1.1.7" ,
"Cmd ": [

"-- analysis_type "," MuTect ",
"-- reference_sequence " ,"/ walrus / input / reference . fasta ",

1. Available at github.com/fjukstad/seq.

github.com/fjukstad/seq

60 CHAPTER 4 DEEP ANALYS IS P IPEL INES

"-- input_file : normal " ,"/ walrus / input / normal .bam",
"-- input_file : tumor " ,"/ walrus / input / tumor .bam",
"-L" ,"/ walrus / input / targets .bed",
"--out " ,"/ walrus / mutect /mutect -stats -txt",
"--vcf " ,"/ walrus / mutect / mutect .vcf"

],
" Inputs ":[

" input "
]

}

Users add data to an analysis pipeline by specifying the location of the input
data in the pipeline description, and walrus automatically mounts it to the
container running the analysis. The location of the input files can either be
local or remote locations such as an FTP server. When the pipeline is completed,
walrus will store all the input, intermediate and output data to a user-specified
location which is under version control.

4.2.2 Pipeline Execution
When users have written a pipeline description for their analyses, they can use
the command-line interface of walrus to run the analysis pipeline. walrus
builds an execution plan from the pipeline description and runs it for the
user. It uses the input and output fields of each pipeline stage to construct a
directed acyclic graph (dag) where each node is a pipeline stage and the links
are input/output data to the stages. From this graph walrus can determine
parallel stages and coordinate the execution of the pipeline.

In walrus, each pipeline stage is run in a separate container, and users can
specify container versions in the pipeline description to specify the correct
version of a tool. We treat a container as a single executable and users specify
tool input arguments in the pipeline description file using standard command
line syntax. walrus will automatically build or download the container images
with the analysis tools, and start these with the user-defined input parameters
and mount the appropriate input datasets. While the pipeline is running,
walrus monitors running stages and schedules the execution of subsequent
pipeline stages when their respective input data become available. We have
designed walrus to execute an analysis pipeline on a single large server, but
since the tools are run within containers, these can easily be orchestrated
across a range of servers in future versions.

Users can select from containers pre-installed with bioinformatics tools, or
build their own using a standard Dockerfile. Through software containers
walrus can provide a reproducible execution environment for the pipeline,
and containers provide simple execution on a wide range of software and

4.2 walrus 61
hardware platforms. With initiatives such as BioContainers, researchers can
make use of already existing containers without having to re-write their own.
Data in each pipeline step is automatically mounted and made available within
each Docker container. By simply relying on Docker walrus requires little
software setup to run different bioinformatics tools.

While walrus executes a single pipeline on one physical server, it supports
both data and tool parallelism, as well as any parallelization strategies within
each tool, e.g. multi-threading. To enable data and tool parallelism, e.g. run
the same analyses to analyse a set of samples, users list the samples in the
pipeline description and walrus will automatically run each sample through
the pipeline in parallel. While we can parallelize the independent pipeline steps,
the performance of an analysis pipeline relies on each of the independent tools
and available compute power. Techniques such as multithreading can improve
the performance of a tool, and walrus users can make use of these techniques
if their are available through the command line interfaces of the tools.

Upon successful completion of a pipeline run, walrus will write a verbose
pipeline description file to the output directory. This file contains information
on the runtime of each step, which steps were parallelized, and provenance
related information to the output data from each step. Users can investigate
this file to get a more detailed look on the completed pipeline. In addition to
this output file walrus will return a unique version ID for the pipeline run,
which later can be used to investigate a previous pipeline run.

4.2.3 Data Management
In walruswe provide an interface for users to track their analysis data through a
version control system. This allows users to inspect data from previous pipeline
runs without having to recompute all the data. walrus stores all intermediate
and output data in an output directory specified by the user, which is under
version control automatically by walrus when new data is produced by the
pipeline. We track changes at file granularity.

In walrus we interface with git to track any output file from the analysis
pipeline. When users execute a pipeline, walrus will automatically add and
commit output data to a git repository using git-lfs. Users typically use a
single repository per pipeline, but can share the same repository to version
multiple pipelines as well. With git-lfs, instead of writing large blobs to a
repository it writes small pointer files that contains the hash of the original file,
the size of the file, and the version ofgit-lfs used. The files themselves are
stored separately which makes the size of the repository small and manageable
with git. Once walrus has started to track output datasets, users can use

62 CHAPTER 4 DEEP ANALYS IS P IPEL INES

regular git commands to inspect its version history. The main reason why we
chose git and git-lfs for version control is that git is the de facto standard for
versioning source code, and we want to include versioning of datasets without
altering the typical development workflow.

Since we are working with potentially sensitive datasets walrus is targeted
at users that use a local compute and storage servers. It is up to users to
configure a remote tracker for their repositories, but we provide command-line
functionality in walrus to run a git-lfs server that can store users’ contents.
They can use their default remotes, such as Github, for hosting source code,
but they must themselves provide the remote server to host their data.

4.2.4 Pipeline Reconfiguration and Re-execution
Reconfiguring a pipeline is common practice in precision medicine, e.g. to
ensure that genomic variants are called with a desired sensitivity and specificity.
To reconfigure an existing pipeline users make the applicable changes to the
pipeline description and re-run it with walrus. walrus will then recompute the
necessary steps and return a version ID for the newly run pipeline. This ID can
be used to compare pipeline runs, the changes made, and optionally restore
the data and configuration from a previous run. Reconfiguring the pipeline to
use updated tools or reference genomes will alter the pipeline configuration
and force walrus to recompute the applicable pipeline stages.

The command-line interface of walrus provides functionality to restore results
from a previous run, as well as printing information about a completed pipeline.
To restore a previous pipeline run, users use the restore command line flag
in walrus together with the version ID of the respective pipeline run. walrus
will interface with git to restore the files to their state at the necessary point
in time.

4.3 Results
To evaluate the usefulness of walrus we demonstrate its use in a clinical
research setting, and the low computational time and storage overhead to
support reproducible analyses.

4.3 RESULTS 63

Figure 4.1: Screenshot of the web-based visualization in walrus. The user has zoomed
in to inspect the pipeline step which marks duplicate reads in the tumor
sequence data.

4.3.1 Clinical Application
We have used walrus to analyze a whole-exome data from a sample in the
McGill Genome Quebec [MGGQ] dataset (GSE58644)[28] to discover snps,
genomic variants and somatic mutations. We interactively developed a pipeline
description that follows the best-practices of The Broad Institute2 and generated
reports that summarized the findings to share the results. Figure 4.1 shows a
screenshot from the web-based visualization in walrus of the pipeline.

From the analyses we discovered inherited germline mutations that are rec-
ognized to be among the top 50 mutations associated with an increased risk
of familial breast cancer. We also discovered a germline deletion which has
been associated with an increased risk of breast cancer. We also discovered
mutations in a specific gene that might explain why specific drug had not been
effective in the treatment of the primary tumor. From the profile of the primary
tumor we discovered many somatic events (around 30 000) across the whole
genome with about 1000 in coding regions, and 500 of these were coding
for non-synonymous mutations. We did not see amplification or constituent
activation of growth factors like HER2, EGFR or other players in breast cancer.
Because of the germline mutation, early recurrence, and lack of DNA events,
we suspect that the patient’s primary tumor was highly immunogenic. We
have also identified several mutations and copy number changes in key driver
genes. This includes a mutation in a gene that creates a premature stop codon,
truncating one copy of the gene.

While we cannot share the results in details or the sensitive dataset, we have
made the pipeline description available at github.com/uit-bdps/walrus along

2. Online at software.broadinstitute.org/gatk/best-practices.

github.com/uit-bdps/walrus
software.broadinstitute.org/gatk/best-practices

64 CHAPTER 4 DEEP ANALYS IS P IPEL INES

with other example pipelines.

4.3.2 Example Dataset
To demonstrate the performance of walrus and the ability to track and detect
changes in an analysis pipeline, we have implemented one of the variant calling
pipelines from [95] using tools from Picard and the gatk. We show the storage
and computational overhead of our approach, and the benefit of capturing the
pipeline specification using a pipeline manager. The pipeline description and
code is available along with walrus at github.com/uit-bdps/walrus. Figure
4.2 shows a simple graphical representation of the pipeline.

4.3.3 Performance and Resource Usage
We first run the variant calling pipeline without any additional provenance
tracking or storing of output or intermediate datasets. This is to get a baseline
performance measurement for how long we expect the pipeline to run. We then
run a second experiment to measure the overhead of versioning output and
intermediate data. Then we introduce a parameter change in one of the pipeline
steps which results in new intermediate and output datasets. Specifically we
change the –maxReadsForRealignment parameter in the indel realigner step
back to its default (See the online pipeline description for more details). This
forces walrus to recompute the indel realigner step and any subsequent steps.
To illustrate how walrus can restore old pipeline configurations and results,
we restore the pipeline to the initial configuration and results. We show the
computational overhead and storage usage of restoring a previous pipeline
configuration.

Reproducing results from a scientific publication can be a difficult task. For
example, because the rendering of the online version of the pipeline in [95]
converts two consecutive hyphens (–) into single em dashes (—), the pipeline
will not run using the specified input parameters. However, PDF versions of
the paper lists the parameters correctly. In addition, the input filenames in the
variant calling step do not correspond to any output files in previous steps, but
because of their similarity to previous output files we assume that this is just a
typo. These issues in addition to missing commands for e.g. the filtering step
highlights the clear benefit of writing and reporting the analysis pipeline using
a tool such as walrus.

Table 4.1 shows the runtime and storage use of the different experiments.
In the second experiment we can see the added overhead of adding version
control to the dataset. In total, an hour is added to the runtime and the data

github.com/uit-bdps/walrus

4.3 RESULTS 65

baserecalibration

printreads

haplotypecaller

bwaindex

align

targetcreator

indelrealigner

repair

filter_parallel_SRR098401_2 filter_parallel_SRR098401_1

samtobam

sortsam

addreadgroups

removeduplicates

createdict

input

Figure 4.2: In addition to the web-based inteactive pipeline visualization, walrus
can also generate DOT representations of pipelines. The figure shows the
example variant calling pipeline we used in the performance evaluation.

66 CHAPTER 4 DEEP ANALYS IS P IPEL INES

size is doubled. The doubling comes from git-lfs hard copying the data into a
subdirectory of the .git folder in the repository. With git-lfs users can move all
datasets to a remote server reducing the local storage requirements. In the third
experiment we can see that only the downstream analyses from configuring
the indel realignment parameter is executed. It generates 30GB of additional
data, but the execution time is limited to the applicable stages. Restoring the
pipeline to a previous configuration is almost instantaneous since the data is
already available locally and git only has to modify the pointers to the correct
files in the .git subdirectory.

Table 4.1: Runtime and storage use of the example variant-calling pipeline developed
with walrus.

Experiment Task Runtime Storage Use
1 Run pipeline with de-

fault configuration
21 hours 50
minutes

235 GB

2 Run the default pipeline
with version control of
data

23 hours 9
minutes

470 GB

3 Re-run the pipeline with
modified indel realign-
ment parameter

13 hours 500 GB

4 Restoring pipeline back
to the default configura-
tion

< 1 second 500GB

4.4 Related Work
There are a wealth of pipeline specification formats and workflow managers
available. Some are targeted at users with programming experience while
others provide simple guis.

We have previously conducted a survey of different specialized bioinformat-
ics pipelines.[29] The pipelines were selected to show how analysis pipelines
for different applications use different technologies for configuring, executing
and storing intermediate and output data. In the review, we targeted spe-
cialized analysis pipelines that support scaling out the pipelines to run on
high-performance computing (hpc) or cloud computing platforms.

Here we describe general systems for developing data analysis pipelines, not
just specialized bioinformatics pipelines. While most provide viable options for
genomic analyses, we have found many of these pipeline systems require com-

4.4 RELATED WORK 67
plex compute infrastructure beyond the smaller clinical research institutions.
We discuss tools that use the common cwl pipeline specification and systems
that provide versioning of data.

cwl is a specification for describing analysis workflows and tools.[6] A pipeline
is written as a json or yaml file, or a mix of the two, and describes each step
in detail, e.g. what tool to run, its input parameters, input data and output data.
The pipeline descriptions are text files that can be under version control and
shared between projects. There are multiple implementations of cwl work-
flow platforms, e.g. the reference implementation cwl_runner[6], Arvados[96],
Rabix[97], Toil[17], Galaxy[90], and AWE.[98] It is no requirement to run tools
within containers, but implementations can support it. There are few of these
tools that support versioning of the data. Galaxy is an open web-based platform
for reproducible analysis of large high-throughput datasets.[90] It is possible to
run Galaxy on local compute clusters, in the cloud, or using the online Galaxy
site.3 In Galaxy users set up an analysis pipeline using a web-based graphical
interface, and it is also possible to export or import an existing workflow to an
Extensible Markup Language (xml) file.⁴ We chose not to use Galaxy because
of missing command-line and scripting support, along with little support for
running workflows with different configurations.[3] Rabix provides checksums
of output data to verify it against the actual output from the pipeline. This is
similar to the checksums found in the git-lfs pointer files, but they do not store
the original files for later. An interesting project that uses CWL in production is
The Cancer Genomics Cloud[99]. They currently support CWL version 1.0 and
are planning on integrating Rabix as its CWL executor. Arvados stores the data
in a distributed storage system, Keep, that provides both storage and versioning
of data. We chose not to use cwl and its implementations because of its relaxed
restrictions on having to use containers, its verbose pipeline descriptions, and
the complex compute architecture required for some implementations. We are
however experimenting with an extension to walrus that translates pipeline
descriptions written in walrus to cwl pipeline descriptions.

Pachyderm is a system for running big data analysis pipelines. It provides
complete version control for data and leverages the container ecosystem to
provide reproducible data processing.[5] Pachyderm consists of a file system
(Pachyderm File System (pfs)) and a processing system (Pachyderm Process-
ing System (pps)). pfs is a file system with git-like semantics for storing
data used in data analysis pipelines. Pachyderm ensures complete analysis
reproducibility by providing version control for datasets in addition to the
containerized execution environments. Both pfs and pps is implemented on

3. Available at usegalaxy.org.
4. An alpha version of Galaxy with cwl support is available at github.com/common-

workflow-language/galaxy.

usegalaxy.org
github.com/common-workflow-language/galaxy
github.com/common-workflow-language/galaxy

68 CHAPTER 4 DEEP ANALYS IS P IPEL INES

top of Kubernetes.[100] There are now recent efforts to develop bioinformatics
workflows with Pachyderm that show great promise. In [101], the authors show
the potential performance improvements of single workflow steps, not the full
pipeline, when executing a pipeline in Pachyderm. They unfortunately do not
show the time to import data into pfs, run the full pipeline, and optionally
investigate different versions of the intermediate, or output datasets.

We believe that the approach in Pachyderm with version controlling datasets
and containerizing each pipeline step is, along with walrus, the correct ap-
proach to truly reproducible data analysis pipelines. The reason we did not use
Kubernetes and Pachyderm was because our compute infrastructure did not
support it. In addition, we did not want to use a separate tool, pfs, for data
versioning, we wanted to integrate it with our current practice of using git for
versioning.

Snakemake is a long-running project for analyzing bioinformatic datasets.[16]
It uses a Python-based language to describe pipelines, similar to the familiar
Makefile syntax, and can execute these pipelines on local machines, compute
clusters or in the cloud. To ensure reproducible workflows, Snakemake inte-
grates with Bioconda to provide the correct versions of the different tools used
in the workflows. It integrates with Docker and Singularity containers[102] to
provide isolated execution, and in later versions Snakemake allows pipeline ex-
ecution on a Kubernetes cluster. Because Snakemake did not provide necessary
integration with software containers at the time we developing our analysis
pipeline, we did not find it to be a viable alternative. For example, support
for pipelines consisting of Docker containers pre-installed with bioinformatics
tools came a year later than walrus.

Another alternative to develop analysis pipelines is Nextflow.[103] Nextflow
uses its own language to describe analysis pipelines and supports execution
within Docker and Singularity containers. Nextflow uses a dataflow program-
ming model that streams data through a pipeline as apposed to fist constructing
a dag and executing it.

While the previous related systems all package each tool into a single con-
tainer, Bio-Docklet and elasticHPC are systems that bundle entire pipelines into
single Docker containers. Bio-Docklets are standardized workflows contained
in a single Docker image, and have been used used to build ngs analysis
pipelines.[104] elasticHPC is an initiative to make it easier to deploy con-
tainerized analysis pipeline on private or commercial cloud solutions such as
Amazon.[105]

As discussed in [30, 29], recent projects propose to use containers for life science
research. The BioContainers and Bioboxes[106] projects address the challenge

4.5 D ISCUSS ION 69
of installing bioinformatics data analysis tools by maintaining a repository of
Docker containers for commonly used data analysis tools. Docker containers
are shown to have better than, or equal performance as Virtual Machines (vms),
and introduce negligible overhead opposed to executing on bare metal.[107]
While Docker containers require a bootstrapping phase before executing any
code, this phase is negligible in the compute-intensive precision medicine
pipelines that run for several hours. Containers have also been proposed as
a solution to improve experiment reproducibility, by ensuring that the data
analysis tools are installed with the same responsibilities.[108]

4.5 Discussion
walrus is a general tool for analyzing any type of dataset from different
scientific disciplines, not just genomic datasets in bioinformatics. Users specify
a workflow using either a yaml or json format, and each step in the workflow
is run within a Docker container. walrus tracks input, intermediate, and
output datasets with git to ensure transparency and reproducibility of the
analyses. Through these features, walrus helps to ensure repeatability of the
computation analyses of a research project.

Precision medicine requires flexible analysis pipelines that allow researchers
to explore different tools and parameters to analyze their data. While there
are best practices to develop analysis pipelines for genomic datasets, e.g. to
discover genomic variants, there is still no de-facto standard for sharing the de-
tailed descriptions to simplify re-using and reproducing existing work. walrus
provides a solution to iteratively develop and execute analysis pipelines based
on a simple textual description which can be shared across systems. Further,
walrus allows researchers to track input, intermediate, and resulting datasets
to help ensure reproducible results.

Pipelines typically need to be tailored to fit each project and patient, and
different patients will typically elicit different molecular patterns that require
individual investigation. In our wes analysis pipeline we followed the best
practices, and explored different combinations of tools and parameters before
we arrived at the final analysis pipeline. For example, we ran several rounds of
preprocessing (trimming reads and quality control) before we were sure that
the data was ready for analysis. walrus allowed us to keep track of different
intermediate datasets, along with the pipeline specification, simplifies the task
of comparing the results from pipeline tools and input parameters.

walrus is a very simple tool to set up and start using. Since we only target
users with single large compute nodes, walrus can run within a Docker con-

70 CHAPTER 4 DEEP ANALYS IS P IPEL INES

tainer making Docker its only dependency. Systems such as Nextflow, Galaxy
or Pachyderm all require users to set up and manage complex compute infras-
tructures. As previously mentioned, since we leverage existing Docker images
without any modification in walrus, users can reuse existing container images
from BioContainers or Bioboxes in their workflows. The simplicity of walrus
enables repeatable computational analyses without any of these obstacles, and
is one of the strengths of our tool.

Unlike other proposed solutions for executing data analysis pipelines, walrus is
the only system we have discovered that explicitly uses git, and git-lfs, to store
output datasets. Other systems either use a specialized storage system,or ignore
data versioning at all. We believe that using a system that bioinformaticians
already use for source control management is the simplest way to allow users
version their data along-side their analysis code. The alternative of using
a new data storage platform that provides data versioning requires extra
time and effort for researchers both to learn and integrate in their current
workflow.

We have seen that there are other systems to develop, share, and run analysis
pipelines in both bioinformatics and other disciplines. Like walrus, many of
these use textual representations in JSON or other languages to describe the
analysis pipeline, and Docker to provide reproducible and isolated execution
environments. In warlus we provide pipeline descriptions that allows users to
reuse the familiar command-line syntax. The only new additional information
they have to add is the dependencies between tasks. Systems such as cwl
requires that users also describe the input and output data verbosely. We
believe that the tool, walrus, can detect these, and will handle this for the user.
This will in turn make the pipeline descriptions of walrus shorter in terms of
lines of code.

While systems such as Galaxy provide guis, walrus requires that its users
know how to navigate the command line and have experience with systems
such as git and Docker, to analyze a dataset. Using a command line interface
to run analysis pipelines has the potential of speeding up the analysis process,
since its users do not have to click through a user interface before running a
pipeline. We have therefore designed walrus for users that have experience
with the command line, and are the ones who set up and maintain pipelines
for others.

We have tried to minimize the number of available commands in walrus, and
compared to other tools it shows its benefit when comparing a pipeline run to
previous results. E.g. in Pachyderm users have to explicitly import data into
the system using a set of commands. walrus does not require explicit import
of data, and allows users to investigate, or roll back, data to a previous run in

4.6 FUTURE WORK 71
a single command.

While we provide one approach to version control datasets, there are still some
drawbacks. git-lfs supports large files, but in our results it added 5% in
runtime. This makes the entire analysis pipeline slower, but we argue that
having the files under version control outweigh the runtime. In addition, there
are only a few public gif-lfs hosting platforms for datasets larger than a few
gigabytes, making it necessary to host these in-house. In-house hosting may
also be a requirement at different medical institutions.

An additional benefit with walrus that we have not discussed yet, is its porta-
bility. By only relying on Docker, users can develop their pipeline on a local
system, before moving the pipeline to a larger compute node, or the cloud. This
may be helpful for developers implementing a pipeline for a large research
study. The user can develop the pipeline locally for a single sample, before
moving the pipeline execution to a powerful compute node and running it for
all samples in the study.

4.6 Future Work
We aim to investigate the performance of running analysis pipelines with
walrus, and the potential benefit of its built-in data parallelism. While our
wes analysis pipeline successfully run steps in parallel for the tumor and
adjacent normal tissue, we have not demonstrated the benefit of doing so.
This includes benchmarking and analyzing the system requirements for doing
precision medicine analyses. We are also planning on exploring parallelism
strategies where we can split an input dataset into chromosomes and run some
steps in parallel for each chromosome, before merging the data again.

We believe that future data analysis systems for precision medicine will follow
the lines of our proposed approach. Software container solutions provide
valuable information in the reporting of the analyses, and they impose little
performance overhead. Further, the development of container orchestration
systems such as Kubernetes is getting wide adoption nowadays, especially in
web-scale internet companies. This will provide simpler orchestration of the
individual pipeline steps in analysis pipelines based on software containers,
such as the ones we develop in walrus. However, the adoption of such systems
in a clinical setting depend on support from more tools, and also the addition
of new compute infrastructure.

72 CHAPTER 4 DEEP ANALYS IS P IPEL INES

4.7 Conclusions
We have designed and implemented walrus, a tool for developing reproducible
data analysis pipelines for use in precision medicine. Precision medicine re-
quires that analyses are run on hospital compute infrastructures and results
are fully reproducible. By packaging analysis tools in software containers, and
tracking both intermediate and output data, walrus provides the foundation
for reproducible data analyses in the clinical setting. We have used walrus to
analyze a patient’s metastatic lesions and adjacent normal tissue to provide
insights and recommendations for cancer treatment.

From our experiences, we can extract general design principles for pipeline
tools used in both precision medicine and other sciences. These tools should
be designed such that they:

• Provide version control mechanisms for input, intermediate, and output
data, as well as tool versions and their configuration.

• Provide simple access to tools and their different versions, using for
example software container technology.

• Provide simple addition of new tools to existing pipeline configurations.

• Use well-known formats to describe the setup of the analysis pipeline.

5
Conclusion
How should we design systems for analyzing and exploring high-throughput
datasets that facilitate sharing, reuse, and reproducibility? This dissertation
shows that in many cases the solution is to decompose the applications into
small entities that communicate using open protocols. This enables the devel-
opment of unified systems for reproducible exploration and analysis.

While biological datasets and computing systems will undoubtedly evolve, we
believe that the sme approach proposed here can offer a new perspective on
developing applications for exploring and analyzing biological data. We hope
that our approach can steer the development of bioinformatics applications
away from large monolithic applications to applications composed of diverse
systems. This approach facilitates reusing existing tools and systems, which
will help the community develop new systems for exploring both current and
new biological datasets.

In Chapter 1 we identified four main challenges for application developers
to undertake when building systems for analyzing and exploring biological
datasets. In our data exploration applications, we solved the first challenge by
organizing the analysis code and datasets in the nowac study into a single
versioned software package. For long-running analysis pipelines, we solved
this in walrus by describing the pipeline using a textual representation, and
versioning together with input, intermediate, and output datasets. We solved
the second challenge by integrating the user-facing visualizations with the
underlying statistical analyses from different R packages. By implementing our

73

74 CHAPTER 5 CONCLUS ION

data exploration applications as compositions of systems that communicated
through open protocols, using a microservice architecture, we solved the third
challenge. Our data exploration applications solved the fourth challenge by
packaging each component in open-sourced Docker containers. We solved the
fourth challenge for data analysis pipelines by using an open format to describe
the pipelines, along with sharing the Docker images used for all steps in the
different pipelines.

In Chapter 2 we show an approach to store the microarray data and analysis
code from a complex epidemiological study in a shareable software package.
We show how we explicitly track versions of code and data, and how we can
generate reproducible data analysis reports for the processed datasets. We
believe that future studies can benefit from applying our approach, and that
future advances in cancer research is dependent on sharing of both datasets
and analysis code.

In Chapter 3we showhowwe can build interactive data exploration applications
that interface with these software packages through amicroservice architecture.
We have implemented this approach through the microservices in Kvik. We
show that this architecture style is suitable for building such applications, and
have used it to develop the Kvik Pathways and MIxT web applications. These
have been successfully used to explore transcriptional profiles in the nowac
study, especially to investigate the interactions between genes and pathways
in the patient tumor and blood cells. We believe that the cancer research
community in general will benefit greatly if more projects start to develop
their applications using our approach. It simplifies sharing of computational
resources, and we believe that the future of cancer research will depend on
collaborative efforts.

In Chapter 4 use the same approach, to compose systems of disparate tools,
for developing biological data analysis pipelines, implemented in walrus. To
ensure reproducible results, we supplement the processing with data versioning
to track provenance of the data through the pipeline and across pipeline
versions. We have used walrus in the clinical setting to develop awes pipeline
for discovering snps, genomic variants, and somatic mutations, in a breast
cancer patient’s metastatic lesion.

Combined, these systems demonstrate the applicability of our approach across
a range of different use cases. The systems have already showed their usability,
and through their expansions they show the potential broader impact. As
already mentioned, after this work was concluded the R package in Chapter
2 has been used to analyze and manage new datasets. The MIxT application
from Chapter 3 has been expanded to new datasets. walrus from Chapter
4 have also been used to develop new pipelines for other datasets than we

5.1 LESSONS LEARNED 75
originally used it for. In addition, the ideas and approaches are generalizable
to other disciplines and datasets.

In the rest of this chapter we summarize end-to-end lessons learned during
this work, and propose areas for future work.

5.1 Lessons Learned
Through the design of the sme approach for analyzing and exploring biological
datasets, as well as the different implementations of the approach, we have
solved challenges and we have learned some key lessons.

There is no single solution programming language or system. In the field of
bioinformatics there have been tremendous efforts to develop analysis tools for
improving the analysis of new biological datasets. This has led to systems being
written in a plethora of different languages, and deployed on top of different
systems. This is the main motivation behind our sme approach together with
software containers.

Take advantage of existing tools. The ability to develop applications for
analyzing biological datasets comes from the availability of existing tools. By
developing easy-to-use interfaces for the existing tools, it is possible to develop
new applications without reimplementing key features.

Simplicity is key. When proposing a new approach for either managing
datasets,writing data exploration applications, or developing analysis pipelines,
it is not possible to overstate the importance of the simplicity of the solu-
tion.

Researchers are not software engineers. When designing a new approach
to store and analyze high-throughout biological datasets, it is important to
remember that its users have limited software engineering backgrounds. Es-
pecially when the implementation is based on complex systems such as git,
the learning curve for the system is steep and require training of its users.
In our project we have organized workshops in both R and git to get the re-
searchers in the nowac study comfortable with these systems to follow our
best practices.

76 CHAPTER 5 CONCLUS ION

5.2 Future Work
As we have discussed in previous chapters, there are some limitations to our
approach and its implementations. To summarize these, the main areas for
improvement are:

• Versioning of datasets: git was not designed to version large binary
files, such as biological datasets, and it does not provide the required
performance or scalability to version the large biological data.

• Additional evaluation: while we have shown that the sme approach
can be used to develop systems for managing research data, developing
interactive applications and data analysis pipelines, we would like to
better understand its performance and scalability.

• Refactoring and test coverage: while we provide fully implemented
solutions for data storage, interactive applications, and data analysis
pipelines, they all have areas of improvementwith regards to performance,
scalability, and robustness.

• Distributed execution: while walrus orchestrates execution of Docker
containers, we do not support the execution of these on multiple compute
nodes. Distributing the computation onmultiple machines will reduce the
execution time if we can share the data across themachines efficiently. We
would also like to evaluate the possibility of using an existing container
orchestration system, such as Kubernetes, to orchestrate the execution
of an analysis pipeline. Many of these already provide functionality for
distributed execution of software containers.

• Wide adoption of a pipeline description format: we are not the first
to propose a new computing standard.1 We found that the current stan-
dards were either too verbose, e.g., cwl, or did not enforce the use of
software containers. This led us to our own description format, but we
recognize the need for a single open standard, and hope to contribute
to its development.

We aim to refine and continue development on our smes approach to address
these challenges, and that we can inspire a more unified development com-
munity in bioinformatics. We believe that the future of cancer research relies
on the successful integration of diverse data analysis and data management
systems from different research institutions. This will definitely continue to be
an interesting area of research.

1. xkcd.com/927

xkcd.com/927

Bibliography
[1] S. Roy, C. Coldren, A. Karunamurthy, N. S. Kip, E. W. Klee, S. E. Lincoln,

A. Leon, M. Pullambhatla, R. L. Temple-Smolkin, K. V. Voelkerding et al.,
“Standards and guidelines for validating next-generation sequencing
bioinformatics pipelines: A joint recommendation of the association for
molecular pathology and the college of american pathologists,” The
Journal of Molecular Diagnostics, vol. 20, pp. 4–27, 2017.

[2] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences,” Genome biology, vol. 11, no. 8, p.
R86, 2010.

[3] O. Spjuth, E. Bongcam-Rudloff,G. C. Hernández, L. Forer,M. Giovacchini,
R. V. Guimera, A. Kallio, E. Korpelainen, M. M. Kańduła, M. Krachunov
et al., “Experiences with workflows for automating data-intensive bioin-
formatics,” Biology direct, vol. 10, no. 1, p. 43, 2015.

[4] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Du-
doit, B. Ellis, L. Gautier, Y. Ge, J. Gentry et al., “Bioconductor: open
software development for computational biology and bioinformatics,”
Genome biology, vol. 5, no. 10, p. R80, 2004.

[5] Pachyderm, http://pachyderm.io.

[6] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton,
M. Heuer, A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich, and
et al., https://figshare.com/articles/Common_Workflow_Language_
draft_3/3115156/2, Jul 2016.

[7] Shiny, http://shiny.rstudio.com.

[8] J. Ooms, “The opencpu system: Towards a universal interface for
scientific computing through separation of concerns,” arXiv preprint
arXiv:1406.4806, 2014.

79

http://pachyderm.io
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
http://shiny.rstudio.com

[9] E. S. Raymond, The art of Unix programming. Addison-Wesley Profes-
sional, 2003.

[10] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, 2005.

[11] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture. " O’Reilly Media,
Inc.", 2016.

[12] S. D. Kahn, “On the future of genomic data,” Science, vol. 331, no. 6018,
pp. 728–729, 2011.

[13] A. Alyass, M. Turcotte, and D. Meyre, “From big data analysis to per-
sonalized medicine for all: challenges and opportunities,” BMC medical
genomics, vol. 8, no. 1, p. 33, 2015.

[14] E. R. Mardis, “The 1, 000дenome, the100,000 analysis?” Genome
medicine, vol. 2, no. 11, p. 84, 2010.

[15] I. S. for Biocuration, “Biocuration: Distilling data into knowledge,” PLoS
biology, vol. 16, no. 4, p. e2002846, 2018.

[16] J. Köster and S. Rahmann, “Snakemake—a scalable bioinformatics work-
flow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012.

[17] J. Vivian, A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong, A. Novak,
J. Pfeil, J. Narkizian, A. D. Deran, A. Musselman-Brown et al., “Toil
enables reproducible, open source, big biomedical data analyses,” Nature
Biotechnology, vol. 35, no. 4, pp. 314–316, 2017.

[18] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: a software envi-
ronment for integrated models of biomolecular interaction networks,”
Genome research, vol. 13, no. 11, pp. 2498–2504, 2003.

[19] M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman,
S. J. Jones, and M. A. Marra, “Circos: an information aesthetic for
comparative genomics,” Genome research, vol. 19, no. 9, pp. 1639–1645,
2009.

[20] E. Lund, V. Dumeaux, T. Braaten, A. Hjartåker, D. Engeset, G. Skeie,
and M. Kumle, “Cohort profile: the norwegian women and cancer
study—nowac—kvinner og kreft,” International journal of epidemiology,

vol. 37, no. 1, pp. 36–41, 2007.

[21] J. Gómez, L. J. García, G. A. Salazar, J. Villaveces, S. Gore, A. García, M. J.
Martín, G. Launay, R. Alcántara, N. Del-Toro et al., “Biojs: an open source
javascript framework for biological data visualization,” Bioinformatics,
vol. 29, no. 8, pp. 1103–1104, 2013.

[22] B. Fjukstad, K. S. Olsen, M. Jareid, E. Lund, and L. A. Bongo, “Kvik:
three-tier data exploration tools for flexible analysis of genomic data in
epidemiological studies,” F1000Research, vol. 4, 2015.

[23] B. Fjukstad,V. Dumeaux,K. S. Olsen,E. Lund,M. Hallett, and L. A. Bongo,
“Building applications for interactive data exploration in systems biology,”
in Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics. ACM, 2017, pp. 556–561.

[24] Y. Diao, A. Roy, and T. Bloom, “Building highly-optimized, low-latency
pipelines for genomic data analysis.” in Conference on Innovative Data
Systems Research (CIDR), 2015.

[25] K. S. Olsen, C. Fenton, L. Frøyland, M. Waaseth, R. H. Paulssen, and
E. Lund, “Plasma fatty acid ratios affect blood gene expression profiles-a
cross-sectional study of the norwegian women and cancer post-genome
cohort,” PLoS One, vol. 8, no. 6, p. e67270, 2013.

[26] V. Dumeaux, B. Fjukstad, H. E. Fjosne, J.-O. Frantzen, M. M. Holmen,
E. Rodegerdts, E. Schlichting, A.-L. Børresen-Dale, L. A. Bongo, E. Lund
et al., “Interactions between the tumor and the blood systemic response
of breast cancer patients,” PLoS Computational Biology, vol. 13, no. 9, p.
e1005680, 2017.

[27] B. Fjukstad, V. Dumeaux,M. Hallett, and L. A. Bongo, “Reproducible data
analysis pipelines for precision medicine,” To appear in the proceedings
of 2019 27th Euromicro International Conference On Parallel, Distributed
and Network-based Processing (PDP). IEEE, 2019.

[28] A. Tofigh, M. Suderman, E. R. Paquet, J. Livingstone, N. Bertos, S. M.
Saleh,H. Zhao,M. Souleimanova, S. Cory,R. Lesurf et al., “The prognostic
ease and difficulty of invasive breast carcinoma,” Cell reports, vol. 9, no. 1,
pp. 129–142, 2014.

[29] B. Fjukstad and L. A. Bongo, “A review of scalable bioinformatics
pipelines,” Data Science and Engineering, vol. 2, no. 3, pp. 245–251, 2017.

[30] I. A. Raknes, B. Fjukstad, and L. Bongo, “nsroot: Minimalist process iso-
lation tool implemented with linux namespaces,” Norsk Informatikkon-
feranse, 2017.

[31] Y. Kiselev, S. Andersen, C. Johannessen, B. Fjukstad, K. S. Olsen, H. Sten-
vold, S. Al-Saad, T. Donnem, E. Richardsen, R. M. Bremnes et al., “Tran-
scription factor pax6 as a novel prognostic factor and putative tumour
suppressor in non-small cell lung cancer,” Scientific reports, vol. 8, no. 1,
p. 5059, 2018.

[32] B. Fjukstad, N. Angelvik, M. W. Hauglann, J. S. Knutsen, M. Grønnesby,
H. Gunhildrud, and L. A. Bongo, “Low-cost programmable air quality
sensor kits in science education,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, 2018, pp. 227–232.

[33] J. D. Watson, F. H. Crick et al., “Molecular structure of nucleic acids,”
Nature, vol. 171, no. 4356, pp. 737–738, 1953.

[34] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton,
H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt et al., “The sequence of
the human genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001.

[35] I. H. G. S. Consortium et al., “Initial sequencing and analysis of the
human genome,” Nature, vol. 409, no. 6822, p. 860, 2001.

[36] M. L. Metzker, “Sequencing technologies—the next generation,” Nature
reviews genetics, vol. 11, no. 1, p. 31, 2010.

[37] M. Baker, “Why scientists must share their research code,” Nature News,
2016.

[38] “Reproducibility in cancer biology: The challenges of replication,” eLife,
vol. 6, p. e23693, jan 2017.

[39] N. R. Council et al., Toward precision medicine: building a knowledge
network for biomedical research and a new taxonomy of disease. National
Academies Press, 2011.

[40] I. F. Tannock and J. A. Hickman, “Limits to personalized cancermedicine,”
New England Journal of Medicine, vol. 375, no. 13, pp. 1289–1294, 2016.

[41] V. Dumeaux, K. S. Olsen, G. Nuel, R. H. Paulssen, A.-L. Børresen-Dale,
and E. Lund, “Deciphering normal blood gene expression variation—the
nowac postgenome study,” PLoS genetics, vol. 6, no. 3, p. e1000873, 2010.

[42] M. Holden, L. Holden, K. Olsen, and E. Lund, “Local in time statistics
for detecting weak gene expression signals in blood – illustrated for
prediction of metastases in breast cancer in the nowac post-genome
cohort,” Advances in Genomics and Genetics, vol. 55, no. 2017:7, pp. 11–28,
2017.

[43] V. Dumeaux and E. Lund, “Gene expression profile in diagnostics,” Oct. 22
2015, uS Patent App. 14/646,010.

[44] Y. Xie, Dynamic Documents with R and knitr. Chapman and Hall/CRC,
2016.

[45] git-submodule, https://git-scm.com/docs/git-submodule.

[46] git-raw, https://github.com/atofigh/git-raw.

[47] git-annex, https://git-annex.branchable.com.

[48] Git LFS, https://git-lfs.github.com.

[49] R Markdown, http://rmarkdown.rstudio.com.

[50] Gitlab, https://gitlab.com/.

[51] E. at Nature, “Reality check on reproducibility,” Nature, vol. 533, no.
7604, p. 437, 2016.

[52] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, “Ten simple rules
for reproducible computational research,” PLoS computational biology,
vol. 9, no. 10, p. e1003285, 2013.

[53] R. Gentleman andD. Temple Lang, “Statistical analyses and reproducible
research,” Journal of Computational and Graphical Statistics, vol. 16, no. 1,
pp. 1–23, 2007.

[54] J. S. S. Lowndes, B. D. Best, C. Scarborough, J. C. Afflerbach, M. R.
Frazier, C. C. O’Hara, N. Jiang, and B. S. Halpern, “Our path to better
science in less time using open data science tools,” Nature Ecology &
Evolution, vol. 1, no. 6, p. 0160, 2017.

[55] P. J. McMurdie and S. Holmes, “phyloseq: an r package for reproducible
interactive analysis and graphics of microbiome census data,” PloS one,
vol. 8, no. 4, p. e61217, 2013.

https://git-scm.com/docs/git-submodule
https://github.com/atofigh/git-raw
https://git-annex.branchable.com
http://rmarkdown.rstudio.com
https://gitlab.com/

[56] G. Finak, B. Mayer, W. Fulp, P. Obrecht, A. Sato, E. Chung, D. Holman,
and R. Gottardo, “Datapackager: Reproducible data preprocessing, stan-
dardization and sharing using r/bioconductor for collaborative data
analysis,” Gates Open Research, vol. 2, 2018.

[57] The Comprehensive R Archive Network (CRAN), https://cran.r-project.
org.

[58] N. Gehlenborg, S. I. O’donoghue, N. S. Baliga, A. Goesmann, M. A. Hibbs,
H. Kitano,O. Kohlbacher,H. Neuweger,R. Schneider,D. Tenenbaum et al.,
“Visualization of omics data for systems biology,” Nature methods, vol. 7,
no. 3s, p. S56, 2010.

[59] S. I. O’Donoghue, B. F. Baldi, S. J. Clark, A. E. Darling, J. M. Hogan,
S. Kaur, L. Maier-Hein, D. J. McCarthy, W. J. Moore, E. Stenau et al.,
“Visualization of biomedical data,” Annual Review of Biomedical Data
Science, vol. 1, pp. 275–304, 2018.

[60] S. I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D. S. Goodsell, J.-K.
Hériché, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W. Shat-
tuck et al., “Visualizing biological data—now and in the future,” Nature
methods, vol. 7, no. 3, p. S2, 2010.

[61] rpy2, https://rpy2.bitbucket.io.

[62] M. Tanabe and M. Kanehisa, “Using the KEGG database resource,” Cur-
rent protocols in bioinformatics, vol. 38, no. 1, pp. 1–12, 2012.

[63] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader,
“Cytoscape. js: a graph theory library for visualisation and analysis,”
Bioinformatics, vol. 32, no. 2, pp. 309–311, 2015.

[64] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” IEEE
transactions on visualization and computer graphics, vol. 17, no. 12, pp.
2301–2309, 2011.

[65] A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir,
P. Tamayo, and J. P. Mesirov, “Molecular signatures database (MSigDB)
3.0,” Bioinformatics, vol. 27, no. 12, pp. 1739–1740, 2011.

[66] M. Kanehisa and S. Goto, “Kegg: kyoto encyclopedia of genes and
genomes,” Nucleic acids research, vol. 28, no. 1, pp. 27–30, 2000.

[67] E. Sayers, “Entrez programming utilities help,” http://www.ncbi.nlm.

https://cran.r-project.org
https://cran.r-project.org
https://rpy2.bitbucket.io
http://www.ncbi.nlm.nih.gov/books/NBK25499
http://www.ncbi.nlm.nih.gov/books/NBK25499

nih.gov/books/NBK25499, 2009.

[68] K. A. Gray, B. Yates, R. L. Seal, M. W. Wright, and E. A. Bruford, “Gene-
names. org: the HGNC resources in 2015,” Nucleic acids research, vol. 43,
no. D1, pp. D1079–D1085, 2014.

[69] Sigma, http://sigmajs.org.

[70] P. Langfelder and S. Horvath, “Wgcna: an r package for weighted cor-
relation network analysis,” BMC bioinformatics, vol. 9, no. 1, p. 559,
2008.

[71] B. J. Boersma,M. Reimers,M. Yi, J. A. Ludwig, B. T. Luke, R. M. Stephens,
H. G. Yfantis, D. H. Lee, J. N. Weinstein, and S. Ambs, “A stromal gene
signature associated with inflammatory breast cancer,” International
journal of cancer, vol. 122, no. 6, pp. 1324–1332, 2008.

[72] A. Fabregat, F. Korninger, G. Viteri, K. Sidiropoulos, P. Marin-Garcia,
P. Ping, G. Wu, L. Stein, P. D’Eustachio, and H. Hermjakob, “Reactome
graph database: Efficient access to complex pathway data,” PLoS com-
putational biology, vol. 14, no. 1, p. e1005968, 2018.

[73] J. M. Villaveces, R. C. Jimenez, and B. H. Habermann, “Keggviewer,
a biojs component to visualize kegg pathways,” F1000Research, vol. 3,
2014.

[74] C. Partl, A. Lex, M. Streit, D. Kalkofen, K. Kashofer, and D. Schmalstieg,
“enroute: Dynamic path extraction from biological pathway maps for in-
depth experimental data analysis,” in 2012 IEEE Symposium on Biological
Data Visualization (BioVis). IEEE, 2012, pp. 107–114.

[75] W. Luo, G. Pant, Y. K. Bhavnasi, S. G. Blanchard Jr, and C. Brouwer,
“Pathviewweb: user friendly pathway visualization anddata integration,”
Nucleic acids research, vol. 45, no. W1, pp. W501–W508, 2017.

[76] J. Bussery, L.-A. Denis, B. Guillon, P. Liu, G. Marchetti, and G. Rahal,
“etriks platform: Conception and operation of a highly scalable cloud-
based platform for translational research and applications development,”
Computers in biology and medicine, vol. 95, pp. 99–106, 2018.

[77] A. Bertram, “Renjin: The new R interpreter built on the JVM,” in The
R User Conference, useR! 2013 July 10-12 2013 University of Castilla-La
Mancha, Albacete, Spain, vol. 10, no. 30, 2013, p. 105.

http://www.ncbi.nlm.nih.gov/books/NBK25499
http://www.ncbi.nlm.nih.gov/books/NBK25499
http://www.ncbi.nlm.nih.gov/books/NBK25499

[78] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: a software envi-
ronment for integrated models of biomolecular interaction networks,”
Genome research, vol. 13, no. 11, pp. 2498–2504, 2003.

[79] K. Ono, T. Muetze, G. Kolishovski, P. Shannon, and B. Demchak, “Cyrest:
Turbocharging Cytoscape access for external tools via a RESTful API,”
F1000Research, vol. 4, 2015.

[80] AppArmor, http://wiki.ubuntu.com/AppArmor.

[81] sparklyr: R interface for Apache Spark, http://spark.rstudio.com.

[82] SparkR, http://spark.apache.org/docs/latest/sparkr.html.

[83] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2–2.

[84] N. Servant, J. Roméjon, P. Gestraud, P. La Rosa, G. Lucotte, S. Lair,
V. Bernard, B. Zeitouni, F. Coffin, G. Jules-Clément et al., “Bioinformatics
for precision medicine in oncology: principles and application to the
shiva clinical trial,” Frontiers in genetics, vol. 5, 2014.

[85] A. Sboner andO. Elemento, “A primer on precisionmedicine informatics,”
Briefings in bioinformatics, vol. 17, no. 1, pp. 145–153, 2015.

[86] Picard, https://broadinstitute.github.io/picard.

[87] S. Andrews et al., “Fastqc: a quality control tool for high throughput
sequence data,” 2010.

[88] A. M. Bolger, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer
for Illumina sequence data,” Bioinformatics, vol. 30, no. 15, pp. 2114–2120,
2014.

[89] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernyt-
sky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly et al., “The genome
analysis toolkit: a MapReduce framework for analyzing next-generation
dna sequencing data,” Genome research, vol. 20, no. 9, pp. 1297–1303,
2010.

http://wiki.ubuntu.com/AppArmor
http://spark.rstudio.com
http://spark.apache.org/docs/latest/sparkr.html
https://broadinstitute.github.io/picard

[90] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences,” Genome biology, vol. 11, no. 8, p.
R86, 2010.

[91] Docker, https://www.docker.com.

[92] BioContainers, “Biocontainers,” https://biocontainers.pro, 2017.

[93] K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Jaffe,
C. Sougnez, S. Gabriel, M. Meyerson, E. S. Lander, and G. Getz, “Sensi-
tive detection of somatic point mutations in impure and heterogeneous
cancer samples,” Nature biotechnology, vol. 31, no. 3, pp. 213–219, 2013.

[94] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz—open source graph drawing tools,” in International Sym-
posium on Graph Drawing. Springer, 2001, pp. 483–484.

[95] A. Cornish and C. Guda, “A comparison of variant calling pipelines using
genome in a bottle as a reference,” BioMed research international, vol.
2015, 2015.

[96] Arvados, https://arvados.org.

[97] G. Kaushik, S. Ivkovic, J. Simonovic, N. Tijanic, B. Davis-Dusenbery, and
D. Kural, “Rabix: an open-source workflow executor supporting recom-
putability and interoperability of workflow descriptions,” in Pacific Sym-
posium on Biocomputing. Pacific Symposium on Biocomputing, vol. 22.
NIH Public Access, 2016, p. 154.

[98] W. Tang, J. Wilkening, N. Desai, W. Gerlach, A. Wilke, and F. Meyer, “A
scalable data analysis platform for metagenomics,” in Big Data, 2013
IEEE International Conference on. IEEE, 2013, pp. 21–26.

[99] J. W. Lau, E. Lehnert, A. Sethi, R. Malhotra, G. Kaushik, Z. Onder,
N. Groves-Kirkby, A. Mihajlovic, J. DiGiovanna, M. Srdic et al., “The can-
cer genomics cloud: Collaborative, reproducible, and democratized—a
new paradigm in large-scale computational research,” Cancer research,
vol. 77, no. 21, pp. e3–e6, 2017.

[100] Kubernetes, https://kubernetes.io.

[101] J. A. Novella, P. Emami Khoonsari, S. Herman, D. Whitenack, M. Capuc-
cini, J. Burman, K. Kultima, and O. Spjuth, “Container-based bioinfor-

https://biocontainers.pro
https://arvados.org

matics with pachyderm,” Bioinformatics, p. bty699, 2018.

[102] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific con-
tainers for mobility of compute,” PloS one, vol. 12, no. 5, p. e0177459,
2017.

[103] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, p. 316, 2017.

[104] B. Kim, T. A. Ali, C. Lijeron, E. Afgan, and K. Krampis, “Bio-docklets: Vir-
tualization containers for single-step execution of ngs pipelines.” bioRxiv,
p. 116962, 2017.

[105] A. A. Ali, M. El-Kalioby, and M. Abouelhoda, “The case for docker in
multicloud enabled bioinformatics applications,” in International Confer-
ence on Bioinformatics and Biomedical Engineering. Springer, 2016, pp.
587–601.

[106] P. Belmann, J. Dröge, A. Bremges, A. C. McHardy, A. Sczyrba, and
M. D. Barton, “Bioboxes: standardised containers for interchangeable
bioinformatics software,” Gigascience, vol. 4, no. 1, p. 47, 2015.

[107] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and
C. Notredame, “The impact of docker containers on the performance of
genomic pipelines,” PeerJ, vol. 3, p. e1273, 2015.

[108] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

Paper 1
B. Fjukstad, K. S. Olsen, M. Jareid, E. Lund, and L. A. Bongo, “Kvik: three-tier
data exploration tools for flexible analysis of genomic data in epidemiological
studies,” F1000Research, vol. 4, 2015

The following includes 5 of the 15 total pages. The first 5 pages is the paper, while
remaining 10 pages are open reviews, responses, and additions to the final ver-
sion of the paper. These are available online at f1000research. com/ articles/ 4-
81/ v2

89

f1000research.com/articles/4-81/v2
f1000research.com/articles/4-81/v2

F1000Research

Open Peer Review

, Otto-von-Guericke UniversityPaul Klemm
Magdeburg Germany

, Boston University USAZhenjun Hu

, National Academy ofLilit Nersisyan
Sciences of Armenia Armenia

Discuss this article
 (0)Comments

3

2

1

SOFTWARE TOOL ARTICLE
 Kvik: three-tier data exploration tools for flexible analysis

 of genomic data in epidemiological studies [version 2; referees:
1 approved, 2 approved with reservations]
Bjørn Fjukstad , Karina Standahl Olsen , Mie Jareid , Eiliv Lund , Lars Ailo Bongo1

Department of Computer Science, UiT - The Arctic University of Norway, Tromsø, 9037, Norway
Department of Community Medicine, UiT - The Arctic University of Norway, Tromsø, 9037, Norway

Abstract
Kvik is an open-source framework that we developed for explorative analysis of
functional genomics data from large epidemiological studies. Creating such
studies requires a significant amount of time and resources. It is therefore usual
to reuse the data from one study for several research projects. Often each
project requires implementing new analysis code, integration with specific
knowledge bases, and specific visualizations. Although existing data
exploration tools are available for single study data exploration, no tool
provides all the required functionality for multistudy data exploration. We have
therefore used the Kvik framework to develop Kvik Pathways, an application for
exploring gene expression data in the context of biological pathways. We have
used Kvik Pathways to explore data from both a cross-sectional study design
and a case-control study within the Norwegian Women and Cancer (NOWAC)
cohort. Kvik Pathways follows the three-tier architecture in web applications
using a powerful back-end for statistical analyses and retrieval of metadata.In
this note, we describe how we used the Kvik framework to develop the Kvik
Pathways application. Kvik Pathways was used by our team of epidemiologists
toexplore gene expression data from healthy women with high and low plasma
ratios of essential fatty acids.

This article is included in the Container

 channel.Virtualization in Bioinformatics

1 2 2 2 1

1
2

 Referee Status:

 Invited Referees

version 2
published
16 Jun 2015

version 1
published
30 Mar 2015

 1 2 3

report

report report

report

 30 Mar 2015, :81 (doi:)First published: 4 10.12688/f1000research.6238.1
 16 Jun 2015, :81 (doi:)Latest published: 4 10.12688/f1000research.6238.2

v2

Page 1 of 15

F1000Research 2015, 4:81 Last updated: 25 DEC 2016

F1000Research

 Lars Ailo Bongo ()Corresponding author: larsab@cs.uit.no
 Fjukstad B, Standahl Olsen K, Jareid M How to cite this article: et al. Kvik: three-tier data exploration tools for flexible analysis of genomic

 2015, :81 (doi: data in epidemiological studies [version 2; referees: 1 approved, 2 approved with reservations] F1000Research 4
)10.12688/f1000research.6238.2

 © 2015 Fjukstad B . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 This work was supported by a grant from the European Research Council, under the title "Transcriptomics in cancerGrant information:
epidemiology - TICE".

 Competing interests: No competing interests were disclosed.
 30 Mar 2015, :81 (doi:) First published: 4 10.12688/f1000research.6238.1

Page 2 of 15

F1000Research 2015, 4:81 Last updated: 25 DEC 2016

Introduction
Visual explorative analysis is essential for understanding biologi-
cal functions in large-scale omics’ datasets. However, enabling the
inclusion of omics’ data in large epidemiological studies requires
collecting samples from thousands of people at different biologi-
cal levels over a long period of time. It is therefore usual to reuse
the data for different research questions and projects. Although an
existing tool may be useful for one project, no tool provides the
required functionality for several different projects.

We have designed and implemented Kvik, a framework that makes
it easy to develop new applications to explore different research
questions and data. The initial version Kvik1 contained a prototype
system for exploring biological pathways and gene expression data.
From this prototype we built the Kvik Framework, which provides
developers a simple interface to powerful systems for statistical
analyses and meta-databases, and Kvik Pathways: a publicly avail-
able data exploration application. From our experience in devel-
oping a framework for building data exploration applications, we
identified four requirements such applications should satisfy:

 Interactive The applications should provide interactive explo-
ration of datasets through visualizations and integration with
relevant information. To understand the large quantities of het-
erogeneous data in epidemiological studies, researchers need
interactive visualizations that provide different views and pres-
entations of the data. Also, to understand the results it is impor-
tant to have instant access to existing knowledge from online
databases.

 Familiar They should use familiar visual representations to
present information to researchers. For more efficient data
exploration it is effective to use representations that research-
ers are familiar with both from the literature and from other
applications.

 Simple to use Researchers should not need to install software
to explore their data through the applications. The applications
should protect the researcher from the burden of installing and
keeping an application up to date.

 Lightweight Data presentation and computation should be sep-
arated to make it possible for researchers to explore data with-
out having to have the computational power to run the analyses.
With the growing rate data is produced at, we cannot expect that
researchers have the resources to store and analyze data on their
own computers.

There are several tools for exploring biological data in the context
of pathways, such as VisANT (available online at visant.bu.edu)
by 2, VANTED (available online at vanted.ipk-gatersleben.de)3,
enRoute by 4 or Entourage by 5 (both available online at caleydo.org).
However, these tools do not provide the adaptability needed for
exploration of multi-study datasets. Many existing tools place the
visualization, data analysis and storage on the user’s computer,
making it necessary to have a powerful computer. In addition, the
tools are often standalone applications that require users to install
and update the applications. Kvik Pathways satisfies the above
requirements as follows:

 Interactive Kvik Pathways provides interactive pathway visu-
alizations and information from the popular Kyoto encyclope-
dia of genes and genomes (KEGG)6 database (available online
at kegg.jp).

 Simple to use Kvik Pathways uses HTML5 and modern JavaScript
libraries to provide an interactive application that runs in any
modern web browser.

 Familiar Kvik Pathways uses the familiar pathway represen-
tations from KEGG and graphical user interfaces found in
modern web applications.

 Lightweight Kvik Pathways uses a powerful back-end provided
by the Kvik framework to perform statistical analyses.

Both Kvik and Kvik Pathways are open-sourced at github.com/fjuk-
stad/kvik. We provide an online version of Kvik Pathways at kvik.
cs.uit.no and to run Kvik Pathways in a local Docker instance or on
a cloud service such as Amazon Web Services (aws.amazon.com)
or Google Compute Engine (cloud.google.com/compute), we pro-
vide a Docker image at registry.hub.docker.com/u/fjukstad/kvik.

In this note we describe how we used Kvik to implement Kvik Path-
ways, a tool for exploring gene expression in the context of bio-
logical pathways. In Kvik Pathways researchers can explore gene
expression data from 7 combined with information from online
knowledge bases. We provide the following contributions:

• Kvik Pathways, a publicly available web application for exploring
gene expression data in the context of biological pathways
without any additional applications than a web browser.

• A requirement analysis for interactive exploration tools for
epidemiological studies.

• A detailed description of how we have used Kvik Pathways to
explore gene expression data from healthy women with high
and low plasma ratios of essential fatty acids.

Methods
Kvik Pathways allows users to interactively explore a molecular
dataset, such as gene expression, through a web application. It pro-
vides pathway visualizations and detailed information about genes
and pathways from the KEGG databases (Figure 1). Through path-
way visualizations and integration with the KEGG databases, epide-
miologists can perform targeted exploration of pathways and genes

 Amendments from Version 1

Overall we reduced the implementation details in the note.
This was something that both reviewers pointed out and we
felt that the note was a bit too technical. We also clarified the
difference between Kvik and Kvik Pathways. We have changed
the requirements and included a list of contributions. We also
revisited the figures to make them more clear to the reader. We
also fixed some grammatical errors.

See referee reports

REVISED

Page 3 of 15

F1000Research 2015, 4:81 Last updated: 25 DEC 2016

to get an overview of the biological functions that are involved with
gene expression from the underlying dataset. Kvik Pathways gath-
ers information about related pathways and retrieves relevant infor-
mation about genes, making it unnecessary for researchers to spend
valuable time looking up this information manually. For example,
navigating a set of pathways and browsing information about genes
in these, requires the researcher to manually query KEGG for each
specific gene. Kvik Pathways retrieves information about genes
without the researcher having to leave the pathway visualization to
retrieve relevant information.

The Kvik framework provides a flexible statistics back-end where
researchers can specify the analyses they want to run to generate
data for later visualization. For example, in Kvik Pathways we
retrieve fold change for single genes every time a pathway is viewed
in the application. These analyses are run ad hoc on the back-end
servers and generates output that is displayed in the pathways in
the client’s web browser. The data analyses are implemented in a
simple R script and can make use of all available libraries in R, such
as Bioconductor (bioconductor.org).

Researchers modify this R script to, for example, select a normaliza-
tion method, or to tune the false discovery rate (FDR) used to adjust
the p-values that Kvik Pathways uses to highlight significantly dif-
ferentially expressed genes. Since Kvik Pathways is implemented
as a web application and the analyses are run ad hoc, when the

analyses change, researchers get an updated application by simply
refreshing the Kvik Pathways webpage.

Implementation
We implemented interactive visualizations using the Cytoscape.js
(js.cytoscape.org) library to generate the interactive pathway visu-
alizations, and D3 (d3js.org) for Document Object Model (DOM)
manipulation such as generating bar charts with HTML <svg>
elements. We integrate these with the popular Bootstrap front-end
framework (getbootstrap.com) to provide a familiar and aestheti-
cally pleasing user interface.

Kvik Pathways has a three-tiered architecture of independent layers
(Figure 2). The browser layer consists of the web application for
exploring gene expression data and biological pathways. A front-
end layer provides static content such as HTML pages and style-
sheets, as well as an interface to the data sources with dynamic
content such as gene expression data or pathway maps to the web
application. The back-end layer contains information about path-
ways and genes, as well as computational and storage resources
to process genomic data such as the NOWAC data repository. The
Kvik framework provides the components in the back-end layer.

In our setup the Data Engine in the back-end layer provides an inter-
face to the NOWAC data repository stored on a secure server on our
local supercomputer. In Kvik Pathways all gene expression data is

Figure 1. Screenshot of the renin-angiotensin pathway (KEGG pathway id hsa04614) in Kvik Pathways. The user has selected the gene
CPA3, which brings up the panel on the right. From here researchers can browse pathways that the gene is a member of, and read relevant
information about the gene from KEGG.

Page 4 of 15

F1000Research 2015, 4:81 Last updated: 25 DEC 2016

stored on the computer that runs the Data Engine. The Data Engine
runs an R session accessible over remote procedure calls (RPCs)
from the front-end layer using RPy2 (rpy.sourceforge.net) to interface
with R. To access data and run analyses the Data Interface exposes a
HTTP API to the browser layer (Table 1 provides the interfaces).

To create pathway visualizations the Kvik back-end retrieves and
parses the KEGG Markup Language (KGML) representation and
pathway image from KEGG databases through its REST API
(rest.kegg.jp). This KGML representation of a pathway is an XML
file that contains a list of nodes (genes, proteins or compounds) and
edges (reactions or relations). Kvik parses this file and generates
a JSON representation that Kvik Pathway uses to create pathway
visualizations. Kvik Pathways Cytoscape.js to create a pathway
visualization from the list of nodes and edges and overlay the nodes
on the pathway image. To reduce latency when using the KEGG
REST API, we cache every response on our servers. We use the
average fold change between the groups (women with high or low
plasma ratios of essential fatty acids) in the dataset to color the
genes within the pathway maps. To highlight p-values, the pathway
visualization shows an additional colored frame around genes. We
visualize fold change values for individual samples as a bar chart
in a side panel. This bar chart gives researchers a global view of the
fold change in the entire dataset.

Operation
Kvik Pathways runs in all modern web browsers and does not
require any third-party software.

Use case
We used Kvik Pathways to repeat the analyses in a previous pub-
lished project (7, doi: 10.1371/journal.pone.0067270) that com-
pared gene expression in blood from healthy women with high
and low plasma ratios of essential fatty acids. Gene expression
differences between groups were assessed using t-tests (p-values
adjusted with the Benjamini-Hochberg method). There were 184
differentially expressed genes significant on the 5% level. When
exploring this gene list originally, functional information was
retrieved from GeneCards and other repositories, and the list was
analyzed for overlap with known pathways using MSigDB (avail-
able online at broadinstitute.org/gsea/msigdb). The researchers had
to manually maintain overview of single genes, gene networks or
pathways, and gather functional information gene by gene while
assessing differences in gene expression levels. With this approach,
researchers are limited by manual capacity, and the results may be
prone to researcher bias. Kvik Pathways eliminates this researcher
bias and does not limit the information retrieval to a researcher’s
manual capacity.

Initially, Kvik Pathways was implemented to explore gene expres-
sion data from a not yet published dataset. To use Kvik Path-
ways to explore the data from the analyses in 7, we only needed
to make small modifications to the analysis R script used by the
Data Engine. (The modified R script is found at github.com/fjuks-
tad/kvik/blob/master/dataengine/data-engine.r). Instead of loading
the unpublished dataset, we could load the dataset from 7 and use
the four functions that are accessible over RPC (Table 1 shows the
HTTP API which uses the underlying RPCs). Currently this script
is less than 30 lines, consisting of four functions to retrieve data and
a simple initialization step that reads the dataset. Researchers only
have to modify these four functions to enable exploration of new
datasets. As of the current implementation of Kvik Pathways research-
ers have to modify the analysis script outside the application.

As an example of practical use of Kvik Pathways, we chose one
of the significant pathways from the overlap analysis, the renin-
angiotensin pathway (Supplementary table S5 in 7). The pathway
contains 17 genes, and in the pathway map we could instantly iden-
tify the two genes that drive this result. The color of the gene nodes
in the pathway map indicates the fold change, and the statistical
significance level is indicated by the color of the node’s frame. We
use this image of a biological process to see how these two genes
(and their expression levels) are related to other genes in that path-
way, giving a biologically more meaningful context as compared to
merely seeing the two genes on a list.

Summary
Kvik Pathways is an open-source system for explorative analyses
of functional genomics data from epidemiological studies. It uses R
to perform on-demand data analyses providing a flexible back-end
that can expand to new analyses and research projects. It uses mod-
ern visualization libraries and a powerful back-end for on-demand
statistical analyses. Epidemiologists are using Kvik Pathways to
analyze gene expression data. Kvik Pathways is open-sourced at
github.com/fjukstad/kvik and is available as a Docker image at
registry.hub.docker.com/u/fjukstad/kvik.

Table 1. The REST interface to the Data Engine. All URLs are
relative to the hostname where the Data Engine server runs. On
our public installation the Data Engine runs on kvik.cs.uit.no:8888.
For example, use kvik.cs.uit.no:8888/genes/ to retrieve all available
genes in our dataset. By using a HTTP API we can build different
data exploration applications in virtually any programming language.

URL Description

/fc/[genes...] Calculate and retrieve fold-change for the
specified genes

/pvalues/[genes...] Calculate and retrieve p-values for the
specified genes

/exprs/[genes...] Get the raw gene expression values from
the dataset

/genes Get a list of all genes in the dataset

Figure 2. The three-tiered architecture of Kvik Pathways.

Page 5 of 15

F1000Research 2015, 4:81 Last updated: 25 DEC 2016

Data availability
Data used in the use case is available in the Gene Expression Omnibus
(ncbi.nlm.nih.gov/geo), under accession number GSE15289.

Software availability
Latest source code
https://github.com/fjukstad/kvik

Source code as at the time of publication
https://github.com/F1000Research/kvik/releases/tag/1.0

Archived source code as at the time of publication
http://dx.doi.org/10.5281/zenodo.16375

Software license
The MIT license.

Author contributions
LAB and BF designed the architecture of the system. BF implemented.
All conducted the requirements analysis. EL, MJ, KSO contributed
case study. BF drafted manuscript. All authors read, revised and
approved the manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by a grant from the European Research
Council, under the title “Transcriptomics in cancer epidemiology -
TICE”.

Acknowledgements
Gene expression profiles were analyzed at the Microarray Resource
Center Tromsø, UiT – The Arctic university of Norway.

1. Fjukstad B, Olsen KS, Jareid M, et al.: Kvik: Interactive exploration of genomic data
from the NOWAC postgenome biobank. Norsk Informatikkonferanse (NIK). 2014.
Reference Source

2. Hu Z, Chang YC, Wang Y, et al.: VisANT 4.0: Integrative network platform to
connect genes, drugs, diseases and therapies. Nucleic Acids Res. 2013; 41(Web
Server issue): W225–W231.
PubMed Abstract | Publisher Full Text | Free Full Text

3. Junker BH, Klukas C, Schreiber F: VANTED: a system for advanced data analysis
and visualization in the context of biological networks. BMC Bioinformatics.
2006; 7 (1): 109.
PubMed Abstract | Publisher Full Text | Free Full Text

4. Partl C, Lex A, Streit M, et al.: enRoute: Dynamic path extraction from biological
pathway maps for in-depth experimental data analysis. In Biological Data

Visualization (BioVis), 2012 IEEE Symposium on, pages 107–114.
Publisher Full Text

5. Lex A, Partl C, Kalkofen D, et al.: Entourage: visualizing relationships between
biological pathways using contextual subsets. IEEE Trans Vis Comput Graph.
2013; 19 (12): 2536–2545.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res. 2000; 28 (1): 27–30.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Olsen KS, Fenton C, Frøyland L, et al.: Plasma fatty acid ratios affect blood gene
expression profiles--a cross-sectional study of the Norwegian Women and
Cancer Post-Genome Cohort. PLoS One. 2013; 8 (6): e67270.
PubMed Abstract | Publisher Full Text | Free Full Text

References

Page 6 of 15

F1000Research 2015, 4:81 Last updated: 25 DEC 2016

Paper 2
B. Fjukstad, V. Dumeaux, K. S. Olsen, E. Lund, M. Hallett, and L. A. Bongo,
“Building applications for interactive data exploration in systems biology,” in
Proceedings of the 8th ACM International Conference on Bioinformatics, Compu-
tational Biology, and Health Informatics. ACM, 2017, pp. 556–561

97

Building Applications for Interactive Data Exploration in
Systems Biology

Bjørn Fjukstad
Department of Computer Science

UiT The Arctic University of
Norway

Vanessa Dumeaux
Department of Biology
Concordia University

Karina Standahl Olsen
Department of Community

Medicine
UiT The Arctic University of

Norway

Eiliv Lund
Department of Community

Medicine
UiT The Arctic University of

Norway

Michael Hallett
Department of Biology
Concordia University

Lars Ailo Bongo
Department of Computer Science

UiT The Arctic University of
Norway

ABSTRACT

The significant increase in the rate of data generation by the
systems biology community creates a need for interactive
exploration tools to explore the resultant datasets. Such tools
need to combine advanced statistical analyses, prior knowl-
edge from biological databases, and interactive visualizations
with intuitive user interfaces. Each specific research question
potentially requires a specialized user interface and visualiza-
tion methods. Although some features are application-specific,
the underlying components of the data analysis tool can be
shared and reused.

Our approach for developing data exploration tools in sys-
tems biology builds on the microservice architecture that
separates an application into smaller components which can
communicate using language-agnostic protocols. We show
that this design is well suited for bioinformatics applica-
tions where di↵erent tools written in di↵erent languages by
di↵erent research groups is the norm. Packaging each ser-
vice in a software container enables re-use and sharing of
key components between applications, reducing development,
deployment, and maintenance time.

We demonstrate the viability of our approach through a
web application, entitled MIxT blood-tumor, for exploring
and comparing transcriptional profiles from blood and tumor
samples in breast cancer patients. The application integrates
advanced statistical software, up-to-date information from
biological databases, and modern data visualization libraries.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ACM-BCB’17, August 20-23, 2017, Boston, MA, USA.

2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-4722-8/17/08. . . 15.00
DOI: http://dx.doi.org/10.1145/3107411.3107481

KEYWORDS

Interactive data exploration, software containers, visualiza-
tion, microservices, systems biology, breast cancer.

INTRODUCTION

In recent years the biological community has generated an un-
precedented amount of data. While the cost of data collection
has drastically decreased, data analysis continue to represent
a large fraction of the total cost of these studies.[9] Data
analysis tools, especially those designed specifically for the
project at hand, provide clear benefit to the human experts
who are interpreting data and deriving results.

Often in systems biology studies, the ability to explore
newly generated data relative to prior knowledge located
in third-party databases and software systems is key.
This includes, for example, entities such as the Gene
Ontology (GO),1 the Kyoto Encyclopedia of Genes and
Genomes (KEGG),2 and the Molecular Signatures Database
(MSigDB)3 that together catalog the function of nearly every
gene, gene product, pathway or cellular process. These tools,
and most bioinformatics databases in general, o↵er interfaces
for data retrieval.

Data analysis in systems biology is greatly reliant on pro-
gramming languages especially tailored to these domains, pro-
viding easy direct access to specific algorithms and statistical
routines. The R statistical programming language provides
developers open access to thousands of libraries through
repositories such as CRAN4 or Bioconductor5. Similarly,
other languages such as Python and Go have bioinformatic
extensions including BioPython[2] and biogo[6] respectively,
providing domain specific routines. Although tremendously
helpful, di↵erent tools and languages are used in di↵erent
domains of systems biology for many reasons. This creates a

1geneontology.org.
2kegg.jp.
3software.broadinstitute.org/gsea/msigdb.
4cran.r-project.org.
5bioconductor.org.

need for novel approaches to integrate the di↵erent libraries
between the programming languages and tools.

A microservice architecture structures an application into
small reusable, loosely coupled parts. These communicate via
lightweight programming language-agnostic protocols such
as HTTP, thus making it possible to write single applica-
tions in multiple programming languages. This way the most
suitable programming language is used for each specific part.
To build a microservice application, developers bundle each
service in a software container. Containers are built from
configuration files which describe the operating system, soft-
ware packages and their associated versions. Several software
container implementations exist including Rkt6 but Docker,7

is perhaps the most broadly used. Initiatives such as BioCon-
tainers8 now provide containers pre-installed with di↵erent
bioinformatics tools. While the enabling technology is avail-
able, the microservices approach is not yet widely adopted
in bioinformatics.[11]

From our experience we identified a set of components
and features that are central to building data exploration
applications.

(1) A low-latency language-independent approach for
integrating, or embedding, statistical software, such
as R, directly into a data exploration application.

(2) Low latency language-independent interface to online
reference databases in biology that users can query
to explore analyses.

(3) A simple method for deploying and sharing the com-
ponents of an application between projects.

In this paper, we describe a novel approach for build-
ing data exploration applications in systems biology via a
sample web application, MIxT (Matched Interactions across
Tissues) using high-throughput gene expression profiles of
breast cancer tumor data with matched profiles from the
patients blood.

METHODS

In this section we first motivate our microservice approach
based on our experiences developing the MIxT web applica-
tion. We describe the process from initial data analysis to the
final application, highlighting the importance of language-
agnostic services to facilitate the use of di↵erent tools in
di↵erent parts of the application. We then generalize the
ideas to a set of principles and services that can be reused
and shared between applications, and show their design and
implementation.

Motivating Example

The aim of the Matched Interactions Across Tissues (MIxT)
study was to identify genes and pathways in the primary
breast tumor that are tightly linked to genes and pathways
in the patient blood cells.[3] We generated and analyzed ex-
pression profiles from blood and matched tumor cells in 173

6coreos.com/rkt.
7docker.com.
8biocontainers.pro.

breast cancer patients included in the Norwegian Women
and Cancer (NOWAC) study. The MIxT analysis starts by
identifying sets of genes tightly co-expressed across all pa-
tients in each tissue. Each group of genes or modules were
annotated based on a priori biological knowledge about gene
functionality. Focus was placed on the relationships between
tissues by asking if specific biologies in one tissue are linked
with (possibly distinct) biologies in the second tissue, and
this within di↵erent subgroup of patients (i.e. subtypes of
breast cancer).

We built an R package, mixtR,9 with the statistical meth-
ods and static visualizations for identifying associations be-
tween modules across tissues. To make the results more easily
accessible we built a web application that interfaces with the
R package, but also online databases to retrieve relevant meta-
data. To make it possible to easily update or re-implement
parts of the system without e↵ecting the entire application,
it was developed using a microservice architecture. The soft-
ware containers allowed the application to be deployed on
a wide range of hardware, from local installations to cloud
systems.

Design Principles

Our experience can be generalized into the following design
principles for building applications in bioinformatics:

Principle 1: Build applications as collections of language-
agnostic microservices. This enables re-use of components
and does not enforce any specific programming language
on the user interfaces or the underlying components of the
application.

Principle 2: Use software containers to package each ser-
vice. This has a number of benefits: it simplifies deployment,
ensures that dependencies and libraries are installed, and
simplifies sharing of services between developers.

Microservice Design and Implementation

In the rest of the section we describe how we designed and
implemented two microservices in Kvik[4] which we later
used to build the MIxT web application.

Compute Service. The main goal of a data exploration appli-
cation in systems biology is to help users discover interesting
patterns in a biological dataset. Because of the complexity
of biological data and analyses, we need specialized software
to help find these patterns. Because these tools are built
to provide specialized analyses, they often don’t provide a
reusable interface outside the programming environment they
are built in.

We have built a compute service that provides an open
interface directly to the R programming language, thus pro-
viding access to a wealth of algorithm and statistical analysis
packages that exists within the R ecosystem. Application
developers can use the compute service to execute specialized
analyses and retrieve results either as plain text or binary
data such as plots. By interfacing directly with R, developers

9Available online at github.com/vdumeaux/mixtR.

can modify input parameters to statistical methods directly
from the user-facing application.

The compute service o↵ers three main operations to in-
terface with R: i) to call a function with one or more input
parameters from an R package, ii) to get the results from
a previous function call, and iii) a catch-all term that both
calls a function and returns the results. We use the same
terminology as OpenCPU[8] and have named the three opera-
tions Call, Get, and RPC respectively. These three operations
provide the necessary interface for applications to include
statistical analyses in the applications.

The compute service is implemented as an HTTP server
that communicates with a pre-set number of R processes to
execute statistical analyses. At initiation of the compute ser-
vice, a user-defined number of R worker sessions are launched
for executing analyses (default is 5). The compute service
uses a round-robin scheduling scheme to distribute incoming
requests to the workers. We provide a simple FIFO queue
for queuing of requests. The compute service also provides
the opportunity for applications to cache analysis results to
speed up subsequent calls.

Database Service. To interpret data, experts regularly ex-
ploit prior knowledge via database queries and the primary
scientific literature. There are a wealth of online databases,
some of which provide open APIs in addition to web user
interfaces that application developers can make use of. While
the databases can provide helpful information, there are some
limitations associated with their integration into interactive
data exploration applications: i) the APIs are not fast enough
to use in interactive applications where the application has
to perform multiple database queries, ii) some databases put
restrictions on the number of database queries, and iii) there
is no uniform way for storing additional database metadata
to identify database versions and query parameters.

To alleviate application developers of these challenges, we
built an database service that provides a solution to the three.
The service provides low latency, minimizes the number of
queries to remote databases, and stores additional metadata
to capture query parameters and database information. The
database service provides an open HTTP interface to biologi-
cal databases for retrieving meta-data on genes and processes.
We currently have packages for interfacing with E-utilities,10

MSigDB, HGNC, and KEGG.
Both the compute and the databases service in Kvik build

on the standard net/http package in the Go programming
language.11 The database service use the gocache12 package
to cache any query to an online database. In addition we
deploy each service as Docker containers.13

10eutils.ncbi.nlm.nih.gov.
11golang.org
12github.com/fjukstad/gocache.
13Available at hub.docker.com/r/fjukstad/kvik-r and hub.docker.com/
r/fjukstad/db.

MATCHED INTERACTIONS ACROSS
TISSUES (MIXT)

We show the viability of the microservices approach in Kvik
by describing the MIxT web application for exploring and
comparing transcriptional profiles from blood and tumor
samples. We conduct an initial evaluation to illustrate that
we can built interactive applications using the microservices
provided by Kvik.

Analysis Tasks

The web application provides functionality to perform six
data analysis tasks (A1-A6):

A1: Explore co-expression gene sets in tumor and blood
tissue. Users can explore gene expression patterns together
with clinicopathological variables (e.g. patient or tumor grade,
stage, age) for each module. In addition we enable users to
study the underlying biological functions of each module by
including gene set analyses between the module genes and
known gene sets.

A2: Explore co-expression relationships between genes.
Users can explore the co-expression relationship as a graph
visualization. Here genes are represented in the network with
nodes and edges represent statistically significant correlation
in expression between the two end-points.

A3: Explore relationships between modules from each
tissue. We provide two di↵erent metrics to compare modules,
and the web application enables users to interactively browse
these relationships. In addition to providing visualizations
the compare modules from each tissue, users can explore the
relationships, but for di↵erent breast cancer patient groups.

A4: Explore relationships between clinical variables and
modules. In addition to comparing the association between
modules from both tissues, users also have the possibility to
explore the association with a module and a specific clinical
variable. It is also possible to explore the associations after
first stratifying the tumors by breast cancer subtype (an
operation that is common in cancer related studies to deal
with molecular heterogeneity).

A5: Explore association between user-submitted gene lists
and computed modules. We want to enable users to explore
their own gene lists to explore them in context of the co-
expression gene sets. The web application must handle up-
loads of gene lists and compute association between the gene
list and the MIxT modules on demand.

A6: Search for genes or gene lists of interest. To facilitate
faster lookup of genes and biological processes, the web appli-
cation provides a search functionality that lets users locate
genes or gene lists and show association to the co-expression
gene sets.

Design and Implementation

From these six analysis tasks we designed and implemented
MIxT as a web application that integrates statistical analyses
and information from biological databases together with inter-
active visualizations. Figure 1 shows the system architecture
of MIxT which consists of three parts i) the web application

itself containing the user-interface and visualizations; ii) the
compute service performing the MIxT analyses developed in
an R package, delivering data to the web application; and
iii) the database service providing up-to-date information
from biological databases. Each of these components run
within Docker containers making the process of deploying
the application simple.

Figure 1: The architecture of the MIxT system. It
consists of a web application, the hosting web server,
a database service for retrieving metadata and a
compute service for performing statistical analysis.
Note that only the web application and the R pack-
age are specific to MIxT, the rest of the components
can be reused in other applications.

We structured the MIxT application with a separate view
for each analysis task. To explore the co-expression gene sets
(A1), we built a view that combines both static visualizations
from R together with interactive tables for gene overlap
analyses. Figure 2 shows the web page presented to users
when they access the co-expression gene set ’darkturquoise’
from blood. To explore the co-expression relationship between
genes (A2) we use an interactive graph visualization build
with Sigmajs14. We have built visualization for both tissues,
with graph sizes of 2705 nodes and 90 348 edges for the
blood network, and 2066 nodes and 50 563 edges for the
biopsy network. To visualize relationships between modules
from di↵erent tissues (A3), or their relationship to clinical
variables (A4) we built a heatmap visualization using the
d315 library. We built a simple upload page where users can
specify their gene sets (A5). The file is uploaded to the web
application which redirects it to the compute service that
runs the analyses. Similarly we can take user input to search
for genes and processes (A6).

The web application is hosted by a custom web server.
This web server is responsible for dynamically generating the
di↵erent views based on data from the statistical analyses
and biological databases, and serve these to users. It also

14sigmajs.org.
15d3js.org.

Figure 2: MIxT module overview page. The top left
panel contains the gene expression heatmap for the
module genes. The top right panel contains a table
of the genes found in the module. The bottom panel
contains the results of gene overlap analyses from the
module genes and known gene sets from MSigDB.

serves the di↵erent JavaScript visualization libraries and style
sheets.

Evaluation

To investigate if it is feasible to implement parts of an appli-
cation as separate services, we evaluate the response times
for a set of queries to each of the two supporting services.

To evaluate the database service we measure the query
time for retrieving information about a specific gene with
and without caching.16 This illustrates how we can improve
performance in an application by using a database service
rather than accessing the database directly. We use a AWS
EC2 t2.micro17 instance to host and evaluate the database
service. The results in Table 1 confirm a significant improve-
ment in response time when the database service caches the
results from the database lookups. In addition by serving the
results out of cache we reduce the number of queries to the
online database down to one.

Table 1: Time to retrieve a gene summary for a sin-
gle gene, comparing di↵erent number of concurrent
requests.

1 2 5 10 15

No cache 956ms 1123ms 1499ms 2147ms 2958ms

Cache 64ms 64ms 130ms 137ms 154ms

We evaluate the compute service by running a bench-
mark consisting of two operations: first generate a set of 100

16More details online at github.com/fjukstad/kvik/tree/master/db/
benchmark.
17See aws.amazon.com/ec2/instance-types for more information about
AWS EC2 instance types.

random numbers, then plot them and return the resulting
visualization.18 We use two c4.large instances on AWS EC2
running the Kvik compute service and OpenCPU base docker
containers. The servers have caching disabled. Table 2 shows
the time to complete the benchmark for di↵erent number of
concurrent connections. We see that the compute service in
Kvik performs better than the OpenCPU19 alternative. We
believe that speedup is because we keep a pool of R processes
that handle requests. In OpenCPU a new R process is forked
upon every request that results in any computation executed
in R. Other requests such as retrieving previous results do
not fork new R processes.

Table 2: Time to complete the benchmark with dif-
ferent number of concurrent connections.

1 2 5 10 15

Kvik 274ms 278ms 352ms 374ms 390ms

OpenCPU 500ms 635ms 984ms 1876ms 2700ms

RELATED WORK

In this section we discuss di↵erent methods that facilitates
building applications using a microservices approach.

Integrate Statistical Analyses

OpenCPU is a system for embedded scientific computing and
reproducible research.[8] Similar to the compute service in
Kvik, it o↵ers an HTTP API to the R programming language
to provide an interface with statistical methods. It allows
users to make function calls to any R package and retrieve
the results in a wide variety of formats such as JSON or
PDF. OpenCPU provides a JavaScript library for interfacing
with R, as well as Docker containers for easy installation,
and has been used to build multiple applications.20. The
compute service in Kvik follows many of the design patterns
in OpenCPU. Both systems interface with R packages using
a hybrid state pattern over HTTP. Both systems provide
the same interface to execute analyses and retrieve results.
Because of the similarities in the interface to R in Kvik we
provide packages for interfacing with our own R server or
OpenCPU R servers.

Shiny is a web application framework for R21 It allows
developers to build web applications in R without having to
have any knowledge about HTML, CSS, or Javascript. While
it provides an easy alternative to build web applications on
top of R, it cannot be used as a service in an application that
implements the user-interface outside R.

Renjin is a JVM-based interpreter for the R programming
language.[1] It allows developers to write applications in Java
that interact directly with R code. This makes it possible to

18More details at github.com/fjukstad/kvik/tree/master/r/
benchmarks.
19Built using the opencpu-server Docker image.
20opencpu.org/apps.html.
21shiny.rstudio.com.

use Renjin to build a service for running statistical analyses
on top of R. One serious drawback is that existing R packages
must be re-built specifically for use in Renjin.

Visualization

Cytoscape is an open source software platform for visualizing
complex networks and integrating these with any type of
attribute data.[10] Through a Cytoscape App, cyREST, it al-
lows external network creation and analysis through a REST
API[7], making it possible to use Cytoscape as a service. To
bring the visualization and analysis capabilities to the web
applications the creators of Cytoscape have developed Cy-
toscape.js22, a JavaScript library to create interactive graph
visualizations. Another alternative for biological data visual-
ization in the web browser is BioJS It provides a community-
driven online repository with a wide range components for
visualizing biological data contributed by the bioinformat-
ics community.[5] BioJS builds on node.js23 providing both
server-side and client-side libraries. In MIxT we have opted
to build the visualizations from scratch using sigma.js and
d3 to have full control over the appearance and functionality
of the visualizations.

Kvik and Kvik Pathwys

We have previously built a system for interactively exploring
gene expression data in context of biological pathways.[4]
Kvik Pathways is a web application that integrates gene
expression data from the Norwegian Women and Cancer
(NOWAC) cohort together with pathway images from the
Kyoto Encyclopedia of Genes and Genomes (KEGG). We
used the experience building Kvik Pathways to completely re-
design and re-implement the R interface in Kvik. From having
an R server that can run a set of functions from an R script,
it now has a clean interface to call any function from any R
package, not just retrieving data as a text string but in a
wide range of formats. We also re-built the database interface,
which is now a separate service. This makes it possible to
leverage its caching capabilities to improve latency. This
transformed the application from being a single monolithic
application into a system that consists of a web application
for visualizing biological pathways, a database service to
retrieve pathway images and other metadata, and a compute
service for interfacing with the gene expression data in the
NOWAC cohort. We could then re-use the database and the
compute service in the MIxT application.

DISCUSSION

There are di↵erent arguments for reusing and sharing mi-
croservices over libraries in bioinformatics applications, that
would justify the cost of hosting an maintaining a set of
distributed microservices. We argue that applications that
require large computational or storage resources can benefit
from the microservices approach because the applications
can share the underlying compute infrastructure between

22js.cytoscapejs.org.
23nodejs.org.

multiple applications and users. This makes it possible to
deploy an application on a lightweight system that uses a
common service for computation and storage. In addition,
benefits such as using di↵erent programming languages for a
single application, and packaging a microservice as a software
container, help to outweigh the operational burden related
to using microservices to build applications.

We have used this approach to build di↵erent web applica-
tions and command line tools, but out of space constraints we
only showcase one application in this paper. We have reused
the microservices for running statistical analyses and fetch
biological metadata, and share these between applications.
This makes it possible for multiple applications to use one or
more powerful servers for hosting the services. In the case of
statistical analyses we simply install the necessary R packages
for each application on the compute service and run it as we
would for one single application.

Future work

We intend to address few points we aim to address in future
work, both in the MIxT web application as well as the sup-
porting microservices. The first issue is to improve the user
experience in the MIxT web application. Since it is executing
many of the analyses on demand, the user interface may seem
unresponsive. We are working on mechanisms that gives the
user feedback when the computations are taking a long time,
but also reducing analysis time by optimizing the underlying
R package. The database service provides a su�cient interface
for the MIxT web application. While we have developed the
software packages for interfacing with more databases, these
haven’t been included in the database service yet. In future
versions we aim to make the database service an interface for
all our applications. We also aim to improve how we capture
data provenance. We aim to provide database versions and
meta-data about when a specific item was retrieved from the
database. One large concern that we haven’t addressed in
this paper is security. In particular one security concern that
we aim to address in Kvik is the restrictions on the execution
of code in the compute service. We aim to address this in
the next version of the compute service, using methods such
as AppArmor24 that can restrict a program’s resource ac-
cess. In addition to code security we will address data access,
specifically put constraints on who can access data from the
compute service. We also aim to explore di↵erent alternatives
for scaling up the compute service. Since we already interface
with R we can use the Sparklyr25 or SparkR26 packages to
run analyses on top of Spark.[12] Using Spark as an execution
engine for data analyses will enable applications to explore
even larger datasets.

CONCLUSIONS

We have designed an approach for building data exploration
applications in systems biology that is based on a microservice

24wiki.ubuntu.com/AppArmor.
25spark.rstudio.com.
26spark.apache.org/docs/latest/sparkr.html.

architecture. Using this approach we have built a web appli-
cation that leverages this architecture to integrate statistical
analyses, interactive visualizations, and data from biological
databases. While we have used our approach to build an ap-
plication in systems biology, we believe that the microservice
architecture can be used to build data exploration systems
in other disciplines as well.

ACKNOWLEDGMENTS

We would like to thank Andrew Bogecho and the System
Sta↵ at the School of Computer Science at McGill University
for maintaining the compute infrastructure used to run the
MIxT system.

This work has been funded by The European Research
Council (ERC-AdG 232997 TICE), and The Canadian Cancer
Society Research Institute (INNOV2-2014-702940).

REFERENCES
[1] Alexander Bertram. 2013. Renjin: The new R interpreter built

on the JVM. In The R User Conference, useR! 2013 July 10-12
2013 University of Castilla-La Mancha, Albacete, Spain, Vol. 10.
105.

[2] Peter JA Cock, Tiago Antao, Je↵rey T Chang, Brad A Chapman,
Cymon J Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck,
Frank Kau↵, Bartek Wilczynski, and others. 2009. Biopython:
freely available Python tools for computational molecular biology
and bioinformatics. Bioinformatics 25, 11 (2009), 1422–1423.

[3] Vanessa Dumeaux, Bjørn Fjukstad, Hans Fjosne E, Jan-Ole
Frantzen, Marit Muri Holmen, Enno Rodegerdts, Ellen Schlicht-
ing, Anne-Lise Børresen-Dale, Lars Ailo Bongo, Eiliv Lund, and
Michael T. Hallett. 2017. Interactions between the tumor and the
blood systemic response of breast cancer patients. Under review
(2017).

[4] Bjørn Fjukstad, Karina Standahl Olsen, Mie Jareid, Eiliv Lund,
and Lars Ailo Bongo. 2015. Kvik: three-tier data exploration tools
for flexible analysis of genomic data in epidemiological studies.
F1000Research 4 (2015).

[5] John Gómez, Leyla J Garćıa, Gustavo A Salazar, Jose Villaveces,
Swanand Gore, Alexander Garćıa, Maria J Mart́ın, Guillaume
Launay, Rafael Alcántara, Noemi Del Toro Ayllón, and others.
2013. BioJS: an open source JavaScript framework for biological
data visualization. Bioinformatics (2013), btt100.

[6] R Daniel Kortschak and David L Adelson. 2014. b́ıogo: a
simple high-performance bioinformatics toolkit for the Go
language. bioRxiv (2014). DOI:https://doi.org/10.1101/005033
arXiv:http://biorxiv.org/content/early/2014/05/12/005033.full.pdf

[7] Keiichiro Ono, Tanja Muetze, Georgi Kolishovski, Paul Shannon,
and Barry Demchak. 2015. CyREST: Turbocharging Cytoscape
Access for External Tools via a RESTful API. F1000Research 4
(2015).

[8] Jeroen Ooms. 2014. The OpenCPU System: Towards a Universal
Interface for Scientific Computing through Separation of Concerns.
arXiv preprint arXiv:1406.4806 (2014).

[9] Andrea Sboner, Xinmeng Jasmine Mu, Dov Greenbaum, Ray-
mond K Auerbach, and Mark B Gerstein. 2011. The real cost of
sequencing: higher than you think! Genome biology 12, 8 (2011),
125.

[10] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga,
Jonathan T Wang, Daniel Ramage, Nada Amin, Benno
Schwikowski, and Trey Ideker. 2003. Cytoscape: a software en-
vironment for integrated models of biomolecular interaction net-
works. Genome research 13, 11 (2003), 2498–2504.

[11] Christopher L Williams, Je↵rey C Sica, Robert T Killen, and
Ulysses GJ Balis. 2016. The growing need for microservices in
bioinformatics. Journal of Pathology Informatics 7 (2016).

[12] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with
Working Sets. HotCloud 10, 10-10 (2010), 95.

Paper 3
V. Dumeaux,B. Fjukstad,H. E. Fjosne, J.-O. Frantzen,M.M. Holmen,E. Rodegerdts,
E. Schlichting, A.-L. Børresen-Dale, L. A. Bongo, E. Lund et al., “Interactions
between the tumor and the blood systemic response of breast cancer patients,”
PLoS Computational Biology, vol. 13, no. 9, p. e1005680, 2017

105

RESEARCH ARTICLEInteractions between the tumor and theblood systemic response of breast cancerpatients
Vanessa Dumeaux1,2*, Bjørn Fjukstad3, Hans E. Fjosne4,5, Jan-Ole Frantzen6, Marit

Muri Holmen7, Enno Rodegerdts8, Ellen Schlichting9, Anne-Lise Børresen-Dale10, Lars

Ailo Bongo3, Eiliv Lund11☯, Michael Hallett1,2☯

1 Department of Biology, Concordia University, Montreal, QC, Canada, 2 School of Computer Science,

McGill University, Montreal, QC, Canada, 3 Department of Computer Science, UiT the Arctic University of

Norway, Tromsø, Norway, 4 Department of Surgery, St. Olavs University Hospital, Trondheim, Norway,

5 Faculty of Medicine, The Norwegian University of Technology and Science, Trondheim, Norway,

6 University Hospital of North-Norway, Narvik, Norway, 7 Department of Radiology and Nuclear Medicine,

Oslo University Hospital, Oslo, Norway, 8 Nordland Central Hospital, Bodø, Norway, 9 Department of

Cancer, Oslo University Hospital, Oslo, Norway, 10 Department of Cancer Genetics, Oslo University

Hospital, Oslo, Norway, 11 Institute of Community Medicine, UiT the Arctic University of Norway, Tromsø,

Norway

☯ These authors contributed equally to this work.

* vanessadumeaux@gmail.com

Abstract
Although systemic immunity is critical to the process of tumor rejection, cancer research has

largely focused on immune cells in the tumor microenvironment. To understand molecular

changes in the patient systemic response (SR) to the presence of BC, we profiled RNA in

blood and matched tumor from 173 patients. We designed a system (MIxT, Matched Inter-

actions Across Tissues) to systematically explore and link molecular processes expressed

in each tissue. MIxT confirmed that processes active in the patient SR are especially rele-

vant to BC immunogenicity. The nature of interactions across tissues (i.e. which biological

processes are associated and their patterns of expression) varies highly with tumor subtype.

For example, aspects of the immune SR are underexpressed proportionally to the level of

expression of defined molecular processes specific to basal tumors. The catalog of subtype-

specific interactions across tissues from BC patients provides promising new ways to tackle

or monitor the disease by exploiting the patient SR.

Author summary

We present a novel system (MIxT) to identify genes and pathways in the primary tumor

that are tightly linked to genes and pathways in the patient systemic response (SR). These

results suggest new ways to tackle and monitor the disease by looking outside the tumor

and exploiting the patient SR.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dumeaux V, Fjukstad B, Fjosne HE,

Frantzen J-O, Holmen MM, Rodegerdts E, et al.

(2017) Interactions between the tumor and the

blood systemic response of breast cancer patients.

PLoS Comput Biol 13(9): e1005680. https://doi.

org/10.1371/journal.pcbi.1005680

Editor: Florian Markowetz, University of

Cambridge, UNITED KINGDOM

Received: March 7, 2017

Accepted: July 7, 2017

Published: September 28, 2017

Copyright: © 2017 Dumeaux et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data have been

deposited at the European Genome-phenome

Archive [56] (EGA; https://www.ebi.ac.uk/ega/;

accession number EGAS00001001804). Data are

available from the NOWAC Data Access Committee

for researchers who meet the criteria for access to

confidential data based on patient consent and

Research Ethics terms.

Funding: We acknowledge funding from the

European Research Council (ERC-2008-AdG-

232997); the Canadian Cancer Society Research

Introduction

Breast cancer (BC) research has largely focused on understanding the intrinsic properties of

the primary tumor in order to therapeutically target key molecular components that drive pro-

gression within the tumor epithelial cells [1]. For example, tamoxifen and trastuzumab target

the estrogen and human epidermal growth factor receptors (ER, HER2) whose expression lev-

els in tumors define the traditional clinical subtypes of BC. The vast majority of BC-related

genomic studies have focused on bulk tumor samples that are expected to be enriched for neo-

plastic epithelial cells [2]. These efforts have produced subtyping schemes that classify patients

into groups based on the similarity of expression of diverse molecular markers and processes

[3–9] and generated gene signatures that can predict patient prognosis and benefit from ther-

apy [10–13].

Cancers however are much more than an autonomous mass of epithelial cells. They consti-

tute multicellular systems capable of bidirectional interactions with neighboring non-malig-

nant cells and extracellular components i.e. the tumor microenvironment [14–16]. Tumor-

microenvironmental interactions are necessary for tumor progression and drug sensitivity [16,

17] and are becoming better understood [18–21]. In fact, several genomics studies of the BC

microenvironment, including our efforts, show that the microenvironment reflects its tumor

and harbors prognostic information [22–24]. However, we also recently established that the

primary tumor and its microenvironment does not harbor accurate prognostic signals in

approximately 20% of BC patients [9]. Specifically, these patients are consistently misclassified

by all hallmarks of breast tumors defining tumor epithelial cells (such as proliferation and ER

status) and their microenvironment (such as the infiltration of immune cells, angiogenesis and

fibroblast activation).

The systemic response (SR) in cancer patients refers here to the perturbations that occur in

peripheral blood cells, which include immune effector cells and circulate throughout the body.

The fact that a tumor exerts systemic effects (via eg soluble or exosomal factors) may provide an

explanation for the clinical observation that patients with one tumor have an increased risk of

developing several independent tumors, and that removal of primary cancer improves the sur-

vival of patients with distant metastases at the time of diagnosis [25]. In addition, since ER posi-

tive (ER+) BC tends to recur as long as 10–15 years after surgical removal of the tumor, it is

important to understand systemic factors governing late recurrence and therapeutic approaches

that target beyond the tumor site. In fact, there is a rapidly increasing understanding of the vari-

ous means a tumor employs to favor metastasis in distant organs [26, 27]. For example, an

“instigating” BC can exploit the patient SR so that otherwise-indolent disseminated tumor cells

become activated [27–32]. The SR has also been investigated in BC at time of diagnosis. Specifi-

cally, our recent comparison of blood profiles of BC patients and matched controls yielded a

gene signature that reports the presence of BC [33]. This diagnostic signature is specific to BC

(i.e. the test classifies women with carcinoma other than breast as negative), and the composi-

tion of genes and enriched pathways in the signature suggest that a cytostatic immune-related

signal in the SR of patients is associated with the presence of a tumor. Finally, recent evidence

demonstrates that engagement of systemic immunity is critical to the process of tumor rejection

in genetically engineered mouse models [34].

This study is the first large-scale genomics effort to study the molecular relationships

between patient SR and primary tumor. We generated and analyzed expression profiles from

peripheral blood and matched tumor cells in 173 BC patients. First, our results highlight how

the patient SR is especially relevant to BC immunogenicity. Second, we present a novel tool

entitled Matched Interactions across Tissues (MIxT) that starts by identifying sets of genes

tightly co-expressed across all patients in each tissue. Then, MIxT identifies which of these

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 2 / 27

Institute (INNOV2-2014-702940). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

gene sets and pathways expressed in one tissue are associated with gene sets and pathways in

the second tissue by determining if their expression patterns in tumor and in the patient SR

are tightly correlated. We find that there are very few such associations when all BC are consid-

ered. However, we do identify biological processes with significant associations between

tumor and patient SR when we stratify our analysis by BC subtype. That is, we identify molecu-

lar processes in the tumor that are tightly co-expressed with (different) molecular processes in

the SR across patients of a specific subtype. In particular, we detail how several tumor-permis-

sive signals are associated between the tumor and SR of basal BC patients.

Results

A population genomic resource of blood and matched tumor cells from

BC patients

The Norwegian Women and Cancer (NOWAC) is a prospective population-based cohort that

tracks 34% of all Norwegian women born between 1943–57. In collaboration with all major

hospitals in Norway, we collected blood samples and matched tumor from women with an

abnormal lesion, at the time of the diagnostic biopsy or at surgery, before surgery and any

treatment (N ~ 300, S1 Text). RNA preservation for blood samples obtained followed our

methodology previously described [33, 35] and detailed in S1 Text. RNA profiles from blood

and tumor cells were generated using Illumina Beadarrays and data were processed following

careful procedures (S1 Text, S1A Fig). After quality control, our study retained matched blood

(SR) and tumor profiles of 173 BC patients diagnosed with invasive ductal carcinoma, and

blood profiles of 282 control women (ie. women with no history of cancer with the exception

of basal-cell and cervical carcinoma, which are both very common; Fig 1A). The controls are

used to determine what constitutes a “normal” SR. BC patients and controls are comparable in

terms of age, weight and menopausal status (Fig 1B). Several groups including ours have

defined intra- and inter- individual variability of blood gene expression in healthy individuals

[35–38]. All together, these studies demonstrate that intra-individual changes that can occur

between blood draws are strikingly smaller than the variation observed among samples col-

lected from different individuals. In this study, most women were 50 year-old or older and

postmenopausal at time of sampling. Each profile measures the expression of 16,782 unique

genes (S1 Text, S1A Fig). Almost all BC (95.4%) are early-stage disease (stage I or II).

Transcriptional fingerprint of BC subtypes is not the predominant signal

in the patient SR

Several tumor RNA-based subtyping tools were applied including PAM50 [5] that defines the

intrinsic subtypes including luminal A (lumA), luminal B (lumB), normal-like (normalL),

basal-like (basalL), and her2-enriched (her2E). The hybrid subtyping scheme partitions ER

+ tumors according to their intrinsic subtype and partitions ER- tumors according to their

HER2 status [9] (S1 Text, S1B and S1C Fig). In our dataset, all intrinsic luminals (lumA and

lumB) and most normalL tumors (85.2%) are ER+; however, ~40% of basalL and ~50% of

her2E BC are ER+ (Fig 1C, S1 Table). We also applied the Cartes d’Identité des Tumeurs

(CIT) [8] subtyping scheme, which includes a ‘molecular-\ apocrine’ (mApo) subtype enriched

for ER-/HER2+ tumors (78.6%) and the highly immunogenic ER+ luminal C (lumC) subtype

enriched for ER+/basalL (39.1%). Fig 1C and S1 Table depict the relationships between these

three schemes.

Although the IntClust (IC) subtyping scheme [6] is based on gene expression and DNA

copy number profiles simultaneously, subtypes can be inferred using a reported RNA-based

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 3 / 27

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 4 / 27

surrogate algorithm [7, 39]. S1 Table reports when subtypes from other schemes are enriched

in each IC subtype. Most notably, IC1 and IC9 are enriched for CIT lumB; IC3, IC7 and IC8

are enriched for lumA; IC4+ is enriched for normalL and at lesser extent CIT lumC, IC5

enriched for mApo-her2E-HER2+, and IC10 enriched for basalL and ER-/HER2-. IC2, IC4-,

and IC6 include very few patients (n< 10) and were therefore not further considered in our

downstream analyses.

Restricting our attention to tumor profiles, we performed sparse hierarchical clustering

with complete linkage using a permutation approach to select the tuning parameter that

weights each gene to compute the dissimilarity matrix [40]. The resulting clusters were

strongly associated with BC subtypes for all three RNA-based schemes (Fig 1D upper), which

confirms that the transcriptional fingerprint of BC subtypes are also ubiquitous in our tumor

samples. When restricting our attention to SR profiles, this unsupervised analysis does not

identify patient clusters enriched for any given subtype across the three schemes (Fig 1D

lower), suggesting that the transcriptional fingerprint of BC subtypes is not the predominant

signal in the patient SR.

Univariate gene markers are identified in the patient SR for one

immunogenic BC subtype

We then asked if there are genes in the patient SR whose expression covaries with the state of

the pathological variables ER and HER2 measured in the primary tumor. Although both are

key drivers in BC, neither was found to be associated with individual gene expression changes

in the patient SR (limma, linear models for microarray data, false discovery rate, fdr� 0.2, Fig

1E; S1 Text). Similarly, we asked if there are genes in the SR that are markers of tumor subtype

(n patients > 10). For the intrinsic, hybrid, and IntClust subtypes, only the ubiquitin ligase

RFWD3 is highly expressed uniquely in the SR of lumA patients, and TIMP3, an inhibitor of

matrix metalloproteinases, is highly expressed uniquely in ER+/her2E patients (Fig 1E, S2 Fig).

For the CIT subtypes [8], we found 70 univariate gene markers in the SR of patients of the

lumC subtype. The genes are primarily involved in general cellular processes such as protein

processing or transcription in blood cells (fdr� 0.2, Fig 1E, S3 Fig). The lumC subtype is

defined by strong activation of several immune pathways at the site of ER+ tumor (i.e. antigen

presentation and processing pathway, hematopoietic cell lineage, NK cell mediated cytotoxic-

ity, T-cell receptor signaling and Toll-like receptor signaling) [8], suggesting that the SR is

informative in cases where the primary tumor exhibits strong immune properties.

Systems-level analysis reveals tissue-specific molecular processes

To compare genome-wide molecular changes in tumor and SR across patients, we used

WGCNA-based clustering to define sets of tightly co-expressed genes (termed modules) in

tumor and blood, respectively [41] (S1 Text). Briefly, we opted for a distance measure based

on topological overlap, which considers the correlation between two genes and their respective

correlations with neighboring genes [42] (S1 Text). The WGCNA cut and merge routine [43]

after clustering identified 19 and 23 modules in the patient tumor and SR, respectively (S4 Fig;

Fig 1. Individual characteristics and SR markers of BC subtypes. (A) Collection of biospecimen from BC patients and controls. (B) Individual

characteristics of BC patients and controls. (C) Parallel plot displaying the repartition of BC patients across RNA-based subtyping schemes. (D) Sparse

hierarchical clustering of BC patients based on genes expressed in tumor (upper) and the patient SR (lower). Clinicopathological and subtypes attributes

are presented below the dendrogram. (E) Significant gene markers of subtypes in SR (false discovery rate, fdr� 0.2). Blue and red shade correspond to

under- and over- expression of the marker in a given subtype vs the others, respectively. Shading is proportional to the level of significance of the gene

marker.

https://doi.org/10.1371/journal.pcbi.1005680.g001

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 5 / 27

S1 Text). Each of these modules can be considered as a unique and stable pattern of expression

shared by a significant number of genes.

Modules of the primary tumor are enriched for genes from a broad range of BC hallmarks

including angiogenesis (salmon module), extracellular matrix reorganization (greenyellow),

proliferation (green), and immune response (brown and darkturquoise) (S2 and S3 Tables, S1

Text). For example, the proliferation tumor module is enriched for mitotic cell cycle-related

genes (green, n = 1064 genes; weight01 Fisher test [44], p-value < 2e-17) including the well-

known marker of proliferation MKI67, 12 serine/threonine kinases that are used in the calcu-

lation of the mitotic kinase score (MKS) [45], and several components of the Minichromo-

some Maintenance Complex (MCM).

Modules of the patient SR are often enriched for genes involved in either general cellular

processes such as translation (black) and transcription (grey60), or immune-related processes

such as inflammatory response (brown, green), B-cell response (saddlebrown), innate immune

response (greenyellow) (S4 and S5 Tables). Thus, seven SR modules are enriched in genes that

are specifically expressed in immune cells [46] (“iris” signature set in S5 Table; Fisher’s Exact

Test FET fdr< 0.05).

We constructed a web-based system to visualize gene expression networks, heatmaps and

pathway analyses of the modules in each tissue at http://mixt-blood-tumor.bci.mcgill.ca. In a

network, genes are represented by nodes (colored by their module membership) that are con-

nected by edges whose length corresponds to their level of co-expression across patients [47].

When selecting only strong gene-gene correlations (topological overlap> 0.1) and removing

isolated nodes, the SR network has ~20% more genes than the tumor network (Fig 2A and 2B).

Moreover, the SR network has approximately twice as many edges (89,465 connections between

genes) than the tumor network (50,617 connections between genes). Thus, the underlying pat-

terns of expression of the tumor genes (and modules) are more dissimilar from each other than

the patterns of expression of the SR genes (and modules). In both tissues, the edges that span

between modules reflect natural overlaps between cellular process (Fig 2A and 2B). For example

in tumors, angiogenesis-related genes of the salmon module are strongly co-expressed with

genes of the greenyellow module involved in extracellular matrix remodeling. In blood, mod-

ules enriched for genes involved in general cellular processes such as translation (black), RNA

processing (violet), and RNA splicing (darkred) are also heavily connected to each other.

Several processes in the SR are differentially expressed in patients with

HER2+, lumC or large tumors

We first investigated the relationships between the expression pattern of each module and

patient clinicopathological attributes. Towards this end, each gene of a module is used to rank

the patient samples (S1 Text). In particular, the sum of gene ranks (ranksum) for each patient

provides a linear ordering of the patient samples. Association tests then compare the ranksum

values of patients with the attribute of interest eg tumor subtype (S1 Text).

When we consider tumor modules, the expression pattern of the green module (S5A Fig),

previously established to be enriched for proliferation-related genes (S2 Table), ranks basalL,

her2E and lumB tumors significantly higher than lumA and normalL tumors (ANOVA p-

value < 1e-34, S5B Fig). In fact, we observe that the expression pattern of nearly every module

is associated with BC subtype (15 of 19 modules, Fig 2C, fdr� 0.15). Moreover, many tumor

modules are associated with the proliferative state of the tumor encoded into the MKS score

[45] (Pearson correlation, fdr� 0.15) or with ER status (ER+ vs ER-, t-test, fdr� 0.15), two

variables that are strongly embedded in the definition of BC subtypes (Fig 2C). These results

are consistent with our previous claim that patient subtype is a predominant signal in the

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 6 / 27

primary tumor. Several tumor modules are associated with HER2 status of the tumor, however

there are fewer such modules (n = 6) when compared with the proliferative state or ER status

Fig 2. Gene co-expression networks, modules and associations with clinicopathological attributes of BC patients. (A) Network visualization using

the edge-weighted spring embedded layout from Cytoscape (v3.2.1) including the top gene connections (topological overlap > 0.1) in tumor. Each node

(gene) is color-coded by the module to which it belongs, Keywords representing top pathway enrichments (biological processes) are indicated for each

module. (B) Network visualization including the top gene connections in the patient SR. The legend follows Fig 2A. (C) Associations between tumor modules

and clinicopathological attributes of patients. Associations were estimated using Pearson correlation (Student’s p) or ANOVA. Shading is proportional to

-log10(fdr) of the associations (fdr� 0.15). HER2S: HER2 score; LUMS: luminal score; MKS: Mitotic kinase gene expression score; hrt: hormone replacement

therapy (D) Associations between SR modules and clinicopathological attributes of patients. The legend follows Fig 2C.

https://doi.org/10.1371/journal.pcbi.1005680.g002

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 7 / 27

of the tumor (Fig 2C), suggesting that transcriptional fingerprint of HER2 is not as ubiquitous

in tumor samples. A small number of modules are associated with the lumC subtype, including

the brown module enriched for T-cell and inflammatory response genes (S2 Table). This is

again consistent with the fact that this is a highly immunogenic subtype [8] (lumC versus not

lumC, t-test, fdr� 0.15, Fig 2C).

HER2 status, the lumC subtype and tumor size are all associated with modules of the patient

SR (Fig 2D, t-test fdr� 0.15). Although we did not find univariate gene markers in blood asso-

ciated with HER2 status, the saddlebrown SR module is significantly underexpressed in

patients with HER2+ tumors compared to other BC subtypes and controls (fdr = 0.07, S6A

Fig) and is enriched for genes involved in B-cell receptor signaling and proliferation (including

BLK, CXCR5, CD19,CD79A,CD79B and FCRL5; S4 and S5 Tables). Four SR modules are asso-

ciated with the immunogenic lumC subtype; one of these modules are also associated with

tumor size (Fig 2D, S6B and S6C Fig). Among the 70 univariate gene markers in blood of

lumC tumors identified earlier, 31 are included in the darkgreen SR module predominantly

underexpressed in lumC patients in comparison to other BC subtypes (fdr = 0.02, S6B Fig). In

fact, all four SR modules associated with the lumC subtype are underexpressed compared to

other BC subtypes and control samples (S6B and S6C Fig). This includes the purple module

highly enriched for genes involved in T-cell (thymus) homing (CCR7, LTA, LTB, VEGFB,

HAPLN3, SLC7A6, SIRPG, BCL11B0) and activation (CD47, TNFRSF25,MAL, LDLRAP1,

CD40LG) which are underexpressed in lumC patients (fdr = 0.04, S6B Fig). Genes in the cyan

modules are also found underexpressed in patients with large (> 2cm) tumors compared to

other BC patients and controls (Fig 2D, S6C Fig). Finally, specifically for patients with large

tumors, both the darkgrey module, which is enriched forMYC target genes, and the greenyel-

low module, which is enriched for genes involved in the lymphoid cell-mediated immunity

(including GZMH, GZMB,GZMM, KLRD1, PRF1, KLRG1, and GNLY; S4 and S5 Tables), are

underexpressed compared to the remaining BC patients and controls.

Together these results indicate that distinct SR are detected in BC patients with HER2+,

lumC and/or large tumors, and that overall the patient immune response is underexpressed

compared to patients of other subtypes and controls. These results also highlight the impor-

tance of distinct immune components for each of these disease groups. In particular, patients

with HER2+ tumors exhibit low expression of genes specifically expressed in B-cell compared

to patients with other BC subtypes. Patients with lumC tumors exhibit low expression of genes

involved in T-cell homing and function compared to patients with other BC subtypes. Patients

with large tumors (>2cm) exhibit low expression of genes involved in lymphoid cell-mediated

immunity compared to patients with smaller tumors.

Our Matched Interactions across Tissues (MIxT) approach explores

biological processes that interact between tissues

Our analysis to this point identified modules within each tissue independently. Our focus here

is on the relationships between tissues by asking if specific biologies in one tissue are correlated

with (possibly distinct) biologies in the second tissue. To do this, we constructed a software

entitled MIxT (Matched Interactions across Tissues) that contains the computational and sta-

tistical methods for identifying and exploring associations between modules across tissues

(http://mixt-blood-tumor.bci.mcgill.ca).

Using MIxT, we first ask if genes that are tightly co-expressed in the primary tumor are also

tightly co-expressed in the SR, and vice versa (Fig 3A, S1 Text) by investigating the gene over-

lap between tumor and SR modules (Fisher’s Exact Test FET, fdr< 0.01). Genes that retain

strong co-expression across patients regardless of tissue type are likely to be involved in the

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 8 / 27

same biological functions in both tissues as a “system-wide” response to the presence of the

disease (even if patterns of gene expression across tissues might differ).

Most modules, regardless of tissue, have significant overlap with three to five modules in

the other tissue (Fig 3A). In some cases, it appears that a single (large) module in one tissue is

in large part the union of several smaller modules from the other tissue. For example, the

brown tumor module has 2765 genes including many involved in immune-related processes

(T-cell costimulation, the IFN-gamma pathway and inflammation, S2 and S3 Tables). All of

these genes/processes show very strong co-expression in the tumor however, in the SR, these

genes divide into four distinct patterns of co-expression (Fig 3A), captured by four different

modules: brown (inflammation), greenyellow (cytolysis and innate immune response), saddle-

brown (B-cell) and pink (TNFA inflammatory response) (S4 and S5 Tables).

Of note, MIxT identifies three modules in each tissue (SR and tumor) that do not have sig-

nificant overlap with any module in the other tissue (Fig 3A). For tumors, this includes the

purple module enriched for genes involved in estrogen response, the lightcyan module

enriched for genes involved in hemidesmosome assembly and cytoarchitecture, and the green-

yellow module enriched for genes involved in ECM organization (Fig 3A, S2 and S3 Tables).

For the SR, this includes the turquoise module enriched for genes expressed in erythrocytes

and involved in hemoglobin production, the purple module enriched for genes in translational

termination, and the green module enriched for genes involved in inflammation and specifi-

cally expressed in myeloid cells (Fig 3A, S4 Table). This suggests that these processes and

responses are either specific to a tissue type (eg ECM organization specific to tumor, and

hemoglobin production specific to blood cells) or that the co-expression of genes involved in a

defined process is unique to a particular tissue (eg genes specifically co-expressed in peripheral

myeloid cells).

There is only one instance where a single tumor module has significant overlap with only a

single SR module: darkturquoise modules of size = 86 and 97 genes in SR and tumor, respec-

tively with 50 common genes, including 20 involved in the type 1 IFN signaling pathway (S2

and S4 Tables). Although these two “mirrored” modules share many genes, their patterns of

expression are significantly different between the two matched tissues (Fig 3B, correlation

between ranksums p-value > 0.05; S1 Text), hinting at a non-concordant expression of the

local (in tumor) and systemic (in blood) IFN-1 mediated signals.

MIxT identifies novel interactions between processes across tissues

within specific subtypes

Whereas the previous section considers interactions defined by a large number of shared

genes between a tumor and a SR module, we also examined more general notions of interac-

tions in MIxT. Here we identify tumor and SR modules that have similar expression patterns

(ie both modules linearly order the patients in very similar manner in both tissues) but do not

necessarily share any genes in common. More specifically, MIxT derives estimates of signifi-

cance for interactions using a random permutation approach based on the Pearson correlation

between ranksums of gene expression in modules across tissues (S1 Text). This type of interac-

tion detects a biological process or response in the primary tumor that is tightly correlated (or

anti-correlated) with a (possibly distinct) biological process or response in the SR, and vice

versa. The specific expression pattern in the tissues allows us to then postulate the functional

nature of the interaction across tissues.

MIxT identified only one tumor module (of 19) that interacts with only a single SR module

(of 23) across all patients (MIxT statistic; p-value < 0.005). The paucity of pan-BC interactions

across tissues suggest the need to stratify by patient subtype. After stratification for each of the

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 9 / 27

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 10 / 27

five subtyping schemes (clinical, PAM50, hybrid, CIT, and Intclust) (Fig 4A), we identified 53

interactions involving 15 tumor modules and 19 SR modules (MIxT statistic; p-value < 0.005;

Fig 4B, S7 Fig). Tumor and SR modules are indicated in columns and rows of Fig 4B, respec-

tively. A non-empty cell corresponds to a significant interaction with color used to indicate in

which subtype the association is found, grouping together similar subtypes across schemes (eg

basalL tumors of the pam50 and CIT schemes). Nearly all interactions are significant in only a

single subtype (four exceptions indicated by orange arrows, Fig 4B). For some subtypes, a sin-

gle stimulus in the tumor affects several biological processes in the patient SR. For example,

within the ER+/HER2- subtype and only within this subtype, the pink tumor module, enriched

for genes involved in alternative splicing, is associated with three SR modules, enriched for a

diverse range of biological processes (orange rectangle in Fig 4B).

Immune activity at the tumor site is associated with inflammatory SR in

opposite ways for two distinct subtypes

The brown tumor module, which is enriched for genes involved in immune processes (S2

Table), has several interactions with SR modules across several subtypes (orange rectangle in

Fig 4B). This includes interactions specific to normalL, lumB and IC9 but also several distinct

interactions within the ER-/HER2- and basal subtypes. This suggests that immune signals

expressed in tumor are associated with changes in expression of different molecular processes

in the patient SR for a broad range of subtypes.

As alluded to earlier, only a few interactions are significant in two distinct subtypes simulta-

neously. For example, the brown tumor module is associated with green SR module in both

ER-/HER2- and lumB although the directionality of the association differs between the two

cases. More specifically, patients with high ranksums in the brown tumor module have low

ranksums according to the green SR module, if the patient is of the ER-/HER2- subtype (Fig

5A, 5C and 5E, MIxT statistic, p-value = 0.004). At the same time, patients with high ranksums

in the brown tumor module have high ranksum with respect to the green SR module, if the

patient is of the lumB subtype (Fig 5B, 5D and 5F MIxT statistic, p-value< 0.004). In this man-

ner the direction of correlation between the biological processes of the brown tumor module

and of the green SR module is determined by the subtype of the patient.

For the brown tumor module in both subtypes, patients with a high ranksum (on the left of

the ordering in Fig 5B or 5C for both subtypes) have the strongest immune signals in the

tumors. This is because most of the immune-related genes in this brown module (within the

red sidebar in Fig 5B and 5C, S3 Table) have highest expression in these patients. This includes

genes involved in T-cell stimulation (incl. CD3, CD4, CD5, ICOS, several HLA-DR, -DP,

-DQ), IFNɣ signaling (IFNG, IRF1-5, ICAM1, IFI30,HLA-A -B -C) and inflammation (incl.

several interleukins, chemokines). For the green SR module in both subtypes, a high rank-

sum indicates an inflammatory SR (patients on the right in Fig 5E for ER-/HER2-, and

patients on the left in Fig 5F for lumB). This is because almost every inflammation-related

genes (incl. IFNAR1, IL15, TLR2, IL18RAP, RNF144B), and B-cell proliferation genes (incl.

Fig 3. Modules size and overlap in their gene composition across tissues. (A) Histograms depicting number of genes

composing modules in each tissue. Edges between modules indicate significant overlaps in gene composition (Fisher exact

test, fdr < 0.01). (B) Expression heatmaps of the 47 genes included in both darkturquoise modules in tumor (upper) and SR

(lower). Patients in both heatmaps are linearly ordered based on their ranksum of gene expression in tumors. Yellow vertical

lines delimit the region of Independence (ROI95) in tumor that contains 95% of randomly generated samples. Twenty genes

out of the 47 common genes are involved in the type 1 IFN signaling pathway (IFN alpha signaling pathway is depicted on the

right).

https://doi.org/10.1371/journal.pcbi.1005680.g003

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 11 / 27

BCL6, IL13RA1,MIF, IRS2) (within the red sidebar in Fig 5E and 5F, S5 Table) have highest

expression in these patients.

Thus, ER-/HER2- patients with low immune activity at the tumor site have a high inflam-

matory SR (right side of Fig 5C and 5E). In fact, the level of the inflammatory response in

these BC patients is higher than healthy controls (Fig 5I, t-test, p< 0.001). However, for the

lumB subtype, the relationship between tumor and SR is reversed. Here, it is the patients that

Fig 4. Subtype-Specific Matched Interactions across Tissue (ssMIxT). (A) Schematic of ssMIxT analysis (B) Significant associations between

modules in SR and tumor from BC patients by subtype (MIxT statistic, p-value < 0.005). SR and tumor modules with top pathway enrichment keywords are

presented in rows and columns, respectively. Subtype(s) in which the significant associations are found are indicated in the table. Blue and red borders

correspond to negative and positive correlations between ranksums, respectively. Findings discussed in the text are highlighted in orange.

https://doi.org/10.1371/journal.pcbi.1005680.g004

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 12 / 27

Fig 5. Association between the brown tumor and green SR module for two distinct subtypes. (A) Scatter plot of

ranksums of the brown tumor module and the green SR module in ER-/HER2- patients. The top corner depicts the

background distributions of the correlations coefficients between ranksums of every modules pairs across tissues in ER-/

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 13 / 27

have high immune activity at the tumor site that have a high inflammatory SR (left side Fig 5D

and 5F). In fact, the CIT subtyping scheme calls these patients on the left side as belonging to

the lumC subtype (Fig 5H), the highly immunogenic ER+ subtype. In these lumB patients the

inflammatory response is also higher than in healthy controls (t-test, p-value < 0.01; Fig 5J).

Altogether these results indicate that a high inflammatory SR is observed in both ER-/

HER2- and ER+/lumB patients but increase in systemic inflammation is associated with dis-

tinct immune activity at the tumor site depending on subtype.

Expression of genes in known BC amplicons is associated with

concomitant changes in the patient SR for defined subtypes

Three tumor modules are enriched for genes within amplicons prevalent in BC [48] (high-

lighted in orange in Fig 4B, S3 Table). Two modules, the darkgrey and turquoise tumor mod-

ules, contain 68 genes (of 110) and 48 genes (on 71) located within the 16p11-13 amplicon

highly prevalent in luminal tumors [48], respectively (S3 Table). The darkgrey module inter-

acts with two distinct SR modules for the lumA and ER+/HER2+ subtype, respectively (S8A

and S8B Fig). Tumors of both subtypes that over-express genes in the darkgrey module (left

hand side S8C and S8D Fig) are likely amplified in 16p13. In these patients, the presence of

this amplification is correlated with changes in expression of specific processes within the

patient SR and these processes are distinct depending on subtype (S8E and S8F Fig, p< 0.005

in both cases). S8G and S8H Fig depicts associations between the presence of this amplification

and patient clinico-pathological attributes. For example, in ER+/HER2+ patients (S8H Fig),

the presence of 16p13 amplification is correlated with the luminal score of the tumor. In the

lumA subtype, patients with the highest expression of the lightyellow SR module are signifi-

cantly different than healthy controls (S8I Fig), and in the ER+/HER2+ subtype, patients with

the lowest expression of the salmon module are significantly different than healthy controls

(S8J Fig).

The third module enriched for genes involved in BC amplifications is the darkgreen tumor

module. This module contains 43 (of 99) genes within the 8q23-24 amplicon prevalent in basal

and her2E tumors [48] (S3 Table). Most associations with patient SR modules are specific to

the basalL subtype (Fig 4B) and again suggest that basalL tumors that harbor this amplification

have concomitant changes in expression of specific molecular processes in patient SR.

HER2- patients. (B) Scatter plot of ranksums of the brown tumor module and the green SR module in ER+/lumB patients.

Legend follows Fig 5A (C) Expression heatmap of genes in the brown tumor module in ER-/HER2- patients. Patients are

linearly ordered based on the ranksum of gene expression in the brown tumor module. Yellow vertical lines delimit the

ROI95 in tumor that contains 95% of the randomly generated samples. Genes that are positively and negatively correlated

with the ranksum are represented in the right sidebar colored in red and blue, respectively. Top pathway enrichment

keywords and representative genes are indicated on the left and right of the heatmap, respectively). (D) Expression

heatmap of genes in the brown tumor module in ER+/lumB patients. Legend follows Fig 5C. (E) Expression heatmap of

genes in the green SR module in ER-/HER2- patients. Legend follows Fig 5C. Top pathway enrichment keywords and

representative genes are indicated on the left and right of the heatmap, respectively. (F) Expression heatmap of genes in

the green SR module in ER+/lumB patients. Legend follows Fig 5E. (G) Clinical characteristics of ER-/HER2- patients

ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D. (H) Clinical characteristics

of ER+/lumB patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D.

Asterisks represent the level of significance of the associations between the gene ranksums for the brown tumor module

and clinicopathological attributes of patients. Associations were estimated using ANOVA (fdr < ***0.01). (I) Distribution of

ranksums for ER-/HER2- patients and controls induced by the expression of genes in the green SR module. Patients are

grouped according to the ROI95 brown tumor module category as defined in Fig 5C. aov: analysis of variance (J)

Distribution of ranksums for ER+/lumB patients and controls induced by the expression of genes in the green SR module.

Patients are grouped according to the ROI95 brown tumor module category as defined in Fig 5D.

https://doi.org/10.1371/journal.pcbi.1005680.g005

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 14 / 27

A fully integrated view of molecular changes correlated between tumor

and SR in basalL patients

Approximately one-fourth of the interactions identified by MIxT are specific to ER-/HER2-,

IC10 and basalL subtypes, indicating that the tumor and SR interact strongly in this family of

BCs (Fig 4B). We study two tumor modules in greater depth here: the brown immune-

enriched module and the darkgreen 8q-enriched module, and their interactions with SR mod-

ules in basalL patients (Fig 6A–6C). Here the brown tumor module interacts with one (tan) SR

module enriched for genes involved in TOR signaling and cell proliferation (Fig 6A and 6B).

BasalL patients with low immune activity at their tumor site (right side of brown tumor mod-

ule) have low expression of the tan SR module, and this expression is significantly lower than

healthy controls (boxplots in Fig 6B, t-test p< 0.0005).

The darkgreen tumor module interacts with four SR modules in basalL patients (Fig 6A

and 6C). High expression of genes in 8q is associated with high expression of the green SR

module. This module is enriched for genes involved in inflammation. For the remaining three

SR modules associated with the 8q-enriched tumor module, almost all genes in these modules

are underexpressed when 8q genes are highly expressed (ie. the patient orderings are reversed

compared to the darkgreen tumor module). These SR modules contain genes involved in gen-

eral cellular processes of blood cells (RNA/protein processing, cell proliferation; darkgreen

module), genes involved in cytolysis and lymphoid cell-mediated immunity (greenyellow

module), and MYC and CD5 target genes (darkgrey module) (Fig 6A–6C, S5 Table). The

increase in inflammatory SR and the decrease in the three other molecular processes in the SR

of basalL patients whose tumor is amplified on 8q are all significantly different from how these

processes are expressed in healthy controls (boxplots in Fig 6C). Overall, we identified one dis-

tinct signature in the SR of basalL patients with low immune activity at their tumor site and

several immuno-suppressive signals in the SR of basalL patients whose tumor is amplified on

8q.

Discussion

Molecular profiles of peripheral blood cells and matched tumors were generated and com-

pared for a large cohort of BC patients part of the NOWAC study. The NOWAC consortium

provides a highly curated population-based study with extensive gene expression profiling

across several tissues from BC patients and controls [35, 49]. A careful design and our exten-

sive experience in blood-based expression profiles enable a detailed molecular description of

the patient SR to the presence of BC where blood molecular profiles represent effectively an

“averaging” over the transcriptional programs of the different types of cells in blood.

We first asked if the SR could provide accurate univariate markers of tumoral properties

such as ER status or subtype. Although thousands of transcripts are differentially expressed in

tumors between ER+ and ER- BC [9, 50], there is no gene in SR that can reliably predict ER

status of the primary tumor. Moreover, the SR does not inform on the intrinsic BC subtype of

the tumor such as lumA, lumB or basalL subtype or on IntClust subtypes. Interestingly, uni-

variate markers in the patient SR were only identified for the CIT lumC subtype defined as

particularly immunogenic ER+ tumors [8], suggesting that the SR is informative in cases

where the primary tumor exhibits strong immune properties. This is consistent with previous

reports that uses blood transcriptomics as a gateway into the patient immune system [51–53]

and which is extensively used in the context of autoimmune and infectious diseases [54–56].

This result suggests that it is also applicable in cancer such as BC.

To further investigate the molecular changes in the patient SR, we extended our analyses to

multivariate approaches where genes are combined into sets or “modules”. In particular, we

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 15 / 27

Fig 6. Significant Matched Interactions across Tissue (MIxT) in basalL patients. (A) The figure summarizes the two sets of significant MIxT in basalL

patients detailed in Fig 6A and 6C. Top pathway enrichment keywords are presented for each module. Red and blue arrows correspond to negative and

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 16 / 27

performed cluster analysis to partition the genes of both tumor and SR profiles into modules

with each module representing a distinct pattern of expression across patients. Our user-

friendly website (www.mixt-blood-tumor.bci.mcgill.ca) provides access to these modules built

in each tissue, enables investigation of their expression profiles in each tissue and allow user-

defined queries of gene, gene sets, and pathway of interest. Further, our MIxT approach esti-

mates gene module expression in both tissues and find significant associations between mod-

ules across tissues in a representative cohort of BC patients.

In our dataset, the primary tumor and SR have approximately the same number of modules

(19 and 23, respectively) but their gene composition is qualitatively different. Not surprisingly,

many modules in tumors were enriched for genes involved in hallmarks of cancer, while SR

modules were enriched for either general cellular processes or specific immune responses.

Only one module involved in the IFN-I pathway is highly conserved in both tumor and SR,

although the common genes had markedly different expression patterns between the two tis-

sues. This is important as it establishes that genes, whose expression patterns may act as good

markers in the primary tumor, are not necessarily expressed in the same manner within blood

cells.

Our multivariate approach was able to identify modules from the patient SR that could reli-

ably identify not only lumC but also HER2+ and large (> 2cm) tumors. These three cases are

among the most immunogenic subtypes of BC and are of relatively poor prognosis. For these

patients, gene expression in blood cells is mostly decreased compared to other BC and controls.

This result also highlights the importance of distinct immune components of the SR for each of

these disease groups: B-cells for HER2+ tumors, T-cells for lumC, and aspects of the cellular

immune response for large tumors. Interestingly, a previous study showed that her2E tumors

have the highest B-cell infiltration and expression of B-cell receptor gene segments, although

this was not predictive of improved patient survival [57]. Our study finds an impaired systemic

B-cell response specifically in HER2+ patients, consistent with an inefficient anti-tumoral

response in these patients, potentially due to a dysfunctional antigen receptor response and cell

development. We could also speculate that the dysfunctional thymic T-cell homing signature in

lumC patients reflects the well-documented effect of estrogen on thymic T lymphopoiesis [58–

61] in patients diagnosed with a highly immunogenic ER+ tumor. These associations would cer-

tainly require validation in follow-up studies.

Finally, MIxT focuses on molecular associations between tissues and provides a holistic

view of molecular changes in BC patients. Although the focus here is towards gene expression

of blood and matched tumor, our approach could be extended to multiple tissues (eg. blood-

microenvironment-tumor) or other levels of molecular data (eg. DNA level somatic aberra-

tions, gene and miRNA expression, epigenetic profiles).

Interestingly, associations between BC tumor and patient SR are heavily dependent on sub-

type. Only one interaction between tumor and patient SR is identified when all BC patients are

considered in the analysis but many are identified when we first stratify patients by BC sub-

type. This is perhaps not surprising given that there is a great deal of molecular heterogeneity

between BC subtypes making “one SR fitting all” highly unlikely. We identified molecular sti-

muli in tumors that change patient SR in multiple ways only for patients within a particular

positive correlations between ranksums, respectively. (B) MIxT in basalL patients between the brown tumor module and the darkgreen SR module.

Heatmaps are ordered by ranksum of gene expression in the brown tumor module. Asterisks represent the level of significance of the associations between

the gene ranksums for the brown tumor module and clinicopathological attributes of patients (fdr < **0.05). Associations were estimated using ANOVA and

Pearson correlation for categorical and continuous variable, respectively. Boxplots show the distribution of ranksums for the SR module in patients classified

according to their ROI95 tumor module category and controls. (C) The second set of MIxT in basalL patients between the darkgreen tumor module and four

SR modules (darkgreen, green, greenyellow, darkgrey). Legend follows Fig 6B.

https://doi.org/10.1371/journal.pcbi.1005680.g006

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 17 / 27

subtype. For example, expression of genes involved in alternative splicing in ER+/HER2-

tumors is associated with changes in expression of multiple processes in SR of patients and

those associations are observed only within this specific subtype.

Of note, immune signals measured at the tumor site are associated with distinct SR across a

broad range of subtypes. Immune-related processes are known to be more or less expressed

within every subtypes and have prognostic capacity in almost all subtypes [9]. Here we show

that a change in immune activity at the tumor site is not associated with equal SR across sub-

types. Furthermore, high immune signals in tumor is associated with the patient inflammatory

SR in opposite ways depending if the patient is ER-/HER2- or lumB. The high inflammatory

SR in ER-/HER2- patients (with low immune activity at the tumor site) and in lumB patients

(with high immune activity at the tumor site) were both significantly different from how sys-

temic inflammation is “normally” expressed in controls.

Finally, we identify other examples of interactions between tumor and patient SR that occur

in subtype-specific fashions. In particular, three tumor modules were enriched for genes in

known large-scale BC amplicons (16p11-13, 8q23-24). The expression of these genes changes

in a coordinated manner from high to low, suggesting that these genes measure amplification

of the corresponding region in BC tumors. In turn, these patterns of expression were associ-

ated with distinct SR depending on subtypes highlighting the significance of each amplicon in

defining patient SR for particular BC subtypes (eg 16p13 in lumA and ER+/HER2+, and 8q23-

24 in basalL and her2E). Of note, these patterns of expression also define patients with particu-

lar clinico-pathological characteristics. For example, ER+/HER2+ tumors that do not highly

express the genes on 16p have a lower luminal score than ER+/HER2+ tumors that highly

express the genes on 16p.

When we restrict our attention to basalL patients, we observe that both the immune-related

module and the presence of a 8q23-24 amplification is associated with the patient SR. In fact,

the subset of basal patients with 8q23-24 amplification exhibit high inflammatory SR and

underexpress genes involved in general cellular proliferation of blood cells, in immune cytoly-

sis, and in MYC and CD5 targets. Together, our matched profiles offer a detailed map of

tumor-permissive SR particularly relevant for basalL tumors amplified on 8q and highlight a

signature in the SR of basalL patients with low immune activity at their tumor site. This is

especially interesting in the context of BC-immunotherapy combination or for monitoring

response to these therapies. Overall, our study set the groundwork for further investigation of

promising new ways to tackle and monitor the disease by looking outside the tumor and

exploiting the patient SR.

Materials and methods

Gene expression data

Tumor and blood samples were obtained as part of the NOWAC study [49, 62] with approval

from Regional Committees for Medical and Health Research Ethics in Norway. Between

2006–10, we collected blood and biopsy samples from BC cases at time of diagnosis, and blood

samples from selected age-matched blood controls together with associated lifestyle and clini-

copathologic data (S1 Text). In total, and after data preprocessing, profiles include 16,792

unique genes expressed in primary tumors and blood from 173 BC patients, and in blood from

290 controls (S1A Fig).

Subtypes and gene markers of subtypes

We used ER status as measured by IHC and HER2 status measured by FISH or IHC where

available. When unavailable, ER and HER2 status was determined using gene expression of the

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 18 / 27

ESR1 gene and 6 gene members of the HER2 amplicon, respectively [9, 63] (S1 Text, S1B and

S1C Fig). In addition, we calculated the HER2 score (HER2S) and the luminal score (LUMS)

as the average expression of the HER2 amplicon gene members and the pam50 luminal genes,

respectively. A proliferation score was calculated similarly using 12 mitotic kinases to produce

the Mitotic kinase gene expression score (MKS) [45]. Samples were labeled according to our

subtyping schemes from the literature: PAM50 [5], hybrid [9], CIT [8], IntClust [7, 39] (S1

Text).

Lists of differentially expressed genes in SR according to subtypes were obtained using the

R/Bioconductor package Limma [64]. Whenever p-values were adjusted for multiple testing,

the false discovery rate [65] was controlled at the reported level (S1 Text).

Weighted gene co-expression analysis (WGCNA) and gene modules

An unsigned weighted co-expression network was constructed independently in each tissue

(SR and tumor) using the R/Bioconductor package WGCNA [41] (S1 Text). First, a matrix of

pairwise correlations between all pairs of genes is constructed across blood and tumor samples,

respectively. Next, the adjacency matrix is obtained by raising the co-expression measure to

the power β = 6 (default value). Based on the resulting adjacency matrix, we calculate the topo-

logical overlap, which is a robust and biologically meaningful measure of network intercon-

nectedness [42] (that is, the strength of two genes’ co-expression relationship with respect to

all other genes in the network). Genes with highly similar co-expression relationships are

grouped together by performing average linkage hierarchical clustering on the topological

overlap. The Dynamic Hybrid Tree Cut algorithm [43] cuts the hierarchal clustering tree, and

modules are defined as branches from the tree cutting. Modules in each network were anno-

tated based on Gene Ontology biological processes (weight01 Fisher test [44]), MSigDB [66]

and other curated signatures relevant to immune and blood cell responses [33, 46, 52] (S1

Text)

Gene ranksum and linear ordering of patients

Our approach maps samples to a linear ordering based on expression of genes within a given

module or signature of interest (S1 Text). In an univariate fashion, each gene within a given

module/signature is used to rank all patients based on their expression. For each patient, the

ranks of all k genes from the signature are summed and patients are then linearly ordered

from right to left according to this ranksum vector. To identify the left and right boundaries of

the low and high regions within the observed linear ordering, we delimit the region of

independance (ROI95) for each module. Briefly, we compute (n = 10K times) the position of

an artificial patient within the observed linear ordering by summing the randomized ranks

over all k genes in the module (S1 Text). The ROI95 is defined as the region that contains 95%

of the randomly generated samples. The three defined categories of patients correspond to

those patients that have high ranskums of the module/signature (high category), low ranksums

of the module/signature (low category), and a set of patients where the expression of the genes

within the module/signature lose their pattern of pairwise correlation (mid category).

Module association tests

Using gene ranksums to capture module expression, we asked how modules are associated

with patients’ clinical attributes and how they are associated across tissues. Pearson correlation

and Analysis of Variance (ANOVA) was used to test association between a given module and

continuous patient attributes (eg. age, weight, MKS, LUMS) and between a given module and

categorical patient attributes (eg. ER, HER2, subtypes, lymph node status), respectively (S1

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 19 / 27

Text). For each variable. we computed empirical p-values after permuting clinical labels 1000

times. For each variable, we perform a total of 42 association tests (23 blood modules + 19

tumor modules) and used false discovery rate [65] to correct for multiple testing for each vari-

able independently or for each “family” of tests when dependent variables are very similar (S1

Text).

Interactions between modules across tissues are identified using a random permutation

approach based on the Pearson correlation between ranksums of gene expression in modules

across tissues (S1 Text). ANOVA was used to compare SR module expression between BC

patients (assigned to a given tumor module ROI95 categories) and controls.

Data and software availability

Data resource. Microarray data have been deposited at the European Genome-phenome

Archive [67] (EGA; https://www.ebi.ac.uk/ega/; accession number EGAS00001001804).

Software. The MIxT web application (http://mixt-blood-tumor.bci.mcgill.ca/) is written

in the Go programming language to provide an interface to statistical analyses in R and link to

online databases. Users can browse through all the results generated for this study, visualize

gene co-expression networks and expression heatmaps, and search for genes, gene lists, and

pathways. We use Bootstrap (http://getbootstrap.com) to build the user interface and Java-

script libraries D3 (http://d3js.org) and Sigma (http://sigmajs.org) to build interactive visuali-

zations. The web application framework is open sourced at http://github.com/fjukstad/mixt.

Supporting information

S1 Table. Enrichment of clinicopathological and tumor subtypes attributes across subtyp-

ing schemes. The table shows statistically significant associations between tumor attributes

(columns) and subtypes (rows). For columns representing binary variables (ER, HER2, LN, as

well as subtype/cohorts), the table shows the number of patients and the level of significance

computed using Fisher’s exact test (FET). Enrichment is indicated using “+” symbols, while

for depletion “-” symbols are used. The number of symbols in each entry correspond to signifi-

cance levels of 0.05, 0.01, 0.001, and< 0.0001. For example, the entry in row “her2E” and col-

umn “HER2+” contains the symbol “++++” indicating that herE patients are more likely to be

HER2+ than non-her2E patients. In contrast, the entry in row “her2E” and column “ER+”

contains the symbol “—” indicating that her2E patients are less likely to be ER+ than non-

her2E patients. Grey indicates cases where enrichment cannot be calculated.

(XLSX)

S2 Table. Top GO terms enriched in tumor modules. Top 5 GO terms that overlap with each

module. “Annotated” indicates the number of genes in the GO term, “Significant” indicates

the number of overlapping genes. “Expected” indicates the number of genes that we would

expect by chance to be overlapping with the GO term. “classicFisher” presents the p-value

from a classic fisher exact test and “weight01Fisher” presents the p-value from the weight01

algorithm and fisher exact test from [44].

(XLSX)

S3 Table. Top 5 enrichments among each of the following signature sets. i) c1, c2.cgp, c2.

cp, c6, c7 and h gene set collections from MSigDB signatures (v5.1) [66]. ii) peripheral-blood

mononuclear cell (PBMC) transcriptional modules (sig.set = i) from [52]. iii) our blood-based

gene expression signatures (341- and 50-gene; sig.set = d) for BC [33] iv) immune-specific

gene sets (sig.set = iris) from [46]. Enrichment for each gene signature was estimated for all

genes in the modules and for genes that are positively (red genes up) or negatively (blue genes

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 20 / 27

dn) correlated with the patient ranksum only using the hypergeometric minimum-likelihood

p-values, computed with the function ‘dhyper’ (equivalent to one-sided Fisher exact test). P-

values were then adjusted for multiple testing using false discovery rate [65].

(XLSX)

S4 Table. Top GO terms enriched in SR modules. Legend follows S2 Table.

(XLSX)

S5 Table. Top 5 gene sets of each signature set enriched in SR modules. Legend follows S3

Table.

(XLSX)

S1 Fig. Gene expression and clinical data processing. (A) Preprocessing of the microarray

data was performed identically in each of the five datasets: blood (bl) 1–4 and tumor (t. 1) data-

sets. Steps that trim samples and probes/genes are presented horizontally and vertically,

respectively. In total, we investigated blood and tumor profiles from 173 BC patients and

blood profiles from 282 controls. Profiles include 16,782 unique genes. (B) Imputation of miss-

ing ER status based on expression of ESR1 gene. Receiver operating characteristic (ROC) curve

setting on the right using IHC/FISH assignment as true label. False positive rate threshold was

set to< 0.2 with regard to the true label. (C) Imputation of missing HER2 status based on

expression of genes included in the HER2 amplicon (ERBB2,GRB7, PGAP3, PNMT,MIEN1,

TCAP).

(TIF)

S2 Fig. Significant univariate gene markers of subtypes in SR (false discovery rate, fdr�

0.2). Blue and red shade correspond to under- and over- expression of the marker in a given

subtype vs the others, respectively. Shading is proportional to the level of significance of the

gene marker.

(TIF)

S3 Fig. Gene expression heatmap of the 70 blood markers of lumC tumors. Rows corre-

spond to genes and columns correspond to samples. Gene expression are scaled by row.

Patients are linearly ordered based on their ranksum of gene expression. Genes are ordered by

their correlation to the observed patient ordering. Genes that are positively and negatively cor-

related with the patient ranksum are represented in the right sidebar colored in red and blue,

respectively. Yellow vertical lines delimit the Region Of Independence (ROI95) that contains

95% of the randomly generated samples. A green tick in ‘lumC’ refers to a patient with a lumi-

nal C tumor according to the CIT scheme [8].

(TIF)

S4 Fig. Gene co-expression networks in each tissue. (A) Heatmap of the topological overlap

between genes expressed in tumors. Each row and column represent a gene, light color indi-

cates low topological overlap and progressively darker red indicates higher topological overlap.

Module assignment is displayed along the left and the top of the heatmap. (B) Heatmap of the

topological overlap between genes expressed in SR. The legend follows S4A Fig.

(TIF)

S5 Fig. Expression patterns of the green tumor module. (A) Expression heatmap of genes in

the green tumor module. Legend follows S3 Fig. Color coding for ER, HER2, pam50, hybrid,

cit, claudin-low and lymph follows Fig 1D. In general, a tick for a binary clinical variable refers

to a positive value (eg. a red tick in ‘basalL’ refers to patients with basalL tumors). For continu-

ous variables such as Mitosis Kinase Score (MKS), Luminal Score (LUMS), HER2 score

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 21 / 27

(HER2S), age, and weight, dark and light shades represent high and low values, respectively.

Asterisks represent the level of significance of the associations between the gene ranksums for

the green tumor module and clinicopathological attributes of patients. Associations were esti-

mated using ANOVA or Pearson correlation for categorical and continuous variable, respec-

tively (p-value < �0.05, ��0.01, ���0.001). (B) Distribution of ranksums for the green tumor

module according to pam50 subtypes. aov: analysis of variance.

(TIF)

S6 Fig. SR modules associated with clinico-pathological variable. (A) One (saddlebrown)

modules in the patient SR is associated with HER2+ BC. (B) Three modules in the patient SR

are associated with lumC BC. (C) One module in the patient SR are associated to both lumC

and large (>2cm) tumors. (D) Three modules in the patient SR are associated with large

(>2cm) tumors. The legend for expression heatmaps (left) follows S3 Fig. Boxplots (right)

compare module expression in SR from patients with lumC, HER2+, or large tumors with

other BC patients, and controls. aov: analysis of variance.

(TIF)

S7 Fig. Background distributions of the correlations coefficients between ranksums of

gene expression in modules across tissues within each subtype. The dotted lines represent

the lower and higher bounds that were used to call significant associations between modules

across tissues. Curves are colored according to the families of subtypes as listed in Fig 4.

(TIF)

S8 Fig. Associations between the darkgrey tumor module and distinct SR by subtypes. (A)

Scatter plot of ranksums of the darkgrey tumor module and the lightyellow SR module in CIT

lumA patients. The top corner depicts the background distributions of the correlations coeffi-

cients between ranksums of every modules pairs across tissues in CIT lumA patients. (B) Scat-

ter plot of ranksums of the darkgrey tumor module and the salmon SR module in ER+HER2

+ patients. Legend follows S8A Fig (C) Expression heatmap of genes in the darkgrey tumor

module in luminal A patients under the CIT scheme [8]. Patients are linearly ordered based on

the ranksum of gene expression of the darkgrey tumor module. Yellow vertical lines delimit

the ROI95 in tumor that contains 95% of the randomly generated samples. Genes that are posi-

tively and negatively correlated with the patient ranksum are represented in the right sidebar

colored in red and blue, respectively. Top enrichment keywords are indicated on the left of the

heatmap (S2 and S3 Tables). (D) Expression heatmap of genes in the darkgrey tumor module

in ER+/HER2+ patients. Legend follows S8C Fig. (E) Expression heatmap of genes in the light-

yellow SR module luminal A patients under the CIT scheme [8]. Legend follows S8C Fig. Top

enrichment keywords are indicated on the left of the heatmap (S4 and S5 Tables). (F) Expres-

sion heatmap of genes in the salmon SR module in ER+/HER2+ patients. Legend follows S8C

Fig. Top enrichment keywords are indicated on the left of the heatmap (S4 and S5 Tables). (G)

Clinical characteristics of luminal A patients under the CIT scheme [8] ordered by gene rank-

sums derived from the darkgrey tumor module. Legend follows Fig 1D. Asterisks represent the

level of significance of the associations between the gene ranksums for the darkgrey tumor

module and clinicopathological attributes of patients. Associations were estimated using

ANOVA (fdr< �0.1, ��0.05, ���0.01). (H) Clinical characteristics of ER+/HER2+ patients

ordered by gene ranksums derived from the darkgrey tumor module. Legend follows S8G

Fig. (I) Distribution of ranksums for luminal A patients under the CIT scheme [8] and controls

induced by the expression of genes in the lightyellow SR module. Patients are grouped accord-

ing to the ROI95 darkgrey tumor module category as defined in S8C Fig. aov: analysis of vari-

ance (H) Distribution of ranksums for ER+HER2+ patients and controls induced by the

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 22 / 27

expression of genes in the salmon SR module. Patients are grouped according to the ROI95

darkgrey tumor module category as defined in S8D Fig.

(TIF)

S1 Text. Supporting methods.

(PDF)

Acknowledgments

The authors acknowledge the clinical/pathological assistance provided by S. Dahl, T. Sauer, T.

Cappelen, B. Naume and R. Mortensen members of the Norwegian Breast Cancer Group; the

technical assistance from M. Melhus and B. Augdal; and preliminary work on MIxT from A.

Tofigh.

Author Contributions

Conceptualization: Vanessa Dumeaux, Eiliv Lund.

Formal analysis: Vanessa Dumeaux.

Funding acquisition: Vanessa Dumeaux, Eiliv Lund, Michael Hallett.

Methodology: Vanessa Dumeaux, Michael Hallett.

Resources: Hans E. Fjosne, Jan-Ole Frantzen, Marit Muri Holmen, Enno Rodegerdts, Ellen

Schlichting, Anne-Lise Børresen-Dale.

Software: Vanessa Dumeaux, Bjørn Fjukstad, Lars Ailo Bongo.

Writing – original draft: Vanessa Dumeaux, Michael Hallett.

Writing – review & editing: Vanessa Dumeaux, Bjørn Fjukstad, Lars Ailo Bongo, Eiliv Lund,

Michael Hallett.

References
1. Yarden Y. The biological framework: translational research from bench to clinic. Oncologist. 2010; 15

Suppl 5:1–7. https://doi.org/10.1634/theoncologist.2010-S5-01 PMID: 21138950.

2. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer

classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010; 220

(2):263–80. Epub 2009/11/21. https://doi.org/10.1002/path.2648 PMID: 19927298.

3. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human

breast tumours. Nature. 2000; 406(6797):747–52. Epub 2000/08/30. https://doi.org/10.1038/35021093

PMID: 10963602.

4. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast

carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Acad-

emy of Sciences of the United States of America. 2001; 98(19):10869–74. Epub 2001/09/13. https://doi.

org/10.1073/pnas.191367098 PMID: 11553815; PubMed Central PMCID: PMC58566.

5. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of

breast cancer based on intrinsic subtypes. Journal of clinical oncology: official journal of the American

Society of Clinical Oncology. 2009; 27(8):1160–7. Epub 2009/02/11. https://doi.org/10.1200/JCO.2008.

18.1370 PMID: 19204204; PubMed Central PMCID: PMC2667820.

6. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcrip-

tomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012; 486(7403):346–52.

Epub 2012/04/24. https://doi.org/10.1038/nature10983 PMID: 22522925; PubMed Central PMCID:

PMC3440846.

7. Ali HR, Rueda OM, Chin SF, Curtis C, Dunning MJ, Aparicio SA, et al. Genome-driven integrated classi-

fication of breast cancer validated in over 7,500 samples. Genome biology. 2014; 15(8):431. https://doi.

org/10.1186/s13059-014-0431-1 PMID: 25164602; PubMed Central PMCID: PMCPMC4166472.

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 23 / 27

8. Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al. A refined molecular taxonomy

of breast cancer. Oncogene. 2012; 31(9):1196–206. Epub 2011/07/26. https://doi.org/10.1038/onc.

2011.301 PMID: 21785460; PubMed Central PMCID: PMC3307061.

9. Tofigh A, Suderman M, Paquet ER, Livingstone J, Bertos N, Saleh SM, et al. The prognostic ease and

difficulty of invasive breast carcinoma. Cell Rep. 2014; 9(1):129–42. https://doi.org/10.1016/j.celrep.

2014.08.073 PMID: 25284793.

10. Hornberger J, Alvarado MD, Rebecca C, Gutierrez HR, Yu TM, Gradishar WJ. Clinical validity/utility,

change in practice patterns, and economic implications of risk stratifiers to predict outcomes for early-

stage breast cancer: a systematic review. Journal of the National Cancer Institute. 2012; 104(14):1068–

79. Epub 2012/07/07. https://doi.org/10.1093/jnci/djs261 PMID: 22767204.

11. Killock D. Breast cancer: Genetic signature might spare 100,000 women annually from chemotherapy.

Nature reviews Clinical oncology. 2016; 13(10):589. https://doi.org/10.1038/nrclinonc.2016.150 PMID:

27620708.

12. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of

tamoxifen-treated, node-negative breast cancer. The New England journal of medicine. 2004; 351

(27):2817–26. Epub 2004/12/14. https://doi.org/10.1056/NEJMoa041588 PMID: 15591335.

13. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts

clinical outcome of breast cancer. Nature. 2002; 415(6871):530–6. Epub 2002/02/02. https://doi.org/10.

1038/415530a PMID: 11823860.

14. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001; 1(1):46–54. Epub 2002/03/

20. https://doi.org/10.1038/35094059 PMID: 11900251; PubMed Central PMCID: PMC2975572.

15. Cichon MA, Degnim AC, Visscher DW, Radisky DC. Microenvironmental influences that drive progres-

sion from benign breast disease to invasive breast cancer. J Mammary Gland Biol Neoplasia. 2010; 15

(4):389–97. Epub 2010/12/17. https://doi.org/10.1007/s10911-010-9195-8 PMID: 21161341; PubMed

Central PMCID: PMC3011086.

16. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvi-

ronment. Cancer Cell. 2012; 21(3):309–22. Epub 2012/03/24. https://doi.org/10.1016/j.ccr.2012.02.022

PMID: 22439926.

17. McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug

response: challenges and opportunities. Nature reviews Drug discovery. 2013; 12(3):217–28. Epub

2013/03/02. https://doi.org/10.1038/nrd3870 PMID: 23449307.

18. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev

Cancer. 2011; 11(11):761–74. Epub 2011/10/14. https://doi.org/10.1038/nrc3106 PMID: 21993244;

PubMed Central PMCID: PMC3632399.

19. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer

therapy. Expert opinion on therapeutic targets. 2012; 16(1):103–19. Epub 2012/01/14. https://doi.org/

10.1517/14728222.2011.645805 PMID: 22239440; PubMed Central PMCID: PMC3457779.

20. Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, et al. The reprogram-

ming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 2014; 158(3):564–78. https://doi.

org/10.1016/j.cell.2014.05.045 PMID: 25083868; PubMed Central PMCID: PMCPMC4249939.

21. Wendt MK, Smith JA, Schiemann WP. Transforming growth factor-beta-induced epithelial-mesenchy-

mal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene.

2010; 29(49):6485–98. Epub 2010/08/31. https://doi.org/10.1038/onc.2010.377 PMID: 20802523;

PubMed Central PMCID: PMC3076082.

22. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression pre-

dicts clinical outcome in breast cancer. Nature medicine. 2008; 14(5):518–27. Epub 2008/04/29. https://

doi.org/10.1038/nm1764 PMID: 18438415.

23. Hu M, Polyak K. Molecular characterisation of the tumour microenvironment in breast cancer. European

journal of cancer. 2008; 44(18):2760–5. Epub 2008/11/26. https://doi.org/10.1016/j.ejca.2008.09.038

PMID: 19026532; PubMed Central PMCID: PMC2729518.

24. Pepin F, Bertos N, Laferriere J, Sadekova S, Souleimanova M, Zhao H, et al. Gene expression profiling

of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes. Breast

cancer research: BCR. 2012; 14(4):R120. Epub 2012/08/22. https://doi.org/10.1186/bcr3246 PMID:

22906178.

25. Gnerlich J, Jeffe DB, Deshpande AD, Beers C, Zander C, Margenthaler JA. Surgical removal of the pri-

mary tumor increases overall survival in patients with metastatic breast cancer: analysis of the 1988–

2003 SEER data. Annals of surgical oncology. 2007; 14(8):2187–94. Epub 2007/05/25. https://doi.org/

10.1245/s10434-007-9438-0 PMID: 17522944.

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 24 / 27

26. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire

organism. Developmental cell. 2010; 18(6):884–901. Epub 2010/07/16. https://doi.org/10.1016/j.

devcel.2010.05.012 PMID: 20627072; PubMed Central PMCID: PMC2905377.

27. McAllister SS, Weinberg RA. Tumor-host interactions: a far-reaching relationship. Journal of clinical

oncology: official journal of the American Society of Clinical Oncology. 2010; 28(26):4022–8. Epub

2010/07/21. https://doi.org/10.1200/JCO.2010.28.4257 PMID: 20644094.

28. Castano Z, Tracy K, McAllister SS. The tumor macroenvironment and systemic regulation of breast

cancer progression. The International journal of developmental biology. 2011; 55(7–9):889–97. Epub

2011/12/14. https://doi.org/10.1387/ijdb.113366zc PMID: 22161844.

29. DeFilippis RA, Tlsty TD. Hello out there. . .is anybody listening? Cancer discovery. 2012; 2(12):1084–6.

Epub 2012/12/12. https://doi.org/10.1158/2159-8290.CD-12-0434 PMID: 23230186.

30. Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray MA, et al. Human tumors instigate gran-

ulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice.

The Journal of clinical investigation. 2011; 121(2):784–99. Epub 2011/01/27. https://doi.org/10.1172/

JCI43757 PMID: 21266779; PubMed Central PMCID: PMC3026724.

31. Kuznetsov HS, Marsh T, Markens BA, Castano Z, Greene-Colozzi A, Hay SA, et al. Identification of

luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic

platelets and bone marrow-derived cells. Cancer discovery. 2012; 2(12):1150–65. Epub 2012/08/17.

https://doi.org/10.1158/2159-8290.CD-12-0216 PMID: 22896036; PubMed Central PMCID:

PMC3517696.

32. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, et al. Systemic endocrine

instigation of indolent tumor growth requires osteopontin. Cell. 2008; 133(6):994–1005. Epub 2008/06/

17. https://doi.org/10.1016/j.cell.2008.04.045 PMID: 18555776.

33. Dumeaux V, Ursini-Siegel J, Flatberg A, Fjosne HE, Frantzen JO, Holmen MM, et al. Peripheral blood

cells inform on the presence of breast cancer: A population-based case-control study. Int J Cancer.

2014. Epub 2014/06/17. https://doi.org/10.1002/ijc.29030 PMID: 24931809.

34. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic Immu-

nity Is Required for Effective Cancer Immunotherapy. Cell. 2017; 168(3):487–502 e15. https://doi.org/

10.1016/j.cell.2016.12.022 PMID: 28111070.

35. Dumeaux V, Olsen KS, Nuel G, Paulssen RH, Borresen-Dale AL, Lund E. Deciphering normal blood

gene expression variation—The NOWAC postgenome study. PLoS Genet. 2010; 6(3):e1000873. Epub

2010/03/20. https://doi.org/10.1371/journal.pgen.1000873 PMID: 20300640; PubMed Central PMCID:

PMC2837385.

36. Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T, et al. Comparison of different isola-

tion techniques prior gene expression profiling of blood derived cells: impact on physiological

responses, on overall expression and the role of different cell types. The pharmacogenomics journal.

2004; 4(3):193–207. Epub 2004/03/24. https://doi.org/10.1038/sj.tpj.6500240 PMID: 15037859.

37. Radich JP, Mao M, Stepaniants S, Biery M, Castle J, Ward T, et al. Individual-specific variation of gene

expression in peripheral blood leukocytes. Genomics. 2004; 83(6):980–8. Epub 2004/06/05. https://doi.

org/10.1016/j.ygeno.2003.12.013 PMID: 15177552.

38. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, et al. Individuality and varia-

tion in gene expression patterns in human blood. Proceedings of the National Academy of Sciences of

the United States of America. 2003; 100(4):1896–901. Epub 2003/02/13. https://doi.org/10.1073/pnas.

252784499 PMID: 12578971; PubMed Central PMCID: PMC149930.

39. Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C. Patterns of Immune Infiltration in Breast Cancer

and Their Clinical Implications: A Gene-Expression-Based Retrospective Study. PLoS Med. 2016; 13

(12):e1002194. https://doi.org/10.1371/journal.pmed.1002194 PMID: 27959923; PubMed Central

PMCID: PMCPMC5154505.

40. Witten DM, Tibshirani R. A framework for feature selection in clustering. J Am Stat Assoc. 2010; 105

(490):713–26. https://doi.org/10.1198/jasa.2010.tm09415 PMID: 20811510; PubMed Central PMCID:

PMCPMC2930825.

41. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioin-

formatics. 2008; 9:559. Epub 2008/12/31. https://doi.org/10.1186/1471-2105-9-559 PMID: 19114008;

PubMed Central PMCID: PMC2631488.

42. Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap mea-

sure. BMC bioinformatics. 2007; 8:22. https://doi.org/10.1186/1471-2105-8-22 PMID: 17250769;

PubMed Central PMCID: PMCPMC1797055.

43. Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree

Cut package for R. Bioinformatics. 2008; 24(5):719–20. https://doi.org/10.1093/bioinformatics/btm563

PMID: 18024473.

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 25 / 27

44. Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression

data by decorrelating GO graph structure. Bioinformatics. 2006; 22(13):1600–7. Epub 2006/04/12.

https://doi.org/10.1093/bioinformatics/btl140 PMID: 16606683.

45. Bianchini G, Iwamoto T, Qi Y, Coutant C, Shiang CY, Wang B, et al. Prognostic and therapeutic implica-

tions of distinct kinase expression patterns in different subtypes of breast cancer. Cancer research.

2010; 70(21):8852–62. https://doi.org/10.1158/0008-5472.CAN-10-1039 PMID: 20959472.

46. Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F, et al. Immune response in silico (IRIS):

immune-specific genes identified from a compendium of microarray expression data. Genes Immun.

2005; 6(4):319–31. https://doi.org/10.1038/sj.gene.6364173 PMID: 15789058.

47. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome research. 2003; 13

(11):2498–504. https://doi.org/10.1101/gr.1239303 PMID: 14597658; PubMed Central PMCID:

PMCPMC403769.

48. Nikolsky Y, Sviridov E, Yao J, Dosymbekov D, Ustyansky V, Kaznacheev V, et al. Genome-wide func-

tional synergy between amplified and mutated genes in human breast cancer. Cancer research. 2008;

68(22):9532–40. https://doi.org/10.1158/0008-5472.CAN-08-3082 PMID: 19010930.

49. Dumeaux V, Borresen-Dale AL, Frantzen JO, Kumle M, Kristensen VN, Lund E. Gene expression anal-

yses in breast cancer epidemiology: the Norwegian Women and Cancer postgenome cohort study.

Breast cancer research: BCR. 2008; 10(1):R13. Epub 2008/02/15. https://doi.org/10.1186/bcr1859

PMID: 18271962; PubMed Central PMCID: PMC2374969.

50. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, et al. Estrogen receptor status in

breast cancer is associated with remarkably distinct gene expression patterns. Cancer research. 2001;

61(16):5979–84. Epub 2001/08/17. PMID: 11507038.

51. Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcriptional repertoire

analyses. Nat Rev Immunol. 2014; 14(4):271–80. https://doi.org/10.1038/nri3642 PMID: 24662387;

PubMed Central PMCID: PMCPMC4118927.

52. Chaussabel D, Pascual V, Banchereau J. Assessing the human immune system through blood tran-

scriptomics. BMC biology. 2010; 8:84. Epub 2010/07/14. https://doi.org/10.1186/1741-7007-8-84

PMID: 20619006; PubMed Central PMCID: PMC2895587.

53. Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, et al. Molecular signatures

of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol.

2014; 15(2):195–204. https://doi.org/10.1038/ni.2789 PMID: 24336226; PubMed Central PMCID:

PMCPMC3946932.

54. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized Immunomonitor-

ing Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016; 165(3):551–65. https://doi.

org/10.1016/j.cell.2016.03.008 PMID: 27040498.

55. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, et al. An interferon-inducible neutrophil-

driven blood transcriptional signature in human tuberculosis. Nature. 2010; 466(7309):973–7. https://

doi.org/10.1038/nature09247 PMID: 20725040; PubMed Central PMCID: PMCPMC3492754.

56. Mejias A, Dimo B, Suarez NM, Garcia C, Suarez-Arrabal MC, Jartti T, et al. Whole blood gene expres-

sion profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infec-

tion. PLoS Med. 2013; 10(11):e1001549. https://doi.org/10.1371/journal.pmed.1001549 PMID:

24265599; PubMed Central PMCID: PMCPMC3825655.

57. Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, et al. Prognostic B-cell signa-

tures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clinical cancer

research: an official journal of the American Association for Cancer Research. 2014; 20(14):3818–29.

https://doi.org/10.1158/1078-0432.CCR-13-3368 PMID: 24916698; PubMed Central PMCID:

PMCPMC4102637.

58. Rijhsinghani AG, Thompson K, Bhatia SK, Waldschmidt TJ. Estrogen blocks early T cell development

in the thymus. Am J Reprod Immunol. 1996; 36(5):269–77. PMID: 8955504.

59. Zoller AL, Kersh GJ. Estrogen induces thymic atrophy by eliminating early thymic progenitors and inhib-

iting proliferation of beta-selected thymocytes. J Immunol. 2006; 176(12):7371–8. PMID: 16751381.

60. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTbetaR controls thymic portal endothelial cells for hae-

matopoietic progenitor cell homing and T-cell regeneration. Nature communications. 2016; 7:12369.

https://doi.org/10.1038/ncomms12369 PMID: 27493002; PubMed Central PMCID: PMCPMC4980457.

61. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat

Rev Immunol. 2008; 8(5):362–71. https://doi.org/10.1038/nri2297 PMID: 18379575.

62. Lund E, Dumeaux V, Braaten T, Hjartaker A, Engeset D, Skeie G, et al. Cohort profile: The Norwegian

Women and Cancer Study—NOWAC—Kvinner og kreft. Int J Epidemiol. 2008; 37(1):36–41. Epub

2007/07/24. https://doi.org/10.1093/ije/dym137 PMID: 17644530.

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 26 / 27

63. Staaf J, Jonsson G, Ringner M, Vallon-Christersson J, Grabau D, Arason A, et al. High-resolution geno-

mic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast can-

cer research: BCR. 2010; 12(3):R25. Epub 2010/05/13. https://doi.org/10.1186/bcr2568 PMID:

20459607; PubMed Central PMCID: PMC2917012.

64. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microar-

ray experiments. Statistical applications in genetics and molecular biology. 2004; 3:Article3. Epub 2006/

05/02. https://doi.org/10.2202/1544-6115.1027 PMID: 16646809.

65. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to mul-

tiple testing. Journal of the Royal Statistical Society Series B. 1995; 57:289–300.

66. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings

of the National Academy of Sciences of the United States of America. 2005; 102(43):15545–50. Epub

2005/10/04. https://doi.org/10.1073/pnas.0506580102 PMID: 16199517; PubMed Central PMCID:

PMC1239896.

67. Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding JD, Ur-Rehman S, et al. The European

Genome-phenome Archive of human data consented for biomedical research. Nature genetics. 2015;

47(7):692–5. https://doi.org/10.1038/ng.3312 PMID: 26111507.

Interactions between the tumor and the patient systemic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005680 September 28, 2017 27 / 27

Paper 4
B. Fjukstad and L. A. Bongo, “A review of scalable bioinformatics pipelines,”
Data Science and Engineering, vol. 2, no. 3, pp. 245–251, 2017

133

A Review of Scalable Bioinformatics Pipelines

Bjørn Fjukstad1
• Lars Ailo Bongo1

Received: 28 May 2017 / Revised: 29 September 2017 / Accepted: 2 October 2017 / Published online: 23 October 2017

� The Author(s) 2017. This article is an open access publication

Abstract Scalability is increasingly important for bioin-

formatics analysis services, since these must handle larger

datasets, more jobs, and more users. The pipelines used to

implement analyses must therefore scale with respect to the

resources on a single compute node, the number of nodes

on a cluster, and also to cost-performance. Here, we survey

several scalable bioinformatics pipelines and compare their

design and their use of underlying frameworks and

infrastructures. We also discuss current trends for bioin-

formatics pipeline development.

Keywords Pipeline � Bioinformatics � Scalable �
Infrastructure � Analysis services

1 Introduction

Bioinformatics analyses are increasingly provided as ser-

vices that end users access through a web interface that has

a powerful backend that executes the analyses. The ser-

vices may be generic, such as those provided by research

institutes such as EMBL-EBI (http://www.ebi.ac.uk/ser

vices), commercial companies such as Illumina (https://

basespace.illumina.com/home/index), and research pro-

jects such as Galaxy (https://usegalaxy.org/). However,

they can also be specialized and targeted, for example, to

marine metagenomics as our marine metagenomics portal

(https://mmp.sfb.uit.no/).

Scalability is increasingly important for these analysis

services, since the cost of instruments such as next-gener-

ation sequencing machines is rapidly decreasing [1]. The

reduced costs have made the machines more available

which has caused an increase in dataset size, the number of

datasets, and hence the number of users [2]. The backend

executing the analyses must therefore scale up (vertically)

with respect to the resources on a single compute node,

since the resource usage of some analyses increases with

dataset size. For example, short sequence read assemblers

[3] may require TBs of memory for big datasets and tens of

CPU cores [4]. The analysis must also scale out (horizon-

tally) to take advantage of compute clusters and clouds. For

example, the widely used BLAST [5] is computationally

intensive but scales linearly with respect to the number of

CPU cores. Finally, to efficiently support many users it is

important that the analyses scale with respect to cost-per-

formance [6].

The data analysis is typically implemented as a pipeline

(workflow) with third-party tools that each processes input

files and produces output files. The pipelines are often

deep, with 10 or more tools [7]. The tools are usually

implemented in a pipeline framework ranging from simple

R scripts to full workbenches with large collections of tools

(such as the Galaxy [8] or Apache Taverna [9]). A review

of pipeline frameworks is in [10], but it does not focus on

scalability. Here, we survey several scalable bioinformatics

pipelines and compare their design and deployment. We

describe how these scale to larger datasets or more users,

how they use infrastructure systems for scalable data pro-

cessing, and how they are deployed and maintained.

Finally, we discuss current trends in large-scale bioinfor-

matics analyses including containers, standardization,

reproducible research, and large-scale analysis-as-a-service

infrastructures.

& Lars Ailo Bongo

larsab@cs.uit.no

1 Department of Computer Science, UiT The Arctic University

of Norway, 9037 Tromsø, Norway

123

Data Sci. Eng. (2017) 2:245–251

https://doi.org/10.1007/s41019-017-0047-z

2 Scalable Pipelines

We focus our review on scalable pipelines described in

published papers. Many of the pipelines are configured and

executed using a pipeline framework. It is difficult to dif-

ferentiate between the scalability of a pipeline framework

and the scalability of individual tools in a pipeline. If a

pipeline tool does not scale efficiently, it may be necessary

to replace it with a more scalable tool. However, an

important factor for pipeline tool scalability is the infras-

tructure service used by the pipeline framework for data

storage and job execution (Fig. 1). For example, a

columnar storage system may improve I/O performance,

but many analysis tools are implemented to read and write

regular files and hence cannot directly benefit from

columnar storage. We therefore structure our description of

each pipeline as follows:

1. We describe the compute, storage, and memory

requirements of the pipeline tools. These influence

the choice of the framework and infrastructure

systems.

2. We describe how the pipelines are used. A pipeline

used interactively to process data submitted by end

users has different requirements than a pipeline used to

batch process data from a sequencing machine.

3. We describe the pipeline framework used by the

pipeline, how the pipeline tools are executed, how the

pipeline data are stored, and the execution

environment.

4. We describe how the pipeline tools scale out or up,

how the pipeline framework supports multiple users or

jobs, and whether the execution environment provides

elasticity to adjust the resources allocated for the

service.

5. We discuss limitations and provide comparisons to

other pipelines.

2.1 META-Pipe 1.0 Metagenomics Pipeline

Our META-pipe pipeline [11, 12] provides preprocessing,

assembly, taxonomic classification, and functional analysis

for metagenomics samples. It takes as input short reads

from a next-generation sequencing instrument and outputs

the organisms found in the metagenomics sample, pre-

dicted genes, and their corresponding functional annota-

tions. The different pipeline tools have different resource

requirements. Assembly requires a machine with at least

256 GB RAM, and it cannot run efficiently on distributed

resources. Functional analysis requires many cores and has

parts that are I/O intensive, but it can be run efficiently

distributed on a cluster with thin nodes. Taxonomical

classification has low resource requirements and can be run

on a single node. A typical dataset is 650 MB in size and

takes about 6 h to assemble on 12 cores and 20 h for

functional annotation on 384 cores.

A Galaxy [13] interface provides META-pipe 1.0 to

Norwegian academic and industry users (https://nels.

bioinfo.no/). The pipeline is specified in a custom Perl-

script-based framework [14]. It is executed on the Stallo

supercomputer, which is a traditional HPC cluster with one

job queue optimized for long-executing batch jobs. A

shared global file system provides data storage. We man-

ually install and maintain the pipeline tools and associated

database versions on a shared file system on Stallo.

The job script submitted to the Stallo job scheduler

describes the resources requested on a node (scale up) and

the number of nodes requested for the job (scale out). Both

Galaxy and the job scheduler allow multiple job submis-

sions from multiple users at the same time, but whether the

jobs run simultaneously depends on the load of the cluster.

HPC clusters are typically run with a high utilization, so

jobs are often queued for a long time and therefore jobs

submitted at the same time may not run at the same time.

HPC clusters are not designed for elastic resource provi-

sion, so it is difficult to efficiently scale the backend to

support the resource requirement variations of multi-user

workloads.

Fig. 1 Scalable pipeline components. A pipeline consists of third-

party tools, data parsers, and data transformations. The pipeline tools

and their dependencies are specified using a workflow language or

implemented as a program or script. A pipeline framework executes

the pipeline tools on a cluster or cloud using a big data processing

engine or a supercomputer job scheduler. The pipeline framework

stores the data as files, objects, or matrices in a columnar storage. The

execution environment allocates the resources needed for the pipeline,

and a user interface provides access for end users to the pipeline

246 B. Fjukstad, L. A. Bongo

123

META-pipe 1.0 has several limitations as a scalable

bioinformatics service. First, the use of a highly loaded

supercomputer causes long wait times and limits elastic

adjustment of resources for multi-user workloads. We

manually deploy the service on Galaxy and Stallo, which

makes updates time-consuming and prone to errors.

Finally, our custom pipeline framework has no support for

provenance data maintenance nor failure handling. For

these reasons, we have re-implemented the backend in

META-pipe 2.0 using Spark [15] so that it can take

advantage of the same features as the pipelines described

below do.

2.2 Genome Analysis Toolkit (GATK) Variant

Calling Reference Pipeline

The GATK [16] best practices pipeline for germline SNP

and indel discovery in whole-genome and whole-exome

sequence (https://software.broadinstitute.org/gatk/best-

practices/bp_3step.php?case=GermShortWGS) is often

used as reference for scalable genomics data analysis

pipelines. This pipeline provides preprocessing, variant

calling, and callset refinement. (The latter usually is not

included in benchmarking.) It takes as input short reads and

outputs annotated variants. Some tools have high CPU

utilization (BWA and HaplotypeCaller), but most steps are

I/O bound. An Intel white paper [17] recommends using a

server with 256 GB RAM and 36 cores for the pipeline,

and they achieved the best resource utilization by running

analysis jobs for multiple datasets at the same time and

configuring the jobs to only use a subset of the resources.

The pipeline is well suited for parallel execution as

demonstrated by the MapReduce programming models

used in [16] and the Halvade [18] Hadoop MapReduce

implementation that analyzes a 86 GB (compressed) WGS

dataset in less than 3 h on Amazon Elastic MapReduce

(EMR) using 16 workers with a total of 512 cores.

The first three versions of GATK are implemented in

Java and optimized for use on local compute infrastruc-

tures. Version 4 of GATK (at the time of writing in Beta)

uses Spark to improve I/O performance and scalability

(https://software.broadinstitute.org/gatk/blog?id=9644). It

uses GenomicsDB (https://github.com/Intel-HLS/Geno

micsDB) for efficiently storing, querying, and accessing

(sparse matrix) variant data. GenomicsDB is built on top of

Intel’s TileDB (http://istc-bigdata.org/tiledb/index.html)

which is designed for scalable storage and processing of

sparse matrices. To support tertiary (downstream) analysis

of the data produced by GATK, the Hail framework

(https://hail.is/) provides interactive analyses. It optimizes

storage and access of variant data (sparse matrices) and

provides built-in analysis functions. Hail is implemented

using Spark and Parquet.

Tools in the GATK can be run manually through the

command line, specified in the workflow definition language

(WDL) and run in Cromwell, or use written in Scala and run

on Queue (https://software.broadinstitute.org/gatk/doc

umentation/pipelines). GATK provides multiple approaches

to parallelize tasks: multi-threading and scatter–gather.

Users enablemulti-threadingmode by specifying command-

line flags and use Queue or Cromwell to run GATK tools

using a scatter–gather approach. It is also possible to com-

bine these approaches (https://software.broadinstitute.org/

gatk/documentation/article.php?id=1988).

2.3 ADAM Variant Calling Pipeline

ADAM [6] is a genomics pipeline that is built on top of the

Apache Spark big data processing engine [15], Avro

(https://avro.apache.org/) data serialization system, and

Parquet (https://parquet.apache.org/) columnar storage

system to improve the performance and reduce the cost of

variant calling. It takes as input next-generation sequencing

(NGS) short reads and outputs sites in the input genome

where an individual differs from the reference genome.

ADAM provides tools to sort reads, remove duplicates, do

local realignment, and do base quality score recalibration.

The pipeline includes both compute and I/O-intensive

tasks. A typical dataset is 234 GB (gzip compressed) and

takes about 74 min to run on 128 Amazon EC2 r3.2xlarge

(4 cores, 30.5 GB RAM, 80 GB SSD) instances with 1024

cores in total.

ADAM focuses on backend processing, and hence, user-

facing applications need to be implemented as, for exam-

ple, Scala or Python scripts. ADAM uses Spark to scale out

parallel processing. The data are stored in Parquet, a

columnar data storage using Avro serialized file formats

that reduce I/O load by providing in-memory data access

for the Spark pipeline implementation. The pipeline is

implemented as a Spark program.

Spark is widely supported on commercial clouds such as

Amazon EC2, Microsoft Azure HDInsight, and increas-

ingly in smaller academic clouds. It can therefore exploit

the scale and elasticity of these clouds. There are also

Spark job schedulers that can run multiple jobs

simultaneously.

ADAM improves on MapReduce-based pipeline

frameworks by using Spark. Spark solves some of the

limitations of the MapReduce programming model and

runtime system. It provides a more flexible programming

model than just the map-sort-reduce in MapReduce, better

I/O performance by better use of in-memory data structures

between pipeline stages and data streaming, and reduced

job startup time for small jobs. Spark is therefore becoming

the de facto standard for big data processing, and pipelines

implemented in Spark can take advantage of Spark libraries

A Review of Scalable Bioinformatics Pipelines 247

123

such as GraphX [19] for graph processing and MLlib [20]

for machine learning.

ADAM has two main limitations. First, it implemented

as part of research projects that may not have the long-term

support and developer efforts required to achieve the

quality and trust required for production services. Second,

it requires re-implementing the pipeline tools to run in

Spark and access data in Parquet, which is often not pos-

sible for analysis services with multiple pipelines with tens

of tools each.

2.4 GESALL Variant Calling Pipeline

GESALL [21] is a genomic analysis platform for unmod-

ified analysis tools that use the POSIX file system interface.

An example pipeline implemented with GESALL is their

implementation of the GATK variant calling reference

pipeline that was used as an example in the ADAM paper

[6]. GESALL is evaluated on fewer but more powerful

nodes (15, each with 24 cores, 64 GB RAM, and 3 TB

disk) than the ADAM pipeline. A 243 GB compressed

dataset takes about 1.5 h to analyze.

GESALL pipelines are implemented and run as

MapReduce programs on resources allocated by YARN

(https://hadoop.apache.org/). The pipeline can run

unmodified analysis tools by wrapping these using their

genome data parallel toolkit. The tools access their data

using the standard file system interface, but GESALL

optimizes data access patterns and enables correct dis-

tributed execution. It stores data in HDFS (https://hadoop.

apache.org/) and provides a layer on top of HDFS that

optimizes storage of genomics data type, including custom

partitioning and block placement.

Like Spark, MapReduce is widely used in both com-

mercial and academic clouds and GESALL can therefore

use the horizontal scalability, elasticity, and multi-job

support features of these infrastructures. The unmodified

tools executed by a GESALL pipeline may also be multi-

threaded. A challenge is therefore to find the right mix of

MapReduce tasks and per-tool multi-threading.

2.5 Toil: TCGA RNA-Seq Reference Pipeline

Toil is a workflow software to run scientific workflows on a

large scale in cloud or high-performance computing (HPC)

environments [22]. It is designed for large-scale analysis

pipelines such as The Cancer Genome Atlas (TCGA) [23]

best practices pipeline for calculating gene- and isoform-

level expression values from RNA-seq data. The memory-

intensive STAR [24] aligner requires 40 GB of memory.

As with other pipelines, the job has a mix of I/O- and CPU-

intensive tasks. In [22], the pipeline runs on a cluster of

AWS c3.8xlarge (32 cores, 60 GB RAM, 640 GB SSD

storage) nodes. Using about 32.000 cores, they processed a

108 TB with 19,952 samples in 4 days.

Toil can execute workflows written in both the Common

Workflow Language (CWL, http://www.commonwl.org/),

the Workflow Definition Language (WDL, https://github.

com/broadinstitute/wdl), or Python. Toil is written in

Python, so it is possible to interface it from any Python

application using the Toil Application Programming

Interface (API). Toil can be used to implement any type of

data analysis pipeline, but it is optimized for I/O-bound

NGS pipelines. Toil uses file caching and data streaming,

and it schedules work on the same portions of a dataset to

the same compute node. Toil can run workflows on com-

mercial cloud platforms, such as AWS, and private cloud

platforms, such as OpenStack (https://www.openstack.org/

), and it can execute individual pipeline jobs on Spark.

Users interface with Toil through a command-line tool that

orchestrates and deploys a data analysis pipeline. Toil uses

different storage solutions depending on platform: S3

buckets on AWS, the local file system on a desktop com-

puter, network file systems on a high-performance cluster,

and so on.

3 Current Trends

In addition to the scalability considerations discussed

above, we see several other trends in pipelines developed

for scalable bioinformatics services.

Containers are increasingly used to address the challenges

of sharing bioinformatics tools and enabling reproducible

analyses in projects such as BioContainers (http://biocontai

ners.pro/).A bioinformatics pipeline is often deep,withmore

than 15 tools [7]. Each tool typically has many dependencies

on libraries and especially reference databases. In addition,

some tools are seldom updated. Pipelines therefore often

require a large effort to install, configure, and run bioinfor-

matics tools. Software containerization packages an appli-

cation and its dependencies in an isolated execution

environment. One popular implementation of software

container is Docker [25]. With Docker, developers can build

a container from a configuration file (Dockerfile) that

includes machine and human-readable instructions to install

the necessary dependencies and the tool itself. Both the

Dockerfile and the resulting container can bemoved between

machines without installing additional software, and the

container can be rerun later with the exact same libraries.

Containers can be orchestrated for parallel execution using,

for example, Kubernetes (https://kubernetes.io/) or Docker

Swarm (https://github.com/docker/swarm), and there are

now multiple pipelining tools that use Docker or provide

Docker container support includingNextflow [26], Toil [22],

Pachyderm (http://www.pachyderm.io/), Luigi (https://

248 B. Fjukstad, L. A. Bongo

123

github.com/spotify/luigi) [27], Rabix/bunny [28], and our

own walrus system (http://github.com/fjukstad/walrus).

There are several efforts to standardize pipeline speci-

fications to make it easier to port pipelines across frame-

works and execution environments (including Toil

described above). For example, the Common Workflow

Language (CWL) is an effort supported by many of the

developers of the most popular pipeline frameworks. CWL

is a standard for describing data analysis pipelines.

Developers can describe a data analysis pipeline in YAML

or JSON files that contain a clear description of tools, input

parameters, input and output data, and how the tools are

connected. There are multiple systems that implement the

CWL standard, including Galaxy [13], Toil, Arvados

(https://arvados.org/), and AWE [29], making it possible to

write a single description of a pipeline and run it in the

most suitable pipeline execution environment. It is an open

challenge to implement support for the standardized pipe-

line descriptions on execution environments such as Spark.

The needs and challenges for reproducible analyses [30]

require a standardized way to specify and document

pipelines and all their dependencies, in addition to main-

taining all provenance information of pipeline executions

[31]. Specifications such as CWL can be used to stan-

dardize the specification, and for example, Spark has built-

in data lineage recording. However, there is not yet an

analysis standard that describes the minimum information

required to recreate bioinformatics analyses [32].

Finally, there are several large infrastructures and plat-

forms that provide scalable bioinformatics services. The

European ELIXIR (https://www.elixir-europe.org/) dis-

tributed infrastructure for life science data resources, anal-

ysis tools, compute resources, interoperability standards, and

training. The META-pipe pipelines described above are

developed as part of the ELIXIR project. Another example is

the Illumina BaseSpace Sequence Hub (https://basespace.

illumina.com/home/index), which is a cloud-based geno-

mics analysis and storage platform provided by the producer

of the currently most popular sequencing machines. Other

commercial cloud platforms for bioinformatics analyses are

DNAnexus (https://www.dnanexus.com/), Agave (https://

agaveapi.co), and SevenBridges (https://www.sevenbridges.

com/platform/). We believe the efforts required to maintain

and provide the resources needed for future bioinformatics

analysis services will further consolidate such services in

larger infrastructures and platforms.

4 Summary and Discussion

We have provided a survey of scalable bioinformatics

pipelines. We compared their design and use of underlying

infrastructures. We observe several trends (Table 1). First,

there are few papers that describe the design, implemen-

tation, and evaluation of scalable pipeline frameworks and

pipelines, especially compared to the number of papers

describing bioinformatics tools. Of those papers, most

focus on a specific type of analysis (variant calling) using

mostly the same tools. This suggests that there is a need to

address the scalability and cost-effectiveness of other types

of bioinformatics analysis.

Most papers focus on the scalability of a single job.

Only our META-pipe paper evaluates the scalability of the

pipeline with respect to multiple users and simultaneous

jobs. With analyses provided increasingly as a service, we

believe multi-user job optimizations will become increas-

ingly important. Staggered execution of multiple pipeline

jobs can also improve resource utilization as shown in

[17, 27].

It is becoming common to standardize pipeline

descriptions and use existing pipeline frameworks rather

than implementing custom job execution scripts. An open

challenge is how to optimize the execution of pipelines

specified in, for example, CWL. Frameworks such as

GESALL provide genomic dataset optimized storage

which can be difficult to utilize from a generic pipeline

specification. ADAM uses an alternative approach where

the pipeline is a Spark program like for data analyses in

many other domains.

In addition to standardizing pipeline description, there is

a move to standardize and enable completely reproducible

execution environments through software containers such

as Docker. Although not yet widely adopted, containerized

bioinformatics tools simplify deployment, sharing, and

reusing of tools between research groups. We believe that

standardizing the execution environment, together with

standardizing the pipeline descriptions, is a key feature for

reproducible research in bioinformatics.

Most pipelines save data in a traditional file system

since most analysis tools are implemented to read and write

files in POSIX file systems. GESALL provides a layer that

enables using HDFS for data storage by wrapping tools and

providing optimized genomic data-specific mapping

between POSIX and HDFS. ADAM uses a different, data-

oriented approach, with a layered architecture for data

storage and analysis that exploits recent advancement in

big data analysis systems. Like ADAM, GATK4 is also

built on top of Spark and a columnar data storage system.

ADAM requires re-implementing the analysis tools, which

may be practical for the most commonly used tools and

pipelines such as the GATK reference pipelines, but is

often considered impractical for the many other tools and

hence pipelines.

Pipeline frameworks such as GESALL and ADAM use

MapReduce and Spark to execute pipeline jobs on clouds

or dedicated clusters, and Toil supports job execution on

A Review of Scalable Bioinformatics Pipelines 249

123

HPC clusters with a job scheduler, which is important since

most bioinformatics analysis pipelines are not implemented

in MapReduce or Spark. HPC job schedulers are also

provided on commercial and private clouds, so also these

pipelines can take advantage of the elasticity provided by

these infrastructures.

In addition to enabling and evaluating horizontal scal-

ability, the cost of an analysis and the choice of virtual

machine flavors are becoming increasingly important for

efficient execution of bioinformatics analysis, since

pipelines are increasingly deployed and evaluated on

commercial clouds [6, 21, 22]. However, even on dedicated

clusters it is important to understand how to scale a pipe-

line up and out on the available resources to improve the

utilization of the resources. However, with the exception of

[17], none of the reviewed papers have evaluated multiple

pipeline job executions from the cluster provider’s point of

view.

We believe deployment, provenance data recording, and

standardized pipeline descriptions are necessary to provide

easy-to-maintain and reproducible bioinformatics pipelines

in infrastructures such as ELIXIR or platforms such as

BaseSpace. These three areas are typically not addressed in

the reviewed papers, suggesting that more research is

required to address these areas in the context of scalable

bioinformatics pipelines.

Summarized, we have described many scalability

problems and their solutions in the reviewed papers. These

include: scaling up nodes to run tools with large memory

requirements (META-pipe), scale out for parallel execution

(all reviewed pipelines), use of optimized data structures

and storage systems to improve I/O performance (GATK

4.0, ADAM, GESALL), and the choice of machine flavor

to optimize either the execution or cost (GATK, ADAM,

GESALL). Although many of the pipelines have the same

scalability issues, such as I/O performance for variant

calling, the infrastructure system and optimizations differ

depending on overall design choices (e.g., the use of

unmodified vs modified analysis tools) and the software

stack (e.g., Spark vs HPC schedulers and file systems). We

therefore believe there is no right solution or platform that

solves all scalability problems, and that more research is

needed to scale up and cost-optimize the many types of

bioinformatics data analyses. The increasing use of stan-

dardized layers, standards, and interfaces to implement

these analyses should allow reusing the developed solu-

tions across pipelines and pipeline frameworks.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Sboner A, Mu XJ, Greenbaum D et al (2011) The real cost of

sequencing: higher than you think! Genome Biol 12:125. doi:10.

1186/gb-2011-12-8-125

2. Schuster SC (2008) Next-generation sequencing transforms

today’s biology. Nat Methods 5:16–18. doi:10.1038/nmeth1156

3. Vollmers J, Wiegand S, Kaster A-K (2017) Comparing and

evaluating metagenome assembly tools from a microbiologist’s

Table 1 Classification of scalable bioinformatics pipelines

Pipeline META-pipe 1.0 [11, 12] GATK [16] GESALL [21] ADAM [6] TOIL [22]

Application Metagenomics Variant calling Variant calling Variant calling RNA-seq

User interface Galaxy Command line,

REST API

Command line Scala or Python

scripts

Command line

Pipeline

specification

Perl script WDL or bash scripts MapReduce program Spark program CWL or Python

Data storage File system File system Layer on top of HDFS Parquet

columnar

storage

S3 buckets or file

system

Pipeline

execution

Torque job scheduler JVM, Cromwell,

Spark

MapReduce (YARN) Spark Toil

Execution

environment

HPC cluster HPC Cluster, Cloud HPC cluster, cloud Cloud HPC cluster, cloud

Scalability Parallel processes and multi-

threaded programs

Multi-threading and

scatter–gather

MapReduce tasks and multi-

threaded programs

Spark tasks Distributed and

parallel workers

250 B. Fjukstad, L. A. Bongo

123

perspective—not only size matters! PLoS ONE 12:e0169662.

doi:10.1371/journal.pone.0169662

4. Couger MB, Pipes L, Squina F et al (2014) Enabling large-scale

next-generation sequence assembly with Blacklight. Concurr

Comput Pract Exp 26:2157–2166. doi:10.1002/cpe.3231

5. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment

search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-

2836(05)80360-2

6. Nothaft FA, Massie M, Danford T et al (2015) Rethinking data-

intensive science using scalable analytics systems. In: Proceed-

ings of 2015 ACM SIGMOD international conference on man-

agement of data. ACM, New York, pp 631–646

7. Diao Y, Abhishek R, Bloom T (2015) Building highly-optimized,

low-latency pipelines for genomic data analysis. In: Proceedings

of the 7th biennial Conference on Innovative Data Systems

Research (CIDR 2015)

8. Blankenberg D, Von Kuster G, Bouvier E et al (2014) Dissemi-

nation of scientific software with Galaxy ToolShed. Genome Biol

15:403. doi:10.1186/gb4161

9. Wolstencroft K, Haines R, Fellows D et al (2013) The Taverna

workflow suite: designing and executing workflows of Web

Services on the desktop, web or in the cloud. Nucleic Acids Res

41:W557–W561. doi:10.1093/nar/gkt328

10. Leipzig J (2016) A review of bioinformatic pipeline frameworks.

Br Bioinform. doi:10.1093/bib/bbw020

11. Robertsen EM, Kahlke T, Raknes IA et al (2016) META-pipe—

pipeline annotation, analysis and visualization of marine

metagenomic sequence data. ArXiv160404103 Cs

12. Robertsen EM, Denise H, Mitchell A et al (2017) ELIXIR pilot

action: marine metagenomics—towards a domain specific set of

sustainable services. F1000Research 6:70. doi:10.12688/

f1000research.10443.1

13. Afgan E, Baker D, van den Beek M et al (2016) The Galaxy

platform for accessible, reproducible and collaborative biomedi-

cal analyses: 2016 update. Nucleic Acids Res 44:W3–W10.

doi:10.1093/nar/gkw343

14. Pedersen E, Raknes IA, Ernstsen M, Bongo LA (2015) Inte-

grating data-intensive computing systems with biological data

analysis frameworks. In: 2015 23rd Euromicro international

conference on parallel, distributed and network-based processing

(PDP). IEEE Computer Society, Los Alamitos, pp 733–740

15. Zaharia M, Franklin MJ, Ghodsi A et al (2016) Apache Spark: a

unified engine for big data processing. Commun ACM 59:56–65.

doi:10.1145/2934664

16. McKenna A, Hanna M, Banks E et al (2010) The Genome

Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res 20:1297–1303.

doi:10.1101/gr.107524.110

17. Prabhakaran A, Shifaw B, Naik M et al (2015) Infrastructure for

GATK* best practices pipeline deployment. Intel, Santa Clara

18. Decap D, Reumers J, Herzeel C et al (2017) Halvade-RNA:

parallel variant calling from transcriptomic data using MapRe-

duce. PLoS ONE 12:e0174575. doi:10.1371/journal.pone.

0174575

19. Gonzalez JE, Xin RS, Dave A et al (2014) GraphX: graph pro-

cessing in a distributed dataflow framework. In: Proceedings of

11th USENIX conference on operating systems design and

implementation. USENIX Association, Berkeley, pp 599–613

20. Meng X, Bradley J, Yavuz B et al (2016) MLlib: machine

learning in Apache Spark. J Mach Learn Res 17:1235–1241

21. Roy A, Diao Y, Evani U et al (2017) Massively parallel pro-

cessing of whole genome sequence data: an in-depth performance

study. In: Proceedings of 2017 ACM international conference on

management of data. ACM, New York, pp 187–202

22. Vivian J, Rao AA, Nothaft FA et al (2017) Toil enables repro-

ducible, open source, big biomedical data analyses. Nat

Biotechnol 35:314–316. doi:10.1038/nbt.3772

23. The Cancer Genome Atlas Research Network, Weinstein JN,

Collisson EA et al (2013) The cancer genome atlas pan-cancer

analysis project. Nat Genet 45:1113–1120. doi:10.1038/ng.2764

24. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast

universal RNA-seq aligner. Bioinformatics 29:15–21. doi:10.

1093/bioinformatics/bts635

25. Merkel D (2014) Docker: lightweight linux containers for con-

sistent development and deployment. Linux J 239:2

26. Di Tommaso P, Chatzou M, Floden EW et al (2017) Nextflow

enables reproducible computational workflows. Nat Biotechnol

35:316–319. doi:10.1038/nbt.3820

27. Schulz WL, Durant T, Siddon AJ, Torres R (2016) Use of

application containers and workflows for genomic data analysis.

J Pathol Inform 7:53. doi:10.4103/2153-3539.197197

28. Kaushik G, Ivkovic S, Simonovic J et al (2016) Rabix: an open-

source workflow executor supporting recomputability and inter-

operability of workflow descriptions. Pac Symp Biocomput Pac

Symp Biocomput 22:154–165

29. Gerlach W, Tang W, Keegan K et al (2014) Skyport: container-

based execution environment management for multi-cloud sci-

entific workflows. In: Proceedings of 5th international workshop

on data-intensive computing in the clouds. IEEE Press, Piscat-

away, pp 25–32

30. Peng RD (2011) Reproducible research in computational science.

Science 334:1226–1227. doi:10.1126/science.1213847

31. Huntemann M, Ivanova NN, Mavromatis K et al (2016) The

standard operating procedure of the DOE-JGI Metagenome

Annotation Pipeline (MAP v.4). Stand Genomic Sci 11:17.

doi:10.1186/s40793-016-0138-x

32. ten Hoopen P, Finn RD, Bongo LA et al (2017) The metage-

nomics data life-cycle: standards and best practices. GigaScience.

doi:10.1093/gigascience/gix047

A Review of Scalable Bioinformatics Pipelines 251

123

Paper 5
I. A. Raknes, B. Fjukstad, and L. Bongo, “nsroot: Minimalist process isola-
tion tool implemented with linux namespaces,” Norsk Informatikkonferanse,
2017

141

This paper was presented at the NIK 2017 conference. For more information see http://www.nik.no/

nsroot: Minimalist Process Isolation Tool Implemented with
Linux Namespaces

Inge Alexander Raknes1, Bjørn Fjukstad2, Lars Ailo Bongo2

1Dept. of Chemistry, UiT – The Arctic University of Norway
2Dept. of Computer Science, UiT – The Arctic University of Norway

{inge.a.raknes, bjorn.fjukstad, lars.ailo.bongo}@uit.no

Abstract
Data analyses in the life sciences are moving from tools run on a personal computer to
services run on large computing platforms. This creates a need to package tools and
dependencies for easy installation, configuration and deployment on distributed platforms.
In addition, for secure execution there is a need for process isolation on a shared platform.
Existing virtual machine and container technologies are often more complex than traditional
Unix utilities, like chroot, and often require root privileges in order to set up or use. This is
especially challenging on HPC systems where users typically do not have root access. We
therefore present nsroot, a lightweight Linux namespaces based process isolation tool. It
allows restricting the runtime environment of data analysis tools that may not have been
designed with security as a top priority, in order to reduce the risk and consequences of
security breaches, without requiring any special privileges. The codebase of nsroot is small,
and it provides a command line interface similar to chroot. It can be used on all Linux kernels
that implement user namespaces. In addition, we propose combining nsroot with the
AppImage format for secure execution of packaged applications. nsroot is open sourced and
available at: https://github.com/uit-no/nsroot.

Introduction
Container and virtual machine technologies are vital for secure and portable execution on
computing platforms such as clouds IaaS. For scientific computing the use of container
technologies, such as Docker [1], rkt (https://coreos.com/rkt/) and Snapcraft
(http://snapcraft.io/), have the potential to make data analysis applications easier to install,
port, and use. Specifically, containers allow packaging the application with its
dependencies in a self-contained container that can easily be executed on a wide variety
of computing platforms. However, container technologies rely on operating system
services to provide the application with a name space and protection from other
application. Hence, these must rely on operating system features that may not be available
in all kernels and distributions, or they may require root access.
Our work is motivated by our experiences developing, deploying, and maintaining the
META-pipe metagenomics data analysis service [2]. Such genomic data analysis is
typically done through a collection of tools arranged in a pipeline where the output of one
tool is the input to the next tool. The data transformations include file conversion, data
cleaning, normalization, and data integration. A specific biological data analysis project
often requires a deep workflow that combines 10-20 tools [3]. There are many libraries
[4]–[6] with hundreds of tools, ranging from small, user-created scripts to large, complex
applications [7]. Each tool has dependencies in form of libraries, but also data files such
as specific versions of reference databases. These dependencies make it difficult to install,
configure, and deploy a pipeline on a new computing platform. There are therefore recent
initiatives, such as BioDocker (https://github.com/BioDocker) that aim to provide
packaged genomics data analysis tools in containers.
The cost of producing genomics data is rapidly decreasing
(http://www.genome.gov/sequencingcosts), so it has become necessary to move the

analyses from the single server typically used to high performance clusters or clouds [2],
[3], [8]. Since porting and maintaining a deep data analysis pipeline on a cluster or cloud
is time-consuming and requires access to a large amount of compute and storage
resources, it is increasingly common to provide a pipeline as a data analysis service.
Recent examples of such services include Illumina Basespace
(https://basespace.illumina.com/home/index), EBI Metagenomics [9], our META-pipe
[2] and other pipelines provided by the Norwegian eInfrastructure for Life Sciences
(https://nels.bioinfo.no/). For such services security is important since the service may be
used to process sensitive, scientifically valuable, or commercially valuable data on behalf
of a user. This is further complicated since the pipeline consists of third party tools that
may not have high code quality, that have not been properly tested, and that are executed
as the same user on the cloud or HPC backend. So, it is especially important to isolate the
individual pipeline tool executions from each other. Another challenge is that, unlike IaaS
services, HPC systems are often provided as a traditional shared UNIX system where
users typically do not have root access. This complicates the task of installing complex
application dependencies.
An ideal container solution would be one that would let us package all of our application
dependencies inside the same Jar-file that we submit to our Spark cluster while at the
same time provide full process isolation for the 3rd party tools that are run within the
workflow. This would also make it easy to know which tools (and versions) were involved
in processing a dataset since they would all be part of the application bundle. However,
to our knowledge no existing solution existed that satisfies all needs. Existing virtual
machine and container technologies are often more complex than traditional Unix
utilities, like chroot, and often require root privileges.
In this paper we discuss our solution for minimalistic process isolation. It solves the
problem of isolating an application from the rest of the filesystem and it also lets us restrict
an application from communicating with other applications via network or IPC by using
the network- and IPC namespaces. Our solution, called nsroot provides process isolation
by making use of Linux namespaces in order to provide an isolated root file system for a
process (similar to chroot) while at the same time cutting it off the network. This enables
us to run applications with all their dependencies is a single directory while at the same
time providing extra security through extra process isolation. In addition, we can combine
nsroot with AppImage container to provide a simple, packaged bundle for an application.
Finally, we propose using nsroot with AppImage and package those inside a Java Jar file
for easy submission to a Spark cluster.
nsroot works on Linux kernels newer than 3.10, and we have successfully tested it on the
Fedora 22 and Ubuntu 14.04 LTS.

nsroot
nsroot (https://github.com/uit-no/nsroot) is a process isolation tool that makes use of
namespaces to allow an application to change the root directory. It is designed to be
lightweight and minimalistic to ensure wide portability across Linux kernel versions and
distributions. It can be used to run processes within their own virtual root file system,
which in turn allows the caller full control over absolute paths that are referenced by the
program.
Unlike other container tools, like Docker, nsroot does not require any installation. Instead
it can be packaged as part of an application bundle.

Usage
To use nsroot, we first create a new root file system containing the application and all its
dependencies. The root filesystem can be created by for example setting up the
application in a docker container and then using docker to export the application files and
dependencies to the new root directory. Alternatively, the root file system can be
manually created, or it may consist of a statically linked self-contained application. We
also describe below how nsroot can be combined with AppImage to provide extra
isolation for containers.
Second, we create a new directory for the old root filesystem in a subdirectory of the new
root. This is needed by the PIVOT_ROOT system call (http://man7.org/linux/man-
pages/man2/pivot_root.2.html) that changes the root directory.
Third, we call nsroot with the same parameters as chroot to change into the new
filesystem. We can also specify bind-mounts to mount existing directories into this new
root file system. To further restrict which processes the contained process can
communicate with we can apply the network and IPC namespaces. We can validate that
the network namespace is used by calling ifconfig inside the container.

Namespaces
We implemented nsroot by using namespaces as described in the NAMESPACES man
page (http://man7.org/linux/man-pages/man7/namespaces.7.html). In particular, we are
using mount namespaces in order to change the mount table for a single process tree and
we are using the user namespace in order to do so without requiring root access
(https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-
namespaces). We also found a tutorial about mount namespaces useful for this project
(https://www.ibm.com/developerworks/library/l-mount-namespaces).
As described in the namespaces man page: “User namespaces isolate security-related
identifiers and attributes, in particular, user IDs and group IDs […], the root directory,
keys […], and capabilities […]. A process's user and group IDs can be different inside
and outside a user namespace. In particular, a process can have a normal unprivileged
user ID outside a user namespace while at the same time having a user ID of 0 inside the
namespace; in other words, the process has full privileges for operations inside the user
namespace, but is unprivileged for operations outside the namespace.”
In other words, the process can run with root privileges in a user namespace without
actually having root privileges elsewhere. Summarized, our code does the following:

1. Clone the process using the appropriate namespaces. This includes at least the
user and mount namespaces (CLONE_NEWUSER, CLONE_NEWNS)

2. Subprocess bind-mounts the new root filesystem into a subdirectory in the
new root (for example /path/to/newroot/mnt).

3. pivot_root is called in order to make newroot the new root filesystem. The old
root filesystem becomes available under /mnt

4. User-specified shared directories are bind mounted from the old root
filesystem (available under /mnt) into the new root file system.

5. The old root filesystem (/mnt) is unmounted
6. execvp is called in order to replace the current process image with an

executable specified by the user.

Implementation
nsroot is implemented in C and it consists of less than 500 lines of code. It has no
dependencies other than the kernel. User namespaces were implemented in the Linux
kernel version 3.8. We have tested nsroot with Linux kernels newer than 3.10 (Fedora 22
and Ubuntu 14.04). However, it does not currently work on CentOS since it does not yet
support user namespaces (http://rhelblog.redhat.com/2015/07/07/whats-next-for-
containers-user-namespaces/).

Related Work
In this section, we describe related work in process isolation tools based on Linux user
namespaces and container technologies. In addition, we discuss how containers are used
for genomics data analysis.

nsjail and firejail
At the same time when we developed nsroot, other projects developed similar tools. nsjail
(http://google.github.io/nsjail/) was started the day before nsroot, and firejail
(https://firejail.wordpress.com/) had its first beta release in April 2014. Both nsjail and
firejail uses Linux user namespaces, similarly to nsroot, for process isolation, and in
addition they use seccomp-bpf to filter system calls. nsjail uses resource limits and
cgroups to limit the CPU, memory usage, and address space sizes of applications. nsjail
also provides virtual network inside the application (although this requires root access to
setup). firejail natively supports the AppImage format.
The main advantage of nsroot over nsjail and firejail is that nsroot maintains
compatibility with the chroot command and it has a smaller codebase (since it has fewer
features). We believe this makes the command line interface easier to understand and use.

Containers and Virtual Machines
Both Virtual machines (VMs) and containers are technologies used to provide an isolated
environment for applications. They are both binaries that can be transferred between
hosts. While a VM includes an application, its dependencies and an entire OS, containers
share the underlying host OS and contain only the application and dependencies making
them smaller in size. Containers are isolated processes in user space on the host OS (as
described in https://www.docker.com/what-docker).
In [10] Docker containers are shown to have better than, or equal performance as VMs.
Both forms of virtualization techniques introduce overhead in I/O-intensive workloads,
especially in VMs, but introduce negligible CPU and memory overhead.
For genomics pipelines the overhead of Docker containers will be negligible since these
tend to be compute intensive and they typically run for several hours [11].

Containers in Life Science Research
Recent projects propose to use containers for life science research. The BioContainers
(https://github.com/biocontainers) and Bioboxes [12] projects addresses the challenge of
installing bioinformatics data analysis tools by maintaining a repository of docker
containers for commonly used data analysis tools.
Containers have also been proposed as a solution to improve experiment reproducibility,
by ensuring that the data analysis tools are installed with the same responsibilities [13].

Future Directions
We believe nsroot can be used to provide extra isolation for minimalistic container
technologies. These can then be used to package and execute for example data analysis
tools as Spark jobs. This combination makes it easier to port legacy genomics data
analysis pipelines to the Spark framework. In this section we present our proposed
solution.

AppImage
AppImage (http://appimage.org/) is a technology for packaging applications for Linux.
An AppImage application is a single ELF executable file that contains all the application’s
dependencies and it is self-contained. nsroot can be used in an AppImage to provide extra
isolation via Linux namespaces.
Using nsroot within an AppImage has several advantages. First, it provides software
packaging to nsroot. Second, it allows to run less-than-secure AppImages in isolation.
Third, nsroot removes the problem of absolute paths. Fourth, it increases security by
stricter isolation, which is especially beneficial if the installed AppImage becomes old or
unpatched.
The above observations are also shared by the firejail
(https://github.com/netblue30/firejail) tool that is implemented similarly to nsroot and
that can already be used with the AppImage format.

Spark Pipelines
Bioinformatics workflows running on Apache Spark could benefit from using nsroot for
isolating the execution of legacy 3rd party tools. In particular, we could package all of our
application dependencies inside the same Jar-file that we submit to our Spark cluster using
AppImage, and then use nsroot to provide full process isolation for the 3rd party tools that
are run within the workflow.

Teaching Tool
We believe that the minimalistic design, and the 420 lines code, of nsroot makes it useful
as a teaching tool. For example, nsroot could be used in a project about containers in an
operating systems course.

Conclusion
We have presented our nsroot process isolation tool. It uses the Linux user namespaces
to allow application processes to run with root privileges without actually having root
privileges outside of the user namespace. We propose using nsroot for secure packaged
application execution, and for Spark job distribution.
Our work was motivated by our experiences developing a genomics data analysis service
that we have designed for cloud execution. We plan to use nsroot, and the proposed Spark
solution to install, configure, deploy, and securely execute the data analysis tools for user
submitted data using a single cloud user. Although we focused on genomics data analysis,
we believe our solution can also be used for data analysis pipelines in other fields. nsroot
and the proposed solutions are especially suited for deep pipelines with potentially
insecure third-party tools.
As future work we intend to implement the proposed integration with AppImage and the
Java jar file deployment. We also plan to explore the possibility of providing versioned

datasets to ensure complete reproducibility of a pipeline using for example Pachyderm
(http://pachyderm.io/), which is a project that provides version control for data and a
containerized pipeline system.
nsroot is open sourced and available at: https://github.com/uit-no/nsroot.

Acknowledgment
This work was done as part of the Norwegian E-infrastructure for Life Sciences (NeLS)
project. This work was funded by the Research Council of Norway.

References
[1] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development and

Deployment,” Linux J, vol. 2014, no. 239, Mar. 2014.
[2] E. M. Robertsen et al., “META-pipe - Pipeline Annotation, Analysis and

Visualization of Marine Metagenomic Sequence Data,” ArXiv160404103 Cs, Apr.
2016.

[3] Y. Diao, R. Abhishek, and T. Bloom, “Building Highly-Optimized, Low-Latency
Pipelines for Genomic Data Analysis,” presented at the CIDR, 2015.

[4] J. Hillman-Jackson, D. Clements, D. Blankenberg, J. Taylor, A. Nekrutenko, and G.
Team, “Using Galaxy to Perform Large-Scale Interactive Data Analyses,” in
Current Protocols in Bioinformatics, John Wiley & Sons, Inc., 2002.

[5] R. C. Gentleman et al., “Bioconductor: open software development for
computational biology and bioinformatics,” Genome Biol., vol. 5, no. 10, p. R80,
2004.

[6] J. E. Stajich et al., “The Bioperl Toolkit: Perl Modules for the Life Sciences,”
Genome Res., vol. 12, no. 10, pp. 1611–1618, Oct. 2002.

[7] J. Leipzig, “A review of bioinformatic pipeline frameworks,” Brief. Bioinform., p.
bbw020, Mar. 2016.

[8] F. A. Nothaft et al., “Rethinking Data-Intensive Science Using Scalable Analytics
Systems,” in Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 2015, pp. 631–646.

[9] A. Mitchell et al., “EBI metagenomics in 2016 - an expanding and evolving resource
for the analysis and archiving of metagenomic data,” Nucleic Acids Res., p.
gkv1195, Nov. 2015.

[10] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and C. Notredame,
“The impact of Docker containers on the performance of genomic pipelines,” PeerJ,
vol. 3, p. e1273, Sep. 2015.

[11] P. Belmann, J. Dröge, A. Bremges, A. C. McHardy, A. Sczyrba, and M. D. Barton,
“Bioboxes: standardised containers for interchangeable bioinformatics software,”
GigaScience, vol. 4, p. 47, 2015.

[12] C. Boettiger, “An Introduction to Docker for Reproducible Research,” SIGOPS
Oper Syst Rev, vol. 49, no. 1, pp. 71–79, Jan. 2015.

Paper 6
B. Fjukstad, V. Dumeaux, M. Hallett, and L. A. Bongo, “Reproducible data
analysis pipelines for precision medicine,” To appear in the proceedings of
2019 27th Euromicro International Conference On Parallel, Distributed and
Network-based Processing (PDP). IEEE, 2019

149

1

Reproducible Data Analysis Pipelines for Precision
Medicine

Bjørn Fjukstad*, Vanessa Dumeaux‡, Michael HallettS, and Lars Ailo Bongo*
* Department of Computer Science

UiT The Arctic University of Norway
Tromsø, Norway

‡PERFORM Centre
Concordia University

Montreal, Canada
SDepartment of Biology

Concordia University
Montreal,Canada

ABSTRACT

Precision medicine brings the promise of more precise diag-
nosis and individualized therapeutic strategies from analyzing
a cancer’s genomic signature. Technologies such as high-
throughput sequencing enable cheaper data collection at higher
speed, but rely on modern data analysis platforms to extract
knowledge from these high dimensional datasets. Since this is
a rapidly advancing field, new diagnoses and therapies often
require tailoring of the analysis. These pipelines are therefore
developed iteratively, continuously modifying analysis param-
eters before arriving at the final results. To enable reproducible
results it is important to record all these modifications and
decisions made during the analysis process.

We built a system, walrus, to support reproducible analy-
ses for iteratively developed analysis pipelines. The approach
is based on our experiences developing and using deep
analysis pipelines to provide insights and recommendations
for treatment in an actual breast cancer case. We designed
walrus for the single servers or small compute clusters
typically available for novel treatments in the clinical setting.
walrus leverages software containers to provide reproducible
execution environments, and integrates with modern version
control systems to capture provenance of data and pipeline
parameters.

We have used walrus to analyze a patient’s primary tumor
and adjacent normal tissue, including subsequent metastatic
lesions. Although we have used walrus for specialized
analyses of whole-exome sequencing datasets, it is a general
data analysis tool that can be applied in a variety of scientific
disciplines.

I. INTRODUCTION

Precision medicine uses patient-specific molecular informa-
tion to diagnose and categorize disease to tailor treatment
to improve health outcome.[1] Important goals in precision
medicine are to learn about the variability of the molecular

Bjørn Fjukstad is now at DIPS AS.

characteristics of individual tumors, their relationship to out-
come, and to improve diagnosis and therapy.[2] International
cancer institutions are therefore offering dedicated personal-
ized medicine programs.

For cancer, high throughput sequencing is an emerging
technology to facilitate personalized diagnosis and treatment
since it enables collecting high quality genomic data from
patients at a low cost. Data collection is becoming cheaper, but
the downstream computational analysis is still time consuming
and thereby a costly part of the experiment. This is because
of the manual efforts to set up, analyze, and maintain the
analysis pipelines. These pipelines consist of a large number
of steps that transform raw data into interpretable results.[3]
These pipelines often consists of in-house or third party
tools and scripts that each transform input files and produce
some output. Although different tools exist, it is necessary
to carefully explore different tools and parameters to choose
the most efficient to apply for a dedicated question.[4] The
complexity of the tools vary from toolkits such as the Genome
Analysis Toolkit (GATK) to small custom bash or R scripts. In
addition some tools interface with databases whose versions
and content will impact the overall result.[5]

Improperly developed analysis pipelines for precision
medicine may generate inaccurate results, which may have
negative consequences for patient care.[6] When developing
analysis pipelines for use in precision medicine it is therefore
necessary to track pipeline tool versions, their input parame-
ters, and data. Both to thoroughly document what produced
the final clinical reports, but also for iteratively improving
the quality of the pipeline during development. Because of
the iterative process of developing the analysis pipeline, it
is necessary to use analysis tools that facilitate modifying
pipeline steps and adding new ones with little developer effort.

A. Breast Cancer Diagnosis and Treatment

We have previously analyzed DNA sequence data from a
breast cancer patient’s primary tumor and adjacent normal
cells to identify the molecular signature of the patient’s tumor

2

and germline. When the patient later relapsed we analyzed
sequence data from the patient’s metastasis to provide an
extensive comparison against the primary and to identify the
molecular drivers of the patient’s tumor.

We used Whole-Genome Sequencing (WGS) to sequence
the primary tumor and adjacent normal cells at an average
depth of 20, and Whole-Exome Sequencing (WES) at an av-
erage depth of 300. The biological samples were sequenced at
the Genome Quebec Innovation Centre and we stored the raw
datasets on our in-house server. From the analysis pipelines we
generated reports with end results, such as detected somatic
mutations, that was distributed to both the patient and the
treating oncologists. These could be used to guide diagnosis
and treatment, and give more detailed insight into both the
primary and metastasis. When the patient relapsed we analyzed
WES data using our own pipeline manager, walrus, to
investigate the metastasis and compare it to the primary tumor.

For the initial WGS analysis we developed a pipeline to
investigate somatic and germline mutations based on Broad
Institute’s best practices. We developed the analysis pipeline
on our in-house compute server using a bash script version
controlled with git to track changes as we developed the
analysis pipeline. The pipeline consisted of tools including
picard,1 fastqc,2 trimmomatic,3 and the GATK.4 While the
analysis tools themselves provide the necessary functionality
to give insights in the disease, ensuring that the analyses could
be fully reproduced later left areas in need of improvement.

We chose a command-line script over more complex
pipeline tools or workbenches such as Galaxy[7] because of
its fast setup time on our available compute infrastructure, and
familiar interface. More complex systems could be beneficial
in larger research groups with more resources to compute
infrastructure maintenance, whereas command-line scripting
languages require little infrastructure maintenance over normal
use. In addition, while there are off-site solutions for executing
scientific workflows, analyzing sensitive data often put hard
restrictions on where the data can be stored and analyzed.

After we completed the first round of analyses we summa-
rized our efforts and noted some lessons learned.

∙ Datasets and databases should be version controlled and
stored along with the pipeline description. In the analysis
script we referenced to datasets and databases by their
physical location on a storage system, but these were
later moved without updating the pipeline description
causing extra work. A solution would be to add the data
to the same version control repository hosting the pipeline
description.

∙ The specific pipeline tools should also be kept available
for later use. Since installing many bioinformatics tools
require a long list of dependencies, it is beneficial to store
the pipeline tools to reduce the time to start analyzing new
data or re-run analyses.

∙ It should be easy to add new tools to an existing pipeline
and execution environment. This includes installing the

1broadinstitute.github.io/picard
2bioinformatics.babraham.ac.uk/projects/fastqc
3usadellab.org/cms/?page=trimmomatic
4software.broadinstitute.com/gatk

specific tool and adding to an existing pipeline. Bundling
tools within software containers, such as Docker, and
hosting them on an online registry simplifies the tool
installation process since the only requirement is the
container runtime.

∙ While bash scripts have their limitations, using a
well-known format that closely resembles the normal
command-line use clearly have its advantages. It is easy
to understand what tools were used, their input param-
eters, and the data flow. However, from our experience
when these analysis scripts grow too large they become
too complex to modify and maintain.

∙ While there are new and promising state-of-the art
pipeline managers, many of these also require state-of-
the-art computing infrastructure to run. This may not be
the case for the current research and hospital environ-
ments.

The above problem areas are not just applicable to our
research group, but common to other research and precision
medicine projects as well. Especially when hospitals and
research groups aim to apply personalized medicine efforts
to guide therapeutic strategies and diagnosis, the analyses will
have to be able to be easily reproducible later. We used the
lessons learned to design and implement walrus, a command
line tool for developing and running data analysis pipelines. It
automatically orchestrates the execution of different tools, and
tracks tool versions and parameters, as well as datasets through
the analysis pipeline. It provides users a simple interface
to inspect differences in pipeline runs, and retrieve previous
analysis results and configurations. In the remainder of the
paper we describe the design and implementation of walrus,
its clinical use, its performance, and how it relates to other
pipeline managers.

II. WALRUS

walrus is a tool for developing and executing data analy-
sis pipelines. It stores information about tool versions, tool
parameters, input data, intermediate data, output data, as
well as execution environments to simplify the process of
reproducing data analyses. Users write descriptions of their
analysis pipelines using a familiar syntax and walrus uses
this description to orchestrate the execution of the pipeline. In
walrus we package all tools in software containers to capture
the details of the different execution environments. While we
have used walrus to analyse high-throughput datasets in
precision medicine, it is a general tool that can analyze any
type of data, e.g. image datasets for machine learning. It has
few dependencies and runs on on any platform that supports
Docker containers. While other popular pipeline managers
require the use of cluster computers or cloud environment,
we focus on single compute nodes often found in clinical
environments such as hospitals.
walrus is implemented as a command-line tool in the Go

programming language. We use the popular software container
implementation Docker5 to provide reproducible execution

5docker.com

3

environments, and interface with git together with git-lfs6 to
version control datasets and pipeline descriptions. By choosing
Docker and git we have built a tool that easily integrates
with current bioinformatic tools and workflows. It runs both
natively or within its own Docker container to simplify its
installation process.

With walrus we target pipeline developers that use
command-line tools and scripting languages to build and run
analysis pipelines. Users can use existing Docker containers
from sources such as BioContainers,[8] or build containers
with their own tools. We integrate with the current workflow
using git to version control analysis scripts, and use git-lfs
for versioning of datasets as well. The pipeline description
format in walrus resembles standard command line syntax.
In addition, walrus automatically track and version input,
intermediate, and output files without users having to explicitly
declare these in the description.

A. Pipeline Configuration

Users configure analysis pipelines by writing pipeline de-
scription files in a human readable format such as JavaScript
Object Notation (JSON) or YAML Ain’t Markup Language
(YAML). A pipeline description contains a list of stages, each
with inputs and outputs, along with optional information such
as comments or configuration parameters such as caching rules
for intermediate results. Listing 1 shows an example pipeline
stage that uses MuTect[9] to detect somatic point mutations.
Users can also specify the tool versions by selecting a specific
Docker image, for example using MuTect version 1.1.7 as in
Listing 1, line 3.

Users specify the flow of data in the pipeline within the
pipeline description, as well as the dependencies between
the steps. Since pipeline configurations can become complex,
users can view their pipelines using an interactive web-based
tool, or export their pipeline as a DOT file for visualization in
tools such as Graphviz.7

Listing 1. Example pipeline stage for a tool that detects somatic point
mutations. It reads a reference sequence file together with both tumor and
normal sequences, and produces an output file with the detected mutations.

{
"Name": "mutect",
"Image": "fjukstad/mutect:1.1.7",
"Cmd": [

"--analysis_type","MuTect",
"--reference_sequence","/walrus/input/reference.fasta",
"--input_file:normal","/walrus/input/normal.bam",
"--input_file:tumor","/walrus/input/tumor.bam",
"-L","/walrus/input/targets.bed",
"--out","/walrus/mutect/mutect-stats-txt",
"--vcf","/walrus/mutect/mutect.vcf"

],
"Inputs":[

"input"
]

}

Users add data to an analysis pipeline by specifying the
location of the input data in the pipeline description, and
walrus automatically mounts it to the container running the
analysis. The location of the input files can either be local or
remote locations such as an FTP server. When the pipeline is

6git-lfs.github.com
7graphviz.org

completed, walrus will store all the input, intermediate and
output data to a user-specified location.

B. Pipeline Execution

When users have written a pipeline description for their
analyses, they can use the command-line interface of walrus
to run the analysis pipeline. walrus builds an execution
plan from the pipeline description and runs it for the user.
It uses the input and output fields of each pipeline stage to
construct a Directed Acyclic Graph (DAG) where each node
is a pipeline stage and the links are input/output data to the
stages. From this graph walrus can determine parallel stages
and coordinate the execution of the pipeline.

In walrus, each pipeline stage is run in a separate con-
tainer, and users can specify container versions in the pipeline
description to specify the correct version of a tool. We treat
a container as a single executable and users specify tool
input arguments in the pipeline description file using standard
command line syntax. walrus will automatically build or
download the container images with the analysis tools, and
start these with the user-defined input parameters and mount
the appropriate input datasets. While the pipeline is running,
walrus monitors running stages and schedules the execution
of subsequent pipeline stages when their respective input data
become available. We have designed walrus to execute an
analysis pipeline on a single large server, but since the tools are
run within containers, these can easily be orchestrated across
a range of servers in future versions.

Users can select from containers pre-installed with bioinfor-
matics tools, or build their own using a standard Dockerfile.
Through software containers walrus can provide a repro-
ducible execution environment for the pipeline, and containers
provide simple execution on a wide range of software and
hardware platforms. With initiatives such as BioContainers,
researchers can make use of already existing containers with-
out having to re-write their own. Data in each pipeline step is
automatically mounted and made available within each Docker
container. By simply relying on Docker walrus requires little
software setup to run different bioinformatics tools.

While walrus executes a single pipeline on one physical
server, it supports both data and tool parallelism, as well as any
parallelization strategies within each tool, e.g. multi-threading.
To enable data and tool parallelism, e.g. run the same anal-
yses to analyse a set of samples, users list the samples in
the pipeline description and walrus will automatically run
each sample through the pipeline in parallel. While we can
parallelize the independent pipeline steps, the performance of
an analysis pipeline relies on each of the independent tools and
available compute power. Techniques such as multithreading
can improve the performance of a tool, and walrus users can
make use of these techniques if their are available through the
tools command line interface.

Upon successful completion of a pipeline run, walrus
will write a verbose pipeline description file to the output
directory. This file contains information on the runtime of
each step, which steps were parallelized, and provenance
related information to the output data from each step. Users

4

can investigate this file to get a more detailed look on the
completed pipeline. In addition to this output file walrus
will return a unique version ID for the pipeline run, which
later can be used to investigate a previous pipeline run.

C. Data Management

In walrus we provide an interface for users to track
their analysis data through a version control system. This
allows users to inspect data from previous pipeline runs
without having to recompute all the data. walrus stores all
intermediate and output data in an output directory specified by
the user, which is version controlled automatically by walrus
when new data is produced by the pipeline. We track changes
at file granularity.

In walrus we interface with git to track any output file
from the analysis pipeline. When users execute a pipeline,
walrus will automatically add and commit output data to a
git repository using git-lfs. Users typically use a single
repository per pipeline, but can share the same repository to
version multiple pipelines as well. Instead of writing large
blobs to a repository, git-lfs writes small pointer files with the
hash of the original file, the size of the file, and the version of
git-lfs used. The files themselves are stored separately which
makes the size of the repository small and manageable with
git. The main reason why we chose git and git-lfs for version
control is that git is the de facto standard for versioning source
code, and we want to include versioning of datasets without
altering the typical development workflow.

Since we are working with potentially sensitive datasets
walrus is targeted at users that use a local compute and
storage servers. It is up to users to configure a remote
tracker for their repositories, but we provide command-line
functionality in walrus to run a git-lfs server that can store
users’ contents. They can use their default remotes, such as
Github, for hosting source code but they must themselves
provide the remote server to host their data.

D. Pipeline Reconfiguration and Re-execution

Reconfiguring a pipeline is common practice in precision
medicine, e.g. to ensure that genomic variants are called with
a desired sensitivity and specificity. To reconfigure an existing
pipeline users make the applicable changes to the pipeline
description and re-run it using walrus. walrus will then
recompute the necessary steps and return a version ID for
the newly run pipeline. This ID can be used to compare
pipeline runs, the changes made, and optionally restore the
data and configuration from a previous run. Reconfiguring the
pipeline to use updated tools or reference genomes will alter
the pipeline configuration and force walrus to recompute the
applicable pipeline stages.

The command-line interface of walrus provides func-
tionality to restore results from a previous run, as well as
printing information about a completed pipeline. To restore a
previous pipeline run, users use the restore command line
flag in walrus together with the version ID of the respective
pipeline run. walrus will interface with git to restore the
files to their state at the necessary point in time.

Fig. 1. Screenshot of the web-based visualization in walrus. The user has
zoomed in to inspect the pipeline step which marks duplicate reads in the
tumor sequence data.

III. RESULTS

To evaluate the usefulness of walrus we demonstrate its
use in a clinical setting, and the low computational time and
storage overhead to support reproducible analyses.

A. Clinical Application

We have used walrus to analyze a whole-exome data
from a sample in the McGill Genome Quebec [MGGQ]
dataset (GSE58644)[10] to discover Single Nucleotide Poly-
morphisms (SNPs), genomic variants and somatic mutations.
We interactively developed a pipeline description that follows
the best-practices of The Broad Institute8 and generated reports
that summarized the findings to share the results. Figure
1 shows a screenshot from the web-based visualization in
walrus of the pipeline.

From the analyses we discovered inherited germline muta-
tions that are recognized to be among the top 50 mutations
associated with an increased risk of familial breast cancer.
We also discovered a germline deletion which has been
associated with an increased risk of breast cancer. We also
discovered mutations in a specific gene that might explain
why specific drug had not been effective in the treatment of
the primary tumor. From the profile of the primary tumor
we discovered many somatic events (around 30 000) across
the whole genome with about 1000 in coding regions, and
500 of these were coding for non-synonymous mutations. We
did not see amplification or constituent activation of growth
factors like HER2, EGFR or other players in breast cancer.
Because of the germline mutation, early recurrence, and lack
of DNA events, we suspect that the patient’s primary tumor
was highly immunogenic. We have also identified several
mutations and copy number changes in key driver genes. This
includes a mutation in a gene that creates a premature stop
codon, truncating one copy of the gene.

While we cannot share the results in details or the sen-
sitive dataset, we have made the pipeline description avail-
able at github.com/uit-bdps/walrus along with other example
pipelines.

8software.broadinstitute.org/gatk/best-practices

5

baserecalibration

printreads

haplotypecaller

bwaindex

align

targetcreator

indelrealigner

repair

filter_parallel_SRR098401_2 filter_parallel_SRR098401_1

samtobam

sortsam

addreadgroups

removeduplicates

createdict

input

Fig. 2. In addition to the web-based interactive pipeline visualization,
walrus can also generate DOT representations of pipelines. The figure shows
the example variant calling pipeline.

B. Example Dataset

To demonstrate the performance of walrus and the ability
to track and detect changes in an analysis pipeline, we have
implemented one of the variant calling pipelines from [11]
using tools from Picard and the GATK. We show the storage
and computational overhead of our approach, and the benefit
of capturing the pipeline specification using a pipeline man-
ager rather than a methods section in a paper. The pipeline
description and code is available along with walrus at
github.com/uit-bdps/walrus. Figure 2 shows a simple graphical
representation of the pipeline.

1) Performance and Resource Usage: We first run the vari-
ant calling pipeline without any additional provenance tracking
or storing of output or intermediate datasets. This is to get a
baseline performance measurement for how long we expect the
pipeline to run. We then run a second experiment to measure
the overhead of versioning output and intermediate data. Then
we introduce a parameter change in one of the pipeline steps
which results in new intermediate and output datasets. Specif-
ically we change the --maxReadsForRealignment pa-
rameter in the indel realigner step back to its default (See
the online pipeline description for more details). This forces
walrus to recompute the indel realigner step and any sub-
sequent steps. We then use the restore flag in walrus
to illustrate what the parameter change had on the pipeline
output. To illustrate how walrus can restore old pipeline
configurations and results, we restore the pipeline to the
initial configuration and results. We show the computational
overhead and storage usage of restoring a previous pipeline
configuration.

Reproducing results from a scientific publication can be
a difficult task. For example, troublesome formatting of the
online version of [11] led to some pipeline tools failing. The
parameters prefixed with two consecutive hyphens (--) are

converted to single em dashes (—). PDF versions of the
paper lists the parameters correctly. In addition, the input
filenames in the variant calling step do not correspond to any
output files in previous steps, but because of their similarity to
previous output files we assume that this is just a typo. These
issues in addition to missing commands for e.g. the filtering
step highlights the clear benefit of writing and reporting the
analysis pipeline using a tool such as walrus.

Table I shows the runtime and storage use of the different
experiments. In the second experiment we can see the added
overhead of adding version control to the dataset. In total, an
hour is added to the runtime and the data size is doubled.
The doubling comes from git-lfs hard copying the data into a
subdirectory of the .git folder in the repository. With git-
lfs users can move all datasets to a remote server reducing
the local storage requirements. In the third experiment we
can see that only the downstream analyses from configuring
the indel realignment parameter is executed. It generates
30GB of additional data, but the execution time is limited
to the applicable stages. Restoring the pipeline to a previous
configuration is almost instantaneous since the data is already
available locally and git only has to modify the pointers to the
correct files in the .git subdirectory.

TABLE I
RUNTIME AND STORAGE USAGE FOR A VARIANT-CALLING PIPELINE

DEVELOPED WITH WALRUS .

Experiment Task Runtime Storage
Use

1 Run pipeline with de-
fault configuration

21 hours 50 min-
utes

235 GB

2 Run the default
pipeline with version
control of data

23 hours 9 min-
utes

470 GB

3 Re-run the pipeline
with modified indel
realignment parame-
ter

13 hours 500 GB

4 Restoring pipeline
back to the default
configuration

< 1 second 500GB

IV. RELATED WORK

There are a wealth of pipeline specification formats and
workflow managers available. Some are targeted at users
with programming experience while others provide simple
Graphical User Interfaces (GUIs).

We have previously conducted a survey of different special-
ized bioinformatics pipelines.[12] The pipelines were selected
to show how analysis pipelines for different applications use
different technologies for configuring, executing and storing
intermediate and output data. In the review, we targeted
specialized analysis pipelines that support scaling out the
pipelines to run on High-Performance Computing (HPC) or
cloud computing platforms.

Here we describe general systems for developing data anal-
ysis pipelines, not just specialized bioinformatics pipelines.
While most provide viable options for genomic analyses, we
have found many of these pipeline systems require complex
compute infrastructure beyond the smaller clinical research

6

institutions. We discuss tools that use the common Common
Workflow Language (CWL) pipeline specification and systems
that provide versioning of data.

CWL is a specification for describing analysis workflows
and tools.[13] A pipeline is written as a JSON or YAML
file, or a mix of the two, and describes each step in detail,
e.g. what tool to run, its input parameters, input data and
output data. The pipeline descriptions are text files that can be
under version control and shared between projects. There are
multiple implementations of CWL workflow platforms, e.g.
the reference implementation cwl runner[13], Arvados[14],
Rabix[15], Toil[16], Galaxy[7], and AWE.[17] It is no re-
quirement to run tools within containers, but implementations
can support it. There are few of these tools that support
versioning of the data. Galaxy is an open web-based platform
for reproducible analysis of large high-throughput datasets.[7]
It is possible to run Galaxy on local compute clusters, in the
cloud, or using the online Galaxy site.9 In Galaxy users set up
an analysis pipeline using a web-based graphical interface, and
it is also possible to export or import an existing workflow to
an Extensible Markup Language (XML) file.10 We chose not
to use Galaxy because of missing command-line and scripting
support, along with little support for running workflows with
different configurations.[18] Rabix provides checksums of
output data to verify it against the actual output from the
pipeline. This is similar to the checksums found in the git-lfs
pointer files, but they do not store the original files for later. An
interesting project that uses CWL in production is The Cancer
Genomics Cloud[19]. They currently support CWL version 1.0
and are planning on integrating Rabix as its CWL executor.
Arvados stores the data in a distributed storage system, Keep,
that provides both storage and versioning of data. We chose
not to use CWL and its implementations because of its relaxed
restrictions on having to use containers, its verbose pipeline
descriptions, and the complex compute architecture required
for some implementations. We are however experimenting
with an extension to walrus that translates pipeline descrip-
tions written in walrus to CWL pipeline descriptions.

Pachyderm is a system for running big data analysis
pipelines. It provides complete version control for data and
leverages the container ecosystem to provide reproducible
data processing.[20] Pachyderm consists of a file system
(Pachyderm File System (PFS)) and a processing system
(Pachyderm Processing System (PPS)). PFS is a file system
with git-like semantics for storing data used in data analysis
pipelines. Pachyderm ensures complete analysis reproducibil-
ity by providing version control for datasets in addition to the
containerized execution environments. Both PFS and PPS is
implemented on top of Kubernetes.[21] There are now recent
efforts to develop bioinformatics workflows with Pachyderm
that show great promise. In [22], the authors show the potential
performance improvements of single workflow steps, not the
full pipeline, when executing a pipeline in Pachyderm. They
unfortunately do not show the time to import data into PFS, run

9Available at usegalaxy.org.
10An alpha version of Galaxy with CWL support is available at github.

com/common-workflow-language/galaxy.

the full pipeline, and optionally investigate different versions
of the intermediate, or output datasets.

We believe that the approach in Pachyderm with version
controlling datasets and containerizing each pipeline step is,
along with walrus, the correct approach to truly reproducible
data analysis pipelines. The reason we did not use Kubernetes
and Pachyderm was because our compute infrastructure did
not support it. In addition, we did not want to use a separate
tool, PFS, for data versioning, we wanted to integrate it with
our current practice of using git for versioning.

Snakemake is a long-running project for analyzing bioinfor-
matic datasets.[23] It uses a Python-based language to describe
pipelines, similar to the familiar Makefile syntax, and can
execute these pipelines on local machines, compute clusters or
in the cloud. To ensure reproducible workflows, Snakemake
integrates with Bioconda to provide the correct versions of
the different tools used in the workflows. It integrates with
Docker and Singularity containers[24] to provide isolated
execution, and in later versions Snakemake allows pipeline
execution on a Kubernetes cluster. Because Snakemake did
not provide necessary integration with software containers at
the time we developing our analysis pipeline, we did not
find it to be a viable alternative. For example, support for
pipelines consisting of Docker containers pre-installed with
bioinformatics tools came a year later than walrus.

Another alternative to develop analysis pipelines is
Nextflow.[25] Nextflow uses its own language to describe
analysis pipelines and supports execution within Docker and
Singularity containers.

As discussed in [26, 12], recent projects propose to use
containers for life science research. The BioContainers and
Bioboxes[27] projects address the challenge of installing
bioinformatics data analysis tools by maintaining a reposi-
tory of Docker containers for commonly used data analysis
tools. Docker containers are shown to have better than, or
equal performance as Virtual Machines (VMs), and introduce
negligible overhead opposed to executing on bare metal.[28]
While Docker containers require a bootstrapping phase before
executing any code, this phase is negligible in the compute-
intensive precision medicine pipelines that run for several
hours. Containers have also been proposed as a solution to
improve experiment reproducibility, by ensuring that the data
analysis tools are installed with the same responsibilities.[29]

V. DISCUSSION

walrus is a general tool for analyzing any type of dataset
from different scientific disciplines, not just genomic datasets
in bioinformatics. Users specify a workflow using either a
YAML or JSON format, and each step in the workflow is run
within a Docker container. walrus tracks input, intermediate,
and output datasets with git to ensure transparency and repro-
ducibility of the analyses. Through these features walrus
helps to ensure repeatability of the computation analyses of a
research project.

Precision medicine requires flexible analysis pipelines that
allow researchers to explore different tools and parameters to
analyze their data. While there are best practices to develop

7

analysis pipelines for genomic datasets, e.g. to discover ge-
nomic variants, there is still no de-facto standard for sharing
the detailed descriptions to simplify re-using and reproducing
existing work. With walrus we provide one alternative to
develop and share pipeline descriptions.

Pipelines typically need to be tailored to fit each project
and patient, and different patients will typically elicit different
molecular patterns that require individual investigation. In
our WES analysis pipeline we followed the best practices,
and explored different combinations of tools and parameters
before we arrived at the final analysis pipeline. For example,
we ran several rounds of preprocessing (trimming reads and
quality control) before we were sure that the data was ready
for analysis. walrus allowed us to keep track of different
intermediate datasets, along with the pipeline specification,
simplifies the task of comparing the results from pipeline tools
and input parameters.
walrus is a very simple tool to set up and start using. Since

we only target users with single large compute nodes, walrus
can run within a Docker container making Docker its only
dependency. Systems such as Nextflow, Galaxy or Pachyderm
all require users to set up and manage complex compute
infrastructures. The simplicity of walrus enables repeatable
computational analyses without any of these obstacles, and is
one of the strengths of our tool.

Unlike other proposed solutions for executing data analysis
pipelines, walrus is the only system we have discovered that
explicitly uses git, and git-lfs, to store output datasets. Other
systems either use a specialized storage system, or ignore
data versioning at all. We believe that using a system that
bioinformaticians already use for source control management
is the simplest way to allow users version their data along-
side their analysis code. The alternative of using a new data
storage platform that provides data versioning requires extra
time and effort for researchers both to learn and integrate in
their current workflow.

We have seen that there are other systems to develop,
share, and run analysis pipelines in both bioinformatics and
other disciplines. Like walrus, many of these use textual
representations in JSON or other languages to describe the
analysis pipeline, and Docker to provide reproducible and iso-
lated execution environments. In warlus we provide pipeline
descriptions that allows users to reuse the familiar command-
line syntax. The only new additional information they have
to add is the dependencies between tasks. Systems such as
CWL requires that users also describe the input and output
data verbosely. We believe that the tool, walrus, can detect
these, and will handle this for the user. This will in turn make
the pipeline descriptions of walrus shorter in terms of lines
of code.

While systems such as Galaxy provide a graphical user
interface, walrus requires that its users know how to navigate
the command line and use systems such as git and Docker, to
analyze a dataset. For some users this may an obstacle, but
we believe that it provides a more hands-on and transparent
view of the whole data analysis process.

While we provide one approach to version control datasets,
there are still some drawbacks. git-lfs supports large files,

but in our results it added 5% in runtime. This makes the entire
analysis pipeline slower, but we argue that having the files
under version control outweigh the runtime. In addition, there
are only a few public gif-lfs hosting platforms for datasets
larger than a few gigabytes, making it necessary to host
these in-house. In-house hosting may also be a requirement
at different medical institutions.

We aim to investigate the performance of running analysis
pipelines with walrus, and the potential benefit of its built-in
data parallelism. While our WES analysis pipeline successfully
run steps in parallel for the tumor and adjacent normal tissue,
we have not demonstrated the benefit of doing so. This
includes benchmarking and analyzing the system requirements
for doing precision medicine analyses. We are also planning
on exploring parallelism strategies where we can split an input
dataset into chromosomes and run some steps in parallel for
each chromosome, before merging the data again.

We believe that future data analysis systems for precision
medicine will follow the lines of our proposed approach. Soft-
ware container solutions provide valuable information in the
reporting of the analyses, and they impose little performance
overhead. Further, the development of container orchestration
systems such as Kubernetes is getting wide adoption nowa-
days, especially in web-scale internet companies. However,
the adoption of such systems in a clinical setting depend on
support from more tools, and also the addition of new compute
infrastructure.

VI. CONCLUSIONS

We have designed and implemented walrus, a tool for
developing reproducible data analysis pipelines for use in
precision medicine. Precision medicine requires that analyses
are run on hospital compute infrastructures and results are
fully reproducible. By packaging analysis tools in software
containers, and tracking both intermediate and output data,
walrus provides the foundation for reproducible data analy-
ses in the clinical setting. We have used walrus to analyze
a patient’s metastatic lesions and adjacent normal tissue to
provide insights and recommendations for cancer treatment.

VII. ACKNOWLEDGEMENTS

We would like to thank Daniel Del Balso for his work
implementing the initial WGS analysis pipeline. This work has
been funded by The European Research Council (ERC-AdG
232997 TICE), and The Canadian Cancer Society Research
Institute (INNOV2-2014-702940).

REFERENCES

[1] National Research Council et al. Toward precision
medicine: building a knowledge network for biomedical
research and a new taxonomy of disease. National
Academies Press, 2011.

[2] Ian F Tannock and John A Hickman. Limits to personal-
ized cancer medicine. New England Journal of Medicine,
375(13):1289–1294, 2016.

8

[3] Yanlei Diao, Abhishek Roy, and Toby Bloom. Building
highly-optimized, low-latency pipelines for genomic data
analysis. In CIDR, 2015.

[4] Nicolas Servant, Julien Roméjon, Pierre Gestraud,
Philippe La Rosa, Georges Lucotte, Séverine Lair, Vir-
ginie Bernard, Bruno Zeitouni, Fanny Coffin, Gérôme
Jules-Clément, et al. Bioinformatics for precision
medicine in oncology: principles and application to the
shiva clinical trial. Frontiers in genetics, 5, 2014.

[5] Andrea Sboner and Olivier Elemento. A primer on pre-
cision medicine informatics. Briefings in bioinformatics,
17(1):145–153, 2015.

[6] Somak Roy, Christopher Coldren, Arivarasan Karuna-
murthy, Nefize S Kip, Eric W Klee, Stephen E Lin-
coln, Annette Leon, Mrudula Pullambhatla, Robyn L
Temple-Smolkin, Karl V Voelkerding, et al. Standards
and guidelines for validating next-generation sequencing
bioinformatics pipelines: A joint recommendation of the
association for molecular pathology and the college of
american pathologists. The Journal of Molecular Diag-
nostics, 2017.

[7] Jeremy Goecks, Anton Nekrutenko, and James Tay-
lor. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational
research in the life sciences. Genome biology, 11(8):R86,
2010.

[8] BioContainers. Biocontainers. https://biocontainers.pro,
2017. [Online; Accesssed: 16.08.2017].

[9] Kristian Cibulskis, Michael S Lawrence, Scott L Carter,
Andrey Sivachenko, David Jaffe, Carrie Sougnez, Stacey
Gabriel, Matthew Meyerson, Eric S Lander, and Gad
Getz. Sensitive detection of somatic point mutations
in impure and heterogeneous cancer samples. Nature
biotechnology, 31(3):213–219, 2013.

[10] Ali Tofigh, Matthew Suderman, Eric R Paquet, Julie Liv-
ingstone, Nicholas Bertos, Sadiq M Saleh, Hong Zhao,
Margarita Souleimanova, Sean Cory, Robert Lesurf, et al.
The prognostic ease and difficulty of invasive breast
carcinoma. Cell reports, 9(1):129–142, 2014.

[11] Adam Cornish and Chittibabu Guda. A comparison of
variant calling pipelines using genome in a bottle as a
reference. BioMed research international, 2015, 2015.

[12] Bjørn Fjukstad and Lars Ailo Bongo. A review of
scalable bioinformatics pipelines. Data Science and
Engineering, 2(3):245–251, 2017.

[13] Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad
Chapman, John Chilton, Michael Heuer, Andrey Kar-
tashov, Dan Leehr, Hervé Ménager, Maya Nedeljkovich,
and et al. https://figshare.com/articles/Common
Workflow Language draft 3/3115156/2, Jul 2016.

[14] Arvados. Arvados — open source big data processing
and bioinformatics. https://arvados.org, 2017. [Online;
Accesssed: 16.08.2017].

[15] Gaurav Kaushik, Sinisa Ivkovic, Janko Simonovic, Nebo-
jsa Tijanic, Brandi Davis-Dusenbery, and Deniz Kural.
Rabix: an open-source workflow executor supporting
recomputability and interoperability of workflow descrip-
tions. In Pacific Symposium on Biocomputing. Pacific

Symposium on Biocomputing, volume 22, page 154. NIH
Public Access, 2016.

[16] John Vivian, Arjun Arkal Rao, Frank Austin Nothaft,
Christopher Ketchum, Joel Armstrong, Adam Novak,
Jacob Pfeil, Jake Narkizian, Alden D Deran, Audrey
Musselman-Brown, et al. Toil enables reproducible,
open source, big biomedical data analyses. Nature
Biotechnology, 35(4):314–316, 2017.

[17] Wei Tang, Jared Wilkening, Narayan Desai, Wolfgang
Gerlach, Andreas Wilke, and Folker Meyer. A scalable
data analysis platform for metagenomics. In Big Data,
2013 IEEE International Conference on, pages 21–26.
IEEE, 2013.

[18] Ola Spjuth, Erik Bongcam-Rudloff, Guillermo Car-
rasco Hernández, Lukas Forer, Mario Giovacchini, Ro-
man Valls Guimera, Aleksi Kallio, Eija Korpelainen,
Maciej M Kańduła, Milko Krachunov, et al. Experiences
with workflows for automating data-intensive bioinfor-
matics. Biology direct, 10(1):43, 2015.

[19] Jessica W Lau, Erik Lehnert, Anurag Sethi, Rau-
naq Malhotra, Gaurav Kaushik, Zeynep Onder, Nick
Groves-Kirkby, Aleksandar Mihajlovic, Jack DiGio-
vanna, Mladen Srdic, et al. The cancer genomics cloud:
Collaborative, reproducible, and democratized—a new
paradigm in large-scale computational research. Cancer
research, 77(21):e3–e6, 2017.

[20] Pachyderm. http://pachyderm.io.
[21] Kubernetes. https://kubernetes.io.
[22] Jon Ander Novella, Payam Emami Khoonsari, Stephanie

Herman, Daniel Whitenack, Marco Capuccini, Joachim
Burman, Kim Kultima, and Ola Spjuth. Container-based
bioinformatics with pachyderm. Bioinformatics, page
bty699, 2018.

[23] Johannes Köster and Sven Rahmann. Snakemake—a
scalable bioinformatics workflow engine. Bioinformatics,
28(19):2520–2522, 2012.

[24] Gregory M Kurtzer, Vanessa Sochat, and Michael W
Bauer. Singularity: Scientific containers for mobility of
compute. PloS one, 12(5):e0177459, 2017.

[25] Paolo Di Tommaso, Maria Chatzou, Evan W Flo-
den, Pablo Prieto Barja, Emilio Palumbo, and Cedric
Notredame. Nextflow enables reproducible computa-
tional workflows. Nature biotechnology, 35(4):316, 2017.

[26] Inge Alexander Raknes, Bjørn Fjukstad, and Lars Bongo.
nsroot: Minimalist process isolation tool implemented
with linux namespaces. Norsk Informatikkonferanse,
2017.

[27] Peter Belmann, Johannes Dröge, Andreas Bremges, Al-
ice C McHardy, Alexander Sczyrba, and Michael D Bar-
ton. Bioboxes: standardised containers for interchange-
able bioinformatics software. Gigascience, 4(1):47, 2015.

[28] Paolo Di Tommaso, Emilio Palumbo, Maria Chatzou,
Pablo Prieto, Michael L Heuer, and Cedric Notredame.
The impact of docker containers on the performance of
genomic pipelines. PeerJ, 3:e1273, 2015.

[29] Carl Boettiger. An introduction to docker for repro-
ducible research. ACM SIGOPS Operating Systems
Review, 49(1):71–79, 2015.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problems with Data Analysis and Exploration in Bioinformatics
	1.2 sme
	1.2.1 Data Management and Analysis
	1.2.2 Interactive Data Exploration Applications
	1.2.3 Deep Analysis Pipelines
	1.2.4 Similarity

	1.3 Applications Developed with sme
	1.3.1 Data Management and Analysis
	1.3.2 Interactive Data Exploration Applications
	1.3.3 Deep Analysis Pipelines

	1.4 Summary of Results
	1.5 List of papers
	1.6 Dissertation Plan

	2 Modern Biological Data Management and Analysis
	2.1 High-Throughput Datasets for Research and Clinical Use
	2.2 Norwegian Women and Cancer (nowac)
	2.2.1 Data Management and Analysis

	2.3 Enabling Reproducible Research
	2.3.1 The nowac Package

	2.4 Standardized Data Analysis
	2.4.1 Pippeline

	2.5 Best Practices
	2.6 Discussion
	2.7 Conclusion

	3 Interactive Data Exploration Applications
	3.1 Motivating Use Cases
	3.1.1 High and Low Plasma Ratios of Essential Fatty Acids
	3.1.2 Tumor-Blood Interactions in Breast Cancer Patients

	3.2 Requirements
	3.3 Kvik Pathways
	3.3.1 Analysis Tasks
	3.3.2 Architecture
	3.3.3 Implementation
	3.3.4 Use Case: Analysis of Renin-Antiotensin Pathway

	3.4 Building Data Exploration Applications with Kvik
	3.4.1 Design Priciples
	3.4.2 Compute Service
	3.4.3 Database Service

	3.5 Matched Interactions Across Tissues (mixt)
	3.5.1 Analysis Tasks
	3.5.2 Architecture
	3.5.3 Implementation
	3.5.4 Evaluation
	3.5.5 Tumor Epithelium-Stroma Interactions in Breast Cancer
	3.5.6 air:bit

	3.6 Related Work
	3.6.1 Data Exploration Applications
	3.6.2 Enabling Approaches

	3.7 Discussion
	3.8 Future Work
	3.8.1 MIxT

	3.9 Conclusion

	4 Deep Analysis Pipelines
	4.1 Use Case and Motivation
	4.1.1 Initial Data Analysis Pipeline

	4.2 walrus
	4.2.1 Pipeline Configuration
	4.2.2 Pipeline Execution
	4.2.3 Data Management
	4.2.4 Pipeline Reconfiguration and Re-execution

	4.3 Results
	4.3.1 Clinical Application
	4.3.2 Example Dataset
	4.3.3 Performance and Resource Usage

	4.4 Related Work
	4.5 Discussion
	4.6 Future Work
	4.7 Conclusions

	5 Conclusion
	5.1 Lessons Learned
	5.2 Future Work

	Bibliography
	Paper 1
	Paper 2
	Paper 3
	Paper 4
	Paper 5
	Paper 6

