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Abstract—This paper proposes a new path-planning algorithm
based on GERBS to generate curvature continuous paths. The
algorithm blends between a set of local curves generating a
global smooth path which also interpolates the midpoint of the
curves. Numerical examples are provided which demonstrates
the potential of the proposed algorithm.

I. INTRODUCTION

In the last decades there has been significant impovements
in sensor technology and processing power of embedded
systems which has opened up the possibility of designing small
and cheap autonomous aircrafts. The potential applications
for these autonomous vehicles are vast, but the increased
autonomy means that robust and reliable algorithms need to be
developed to ensure that they operate safetely. An important
part of an unmanned aerial system is the path generation
subsystem, which should generate a continuous path that either
approximates or interpolates a set of waypoints. The properties
of the path such as curvature has a direct influence on the
control forces applied to the UAV where a rapid change in
curvature such as discontinuities will cause a large control
effort that might be damaging for the UAV.

The simplest path between a set of waypoints is made by
connecting straight lines between the waypoints which is often
used in waypoint tracking applications, but this generates a
curve that is only C0 smooth which results in a path that can
not be followed by non-holonomic vehicles such as aircrafts
without large deviations from the path near the waypoints. An
interpolating path that achieves C1 continuity where circular
arcs defined at the waypoint locations are connected together
by straight lines is known as a Dubin’s path and were studied
in [1]. They are C1 because the curvature is discontinuous
at the transition between the straight lines and the arcs. It
is however often used in UAV applications because of its
simplicity and low computational cost, and the fact that it
provides the shortest path between two poses for a non-
holonomic vehicle [2].

Despite its wide usage there has been considerable efforts
in developing curvature continuous paths to replace or com-

plement Dubin’s paths for non-holonomic vehicles. In [3]
single polar-polynomials were proposed to generate smooth
arc turns and single cartesian-polynomials to generate lane
changing curves. In [4] Fermat’s Spirals were used to gener-
ate smooth arc turns with straight lines to create curvature
continuous paths that approximate a set of waypoints. It
was also demonstrated that Fermat’s Spirals can be used to
join together lines and constant curvature arcs resulting in
Dubin’s smoothed paths. In [5] several methods are shown for
generating smooth paths between waypoints such as clothoids
[6] and pythagorean hodographs [7]. Another path generation
technique is B-splines which was implemented in [8] where
an rapidly exploring random trees (RRT) algorithm is used to
generate the control points for the B-spline. In [9] cubic B-
splines were used to contruct curvature continuous paths with
upper bounded curvature. In [10] generalized dubin’s paths are
approximated by third order algebraic polynomial splines. In
[11] Cubic Bézier Splines are used to generate G2 paths with
constrained curvature.

In this paper a new path generation algorithm is proposed
based on Generalized Expo-Rational B-Splines (GERBS)
which are a new type of B-splines first presented in [12]. The
main motivation for applying GERBS to the path generation
problem is the versatility in how they can be used together
with the geometric properties they offer.

This paper is organized in the following way. Section II
introduces the notion of Expo-Rational B-Splines and some of
their properties, then a generalized version named Generalized
Expo-Rational B-Splines (GERBS) is introduced where a basis
function based on Beta functions is used in favour of the Expo-
Rational basis function. Section III details the path generation
algorithm using a second order GERBS with Beta function as
its basis function. Section IV shows numerical examples of
the proposed path generation algorithm using Beta function
basis functions and Expo-Rational basis functions and it is
compared to Dubin’s paths. In Section V a brief conclusion is
given highlighting some future work.



II. PRELIMINARIES

A. Expo-Rational B-Splines

A parametric curve can be represented using ERBS as [12]

p(t) =

n∑
i=1

ci(t)Bi(t) (1)

where ci(t) is a set of local curves, Bi(t) denotes the expo-
rational basis functions defined later and t ∈ (t1, tn+2] with
{t}n+2

j=1 defining the knot sequence. This differs from classical
B-splines where ci usually denotes the control points that are
blended and in this context ERBS can be viewed as a blending
of local curves. A second order ERBS can be written in B-
spline form as

p(t) =
[
1− (B ◦ w1,i) (t) (B ◦ w1,i) (t)

] [ci−1(t)
ci(t)

]
(2)

where indices are defined through the relation ti < t < ti+1.
By introducing the basis functions in the B-spline formulation
it is possible to increase the continuity of the B-spline without
increasing the support. This is in contrast to normal B-splines
where a second order B-spline is C1 continuous, while a
second order ERBS is C∞ continuous. The continuity of a
B-spline is also dependent on the multiplicity of knots in
the knot sequence in addition to the continuity of the basis
function. For a B-spline of degree d with knot multiplicity r
at a knot tk the continuity of the B-spline at tk will be Cd−r.
Since it is not necessary to increase the degree of an ERBS to
increase the curves continuity it is therefore possible to keep
the interpolating property of second order B-splines while still
achieving high continuity. The Expo-Rational Basis Function
is defined as [12]

Bk(t) =



∫ t
tk−1

Ψk−1(s)ds tk−1 < t ≤ tk

1−
∫ t
tk

Ψk(s)ds tk < t ≤ tk+1

0 otherwise

(3)

where

Ψk(t) = S−1
k · e

−βk
|t−(1−λk)tk+λktk+1|

2σk

((t−tk)(tk+1−t)
γk )αk (4)

and

Sk =

∫ tk+1

tk

e
−βk

|s−(1−λk)tk+λktk+1|
2σk

((s−tk)(tk+1−s)
γk )αk ds (5)

with αk > 0, βk > 0, γk > 0, 1 ≥ λk ≥ 0, σk ≥ 0 and
k = 1, ....., n as instrinsic parameters that can be used to tune
the basis function. Given an increasing knot vector {tj}n+2

j=1

the support for Bk(t) lies in [tk−1, tk+1] and Bk(t) ∈ C∞.
If the internal knots are simple without multiplicity then the
curve p(t) will be C∞ smooth while interpolating the local
curve ck(t) at t = tk. Calculating the value of Bk(t) requires
approximating it using numeric integration. This initially in-
creases the computational burden of ERBS with regards to B-
splines, but several optimizations can be utilized to still make
the evaluation of ERBS efficient [13].

The choice of local curves are restricted in the sense that
all derivatives of ck(t)Bk(t) is zero when t ∈ {tk−1, tk+1}
which a very weak restriction since most curves will satisfy
it, for instance straight lines, circular arcs and Bézier curves.
Note that from (3) the basis function is only non-zero over
a three knot interval which gives ERBS strong local support
which implies that changing the position of a local curve has
only local effect on the entire curve p(t). This property is
advantageous in cases where changes to the location of a
waypoint is needed or a new waypoint needs to be added.
The locality property ensures that these type of changes to the
path does not require complete reevaluation of the entire path.

B. Generalized Expo-Rational B-Splines

In [14] the notion of ERBS was generalized as

Gj(t) =


Fj(t) t ∈ (tj−1, tj)

1− Fj+1(t) t
∫

(tj , tj+1)

0 otherwise

(6)

where Fj(t) is monotonously increasing and left-continuous
on the interval [tj−1, tj ], F (t) = 0,∀t < tj−1 and the left-
hand limits satisfy F (tj−1+) = F (ti1) = 0 and F (ti+) =
F (ti) = 1. An interesting class of GERBS are the Beta-
Function B-Splines (BFBS) which have most of the same
properties of ERBS but do not need numerical integration for
its evaluation, making them more computationally efficient.
The Beta-Function basis function is defined as [15]

Bk(t) =



Sk−1

∫ t
tk−1

Ψk−1(s)ds tk−1 < t < tk

Sk
∫ tk+1

t
Ψk(s)ds tk < t < tk+1

1 t = tk

0 otherwise

(7)

where

Sk(t) =

(∫ tk+1

tk

Ψk(t)dt
)−1

. (8)

and

Ψk(t) =

(
ik + ik+1

ik

)
(t− tk)ik(tk+1 − t)ik+1

(tk+1 − tk)ik+ik+1
(9)

where il > 0, l ∈ {k − 1, k, k + 1}. The smoothness of the
BFBS is dependent on ik meaning that the BFBS is Cm where
m = mink∈[1,n] ik, [16]. For the case when ik = 2,∀k ∈ [1, n]
a curvature continuous path can be constructed where

Ψk(t) =
6(t− tk)2(tk+1 − t)2

(tk+1 − tk)4
(10)

which means that the integrals in (7) can be solved analytically
avoiding the need for approximate algorithms. By evaluating



the integrals the Beta-Function basis function can be expressed
as

Bk(t) =



Φ(tk−1, tk, t) tk−1 < t < tk

Θ(tk, tk+1, t) tk < t < tk+1

1 t = tk

0 otherwise

(11)

where

Φ(tk−1, tk, t) =
(tk−1 − t)3

(tk−1 − tk)5
·(

(tk−1 − 5tk + 3t)tk−1 + (10tk − 15t)tk + 6t2
)

(12)

and

Θ(tk, tk+1, t) =
(t− tk+1)3

(tk − tk+1)5
·(

(tk+1 − 5tk + 3t)tk+1 + (10tk − 15t)tk + 6t2
)
. (13)

The derivatives of the Beta-Function basis function are

DΦ = DAΦBΦ +AΦDBΦ (14)
DDΦ = DDAΦBΦ + 2DAΦDBΦ +AΦDDBΦ (15)

and

DΘ = DAΘBΘ +AΘDBΘ (16)
DDΘ = DDAΘBΘ + 2DAΘDBΘ +AΘDDBΘ (17)

where

AΦ =
(tk−1 − t)3

(tk−1 − tk)5

BΦ = (tk−1 − 5tk + 3t)tk−1 + (10tk − 15t)tk + 6t2

DAΦ =
−3(tk−1 − t)2

(tk−1 − tk)5

DBΦ = 3tk−1 − 15tk + 12t

DDAΦ =
6(tk−1 − t)
(tk−1 − tk)5

DDBΦ = 12 (18)

AΘ =
(t− tk+1)3

(tk − tk+1)5

BΘ = (tk+1 − 5tk + 3t)tk+1 + (10tk − 15t)tk + 6t2

DAΘ =
3(t− tk+1)2

(tk − tk+1)5

DBΘ = 3tk+1 − 15tk + 12t

DDAΘ =
6(t− tk+1)

(tk − tk+1)5

DDBΘ = 12.

These are used to evaluate the curvature of the path and as
seen from the BFBS and its derivatives the curvature will
mostly depend on the choice and parameterization of the
local curves. The analytic expressions for the Beta-Function
basis functions allows for precomputation and storing of

terms that only depend on the knot values which leads to
good computational efficiency. Additionally since second order
BFBS have strong local support changing the position of a
waypoint only requires recomputation of the connected path
segments. Another interesting property is the ability to have
different continuities on path segments by having different
basis functions for each k in (7).

III. GERBS BASED PATH GENERATION

Given a set of n waypoints {Wi}ni=1 ∈ R2 define a set of
unit tangent vectors {mi}ni=1 ∈ R2 and a set of turning di-
rections {si}ni=1 ∈ {−1, 1} using Algorithm 1 corresponding
to the desired orientation and turn at each waypoint. Define
a set of circular arcs for each waypoint Wi =

[
Wx Wy

]T
,

and tangent mi =
[
mx my

]T
and turning direction si with

i = 2, ..n− 1 as

parc(t) =

xc +R cos ((1− t)θ1 + tθ2)

yc +R sin ((1− t)θ1 + tθ2)

 (19)

where pc =
[
xc yc

]T
is the center of the arc defined as

pc(t) =

Wx +R cos
(
arctan 2(my,mx) + si

π
2

)
Wy +R sin

(
arctan 2(my,mx) + si

π
2

)
 (20)

with s ∈ {1,−1} depending if its a left turning arc or right
turning arc. The two angles θ1 and θ2 are defined as

θ1 = arctan 2(my,mx)− si
π

2
+ θo (21)

θ2 = arctan 2(my,mx)− si
π

2
− θo (22)

where θo ∈ (−π, π) defines how much of the circle should
be included and can be viewed as a tuning parameter together
with the arc radius for the overall path. The circular arcs are
the local curves to the interior waypoints, and for the first
and last waypoints straight lines are used as local curves. The
straight lines are parameterized as

pline(t) =

[
Wx + lmxt
Wy + lmyt

]
(23)

and
pline(t) =

[
Wx − lmx(1− t)
Wy − lmy(1− t)

]
(24)

for the first and last waypoints respectively and where l is
the length of the straight lines. Together with the double
multiplicity of the first and last knot it is ensured that the
path starts at W1 and ends in Wn. Let the set of circular arcs
and straight lines be the local curves to the GERBS defined
by

p(t) =

n∑
i=1

ci(t)Bi(t) (25)

and generate a strictly increasing knot vector {tj}n+2
j=1 with

interior multiplicity of zero, where t1 = t2 = 0, tn+1 =
tn+2 = 1 and the rest of the knots are defined as tj = tj−1 +



1/(n − 1). Then the resulting GERBS spline will interpolate
every waypoint and the overall path will be Cm smooth when
Beta Function basis functions are used or C∞ in the case when
Expo-Rational basis functions are used.

Algorithm 1 Generate tangents and turning directions.
1: function GENERATE TANGENTS(W )
2: n← length(W )
3: %Generate internal tangents
4: m[1]← (W [2]−W [1])/‖W [2]−W [1]‖
5: for i ∈ [2, n− 1] do
6: m1 ← (W [i]−W [i− 1])/‖W [i]−W [i− 1]‖
7: m2 ← (W [i+ 1]−W [i])/‖W [i+ 1]−W [i]‖
8: m[i]← ((m1 + m2)/‖m1 + m2‖
9: %The ∧ operator denotes the wedge product

10: s[i] = sign(m1 ∧m2)

11: m[n]← (W [n]−W [n− 1])/‖W [n]−W [n− 1]‖
12: s[1] = −s[2]
13: s[n] = −s[n− 1]
14: return m

Algorithm 2 GERBS path generation
1: function GENERATE GERBS PATH(W ,m, s)
2: n← length(W )
3: %Generate local curves
4: for i ∈ [1, n] do
5: c[i]← generate local arc(R, θo,Wi,mi, si)

6: %Generate knot vector
7: T ← generate knots(n)
8: %Interpolate
9: for t ∈ (T [1],T [n+ 2]) do

10: p[t]← 0;
11: for k ∈ [2, n+ 1] do
12: ck ← evaluate local curve(c[k − 1],T , k, t)
13: Bk ← evaluate basis function(T , k, t)
14: p[t] = p[t] + Bk · ck
15: return p

IV. NUMERICAL EXAMPLES

In Figure 1 the basis functions for the BFBS is shown. It can
been seen that the local support for Bk is zero when t = tk
which means that the BFBS will interpolate the local curve
when t = tk. This is because the BFBS is only of order two
which would not produce a smooth path in the B-spline case.
By reducing the order of the beta function a smoother path
is generated however the local support remains the same in
contrast to B-splines where the local support increases with
the order of the B-spline. In Figure 2 the basis function for
the Expo-Rational B-Spline is shown which generates a C∞

curve that also interpolates the local curve c(t) when t = tk.
The intrinsic parameters are chosen to give a smooth transition
at the peaks which reduces the required curvature.

In Figure 3 an ERBS is used with the intrinsic parameters
of Figure 2 to interpolate a set of waypoints and in Figure

Fig. 1. BFBS basis functions for the knot vector t =
{0, 0, 1/4, 2/4, 3/4, 1, 1}.

Fig. 2. Expo-Rational basis functions for the knot vector t =
{0, 0, 1/4, 2/4, 3/4, 1, 1} with α = 0, β = 3, γ = 1, σ = 0.2 and λ = 0.5.

Fig. 3. Path generated using ERBS with intrinsic parameters from Figure 2.



Fig. 4. Path generated using ERBS showing the local curves. Straight lines
are used for the start and end local curve.

Fig. 5. Path generated using BFBS.

4 the local curves for the same path is shown. Notice how
the start and end curves are straight lines while the remaining
local curves are arcs with radius R = 80 and θo = π/8, by
changing the parameters of the local curves a different path
can be obtained. This allows a lot of flexibility in designing
the paths. In Figure 5 the path is generated by a BFBS and
in Figure 6 it is compared to the ERBS path. It can be seen
that the turns are tighter in the BFBS case since based on (10)
there is less flexibility in tuning the basis functions. In Figure
7 the ERBS path is compared to a Dubin’s path and it can be
seen that the ERBS path follows the Dubin’s path closely, but
keeps the path smooth.

V. CONCLUSIONS

In this paper a new algorithm for continuous curvature
path generation was presented based on GERBS. The desired

Fig. 6. Comparison between BFBS and ERBS.

Fig. 7. Comparison between Dubin’s Path and ERBS.

smoothness of the generated paths can be selected and can
even be changed over different knot intervals. The path gen-
erated by the algorithm is compared to Dubin’s paths and it
can be seen that the path remains close to the Dubin’s path
while remaining smooth.
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