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“Behind everything simple is a huge tail of complicated.”
–Terry Pratchett, I Shall Wear Midnight

“I’m no biologist.”
–Bjørn Fjukstad, multiple occasions





Abstract
Human-model data are very valuable and important in biomedical research.
Ethical and economical constraints limit the access to such data, and conse-
quently these datasets rarely comprise more than a few hundred observations.
As measurements are comparatively cheap, the tendency is to measure as many
things as possible for the few, valuable participants in a study. With -omics
technologies it is cheap and simple to make hundreds of thousands of measure-
ments simultaneously. This few observations–many measurements setting is
a high-dimensional problem in the technical language. Most gene expression
experiments measure the expression levels of 10 000–15 000 genes for fewer
than 100 subjects. I refer to this as the small data setting.

This dissertation is an exercise in practical data analysis as it happens in a
large epidemiological cohort study. It comprises three main projects: (i) pre-
dictive modeling of breast cancer metastasis from whole-blood transcriptomics
measurements; (ii) standardizing a microarray data quality assessment in the
Norwegian Women and Cancer (NOWAC) postgenome cohort; and (iii) shrink-
age estimation of rates. These three are all small data analyses for various
reasons.

Predictive modeling in the small data setting is very challenging. There are
several modern methods built to tackle high-dimensional data, but there is a
need to evaluate these methods against one another when analyzing data in
practice. Through the metastasis prediction work we learned first-hand that
common practices in machine learning can be inefficient or harmful, especially
for small data. I will outline some of the more important issues.

In a large project such as NOWAC there is a need to centralize and disseminate
knowledge and procedures. The standardization of NOWAC quality assessment
was a project born of necessity. The standard operating procedure for outlier
removal was developed so that preprocessing of the NOWAC microarray mate-
rial should happen in the same way every time. We take this procedure from
an archaic R-script that resided in peoples email inboxes to a well-documented,
open-source R-package and present the NOWAC guidelines for microarray qual-
ity control. The procedure is built around the inherent high value of a single
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observation.

Small data are plagued by high variance. Working with small data it is usually
profitable to bias models by shrinkage or borrowing of information from else-
where. We present a pseudo-Bayesian estimator of rates in an informal crime
rate study. We exhibit the value of such procedures in a small data setting and
demonstrate some novel considerations about the coverage properties of such
a procedure.

In short I gather some common practices in predictive modeling as applied
to small data and assess their practical implications. I argue that with more
focus on human-based datasets in biomedicine there is a need for particular
consideration of these data in a small data paradigm to allow for reliable
analysis. I will present what I believe to be sensible guidelines.
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1
Introduction
“[. . . ] there’s nothing like millions of years of really frustrating trial and error
to give a species moral fibre [. . . ] ”

–Terry Pratchett, Reaper Man

1.1 The human model
There is a major concern in biomedical research about the extent to which
results from model organisms such as mice apply to humans. There are eg.
several known discrepancies between the immune systems of mice and hu-
mans.1 Hence the need for human-derived data grows in both academic and
commercial endeavors. Ethical, practical, and economical concerns limit the
access to such data, and the most common sample-size calculation is not a
power calculation, but the simple equation of

n =
money available
cost per subject

.

Therefore human-model biomedical datasets are often small-to-medium sized.
Having once recruited a person to participate in a research project it is tempt-
ing to take as many measurements as is feasible, extra measurements being

1. See the editorial Of men, not mice, Nature Medicine volume 19, page 379 (2013).

1



2 CHAPTER 1 INTRODUCT ION

comparatively easy to come by.

As measurements go, a blood sample is a fairly quick, cheap, and unintrusive
procedure with a large potential. Liew et al. (2006) argue that circulating
blood cells could, since blood passes through and interacts with all other parts
of the human body, act as “sentinels” that respond to the processes in other
organs and hence that blood could act as a surrogate tissue to those that are
harder to access.

The central dogma of molecular biology (Crick, 1958, 1970) describes the in-
formation flow from deoxyribonucleic acid (DNA) via ribonucleic acid (RNA)
to fully-formed proteins, which perform the tasks in our bodies. In simplified
form this information flows in the straight line

DNA
transcr iption
−−−−−−−−−−−→ RNA

translation
−−−−−−−−−−→ protein.

This path (with nuances) describes the processes of life from the first building
blocks of inherited genetic material to the incredibly complicated end-product
of a human being. The blood transcriptome—ie. the complete set of transcribed
RNA molecules and their abundance—as a representation of the functional
elements of the genome—provides a large pool of potential sentinel biomarkers
for a given process.

1.2 Measuring the transcriptome
There are two main technologies for charactering the transcriptome: DNA
microarrays and RNA-Seq. I describe these in quite general terms below.

DNAmicroarrays contain short strings of DNA, probes, designed to complement
and attach to different target messenger RNAs (mRNAs) corresponding to
genes in the genome. A fluorescent label is attached to the mRNA extracted
from biological samples and the mRNAs are allowed to hybridize and bind
to the probes. Whatever material did not bind to probes is washed away
and the microarray is analyzed with a scanner that detects fluorescence. The
intensity of this fluorescence at the location of a certain probe family is then a
measurement of the abundance of the particular mRNA this probe is designed
to attach to.

RNA-Seq is a technology based on high-throughput sequencing of DNA. Com-
plimentary DNAs (cDNAs) are generated from extracted RNAs by reverse
transcription. This allows the use of high-throughput sequencing designed for
DNA, which is a quite mature family of technologies. In shotgun sequencing,
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cDNAs are broken into shorter fragments so that they can be sequenced by
the Sanger method (Sanger et al., 1977) in parallel. They fragmented reads
are re-assembled by computers based on their partial overlap and, possibly, fit
to a reference genome. A measurement of abundance for a given RNA is then
provided by counting the occurrences of its cDNA.

At the time that I write this (late 2018) the DNAmicroarray is mostly considered
passé. RNA-Seq has several advantages over DNA microarrays (Wang et al.,
2009), including lower background noise, less RNA needed for analysis, and
the ability to investigate novel RNAs as there is no need for targeted probes as
with microarrays. With RNA-Seq we are also able to detect a wider range of
genetic expression, as microarrays are limited at the low end by background
noise and at the high end by probe saturation. Challenges in RNA-Seq include
biases induced by fragmenting the RNA strands for sequencing and the fact
that assembly of these fragments is both data and compute intensive.

1.3 Transcriptomics, small data, and statistics
With -omic-type technologies we have access to thousands of measurements
from a single subject. As a result these data contain few observations in high
dimensions. Analysis of such small, high-dimensional biomedical data comes
with several challenges. It is reasonable to expect small effect sizes and high
variance. An interest in building diagnosic tests for clinical use in -omics-type
projects shifts the focus from estimating means and variances to finding linear
(or even higher-order) combinations of potential predictors of the outcome
of interest—among thousands of candidates. This search for a needle in a
haystack stretches already small data sets even thinner because we often need
a certain amount of data to specify the model and additional data to evaluate
the final model. Common strategies and conventions from big data machine
learning may not readily extend to this setting. It is certainly not a situation
imagined by the giants of classical statistics (paraphrasing Efron (2012)).

Figure 1.1 describes what I am going to call the small data setting of biomedical
-omics research. The figure shows a distribution over typical sample sizes of
transcriptomics data sets derived from human subjects. The vast majority
of these data sets comprise fewer than 100 observations. Compare with the
around 20000 known genes in the genome. I have been working with the
human-model transcriptome in blood. Blood is among the most variable tissue
types in the body. It consists of multiple cell types whose relative proportions
vary both over time and from subject to subject. The most transcriptionally
active cells, white blood cells, make up only 1% of the blood volume. The
white blood cells themselves comprise several subtypes. It can be very hard to
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Typical sample sizes in transcriptomics

4 9 21 56 176 614 3372 18736

Figure 1.1: Sizes of human-derived transcriptomics data uploaded to the EMBL-EBI
(n=1178). The figure is described in more detail in Chapter 5.

distinguish biological variation due to outcome—the good kind that we want
to study—and biological variation due to the tissue itself—a nuisance (for
all of this see Fan and Hegde (2005)). Additional variation comes from the
processing of the blood samples themselves, decisions made in preprocessing,
etc.

The 20 000 genes for < 100 observations setting falls within the field of high-
dimensional statistics. The most basic type of question asked of such data
in transcriptomics is which genes are differentially expressed between outcome
groups? Such a question is meant to inform on the functional-genomic proper-
ties of a certain disease or phenotype. There are of course many ways to detect
such differences from classical statistics and the statistical arguments made
around this question tend to be gene-wise hypothesis tests of the kinds that
we variously investigate in the appendix to Chapter 2.

Tailor-made methods tend to take advantage of the parallel nature of a tran-
scriptomic experiment. As we discuss in more detail in Chapter 4, quantities
estimated in parallel can always be improved, in a squared-errors-sense, by
shrinking their estimates either toward zero or toward one another, effectively
borrowing information between estimates. This is the thinking behind the
LIMMA methodology, described by Smyth (2004) for microarrays, and later in
edgeR, described by Robinson et al. (2010) as an adaptation of LIMMA-type
methods to RNA-Seq data. These methods bothmoderate estimates of variation
for their different test statistics in empirical Bayes procedures. Similarly SAM
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(for microarrays) by Tusher et al. (2001) adds some small data-dependent con-
stant (calculated from all data, not just gene-by-gene) to estimates of spread to
make them independent of expression level. This is extended to RNA-Seq data
in the SAMSeq method (Li and Tibshirani, 2013). These are both nonparametric
methods. Penalized likelihood methods as used in Chapter 2 also fall under this
general shrinkage-type thinking but the shrinkage usually applies to coefficient
estimates in the model instead of to their test statistics. Inference is tricky here,
unless we use fully Bayesian approaches.

People adapt methods from microarray data to RNA-Seq data because the
two technologies—although they ostensibly measure the same thing—produce
different types of data. The numbers that come out of microarray platforms are
continuous whereas those from RNA-Seq platforms are discrete counts. Hence
much of the effort in developing methods for RNA-Seq has consisted of adapting
the lessons learned from microarrays to work with counting distributions such
as the Poisson or the negative binomial. Covering all different types of possible
analyses and methods could fill several review articles, which indeed it already
has, see eg. Kristensen et al. (2014) and Conesa et al. (2016).

There are also more general statistical issues to consider working with small
transcriptomics data. For instance, if we want to preserve the error-statistical
properties of an experiment while also performing thousands of hypothesis
tests simultaneously we must take this multiplicity into consideration. Two
well-established methods are either to control the family-wise error rate by
Bonferroni correction (Dunn, 1961) or controlling the false discovery rate—a
less stringent criterion—by the method of Benjamini and Hochberg (1995). If
we want to use shrinkage, how do we determine the size of this shrinkage? I
return to this in Chapters 2 and 5 (also indirectly in Chapter 4).

I touch on various methods and methodology throughout most of this disser-
tation, especially in Chapter 5 where I focus on predictive modeling. There
are many models and methods for general high-dimensional problems. Often
there is no agnostic a priori reason to prefer one model to another. The general
approach is to hope that there is a lower-dimensional structure to be found in
the data, and to use biased models to combat the high variance in the data
themselves and in model estimation procedures. Theoretical results are usually
asymptotic in n or p, but there is a long way from real-life data analysis to
Asymptopia. No-one knows how to safely evaluate a prediction method except
for use of data other than those used to fit the model. The gold standard is
100% independent validation data, if you can have them. Splitting data into
train-, test-, and validation sets is a common practice in machine learning. Since
epidemiological studies are small and are likely to remain so, keeping some
of the data separate for the purpose of validation is a risky proposition. We
shall see that such data splitting and other common practices can be harmful
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if applied haphazardly in the analysis of small, high-dimensional data.

1.4 Transcriptomics and cancer
There is a fair body of work on the use of transcriptomic measurements as
markers of cancer subtype or as indicators of prognosis. The recent review
by Kwa et al. (2017) enumerates six different gene-signature tests for early-
stage breast cancers: OncotypeDX (Paik et al., 2004); Prosigna (Parker et al.,
2009); MammaPrint (Van’t Veer et al., 2002); Breast cancer index (Ma et al.,
2008); EndoPredict (Filipits et al., 2011); and Genomic Grade Index (Sotiriou
et al., 2006). These are all applied to tissue samples taken from the tumor,
and are variously used for predicting prognosis, recurrence risk (including
distant metastasis), benefit from extended therapy, etc. Most of these were first
developed in smaller data sets (sub-100 to low 100s) with validation in larger
sets (low-to-high 100s).

The literature is much sparser when it comes to the use of blood samples,
especially in metastasis prediction, which has been my focus. A fairly-recent
study by Aristizábal-Pachón et al. (2015) provides some evidence that the
expression of Mammaglobin A in peripheral blood has potential as a marker for
breast cancer metastasis. Some various examples of blood-based predictors that
do not use transcriptomic measurements are mentioned in Chapter 2.

The Norwegian Women and Cancer (NOWAC) study—which has provided a
general backdrop to my work—is fairly unique in that it has collected blood
samples prospectively and buffered these to prevent the degradation of mRNAs.
Hence their data enable the investigation of pre-diagnostic transcriptomic
signals of carcinogenesis and metastasis. Such investigations could provide a
valuable basis for early detection, or provide valuable system-epidemiological
insights. The NOWAC postgenome cohort (Lund et al., 2008) is a prospective
population-based cohort that contains blood samples from 50000 women
born between 1943 and 1957. Out of these in total about 1 600 case–control
pairs (3 200 blood samples) have at various times been processed with DNA
microarrays to measure mRNA abundance. These measurements are combined
with questionnaires and disease/death status from The Norwegian Cancer
Registry, and the The Cause of Death Registry in Statistics Norway. Lund et al.
(2016) provides a recent study of a pre-diagnostic blood transcriptome signal
of breast cancer presence. Another example of this focus on a pre-diagnostic
signal in blood is that of Sandanger et al. (2018), who investigate both mRNAs
and DNA methylation as potential biomarkers of lung cancer.
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1.5 Contributions and outline
This dissertation is part case-study, part original research, and part method-
ological guideline. I argue that in human cohort studies it is useful and needful
to set Big Data dreams aside and consider a paradigm of small data where
observations are very valuable indeed and high dimensionality is the norm. In
particular I investigate the dangers of some common machine learning practice
as applied to data from an epidemiological cohort study. I also touch upon
some of the analysis-adjacent problems of such a study, such as replicability
and knowledge dissemination.

For the most part I have either worked directly with the NOWAC material, or
worked with problems that I became aware of as a result of my work with the
NOWAC material. NOWAC is an exploratory study, so the focus is on hypothesis
generation.

I organize this dissertation around three main projects in the form of papers.
Below I briefly describe these projects. For each I describe the contributions of
the work, their small-data implications, and my personal contributions to the
project:

Breast cancer metastasis prediction: I present this work in Chapter 2. It is
the largest part of my Ph. D. work. We analyze gene expression measure-
ments from blood samples in the NOWAC postgenome cohort study. We
find indication that there is predictive information of metastasis in these
blood samples, which were taken some time before cancer was detected.
We provide a quantitative description of the genes that most strongly as-
sociate with metastasis in these data. Early detection of metastasis could
potentially reduce mortality, and investigation of the functional-genomic
aspects in blood could shed light on the systemic response to aggressive
cancers. In addition to these main results I provide some methodological
considerations in Chapter 5 that I consider key in a small-data setting
and warn against some potentially harmful standard machine learning
practices. I am first author on this work and provided all modeling,
implementation, validation, and most writing.

In Chapter 6 I briefly outline two pieces of work that follow this one. First,
we have done a small analysis of a data set collected in NOWAC to assess
the potential effect of psychological stress on blood transcriptomics.
Such an effect might well get in the way of any information predictive
of eg. cancer and confound the analysis. We find little evidence of a
stress effect. I am joint first authors with Dr. Karina Standahl Olsen on
this work. It should be considered in-progress but very nearly ready for
submission. I provide methodology and analysis.
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Second, the analyses in the appendix to Chapter 2 indicate a certain
reduction in variance when time-to-diagnosis is part of the variable
selection process. This makes biological sense as there is little reason
to think that a blood sample provided 10 years ago should show any
systemic response to a cancer found today. I outline a followup-weighted
extension to the significance analysis of microarrays. I have some
promising early simulation results for this method, not presented in this
document. Formalization and further development should be considered
future work.

A NOWAC standard operating procedure for outlier assessment: Itwas re-
alized in NOWAC that (i) there should be a standard procedure of detect-
ing and removing technical outliers: observations that for lab-technical
reasons cannot be used for analysis, and (ii) this procedure should re-
move as few observations as possible. The article, presented in Chapter 3,
provides a formal description of the standard operating procedure and
an R-package that implements the methods to carry the procedure out. I
am joint first authors on this work with Dr. Hege Bøvelstad. We provide
experiments that indicate that the approach should be applied carefully
by a human rather than automatically based on standard thresholds. I
developed the nowaclean R package from the canonical NOWAC R-script,
passed from person to person by email. I also provided writing and the
experimental evaluation.

Shrinkage estimation of rates: Techniques for introducing bias and borrow-
ing "extra" information are very important in a small-data situation.
Shrinkage estimation has seen a very successful application in gene
expression analysis (Smyth, 2004). This work, presented in Chapter 4,
provides a tutorial of a common Bayesian approach to shrinkage esti-
mation of a high-dimensional vector of rates and method assessment
by realistic simulations. We provide a new result in terms of coverage
properties of the posterior credible intervals of such a procedure. I am
first author on this work and provided most of the initial modeling and
implementation, and most writing and experimental evaluation.

In a longer-term perspective, I use Chapter 5 to point out some common prob-
lems in the predictive modeling and management of small data. With more
focus on human-based datasets in biomedicine, I believe that the analyses
provided by considering a small data paradigm will be increasingly impor-
tant for both reliable and reproducible results. Hence my thesis: A small
data paradigm is needed for reliable analysis of small, high-dimensional
data.
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Metastasis prediction
“Ordinary fortune-tellers tell you what you want to happen; witches tell you
what’s going to happen whether you want it to or not. Strangely enough,
witches tend to be more accurate but less popular.”

–Terry Pratchett, The Wee Free Men

This chapter is an extension and improvement of our working paper on pre-
dicting breast cancer metastasis from blood gene expression measurements
(Holsbø et al., 2018). Importantly I have fixed a subtle flaw in our methodology
that introduced some serious overfitting problems for the penalized likelihood
regression methods (lasso and ridge in the original manuscript). For discussion
of this issue, see Chapter 5.

The text below will show that the fixing of this flaw leads to a superior model
to any of the ad-hoc variable selection methods that we previously considered.
There is no innovation of ours in the model itself, and with the sample size
at hand I judge it unlikely that refinements will clearly improve the present
results. The improved model lets us shift our focus from can we reliably model
the data at all?—the main problem of the original text—to what do the data
tell us? So instead of presenting an array of models with general observations
about them as an ensemble, I choose to present a single model and go into
more detail about its fit and the properties of the predictors chosen. I believe
this makes a more valuable scientific contribution: though the results are
necessarily uncertain and exploratory, they define a very concrete route for

9
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further investigation.

For completeness I have included the pertinent material on the models from
Holsbø et al. (2018) as an appendix to this chapter (see page 24). The text there
is identical to the original material, differing only from the cited manuscript in
what I have omitted as no longer relevant. I recommend you, the reader, keep
Tables 2.4, 2.5, and 2.6 from the appendix in mind to compare with the results
in the main text below.

During the work on this problem, which has been central during my time as a
Ph. D. student, we learned a lot about modeling small high-dimensional data,
which eventually informed the bulk of my views presented in Chapter 5.

Abstract: We investigate whether blood gene expression measurements con-
tain predictive information of breast cancer metastasis. Our data comes from
the NOWAC epidemiological cohort study, which also provides nested controls.
The women who contributed to these data provided a blood sample up to
a year before receiving a breast cancer diagnosis. We estimate a penalized
maximum likelihood logistic regression, which we evaluate by extensive re-
sampling in terms of calibration, concordance, and stability. By this model we
identify a set of 108 candidate predictor genes that exhibit clear fold change
in average metstasized case–control pairs where there is none for the average
non-metastasized pair. This set provides a promising starting point for future
research.

2.1 Introduction
About one in ten women will at some point develop breast cancer. About 25%
have an aggressive cancer at the time of diagnosis, with metastatic spread
to axillary lymph nodes.1 Spread is detected by a sentinel node biopsy: a
surgical procedure to check the lymph nodes closest to the cancer site for
metastasized cancer. A cancer that has developed to the point of metastasis is
much more dangerous than a local one. The absence or presence of metastatic
spread largely determines the patient’s survival. Early detection is hence very
important in terms of reducing cancer mortality. Were we able to detect signs
of metastasis or metastatic potential by a blood sample, perhaps in a screening
setting, we could conceivably start treatment earlier and treat the cancer before
the onset of large, deadly metastasized tumors.

Several recent articles develop this idea of liquid biopsies (Chi, 2016). Dif-

1. http://oncolex.org/Breast-cancer/

http://oncolex.org/Breast-cancer/
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ferent relevant signals appear in blood for already-diagnosed breast cancer.
For instance: circulating tumor cells (Giuliano et al., 2014), circulating tumor
DNA (Cohen et al., 2018), serum microRNA (van Schooneveld et al., 2012),
or tumor-educated platelets (Best et al., 2017). A recent review in Cancer
and Metastasis Reviews (Lim and Hortobagyi, 2016) lists liquid biopsies and
large data analysis tools as important challenges in metastatic breast cancer
research.

The Norwegian Women and Cancer (NOWAC) postgenome cohort (Lund et al.,
2008) is a prospective population-based cohort that contains blood samples
from 50000 women born between 1943 and 1957. Out of these in total about
1 600 case–control pairs (3 200 blood samples) have at various times been
processed to provide transcriptomic measurements in the form of mRNA abun-
dance. These measurements combine with questionnaires, disease status from
The Norwegian Cancer Registry, and death status from the The Cause of Death
Registry in Statistics Norway to provide a high-quality dataset. These data are
used for exploration and hypothesis generation.

Transcriptomics data are challenging to model, especially for exploratory data
analysis. Such data usually comprise fewer than 100 observations and tens
of thousands of measurements for each observation. As traditional statistical
methods do not lend themselves to such high-dimensional problems, the hope
is to uncover lower-dimensional structures. For instance, we expect genes to
work together in pathways and do not expect all genes to be relevant in all
processes (or indeed any given process). The analysis of high-dimensional
data is an active research area of statistics and machine learning (Frigessi
et al., 2016). The common methods for discovering low-dimensional structure
are projection approaches like PLS-methods (Liquet et al., 2015) and variable
selection such as shrinkage (Tibshirani, 1996; Zou and Hastie, 2005).

We examine 88 prospective case–control pairs from the NOWAC study. The
blood samples were provided 6–358 days before diagnosis. We fit a penalized
likelihood logistic regression with the ElasticNet-type penalty (Zou and Hastie,
2005). This approach provides built-in variable selection in the estimation
procedure.

We evaluate our model by extensive resampling (Efron and Gong, 1983). We
demonstrate that there is a signal that predicts metastasis in blood transcrip-
tomics but there is work to be done before such a model could have practical
utility. Our model uncovers 108 predictor genes that form a promising direction
for further research.



12 CHAPTER 2 METASTAS IS PRED ICT ION

2.2 Material and methods
2.2.1 Data
We analyze 88 pairs of cases with breast cancer diagnoses and age-matched
healthy controls from the NOWAC Post-genome cohort. Dumeaux et al. (2008)
describe the NOWAC study in detail. In brief, women in a certain age group
received an invitation to participate by random draw from the Norwegian Na-
tional Registry. The women who chose to participate filled out a questionnaire
and provided a blood sample. Over the years the Cancer Registry of Norway
provided followup information on cancer diagnoses and lymph node status.
The women in this particular data set received a breast cancer diagnosis at
most one year after providing a blood sample.

The NTNU genomics core facility processed the blood samples with Illumina
microarray chips of either the HumanWG-6 v. 3 or the HumanHT-12 v. 4
type. To keep case–control pair as comparable as possible, the pair is intact
throughout processing pipeline. This means that they are processed on the
same day by the same person and lie next to one another physically on the
microarray chip. All NOWAC data sets go through a standardized technical
quality control (Bøvelstad et al., 2017).

From a starting-point of some 30000 microarrays probes per observation, we
have removed those of low quality and those that showed no signal in a certain
fraction of the observations. We next map probes to known genes, where,
when several probes map to the same gene, we choose the probe with the
largest inter-quartile range. Finally we have normalized the data by quantile
normalization before analysis. All of this is NOWAC standard, and the details
of preprocessing for these particular data is described in detail by Lund et al.
(2016).

The above reduces the dimensionality considerably. The end-result is a 88 ×
12404 fold change matrix, X , on the log2 scale. For each gene, д, and each
case–control pair, i, we have the measurement log2 xiд − log2 x

′
iд . Here xiд is

the д expression level for the ith case, and x ′iд is the corresponding control. The
response variable, metastasis (∈ {0, 1}), indicates whether a sentinel node
biopsy showed evidence of metastasis. We sometimes refer to this as spread.
The cancers in these data were detected in one of three settings: (i) screening
cancers are detected in the regular screening program; (ii) interval cancers
are detected in the two-year interval between screenings in a woman who
participates in the screening program; finally clinical cancers are detected at a
clinic in women who either never took part in the screening program, or did
not attend a screening in at least two years. Table 2.1 shows the incidence of
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Screening Interval Clinical
No spread 43 10 13

Spread 6 6 10

Table 2.1: Incidence of metastasis across detection strata. There is noticeable between-
stratum variation. The incidence is much lower in the screening stratum.

metastasis stratified by the three different detection settings. There is some
heterogeneity, but since strata are quite small we choose to pool them.

2.2.2 Predictive model
We model the probability of metastasis, p(m), given gene expression, x , by a
penalized likelihood logistic regression with an ElasticNet-type penalty (Zou
and Hastie, 2005). This takes the usual log–linear form

log
p(m)

1 − p(m)
= β0 + β1x1 + . . . + xp

but likelihood is maximized under the constraint that

(1 − α)
∑��βj �� + α ∑

β2
j ≤ t (2.1)

for some user-specified penalty size t (or, in its alternative formulation, λ) and
penalty mixing parameter,α . In a penalized likelihood procedure we essentially
set a budget for the size of the fitted regression coefficients. The penalty
expressed in 2.1 provides a trade-off between the lasso penalty (Tibshirani,
1996), which provides a variable selection that tends to choose haphazardly
between correlated variables, and the ridge penalty (Hoerl and Kennard, 1970),
which provides no variable selection and tends to shrink correlated variables
toward one another. The idea is that the combined penalty should provide
grouped variable selection: some variables get shrunk out of the model entirely
and correlated variables get shrunk toward one another.

Tuning parameters
We set the penalty trade-off, α , in expression 2.1 to .5 a priori: half ridge, half
lasso. We do this because we have no strong opinion about what α should be
and would rather avoid optimizing tuning parameters over a two-dimensional
surface.

We choose the penalty size λ by optimizing for a modified version of Akaike’s In-
formation Criterion (Akaike, 1973; Verweij and Van Houwelingen, 1994),

AIC ′ = LRχ2 − 2k,
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where k is the effective degrees of freedom of the model and LRχ2 is the
likelihood ratio χ2 for the model (Wilks, 1938), ignoring the penalty. This has
the advantage that we do not need to split the data in a cross-validation and
should often result in a sensible model according to Harrell (2013, p. 211).

An estimate for the effective degrees of freedom (EDF) for an additive error
lasso model is simply the number of non-zero coefficients (Zou et al., 2007).
Scrupulous estimation of EDF for our model is made more complicated because
we fit a logistic regression model and because we have added another term
to the penalty that introduces additional penalty (and hence lowers the EDF).
Hastie and Tibshirani (1990), among others, define EDF for a model, η̂, as

df(η̂) = n − E[dev(ηs , η̂)],

n being the number of observations, and dev(ηs , η̂) the deviance between the
saturated model and the model under consideration. Our experiments with
this quantity has shown no material change in the general properties of the
(AIC ′, λ)-curve in our data, and hence we use the much quicker lasso shorthand
of counting non-zero coefficients.

2.2.3 Validation
Metrics
We evaluate models by several criteria. Brier score (Brier, 1950) is the mean
squared error,

B̄ = n−1
∑
(ŷi − yi )

2,

between the probability that was predicted by the model, ŷ, and the known
outcomes, y. This is a one-number summary of the calibration of predicted
probabilities; we also assess calibration by means of a calibration curve.
This is an estimate of proportion of true successes as a function of predicted
probability, which we calculate by smoothing the true zero/one outcome as a
function of predicted probability (lowess with a span of 2

3). If n observations
receive a prediction of p̂, np̂ of them should have the predicted condition for a
well-calibrated model.

Concordance probability is the probability of ranking (in terms of predicted
probability) a randomly chosen positive higher than a randomly chosen nega-
tive. A concordance probability of unity means that all positives have a higher
predicted probability than all the negatives, one of .5 is equivalent to random
guess, and between .5 and zero means that somehow negatives are ranked
higher than positives.This is equivalent to the area under the receiver operating



2.2 MATER IAL AND METHODS 15

characteristic curve (AUC), and is proportional to the Mann-Whitney-Wilcoxon
U statistic (Hanley and McNeil, 1982).

Finally, stability is the proportion of overlap between predictor genes chosen
during different realizations of the modeling procedure. We follow Haury et al.
(2011) and measure this by the Jaccard index, |S1∩S2 |

|S1∪S2 |
, where S1 and S2 are two

sets of predictor genes.

Estimation: Optimism bootstrap
For estimation of concordance probability, Brier score, and calibration curve we
take the optimism-corrected bootstrap approach described, eg., in Efron and
Gong (1983). This has the advantage of using all of the data in estimating model
performance opposed to data splitting procedures such as out-of-bootstrap or
k-fold cross-validation where only a portion of the data is used to fit the
model.

The apparent score (or training score), sc(x , F̂ ), is the score of a model fit
to the sample, x , w.r.t. the empirical distribution of this sample, F̂ . This is
necessarily an overoptimistic estimate. To correct for this, we estimate the
expected overoptimism, ω, by the bootstrap:

ω̂boot = B−1
B∑

b=1

(
sc(x∗b , F̂ ) − sc(x

∗
b , F̂
∗
b )

)
,

where B is the total number of bootstrap resamples, x∗b is the bth bootstrap
sample, and F̂ ∗b is the empirical distribution function of the same. Hence
sc(x∗b , F̂

∗
b ) is the apparent score of the bth bootstrapped model, and sc(x∗b , F̂ )

is the score of the same model w.r.t. the empirical distribution of the original
sample. The optimism-corrected expected score of our model becomes

ŝcboot = sc(x , F̂ ) + ω̂boot,

which is a bias correction of the apparent score.In the case of the calibration
curve we do this as a pointwise procedure along the curve.

Since there is no notion of “apparent stability,” we take a slightly different
approach for this score. Let S(x) be the gene set selected in the original data
and S(x∗b ) be the gene set selected in the bth bootstrap sample. The bootstrap
estimate of expected stability is then

ŝtboot = B−1
B∑

b=1

|S(x) ∩ S(x∗b )|

|S(x) ∪ S(x∗b )|
.
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We keep track of the bootstrap gene sets {S(x∗b )}. This allows us to make
secondary calculations about selected genes such as how often a given gene
is selected and which genes that tend to be selected together under resam-
pling.

2.3 Results
We begin this section by describing the fitted model and its predictive perfor-
mance, and go on to describe the predictor genes selected in the fitting.

2.3.1 Model fit
Choice of penalty size
The top panel of Figure 2.1 shows AIC ′ as a function of penalty size. Instead of
showing a clear maximum,AIC ′ keeps improving with higher penalty. This is in
part because of overestimated effective degrees of freedom, but as we mention
above, more sophisticated (and slower to compute) estimates do not materially
improve the situation for these data. Instead we observe that improvement
slows down considerably with higher shrinkage and choose the point at which
improvement slows down as our λ. This is the point of maximum curvature,
indicated by a dotted line. Detection of this point can easily be automated
by applying a smoother—lowess with a span of 2

3 in our case—to the (AIC,
λ) points and finding the λ-point with the largest absolute second derivative
along this smooth line.

To the extent that it is possible to speak of an optimal penalty, the above pro-
cedure may not find it. Some degree of undershrinkage should be expected,
which may contribute somewhat to the poor calibration outlined below. How-
ever, for the purpose of selecting variables, the impact of undershrinkage is not
too severe: The bottom panel of Figure 2.1 shows the coefficients of the 108
selected predictor genes (described in Section 2.3.2 below). The ticks along the
lambda-axis show the points at which a gene from this set gets shrunk out of
the model. A larger penalty would naturally shrink out more genes, but the
chosen set will be a subset of the one we present here. We do not show the
coefficient for the remaining thousands of genes not chosen, but at no point
do they re-enter the model after dropping out.
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Figure 2.1: Top: Selecting shrinkage size by AIC ′. After the automatically detected
elbow by maximum curvature at roughly λ = .04 the gains in AIC ′ slow
considerably. Bottom: Regularization path (coefficients) of selected gene
set as function of shrinkage size. The ticks show the point at which a
variable drops out of the model.

Evaluation metrics
Figure 2.2 shows the bootstrap for our estimates of Brier score, concordance
probability, and stability. The solid lines show point estimates and the dotted
lines indicate the middle .8 of each distribution. The Brier score for our model is
roughly .1, while that of an intercept-only null model is roughly .18. Since Brier
score is the mean square error of predicted probabilities we can take its root to
get an average error on the probability scale;

√
.1 ≈ .32, which suggests that

the predicted probabilities are not very accurate. Figure 2.3 corroborates this.
The figure shows the pointwise calibration of predicted probabilities, ie., for
a given predicted metastasis probability, how great a proportion observations
turned out to have metastases. For a predicted metastasis probability < .4 the
true proportion is ≈ .1, while for a predicted metastasis probability > .8 the
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Figure 2.2: Bootstrap distribution of optimism-corrected estimates for Brier score,
concordance/AUC, and stability for the Elasticnet model. The solid vertical
lines show point estimates, and the dotted vertical lines show the middle
.8 of each distribution.

true proportion is ≈ .7. In other words we overestimate low probabilities and
underestimate high ones. The model is somewhat more calibrated for higher
probabilities but far from perfect.
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Figure 2.3: Expected calibration of predicted probabilities shown in solid black. The
dotted line shows middle .8 of the bootstrap distribution. Ideally, .8 of the
observations for which .8 metastasis probability was predicted should turn
out to show metastasis. In other words the ideal calibration is a diagonal
line (shown in grey). Our model tends to overestimate lower probabilities
and underestimate higher ones.

Returning to Figure 2.2, the concordance probability (or AUC) is quite high
at roughly .88, with a lower bound for the middle .8 of the distribution at
.81. Contrast this with random guess at .5. This suggests that the model
consistently selects gene sets that separate metastases from non-metastases in
their expression levels in spite of the fact that the predicted probabilities are
poorly calibrated. The stability of these chosen gene sets is around .16, which
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suggests the likely scenario that there are many correlated genes to choose
from. With a stability of .16 for 108 genes you might expect a 17-gene overlap
when fitting a similar model to similar data.
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Figure 2.4: Selection of shrinkage size by automatically detecting the “elbow” in
the AIC–λ curve under resampling. Top shows 25 such detections under
resampling, while bottom shows the selected λ for all the 2500 bootstrap
resamples in the main estimation procedure. The automated procedure
shows no marked inconsistency.

A resampling procedure rests on our ability to automate the choices made
during modelling. The top panel of Figure 2.4 shows 25 resampling realiza-
tions of the automated selection of λ described above. This looks sensible
compared with Figure 2.1 (top). The bottom panel of Figure 2.4 shows the
distribution of all λs selected in the main bootstrap procedure. The distribution
is fairly concentrated, though under resampling a slightly larger λ tends to be
chosen.
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Figure 2.5: Convergence of bootstrap estimates. All estimates look stable after about
1700 resamples, which suggests that the Monte-Carlo error due to resam-
pling is small.

Figure 2.5 shows the quantity

b−1
b∑
i=1

sc(x∗i , F̂
∗
i ) − B

−1
B∑
j=1

sc(x∗j , F̂
∗
j ),

b ∈ {1, 2, . . . ,B},

for the three different single-number score estimates. This is the difference
between the score after b resamples and the final score, so the figure shows
the convergence of these scores toward their final estimates. After around 1700
resamples the change in these curves looks negligible, which indicates that the
Monte-Carlo error from resampling should also be negligible.

2.3.2 Selected genes
In this section we list the 108 genes selected by penalized likelihood and
describe them in general quantitative terms. As mentioned above, we keep
track of the selected gene sets under resampling and can hence calculate
statistics for how often a given gene is selected and for how often a given
gene is co-selected with any other gene. Table 2.2 shows the 108 selected genes
ordered by their individual selection probabilities. Apart from the first few
genes, the selection probabilities are not very high. It is quite likely that (i)
a larger set of genes correlate with the ones we select and get selected in
their place some of the time, and (ii) our selected genes correlate with one
another and the selection of one some times makes the selection of another less
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likely. This is a natural consequence of doing variable selection: “redundant”
information may shrink out of the model.

Table 2.2: Resampling selection probability for the 108 elasticnet-selected genes.

GRK5a 0.853 C1orf115 0.290 ANO8 0.221 FBLN5 0.157
GPATCH4 0.682 LOC654055 0.287 PTTG1IP 0.219 BLMH 0.156
GNGT2 0.474 RNF214 0.280 3NDg8gVCd. . .b 0.218 FCRL3 0.149
PDGFDc 0.467 SULT1A1 0.278 USF1 0.216 TDRD9 0.143
FAM24B 0.457 ZNF365 0.271 BCCIP 0.210 ACY1 0.142
PTPRN2 0.442 USE1 0.267 MGC29506 0.209 ZFP57 0.142
CBLB 0.440 DNMT3A 0.267 GRK5a 0.207 SLIC1 0.138
PDCL 0.410 LOC649210 0.266 WTIP 0.205 PICK1 0.135
RASA2 0.380 CNTNAP2 0.265 BCL10 0.204 RTN4IP1 0.134
C11orf48 0.376 IL2RA 0.265 DLGAP2 0.200 CDCA7L 0.132
TCEB1 0.374 CCT5 0.264 HRAS 0.199 BEX4 0.131
CAPN3 0.354 R3HDM1 0.263 RAD1 0.189 FCAR 0.130
STK19 0.351 MRPL43 0.260 PRKCE 0.187 ANKRD35 0.111
GUCY1A3 0.348 SLC38A1 0.256 UBAP2L 0.186 USP39 0.109
ZDHHC11 0.345 GNG8 0.255 BPI 0.186 KIAA0495 0.106
SULT1A3 0.336 PLA2G4C 0.251 DTX1 0.184 BRI3BP 0.106
Z6FIQGkeo. . .d 0.335 TCF4 0.248 LASS5 0.182 TUBA4A 0.105
FAM89A 0.328 uX15cu4f_. . .e 0.247 GSTT1 0.182 IDH1 0.102
rh13dQX04. . .f 0.324 C20orf107 0.245 SPATA20 0.182 DDX52 0.100
LANCL2 0.323 VCL 0.242 IGLL1 0.172 ANKRD57 0.094
SERPINE2 0.318 EZH2 0.242 SPG3A 0.172 TFG 0.087
ADIPOR2 0.314 PRPSAP2 0.237 PPAP2A 0.172 LILRA6 0.080
GPR177 0.312 ISY1 0.235 NOTCH2NL 0.172 C6orf47 0.078
PDGFDc 0.299 UGDH 0.234 TAF6 0.168 WDR60 0.075
LOC647460 0.294 ABCF2 0.230 CCDC90B 0.166 AHCYL2 0.068
WEE1 0.293 C16orf5 0.229 LOC731486 0.158 HAUS4 0.068
ITM2C 0.291 VAV3 0.225 CDH2 0.157 MAD2L2 0.053

a. Two probes map to the same gene GRK5. Combined selection probability is 1.06, implying
that both get selected together at least some of the time.

b. Illumina probe id 3NDg8gVCdQkNdcg.Ko, missing annotation.
c. Two probes map to the same gene PDGFD. Combined selection probability is 0.766.
d. Ilummina probe id Z6FIQGkeoCSiVAoKeg, missing annotation.
e. Illumina probe id uX15cu4f_VUIuXoST0, missing annotation.
f. Illumina probe id rh13dQX04hUS7uOpRQ, missing annotation.

Figure 2.6 shows the (log fold change) expression levels in each of the 108
selected genes for the metastasized and non-metastasized observations. The
shaded area shows the middle .8 of the bootstrap distribution for difference
in medians between the two groups; the white notch shows the expectation
of this distribution, by which the genes are ordered. The black snake-shaped
line marks the two group medians. The non-metastasized median is usually
around zero, so the difference in medians is mostly dominated by the median
fold change of the metastasized observations. In other words, for these genes
the average case–control pair is similar in the non-metastasized group, while
the average pair is dissimilar in the metastasized group.
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Figure 2.6: Expression levels of selected genes ordered by difference in medians
between metastasized and non-metastasized observations.
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By collecting pairwise counts of co-selection during the bootstrap we can form
an idea about which genes tend to get selected together. We form a probability
from these counts by dividing the count by the number of times either gene
was selected, so a co-selection probability of unity tells us that every time one
of the genes was selected, the other was also. In Figure 2.7 we show a heatmap
of these pairwise co-selection probabilities. The rows and columns—it is a
symmetrical matrix—are clustered so that similar co-selection patterns are
closer to one another. The plot shows a group in the bottom right that tends to
get selected together.

Co−selection heatmap

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2.7: Pairwise probabilities for co-selection of genes, ordered by euclidean-
distance McQuitty hierarchical clustering. The bottom-right group stands
out as co-selected.

Table 2.3 shows the co-selected genes indicated in Figure 2.7. Many of these
also have high individual selection probabilities in Table 2.2, so there is some
indication that they reliably separate metastases from non-metastases in these
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data even under resampling.

Table 2.3: Genes that tend to be selected together, ordered alphabetically.

ADIPOR2 FAM89A LANCL2 PTPRN2 SULT1A3
C11orf48 GNG8 LOC647460 R3HDM1 TCEB1
C1orf115 GNGT2 LOC654055 RASA2 TCF4
CAPN3 GPATCH4 PDCL rh13dQX0. . . WEE1
CBLB GRK5 PDGFD SERPINE2 Z6FIQGkeo. . .
DNMT3A GUCY1A3 PDGFD STK19 ZDHHC11
FAM24B ITM2C PRPSAP2 SULT1A1 ZNF365

2.4 Conclusion
We have demonstrated predictability of metastasis in these data. We can, with
a high probability, rank case–control pairs in terms of predicted metastasis
probability. However we should not count the model itself as a reliable tool due
to poor calibration and stability, and since these results stem from exploratory
modeling we should be moderate in our expectations; further investigation is
needed to establish reliable results.

We provide 108 candidate predictor genes as an avenue for future research. We
are currently investigating their biological properties. An interesting statistical
investigation may be to review the importance of the stratification and how to
build this into a shrinkage model, as the results in the appendix below indicate
that this may lead to improvements. We believe however that it is necessary
to obtain independent data to be able to make any inference stronger than
general indication.

2.A Appendix: variable selection methods
In addition to the main results presented above we previously explored vari-
ous ad-hoc variable selection schemes. The results of these explorations are
not competitive compared with the above penalized likelihood model, but I
present them here for completeness and comparison. To make the next sections
complete we must define the followup time of a case. This is the number of
days between provision of the blood sample and the eventual diagnosis of
cancer. Although followup introduces a time aspect, these are not time series
data in the strictest technical sense. Each observation stems from a different
woman, so there should be no autocorrelation to speak of, and followup time
is random.
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What follows is the “historical” text describing these variable selection methods.
Take note that the flaw in methodology only affected the baseline shrinkage
methods; the other numbers should be reliable.

2.A.1 Variable selection
We investigate four ways to rank genes, which we describe briefly in this section.
The methods all assess differential expression between groups in some way.
We propose the first—ANOVA—to take into account a hypothetical functional
relationship between gene expression and time. The other three—SAM, t-tests,
and LIMMAmoderated t-tests—are well-establishedmethods for ranking genes
and assessing differential expression.

ANOVA
We hypothesize that the expression of genes that are relevant to the cancer
process diverges over time. To detect this behavior we regress fold change, e,
on time, t , and metastasis, M , in the following model:

e = β0 + β1t + β2M + β3tM + ϵ, (2.2)

where ϵ is iid noise. We refer to this as ANOVA-f below.

We suspect that different genes may be relevant in different detection strata.
We model this by expanding equation 2.2 to include an interaction with stratum,
S:

e = β0 + . . . + β4S + β5tS + β6SM + β7tSM + ϵ . (2.3)

We refer to this as ANOVA-fs below.

Finally we entertain the possibility that followup is not important and that
stratum alone is of interest. This yields the model

e = β0 + β1S + β2M + β3SM + ϵ, (2.4)

which we refer to as ANOVA-s below. Note the abuse of notation in Equations
2.3 and 2.4; S has three levels and will be coded as a dummy variable.

We rank genes by the F -statistic obtained under the null hypothesis that the
model in Equation 2.2, 2.3, or 2.4 is no better than the intercept-only model,
e = β0 + ϵ . Ignoring both stratum and followup is equivalent to a regular t-test
for metastasized vs not as in Section 2.A.1 below.
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t-test
We rank genes by Welch’s two-sample t-statistic (Welch, 1947) between metas-
tasized and non-metastasized cases (t-test below). This is complementary to
the three methods above, as regressing on a single binary grouping variable
can be used as a test for difference in means.

SAM
The Significance Analysis of Microarrays (SAM) procedure of Tusher et al.
(2001) defines the relative difference in gene expression for the ith gene as:

d(i) =
x̄I (i) − x̄U (i)

s(i) + s0
. (2.5)

Here x̄I (i) and X̄U (i) are the average expression levels of gene i in the two
states I and U (metastasized or not), s(i) is the pooled standard deviation
estimate in the two states, and finally s0 is a small positive constant added to
all genes to make the variance of di independent of gene expression level. We
rank genes by d(i).

LIMMA t-test
Smyth’s Linear Models for Microarray Data (LIMMA) is a general empirical
Bayes framework for assessing differential expression (Smyth, 2004). The
LIMMA moderated t-statistic, t̃i , is similar to the SAM d(i) in that it modifies
the denominator of a regular t-statistic. In this case we have that for the ith
gene,

t̃i =
x̄I (i) − x̄U (i)

s̃i
√
vi

,

where vi is a factor that has to do with the variance of x̄I (i) − x̄U (i). The
standard deviation estimate s̃i has been shrunk by empirical Bayes methods
toward the average standard deviation across all genes. We refer to this as
LIMMA-t below.

2.A.2 Prediction
Having ranked genes and chosen the top k as predictors, we use these in the
following logistic regression model for the probability, p, of metastasis:

logit(p) = β0 + β1x1 + . . . + βkxk . (2.6)
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This model uses only gene expression levels regardless of whether stratum
(or time) was used in selecting the predictors. This model can be used in a
screening setting (where the cancer has not yet happened and hence we do not
have information about its detection). Since followup time is a result of these
data coming from a cohort study, it could not be used in a realistic predictive
model.

Considering Table 2.1 it is likely that detection type is informative of the
probability of metastasis. Conceivably a predictive model could be used at time
of diagnosis where this information is available. Our model for such a setting
is simply Equation 2.6 with an extra interaction with stratum, much like in the
variable selection in Section 2.A.1:

logit(p) =β0 + . . . + βk+1S + βk+2Sx1+

. . . + β(2k+1)Sxk .
(2.7)

We estimate models 2.6 and 2.7 by Bayesian generalized linear models with a
weakly informative prior from Gelman et al. (2008). This is more for conve-
nience than from a particular wish to do Bayesian modeling: when selecting
the k “best” predictors out of thousands of candidates it is quite likely to find
some where the metastasis and non-metastasis points are linearly separable
(ie. their respective convex hulls are disjoint). In such a setting, the classical
iteratively reweighted least squares optimization does not converge. Predictors
selected for some function of their effect size would likely regress toward the
mean in new data and some amount of shrinkage is prudent. The standard
prior of Gelman et al. provides a sensible and convenient regularization without
a need for parameter tuning.

2.A.3 Baseline
We compare predictive performance against two naive and two more sophisti-
cated baselines. The more sophisticated baselines use all genes without prior
ranking and selection.

The first naive model we consider is the “random guess” intercept-only model
logit(p) = β0. Second we compare against using the stratum information,
logit(p) = β0 + β1S , corresponding to making a recommendation based only
on the manner in which the cancer was detected.

The other two baselines are penalized logistic regression models. These models
take the same form as Equation 2.6, using all predictors rather than the top
k, but maximize the likelihood subject to the constraint that c(β̂) ≤ t . Ie. the
magnitude c(·) of the coefficients βi must not exceed some threshold t . We



28 CHAPTER 2 METASTAS IS PRED ICT ION

investigate ridge penalty, cr (β̂) =
∑
β̂2
i , and the lasso penalty, cl (β̂) =

∑
|β̂i |

(Tibshirani, 1996). These are well-known models. The lasso provides an end-
to-end solution that does variable selection and model fitting in one go. Using
a ridge penalty simply uses all predictors but shrinks coefficients toward zero
quadratically in their magnitude. Both of these methods require the selection
of t ; we choose this by cross validation.

Standard errors
We measure uncertainty in the bootstrap estimates by the jackknife-after-
bootstrap procedure. The jackknife estimate of standard error for any statistic
θ̂ is

σ̂ J =

√
n − 1
n

∑
(θ̂(i) − θ̂(·))2, (2.8)

where θ̂(i) is the statistic computed with the i-th sample removed, and θ(·) =
1
n
∑
θ̂(i). In principle the bootstrap procedure has to be repeated for each

θ̂(i). But there is a computational shortcut here due to the fact that a boot-
strap sample drawn with replacement from x1, . . . ,xi−1,xi+1, . . . xn has the
same distribution as a bootstrap sample drawn from x1, . . . ,xn in which xi
does not appear (the jackknife-after-bootstrap lemma in Efron and Tibshirani
(1994)).

2.A.4 Results
Below all bootstrapped results are based on 2 500 resamples. For all ranking
methods we choose the top ten genes and use them as predictors for the models
described in Equations 2.6 and 2.7. This is based on the folk wisdom to have
around ten observations per estimated parameter in the regression model. In
practice we end up with fewer observations per parameter, especially for model
2.7, so the models are slightly over-parameterized. This likely contributes to
uncertainty in our results.

Tables 2.4 and 2.5 show the Brier score and AUC for predictions based on the
different selection schemes we investigate. Models 2.6 and 2.7 refer to Equations
2.6 and 2.7 in Section 2.A.1. That is, respectively, the “screening” prediction
using only gene expression in the model, and the “at diagnosis” prediction that
uses the additional information of detection stratum.

Brier score is a measure of error: the lower the better. Table 2.4 shows Brier
score as point estimate plus/minus two standard errors in decreasing order by
Model 2.7 point estimate. The results do not suggest any simple interpretation,
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model 2.6 model 2.7
t-test .17 ± .45 .17 ± .33
ANOVA-fs .27 ± .13 .18 ± .10
SAM .34 ± .11 .20 ± .15
ANOVA-s .33 ± .22 .20 ± .25
ANOVA-f .31 ± .084 .21 ± .11
LIMMA-t .35 ± .14 .20 ± .17

intercept .19 ± .010
stratum .22 ± .029
lasso .27 ± .19
ridge .23 ± .30

Table 2.4: Brier scores presented as point estimate plus/minus two standard errors.
Measures error in forecast probability: lower is better. Model number refers
to the equations in Section 2.A.2. Model 2.7 includes stratum as a predictor.
Below the break are the four baseline models.

but it is noteworthy that the intercept-only model is among the best-calibrated.
The uncertainty is large enough that is difficult to say that any selection method
is better than any other. It is clear that the interaction with detection method in
model 2.7 improves calibration for all models. There is also lower uncertainty
in the ANOVA-f/fs models.

AUC or concordance probability is a measure of a model’s ability to discriminate
between outcomes: the higher the better. Brier score alone does not provide
full information about predictive performance; the intercept-only model is well-
calibrated but cannot be used for prediction at all. Random guess (or forecasting
a constant for every observation) yields AUC of .5; perfect discrimination yields
AUC of unity. Table 2.5 shows AUC as point estimate plus/minus two standard
errors in decreasing order by model 2.7. Again the clearest signal is that the
added information from detection method is very important. Point estimates
improve markedly and standard errors generally decrease. Also here does use
of stratification and followup time in preselection reduce uncertainty.

The ridge regression baseline performance has a very good AUC point estimate,
but the standard error is very large. Too large: it is a theorem that the upper
bound on standard deviation in a variable ∈ [0, 1] is 1

2 . This says something
about the imperfection of the jackknife as an estimator of standard error. The
blame lies at least in part with the correctional factor n−1

n in Equation 2.8, which
was originally defined heuristically. Since it is difficult to suggest a sensible
alternative, we choose to live with this.2

2. This was really the result of nesting a cross-validation in the bootstrap: the methodology
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model 2.6 model 2.7
LIMMA-t .44 ± .30 .76 ± .20
SAM .46 ± .26 .75 ± .24
ANOVA-fs .51 ± .29 .75 ± .16
ANOVA-s .41 ± .57 .75 ± .38
t-test .65 ± 1.5 .74 ± .71
ANOVA-f .44 ± .25 .72 ± .21

intercept .5
stratum .49 ± .055
lasso .36 ± 1.4
ridge .81 ± 3.3

Table 2.5: AUC presented as point estimate plus/minus two standard errors. Measures
the probability of forecasting a higher probability of metastasis for a ran-
domly chosen metastasis case than for a randomly chosen non-metastasis
case: higher is better. Model number refers to the equations in Section 2.A.2.
Model 2.7 includes stratum as a predictor. Below the break are the four
baseline models.

The collected results for model 2.7 suggest some reason for optimism. Due to
the size of the standard errors we must necessarily be uncertain about even the
first significant digit of our point estimates. But even accounting for uncertainty
there seems to be predictive information better than random guess. As in the
simulations, there is not too much difference between the different methods,
perhaps apart from the simple t-test, for which we observe much variance.
Note that both SAM and LIMMA are flexible frameworks and we could have
accounted for stratum and followup in either. Our comparison is between using
this information and various ways of not using it, and there is no reason to
believe that either framework should perform poorly if we were to use more
refined models there.

Table 2.6 shows the predictor set stability as point estimate plus/minus two
standard errors. Stability is in general very low, and the standard errors suggest
that there is even some uncertainty to the order of magnitude of the point
estimates. A possible interpretation is that the correlation between genes is
such that many different genes hold similar information. It is at least clear that
we need much more data if we want to find a stable set of predictor genes. If
we take the point estimates at face value, Table 2.6 reflects the fact that we see
lower uncertainty using ANOVA-f/fs in Tables 2.4 and 2.5.

issue mentioned in the preamble to this chapter. For details see Section 5.2.2 and Section
5.3.
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ANOVA-f .095 ± .15
SAM .070 ± .10
ANOVA-fs .067 ± .16
LIMMA-t .061 ± .10
ANOVA-s .055 ± .086
t-test .00036 ± .0039
lasso 0 ± .26

Table 2.6: Stability as point estimate plus/minus two standard errors. Stability is an
estimate of the probability of recovering the same gene set with different
realizations of a modeling procedure. A larger stability provides more
certain biological interpretation. The lasso is the only baseline method
included here as it is the only one that does variable selection.
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Standardized data cleaning
“Nanny Ogg never did any housework herself, but she was the cause of
housework in other people.”

–Terry Pratchett, Lords and Ladies

This chapter describes the NOWAC standard operating procedure (SOP) for
quality assessment of our microarray material and the text is mostly the same
as in Bøvelstad et al. (2017). The work has led me to think a lot about how
process is managed and communicated in a large academic project, something
I get back to in Section 5.4. Although we use the term “large-sample” below
this really means large in the epidemiological human-model transcriptomics
scale. For an idea of this scale, see Section 5.1.

Abstract: Transcriptome measurements and other -omics type data are in-
creasingly more used in epidemiological studies. Most of omics studies to date
are small with samples sizes in the tens, or sometimes low hundreds, but this
is changing. Our Norwegian Woman and Cancer (NOWAC) datasets are to
date one or two orders of magnitude larger. The NOWAC biobank contains
about 50000 blood samples from a prospective study. Around 125 breast cancer
cases occur in this cohort each year. The large biological variation in gene
expression means that many observations are needed to draw scientific conclu-
sions. This is true for both microarray and RNA-seq type data. Hence, larger
datasets are likely to become more common soon. Technical outliers are ob-
servations that somehow were distorted at the lab or during sampling. If not

33
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removed these observations add bias and variance in later statistical analyses,
and may skew the results. Hence, quality assessment and data cleaning are
important. We find common quality assessment libraries difficult to work with
for large datasets for two reasons: slow execution speed and unsuitable visual-
izations. In this paper, we present our standard operating procedure (SOP) for
large-sample transcriptomics datasets. Our SOP combines automatic outlier
detection with manual evaluation to avoid removing valuable observations. We
use laboratory quality measures and statistical measures of deviation to aid the
analyst. These are available in the nowaclean R package, currently available
on GitHub.1 Finally, we evaluate our SOP on one of our larger datasets with
832 observations.

3.1 Introduction
The use of –omics data in epidemiological studies is now common. Typical
studies comprise sample sizes in the tens or low hundreds, but sizes in the
order of thousands will soon be common. The NOWAC postgenome cohort
(Lund et al., 2008) contains blood samples from 50000 women. In this cohort
there are approximately 125 new breast cancer cases per year, and we have
thus far extracted and processed blood samples from 1660 case—control pairs,
or 3320 blood samples in total. Omics experiments are elaborate procedures
with several steps. In the case of microarrays, these include mRNA isolation,
hybridization, washing, and scanning. Each step may add random or systematic
errors. Technical errors may also come from supplies or instruments. Mishaps
may occur in the lab. The samples themselves can get contaminated in various
ways. In whole-blood samples, there is also the added challenge of mRNA
degradation due to high RNase activity. All this may be detrimental to the
quality of the data and hence affect downstream analyses.

The goal of gene expression experiments is to detect differences in gene expres-
sion levels between groups. This is usually evaluated gene-by-gene or for sets
of related genes. The methods for such analyses depend on accurate estimation
of the sample variance. If there are technical outliers contributing unnecessary
variance, removing these should increase power. However, removing biological
outliers will result in underestimation of the natural biological variance. This
in turn will increase the risk of spurious conclusions. There is a fine line to
tread, and the accurate identification of technical outliers is important for later
analysis.

Many publications guide the identification of outliers in gene expression

1. https://github.com/3inar/nowaclean

https://github.com/3inar/nowaclean
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data (Cohen Freue et al., 2007; Kauffmann et al., 2008; Kauffmann and Hu-
ber, 2010; Shieh and Hung, 2009). Yet, there is no real consensus on the
best approach. For example, some authors such as Marczyk et al. (2014) pro-
pose automated procedures for outlier removal. Others such as Kauffmann
and Huber (2010) warn against automation and instead recommend careful
investigation.

Outlier removal is particularly challenging for studies based on blood samples,
since there is larger biological variation in gene expression data from blood
than in tumor tissue (Yang et al., 2006). The strength of the signal in tumor
tissue makes it much more robust to variance than the signal in blood samples,
which is weak and variable. This makes it more difficult to distinguish outliers
from non-outliers and signal from noise. It is not well known whether lifestyle
factors like medication use affect blood gene expression. All this complicates
outlier identification, and it’s inadvisable to remove outliers in a systematic,
automated way.

R-packages such as arrayQualityMetrics (AQM) (Kauffmann et al., 2008)
and lumi (Du et al., 2008) implement the most popular outlier detection
methods for gene expression data. Important to these approaches is the combi-
nation of computational methods with interactive visualization. However, when
dealing with several hundreds of observations, these methods are cumbersome
for two reasons. First, some methods are slow and thus inefficient for interac-
tive use. Second, their visualizations do not work well for larger sample sizes
due to overplotting. The latter is in our opinion the most important aspect,
as the decision to remove an outlier often rests on visual inspection by the
analyst.

We also wish to provide numerical measures and standardized guidelines to
help the user. The measures are statistics of deviation, derived from the data,
and laboratory quality metrics. We believe that standardization removes some
of the subjectivity from the task. Standardizing the outlier removal procedure
as much as possible will enhance reproducibility and consistency.

Below we describe our standard operating procedure (SOP) for outlier removal
in large-sample transcriptomics datasets. We believe our SOP will strengthen
the reporting of observational studies in epidemiology (Von Elm et al., 2007).
We have implemented the SOP as an open source R package that combines
automated outlier detection with expert evaluation. The automated part con-
sists of ranking observations by deviation metrics. We base these metrics on
standard methods for outlier removal in data from microarrays. Our improve-
ments are faster execution and easier-to-read visualizations. We provide a
unified, interactive interface, saving computations for tinkering with thresh-
olds and using standard R methods where available. We use data from the
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NOWAC study (Dumeaux et al., 2008) for demonstration and evaluation.

3.2 Methods
3.2.1 Data
The NOWAC study is a nation-wide, population-based cancer study (Lund et al.,
2008). A thorough description of the NOWAC postgenome cohort can be found
in Dumeaux et al. (2008). To summarize: 97.2% of the women in the NOWAC
cohort consented to donate a blood sample to research. Out of these, about two
thirds ended up providing an actual blood sample. Blood sampling kits were
sent out in batches of 500. These kits included a two-page questionnaire and a
PAXgene tube (PreAnalytiX GmbH, Hembrechtikon, Switzerland). For the most
part, the family general practitioner drew the actual blood sample. The sample
was then mailed overnight to Tromsø. Between 2003 and 2006 the NOWAC
biobank grew to comprise 48,692 blood samples. These make up the NOWAC
postgenome cohort. The Norwegian Cancer Registry provides yearly updates
about cancer cases. Statistics Norway provides yearly updates about emigra-
tions and deaths. A control sample is assigned to each breast cancer case in the
cohort yielding a nested case-control design. These are matched on mailing
batch, time of blood sampling and year of birth. We keep each case—control
pair together through every step in the laboratory. The statistical analysis of
microarray data is described in Lund et al. (2016).

In this paper, we use a subset of 832 observations from the NOWAC cohort.
The Genomics Core Facility at the Norwegian University of Science and Tech-
nology provided the laboratory work. They processed the samples on Illumina
Whole-Genome Gene Expression Bead Chips,2 HumanHT-12 v4. The raw mi-
croarray images are processed in GenomeStudio.3 This is Illumina’s own soft-
ware for processing data from their platforms. The result is a table of 47323
probes for 832 observations on the summary level: one number per probe per
observation.

2. http://technology.illumina.com/technology/beadarray-technology.
html

3. http://bioinformatics.illumina.com/informatics/sequencing-
microarray-data-analysis/genomestudio.html

http://technology.illumina.com/technology/beadarray-technology.html
http://technology.illumina.com/technology/beadarray-technology.html
http://bioinformatics.illumina.com/informatics/sequencing-microarray-data-analysis/genomestudio.html
http://bioinformatics.illumina.com/informatics/sequencing-microarray-data-analysis/genomestudio.html
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3.2.2 The NOWAC pipeline
The outlier SOP is part of our data processing pipeline in NOWAC. The pipeline
(Figure 3.1) contains three major steps where outlier removal is Step 2. We
briefly describe the data preparation (Step 1) and the preprocessing (Step 3)
to provide context for the SOP.⁴

STEP 1.1: Described in the “Data” section above.

STEP 1.2: Microarray gene expression measurements from the lab are merged
into an R LumiBatch-object (Du et al., 2008) based on a unique lab num-
ber, along with external information from questionnaires, the Norwegian
Cancer Registry, and Statistics Norway.

STEP 1.3: Yearly updates from the Cancer Registry can reveal that controls
have become cases, or that cases have received a second cancer diagnosis.
We considered these individuals non-eligible, and remove them along
with their matching case/control.

For multivariate analyses, we remove 38 probes related to blood type,
specifically the human leukocyte antigen (HLA) system. These are usually
expressed strongly and have high variance, which will affect multivariate
analyses. We have seen that they can dominate the variance-covariance
pattern in the principal component analysis (PCA) transformation of the
data (will be described in detail in the next section), and as such other
patterns might be obscured. This is relevant for our SOP as we do PCA,
so we recommend to take these out before outlier detection. It is possible
to put these probes back after outlier detection. The decision will depend
on whether the genes are interesting for subsequent analyses.

STEP 2: Described in detail below in the “Outlier Removal SOP” section.

STEPS 3.1 and 3.2: We apply the normal-exponential background adjustment
method to make signals comparable across individuals (Plancade et al.,
2012; Xie et al., 2009). We also use quantile normalization (Bolstad et al.,
2003) and log2-transform the data to stabilize the variance.

STEP 3.3: Batch effects are systematic errors introduced when processing
blood samples in multiple batches in the laboratory. Examples of a batch
are all chips that are processed at the same day (named plate), laboratory
technician,or the batch of laboratory regents used. It’s important to adjust

4. The pipeline has been developed further since this was written and may have changed in
some particulars.
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Figure 3.1: NOWAC (10) standardized data analysis pipeline for cleaning and prepro-
cessing the data. The pipeline is split into three steps, where all steps up
to and including Step 3.3 are performed using all cases and controls that
are eligible and not considered as outliers. Step 3.4 needs to be performed
for each specific study/question at hand, fine-tuning the data to optimize
the power of the analysis. Abbreviation: GE=Gene expression.
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for batch effects with methods like e.g. ComBat (Johnson et al., 2007).

STEP 3.4: We filter out probes that are likely to be below the level of detection,
probes that are expressed in only a few arrays, and probes that are known
to have unreliable annotation. This reduces the number of probes and
the risk of false positives in subsequent analysis.

3.2.3 Outlier removal SOP
Outlier removal is a subjective task. Our SOP combines guidelines, visualiza-
tions, and quantitative measures to help. An outlier should only be excluded
if it is of technical origin, since biological outliers are valuable. Technical mea-
sures from the microarray lab describe the quality of the blood sample. They
include information on RNA abundance, mRNA contamination, etc. They may
provide hints to why an array might look wrong and help make the distinction
between technical outliers and biological outliers. We describe the lab mea-
sures in detail further below. As extreme outliers have a strong influence on
many of the plots and measures we use, we do outlier detection/removal in two
rounds. In case—control designs, when an outlying observation is removed,
the matching case/control will also be removed. An overview of the SOP is
provided below:

1. Log2-transform yourdata to ameliorate heteroscedasticity. This is because
you can expect higher variance for signals with higher intensity.

2. Find outlier candidates by looking at different views of the data with the
methods detailed below: MA-plots, PCA-plots, and boxplots.

3. Investigate each candidate outlier by examining density plots and lab
quality assessment measures, as described below.

4. Exclude observations that look irreparably strange. When in doubt, the
standard cutoffs for lab measures may provide insight and help take a
decision. Repeat steps 2–4 once more to be sure that no outliers are left
in the data.

We evaluate individual array quality with array-wise MA-plots (Dudoit et al.,
2002) where we compare each array with the median array. An MA-plot is a
mean—difference plot that compares two assays on the log2 scale. Specifically,
let A1 be a given array, and A2 the median array constructed by taking gene-
wise medians over all arrays. Then, compute the two statistics: M = log2

A1
A2
,

and A = 1
2 log2 A1A2. You should expect M to be constant as a function of A
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Figure 3.2: Illustrations of MA plots. On top: a potential outlier array. On bottom: a
well-behaved array.

in well-behaved arrays (Figure 3.2, bottom panel). A trend in M as a function
of A would indicate that gene expression values are somehow systematically
skewed away from the median array (Figure 3.2, top panel).

You can measure independence of M and A in several ways, AQM uses Ho-
effding’s D statistic, which measures squared deviance from independence
(difference between joint density and product of marginal densities). We use
the similar measure of mutual information (MI), defined as

I (A,M) =
∑
m∈M

∑
a∈A

p(a,m) log
p(a,m)

p(a)p(m)
,

simply because the R-implementation is considerably faster (Hausser and
Strimmer, 2009). The joint density of the two statistics must be discretized, so
some information may be lost. For this and many other reasons it’s important
to inspect the outliers yourself.
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We evaluate homogeneity between arrays by inspecting boxplots. As we have
hundreds to thousands of arrays, doing regular boxplots will result in overplot-
ting. Hence, we use “compressed” boxplots where each quantile is represented
by a single point, and the points for corresponding quantiles are connected
by lines. The same is implemented for the lower and upper whiskers of the
boxplot, given by the most extreme data point within 1.5 times the interquartile
range from the median. This results in a plot with five continuous horizontal
lines (Figure 3.3). We measure deviation from normal data by comparing the
empirical cumulative distribution function (ECDF) of the expression intensities
for each array with the ECDF of all arrays pooled. Distance from the pooled
ECDF is measured by the Kolmogorov-Smirnov (KS) statistic (Wasserman, 2010)
, which measures the largest distance between two distribution functions. By
default, we order the boxplots by their respective KS statistic, but it may also
be interesting to order by other things such as plate number to look for batch
effects.

We define outliers as those observations that fall outside m standard deviations
from the mean observed KS statistic. The value of m will depend on how
conservative the analyst is in its search for outliers. The higher value of m,
the fewer individuals will be marked as outliers. For the example shown in
Figure 3.3 we used m = 3 (indicated by a red line).

6
8

1
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1
2

Arrays
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n
s
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y

Figure 3.3: Boxplots, ordered by the KS-statistics. The individuals with a boxplot to
the right of the red line has a KS-statistics above m=3 standard deviations
from the mean observed KS-statistics. Points in this plot represent the
components of a boxplot: median, lower and upper quartiles, lower and
upper whiskers. Points of the same type (e.g. median) are joined by a line.
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For between-array comparison we apply principal component analysis (PCA)
(Hastie et al., 2009) to the data, and display the first two principal components
in a scatterplot. As a quantitative measure to guide the outlier identification,
we compute the Mahalanobis distance of all arrays to the mean array. In
PCA-transformed data the Mahalanobis distance and Euclidean distance are
necessarily equal. As shown in the top panel of Figure 3.4 there can be a distinct
shape and rotation to the data that’s not captured due to outliers. Hence, we
define a “central cluster” that’s used to compute distances. We obtain this
central cluster by ignoring points that are less likely than 99% (adjustable) by
Chebyshev’s inequality. This leads to distances that fit the shape and rotation
of the data better, see the bottom panel of Figure 3.4. Outliers are then defined
as those more than n standard deviations from the data center in Mahalanobis
distance. Once again, the value of n must be determined by the analyst; We
used n = 3 in the analysis below.
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Figure 3.4: PCA plots. The lines show Mahalanobis distance to the center of the data
(in standard deviations). The red points are considered potential outliers
as they are farther away than two standard deviations. The top panel
shows the distances computed from all data points. The bottom panel
shows the same when leaving out the least likely points by Chebyshev’s
inequality.
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Finally, we use density plots to inspect observations we suspect to be technical
outliers based on the methods described above. These plots show distribution
properties that are hidden in the other plots like severely skewed modes or
several modes, neither of which you should expect to see in well-behaved
data. Figure 3.5 below in the Results section shows an example of a density
plot.

After exploring different outlier detection methods, the analyst is left with a
selection of outliers and must decide which are technical outliers that should
be discarded. Several technical measures from the laboratory may help guide
this decision. These measures include information on RNA abundance; the
quality of the blood sample in terms of mRNA degradation, quantified by
RNA Integrity Number (RIN); and the level of contamination in the blood
sample, quantified by NanoDrop 260/230 and 280/230 ratios. These values
may help the analyst understand why some observations have outlying values.
For borderline outliers, where the analyst is uncertain, we provide standard
exclusion thresholds for each lab measure:

• RIN value < 7,

• 260/280 ratio < 2,

• 260/230 ratio < 1.7,

• and, RNA abundance outside the range of (50, 500)

If the observation is suspect and it falls outside of any of these thresholds, it
may be regarded as an outlier and thus discarded. It is entirely possible for
observations to look perfectly sensible despite bad lab measures, hence we
don’t exclude observations based purely on these numbers. We consult the lab
measures only once we suspect an array to be a technical outlier based on the
plots.

3.2.4 The nowaclean R package
The nowaclean R package (https://github.com/3inar/nowaclean) implements
our standard operating procedure for detecting and removing technical out-
liers in the NOWAC microarray data. As mentioned above, the functionality we
provide already exists elsewhere. The novelty of this R-package is the improved
speed and visualizations for data sets with a large number of arrays. We have
through this work identified four design principles that we believe improve the
user experience: i) save computations so that users can tune thresholds; ii)
force the use of names instead of indices into a matrix, in case several repre-

https://github.com/3inar/nowaclean
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sentations of the data are in use; iii) have a unified interface to the different
methods: always use R’s standard predict and plot methods, and provide the
same set of arguments to these as far as possible; and finally iv) decouple the
methods from special types of objects such as the Bioconductor standard esets
and work on built-in matrices instead. This last point is to provide functionality
to a broader user base.

3.2.5 Evaluation
To study how our SOP affects downstream analysis we need to quantify the
effect of the outlier removal. As removing individuals may reduce power, re-
moving technical outliers identified in our SOP should on the contrary increase
the power and make sure that the downstream analysis leads to more sound
and biologically reliable results. One way to quantify the effect of the SOP out-
lier removal is to count the number of genes that are differentially expressed
between cases and controls before and after outlier removal, as described in
Marczyk et al. (2014). A gene G is differentially expressed between cases and
controls if µ(Gcases , µ(Gcontrols, i.e. the average expression µ(G) of gene G
in one group is different from that of the other, as determined by the limma
moderated t-test Smyth (2004).

We will examine the number of significant findings in two situations. First
in a situation where we know there is no difference between groups. We
create a pseudosample by assigning observations to groups randomly to ensure
no relationship between group and gene expression levels (i.e. permutation).
In this pseudosample we compute the statistic θ = #null rejections

#genes , i.e. the
proportion of significant genes. To get a distribution over θ , we will repeat
the procedure for 1500 random pseudosamples. In this situation there is no
difference between groups, and thus the null hypothesis should be rejected
for about 5% of all genes tested when using a significance level of α = 0.05.
Hence θ is in effect an estimate of type-I error rate, the effective size of the
hypothesis test.

In the second situation, we count the number of rejected null hypotheses when
we expect a difference between groups. We will use an anonymized group
variable from the NOWAC questionnaires, and generate data where we draw
(observation, group) pairs with replacement from the real data, replicating the
original dataset size (i.e. bootstrapping). We then compute the statistic defined
above, and repeat the procedure for 1000 bootstrap samples. By doing this
we get an estimate of the variance of θ , and not just a point estimate. In this
situation θ says something about statistical power, but is not a direct estimate.
We are primarily interested in a comparison of outlier removal strategies, so
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change in θ is what is most important.

The fraction of outliers to non-outliers is likely to be small, and their effect
might be subtle in large samples. For this reason, we will inspect three dataset
sizes: all of our data, half the data, and 10% of the data. We do this by, for
each new pseudosample, removing the correct fraction of observations from
the full data set but making sure that the identified outliers are kept in the
pseudosample. This is done for both the permutation and the bootstrapping
experiment. We then perform the preprocessing described in STEP 3 in Section
3.2.2, and finally compute for the data with and without outliers.

As for any procedure involving hypothesis testing you ideally want as high a
statistical power as possible, and it’s nice if you get the correct test size. That
is, you want as many type-I errors as you’d expect so that α = θ at the α
level.

3.3 Results
We demonstrate our methods on a typical NOWAC raw data set comprising
47323 probes for 832 observations. After applying our SOP, we have identified
four observations as technical outliers. We describe this process in detail in
Appendix A. We used version 0.2.8 of nowaclean for these computations.

Figure 3.5 shows the expression densities of the four outliers (red lines) along
with all the other observations (black lines). If by some chance the three
right-skewed observations are e.g. all cases and the left-skewed observation is
a control, the result would almost certainly be overestimation of differential
expression. These same four observations are the ones highlighted in red above
in the PCA plot of Figure 3.4.

We remove the four observations we consider technical outliers and compare
with a fully-automated approach where we remove all suggested outliers with-
out looking at them. This is done in one round with a cutoff of two standard
deviations for all three methods of boxplots, PCA, and MA-plots. Accepting all
outliers results in the removal of 59 observations. We also compare against re-
moving no outliers. We refer to these three approaches as manual-, automatic-,
and no outlier removal below.

Figure 3.6 below shows our results. There are 18 experiments in total. There are
three outlier removal strategies: manual removal, no removal, and automatic
removal. There are three dataset sizes: all data, half of the data, and 10% of
the data. Finally, there are two hypothesis testing situations: one where we
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Figure 3.5: Densities of gene expression intensity across the arrays of the four SOP
outliers (in red) along with the densities of the rest of the data (black
lines).

expect no difference between groups (denoted as the permutation situation),
and one where we do expect differences (the bootstrap situation) for some
genes. We show the usual type of boxplot: median, quartiles, and whiskers
that extend to the outmost points no farther away from the median than 1.5
times the interquartile range.

In the permutationsituation there is no clear advantage to any method, though
the no outlier removal strategy has a slightly lower θ than expected, which is
especially clear for the smallest dataset. Both manual and automatic outlier
removal push this value closer to the 0.05 error rate you would expect. We
suspect we still get a slightly lower error rate than 0.05 due to dependence
between genes.

In the bootstrap situation careful, manual outlier removal improves power over
no outlier removal for all dataset sizes. This effect goes away for the automatic
removal as you start removing useful information. For the smallest dataset, any
removal is better than none at all.

All in all, there is some evidence that manual outlier removal increases power
and that it calibrates your error rate under the null.
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Figure 3.6: Fraction of null-hypotheses rejected at a 5% significance level. The box-
plots are the standard kind, with whiskers extending to the most extreme
points within 1.5 times the interquartile range from the median. We have
examined three different data sizes: all 832 observations of our data (green
boxes), half of these data (orange), and 10% of them (violet). There are
three different approaches to outlier removal: no outlier removal, manual
removal, and automatic removal. We have examined rejection rates in two
situations, one where the null hypothesis of no difference between genes
is true, and one where we expect to observe a difference between the two
groups for some genes. We see slightly improved error rate calibration
and increased power for manual outlier removal in all cases.

3.4 Conclusion
This paper describes the NOWAC standard operating procedure for the removal
of technical outliers. We have described the methods we use and provide an
R-package implementation. By defining a common set of methods and lab
measure cutoffs to detect and evaluate technical outliers, we believe we ensure
greater consistency in the preprocessing of large sample microarray data sets.
Further, by providing a detailed stand-alone documentation of how we do
this, we believe we make it easier to understand and reproduce the research
conducted.





4
Shrinkage estimation
“You had to make choices. You never got told which ones were right. Oh,
some of the priests said you got given marks afterwards but what was the
point of that?”

–Terry Pratchett, Carpe Jugulum

This article is a case-study I wrote together with Dr. Vittorio Perduca (Holsbø
and Perduca, 2018). It is written with a pedagogical purpose in mind targeted
at advanced undergraduate and beginning graduate students in statistics as
a tutorial around shrinkage estimation and Bayesian methods. Shrinkage is
a central technique in a small-n-large-p setting such as in microarray data.
We have framed the problem in a setting that is easier to reason about: the
estimation of rates. Data and code for all our analyses, figures, and simulations
are available at https://github.com/3inar/crime_rates

Abstract: This paper presents a simple shrinkage estimator of rates based on
Bayesian methods. Our focus is on crime rates as a motivating example. The
estimator shrinks each town’s observed crime rate toward the country-wide
average crime rate according to town size. By realistic simulations we confirm
that the proposed estimator outperforms the maximum likelihood estimator in
terms of global risk. We also show that it has better coverage properties.

49

https://github.com/3inar/crime_rates
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4.1 Introduction
4.1.1 Two counterintuitive random phenomena
It is a classic result in statistics that the smaller the sample, the more variable
the sample mean. The result is due to Abraham de Moivre and it tells us that
the standard deviation of the mean is σx̄ = σ√

n , where n is the sample size
and σ the standard deviation of the random variable of interest. Although the
equation is very simple, its practical implications are not intuitive. People have
erroneous intuitions about the laws of chance, argue Tversky and Kahneman in
their famous paper about the law of small numbers (Tversky and Kahneman,
1971).

Serious consequences can follow from small-sample inference ignoring deMoivre’s
equation. Wainer (2007) provides a notorious example: in the late 1990s
and early 2000s private and public institutions provided massive funding to
small schools. This was due to the observation that most of the best schools—
according to a variety of performance measures—were small. As it turns out,
there is nothing special about small schools except that they are small: their
over-representation among the best schools is a consequence of their more
variable performance, which is counterbalanced by their over-representation
among the worst schools. The observed superiority of small schools was simply
a statistical fluke.

Galton (1886) first described another stochastic mechanism that is dangerous
to ignore. Galton observed that children of tall (or short) parents usually grow
up to be not quite as tall (or short), i.e. closer to average height. Today we
know this phenomenon as regression to the mean, and we will find it wherever
we find variation. Imagine a coach who berates a runner who had an unusually
slow lap time and finds that, indeed, the next lap is faster. The coach, who
always berates slow runners, has not had the opportunity to realize that the
next lap is very likely to be faster no matter what. As long as there is variability
in lap time we will some times see unusually slow laps that we can do nothing
about and make no inference from. In this case too do our intuitions about
the laws of chance fail us. People, including scientists, make the mistake of
ignoring regression all the time. Mathematically regression to the mean is as
simple as imperfect correlation between instances.

4.1.2 These phenomena in official statistics
The small-schools example is egregious because it led to wasteful public spend-
ing. The statistics themselves were probably fine, but their interpretation was
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not careful enough. Such summary statistics are often presented without re-
gard for uncertainty. For instance, every year Statistics Norway (ssb.no), the
central bureau of statistics in Norway, presents crime report counts. The media
usually reports these numbers as rates and inform us that some small town
that few people know about is the most criminal in the country. Often the focus
is on violent crimes. Figure 4.1 below shows these rates for 2016. Not knowing
de Moivre’s result it might be striking to observe that many of the towns with
the highest rates are small towns. Similarly, not knowing regression it might
be striking to observe that, on average, towns with a high rate in one year will
have a lower one in any other year, see Figure 4.2 below. These are unavoidable
stochastic phenomena. Thus there is reason to believe that we should somehow
adjust our expectations about these numbers. We will see below that such an
adjustment also makes statistical sense.

4.1.3 Shrinkage estimation
There is an astonishing decision-theoretic result due to Charles Stein: suppose
that we wish to estimate k ≥ 3 parameters θ1, . . . ,θk and observe k indepen-
dent measurements, x1 . . . xk , such that xi ∼ N (θi , 1). There is an estimator
of θi that has uniformly lower risk, in terms of total quadratic loss, than the
obvious candidate xi (Stein, 1956). In other words, the maximum likelihood es-
timate is inadmissible. Stein showed this by introducing a lower-risk estimator
that biases or shrinks, the xi s toward zero. James and Stein (1961) introduced
an improved shrinkage estimator, which we will see below. Efron and Morris
(1973) show a similar result and a similar estimator for shrinking toward the
pooled mean. There are many successful applications of shrinkage estima-
tion, see for instance the examples from Morris (1983). The common theme
is a setting where the statistician wants to estimate many similar variable
quantities.

4.1.4 An almost-Bayesian estimator
In this case study we consider the official Norwegian crime report counts. We
assume that in a given year the number of crimes reported in town i, denotedki ,
corresponds to the number of criminal events in this town. We further assume
that each inhabitant can at most be reported for one crime a year. Our goal is
to estimate the crime probability θi : probability that a person will commit a
crime in this town. The obvious estimator is the maximum likelihood estimate
(MLE) for a binomial proportion θ̂i =

ki
ni
, where ni is the population of town

i.

TheMLE binomialmodel rests on an assumption that inhabitants commit crimes

ssb.no
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independently according to an identical crime probability. There are reasons
to believe that this is not the case. The desperately poor might be more prone
to stealing than the middle class professional. There is a weaker assumption
called exchangeability that says that individuals are similar but not identical.
More precisely we assume that their joint criminal behavior (some number of
zeros and ones) does not depend on knowing who the individuals are (the
order of the zeros and ones). It is an important theorem in Bayesian inference,
due to De Finetti, that a sequence of exchangeable variables are independent
and identically distributed conditional on an unknown parameter θi that is
distributed according to an a priori (or prior) distribution f (θi ) (Spiegelhalter
et al., 2004). In the binomial sense, θi has the remarkable property that it
is the long-run frequency with which crimes occur regardless of the i.i.d.
assumption; the prior precisely reflects our opinion about this limit. By virtue of
De Finetti’s theorem, the exchangeability assumption justifies the introduction
of the unknown parameter θi in a binomial model for ki , so long as we take
the prior into account.

To make an argument with priors is to make a Bayesian argument. Shrinkage
is implicit in Bayesian inference: observed data gets pulled toward the prior
(and indeed the prior is pulled toward the data likelihood). We propose an
almost Bayesian shrinkage estimator, θ̂ si , that accounts for the variability due
to population size. Our estimator is almost Bayesian because we do not treat
the prior very formally, as will be clear below.

In a Bayesian argument we treat θi as random. The statistician specifies a
prior distribution f (θi ) for the parameter that reflects her knowledge (and
uncertainty) about θi . As in the frequentist setting, she then selects a para-
metric model for the data given the parameters, which allows her to compute
the likelihood f (x |θi ). Inference about θi consists of computing its posterior
distribution by Bayes’ theorem:

f (θi |x) =
f (x |θi )f (θi )∫
f (x |θi )f (θi ) dθi

.

There are various assessments we could make about the collection of θi . If
we assume they are identical we can pool them and use a single prior. If we
assume they are independent we specify one prior for each and keep them
separate. If we assume they are exchangeable—similar but not identical—it
follows from De Finetti that there is a common prior distribution conditional
on which the θ1, . . . ,θm are i.i.d. (Spiegelhalter et al., 2004).

We make this latter judgment and take a beta distribution common to all crime
probabilities as prior. Our likelihood for an observed number of crime reports
follows a binomial distribution. It is a classic exercise to show that the posterior
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distribution of θi is then also a beta distribution. The problem remains how to
choose the parameters for the prior. On the idea that a given town is probably
not that different from all the other towns, we will simply pool the observed
crime rates for all towns and fit a beta distribution to this ensemble by the
method of moments.

Under squared error loss, the posterior mean as point estimate minimizes Bayes
risk. The posterior mean serves as our shrinkage estimate, θ̂ si , for θi . We will
see that θ̂ si in effect shrinks the observed crime rate θ̂i toward the country-wide
mean θ̄ =

∑ 1
m θ̂i by taking into account the size of town i.

Bayesian inference allows for intuitive uncertainty intervals. In contrast to
a classical frequentist confidence interval, which can be tricky to interpret,
we can say that θi lies within the Bayesian credible interval with a certain
probability. This probability is necessarily subjective, as the prior distribution
is subjective. We will conduct simulations to compare the coverage properties
of our estimator to the classical asymptotic confidence interval.

4.2 Data
We will work with the official crime report statistics released by Statistics
Norway (SSB) every year. These data contain the number of crime reports in
a given Norwegian town in a given year. The counts are stratified by crime
type, e.g. violent crimes, traffic violations, etc. We will focus on violent crimes.
SSB separately provides yearly population statistics for each town. Figure 4.1
shows the 2016 crime rates (i.e. counts per population) for all towns in Norway
against their respective populations. This is some times called a funnel plot for
the funnel-like tapering along the horizontal axis: a shape that signals higher
variance among the smaller towns.

Figure 4.2 compares the crime rates in 2015 with those in 2016 and shows that
the more (or less) violent towns in 2015 were on average less (or more) violent
in 2016. The solid black line regresses 2016 rates on 2015 rates. The dashed
grey line is what to expect if there were no regression toward the mean. It
has an intercept of zero and a slope of unity. The solid grey line is the overall
mean in 2016. The most extreme town in 2015, past .025 on the x-axis, is much
closer to the mean in 2016. The solid black regression line shows that this
is true for all towns on average. The fact that 2015 and 2016 are consecutive
years is immaterial; regression to the mean will be present between any two
years.
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Figure 4.1: Rates of violent crime vs population in 2016 for all towns in Norway. The
grey line shows the country-wide mean.

Figure 4.3 shows the distribution of the pooled violent crime rates for 2016.
The solid black line is a beta distribution fit to these data.

4.2.1 Simulation study
We run a simulation study for validation. If we assume that the crime probability
in town i is stationary we can pool the observed crime rates of all years and
use their average, θ̄i , as a reasonable “truth.” This allows us to assess the
performance of our estimator against known, realistic crime probabilities,which
of course is impossible in the real data. The simulated crime report count in
town i is ki ∼ Binomial(θ̄i ,ni ), where ni is the 2016 population of town i.
Figure 4.4 shows a realization of this procedure. Although not a perfect replica
of Figure 4.1—the real data do not have any rates below .0017—it looks fairly
realistic.



4.3 METHODS 55

0.005 0.010 0.015 0.020 0.025

0.
00

5
0.

01
5

0.
02

5
Crime rates regress to the mean

(correlation = 0.89)
2015

20
16

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

● ●

●

●

●

●●
●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●●
●

●

●

● ●

●

●●
●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

Figure 4.2: Regression to the mean from year to year. The plot compares 2016 and
2015; the black regression line shows that towns with high crime rates in
2015 tend to have lower crime rates in 2016, and vice versa for low crime
rates. The grey dashed line shows what perfect correlation between 2015
and 2016 would look like.

4.3 Methods
4.3.1 Shrinkage estimates
We treat θi as the probability for a person to commit a crime in a given period.
We model the total number of crime reports in the i-th town, ki , as the number
of successful Bernoulli trials among ni , where ni is the population of this town.
As explained in the introduction, this suggests the following simple Bayesian
model, also shown in Figure 4.5:

θi |α , β ∼ Beta(α , β),
ki |θi ∼ Binomial(ni ,θi ).

As mentioned the assumption of town exchangeability leads to this hierarchical
model. This assumption might not be appropriate if we had reasons to think,
for instance, that some regions are more prone to crime than others. In this
case, region-specific priors might be better.
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Figure 4.3: The distribution of violent crime rates in Norway, 2016. The black line
describes the method-of-moments fit of a beta distribution to these data.
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Figure 4.5: A graph describing our model. Crime counts, ki , are (conditionally) i.i.d.
binomials whose respective parameters, θi , are (conditionally) i.i.d. ac-
cording to a common prior.

The posterior follows from the fact that the beta distribution is conjugate to
itself with respect to the binomial likelihood. Generally, conjugacy means that
the prior and posterior distributions belong to the same distributional family
and usually entails that there is a simple closed-form way of computing the
parameters of the posterior. Wasserman (2010, p. 178) shows a derivation of
the posterior in the beta–binomial model:

θi |ki ∼ Beta(α + ki , β + ni − ki ).
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Figure 4.4: Funnel plot of a set of simulated crime rates

We will look into the relation between the parameters of the posterior to those
of the prior in terms of successes and failures in the results section.

The shrinkage estimate for the crime probability in town i is the posterior
mean

θ̂ si =
α + ki

α + β + ni
.

The maximum likelihood estimate for θi is the observed crime rate θ̂i =
ki
ni
. In

order to fix values of α and β , we pool the MLEs for all towns θ̂1, . . . , θ̂m and
fit a beta distribution to these data by the method of moments. We show the
resulting fit in Figure 4.3. Because the expectation and variance of a Beta(α , β)
are α

α+β and α β
(α+β )2(α+β+1) , respectively, the parameter estimates for the prior

are

β =
α(1 − θ̄ )

θ̄
, and

α =

(
1 − θ̄
S2 −

1
θ̄

)
θ̄2.

Here θ̄ =
∑
i θ̂i
m and S2 =

∑
i (θ̂i−θ̄ )2

m−1 are the sample mean and variance of the
pooled MLEs.
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Instead of estimating α and β from the data like this, which ignores any
randomness in these parameters, we could have a prior distribution for the
parameters themselves. This would yield a typical Bayesian hierarchical model.
Note also that in forming the estimate for town i, we end up using its infor-
mation twice: once in eliciting our prior and once in the likelihood. This is
convenient because we need only to find one prior rather than one for each
town where we exclude the ith town from the ith prior. This bit of trickery
does not make much difference: we have several hundreds of towns and hence
removing a single town does not affect the shape of the prior much.

The estimate θ̂ si =
α+ki

α+β+ni
shrinks the observed, or MLE, crime rate toward the

prior mean θ̄ . We can rewrite so that θ̂ si = δi θ̄ + (1 − δi )θ̂i , with δi =
α+β

α+β+ni
.

Here δi directly reflects the prior’s influence on θ̂ si , andwe see that this influence
grows as the town size, ni , shrinks.

4.3.2 James-Stein estimates
For completeness we demonstrate empirically that the James–Stein estimator
is superior to the MLE in terms of risk. If town i has a large enough population,
we can consider the normal approximation to the binomial distribution and
assume

θ̂i =
ki
ni
∼ N

(
θi ,σ

2
i
)
,

where σ 2
i =

θi (1−θi )
ni

is unknown. If we assume that towns are similar in terms
of variance we can consider the pooled variance estimate

σ 2
P =

∑m
i=1(ni − 1)σ̂ 2

i∑m
i=1(ni − 1)

,

where σ̂ 2
i =

θ̂i (1−θ̂i )
ni

=
ki (ni−ki )

n3
i

. The James-Stein estimator of crime probability
for town i is then

θ̂ JSi =

(
1 −
(m − 2)σ̂ 2

P∑m
i=1 θ̂

2
i

)
θ̂i .

This is a shrinkage toward zero. It assumes that crime rates are probably not
as high as they appear. This is different from our assumption that crime rates
are probably not as far away from the average as they appear. It is simple to
modify the above to shrink toward any origin. The Efron-Morris variant (Efron
and Morris, 1973) shrinks toward the average:

θ̂ JSi = θ̄ +

(
1 −

(m − 2)σ̂ 2
P∑m

i=1(θ̂i − θ̄ )
2

)
(θ̂i − θ̄ ).
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We will use this variant so that the two methods shrink toward the same
point.

4.3.3 Uncertainty intervals
We construct credible intervals from the posterior. A 95% credible interval
contains .95 of the posterior density, and the simplest way to construct one is
to place it between the .025 and .975 quantiles of the posterior. For the MLE
we use the typical normal approximation (or Wald) confidence interval. There
is to our knowledge no straight-forward way to construct confidence intervals
for the JS estimator, so we will leave this as an exercise for the reader.

4.3.4 Global risk estimates
We use the total squared-error loss function,

L(θ , θ̂ s ) =
m∑
i=1

(θi − θ̂
s
i )

2,

to measure the global discrepancy between the true rates θ = (θi )i=1, ...,m
and estimates θ̂ s = (θ̂ si )i=1, ...,m . We do the same for the maximum likeli-
hood and James-Stein estimates θ̂ = (θ̂i )i=1, ...,m and θ̂ JS = (θ̂ JSi )i=1, ...,m ,
respectively.

Wewill compare the expected loss, or risk, of the three estimatorsR(·) = E[L(·)],
confirming the well-known property that shrinkage estimators dominate the
MLE. We obtain Monte Carlo estimates of risk by averaging L(·) across repeated
simulations.

4.3.5 Coverage properties
For the credible intervalCs = (a,b), we want to assess the coverage probability
P(θ ∈ Cs ) and compare with P(θ ∈ CW ) for the classical Wald confidence
interval. We will not assess the James–Stein estimator in terms of coverage.
Let I (Ci ), where Ci = Cs

i or CW
i , be the indicator function that is equal to

unity if θi ∈ Ci , and zero otherwise. We obtain MC estimates of coverage
probability by averaging the mean internal coverage, 1

m
∑m

i=1 I (C
·
i ), across

repeated simulations. An uncertainty interval should be well-calibrated: if
the size of the interval is 95% it should trap the true parameter .95 of the
time.
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Figure 4.6: Comparing shrinkage and maximum likelihood estimates. Oslo, in black,
is both close enough to the grand mean and large enough in size that the
estimate does not change.

4.4 Results
4.4.1 Official SSB data
We focus on violent crimes in the year 2016. Figure 4.6 shows the effect of
shrinking the observed crime rates toward the priormean. We see that the more
extreme estimates shrink toward the center. The city with highest crime rate
according to the maximum likelihood estimate is Havsik (θ̂ = 0.018), a small
town with slightly more than 1000 inhabitants (n = 1054). After shrinkage,
Havsik still ranks first, but the shrinkage estimate is much lower (θ̂ s = 0.012).
Similarly the town with the lowest crime rate is Selbu (θ̂ = 0.0017), another
small town (n = 4132). Selbu’s shrinkage estimate is higher than the MLE by
more than 40% (θ̂ s = 0.0024). Oslo, shown in black, is a big city (n = 658390)
and the difference between the two estimates is null (θ̂ − θ̂ s = 7×10−6).

Figure 4.7 is a quantile–quantile plot of the 2016 violent crime rates against
the fitted prior. There is some very slight deviation around the tails, but overall
it looks like a nice fit.
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Figure 4.7: Quantile–quantile plot of 2016 crime rates against the fitted prior. The
solid line describes a perfect fit.

By shrinking toward the ensemble we add some information—we use the term
informally—to the observed rate. We can quantify this by looking at the form
of the beta distribution, so far taken for granted in this treatment. Its density
function is

f (x ;α , β) =
xα−1(1 − x)β−1

B(α , β)
,

where the beta function in the denominator is simply the normalizing con-
stant

B(α , β) =

∫ 1

0
tα−1(1 − t)β−1 dt .

A natural interpretation is that this is a distribution over the probability of
success, i.e. crime, in a sequence of Bernoulli trials withα−1 successes and β−1
failures (cf. the binomial distribution). Hence we can interpret the posterior for
town i as a distribution over the probability of success in a series of Bernoulli
trials with α ′ = α + ki successes and β ′ = β + ni failures (ignoring the −1 for
convenience). In our data we have that α ≈ 5 and β ≈ 917; it is as though we
add the information of 922 extra trials in the binomial sense. In other words we
add a priori 922 inhabitants, including five criminals, to each town. Figure 4.8
shows α ′ and β ′ (gray and black) relative to the number of successes (ki) and
failures (ni - ki) for each town in the 2016 data. For the smaller towns, there is
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Figure 4.8: Relative information in the posterior mean compared to the MLE. The
figure shows (α + ki )/ki in grey and (β +ni − ki )/(ni − ki ) in gray. These
represent the added information in terms of number of successes and
number of failures added to the MLE to form the shrinkage estimate. For
the smallest towns, we practically double the information.

double the information in the shrinkage estimate, while for larger towns there
is no practical increase. Naturally the value of this extra information depends
on the degree to which the prior is relevant.

Figure 4.9 shows the ten most violent towns according to shrinkage estimate
along with their 95% credible intervals. The official, or MLE, crime rate is
shown as a red point. We see some change in ordering. For Hasvik—a small
and presumably quiet village in northern Norway—the MLE is so implausible
that it is outside the credible interval. ForOslo—the biggest city in Norway—the
estimate doesn’t change.

Figure 4.10 shows historical data for the three most violent and the three least
violent towns in 2016, according to official crime rate. We show shrinkage
estimates in red and official statistics in black. The vertical bars are 95%
uncertainty intervals. The shrinkage estimate is usually more conservative, at
least for themore violent towns, but the trends remain similar for both estimates.
The credible intervals are shorter than the classical confidence intervals. We
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Figure 4.9: The ten towns with the highest crime rate, ordered by shrinkage estimate.
The bars are 95% credible intervals. MLEs shown in red.

will see that in spite of this their coverage is better under simulation. It is
interesting that the three most violent towns are all in Finnmark: Norway’s
largest and most sparsely populated county.

4.4.2 Simulated data
To obtain MC estimates of risks we run 100 000 simulations for each of our two
experiments. Figure 4.11 shows kernel density estimates of the distributions
of global loss. Our shrinkage estimates show lower global risk than maximum
likelihood: R̂(θ , θ̂ s ) = 0.00054 versus R̂(θ , θ̂ ) = 0.00066. The James–Stein
estimates fall almost exactly between the two with R̂(θ , θ̂ JS ) = 0.00059. We
might have observed better results for JS had we used a variant of JS that
allows unequal variances. Note that we fixed θi for this experiment, so we are
only assessing the risk function in a single point.

Figure 4.12 presents estimated coverage probabilities in the same manner as
Figure 4.11. The grey line shows the nominal coverage of .95. The coverage
probability of the credible interval for the shrinkage estimator, P̂(θ ∈ Cs ) =

0.917, is closer to the nominal value than that of the the standard interval,
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Figure 4.10: Historical data for the three most violent and the three least violent towns
in 2016, ordered by official crime rate (MLE). The official statistics are
drawn in black, and shrinkage estimates in red. The vertical bars indicate
confidence and credible intervals, respectively.

P̂(θ ∈ CW ) = 0.898. There is however still room for improvement.

4.5 Conclusion
This case study shows a simple method for simultaneous estimation of all town-
specific crime rates in a country. The method is Bayesian in spirit, although we
take some shortcuts with our prior. It is known that under squared-error loss
the posterior mean is the optimal decision w.r.t. a given prior. In other words it
minimizes Bayes risk, and is called the Bayes estimate. The theory gives us that
Bayes estimates are admissible (Wald, 1947), and thus cannot be dominated.
The risk estimates of our simulation agree with this. Our analysis provides an
estimate of the crime probability with favorable frequency properties in terms
of mean squared error and coverage.

Our simulations show that the Bayesian credible intervals from this treatment
are narrower and have better coverage than the standard Wald confidence
interval. Hence we get better information about the location of θi . Brown et al.
(2001) show extensively that the Wald confidence interval for the binomial
proportion behaves erratically for extreme values of p, for varying values of n,
and for (un)lucky combinations of the two. Our result is interesting but quite
narrow. Generalizing it requires more work.
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Figure 4.11: Distributions of L(θ , θ̂ ) (solid black), L(θ , θ̂ s ) (dashed red), and L(θ , θ̂ JS )
(solid grey). Vertical lines estimate the risk.

Smaller towns are over-represented among the most and least violent towns in
the official Norwegian data. Mathematically this has to be the case. Applying
shrinkage methods to these data we get more conservative estimates for these
variable and often extreme quantities. At the same time it seems that variance is
not the only factor that places some of these small towns among themost violent.
As Figure 4.9 shows, the top and bottom three in 2016 show a certain stability
year by year. Hasvik in Finnmark has never ranked especially low since 2008.
Small towns in the north are often ranked high for violence. There could be
many reasons for this and we leave further analysis to the criminologists.

These simple and useful estimation methods are best understood by practical
examples. We encourage readers and students to actively follow this tutorial by
playing with the available code and data. We used a single prior for all towns.
It would be an interesting extension to use a mixture of beta distributions
to account for any heterogeneity due to different latent rate levels. In this
case, an EM algorithm could be used to assign each town to a class. Or, since
Finnmark seems to be a special case, we might estimate per-county priors. It
is also possible to include Bayesian multiple testing procedures to infer a list
of cities likely to have true crimes rate above some given threshold. There is a
temporal aspect to these data that we have not looked into. It would be possible
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The grey line shows the nominal coverage of .95.

to start out with a country-wide prior, but after this let the prior for one year
be the posterior from the previous. Interested readers can find other ideas for
further development in Robinson (2017). Gelman and Nolan (2017) also discuss
a similar project to this one in their manual for statistics teachers.

In this treatment we have moved from descriptive figures typical of official
statistics to model-based inferential statistics, estimating a crime probability
rather than reporting a crime count. This allows us to account for variance
and perhaps avoid over-interpreting noise, and hence avoid small-schools-type
mistakes. We believe that probabilistic thinking can enrich descriptive statistics
and aid in their interpretation.

4.5.1 A note on -omics small data
As mentioned in the beginning of this chapter, shrinkage methods are central in
modeling high-dimensional data. The crime rate estimation above can be seen
as the estimation of a high-dimensional mean. There are some references in this
document that apply shrinkage methods to -omics data, the most prominent
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of which is probably Smyth (2004). Two others are Johnson et al. (2007) and
Hausser and Strimmer (2009). Penalized maximum likelihood with ridge or
lasso penalties, as used in Chapter 2 are applications of the James–Stein-type
idea of shrinking toward zero. There is a Bayesian equivalent to both these
methods, almost all such methods for estimating many regression coefficients
are based on treating these coefficients as exchangeable (Gelman et al., 2014).
The experiments in the current chapter show that there are situations where
there is a clear advantage to using informative priors rather than simply
applying James–Stein shrinkage. It is difficult to say what such a prior would
be in eg. the setting of Chapter 2, but it may be an idea worth developing.





5
Discussion
“Besides, he’d explained at length, there was no such thing as absolute
control, not in a fully functioning universe. There was just a variable amount
of lack of control.”

–Terry Pratchett, Darwin’s Watch

In this chapter I will examine and discuss some of the issues involved doing
data analysis in our small-data setting. These are issues that figure prominently
in any real-world data analysis, but that for various (often legitimate) reasons
tend to get glossed over when writing an article. To begin with I will make
more clear what I take to be small data and present a simple data generation
scheme that I will use throughout to make my points. Finally I will summarize
what I believe to be important small-data analysis considerations.

5.1 Small data definition
Figure 5.1 below shows a distribution over around 1200 sample sizes for human-
derived transcriptomics experiments.1 The middle 9/10 of this distribution
lies between 6 and 106 observations. There are an about 19–20 thousand

1. Data source: https://www.ebi.ac.uk/gxa/experiments?organism=Homo+
sapiens

69
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protein-coding genes in the human genome.

Typical sample sizes in transcriptomics

4 9 21 56 176 614 3372 18736

Figure 5.1: Sizes of human-derived transcriptomics data uploaded to the EMBL-EBI
Expression Atlas between 2014 and 2018 (n=1178). Comprises bothmicroar-
ray and RNA-Seq experiments. The histogram is taken over the logarithm
of sample sizes, but the numbers on x-axis shows the actual sizes. The rug
is jittered on the log scale.

The NOWAC metastasis data in Chapter 2 comprised 88 observations and
around 12 000 genes. According to Figure 5.1 this is quite a large sample.
At the same time, it seems that comparing the blood cell gene expression
levels of a case and a healthy control is a much more variable and low-signal
setting than comapring expression levels in cancer tissue cells to healthy tissue
cells. The NOWAC metasasis data is typical small data: thousands to tens-of-
thousands of predictors, usually fewer than a hundred observations, and a low
signal-to-noise ratio.

5.2 Small data problems in predictive models
In Section 2 we set out to build a model predicting metastasis agnostically with
no pre-conceived notion of which genes would make a good predictor set. This
is in the modern “data mining” spirit where the data shall give up her truths if
modeled vigorously. It is a desirable approach in an exploratory setting such as
NOWAC, since little is known about the signal of metastasis in blood cell genetic
expression. However the small data setting is fraught with subtle pitfalls and
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there is reason to moderate one’s expectations for the biological insights and
generated hypotheses of a 100% agnostic approach. In this section I point out
some of the problems involved.

5.2.1 Simulated data
I will consider a simple logit model of the form

x = [x1, . . . ,xp],xi ∼ N (0, 1),

z =
k∑
i=1

xi ,

log
p

1 − p
= β0 + β1z.

(5.1)

The log odds of success, in the binomial sense, is a simple linear function of
the variable z, the sum of the first k ≤ p predictors. The basic identities for the
normal distribution give us that Z ∼ N (0,k) and that log p

1−p ∼ N (β0, β
2
1k).

Control of β0 and β1 respectively yields control of the expected proportion of
successes and the variation in odds. Large β1 yields a large difference between
success and failure, large β0 yields a large proportion of successes. The last
p − k predictors are noise.
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Figure 5.2: Examples of data simulated from model 5.1.

Figure 5.2 shows two example high-dimensional datasets simulated from the
model in Equation 5.1. Code listing 5.1 implements this simulation scheme in R.
The standard formulation for the slope β1 = 1/

√
k scales the log odds to unity

variance. Similarly a β1 = s/
√
k formulation scales to an arbitrary standard

deviation s.



72 CHAPTER 5 D ISCUSS ION

Code Listing 5.1: R function for simulating data according to Equation 5.1

generate _data <− function (
n , # number o f o b s e r v a t i o n s
ngenes = 100 , # t h i s i s k above
dim = 500 , # whi l e t h i s i s p
i n t e r c e p t = −1,
s lope = 1/ sqrt ( ngenes )

) {
x <− matrix (rnorm(n*dim , mean=0), nrow=n)
z <− rowSums(x [ , 1: ngenes ])

y_p <− 1/(1+ exp(−( i n t e r c e p t + s lope *z ) ) )
y <− rbinom(n , 1 , y_p)

cbind (y , x )
}

5.2.2 Estimating prediction error
We evaluate prediction models by estimating the expected prediction error on
new data. Perhaps the most reliable route to an unbiased estimate is to predict
data to which we do not have access during modeling, the gold-standard
procedure being to lock some portion of your data completely away during
modeling (Hastie et al. (2009) tentatively sugest 25%) and to use this to
estimate prediction error as a final step.

This is seldom feasible in a small-data setting. To make a very broad argu-
ment, suppose we take accuracy—the proportion of correct success/failure
predictions—as evaluation metric. (To make this into an error measure take
1 - accuracy.) Suppose the true accuracy of our model is p, and that we wish to
be certain of our estimated accuracy to within .01 with 95% confidence. This
way we can eg. separate an accuracy of .90 from one of .91. For the normal
approximation confidence interval for the binomial proportion this roughly

corresponds to setting 2
√

p(1−p)
n < 1/100, or n > 40 000p(1 − p). Here n is

the size of the holdout set. If we take this to be 25% of our data, we need 4n
observations in total.

Figure 5.3 above shows the minimum sample size 4n as a function of p. Assum-
ing a true accuracy of .95 we need a sample of 7600 observations. This is highly
idealized for several reasons. As already mentioned in Chapter 4, it is well-
known that the normal approximation confidence interval is poorly calibrated,
especially so for large/small probabilities (Brown et al., 2001). Indeed, as p
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Figure 5.3: Required sample size for a .01 wide confidence interval estimating a
binomial proportion.

gets small/large the skewness of the binomial distribution tends to ±∞. Also
the the closer p gets to 0 or 1, the less useful an error of ± .1 in its estimate. And
perhaps most important, estimating a binomial proportion is not the same as
evaluating a prediction model: the proportion is one parameter to be estimated
directly from some data; a prediction model introduces many more parameters
each with some amount of estimation variance, all of which affects the accuracy
estimate. Hence 7600 here should be seen as a very naive, absolute minimum
sample size. Of the 1200 datasets in Figure 5.1, all but one are smaller than
7600 observations. The NOWAC data of Chapter 2, at 88 observations, is larger
than 93.5% of the EMBL-EBI datasets.

There are various alternatives to using a held-out portion of data for evaluation.
Here I will compare four estimators of out-of-sample error: (i) split-sample
validation by the 25% rule suggested by Hastie et al. (2009); (ii) the Efron and
Gong (1983) optimism bootstrap; (iii) k-fold cross validation; (iv) repeated
k-fold cross validation. We defined the optimism bootstrap in detail in Chapter
2. Briefly it entails fitting the model on all data, calculating the apparent error
(predictions on the training data), and correcting the optimistic bias in this
score by the bootstrap. The k-fold cross validation is the very common practice
of randomly partitioning the data in k equal-sized portions and averaging
over the use of each as validation split. As the name suggests, repeated k-
fold cross validation entails averaging over the k-fold cross validation score
for some number of repetitions of this procedure. For reasons that we will
get back to, accuracy is not always a great metric for evaluating predictive
models. I will instead instead focus on Brier’s score, defined in Chapter 2 as the
mean squared error between predicted probabilities and known success/failure
outcomes.

Figure 5.4 shows two simulation studies comparing the above methods of
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estimating prediction error. On the left is a low-dimensional situation with
only two predictors, both associated with the outcome; on the right is a high-
dimensional situation with 100 predictors associated with the outcome and 900
noise predictors. For each I repeatedly generate 150 observations frommodel 5.1
with zero slope andunit intercept. I fit a `1 penalty logistic regression (Friedman
et al., 2010), choosing the shrinkage size λ by five-fold cross validation, and
estimate Brier’s score by the four different methods above. The densities show
the distribution of estimated out-of-sample score. The “true” out of-sample Brier
score of the fitted model, represented with a vertical grey line, is calculated in
a separate sample of 100 000 observations.
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Figure 5.4: Densities over out-of-sample Brier score estimates for four different es-
timators. On the left is a situation with plenty observations per model
parameter, on the right is a small-data situation. The vertical grey line
shows the true quantity to be estimated.

In the low-dimensional situation we see that the alternatives to split-sample
evaluation behave similarly to one another. In the high-dimensional situation
the two cross-validation procedures perform similarly to one another, but the
bootstrap procedure completely breaks down. The resampling procedures—
ignoring for now the bootstrap problem, which I will get back to below—
generally have tighter distributions, indicating lower variance over split-sample
validation. The relative efficiency of two estimators T1 and T2 of the same
quantity is the ratio of their variances Var(T1)

Var(T2)
. This ratio roughly corresponds

to the relative sample size needed for T1 to be as efficient as T2, and all else
being equal we should prefer the less variable estimator (Mosteller and Tukey,
1977). Table 5.1 below shows the relative efficiency of split-sample validation
against the other three methods.

Generally you need two to four times as many observations doing split-sample
validation as with resampling methods. This is in line with Breiman (1992) who
found that his variant of the bootstrap at a given sample size was about as good
as split-sample with a validation set two times larger in a simulation setting
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Bootstrap Cross validation Repeated CV
Low-dimensional 3.5 3.6 3.6
High-dimensional .057 2.0 2.6

Table 5.1: Relative efficiency of split-sample validation against bootstrapping, 10-fold
cross validation, and repeated 10-fold cross validation.

with 40 predictors and 60, 160, or 600 observations. In the 60×40-sized data
we are closer to the land of small data, and as Breiman states, “This is a land
strange to asymptopia.” Kim (2009) finds repeated cross validation the best
general-purpose validation method, stating that it reduces variance enough
over single cross validation to be worth the extra computation. This is based on
simulations in a setting where there is plenty of data per predictor. Molinaro
et al. (2005) provides a study based on -omics type data and come to similar
conclusions. Both of these articles focus on misclassification error instead of a
continuous score.

Now I return to the bootstrap problem. I have introduced a methodological flaw
to the experiments above to illustrate a source of internal variance and over-
estimation of optimism; the problem I refer to in the preamble to Chapter 2. The
nesting of a cross-validated tuning of the shrinkage size λ inside of a bootstrap
resampling procedure leads to undershrinkage. Since the bootstrap samples
with replacement from the original data, some observations will be repeated.
These may end up in both training and test folds in the inner procedure and
have a disproportionate influence on the model: essentially we overfit the
repeated observations. To illustrate I have repeated the cross validation and
bootstrap estimations above and recorded the λ chosen. To demonstrate that
the problem indeed comes from observations repeated in both test and train
folds I have also done the bootstrap with a modified nested cross-validation
that removes test fold observations that also occur in the train fold.

Figure 5.5 illustrates: The cv-in-bootstrap method chooses a much lower λ than
regular cross validation, undershrinking and overfitting. Removing duplicates
from the test folds fixes this problem. The deduplicated version of bootstrap
chooses a λ mostly in line with cross validation, although more variable. This
is likely because there is less information available in the bootstrap sample; it
contains about .6 of the original sample. The test folds are alsomuch smaller due
to deduplication; we have removed about .6 of the observations there.2

2. These two arguments come from the following rough approximation: a given observation
has a chance of 1 − 1/n to not be chosen as the ith observation in a bootstrap sample.
From this there is a chance of (1−1/n)n ≈ e−1 ≈ .37 to not be chosen at all. Similarly the
chance for a given observation of not being in a given train fold out ofk is (1−1/n)n(k−1)/k ,
which by even rougher approximation ≈ e−1.
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Figure 5.5: Choosing a λ by cross validation, by cross validation nested in a bootstrap
sample, and by a deduplicated version of cross validation in bootstrap.

The effect I describe here is less pronounced in the low-dimensional setting,
likely because there are fewer directions in which a particular observation can
be strange. It is not clear to me how common this mistake is, but we committed
it working on Chapter 2. The simulations in this chapter are by no means
comprehensive and serve as toy problems to point out certain issues. Under the
assumption that the particular issues for a given method affect the different
models similarly, the λ-selection fix should make the penalized likelihood
results in Chapter 2 comparable to the analyses in the appendix to that chapter.
I briefly touch on the selection of λ again at the end of Section 5.3.

5.2.3 Measures of prediction error
Accuracy, the proportion of correct dichotomous 0-or-1 predictions, is a very
common choice of scoring rule for assessing a prediction. There are variants of
accuracy such as sensitivity and specificity, F1 statistic, etc. I call these variants
of accuracy because they are all based on counting “exactly correct” success or
failure predictions.

Philosophically, a dichotomous prediction poses some problems in the realistic
case where both outcomes are possible for a given predictor value. That a
person smokes increases the probability that they contract lung cancer, but it
is not given. How then can we in good conscience predict a 0-or-1 probability
for lung cancer conditional on smoking? If we wish to admit some uncertainty
in outcome, a probability model is more prudent.

Brier’s score (see Chapter 2) is a rule that measures the calibration of a
predicted probability as the average quadratic distance between the predicted
probability and the known 0-or-1 outcome. Other rules exist for measuring
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probability calibration such as binomial deviance.

Concordance probability (see also Chapter 2) is the probability that a ran-
domly chosen success will rank higher (in predicted probability of success)
than a randomly chosen failure. In the machine learning literature this is
known as AUC. AUC is formulated slightly differently, but the two measures
are equivalent (Hanley and McNeil, 1982), and it is a very popular scoring rule.
It is more akin to the accuracy-like rules in that it is still counting something;
in this case concordant pairs of successes and failures.

Below I provide a small demonstration of the dangers of counting scores. I
generate 100 observations from model 5.1 with k real predictors and k noise
predictors. To these I fit two penalized regression models: one using only the
k true predictors and one using all 2k predictors. Clearly we should prefer the
model that only uses the true predictors. I investigate two different settings:
one where there are few observations per predictor (k=30) and one where
there are plenty observations per predictor (k=2). The model coefficients are
β0 = 0, and β1 = 1/

√
k. The slope coefficient for each predictor is hence

smaller in the k=30 situation. Over 5000 simulations I register whether the
three scores preferred the true k-predictor model over the worse 2k-predictor
model. At the end I have the probability for choosing the best model by each
score for the two settings. Table 5.2 below summarizes.

Accuracy Concordance/AUC Brier score
Low-dimensional .57 .67 .73
High-dimensional .73 .79 .93

Table 5.2: Probability of choosing the essentially correct no-noise model over the worse
half-noise model with three different scoring rules.

We see that the Brier score discriminates best between the models, especially in
the high-dimensional case. Accuracy is the worst, which should not be surpris-
ing, there is no reason to believe that accuracy is an adequate measure for the
relative performance of probability models (Harrell and Lee, 1985). Accuracy is
only affected by whether probabilities falls above or below a threshold. Whence
this threshold is in fact an important issue which ideally should be separate
from the modeling procedure. A very common convention is to use .5 as a
threshold, presumably because it is the optimal decision if the cost of a false
positive is the same as that of a false negative. I see no good reason for assuming
this, and no good reason that the person who builds the prediction model is
the one who should make the decision. AUC does better than accuracy as it
admits that there may be other thresholds. Hand and Anagnostopoulos (2013)
show that AUC is incoherent in that it depends on the empirical distribution
of predicted probabilities. This implies that the optimal decision under AUC
depends not on the probability of success or failure, but on how this probability
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was estimated.

Accuracy, AUC, and other counting-based relatives are improper rules that
suffer from the fact that an arbitrarily small change in model can result in an
arbitrarily large jump in score, which is not the case with Brier score. Hanczar
et al. (2010) demonstrate that small-data estimates of these measures are only
weakly correlated with the truth. It is impossible to tell which model will
optimize one of the counting-based scores but it there is a fair chance that it is
not the one that best fits the data.

5.3 Shrinkage and prior information
The crime rate shrinkage project in Chapter 4 illustrates the value of shrinkage
and incorporating prior information in a small-data analysis. It is in many ways
a classical application of partial pooling of information for a proportion where
we borrowed about a thousand citizens worth of information from the ensemble
to improve the high-variance estimates for very small towns. A very successful
application of this idea in transcriptomics is the Smyth (2004) linear models
and empirical Bayes methods for microarrays (LIMMA). The LIMMA approach
is to do partial pooling of variance estimates in a manner similar to our crime
rate shrinkage, leading to more stable (less variable) inference.

Using high-quality prior information (in a general, not necessarily Bayesian
sense) can be very valuable in the small-data setting. In the simulation in
Section 5.2.2 above there was .15 of an observation available per parameter
in the full model. If we somehow had an idea that the first 100 predictors
were more likely to hold information than the last 900, we could guide the
model towards this perhaps expending fewer degrees of freedom on the last
900 parameters by penalizing these more. In whole-blood gene expression
studies such information is scarce as the biological mechanisms are not well-
understood. There is reason to doubt any single published signature set: we
saw in Chapter 2 that such sets can be very unstable.

Penalizedmaximum likelihood regressionmodels—with penalties such as ridge,
lasso, and other relatives (Cessie and Houwelingen, 1992; Tibshirani, 1996; Zou
and Hastie, 2005)—are also examples of shrinkage models. They are perhaps
the best approach to deal with a small-n-large-p situation. They can be framed
as Bayesian arguments with a certain prior on the coefficients (Goldstein (1976)
for instance shows the correspondence of an exchangeable normal prior on β
and ridge regression). The choice of a particular penalty corresponds to a prior
assumption about the data, eg. whether the model should be sparse or dense,
or whether we expect groups of predictors to work together. The strength of the
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penalty,λ, is often tuned to the data in a frequency argument. Greenland (2000)
cautions against treating λ as a tuning parameter and advises that it should
reflect the precision of background information. A very strong penalization
then represents a very strong belief in our prior assumptions.

5.4 Standardized process
In Chapter 3 we described the Standard Operating Procedure (SOP) for find-
ing and removing technical outliers in the NOWAC microarray material. Such
quality assessment (QA) work receives relatively little attention although, as
our simulations showed, the decisions made here impact the results down-
stream.

In a large research project such as NOWAC it is likely that different people end
up doing QA at different times for different data sets. In such a setting it can be
difficult to understand what has happened to the data and for which reasons.
A research project usually comprises many temporary positions such as Ph. D.
candidates and postdoctoral researchers. A constant churn means that new
people will have to do a certain amount of detective work to gain knowledge
of the material, and a certain amount of knowledge is lost with the departure
of temporary researchers.

Dr. Hilary Parker recently presented her idea of opinionated analysis development
as a way of codifying best practices in data analysis (Parker, 2017). Particularly
the work focusses on the process of developing the technical artifact of data
analysis. In academia this artifact is often an article for publication; in QA this
should ideally be a report that details which observations have been excluded
and the reasons for excluding them. Dr. Parker lists three main features of an
analysis: it should be (i) reproducible and auditable; (ii) accurate; and (iii)
collaborative.

We took the NOWAC SOP from a script based on a single analysis and moved it
toward a standard tool—the nowaclean package—anda standardizedprocess—
the accompanying article and vignette. To encourage reproducibility and au-
ditability we use literate programming (Knuth, 1984) with knitr and R mark-
down (Xie, 2014). Informal peer review has evolved as a way to sanity check
both the decisions made in the analysis and the analysis itself. This is especially
important considering the essential value of each observation in a small data
setting. Data is hard to come by, and no observation should be excluded unless
there is convincing reason to do so. This in turn makes the report artifact
central as a tool for auditing analyses and disseminating knowledge.
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Making the original script into a package shifts the intellectual burden from
the error-prone process of copy-paste programming to the development of a
convincing and comprehensible analysis artifact. A centralized, open-source
package enables the analysis process ofQA to be kept accurate and collaborative,
because it enables modular and testable code and simplifies the process of
making contributions to the process.

These are lessons well-known in software engineering that are only beginning
to make their way into data analysis and academia. Such concerns are likely
to grow more important as research projects grow larger and more inter-
disciplinary.

5.5 Conclusion: small data in practice
The small data setting in biomedical research is one with tens to hundreds of
observations and thousands of measurements for each observation (in extreme
cases hundreds of thousands). The economical, practical, and ethical restrictions
on access to human participants makes the value of each observation central.
The high-dimensional nature of these data makes high variance and weak
signal a fact of any statistical analysis.

The choice of validation method and scoring rule are very important because an
uninformed choice will introduce unnecessary variance. If we are not careful
we may end up wasting our valuable data. Resampling validation is two to
four times as efficient as split sample validation. Single k-fold cross validation
(CV) performed quite well in my simulations, but repeated cross validation
reduces variance further; Molinaro et al. (2005) found as few as ten repetitions
helpful. There is a lot of theory around the bootstrap, which may recommend
it over repeated CV. We must then pay particular attention to the danger of
nested procedures. The cost of resampling is computation time, which can be
considerable if the model fitting procedure itself is compute-intensive.

In a setting where a given predictor value can be associated with different
outcomes it is prudent to model a probability rather than learn a classification
rule. Optimization of accuracy and accuracy-like scoring rules is inadequate for
assessing a probabilitymodel, and this may be exacerbated in high-dimensional,
low signal-to-noise settings. These rules add unnecessary noise and even in
simple settings it is wasteful to optimize for accuracy or AUC. Keep in mind that
this pertains not only to mathematical optimization, but also of post-hoc model
comparison, which amounts to the same thing. AUC is useful in its alternative
interpretation as concordance probability but should not be trusted on its own.
When the proper response is a probability—and in the biomedical small data
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setting it arguably is—the model should be optimized for calibration of these
probabilities.

When possible it is desirable to incorporate prior information, biological or
otherwise, to guide the modeling procedure and reduce variance in model
estimation. Informative priors can be very valuable in this respect, but useful
information is scarce in human-derived blood sample transcriptomics data.
Published signature gene sets may be of some value, but variable selection
procedures can be quite unstable, as we saw in Chapter 2 and its appendix. It
is not obvious how to translate them to priors or otherwise build them into a
model. The typical parallel structure of high-dimensional biomedical data such
as -omics lends itself very well to hierarchical model type shrinkage. Penalized-
likelihood-type shrinkage is another technique for managing variance and may
often be the best bet when prediction is the goal and prior information is
scarce.





6
Future work
“Ponder Stibbons had once got one hundred percent in a prescience exam by
getting there the previous day.”

–Terry Pratchett, Unseen Academicals

The results in the metastasis prediction work are necessarily exploratory and
uncertain. We have by now tried a fair few different methods and evaluation
schemes and need fresh data to validate our findings. I believe this should
be done by careful a-priori consideration of the 108 selected genes to remove
obvious noise candidates followed by validation in new data perhaps based on
hierarchical modeling where we take prior information from the fold change
estimates in our data (see Figure 2.6). This would also allow us to integrate the
likely notion that stratification still is important, which should be investigated.
We have already started investigating the biological interpretation of these
genes.

The NOWAC SOP article has a couple of avenues for improvement. We plan
to improve the R package. We have confined ourselves to reporting the SOP
as it is and has been applied to NOWAC data, there is some question whether
it is general enough for others to use. An investigation might be needed. The
microarray as a platform is on its way out, and the general move seems to
be toward using RNA-Seq. We are uncertain to what extent our approach is
applicable in an RNA-Seq setting. Some adaptation is probably needed, which
suggests another avenue for investigation.

83
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When people present work from the NOWAC blood transcriptomics material it is
a common question whether observed differential expression is not simply
a stress effect due to the presumably considerable psychological stress of
being told that you may have breast cancer. A small study was conducted
to investigate this question where two groups of NOWAC participants were
invited to contribute blood samples for gene expression analysis: one group
who had experienced health-related psychological stress after either having
an abnormality on their screening mammogram, or after discovering a breast
change, and one control group of NOWAC participants attending a routine
gynecological examination at their local gynecologist. In this work, where I
provide statistical analyses as joint first author with Associate Professor Karina
Standahl Olsen, we assess differences in gene expression by LIMMA moderated
t-tests (Smyth, 2004) for single genes and globaltest (Goeman et al., 2004)
for stress-related gene sets curated from the literature. We find no significant
stress effect, though there might be a question about statistical power. Dr. Olsen
presented this work as an abstract at The 7th Conference on Epidemiology and
Registry-Based Health Research - NordicEpi 2015 (Olsen et al., 2015).

SAM (Tusher et al., 2001) did very well in the Holsbø et al. (2018) simulations of
data where followup time influences expression levels. This procedure does not
explicitly model time, which makes the result slightly surprising. Around the
same time as I performed that simulation study Kang and Song (2017) published
an extension of SAM that uses weighted observations for estimating the “fudge
factor,” s0, in Equation 2.5. Their results suggest that such a weighting yields
a more robust inference in noisy situations. The same type of thinking might
be applied to a setting where effect sizes depend on followup time. In the
prospective part of NOWAC blood samples are collected at enrollment. If the
followup time is long it is unlikely there is much trace of a systemic response to
the disease, which might be diagnosed years later. If the sample is fairly recent
it is more reasonable to look for such a response. I present a semi-weighted
SAM procedure that accounts for followup time prospective biological samples.
Rather than taking x̄case − x̄control, where x̄ is the group mean, as effect size
I suggest using a weighted group mean, x̄(w) = 1∑

j w (x j )
∑

i w(xi )xi , for the
cases. If we estimate the weights as w(xi ;σ ) = θ ( tiσ ), with θ the standard
normal density function, and ti the followup time of the ith sample, x̄(w) is
the Nadaraya–Watson estimate of xi as a function of ti at the time t0 = 0. This
has the nice interpretation that it is the expected gene expression at the time
of diagnosis. Similarly weighting the variance estimate si in Equation 2.5 and
leaving s0 alone yields a followup-weighted SAM procedure for prospective
case–control studies. I have some promising early simulation results for
this.



A
nowaclean vigntette
On the following recto page I have included the nowaclean vignette that
belongs to the article in Chapter 3 as it looked at the time of writing.
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Outlier detection with nowaclean

Einar Holsb∗

May 25, 2017

Abstract

This vignette shows the use of the nowaclean R package, which implements the standard operating procedure for
detecting and removing technical outliers in the NOWAC microarray material.

1 nowaclean

1.1 Installation and loading

We’ll be using the development version of nowaclean, which is hosted on GitHub.1 To install from GitHub you need to
install devtools.

install.packages("devtools")

Once you have installed devtools, you can use it to install nowaclean from its GitHub repository.

devtools::install_github("3inar/nowaclean", build_vignettes=T)

Once it is installed, you can use nowaclean like you would any other R package.

library(nowaclean)

To view nowaclean on github (for instance for bug reports, etc.), visit https://github.com/3inar/nowaclean.

2 Loading and Preprocessing

First to load the dataset; we have suppressed the huge text dump that happens when you load the lumi package:

library(lumi) # Required to access LumiBatch objects

datapath <- "~/Downloads/sop_data.rda"

load(datapath)

This is a typical data set from the Norwegian Women and Cancer study. These are anonymized data that are freely
available from the UiT Dataverse https://opendata.uit.no/. The reference is Einar Holsb, 2017, ”Supporting data
for ”A Standard Operating Procedure for Outlier Removal in Large-Sample Epidemiological Transcriptomics Datasets””,
doi:10.18710/FGVLKS, UiT Open Research Data Dataverse, DRAFT VERSION.

∗einar@cs.uit.no
1https://github.com

1
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2.1 Remove blood type probes

In some situations we remove 38 probes related to genes in the human leukocyte antigen (HLA) system. These are
usually expressed strongly and have high variance, which affects multivariate analyses. Specifically we have seen that
they might dominate the variance-covariance pattern in the PCA transformation of the data, and as such other patterns
might be obscured. The blood probes function returns the nuIDs of these probes.

gene_expression <- gene_expression[!rownames(gene_expression) %in% blood_probes(), ]

3 Outlier detection

We find outliers by exploratory plotting and statistical measurements described more closely in the package documentation.
We will be working on log2-transformed data to ameliorate the higher variance we usually see for higher intensities and
to make the expression levels more symmetrical.

First we examine PCA-transformed data. The contour lines show distance to the center of the data in number of standard
deviations.

expression <- log2(t(exprs(gene_expression))) # transpose for samples by probes

prc_all <- prcout(expression)

plot(prc_all)
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The points marked in red are three or more standard deviations away from the main bulk of the data: they look quite
astonishing. Let’s keep these red points as possible outliers.

pca_outliers <- predict(prc_all, sdev=3)

pca_outliers

## [1] "137" "396" "500" "705"

Next we investigate some boxplots.

boxo <- boxout(expression)

plot(boxo)
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Points on the lines in this plot represent the box and whiskers of the regular boxplot function for your arrays. The lines
represent the first and third quartiles, the median (ie the standard box), and the most extreme points that fall within 1.5
times the interquartile range (ie the whiskers/fences). As default the arrays are sorted by size of ks statistic (distance to
pooled empirical distribution function).The red line demarks the cutoff for outlier or not.

boxplot_outliers <- predict(boxo, sdev=3)

boxplot_outliers

## [1] "11" "137" "396" "500" "705" "827"

The final detection method we use is the MA-plot. Let’s plot the worst candidates and compare to some random samples.
Badness is here defined in terms of mutual information between M and A statistics.
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maout <- mapout(expression)

plot(maout, nout=5, lineup=T) # lineup = T compares against some

# randomly chosen observations

mapoutliers <- predict(maout, sdev=3)

mapoutliers

## [1] "137" "500" "582" "655" "705"

Let’s now combine all outlier vectors.
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outliers <- unique(c(mapoutliers, boxplot_outliers, pca_outliers))

outliers

## [1] "137" "500" "582" "655" "705" "11" "396" "827"

These are the densities of expression values for all samples, proposed outliers in red:

densities <- dens(expression)

plot(densities, highlight=outliers)

As we can see, all of the clearly strange densities in this plot are marked as outliers; some of the candidates look fine
however.
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4 Manual outlier removal

So now we have a list of 8 candidate outliers that we suspect are technical outliers. This section will examine each of
them and we’ll make a decision to either keep or remove them as need be. Note that I would usually use the actual
sample names instead of indexing the outlier vector with numbers. This is to be absolutely certain that I’m looking at
what I think I’m looking at. I suggest others do the same. However, these data are anonyimzed, there are no sample
names, and strings of row numbers will have to do.

4.1 582

This one looks fine. Maybe the MA plot is the reason it got flagged. I won’t remove this.

highlight("582", pca=prc_all, box=boxo, dens=densities, ma=maout)
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4.2 137

This one is clearly very strange in all the plots, I will remove this.

highlight("137", pca=prc_all, box=boxo, dens=densities, ma=maout)
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for_removal <- "137"

4.3 655

highlight("655", pca=prc_all, box=boxo, dens=densities, ma=maout)
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This one looks fine as well. Again it’s probably the slightly high MI statistic.

4.4 500

This one once again looks strange in all the plots and I will take it out.
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highlight("500", pca=prc_all, box=boxo, dens=densities, ma=maout)

for_removal <- c(for_removal, "500")

4.5 705
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highlight("705", pca=prc_all, box=boxo, dens=densities, ma=maout)

for_removal <- c(for_removal, "705")

Our most extreme point yet! Not only are the intensities pushed all the way to the right, there seems also to be some
slight bimodality and other strangeness that the healthy samples don’t exhibit.

4.6 11

highlight("11", pca=prc_all, box=boxo, dens=densities, ma=maout)
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This one is more interesting, it’s out there but not clearly broken. It looks as though the boxplots flagged it as outlier.
Let’s look at the lab info:

lab_info["11", ]

## Ng/ul_RNA 260/280_RNA 260/230_RNA RIN Ng/ul_cRNA 260/280_cRNA 260/230_cRNA

## 11 55,85 2,06 1,83 8,1 1630 2,2 2,2

lab_thresholds

## [1] "Bad: RIN value < 7" "Bad: 260/280 RNA ratio < 2"

## [3] "Bad: 260/230 RNA ratio < 1.7" "Good: 50 < Ng/ul RNA < 500"

It’s not outside the predefined thresholds. Let’s keep it.
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4.7 827

highlight("827", pca=prc_all, box=boxo, dens=densities, ma=maout)

lab_info["827", ]

## Ng/ul_RNA 260/280_RNA 260/230_RNA RIN Ng/ul_cRNA 260/280_cRNA 260/230_cRNA

## 827 94,44 2,08 1,72 8,2 2188,5 2,135 2,035

lab_thresholds

## [1] "Bad: RIN value < 7" "Bad: 260/280 RNA ratio < 2"

## [3] "Bad: 260/230 RNA ratio < 1.7" "Good: 50 < Ng/ul RNA < 500"
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This one is also slightly strange but not exactly outside the thresholds, so I’ll keep it.

4.8 396

highlight("396", pca=prc_all, box=boxo, dens=densities, ma=maout)

lab_info["396", ]

## Ng/ul_RNA 260/280_RNA 260/230_RNA RIN Ng/ul_cRNA 260/280_cRNA 260/230_cRNA

## 396 125,5 2,16 1,38 9,0 1625 2,2 2,2

for_removal <- c(for_removal, "396")
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This one is strange in three out of four plots and has a too-low 260/230 ratio.

4.9 Summary

outliers_manual <- for_removal

Normally we would do this whole process once more to make sure that the data look well behaved without these outliers.
We won’t include that in this document however.

5 Automated outlier removal

While we don’t recommend doing automated removal it is interesting to see how many samples would be discarded with
such an approach. We have already fit the different detection models, so let’s just take everything flagged by predict()
this time:

th <- 2

outliers_automatic <- c(predict(boxo, sdev=th), predict(prc_all, sdev=th),

predict(maout, sdev=th))

outliers_automatic <- unique(outliers_automatic)

outliers_automatic

## [1] "11" "97" "105" "137" "175" "211" "232" "345" "386" "396" "421" "497" "500" "506"

## [15] "510" "513" "548" "580" "620" "649" "658" "700" "705" "769" "780" "810" "815" "827"

## [29] "2" "33" "37" "51" "110" "168" "181" "206" "221" "257" "270" "306" "317" "370"

## [43] "438" "482" "504" "509" "539" "561" "564" "582" "655" "699" "725" "728" "754" "757"

## [57] "777" "823" "831"

length(outliers_automatic)

## [1] 59

At the admittedly strict threshold of two standard deviations, this flags an astonishing 59 samples for removal. At the
standard threshold of three standard deviations, only eight samples (the ones we looked at) would be flagged, but this is
data dependent.

6 Summary

outliers_manual

## [1] "137" "500" "705" "396"

In the end we have four outliers we consider tecnical in nature. It’s the ones you immediately feel strange about in the
PCA plot:

plot(prc_all, highlight=for_removal)
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# for experiments

save(outliers_manual, outliers_automatic, file="../dataset/outliers.rda")

7 Session info

� R version 3.1.2 (2014-10-31), x86_64-unknown-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils
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� Other packages: Biobase 2.26.0, BiocGenerics 0.12.1, knitr 1.16, lumi 2.18.0, nowaclean 0.2.8
� Loaded via a namespace (and not attached): affy 1.44.0, affyio 1.34.0, annotate 1.44.0, AnnotationDbi 1.28.2,

backports 1.1.0, base64 2.0, base64enc 0.1-3, BatchJobs 1.6, BBmisc 1.9, beanplot 1.2, BiocInstaller 1.16.5,
BiocParallel 1.0.3, BiocStyle 1.4.1, biomaRt 2.22.0, Biostrings 2.34.1, bitops 1.0-6, brew 1.0-6,
bumphunter 1.6.0, Cairo 1.5-9, checkmate 1.7.4, codetools 0.2-15, colorspace 1.2-6, DBI 0.6-1, digest 0.6.12,
doRNG 1.6.6, entropy 1.2.1, evaluate 0.10, fail 1.3, foreach 1.4.3, genefilter 1.48.1, GenomeInfoDb 1.2.5,
GenomicAlignments 1.2.2, GenomicFeatures 1.18.7, GenomicRanges 1.18.4, grid 3.1.2, highr 0.6, illuminaio 0.8.0,
IRanges 2.0.1, iterators 1.0.8, KernSmooth 2.23-15, lattice 0.20-33, limma 3.22.7, locfit 1.5-9.1, magrittr 1.5,
MASS 7.3-45, Matrix 1.2-6, matrixStats 0.50.2, mclust 5.2, memoise 1.1.0, methylumi 2.12.0, mgcv 1.8-12,
minfi 1.12.0, multtest 2.22.0, nleqslv 3.0.1, nlme 3.1-128, nor1mix 1.2-2, openssl 0.9.4, pkgmaker 0.22, plyr 1.8.4,
preprocessCore 1.28.0, quadprog 1.5-5, RColorBrewer 1.1-2, Rcpp 0.12.9, RCurl 1.95-4.8, registry 0.3,
reshape 0.8.6, rngtools 1.2.4, Rsamtools 1.18.3, RSQLite 1.1-2, rtracklayer 1.26.3, S4Vectors 0.4.0,
sendmailR 1.2-1, siggenes 1.40.0, splines 3.1.2, stats4 3.1.2, stringi 1.1.2, stringr 1.2.0, survival 2.39-4,
tools 3.1.2, XML 3.98-1.4, xtable 1.8-2, XVector 0.6.0, zlibbioc 1.12.0
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