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Abstract. We prove the boundedness of Potential operator in weighted generalized Morrey space in terms of Matuszewska-Orlicz
indices of weights and apply this result to the Hemholtz equation in R3 with a free term in such a space. We also give a short
overview of some typical situations when Potential type operators arise when solving PDEs.

INTRODUCTION

It is well known that many operators of harmonic analysis such as potential type operators, singular operators and
others are widely used in PDE and PDO. The present paper is aimed to show some typical situations when Potential
type operators arise when solving PDE. We do an emphasis on the role of the function space used in the solving
process.

It is well known that the Potential type operators arise in study for instance Poisson’s and Helmholtz equations.
Such equations occur quite frequently in a variety of applied problems of science and engineering. The boundary value
problems for the three-dimensional Laplace and Poisson equations are encountered in such fields as electrostatics, heat
conduction, ideal fluid flow, elasticity and gravitation [1, 2, 3, 4]. Nowadays there are a lot of problems in physics
which are reduced to the consideration of such equations. Laplace and Poisson equations (the inhomogeneous form of
Laplace equation) appear in problems involving volume charge density. Applications of Laplace and Poisson equations
to the electrostatics in fractal media are discussed in [3]. Such equations are also used in constructing satisfactory
theories of vacuum tubes, ion propulsion and magnetohydrodynamic energy conversion [5].

Helmholtz equation which represents time-independent form of wave equation appears in different areas of
physics. It is mostly known to be used in the case of the acoustic equation and to apply to the study of waveguides (de-
vices that transmit acoustic or electromagnetic energy), see for instance [6, 7, 8] and [9, 10, 11, 12, 13] and references
therein. But it typically works at certain discrete frequencies [14]. Many other applications of Helmholtz equation
involve unbounded domains. For instance (see [14]) the simplest scattering problem for the case of an inhomogeneous
medium is reduced to such equation in R3 .

We do not provide any historical overview: this would lead us too far away.

To avoid burdeness of the exposition by details, and for readers convenience, we present all necessary definitions
and properties of the spaces and weights in the Appendix.
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Laplace, Poisson and Helmholtz equations related operators

Newton and Riesz potential operators

Let x = (x1, x2, ..., xn) ∈ Rn and let ∆ =
∂2

∂x2
1

+ · · · + ∂2

∂x2
n

be the Laplace operator. Consider the integral operator

I2 f (x) =
1

γn(2)

∫

Rn

f (t) dt
|x − t|n−2 , n ≥ 3,

see the definition of γn(α) below, known as Newton potential. In the planar case n = 2 it is replaced by the logarithmic
potential

I2 f (x) =
1

2π

∫

R2
ln |x − t| f (t) dt.

For all n ≥ 2 the function u(x) = I2 f (x) is related to the Laplace operator. Namely, the function u(x) = I2 f (x) is a
particular solution of the Poisson equation

−∆u = f ,

see for instance [15].
From the Sobolev theorem for potential operators there follows the well known fact that f ∈ Lp(R), 1 < p < n/2

implies that u ∈ Lq(R)
⋂

W2,p(R), 1/q = 1/p − 2/n.

It is also known that the potential operators of the form

I2k f (x) =
1

γn(2k)

∫

Rn

f (t) dt
|x − t|n−2k , k = 1, 2, ..., 2k < n,

is similarly a particular solution of the Poisson type equation generated by the power of the Laplace operator:

(−∆)ku = f .

In the case k = 2 we have the bi-harmonic Poisson equation.

Potential operators are known to be considered of arbitrary order α ≥ 0 not only α = 2k. In the case 0 < α < n
they are introduced as

Iα f (x) =
1

γn(α)

∫

Rn

f (t) dt
|x − t|n−α ,

known also as the Riesz fractional integral. Here γn(α) is the normalizing constant chosen so that

Iα f = F−1 1
|ξ|α F f ,

where F is the Fourier transform. Such a potential u = Iα f serves as a solution of the pseudo-differential equation

Dαu = f .

The PDO Dα is also known as a hyper-singular operator. (We refer to [16, 17, 18] for pseudo-differential operators in
general and to [19] for hyper-singular integrals). The hyper-singular operators Dα are interpreted as fractional powers
of the Laplace operator:

Dα = (−∆)α/2.

The particular case α = 1 leads to the case (−∆)1/2 =
√−∆, which is widely used in mathematical physics, see for

instance [20, 21].
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Modified Newton potential operator
Let us consider the modified Newton potential operator:

u(x) =
1

|x|2γn(2)

∫

Rn

f (t) dt
|x − t|n−2 .

This potential operator is a particular solution of the Poisson equation:

∆(u · |x|2) = − f .

By the well known formula for Laplacian of the product of two functions, we then easily obtain that u satisfies the
following equation:

|x|2∆u(x) + 4x∇u(x) + 2nu(x) = − f (x).

Weighted potential operators
Now we pass to the weighted Newton potential operators:

u(x) =
1

w(x)γn(2)

∫

Rn
w(t) f (t)

dt
|x − t|n−2 .

It is a particular solution of the equation:

∆u(x) +
u(x)
w(x)

∆w(x) + 2∇(ln |w(x)|)∇u(x) = − f (x).

Potential operators related to Helmholtz equation

Let x = (x1, x2, x3) ∈ R3 and let ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

be the Laplace operator. The potential

V f (x) = − 1
4π

∫

R3

e−ik |x−y|

|x − y| f (y) dy, x ∈ R3 (1)

is a particular solution (see for instance [14, Paragraph 2.2] ) of the inhomogeneous Helmholtz equation ∆u + k2u =

f (x) widely used in diffraction theory, so that

(∆ + k2I)u(x) = f (x), x ∈ R3 (2)

where I is the identity operator.
The function V(x) is also known as Helmholtz potential.

The corresponding weighted potential

W(x) := − 1
4πw(x)

∫

R3

e−ik |x−t|

|x − t| f (t)w(t) dt

is a particular solution of the following second order differential equation

∆W + 2
∇w
w
∇W +

(
∆w
w

+ k2I
)

W = f

In the case of power weights w(x) = xβ := xβ1
1 · xβ2

2 · xβ3
3 ,

∇w
w

=

[
β1

x1
,
β2

x2
,
β3

x3

]

and
∆w
w

=
β1

x1
2 (1 − β1) +

β2

x2
2 (1 − β2) +

β3

x3
2 (1 − β3) .
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Application of weighted boundedness of potential operators to the study of Helmholtz
equation

In this section we consider behavior of the particular solution u(x) = V f (x) of Helmholtz equation (2), when f is in
the weighted generalized Morrey space Lp,ϕ(R3,w) (see the definition 5 in Section Appendix).

We need the following result (Theorem 1) about the boundedness of potential operators in generalized Morrey
spaces the proof of which can be found in [22]; we give its formulation under slightly modified conditions due to the
assumptions on ϕ and w, given below.

We begin with some assumptions and the theorem.
We will consider the action of the potential operator from one Morrey space Lp,ϕ to another Lq,ψ. Note that the

reader can find a detailed survey of mapping properties of potential operators in various function spaces in [23].

Everywhere in the sequel it is assumed that the functions ϕ, and ψ, defining the Generalized Morrey spaces are
non-negative almost increasing functions continuous in a neighborhood of the origin, such that ϕ(0) = 0, ϕ(r) > 0,
for r > 0, and ϕ ∈ W

⋂
W, and similarly for ψ.

For the function ϕ(r), we will make use of the following conditions:

ϕ(r) ≥ crn (3)

for 0 < r ≤ 1, which makes the spaces Lp,ϕ(Ω) non-trivial, see [22, Corollary 3.4],

∫ ∞

r

ϕ
1
p (t)

t
n
p +1

dt ≤ C
ϕ

1
p (r)

r
n
p
. (4)

and

∫ ∞

r

ϕ
1
p (t)

t
n
p−α+1

dt ≤ Cr−
αp

q−p , (5)

For the weights w we use the classes W(R+),W(R+) and Vµ
±, the definition of which may be found in Section

Appendix.
We will also use Zygmund classes Zβ and Zγ, where β, γ ∈ R, Matuszewska-Orlicz indices M(ϕ) and m(ϕ), of

functions in such classes, see the corresponding Definitions in Appendix.

Theorem 1 [22, Theorem 5.5] Let 0 < α < n, 1 < p < n
α
, q > p and ϕ(r) satisfy conditions (3) and (4)-(5). Let

the weight w ∈ W(R+) ∩W(R+) satisfy the conditions

w ∈ Vµ
− ∪ Vµ

+, µ = min{1, n − α}.
Then the weighted Riesz potential operator wIα 1

w is bounded from Lp,ϕ(Rn) to Lq,ψ(Rn) under the conditions

sup
x∈Ω,r>0

1
ψ(r)

∫

B(x,r)
wq(|y|)|y|q(α−n)


∫ |y|

0

t
n
p′ −1ϕ

1
p (t)

w(t)
dt


q

dy < ∞, (6)

where 1
p′ is the conjugate exponent: 1

p + 1
p′ = 1, and

sup
x∈Rn,r>0

1
ψ(r)

∫

B(x,r)

(∫ ∞

|y|
tα−

n
p−1ϕ

1
p (t)dt

)q

dy < ∞, (7)

in the case w ∈ Vµ
+, and the conditions

sup
x∈Rn,r>0

1
ψ(r)

∫

B(x,r)
|y|q(α−n)

(∫ |y|

0
t

n
p′ −1ϕ

1
p (t)dt

)q

dy < ∞, (8)
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and

sup
x∈Rn,r>0

1
ψ(r)

∫

B(x,r)
wq(|y|)


∫ ∞

|y|

tα−
n
p−1ϕ

1
p (t)

w(t)
dt


q

dy < ∞, (9)

in the case w ∈ Vµ
−.

In the case when either ϕ ∈ Φ0
n or ϕ(r) = rn, conditions (6) - (9) are also necessary.

Note that Theorem 1 was proved in [22] for the case ψ = ϕ, but the analysis of the proof shows that the theorem
holds in the above stated form.

We will use the above theorem to give conditions of the boundedness, more effective for possible applications.
They particulary use numerical characteristics, known as Matuszewska-Orlicz indices, of weights and the function ϕ,
which enables us to write some assumptions in terms of easily verified numerical inequalities. For the corresponding
definitions and properties of such indices we refer to Appendix. Note that we admit the situation where the indices of
functions at infinity are in general different from the indices at the origin.

Theorem 2 Let 0 < α < n, 1 < p < n
α
, q > p, and

w ∈ [W(R+) ∩W(R+)] ∩ [Vµ
−(R+) ∪ Vµ

+(R+)], µ = min{1, n − α}.

Suppose also that the functions ϕ and ψ sutisfy the assumptions:

M(ϕ),M∞(ϕ) < n − αp, and ϕ(r) ≤ cr
n− α

1
p − 1

q and
ϕ1/p(|y|)
|y| np−α

∈ Lq,ψ. (10)

Under the conditions

α − n − M(ϕ)
p

< m(w) ≤ M(w) <
n
p′

+
m(ϕ)

p
, (11)

and

α − n − M∞(ϕ)
p

< m∞(w) ≤ M∞(w) <
n
p′

+
m∞(ϕ)

p
, (12)

the weighted Riesz potential operator wIα 1
w is bounded from Lp,ϕ(Rn) to Lq,ψ(Rn).

Proof We have to show that the conditions of this theorem imply the assumptions of Theorem 1.

The condition (4) means (see (22)) that ϕ1/p ∈ Zγ, with γ = n/p. By (42) ϕ1/p ∈ Zγ ⇐⇒ M(ϕ1/p) <
n/p,M∞(ϕ1/p) < n/p. Therefore, by (26) and (36) , M(ϕ),M∞(ϕ) < n which is satisfied by the first inequality in
(10).

From the property (30) and the first inequality in (10), we can see that (3) is satisfied.
Integration of the second inequality in (10), implies (5).

To show the validity of (6), under our assumptions, note that interior integral in (6) is dominated, by (8), by the
function c ϕ1/p(|y|)

w(|y|)|y|−
n
p′
, which follows from the fact that ϕ1/p

w ∈ Zβ, with β = − n
p′ . The latter is implied by the right hand

side inequalities (11) and (12) in view of the properties (26)-(29) and (36)-(38), (42). Consequently, the third condition
in (10) implies (6).

To show the validity of (7), under our assumptions, note that interior integral in (7) is dominated by the function
c ϕ

1/p(|y|)
|y| np −α , which follows from the fact that ϕ1/p ∈ Zγ, with γ = n

p −α. The latter is implied by the first inequality in (10)

in view of the properties (26) and (29), and (36) and (42). Consequently, the third condition in (10) implies (7).

To show the validity of (8), under our assumptions, note that interior integral in (8) is dominated by the function
c ϕ

1/p(|y|)
|y|−

n
p′
, which follows from the fact that ϕ1/p ∈ Zβ, with β = − n

p′ . In view of the properties (26), (29), and (36), (42),
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the latter holds under the condition p > 1 − m(ϕ)
n , and p > 1 − m∞(ϕ)

n , which always holds since m(ϕ),m∞(ϕ) ≥ 0.
Consequently, the third condition in (10) implies (7).

To show the validity of (9), under our assumptions, note that interior integral in (9) is dominated by the function
c ϕ1/p(|y|)

w(|y|)|y| np −α , which follows from the fact that ϕ1/p

w ∈ Zγ, with γ = n
p − α. The latter is implied by the left hand side

inequalities (11) and (12) in view of the properties (26)-(29) and (36)-(38), (42). Consequently, the third condition in
(10) implies (9).

The proof is complete.

The above theorem leads us to the following result for the Helmholtz equation, in the case n = 3, α = 2.
In this application we consider Morrey spaces imbedded into the corresponding weighted Lebesgue spaces, i.e.
Lp,ϕ(R3,w) ↪→ Lp(R3,w). To this end, it suffices to assume that ϕ(r) is a bounded function.

Theorem 3 Let 1 < p < 3
2 , q > p, and

w ∈ [W(R+) ∩W(R+)] ∩ [V1
−(R+) ∪ V1

+(R+)].

Let also the functions ϕ and ψ satisfy the assumptions:

M(ϕ) < 3 − 2p, and ϕ(r) ≤ cr
3− 2

1
p − 1

q and
ϕ1/p

r
3
p−2
∈ Lq,ψ. (13)

Under the conditions

2 − 3 − M(ϕ)
p

< m(w) ≤ M(w) <
3
p′

+
m(ϕ)

p
, (14)

and

2 − 3 − M∞(ϕ)
p

< m∞(w) ≤ M∞(w) <
3
p′

+
m∞(ϕ)

p
, (15)

for every f ∈ Lp,ϕ(R3,w), there exists a twice Sobolev differentiable particular solution u ∈ Lq,ψ(R3,w) of the
Helmholtz equation:

(∆ + k2I)u(x) = f (x).

Proof The function u chosen as u = V f , where V f is the Helmholtz potential (1), is a particular solution of the
Helmholtz equation (2).

Since the Helmholtz potential (1) is dominated by the Newton potential: |V f | ≤ I2(| f |), the inclusion of this
solution u = V f into the space Lq,ψ(R3,w) is guaranteed by Theorem 2.

As regards the differentiability of u, a direct differentiation of V f leads to the sum of a Calderón-Zigmund
singular operator of f and potential type operators. A justification of such a procedure for Sobolev derivatives in
the case of weighted Lebesgue spaces is done for Muckenhoupt weights, see for instance [24]. The classical Morrey
spaces are imbedded into the weighted Lebesgue spaces with the weight w(x) = (1 + |x|)−γ, γ > λ, see [25]. Therefore
imbedding of such a type is also valid for generalized Morrey spaces under the assumption that ϕ(r) ≤ crγ for all
r ∈ R+ with some γ ∈ [0, n). The condition of such a type is assumed in (13). Then the above mentioned procedure is
valid within the frameworks of generalized Morrey spaces under the conditions of our theorem.

Therefore, the existence of the second derivatives of V f follows from Theorem 2. For the singular operators in
generalized weighted Morrey spaces we refer to [26, Theorem 3.5].

The proof is complete.

In the case of classical Morrey spaces, i.e. ϕ(r) = rλ, 0 < r < n, the statement of Theorem 3 holds in a more
precise form as given in the following theorem.

Theorem 4 [27, Theorem 5.3]. Let 1 < p < 3
2 , q > p, λ < 3 − 2p and

w ∈ [W(R+) ∩W(R+)] ∩ [V1
−(R+) ∪ V1

+(R+)].
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Under the conditions
2 − 3 − λ

p
< min(m(w),m∞(w)) (16)

and
max(M(w),M∞(w)) <

3
p′

+
λ

p
(17)

for every f ∈ Lp,λ(R3,w), there exists a twice Sobolev differentiable particular solution u ∈ Lq,λ(R3,w) of the
Helmholtz equation:

(∆ + k2I)u(x) = f (x),

where 1
q = 1

p − 2
3−λ .

Appendix

Morrey space

Lp,λ = { f ∈ Lp
loc(Ω) : ‖ f ‖p,λ < ∞}, 1 ≤ p < ∞, 0 ≤ λ < n, (18)

where Ω ⊆ Rn. Equipped with the norm

‖ f ‖p,λ = sup
x∈Ω,r>0


1
rλ

∫

B(x,r)

| f (y)|p dy



1
p

= sup
x∈Ω,r>0

‖ f ‖Lp(B(x,r))

r
λ
p

(19)

where B(x, r) = {y ∈ Ω : |y − x| < r}, it is a Banach space.

Generalized Morrey space

Definition 5. Let ϕ(r) be a non-negative function on [0, `], positive on (0, `], and 1 ≤ p < ∞. The generalized
Morrey space Lp,ϕ(Ω) is defined as the space of functions f ∈ Lp

loc(Ω) such that

‖ f ‖p,ϕ := sup
x∈Ω,r>0


1
ϕ(r)

∫

B(x,r)

| f (y)|p dy



1
p

< ∞. (20)

The classical Morrey space
Lp,λ(Rn)

corresponds to the case ϕ(x, r) ≡ rλ, 0 < λ < n.

The weighted Morrey spaces are treated in the usual sense:

Lp,ϕ(Ω,w) := { f : w f ∈ Lp,ϕ(Ω)}, Ω ⊆ Rn, ‖ f ‖Lp,λ(Rn,w) := ‖w f ‖Lp,λ(Rn).

On some classes of quasi-monotone functions
Below we give the known definitions and properties of some classes of quasi-monotone functions. For more details
and proofs we refer for instance to [28, 29, 30] and references therein.

Definition 6.
1) By W = W([0, 1]) we denote the class of continuous and positive functions ϕ on (0, 1] such that there exists finite

020178-7



or infinite limit lim
r→0

ϕ(r);

2) by W0 = W0([0, 1]) we denote the class of almost increasing functions ϕ ∈ W on (0, 1);
3) by W = W([0, 1]) we denote the class of functions ϕ ∈ W such that raϕ(r) ∈ W0 for some a = a(ϕ) ∈ R1;
4) by W = W([0, 1]) we denote the class of functions ϕ ∈ W such that ϕ(t)

tb is almost decreasing for some b ∈ R1.

Definition 7.
1) By W∞ = W∞([1,∞]) we denote the class of functions ϕ which are continuous and positive and almost increasing
on [1,∞) and which have the finite or infinite limit limr→∞ ϕ(r),
2) by W∞ = W∞([1,∞)) we denote the class of functions ϕ ∈ W∞ such that raϕ(r) ∈ W∞ for some a = a(ϕ) ∈ R1.

By W(R+) we denote the set of functions on R+ whose restrictions onto (0, 1) are in W([0, 1]) and restrictions
onto [1,∞) are in W∞([1,∞)). Similarly, the set W(R+) is defined.

ZBS-classes and MO-indices at the origin

Definition 8. We say that a function ϕ ∈ W0 belongs to the Zygmund class Zβ, β ∈ R1, if
∫ r

0

ϕ(t)
t1+β

dt ≤ c
ϕ(r)
rβ

, r ∈ (0, 1), (21)

and to the Zygmund class Zγ, γ ∈ R1, if

∫ 1

r

ϕ(t)
t1+γ

dt ≤ c
ϕ(r)
rγ

, r ∈ (0, 1). (22)

We also denote
Φ
β
γ := Zβ

⋂
Zγ,

the latter class being also known as Bary-Stechkin-Zygmund class [31].
It is known that the property of a function to be almost increasing or almost decreasing after the multiplication

(division) by a power function is closely related to the notion of the so called Matuszewska-Orlicz indices. We refer
to [32, 33, 34, 30, 35, 36, 29] for the properties of the indices of such a type.

For a function ϕ ∈ W :

m(ϕ) = sup
0<r<1

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
= lim

r→0

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
(23)

and

M(ϕ) = sup
r>1

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
= lim

r→∞

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
(24)

The following properties of the indices of functions u, v ∈ W
⋃

W are known, see for instance [37, Section 6]
and references therein.

m[rau(r)] = a + m(u), M[rau(r)] = a + M(u), a ∈ R1, (25)

m[(u)a] = am(u), M[(u)a] = aM(u), , a ≥ 0 (26)

m
(

1
u

)
= −M(u), M

(
1
u

)
= −m(u). (27)

m(uv) ≥ m(u) + m(v), M(uv) ≤ M(u) + M(v). (28)
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u ∈ Zβ ⇐⇒ m(u) > β and u ∈ Zγ ⇐⇒ M(u) < γ. (29)

c1rM(u)+ε ≤ u(r) ≤ c2rm(u)−ε, 0 < r < 1, (30)

hold with an arbitrarily small ε > 0 and c1 = c1(ε), c2 = c2(ε).

ZBS-classes and MO-indices of weights at infinity
The indices m∞(u) of functions u ∈ W∞ and M∞(u) of functions u ∈ W∞ responsible for the behavior of functions u
at infinity are introduced in the way similar to (23) and (24):

m∞(u) = sup
r>1

ln
[
lim inf

h→∞
u(rh)
u(h)

]

ln r
, M∞(u) = inf

r>1

ln
[
lim sup

h→∞
u(rh)
u(h)

]

ln r
. (31)

The corresponding classes Zβ∞ ([1,∞)) of functions u ∈ W∞ and Zγ∞ ([1,∞)) of functions u ∈ W∞ are introduced
by the conditions

∫ r

1

ϕ(t)
t1+β

dt ≤ c
ϕ(r)
rβ

, r ∈ (1,∞), (32)

∫ ∞

r

ϕ(t)
t1+γ

dt ≤ c
ϕ(r)
rγ

, r ∈ (1,∞), (33)

respectively
In view of the following equivalences

u ∈ Zβ([1,∞))⇐⇒ u∗ ∈ Z−β([0, 1]), u ∈ Zγ([1,∞))⇐⇒ u∗ ∈ Z−γ([0, 1]), (34)

where u∗(t) = u
(

1
t

)
, properties of functions in the above introduced classes are easily derived from those of functions

in Φ
β
γ([0, 1]) :

m∞[rau(r)] = a + m∞(u), M∞[rau(r)] = a + M∞(u), a ∈ R1, (35)

m∞[(u)a] = am∞(u), M∞[(u)a] = aM∞(u), , a ≥ 0 (36)

m∞

(
1
u

)
= −M∞(u), M∞

(
1
u

)
= −m∞(u). (37)

m∞(uv) ≥ m∞(u) + m∞(v), M∞(uv) ≤ M∞(u) + M∞(v). (38)

c1tm∞(u)−ε ≤ u(t) ≤ c2tM∞(u)+ε, t ≥ 1, u ∈ W∞, (39)

We say that a continuous function u in (0,∞) is in the class W0,∞(R+), if its restriction to (0, 1) belongs to
W([0, 1]) and its restriction to (1,∞) belongs to W∞([1,∞]).

Without confusion of notation, by the same symbols Zβ0 ([0, 1]) and Zβ∞ ([1,∞)) we also denote the set of mea-
surable functions on R+ such that their restrictions onto [0, 1] and (1,∞) belong to Zβ0 ([0, 1]) and Zβ∞ ([1,∞)), respec-
tively, and then we define

Zβ0,β∞ (R+) = Zβ0 ([0, 1]) ∩ Zβ∞ ([1,∞)), Zγ0,γ∞ (R+) = Zγ0 ([0, 1]) ∩ Zγ∞ ([1,∞)). (40)

In the case where the indices coincide, i.e. β0 = β∞ := β, we will simply write Zβ(R+) and similarly for Zγ(R+). We
also denote

Φ
β
γ(R+) := Zβ(R+) ∩ Zγ(R+). (41)

Similarly to the case of the interval [0, 1] the following properties
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u ∈ Zβ ⇐⇒ m(u) > β, m∞(u) > β and u ∈ Zγ ⇐⇒ M(u) < γ, M∞(u) < γ. (42)

hold for u ∈ W(R+) and u ∈ W(R+). respectively.

Definition 9. Let 0 < µ ≤ 1. By Vµ
±, we denote the classes of functions w non-negative on [0,∞) and positive on

(0,∞), defined by the conditions:

Vµ
+ :

|w(t) − w(τ)|
|t − τ|µ ≤ C

w(t+)
tµ+

, (43)

Vµ
− :

|w(t) − w(τ)|
|t − τ|µ ≤ C

w(t−)
tµ+

, (44)

where t, τ ∈ (0,∞), t , τ, and t+ = max(t, τ), t− = min(t, τ).
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