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Abstract 15 

Heterogeneity among individuals influences the life-history trajectories we observe at the 16 

population level because viability selection, selective immigration and emigration 17 

processes, and ontogeny change the proportion of individuals with specific trait values 18 

with increasing age. Here, we review the two main approaches that have been proposed 19 

to account for these processes in life-history trajectories, contrasting how they quantify 20 

ontogeny and selection, and proposing ways to overcome some of their limitations. 21 

Nearly all existing approaches to model individual heterogeneity assume either a single 22 

normal distribution or a priori known groups of individuals. Ontogenetic processes, 23 

however, can vary across individuals through variation in life-history tactics. We show 24 

the usefulness of describing ontogenetic processes by modelling trajectories with a 25 

mixture model that focuses on heterogeneity in life-history tactics. Additionally, most 26 

methods examine individual heterogeneity in a single trait, ignoring potential correlations 27 

among multiple traits caused by latent common sources of individual heterogeneity. We 28 

illustrate the value of using a joint modelling approach to assess the presence of a shared 29 

latent correlation and its influence on life-history trajectories. We contrast the strengths 30 

and limitations of different methods for different research questions, and we exemplify 31 

the differences among methods using empirical data from long-term studies of ungulates. 32 

 33 

  34 
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Introduction 35 

Age-specific changes affect the evolution of traits and their influence on population 36 

dynamics (Vaupel and Yashin 1985, Vindenes and Langangen 2015). It is therefore 37 

essential to quantify accurately how life-history traits vary with age. Life-history 38 

trajectories are usually quantified at the species or population levels (e.g. Mysterud et al. 39 

2001), but changes in life-history traits with age occur at the individual level. Indeed, 40 

life-history trajectories result from a combination of ontogenetic processes at the 41 

individual level, selection processes leading to the appearance (through fertility selection 42 

or immigration) or disappearance (through viability selection or emigration) of 43 

individuals within a population, and multiple environmental influences on individuals. As 44 

a result, a substantial part of the age-specific variation observed at the population level is 45 

often due to heterogeneity among individuals (Service 2000, van de Pol and Verhulst 46 

2006, van de Pol and Wright 2009).  47 

 48 

Typically, ontogenetic trajectories of life-history traits display a ∩-shaped (Emlen (1970) 49 

for reproductive performance) or U-shaped (Caughley (1966) for mortality = 1- survival) 50 

curve with age: survival and reproductive traits increase until a plateau is reached during 51 

prime-age, and then decrease until death. Variation in reproductive traits with age may 52 

result from two main ontogenetic processes. First, reproductive output can increase early 53 

in life as individuals gain experience or allocate more to reproduction, reflecting an 54 

improvement with age (Curio 1983, Forslund and Pärt 1995) (Fig. 1A). Second, 55 

reproductive output can decrease at old age as a result of senescence (see Nussey et al. 56 

(2013) for a review of empirical evidence in vertebrates) (Fig. 1B), which corresponds to 57 
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the irreversible decline of physiological and cellular functions with increasing age (e.g. 58 

Medawar 1952). Although the basic concepts behind these ontogenetic processes are 59 

relatively simple, other processes such as viability and fertility selections (as defined by 60 

Fisher (1930)) can have fundamental influences on the average ontogenetic patterns 61 

observed at the population level.  On one hand, viability selection removes certain 62 

phenotypes at younger ages, typically frail individuals, leading cohort composition to 63 

change with age (Vaupel et al. 1979, Newton and Rothery 1998) and thereby affecting 64 

the age-specific mean and variance of a trait at the population level (Fig. 1C, D). For 65 

example, in red-billed choughs (Pyrrhocorax pyrrhocorax), the decline in offspring 66 

survival with increasing parental age observed at the population level results from the 67 

disappearance of short-lived parents whose offspring have higher survival than those 68 

born to long-lived parents (Reid et al. 2010) (Fig. 1D). On the other hand, fertility 69 

selection leads to individual variation in reproductive performance, such that certain 70 

genotypes will contribute more to reproduction than others (Wooller et al. 1992), which 71 

will in turn affect the patterns observed at the population level. If selection fine-tunes first 72 

reproduction according to body size or body condition, individuals with different 73 

phenotypic traits will enter the breeding population at different ages (e.g. Forslund and 74 

Pärt 1995 in birds, Weladji et al. 2010 in mammals) (Fig. 1E, F). For example, the 75 

observation at the population level that female oystercatchers (Haematopus ostralegus) 76 

produce larger eggs as they age is mainly the result of females producing larger eggs 77 

when they delay first reproduction (van de Pol and Verhulst 2006). Thus, there is an 78 

increasing proportion of females producing larger eggs in the breeding population with 79 

increasing age, leading egg size to increase with age at the population level (Fig. 1E).  80 
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 81 

Other population processes including delayed recruitment and immigration/emigration 82 

may also lead to age-related changes in cohort structure if these processes are biased 83 

towards certain types of individuals. Finally, human harvest is often selective for body 84 

size (Fenberg and Roy 2008), size of specific traits (Douhard et al. 2016) or reproductive 85 

status (Rughetti and Festa-Bianchet 2014), leading to substantial changes in trait 86 

distribution with age (Darimont et al. 2009), often because larger individuals are removed 87 

at younger ages. 88 

 89 

Selective disappearance and appearance of individuals of different phenotypes and 90 

viability and fertility selection all influence how the mean and the variance of a 91 

phenotypic trait change with age at the population level. Although ontogenetic and 92 

selection processes could each explain patterns observed at the population level (as in the 93 

oystercatcher example; Fig. 1E), combinations of both processes are likely to occur in 94 

nature (Ozgul et al. 2009, 2010) (Fig. 1G-J), sometimes leading to interactive effects. For 95 

example, Rebke et al. (2010) showed that selective disappearance leads to an 96 

overestimation of the improvement of reproduction with age in young common terns 97 

(Sterna hirundo), and to an underestimation of senescence in old ones.  98 

 99 

Variation in environmental conditions over the lifetime can also affect each individual 100 

differently depending on its state (McNamara 1998), influencing the mean and the 101 

variance of the responses observed at the population level (Yashin et al. 2002, Barbraud 102 

and Weimerskirch 2005, Nussey et al. 2007, Hamel et al. 2009b). While assessments of 103 
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environmental effects on average population responses have received considerable 104 

attention in ecological research, less attention has been given to how environmental 105 

conditions may lead to variation in individual responses (Wilson et al. 2009). Early 106 

environment influences the condition of individuals and hence their initial trait values, 107 

such as age at first reproduction (Albon et al. 1987, Lindström 1999, Forchhammer et al. 108 

2001). Statistically, this means that environmental conditions affect the intercepts of 109 

individual responses (Fig. 1). These effects may persist throughout the lifetime (Metcalfe 110 

and Monaghan 2001) or may disappear as a result of early-life selection (Vedder and 111 

Bouwhuis 2017). Conditions experienced later in life, however, might affect between-112 

individual differences as individuals are ageing. If environmental effects accumulate with 113 

age, they may accentuate initial between-individual differences (Nussey et al. 2007) (Fig. 114 

1L). If individuals can compensate for poor early conditions, individual differences 115 

should decrease with age (Hamel et al. 2016) (Fig. 1K). Statistically, environmental 116 

conditions can affect not only the intercepts (i.e. variation at early age), but also the 117 

slopes of individual responses, leading the variance in life-history traits to vary over age 118 

(Schielzeth and Forstmeier 2009, van de Pol and Wright 2009) (Fig. 1K, L). 119 

 120 

Previous research has shown that selection processes and environmental influences may 121 

shape patterns of ontogeny observed at the population level (Sunderland et al. 1976, 122 

Yashin et al. 2002). Until recently, the lack of data from individually marked animals 123 

monitored from birth to death limited our ability to assess the relative importance of these 124 

processes and how they varied between the individual and the population levels. In the 125 

past decade, however, longitudinal studies have provided the high-quality data required 126 
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to assess these patterns empirically (Clutton-Brock and Sheldon 2010) and to develop 127 

methods integrating these effects in analyses of life-history variation with age (Rattiste 128 

2004, Nussey et al. 2006, van de Pol and Verhulst 2006, Nussey et al. 2011). For 129 

instance, Rebke et al. (2010) showed that changes in annual reproduction in common 130 

terns are mostly the result of ontogenetic processes, yet the smaller effects of viability 131 

selection result in complex interactions with ontogeny. In great tits (Parus major), 132 

Bouwhuis et al. (2009) showed that accounting for the selective disappearance of 133 

individuals by including the age at last reproduction reveals that the onset of senescence 134 

is nearly one year earlier (2.8 vs. 3.5 years of age) than what is observed at the population 135 

level. The complexity of ontogenetic and selection processes means that an adequate 136 

quantification of their relative contributions to life-history trajectories is of fundamental 137 

importance to understand evolutionary dynamics. Furthermore, the importance of 138 

individual heterogeneity in shaping population responses reveals a need to understand its 139 

impact on ontogenetic processes. 140 

  141 

Here, we review approaches to account for individual heterogeneity when 142 

estimating/studying/quantifying life-history trajectories with age, demonstrating how 143 

each method quantifies the ontogenetic, selection, and environmental processes taking 144 

place within a population. Specifically, we compare the demographic decomposition of 145 

observed changes proposed by Rebke et al. (2010) with the statistical modelling approach 146 

based on random effect models proposed by van de Pol and Verhulst (2006). 147 

Furthermore, we demonstrate how mixture models can quantify how population 148 

processes are affected by the relative proportions of individuals displaying a given life-149 
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history tactic. We also show how joint modelling of life-history traits can evaluate the 150 

covariance among traits and its impact on population processes. We illustrate these 151 

methods using empirical data from long-term studies of ungulates (see Appendix 1 for 152 

the specific details of the study areas, data collection and analyses). We conclude by 153 

contrasting the strengths and limitations of these methods in answering different 154 

questions and show how combining methods can overcome some limitations. We focus 155 

on methods developed for populations with individual detection probability close to 1. 156 

Approaches used to account for individual heterogeneity in the context of capture-mark-157 

recapture (CMR) in populations with imperfect detection are covered in detail by 158 

Gimenez et al. (2017). 159 

 160 

Demographic decomposition 161 

The decomposition of demographic changes based on a derivation of the Price equation 162 

(Price 1970) first appeared in studies of human demography (Vaupel and Canudas Romo 163 

2002) and then in evolutionary ecology (Coulson and Tuljapurkar 2008). Rebke et al. 164 

(2010) built on these previous works to present a demographic decomposition approach 165 

at the population level to disentangle within-individual trait change from changes caused 166 

by selective appearance and disappearance at each age. They quantified the selection 167 

resulting from appearance/disappearance based on differences in the mean trait between 168 

different groups of individuals rather than on the covariance (Rebke et al. 2010). It 169 

provides an exact decomposition of the average population change P of a trait in each age 170 

interval into average within-individual change I and change due to selective appearance A 171 



  9 

and to selective disappearance D, assuming that all individuals remaining in the 172 

population are measured (Fig. 2A). 173 

 174 

Thus, the method allows quantifying directly ontogeny (I) and selection processes (A and 175 

D) for each age interval (Table 1). The exact decomposition at each age captures the 176 

relative importance of the different processes across the lifespan. Nevertheless, low 177 

sample sizes in late life is the rule because few individuals survive to old age, which 178 

leads to high uncertainties in late-life estimates (Rebke et al. 2010; see also the example 179 

below). The small sample of old individuals prevents an accurate assessment of 180 

senescence patterns at oldest ages, an important focus of all studies of age-specific 181 

variation in traits (Evans et al. 2011, Nussey et al. 2011, Zhang et al. 2015), and makes it 182 

difficult to compare the strength of processes between early and late life. This is not 183 

specific to this method, but reflects the trade-offs between analyses based on a model of 184 

the trait-age relationship, which might be biased if the model is a poor approximation but 185 

is more precise, and more descriptive approaches, which are less biased but less precise. 186 

In addition, the method requires a full detection of individuals because they have to be 187 

measured each year they were present in the population to provide an exact 188 

decomposition (Rebke et al. 2010; however see Nussey et al. (2011) and Fig. 2A for 189 

dealing with individuals that are not measured every year but their fate is known). 190 

Consequently this approach has only rarely been used to date (Evans et al. 2011, Nussey 191 

et al. 2011, Evans and Sheldon 2013, Hayward et al. 2013, Zhang et al. 2015).  192 

 193 
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To account for annual environmental effects, Rebke et al. (2010) proposed using the 194 

relative value of the trait, i.e. subtracting the annual mean (see also e.g. McCleery et al. 195 

(2008)). This, however, is not always intuitive for traits following a binary distribution 196 

(e.g. reproduced successfully or not), and can be problematic for traits following a 197 

Poisson or generalized Poisson distribution (e.g. clutch size in Kendall and Wittmann 198 

(2010)). Relative values of a trait can also be influenced by the effects of the environment 199 

on age structure and therefore the mean value of the trait. For example, consider a species 200 

that starts breeding as one year old but with a relatively low breeding success compared 201 

to older individuals, and that harsh conditions mostly affect young individuals. Following 202 

a harsh winter, there will be few 1 year olds in the population, and therefore the mean 203 

value for the population will be high, and the relative value of the trait will be low, 204 

whereas the opposite will happen following a benign winter. Given that there are fewer 205 

individuals surviving harsh than benign winters, the analyses might therefore be biased 206 

towards the benign winters. In addition, the relative value of a trait cannot control for 207 

fixed or lifetime environmental effects, for example if improvement with age is stronger 208 

for individuals born at low density. Most importantly, it does not quantify environmental 209 

effects and therefore cannot compare the relative importance of environment, ontogeny 210 

and selection. 211 

 212 

Compared with the statistical approach presented in the next section, the demographic 213 

decomposition proposed by Rebke et al. (2010) does not need to estimate or correct for 214 

heterogeneity in individual differences. This is advantageous compared with the 215 

statistical modelling because the latter accounts for and quantifies heterogeneity using 216 
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specific fixed and random effects, and the modelling choices for these effects can 217 

influence results and may not always reliably estimate heterogeneity (van de Pol and 218 

Wright 2009, Hamel et al. 2012). Still, this means that the demographic decomposition 219 

does not provide a direct quantification of individual heterogeneity, but it can be used as 220 

an initial step to describe this heterogeneity. To quantify processes within a single 221 

population, however, the results obtained from the demographic decomposition will not 222 

be affected by heterogeneity, unless one wishes to compare two distinct time periods that 223 

will be composed of different individuals. 224 

To illustrate the method, consider the example of age-related body mass changes in male 225 

bighorn sheep (Ovis canadensis; see Appendix 1 for details on data and study area). The 226 

mass observed at the population level may be affected by viability selection because 227 

smaller individuals are less likely to survive (Nussey et al. 2011, Hamel et al. 2016), 228 

particularly in early life (Gaillard et al. 1997, Théoret-Gosselin et al. 2015). In addition to 229 

this natural disappearance, selective harvesting also drives phenotypic change in this 230 

population because adult males (≥4 years) are harvested based on their horn size, which 231 

is correlated with body mass (Coltman et al. 2005, Bonenfant et al. 2009). We can 232 

therefore expect artificial disappearance of heavier males from age 4 and over. 233 

Immigration could also lead to appearance of different phenotypes, for instance if heavier 234 

males are more likely to disperse. That being said, only seven cases of male immigration 235 

have occurred over 43 years. We therefore excluded immigrants and two transplanted 236 

males and ignored appearance in this example. We decomposed the change in body mass 237 

with age as P = I + DN + DH, where DN is the disappearance due to natural selection and 238 

DH is the disappearance due to artificial selection (Fig. 2B). Note that because change in 239 
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mass is not linear with age, we could not use annual mass to control for annual variation, 240 

and hence used absolute rather than relative change in mass as in Nussey et al. (2011; but 241 

see “Combining approaches” section for a solution to this limitation). P showed a marked 242 

increase until four years of age, after which mass continued to increase slightly (Fig. 243 

3A,B). Because senescence in body mass is observed in females of the same population 244 

(Nussey et al. 2011), perhaps the absence of senescence in males is due to trophy hunting 245 

removing males from the population before physiological functions begin to deteriorate. 246 

Nevertheless, the pattern of change in mass with age was similar at the individual level I, 247 

with no within-individual declines in mass at old age after accounting for artificial and 248 

natural selection (Fig. 3B).  249 

 250 

The contribution of natural selective disappearance to age-related changes was clearly 251 

positive during the first years of life, supporting the occurrence of strong viability 252 

selection against lighter males in early life. For example, the mass difference at age 0 253 

between males surviving to age 1 (8.9 kg) and all males (8.1 kg) indicates that selective 254 

disappearance causes an increase of 0.8 kg in mass. Later in life, natural disappearance 255 

was small and much more variable, with fluctuations from positive to negative selection 256 

and vice versa from one age to the next. Estimates were also uncertain and imprecise, 257 

with confidence intervals often widely overlapping zero and widening at old ages due to 258 

low sample sizes (Fig. 3B). If we neglect the uncertainty of the estimations in late life, 259 

the absolute change in mass due to disappearance between ages 9 and 10 is greater than 260 

between ages 0 and 1 (Fig. 3B). Nonetheless, the difference of 0.8 kg at age 0 represents 261 

a 10% increase in mass induced by selective disappearance, which is larger than the 3% 262 
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change in mass induced by selective disappearance at age 9. This small effect suggests 263 

little influence of natural selective disappearance in late life. On the other hand, 264 

disappearance due to artificial selection had a considerable influence in adult males, 265 

particularly those aged 4 to 8 years (Fig. 3B). Artificial disappearance due to harvesting 266 

always selected against heavier males, with survivors being up to 2 kg lighter than the 267 

whole population (Fig. 3B). 268 

 269 

As suggested by Nussey et al. (2011), the relative contribution of selective disappearance 270 

and within-individual change to the observed population-level changes of a trait can also 271 

be estimated across the lifespan by calculating the proportion of absolute phenotypic 272 

change due to selective disappearance as PD = (|!"#$| / (|!"#$| + |%"#$ |))*100, where 273 

|!"#$| and |%"#$ | are respectively the cumulative sum of absolute Di,i+1 and Ii,i+1	values 274 

(illustrated in Fig. 2A) across all ages. The proportion of absolute phenotypic change due 275 

to ontogeny PI is equal to 1 ─ PD. These proportions can also be calculated over 276 

particular life stages, e.g. prime-age and senescence. Across all ages, the combined 277 

disappearance effect of artificial and natural selection accounted for 9.2% of the 278 

phenotypic change in body mass. This proportion was higher in adulthood (≥ 4 years, PD 279 

= 24.5%) compared to early life (0-3 years, PD = 2.5%). This comparison, however, does 280 

not account for uncertainty around the estimates at older ages (Fig. 3B), and for the 281 

nonlinearity of the change in mass with age, which can be taken into account by working 282 

on the relative rather than absolute quantification of disappearance. 283 

 284 

Statistical modelling 285 
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In 2006, van de Pol and Verhulst proposed accounting for selection processes by using a 286 

within-individual centring approach, a technique common in social sciences (Kreft et al. 287 

1995, Hofmann and Gavin 1998, van de Pol and Verhulst 2006). This approach uses a 288 

random effect model that specifically includes age at appearance and/or disappearance as 289 

covariates, thus separating the within- and between-individual contributions to ageing. To 290 

start with, a random effect model can decompose the total variance in its between- and 291 

within-individual components, taking into account some of the dependence of repeated 292 

measures of the same individual at different ages (eqn. 1, Fig. 4A; additional dependency 293 

might be due to e.g. first-order autocorrelation, see Hamel et al. (2012)). By including 294 

individual identity as a random intercept, the model provides a measure of change with 295 

age (b1, Fig. 4A) that accounts for this non-independence. If an individual has a higher 296 

value for a trait than another individual, this difference in intercepts among individuals 297 

will be captured by , which estimates the among-individual variance in intercept298 

(Fig. 4A). The random effects are often called latent effects (described as, e.g., “quality”) 299 

because the underlying random variable is not measured.  300 

 301 

As proposed by van de Pol and Verhulst (2006), adding the age of each individual at 302 

appearance and/or disappearance (eqn. 2, Fig. 4B) as a covariate to this model allows 303 

evaluating the influence of timing of appearance/disappearance on within-individual 304 

changes with age. In the standard random effect model (Fig. 4A), the difference in 305 

phenotypic quality among individuals is modelled, whereas the model that includes 306 

selection (Fig. 4B) also includes the probability that phenotypic quality covaries with the 307 

chance of appearing or disappearing from the population. If one studies reproduction, for 308 

u0 j σ u
2

α j
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instance, age of appearance will be age at first reproduction and age at disappearance will 309 

be age at last reproduction. The random effect model that includes 310 

appearance/disappearance as a covariate provides a coefficient that measures the change 311 

in the trait intercept that results from variation in age at appearance/disappearance, bS 312 

(Figs 4B, 5B), thereby measuring the strength of the selection process. It also provides a 313 

coefficient that measures the within-individual change of the trait with age, bW  (Figs 4B, 314 

5B), a measure of ontogeny that accounts for appearance and disappearance, and 315 

therefore is not biased by selection. We can also compute the strength of the between-316 

individual effect, which is simply the addition of the within-individual change and the 317 

selection effect, i.e. bB = bW + bS (Figs 4B, 5B).  Figure 5 illustrates how these parameters 318 

can be quantified, examining the relative change in offspring mass produced by mothers 319 

with different ages at first reproduction. The figure is based on empirical data from a 320 

long-term mountain goat population (see Appendix 1 for details) where females reach 321 

asymptotic mass at 7 years of age but primiparity ranges from 3 to 8 years (Festa-322 

Bianchet and Côté 2008). We may therefore suspect the occurrence of fertility selection if 323 

mothers delaying first reproduction produce heavier offspring because the trade-off 324 

between growth and reproduction weakens with age (Hamel and Côté 2009), or through 325 

experience, as primiparous mothers produce lighter offspring (Côté and Festa-Bianchet 326 

2001). We grouped females aged 8 years and older because we did not expect difference 327 

in offspring mass after females had reached asymptotic mass (Côté and Festa-Bianchet 328 

2001). To exemplify how fertility selection can be modelled, we accentuated the 329 

appearance effect by simulating a series of random values with a mean of 0.7 and a 330 

standard deviation of 0.5 (n=196 simulated values, one for each kid mass available). We 331 
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then multiplied this value by the age at first reproduction of the mother (centred) and 332 

added it to the mass of the kid.  333 

 334 

To quantify processes, we ran mixed models (“lmer” function, “lme4” package in R; 335 

Bates et al. (2015), R Development Core Team (2016)) according to eqn. 1 and 2 (Fig. 336 

4A,B). This procedure estimated the relative change in kid mass with increasing maternal 337 

age at both the population level b1 (Fig. 5A) and the individual level bW (ontogeny; Fig. 338 

5B), as well as the influence of appearance bS (fertility selection; Fig. 5B). These 339 

parameters are then directly comparable and allow quantifying the relative importance of 340 

each population process (Fig. 5C). Because we forced a simulated effect of fertility 341 

selection, we see as expected that the change observed at the population level is not the 342 

result of a change with increasing age at the individual level, but is entirely caused by 343 

females that started to reproduce later and thereby produced heavier offspring. As for the 344 

demographic decomposition approach, we can obtain not only the quantification of the 345 

different processes, but also the within-individual trajectory by predicting the trajectory 346 

for the mean value of age at appearance (Fig. 5B) (but see “Challenges” section for 347 

different ways of predicting trajectories depending on the questions of interest). 348 

 349 

This statistical approach allows us to quantify directly ontogeny, bW, and selection 350 

processes, bS, over the lifespan (Table 1), but does not provide an exact decomposition at 351 

each age. The models, however, are quite flexible: they can be used when the average 352 

number of repeated measures of individuals is low (e.g. less than 2 in Class and Brommer 353 

(2016)) and can account for different functions of age and age at 354 
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appearance/disappearance (van de Pol and Verhulst 2006). For instance, we could model 355 

age as a factor, providing a measure of ontogeny at each age for a trait showing a 356 

nonlinear increase with age, such as growth (Fig. 3A). This, however, would assume that 357 

the effect of age at appearance/disappearance is constant with increasing age, an 358 

unjustified assumption because selection processes are likely to change at different life 359 

stages as illustrated in the bighorn sheep example (Fig. 3B). A more prudent approach 360 

would be to model the interactive effect of age and age at appearance/disappearance (see 361 

simulated example in Appendix 2). In such case, age and age at 362 

appearance/disappearance cannot both be used as factors because they would not all be 363 

identifiable. An alternative would be to use age categories to estimate processes for 364 

specific life stages, e.g. to contrast growth vs. senescence. An appropriate selection of age 365 

categories, however, might not always be obvious, and the choice could affect the results. 366 

If the aim is not to contrast specific life stages, then using a nonlinear effect of age could 367 

be more appropriate. Modelling age with an ordinary polynomial or a spline would also 368 

allow smoothing the unexpected fluctuations in the estimates we sometimes obtain 369 

between ages as a result of low sample size in late life (e.g. Fig. 3B). That being said, 370 

although nonlinear modelling can account for selection processes and provide unbiased 371 

predictions of phenotypic change with age, the beta estimates describing the nonlinearity 372 

cannot be directly used to quantify ontogeny and selection (but see “Combining 373 

approaches” section for a solution).  374 

 375 

To account for environmental effects, van de Pol and Verhulst (2006) also suggested 376 

using the relative value of the trait, which suffers from the same limitations as with the 377 
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demographic decomposition method. Other studies used year as a fixed factor in 378 

statistical models (e.g., Nussey et al. 2011). This completely accounts for annual 379 

variation, but cannot quantify the influence of the environment on phenotypic change to 380 

compare its relative importance with ontogeny and selection. One solution would be to 381 

incorporate environmental effects directly in the models (e.g. Bouwhuis et al. 2009). 382 

Environmental covariates added directly in the model can estimate βE (eqn. 3; Fig. 4C), 383 

thereby quantifying the ontogeny that is independent of the environmental effect as well 384 

as quantifying the environmental effect itself. In Figure 4C, we illustrated an example 385 

with an environmental condition that can vary at each age, but we could also replace 386 

 with to model a static/fixed environmental condition (e.g. cohort effect; 387 

Descamps et al. 2008). Because individual heterogeneity could also change with age or 388 

depend on environmental conditions (Schielzeth and Forstmeier 2009, Cam et al. 2016), 389 

we could model a dynamic heterogeneity by adding a random slope with either age, i.e. 390 

 (Pennell and Dunson 2006, Morrongiello and Thresher 2015), or 391 

environment, i.e.  (Dingemanse and Dochtermann 2013; see also Chambert et 392 

al. (2013) for an example with a binary environmental covariate).  393 

 394 

To illustrate the quantification of environmental effects, we used the November-March 395 

anomalies of the North Pacific Index (NPI; Trenberth and Hurrell 1994) as a measure of 396 

the annual environmental variation in winter conditions during the gestation of female 397 

mountain goats to assess this environmental influence on offspring mass. NPI is a global 398 

climate index with higher anomalies characterising colder and snowier winters than lower 399 

anomalies in this study area (Hamel et al. 2009c). Adding this variable to the model 400 

βEγ ij βEγ j

(βW +uAij )ageij

(βE +uEij )γ ij
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according to eqn. 3 (Fig. 4C) with standardized predictors, we can obtain βE and compare 401 

its relative influence with that of ontogeny and selection (Fig. 5D). This simulated case 402 

shows that NPI tends to have a negative relative influence, such that harsh winters might 403 

reduce offspring mass (Fig. 5D). Including this environmental variable supported that 404 

selection was a dominant process over ontogeny (Fig. 5C), but also allowed us to assess 405 

that selection was three times more important than environmental variation in explaining 406 

the phenotypic changes of offspring mass as mothers are ageing (Fig. 5D). Obviously, 407 

this approach is highly dependent on the choice of the environmental variable. In this 408 

case, the model including NPI had 30% greater residual variance than a model including 409 

year as a factor, and the latter also provided a better fit according to a likelihood ratio 410 

test, suggesting NPI only captured a limited part of annual variation. The interpretation of 411 

the relative influences should therefore be made specific to the environmental factor 412 

measured unless the factor is shown to capture most of the annual variation in the studied 413 

trait. One advantage of working with covariates, however, is that other factors that might 414 

influence traits can also be included and their relative influence can be compared. For 415 

instance, the body condition of an individual often affects its reproduction, and including 416 

condition as a covariate can account for such a correlation and allow quantifying its 417 

effect. Correlations among traits can alternatively be accounted for by using a joint 418 

modelling approach, which will be more appropriate to use when aiming to quantify the 419 

dependency among traits and to identify tactics related to this dependency (see “Joint 420 

modelling” section). 421 

 422 
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One major advantage of the statistical modelling approach is that it can handle a large 423 

proportion of missing values, such as when traits are only measured for a fraction of the 424 

individual lifetime, and results will be robust as long as the occurrence of missing values 425 

is not dependent on the process being estimated, such as individuals with a low weight 426 

not being measured. Missing values in some independent variables will reduce the power 427 

of assessing selection and environmental processes (van de Pol and Verhulst 2006), an 428 

important limitation in the quantification of these processes. Another advantage of these 429 

models is that they can also be performed in a capture-mark-recapture (CMR) 430 

framework, thereby providing a way to account for the probability of detection when it is 431 

below 1 (see review on CMR models by Gimenez et al. (2017)). One issue, however, is 432 

the correlation between fixed factors in the models (van de Pol and Verhulst 2006), 433 

because longevity will inevitably be higher and less variable at older than at younger ages 434 

of trait measures, and one must check that the parameter estimates are not affected by this 435 

potential correlation.  436 

 437 

Combining approaches 438 

The statistical modelling approach presented by van de Pol and Verhulst (2006) and the 439 

demographic decomposition approach presented by Rebke et al. (2010) are the two main 440 

methods that have been used up to now. Statistical modelling has been preferred (e.g. 187 441 

citations for van de Pol and Verhulst vs. 71 for Rebke et al., Web of Knowledge accessed 442 

8. Aug. 2017). In the few cases when both approaches have been used (Evans et al. 2011, 443 

Nussey et al. 2011, Evans and Sheldon 2013, Hayward et al. 2013, Zhang et al. 2015), 444 

studies have first used a statistical model to test for the structure of the selection process 445 
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and then performed the demographic decomposition to illustrate the different 446 

contributions at each age. This two-step approach is interesting because it uses the 447 

strengths of each method. Still, the number of studies with the data required to perform 448 

the second step remains rather limited. Furthermore, for traits that change nonlinearly 449 

with age such as mass, the annual mean will vary with age structure, and hence cannot be 450 

used to control for annual variation in the second step. To solve both issues, we propose 451 

combining the two methods, which means performing the demographic decomposition 452 

using the predictions obtained from a statistical model that can include environmental 453 

covariates. This combined approach allows quantifying ontogeny and selection for 454 

specific ages or stages in cases where the data prevent from using the demographic 455 

decomposition (e.g. incomplete data), as well as quantifying environmental effects. The 456 

new parameters the combined approach allows us to estimate are highlighted in bold in 457 

Table 1. 458 

 459 

We illustrate the approach with the example on mass in male bighorn sheep (see also 460 

Appendix 2 for an example with simulated data). First, to compare with the results 461 

obtained with the decomposition method that did not account for environmental variation 462 

(Fig. 3B), we ran a set of statistical models without controlling for annual variation. The 463 

first model was built according to eqn. 1 (Fig. 4A), but with age entered as a cubic 464 

polynomial. The best polynomial degree was determined based on likelihood ratio tests, 465 

and was the same for all statistical models used in this example. We extracted mass 466 

predictions from this model, which provided body mass values at each age at the 467 

population level, i.e. average mass of all individuals (MALL, in black in Fig. 2B). Hence, P 468 
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at each age interval was the difference between MALL at age i + 1 and at age i (Fig. 2B). 469 

The second model was built according to eqn. 2 (Fig. 4B), but using longevity in 470 

interaction with age. The predictions obtained at each age from this model provided mass 471 

values at each age at the individual level, i.e. average mass of surviving individuals 472 

(MSURV, in grey in Fig. 2B). Thus, I at each age interval was the difference between MSURV 473 

at age i + 1 and at age i, and the difference between MSURV and MALL at age i was the total 474 

disappearance (Dtot, in blue in Fig. 2B) for both natural and artificial selection. To 475 

separate the effect of these two types of disappearance, we ran a third model exactly as 476 

the first one but on a data set that excluded the mass in the last year of life for individuals 477 

that were shot. This model provided mass predictions at each age for both survivors and 478 

individuals that died from natural causes (MSURV+N.DEATH, in red in Fig. 2B). Thus, the 479 

disappearance due to natural causes at each age DN was the difference between MSURV and 480 

MSURV+N.DEATH at each age, and the disappearance due to hunting at each age DH was 481 

equal to Dtot – DN (see Fig. 2B). To calculate the uncertainty on parameters P, I, DN, and 482 

DH, we performed a bootstrap (n=1000 simulations) where we used the first model to 483 

simulate new response values conditional on the individuals already in the data set (i.e. 484 

re.form=NULL in the “simulate” function in R). We conditioned the simulations on the 485 

same individuals because our goal is to explain the contribution to ontogeny and selection 486 

observed in these individuals. We then reran the three models with the simulated mass 487 

responses, estimated P, I, DN, and DH for each simulation, and used the 0.025 and 0.975 488 

percentiles of each parameter to represent the 95% confidence interval. The results from 489 

this combined approach (Fig. 3C) showed similar patterns of ontogeny, natural and 490 

artificial selection as the demographic decomposition (Fig. 3B). The main difference was 491 
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that at older ages the changes were smoother across ages with the combined method 492 

because we modelled age as a polynomial, which is less sensitive to age-specific 493 

fluctuations in late life. This is advantageous in this case because age-specific changes in 494 

body mass are expected to be smaller once males have reached asymptotic body mass 495 

than during the growing period. Although senescence in body mass occurs in male 496 

ungulates (e.g. Carranza et al. 2004, Mainguy and Côté 2008, Jégo et al. 2014), the large 497 

age-specific changes obtained from the demographic decomposition were most likely due 498 

to low sample sizes.  499 

Then, to illustrate the potential influence of environmental variation in the different 500 

contributions, we repeated the combined approach, but included in each statistical model 501 

the average mass of yearlings each year as a covariate to account for annual variation in 502 

mass (i.e. following eqn. 3 instead of eqn. 2, Fig. 4). Yearling mass is an index of annual 503 

resource availability in this bighorn population (Festa-Bianchet et al. 2004), and in this 504 

case it provided a reliable metric to control for annual variation because these models 505 

were equivalent to models including year as a factor (likelihood ratio tests equal to 1). 506 

Extracting the predictions from these models allowed calculating contributions to P, I, 507 

DN, and DH that accounted for environmental effects (Fig. 3D). Interestingly, the 508 

disappearance caused by viability selection in the three first age intervals was reduced by 509 

half when controlling for annual variation. This suggests that environmental variation is a 510 

determinant mechanism that drives viability selection in young male bighorn sheep, and 511 

illustrates the importance of accounting for environmental variation.  512 

 513 

Mixture modelling  514 
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The statistical modelling approach assumes that the variability representing individual 515 

heterogeneity, , is normally distributed (Fig. 4). That assumption, however, is violated 516 

when different life-history tactics coexist within a population, resulting in multimodal 517 

distributions (Verbeke and Lesaffre 1996, Stamps et al. 2012). Indeed, the response of 518 

individuals sharing similar trait trajectories is likely to differ from that of individuals with 519 

different trait trajectories, as well as from the population mean response (Fig. 1M, N). For 520 

instance, individuals born in years with favourable or unfavourable conditions could form 521 

clusters with distinct growth tactics throughout the lifetime, as shown in large herbivores 522 

(Hamel et al. 2016, 2017). Life-history tactics represent distinct ontogenetic patterns that 523 

might be influenced differently by selection processes and environmental effects, such 524 

that the relative contributions of these processes are likely to differ across tactics.  525 

 526 

A mixture modelling approach is particularly useful to tackle life-history tactics 527 

(McLachlan and Peel 2000; see Hamel et al. (2017) for a review). These models have 528 

been used widely in psychology, sociology, and medicine (Farewell 1982, Jones et al. 529 

2001, Hoeksma and Kelderman 2006, Karlis and Meligkotsidou 2007, Curran et al. 530 

2010), and are now increasingly used to model individual heterogeneity in survival in 531 

capture-mark-recapture studies (Cubaynes et al. 2012, Ford et al. 2012, see Gimenez et 532 

al. (2017) for a review). Finite mixture models (Fig. 6) allow assessing whether there is 533 

structured variation in life-history tactics within a population and provide an objective 534 

classification of individual trajectories into clusters, each representing a life-history tactic 535 

that differs from the mean trajectory of the population (see e.g. Fig. 7). These models 536 

identify the best level of clustering between a single cluster (i.e. the population level) and 537 
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a cluster for each individual (i.e. a classical random effect), thereby working on a higher 538 

level of individual heterogeneity by focusing on the cluster level (Hamel et al. 2017). 539 

Essentially, each cluster is defined by a separate set of regression parameters (McLachlan 540 

and Peel 2000) (Fig. 6). If two clusters are found within a population, parameters from 541 

two regressions will be estimated, where the regression for a specific cluster contains 542 

observations from all individuals weighted by their probability of belonging to this 543 

cluster. If clusters are well defined (i.e. the individual probability of belonging to a given 544 

cluster is either 0 or 1), then it will be like running a separate regression on each cluster.  545 

 546 

Mixture models allow us to compare the general ontogenetic curve of clusters with that of 547 

the population, thereby determining how processes vary across clusters and how this can 548 

affect what we observe at the population level. For example, mixture models fitted on 549 

body mass data of different ungulate populations revealed that the ontogenetic pattern of 550 

growth varies across clusters, and that the rate observed at the population level might not 551 

always be representative of all clusters (see Appendix 1 for modelling details). The model 552 

for male bighorn sheep (Fig. 7A) shows that there are three growth tactics within the 553 

population and that growth rate differs among tactics before the prime-age stage, leading 554 

to distinct asymptotic body mass across tactics during the prime-age stage. Overall, only 555 

one growth tactic would be well represented by ontogenetic changes measured at the 556 

population level (shown as the red curve in Fig. 7A). Note that there is almost no 557 

difference at age 0 because annual environmental conditions were included in the model, 558 

thereby accounting for differences among cohorts due to conditions in the year of birth. 559 

In male roe deer (Fig. 7B), three very different growth tactics exist, which vary in terms 560 
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of the onset of senescence, but the strength of senescence (slope of the decrease) is 561 

similar across growth tactics. In female bighorn sheep (Fig. 7C), the four growth tactics 562 

illustrate not only a difference in the onset of senescence, but also in the rate of 563 

senescence. These examples demonstrate that, by concentrating on the cluster level, 564 

mixture models allow assessing a different level of individual heterogeneity that 565 

corresponds to life-history tactics when analysing life-history trajectories. 566 

  567 

Essentially, any parameter describing ontogeny, selection, and environmental processes 568 

that can be included in the statistical modelling approach (i.e. bW, bS, bE, Fig. 4) can also 569 

be included in the mixture modelling approach to quantify these processes specifically for 570 

each cluster trajectory (e.g. bWc1, bWc2, bSc1, bSc2, bEc1, bEc2, Fig. 6). This allows 571 

quantifying the relative importance of these processes for each cluster and contrasting 572 

them within a population. For example, if we run again the mixture model on mass in 573 

male bighorn sheep including age at disappearance to segregate the clusters (assuming a 574 

linear effect of disappearance for the sake of simplicity), we observe that the 575 

disappearance of light individuals varies across the three clusters, being 5 times stronger 576 

in one cluster out of the two that showed a strong support for disappearance 577 

(disappearance estimate [95% confidence interval]: bSc1 = 0.05 [0.00; 0.10], bSc2 = 1.03 578 

[0.89; 1.17], bSc3 = 0.21 [0.07; 0.35]).  579 

 580 

Although multimodality resulting from the occurrence of different clusters corresponding 581 

to different tactics within a population violates the assumption of normality, this does not 582 

affect fixed effects at the population level (Verbeke and Lesaffre 1997, Hamel et al. 583 
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2017). Thus, the overall influence of these processes at the population level will not differ 584 

whether a random effect model or a mixture model is used in the presence of clusters. 585 

The interest in using mixture models lies in quantifying and comparing these processes 586 

within each cluster, such that the details of the relative contribution for distinct types of 587 

individuals provide a better understanding of how ontogeny, selection, and environmental 588 

variation might interact within a population. Furthermore, although fixed effects are not 589 

biased at the population level in the presence of clusters, the variance describing 590 

individual heterogeneity can be greatly overestimated (Hamel et al. 2017). By 591 

incorporating a categorical latent variable that aggregates subjects into clusters sharing 592 

similar traits, mixture models capture the multimodal dimension that structures individual 593 

heterogeneity (McLachlan and Peel 2000). Hence, by estimating the between-individual 594 

variance present at the cluster level, mixture models can better quantify the variance 595 

within a population and its stratification. For instance, variance in the ontogenetic pattern 596 

of growth in male bighorn sheep at the population level ( ) was 25.8, whereas it was 597 

much lower within clusters and varied among clusters ( = 3.2, = 14.9, and 598 

= 13.0). The high variance at the population level mainly resulted from the large 599 

dispersion among the three main tactics rather than the dispersion among individuals 600 

within a tactic. Essentially, this means that individual trait distribution can be 601 

heterogeneous, and mixture modelling is a powerful approach to account for this 602 

structured heterogeneity. That being said, these models are much more complex and 603 

much longer to run than mixed models, and determining the number of clusters can be 604 

particularly challenging, especially for traits following a binary distribution (see Hamel et 605 

al. (2017) for a review of the challenges with mixture modelling). If one is not interested 606 

σ u
2

σ u_ c1
2 σ u_ c2

2

σ u_ c3
2



  28 

in obtaining cluster-specific parameters to contrast life-history tactics, then one 607 

alternative is to use infinite mixture models in a Bayesian framework, which does not 608 

require settling the number of clusters (Rasmussen 2000, Manrique-Vallier 2016). 609 

Obviously, different methods offer different possibilities for quantifying variance within 610 

a population, and the choice will depend on the question addressed and the biological 611 

knowledge acquired so far for the trait studied.  612 

 613 

Joint modelling  614 

One major finding in the study of life-history strategies and individual heterogeneity is 615 

that many traits are likely to be interdependent (van Noordwijk and de Jong 1986, Lindén 616 

and Møller 1989, Dobson et al. 1999, Rollinson and Rowe 2016), such that their 617 

covariance should be considered to assess reliably the evolutionary forces shaping these 618 

traits and their influence on population dynamics. Indeed, life-history theory predicts 619 

trade-offs among traits such as survival, reproduction, and growth, with expectations of 620 

negative correlations between traits (see e.g. Roff (1992) and Stearns (1992) for reviews). 621 

Yet, many studies have shown that individual heterogeneity can mask these trade-offs 622 

and lead to positive correlations because the best individuals always do better (van 623 

Noordwijk and de Jong 1986, Cam et al. 2002, Weladji et al. 2006, Hamel et al. 2009a). 624 

Joint modelling is an approach perfectly suited to account for such dependency because it 625 

quantifies the covariance across life-history traits. Thus, a joint modelling approach 626 

directly models the latent correlation that commonly occurs across traits as a result of 627 

individual heterogeneity and provides more precise estimates of age-related changes in 628 

traits.  629 
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 630 

For instance, Cam et al. (2002) modelled simultaneously the probability of survival and 631 

reproduction of kittiwakes (Rissa tridactyla). They combined these two dependent 632 

variables by modelling their variance-covariance matrix to estimate the correlation 633 

between individual effects. They found a strong positive correlation between 634 

reproduction and survival, and the joint analysis estimated the probability of reproduction 635 

while accounting for its correlation with disappearance. Their results provided clear 636 

evidence that age-specific probability of reproduction observed at the population level 637 

showed weaker senescence compared with estimates at the individual level. That 638 

difference increased with age as a result of the strong positive correlation between 639 

reproduction and survival. Cam et al. (2002) worked on two traits, but more traits could 640 

be included in a joint model (see e.g. Browne et al. 2007, Cam et al. 2013). Of course, the 641 

greater the number of traits included, the more complex the variance-covariance matrix, 642 

and more data are needed to estimate all parameters. Furthermore, the joint modelling 643 

approach can account for imperfect detection by using a capture-mark-recapture 644 

framework.  645 

 646 

Similarly, mixture models can provide a suitable integrating approach to model the 647 

covariance among traits at the cluster level. For example, we used joint modelling to 648 

determine the covariance among body growth, relative reproduction (the number of 649 

offspring produced at age i for individual j/total number of offspring produced by all 650 

individuals that year), and the probability of survival in bighorn sheep males (see 651 

Appendix 1 for details on data and description of the analysis). We included age at 652 
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appearance and disappearance to account for selection processes, and mean yearling mass 653 

to account for annual variation in environmental conditions. We found three clusters 654 

corresponding to three life-history tactics (Fig. 8). In the tactic illustrated in red (Fig. 8) 655 

males do well in all traits. They have a very strong growth early in life and reach the 656 

highest asymptotic mass as adults. They also obtain the highest reproductive output, 657 

particularly at old ages, and have a fairly high survival that does not seem to decrease 658 

with increasing age as fast as for individuals playing other tactics. Males playing the two 659 

other tactics perform generally less well on most traits, and the performance of these 660 

males differs among traits. Males have similar growth early in life in both tactics, but 661 

males in black (Fig. 8) allocate to growth for a longer period and attain a larger 662 

asymptotic mass than those males in blue (Fig. 8). The males playing the "black tactic" 663 

almost never manage to reproduce successfully during their lifetime (Fig. 8). 664 

Interestingly, the decrease in growth rate observed around age 4 in the males playing the 665 

"blue tactic" corresponds to the time when these males started allocating to reproduction 666 

(Fig. 8). These results suggest that mass is unlikely to be the only determinant of 667 

reproduction. Indeed, males playing the "red tactic" achieve greater reproduction likely 668 

because they have reached a higher mass, which is positively correlated with social rank 669 

(Pelletier and Festa-Bianchet 2006) and thereby with mating effort (Pelletier et al. 2006). 670 

Males playing the "black tactic" allocate to growth and reach a higher asymptotic mass 671 

than males playing the "blue tactic", which started allocating to reproduction from age 4, 672 

but they have very low reproductive success compared to males playing the "blue tactic". 673 

Therefore, the higher asymptotic mass achieved by males playing the "black tactic" is 674 

likely due to a much lower allocation to reproduction compared to males playing the 675 
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"blue tactic". Finally, males playing the "blue tactic" also had a very low early survival 676 

(i.e. at ages 0 and 1) compared with males playing the two other tactics. This might have 677 

selected against lower quality males, and may explain the higher reproduction of males 678 

playing the "blue tactic" compared to males playing the "black tactic". In such long-lived 679 

and sexually dimorphic species, body mass is a fundamental determinant of fitness 680 

(Pigeon et al. 2017), having a strong influence on both survival, particularly in early life 681 

(Plard et al. 2015, Théoret-Gosselin et al. 2015), and reproduction (Pelletier and Festa-682 

Bianchet 2006, Pelletier et al. 2006, Mainguy et al. 2009). Therefore, these different life-683 

history tactics might be maintained because the fitness costs and benefits of each tactic 684 

likely vary during a male’s lifetime. 685 

Remaining challenges 686 

Missing values 687 

In most studies, recapture/resighting rates are less than 1, meaning that not all surviving 688 

individuals are measured at all ages, and therefore the within-individual changes I, the 689 

appearance A, and disappearance D do not represent an exact decomposition of P. For 690 

instance, even though the resighting probability of surviving male bighorn sheep was 691 

>95%, the average recapture probability of surviving males was 77%, meaning that the 692 

data set on body mass includes more than 20% missing values. Missing values are 693 

common in life-history studies, and bias may arise if the probability that a value is 694 

missing is associated with the trait studied. For example, comparing the average mass in 695 

each age class for male bighorn sheep measured at age i and i + 1 with the average mass 696 

for males that survived from age i to i + 1 but were only measured at age i (i.e. males 697 

with missing values), we see a tendency for missing values to occur in heavier males 698 
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(Fig. 9). Larger males were thus less likely to be weighed the following year than lighter 699 

males, meaning that the within-individual changes across these ages may be biased. 700 

Removing bias requires modelling the missing value process (Little 1995). 701 

 702 

Imperfect detectability 703 

In addition to missing values, imperfect detection probability is the rule in most studies 704 

and is therefore another major challenge when quantifying the contribution of ontogeny 705 

and selection to phenotypic changes. This problem is directly linked with the missing 706 

value issue because the detection probability will directly determine the rate of missing 707 

values, as well as the survival estimates. This problem is addressed in detail in Gimenez 708 

et al. (2017).  709 

 710 

Standardization  711 

For comparing responses among traits within a population or for comparing the same trait 712 

among populations or species, one is confronted with issues of standardization – i.e., 713 

finding a common measurement scale (Hamel et al. 2014). This can result from the 714 

variable type (e.g. numeric vs. binary, with implicit differences in variances that are used 715 

for standardizing variables; Gelman (2008)), or from different transformations associated 716 

with the statistical analyses (e.g. logit vs. log for proportions; Link and Doherty (2002)). 717 

Analyses have also used proportional changes (see the discussion of Rebke’s method, and 718 

Hamel et al. (2016)), which might be sensitive to the reference value used. One must also 719 

remember that inferences are model-dependent, meaning that the choice of the model 720 

structure can influence effect sizes (e.g. Knape et al. 2011). This makes comparisons 721 
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among study systems challenging because different systems often require different 722 

modelling structures. Moreover, the variability of a trait might reflect evolutionary 723 

changes (e.g. environmental canalization as for adult survival in long-lived vertebrates; 724 

Gaillard and Yoccoz (2003)), or differences in environmental variability. There is no 725 

simple solution to this problem (Greenland et al. 1986), except that it requires careful 726 

consideration of both what causes variation in heterogeneity, and of its consequences.  727 

 728 

Standardization issues also arise when comparing the strength of different predictors, for 729 

instance among ontogeny, selection, and environmental processes or for a given process – 730 

e.g. contrasting natural versus artificial selection across different environmental 731 

conditions. Predictors need to be standardized (Schielzeth 2010) to provide estimates of 732 

the relative influence of ontogeny, selection, and environmental variation that are 733 

comparable, but estimates are then not comparable in terms of units of change of the trait 734 

with age. This may be problematic when the aim is to compare how these processes 735 

change at each age, and in such cases keeping the units of change with age might be more 736 

appropriate to contrast the relative influence of ontogeny and selection processes. When 737 

comparing the relative influence of various environmental variables, however, 738 

standardizing the environmental estimates is recommended. Standardization depends on 739 

the reference value used, and the choice of the reference level to measure climate 740 

variability is fundamental but far from simple (Harris et al. 2014). When the aim is to 741 

evaluate whether the variability observed during the ecological study is affecting the 742 

traits observed, using the variability observed in the data would be appropriate. 743 

Nevertheless, variability observed in climatic data (i.e. historical variability) could be 744 
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useful to determine how climate change has affected traits over time. Essentially, 745 

standardization requires specifying what kind of question we are trying to answer to 746 

insure valid comparisons (Nakagawa and Cuthill 2007), and effect sizes should be 747 

interpreted with careful considerations of the reference value used. Above all, authors 748 

should present the standard deviations used for standardizing variables in order to retrieve 749 

the unstandardized estimates. 750 

 751 

Summary 752 

Understanding how life-history traits vary as individuals age is central to life-history 753 

theory because age-specific variability influences the evolution of traits and their effects 754 

on population dynamics. Therefore, heterogeneity resulting from individual differences 755 

affects our perception of how life-history traits change with age at the population level 756 

because selection leads to an overrepresentation of specific individuals at certain ages, 757 

and because ontogenetic processes themselves can vary across individuals owing to 758 

heterogeneity in life-history tactics. We have presented the most recent and common 759 

methods used to account for individual heterogeneity when estimating changes in life-760 

history traits with age (Table 1) and proposed a method that combines approaches to take 761 

benefit from their strengths while also overcoming many of their limitations. Our 762 

combined approach can also be used in the context of mixture modelling, which looks at 763 

different levels of individual heterogeneity, and thereby allows assessing the influences 764 

of heterogeneity in life-history tactics on the relative contribution of ontogeny, selection, 765 

and environmental variation to population trajectories. Finally, we showed that using a 766 

joint mixture modelling approach is valuable because it uses the latent correlation shared 767 
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among multiple traits to identify ontogenetic tactics with dependency among multiple 768 

life-history traits. Overall, all approaches have their strengths and limitations. The best 769 

method should be chosen in perspective with the question we aim to answer, and, as 770 

suggested by Nussey et al. (2011), complementary approaches will sometimes be 771 

necessary to obtain a better understanding of the system. 772 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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