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Abstract  

In light of ongoing, and accelerating, environmental changes in the Pacific sector of the Arctic Ocean, the 

ability to track subsequent changes over time in various marine ecosystem components has become a 

major research goal. The high logistical efforts and costs associated with arctic work demand the 

prudent use of existing resources for the most comprehensive information gain. Here, we compare the 

information that can be gained for epibenthic invertebrate and for demersal fish assemblages reflecting 

coverage on two different spatial scales: a broader spatial coverage from the Arctic Marine Biodiversity 

Observing Network (AMBON, 67 stations total), and the spatial coverage from a subset of these stations 

(14 stations) that reflect two standard transect lines of the Distributed Biological Observatory (DBO). 

Multivariate cluster analysis was used to discern community similarity patterns in epibenthic 

invertebrate and fish communities. The 14 stations reflecting the two DBO lines captured about 57% of 

the epibenthic species richness that was observed through the larger-scale AMBON coverage, with a 

higher percentage on the more southern DBO3 than the northern DBO4 line. For demersal fishes, both 

DBO lines captured 88 % of the richness from the larger AMBON spatial coverage.  The epifaunal 

assemblage clustered along the south-north and the inshore-offshore axes of the overall study region. 

Of these, the southern DBO3 line well represented the regional (southern) epifaunal assemblage 

structure, while the northern DBO4 line only captured a small number of the distinct assemblage 

clusters. The demersal fish assemblage displayed little spatial structure with only one coastal and one 

offshore cluster. Again, this structure was well represented by the southern DBO3 line but less by the 

northern DBO4 line. We propose that extending the coverage of the DBO4 line in the northern Chukchi 

Sea farther inshore and offshore would result in better representation of the overall northern Chukchi 

epifaunal and fish assemblages. In addition, the multi-annual stability of epifaunal and, to a lesser extent 

also fish assemblages, suggests that these components may not need to be sampled on an annual basis 

and sampling every 2-3 years could still provide sufficient understanding of long-term changes.  

Sampling these assemblages every few years from a larger region such as covered by the AMBON 

project would create the larger-scale context that is important in spatial planning of long-term 

observing.  
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1. Introduction 

High levels of biodiversity promote ecosystem productivity and stability and secure the multiple 

functions and services the oceans provide (Palumbi et al., 2009; Duffy et al., 2017). Essential ecosystem 

services of the Arctic Ocean for humans include climate regulation from regional to global scales 

(Overland and Wang, 2010), food and traditional lifestyle for indigenous peoples, untapped reservoirs of 

natural oil and gas resources, new shipping routes, growing tourism (Hall and Saarinen, 2010), and 

potential new fisheries as subarctic species expand into Arctic waters (Christiansen et al., 2013; 

Hollowed et al., 2013). More diverse systems are thought to have higher resilience to perturbations and 

more potential for recovery and reversibility after they are affected, compared to less diverse systems 

(e.g. Sala and Knowlton, 2006; Worm et al., 2006; Palumbi et al., 2009). Thus, biodiversity can be used as 

a gauge of ecosystem status and a “common master variable”, linking ocean management, conservation, 

and development interests (Duffy et al., 2013). Yet, biodiversity as a cornerstone of long-term observing 

systems in the marine realm is still in its infancy compared with physical observing programs.   

One of the world’s oceans in need of increased ocean observing is the Arctic. The ongoing and rapidly 

increasing drastic changes in the Arctic marine physical environment such as the loss of sea-ice cover 

and changes in heat budget are projected to elicit significant responses in the marine biological system 

(Wassmann et al., 2011). Both the ecological significance of the Arctic marine ecosystems, the increasing 

interest in resource use in the Arctic as well as the global biodiversity loss and its negative influence on 

ecosystem services (Worm et al., 2006; Cobb et al., 2014; Miller and Ruiz, 2014) spur efforts to develop 

and maintain observation programs of physical and biological changes. It is well understood that long-

term observations of the Arctic (and other) marine ecosystems are needed to create an understanding 

of natural fluctuations on seasonal to interannual time scales so that long-term, unidirectional responses 

due to climate warming or other causes can be differentiated (Magurran et al., 2010). However, the 

logistically and financially intense fieldwork in the Arctic demands a prudent approach to the 

optimization of resources and collaborative approaches in developing marine observing networks.  

Both national and international efforts are underway in the Arctic to implement long-term 

observational programs that capture variability or trends not only in the physical environment but also 

the biological system (e.g. Soltwedel et al., 2005, 2013; Michalsen et al., 2013; Moore and Grebmeier, 

2018). Most of these observing systems have a focus on seabed fauna as a long-term indicator of 

changes from climatic processes or anthropogenic influences. For example, the arctic deep-sea 

HAUSGARTEN observatory in Fram Strait has measured benthic processes since 1999, measuring faster 

than expected responses to environmental variation (Soldtwedel et al., 2016). On the European Arctic 

Barents Sea shelf, the assessment of epibenthos as part of annual fish trawl surveys is starting to provide 

long-term records that allow the assessment of responses to trawling impacts and shifts in dominant 

water masses (Jørgensen et al., 2014, 2015).  Within the Pacific Arctic, two of the currently ongoing 

observational programs that link variability or trends in the physical environment with the biological 
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system are the Distributed Biological Observatory (DBO) and the Arctic Marine Biodiversity Observing 

Network (AMBON). The goal of the DBO is to repeatedly (from seasonally to annually) sample regions of 

persistently high benthic biomass “hotspots” that are representative of the tight pelagic-benthic 

coupling and short food webs of many arctic shelf systems (Grebmeier et al., 2010; Moore and 

Grebmeier, 2018). Core measurements of the DBO program include physical and chemical properties of 

the water column and sediments; the species composition, abundance and biomass of phytoplankton, 

zooplankton and macrobenthos; and the abundance and distribution of seabirds and marine mammals, 

with only occasional epibenthic and fish trawling efforts.  DBO sampling is currently implemented as an 

international collaboration of six countries (USA, Canada, Japan, Korea, China, Russia) along cross-shelf 

transects in the Bering and Chukchi seas, and with new implementations of shelf to upper slope 

transects also in the Beaufort Sea and the Atlantic sector (Barents Sea and Fram Strait).  

The AMBON program is part of a US national effort to develop prototypes for marine observing 

networks that focus on biodiversity (Duffy et al., 2013). Biodiversity measures are at the core of the 

AMBON program, which engages in a monitoring approach of ecosystem components from microbes to 

whales. The ecosystem components monitored include temperature, salinity and nutrient 

concentrations; microbial and phytoplankton composition and microalgal biomass (as chlorophyll a); 

zooplankton, meiobenthos, macrobenthos, epibenthos and demersal fish composition, biodiversity, 

biomass and abundance; as well as seabird and marine mammal distribution along observational 

transects. The strategy of the AMBON project is to continue spatial coverage of previous observational 

programs to take advantage of existing knowledge and to create or extend much-needed time series.  

Only long-term, decadal-scale datasets provide the basis for distinguishing natural (stochastic) variability 

and regular cycles from gradual or abrupt directional changes driven by climate change and other 

human influences, e.g. chronic pollution or oil spills. For example, a 40-year time series on 

macrobenthos in the Chukchi Sea allowed detection of decadal changes in this system (Grebmeier et al., 

2015b). Similarly, a 60-year time series on zooplankton in the Chukchi Sea detected significant changes 

in copepod biomass, abundance, and biogeographic affinity in recent years (Ershova et al., 2015). 

Therefore, survey transects of the past decade-long Russian-American Long-term Census of the Arctic 

(RUSALCA) program (Grebmeier et al., 2015a) and the 7-year long Chukchi Sea Ecosystem Studies 

Program (CSESP, Day et al., 2013) are included in the AMBON sampling grid. In addition, the AMBON 

observing region includes two of the DBO lines, DBO3 in the southern Chukchi Sea and DBO4 in the 

northern Chukchi Sea (Grebmeier et al., 2010). This overlap provides opportunities to add to the 

temporal (seasonal) sampling of these lines, to add biodiversity as another element to DBO sampling, 

and to add ecosystem elements that are not regularly sampled during the existing DBO sampling, 

including epibenthic invertebrates and demersal fishes.  

Epibenthic invertebrate assemblages in particular are a biomass-rich ecosystem component of the 

Chukchi Sea shelf (e.g. Bluhm et al., 2009; Blanchard et al., 2013; Ravelo et al., 2014) fueled by high 

pelagic primary productivity, much of which is exported directly to the sea floor with little grazing in the 

water column (Grebmeier et al., 2006). Epifaunal taxa contribute to carbon remineralization (Ambrose 

et al., 2001), enhance habitat complexity (e.g. Wood et al., 2012), add to food web complexity (Iken et 

al., 2010), and act as a food source for other higher trophic level organisms, such as fishes and marine 
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mammals (Bluhm and Gradinger, 2008; Divine et al., 2015; Gray et al., 2017). Epibenthic assemblage 

structure and spatial distribution is driven by a suite of environmental variables, including water mass 

characteristics, flow regimes, and sediment characteristics (Feder et al., 2005; Bluhm et al., 2009; Ravelo 

et al., 2014; Pisareva et al., 2015), in addition to trophic interactions (Iken et al., 2010).  High biological 

and functional diversity (Rand et al., 2017), together with high longevity of most benthic invertebrates, 

leads to the resilience of epibenthic assemblages against short-term (seasonal to interannual) climate 

fluctuations (Bluhm et al., 2009; Grebmeier et al., 2015a), making them good indicators of long-term 

changes and useful candidates to be included in long-term observations.  

Demersal fishes also are important components of the Arctic food web as they consume plankton, 

benthic invertebrates, and smaller fishes while serving as prey for higher trophic level organisms like 

birds, whales, ice seals, polar bears, and humans (Lowry and Frost, 1981; Bluhm and Gradinger, 2008).  

Many demersal fishes are mobile and not strictly tied to the benthos as they swim up into the water 

column to feed on pelagic prey (e.g. Gray et al., 2015). In addition, many demersal species have pelagic 

larvae and juveniles, providing important links between the pelagic and benthic environment. Current 

abundances of fish on the Chukchi Sea shelf are at least an order of magnitude lower than in the eastern 

Bering Sea (Stevenson and Lauth, 2012), but subarctic species may expand northward into the Chukchi 

Sea or local populations may increase in a warming climate (Hollowed et al., 2013). The implementation 

of the Arctic Fisheries Management Plan (NPFMC, 2009), which provides a framework for managing 

potential future commercial fisheries in the Arctic, has brought attention to the role Arctic fish play or 

could play in the ecosystem under altered climate scenarios. Similar to epifauna, demersal fish 

assemblage patterns are related to environmental variables, mostly water mass characteristics for 

larger-scale distributions (Norcross et al., 2010) or temperature and the erosional or depositional nature 

of sediment structure for small-scale patterns in fish assemblages (Norcross et al., 2013). The sensitivity 

of fish species diversity and abundance to temperature changes (Mueter and Litzow, 2008) makes them 

another good candidate for long-term monitoring.  

In this study, we made use of the spatial overlap that the AMBON program has with stations of the 

DBO in the Chukchi Sea to assess how representative the subset of these stations that reflect the DBO 

lines in the Chukchi Sea are of the larger regional distribution and biodiversity of epibenthic and 

demersal fish assemblages covered though the AMBON project. Decisions as to which ecosystem 

components should be included in long-term observations are inherently driven by ecological, practical, 

and fiscal considerations. Hence, optimization of field efforts, particularly in remote and cost-intensive 

study areas in the Arctic, is prudent. Our primary research question was to assess whether the DBO 

stations that were selected based on biomass hotspots for macrofauna and water column productivity 

are also suitable to provide a sampling framework for assessing the biomass and species diversity of 

epibenthos and demersal fish.  

 

2. Material and methods 
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Sampling was conducted at 67 stations during the AMBON cruise in the Chukchi Sea on the R/V 

Norseman II from 8 August – 5 September 2015 (Fig. 1). The AMBON station coverage includes stations 

along the DBO3 line in the southern Chukchi Sea and along the DBO4 line in the northern Chukchi Sea 

(Fig. 1). Epibenthic invertebrates and demersal fishes were collected with a plumb-staff beam trawl with 

a 2.26 m opening and a 7-mm mesh net and a 4-mm cod end liner. Trawls were conducted during the 

night for 2-5 min duration at ~1.5 knots. Trawl distances ranged from 160 – 840 m, with an average of 

373 m. Trawl hauls were rinsed, if necessary, and then sorted on board to the lowest taxonomic level 

possible. For invertebrate taxa that could not be identified on board, voucher specimens were preserved 

in 4% formaldehyde or 99% molecular-grade ethanol for later consultation with taxonomic experts. 

Most invertebrate identifications were made to species or genus level, although taxonomic resolution 

for several phyla was low because of lack of taxonomic expertise, especially Bryozoa, Hydrozoa and 

Porifera. In cases where morphologically distinct taxa within these phyla could be distinguished, we kept 

these as separated taxa for analysis. Fish were sorted to species or genus level. Juvenile fishes (mostly 

gadids) were excluded from the analysis because they are typically pelagic and were likely collected in 

the water column while the trawl was retrieved. All fish and invertebrate individuals, except for colonial 

taxa, were enumerated; bulk wet weight was determined at the lowest taxonomic level using spring and 

digital hanging scales. Trawl distance was estimated by multiplying average trawling speed by the time 

the trawl was in contact with the bottom. Bottom contact was assessed based on depth recordings by a 

time-depth recorder (TDR, Star Oddi, Gardabaer, Iceland) attached to the net opening. Abundance and 

biomass for all taxa were then quantified for each haul as catch per unit effort (CPUE), where effort was 

computed as trawl distance multiplied by the width of the net opening.  

Environmental conditions were assessed from water column and sediment samples. Station depth, 

surface and bottom temperature (°C) and salinity measurements were taken from CTD profiles (Seabird 

Model SBE911). Water samples from Niskin bottles attached to the CTD were used to analyze 

chlorophyll a (chl a) and inorganic nutrients (ammonia, phosphate, nitrite + nitrate, silicate). In addition, 

maximum chl a values at each station were used in the environmental matrix. Samples were processed 

as follows: Subsamples for inorganic nutrients were filtered shipboard (Whatman GFF), and frozen for 

post cruise analyses. Nutrient samples were analyzed at the Nutrient Analytical Services Laboratory 

(NASL) at the Chesapeake Biological Laboratory (see http://nasl.cbl.umces.edu/ for standard methods 

used) at the University of Maryland Center for Environmental Science (UMCES). Filtered samples for chl 

a measurements were analyzed shipboard using a Turner Designs AU-20 fluorometer after 24-h dark 

extraction in 90% acetone at 4°C (non-acidification or Welschmeyer method; see Cooper et al., 2012, 

2013 for details). The inventory of active chl a in surface sediments (upper 1 cm) was measured by 

collecting undisturbed surface sediments from a van Veen grab with a cut-off 10 cc syringe. Sediments 

were incubated in the dark with 90% acetone for 12 hours at 4°C and measurements made as with 

water samples, using a Turner Designs AU-20 fluorometer without acidification (Welschmeyer method). 

Another subsample of surface sediment was collected and sediment grain size determined according to 

the Wentworth convention (<0 phi – 4 phi, as well as modal size of phi; for methods see Gee and 

Bauder, 1986; Grebmeier et al., 1989). 
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Epifauna and demersal fish catch data were considered separately. While both are benthic 

ecosystem components, they differ considerably in their association with the bottom, especially in their 

ability to move. In the Chukchi Sea, demersal fishes have a strong association with water mass 

characteristics (Norcross et al., 2010), while epifaunal invertebrates are more closely related to 

substrate characteristics (Bluhm et al., 2009). In addition, the order of magnitude higher taxon number 

and larger biomass of epifauna over demersal fish obscures any fish-specific patterns. We confirmed 

that there was no correlation between epifaunal and fish biomass or taxon richness across stations 

(Pearson product-moment correlation coefficient r = -0.039 and 0.012, respectively). While the epifauna 

and fish dissimilarity matrices showed some coherence (RELATE analysis in Primer-e v7, rho = 0.508), we 

decided that the ecological differences warranted separate analyses.  

Analyses of the epifaunal and fish assemblages were performed based on biomass rather than 

numerical abundances because these data contained all taxa, including epifauna colonial taxa, and 

because biomass is a more meaningful ecological indicator based on trophic and energetic 

considerations. All assemblage-level analyses were performed using the multivariate software package 

Primer-e (v7; Clarke and Gorley, 2015). A Bray-Curtis similarity matrix was created using fourth-root 

transformed biomass data for epifauna and fish to reduce the influence of biomass-dominant taxa on 

the analyses. A hierarchical cluster analysis was then used to group stations by similarity (group 

averaged on the similarity matrix) for both epibenthic invertebrates and fishes. All dendrograms were 

inspected for significantly different clusters (SIMPROF test, α=0.05); in the case of epibenthic 

invertebrates, SIMPROF resulted in an exceedingly large number of significant clusters. Here, we 

combined station groups at a lower level of similarity aiming to result at more interpretable station 

groupings. The resulting clusters were then plotted spatially according to sampling location (Matlab M-

Map) to visualize the spatial distribution of assemblage types. A similarity percentages (SIMPER) routine 

was used to identify the taxa contributing most to similarities within and dissimilarities among station 

clusters. Epifaunal invertebrate species contributing cumulatively ≥30% to within-cluster similarity are 

presented; for fishes, we present species contributing cumulatively ≥50% to within-cluster similarity for 

higher resolution of species driving cluster similarity of because of the generally much lower fish species 

richness. Coverage of assemblages by the two DBO lines versus the larger AMBON station coverage was 

then compared. 

We tested whether biological assemblages were significantly related to observed environmental 

variability and, if so, identified subsets of environmental variables that were most strongly related to 

each assemblage. These analyses were conducted separately for the epifauna and fish assemblages; for 

both components, separate analyses were conducted for the full set of stations and for the DBO-stations 

only.  Pairwise dissimilarities among stations for each biological dataset were related to pairwise 

Euclidean distances among environmental variables for the corresponding set of stations using the trend 

correlation routine called BEST in Primer-e. This is a Mantel-type test that selects the subset of 

environmental variables whose dissimilarities are most strongly related to the biological dissimilarities 

(Clarke and Ainsworth, 1993). Environmental variables were normalized to a common measurement 

scale in Primer and then tested for collinearity using Spearman rank correlations and pairwise 

scatterplots. For variables that were correlated at >90%, one of the variables was removed. This applied 
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to the nutrients phosphate and nitrite+nitrate, of which we retained the nitrite+nitrate measurement 

for the analyses.  

 

3. Results 

Across the 67 AMBON stations, we collected 317 nominal epibenthic invertebrate taxa (including 

morphologically distinct taxa within phyla where species identifications could not be made); of these 57 

taxa were colonial. Taxon richness was dominated by the phyla Mollusca (91 taxa) and Arthropoda (83 

taxa), followed by Annelida (32 taxa) and Echinodermata (29 taxa). Total wet weight biomass of 

epibenthic invertebrates across all stations was dominated on the class or order level by echinoids with 

36% (nearly entirely driven by the sand dollar Echinarachnius parma abundant at some stations along 

line ML6), ophiuroids with 25% (mostly dominated by Ophiura sarsii), decapods with 11% (mostly snow 

crab Chionocetes opilio), holothurians with 8% (especially Psolus peronii), and ascidians (5%, mostly 

solitary Boltenia ovifera). At the species level, Echinarachnius parma and Ophiura sarsii were the two 

single most dominant species in terms of biomass (Fig. 2a), although they were not the species with the 

highest frequency of occurrence (FO, Fig. 2b). The crab Chionocetes opilio and the shrimp Eualus 

gaimardii gaimardii had the highest FO and occurred at 94% of all stations (Fig. 2b). Fish taxon richness 

was mostly represented in the Cottidae (6 taxa), followed by Agonidae (poachers), Liparidae (snail 

fishes), Pleuronectidae (flounders), Stichaeidae (pricklebacks) and Zoarcidae (eelpouts) (3 taxa each). In 

general, total fish biomass was mostly comprised (84% of total biomass) by four families: Cottidae 

(sculpins), Stichaeidae, Gadidae (cods), and Liparidae. Among the 24 collected fish taxa, total biomass 

was overwhelmingly dominated by just two species, the slender eelblenny Lumpenus fabricii (20%) and 

the Arctic staghorn sculpin Gynmocanthus tricuspis (19%). Fish taxa with high biomass contributions 

were not necessarily those with the highest FO; for example, Liparis sp. occurred in 88% of the samples 

but only contributed about 4% to overall fish biomass (Fig. 3). Arctic cod (Boreogadus saida), often the 

dominant species on Arctic shelves, was the fifth most abundant species by weight in our collections 

(~6% of total biomass) and occurred at 68% of the stations.   

Taxon richness for epifaunal invertebrates ranged from 13 – 66 per station (at ML1-2 and ML5-7, 

respectively), and between 0 – 14 for fish taxa (at ML6-3 and ML3-6, respectively) (Fig. 4a and b). Overall 

epifaunal species richness was higher in the northern than southern study region (Fig. 4a). For the total 

study region, the DBO stations harbored 180 of the 317 total epifaunal taxa (57%). Along the DBO3 

stations we encountered 97 taxa, compared with 127 taxa for the entire southern study region (DBO3 

and CL lines; 76% along DBO3). A total of 133 epifaunal taxa (45%) were encountered along the DBO4 

line of the 294 taxa that were found in the entire northern study region. For demersal fishes, of the 24 

total fish taxa across the total study region we found 21 taxa along both DBO lines (88%). The DBO3 line 

was represented by 18 taxa, representing 90% of the 20 taxa total found within the entire southern 

study region (DBO3 and CL lines combined).  Along the DBO4 line, 18 fish taxa were found compared 

with the 24 taxa found in the overall northern study region (75% along DBO4). Among the fish species 

not encountered along the DBO lines were some generally rare species (e.g. alligatorfish  
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Aspidophoroides monopterygius) but also some taxa that were otherwise relatively common (e.g. 

sturgeon poacher Podothecus accipenserinus).  

Biomass per station for epifauna ranged from a low of 790 g wet weight 1000 m
-2

 (stn ML3-13) to a 

high of 153274 g wet weight 1000 m
-2

 (stn ML6-1) (Fig. 5a). Epifaunal biomass along DBO3 was within 

the lower range of overall biomass while biomass along the DBO4 line was in the intermediate range 

(Fig. 5a). Fish biomass ranged from 0 – 2362 g wet weight 1000 m
-2

 (ML6-3 and ML1-2, respectively; fish 

biomass at the DBO3 stations was in the higher range while biomass at DBO4 stations was low (Fig. 5b).  

Epibenthic invertebrate assemblages separated into eleven clusters and two single stations (ML3-2 

and ML5-1) (Fig. 6). Station clusters were distributed along the south-north axis as well as the inshore-

offshore axis of the study area (Fig. 7). The DBO3 stations separated evenly in an inshore (A) and 

offshore (B) cluster. The inshore cluster was characterized mostly the ascidian Halocynthia aurantium, 

while the main character species for the offshore cluster was the snow crab Chionoecetes opilio (Table 

1). Two of the DBO4 stations were part of a more coastal cluster (H), mostly characterized by the sea 

cucumber Psolus peronii, and the remaining four DBO4 stations were part of a mid-shelf cluster (I), 

mostly characterized by the brittle star Ophiura sarsii (Fig. 7). Between 1 and 5 species accounted for 

within-cluster similarity of ≥30% (Table 1).  

The demersal fish assemblage only grouped into two clusters and one single station (ML6-3), where 

no fish were caught (Fig. 8). One cluster (a) mostly encompassed coastal stations, including all DBO3 

stations, and the other cluster (b) comprised offshore stations, including all DBO4 stations (Fig. 9). The 

coastal cluster was characterized by the Arctic staghorn sculpin Gymnocanthus tricuspis, the slender 

eelblenny Lumpenus fabricii, and snail fishes (Liparis sp.) (57% cumulative similarity) while the offshore 

cluster was characterized by snail fish (Liparis sp.), eelpouts (Lycodes sp.), and Arctic cod Boreogadus 

saida (51% cumulative similarity).  

The suite of environmental variables that best explained epifaunal assemblage structure across the 

entire sampling region included depth, bottom and surface temperatures, and the proportion of 

sediment grain size phi ≥5, with a correlation coefficient of rho = 0.618. Of these, sediment grain size phi 

≥5 was the single variable with the highest correlation coefficient (rho = 0.481) with epifaunal 

assemblage structure. When only DBO stations were considered, correlation of epibenthic assemblage 

structure with environmental variables was stronger at rho = 0.859, with bottom temperature, surface 

temperature and salinity, grain size phi 2, modal grain size, and sediment chlorophyll a content 

contributing most to the correlation. Modal grain size was the single variable with the highest 

explanatory power (rho = 0.702).  For the fish assemblage, the environmental variables bottom 

temperature, bottom and surface salinity, and grain size phi ≥5 explained most of the fish assemblage 

structure (rho = 0.422) in the whole data set, with bottom temperature being the most influential 

variable (rho = 0.330). When only the DBO stations were considered, the combination of surface 

temperature and salinity had the strongest correlation to the fish assemblage (rho = 0.525), with again 

bottom temperature as the most influential single variable (rho = 0.422).  
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4. Discussion 

 

We analyzed the concurrent results that two existing observing programs in the Arctic Chukchi Sea 

yielded for epibenthic invertebrate and demersal fish assemblages in terms of biomass and biodiversity. 

The two observing programs differ in their purpose and their spatial extent. The DBO’s incentive is to 

focus on seasonal and interannual variability in macrobenthic hotspots, regions of persistent and high 

benthic biomass due to high water column productivity and tight pelagic-benthic coupling (Grebmeier et 

al., 2010, 2015b; Moore and Grebmeier, 2017). AMBON’s objective is to describe and observe the 

regional biodiversity of various marine ecosystem components. Given these differences in the two 

programs, careful consideration is needed to assess how much these two initiatives can contribute to 

each other’s objectives to optimize sampling efforts and maximize scientific gain.   

In terms of benthic biomass hotspots characterizing the two DBO lines, epibenthic invertebrates and 

fishes displayed opposite trends. While epibenthic biomass along the DBO3 lines was at the lower range 

of the epibenthic biomass distribution across the total (AMBON-wide) study region, fish biomass was 

comparatively high. Conversely, epibenthic biomass was relatively high but fish biomass was relatively 

low along the DBO4 line.  This confirms that neither epibenthic invertebrates nor fishes are as tightly 

linked to areas of high vertical fluxes associated with high local primary production regimes as is the 

macrofauna, on which the hotspot definition for the DBO program is based (Link et al., 2013; Grebmeier 

et al., 2015b). This decoupling is likely related to the much higher mobility of many epibenthic 

invertebrates and especially fishes, as well as the high diversity of feeding types (particle feeders and 

also predators/scavengers) among these ecosystem components (e.g. Bluhm et al., 2009; Iken et al., 

2010; Norcross et al., 2010; Divine et al., 2015). This decoupling is even more pronounced for the mostly 

predatory fishes (Whitehouse et al., 2017). Of course, predatory epifauna and fishes are linked to 

particle flux through their macrofaunal prey, but we show that direct relationships from primary 

production to fish and epifauna are often comparatively weak. This conclusion was supported by the 

fact that water column chl a was not an environmental variable driving these assemblages. Interestingly, 

epibenthos and fish biomass patterns were not similar, neither along the DBO lines nor the overall 

AMBON study region. This is likely related to the closer link of the highly mobile fishes to water mass 

characteristics (this study; Norcross et al., 2010) than epifauna, which is typically more closely related to 

sediment characteristics (this study; Bluhm et al., 2009; Pisareva et al., 2015).   

Species richness captured within the AMBON spatial coverage for demersal fishes and epibenthic 

invertebrates was largely representative of known patterns in the region, while acknowledging that 

direct comparisons to other studies are challenging because of variable sampling and – in case of 

epifauna - identification effort. Other studies across the Chukchi Sea shelf reported very similar fish 

species identities and species richness as the 24 taxa we found during the AMBON sampling (33 species, 

Mecklenburg et al., 2007; 30 species, Norcross et al., 2010; 29 species, Norcross et al., 2013).  Also, our 

epifaunal invertebrate species number of 127 found for the southern study region was relatively similar 

to the 165 species reported from a slightly larger and denser station grid reported by Bluhm et al. (2009) 

and 165 taxa reported from the southern US Chukchi Sea including the Chukchi Bight (Feder et al., 

2005). In the northern study region, the 294 epibenthic taxa we identified are comparable to Blanchard 
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et al.’s (2013) report of 239 taxa in a slightly smaller study region. However, both these numbers are 

much higher than the 44 epifaunal taxa reported from the larger Hana Shoal region (Ravelo et al., 2014), 

likely because of the much coarser level of identification than in the present study and the exclusion of 

some species-rich groups like amphipods in that study.  

From the biodiversity perspective that is at the core of the AMBON project, about half of the 

epibenthic species that occurred in the entire AMBON study area were also observed on the DBO 

transects, with a much higher percentage along the DBO3 transect in the south versus the DBO4 

transect in the north. The DBO3 transect represented epibenthic species richness and assemblage 

patterns of the southern study area quite well. Invertebrate taxa characteristic for the epifaunal 

assemblages in the southern study region also were similar to some of those reported previously (Bluhm 

et al., 2009; cluster CN in that study), namely the snow crab Chionoecetes opilio, the sea star 

Leptasterias polaris, and the shrimp Argis sp. These assemblage patterns, albeit not absolute biomass, 

have been fairly stable over at least decadal time scales (Grebmeier et al., 2015a). This suggests that 

despite the generally relatively low station coverage in the southern region, epibenthic communities are 

representatively sampled by both the AMBON and the DBO3 grid strategies. The groupings into coastal 

and offshore assemblage clusters align with the major water masses in that region, corresponding to 

inshore Alaska Coastal Current and the offshore Bering Anadyr Water (Danielson et al., 2017a), as well 

as sediment characteristics that drive assemblage structure (Bluhm et al., 2009). The correspondence 

between our results and the study by Bluhm et al. (2009), which was based on a much denser sample 

coverage than either AMBON or DBO station coverage, supports our results likely being a reasonable 

representation of the general epifaunal community patterns of the southern Chukchi region, despite 

limited spatial coverage. This may be in part due to the less complex hydrographic and bathymetric 

features in the southern compared with the northern study region, driving more simply structured 

biological communities in the south (Danielson et al., 2017a; Stabeno et al., 2018).  

In contrast to the southern study region, regional assemblage patterns apparent from the AMBON 

sampling grid were not well captured by sampling the DBO4 transect alone. The northern Chukchi Sea is 

hydrographically and topographically complex (Weingartner et al., 2005), so it may not be surprising 

that epibenthic assemblages are spatially heterogeneous, too (e.g. Blanchard et al., 2013; Ravelo et al., 

2014; Tu et al., 2014). While the DBO4 line captured the northern central shelf assemblage clusters H 

and I very well, several of the other major northern clusters were not represented. If the DBO4 transect 

were extended farther in- and offshore as along AMBON’s ML3 line, a much greater representation of 

the northern Chukchi Sea epibenthic assemblage clusters and diversity would be achieved. This would 

especially include the coastal cluster F and the offshore cluster M. Yet, the other abundant clusters (e.g. 

clusters K and L) would still not be sampled.  

At least some of these epifaunal invertebrate assemblage clusters have been stable over time, as is 

reflective of a generally proposed feature of Arctic benthos (Piepenburg, 2005; Renaud et al., 2007). An 

example for the persistent assemblages in this study is the northern coastal assemblage (cluster F) 

dominated by the sand dollar, Echinarachnius parma (also described by Grebmeier et al., 2006 and 

Ravelo et al., 2014). Also, the distribution of O. sarsii in the center of the northern study region (cluster I, 

which includes most of the DBO4 stations, and is also typical for the adjacent cluster K to the north) is a 
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persistent feature, as is the high abundance of C. opilio in the surrounding regions to the south and 

offshore (clusters L and M, respectively), as previously documented (Ravelo et al., 2014; Groβ et al., 

2017). This stability in epibenthic community composition is likely a result of the typically high longevity 

of many arctic invertebrates (e.g. Bluhm et al., 1998; Ravelo et al., 2017) and the strong association with 

stationary environmental variables such as sediment characteristics (this study; Bluhm et al., 2009). This 

suggests that sampling of these epifaunal communities could occur on less than annual scales and 

changes could still be detected over longer time frames. 

Spatial distribution of fish diversity showed a trend of higher diversity in the south and decreasing 

diversity to the north (lowest along line ML4). This reflects the stronger influence of the Pacific waters 

entering from the Bering Sea in the south and of the northern waters that were modified during their 

transport across the shelf, including local cold winter water formation in the northeastern Chukchi Sea 

(Weingartner et al., 2013). Higher fish species richness in the south is consistent with the higher number 

of boreal-arctic or boreal fishes that have access to the southern Chukchi Sea versus the number of 

species that could be expected to occur in the more northern study region (Mecklenburg et al., 2011; 

Norcross et al., 2013). Fish biodiversity identified by sampling solely on the DBO transects was nearly 

90% of that observed over the whole AMBON grid. This much higher diversity compared with epifaunal 

diversity represented along DBO transects was likely related to the much lower total species number of 

fishes in general and the wide distribution of most fish species across the entire shelf (also see 

Mecklenburg et al., 2011).   

The wide distribution of fish species across the study region is the likely reason that we found little 

spatial fish assemblage structure. The species most characteristic for the more coastal fish assemblage 

(cluster a), Gymnocanthus tricuspis and Lumpenus fabricii, are known to utilize the more physically 

structured coastal waters (Norcross et al., 2013; Logerwell et al., 2015). The eelpouts (Lycodes sp.) and 

snail fishes (Liparis sp.) characteristic of the more offshore, northern cluster (b) are among the most 

abundant demersal fish families in the Chukchi Sea (Logerwell et al., 2015). This assemblage cluster was 

also characterized by Arctic cod, a key link in Arctic food webs (Hop and Gjøsæter, 2013) and of more 

arctic biogeographic affinity (Mecklenburg et al., 2011). A similar fish assemblage was also observed in 

2009/2010 in a slightly smaller study area in the northern study region (Norcross et al., 2013).  From an 

observing perspective of fish diversity, extension of the DBO4 line towards off- and inshore regions as 

suggested above for epifauna would be useful to include the coastal fish assemblage in the northern 

Chukchi Sea in the overall sampling scheme. 

 

5. Conclusions 

The results presented here indicate that the purpose and the scale of existing observing systems 

have to be carefully evaluated when considering which ecosystem metrics shall be monitored. For 

example, the DBO program was initially focused on well-defined regions where persistent benthic 

biomass hotspots occurred while the AMBON program has a larger scale, regional biodiversity focus.  

DBO locations where benthic macrofaunal hotspots occur are not as consistently high in epibenthic or 
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fish biomass. We further documented that while the DBO3 line represents epibenthic and fish diversity 

and assemblage patterns well for the larger AMBON study area, sampling along the DBO4 transect alone 

did not represent the larger regional patterns well, at least for the epibenthic invertebrate assemblage. 

In assemblages with relatively high taxon mobility such as for many epibenthic invertebrates and fishes, 

sampling on a larger spatial scale is likely necessary to reliably capture regional community patterns 

(Armonies, 2000). Depending on the specific community and region, the biologically relevant area 

(neighborhood) for benthic invertebrates and demersal fish that is needed for monitoring and/or the 

development of Marine Protected Areas is projected to be several hundred kilometers (Palumbi, 2004). 

This is consistent with guiding principles in marine spatial planning approaches to take into account 

context, i.e. the larger-scale assemblage patterns, and variability, i.e. the level of spatial fluctuation of 

these assemblages (Foley et al., 2010). More recently, the development of Ecologically and Biologically 

Significant Areas (EBSAs) has become an important tool for monitoring arctic areas that have particularly 

high ecological or biological importance for the overall ecosystem (Cobb et al., 2004). EBSA development 

is based on seven criteria that include, among others, uniqueness of the system, importance of habitats, 

and biological diversity (Dunn et al., 2014). Sufficient temporal and spatial resolution data are needed to 

assess these criteria for arctic systems (Cobb et al., 2014). For temporal resolution, we suggest that the 

relative stability of arctic benthic shelf systems over time warrants that epibenthic and fish communities 

might not have to be sampled on a seasonal or annual schedule but that sampling every few (2-3) years 

could be sufficient to observe and detect long-term changes. This is similar to what has been proposed 

for coastal, rocky shore arctic systems (e.g. Kortsch et al., 2012) although comparability between shelf 

and nearshore systems may be constrained. To reduce the discrepancy between the slower response 

time of epibenthic invertebrates and fishes versus the rates of changes of environmental variables, we 

also recommend, if possible, linking these biological surveys every few years with continuous 

environmental measurements from moored instrumentation that can provide important contextual 

data for environmental changes (Danielson et al., 2017b). In terms of spatial sampling scales, we suggest 

that sampling of the smaller scale such as represented by the DBO transect lines may need to be 

extended to better capture more of the regional characteristics of the epibenthic invertebrate and 

demersal fish assemblages. Larger-scale regional sampling such as through AMBON, however, is needed 

and useful at the beginning of observation planning as well as on longer time scales (e.g. every 5-10 

years) to provide larger context for the more regionally focused sampling (Foley et al., 2010; Magurran 

et al., 2010). All these considerations support that the assemblage information gained from the larger-

scale AMBON project are essential to determine useful long-term observing scales for these ecosystem 

components.  
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Table 1: Epifaunal assemblage clusters and species contributing to ≥30% of cumulative within-cluster 

similarity 

Cluster Taxa contributing to cluster simmilarity Cum. Sim. % 

A Halocynthia aurantium, Gorgonocephalus sp., Argis sp., Eualus gaimardii 

gaimardii 

34.10 

B Chionoecetes opilio, Leptasterias polaris, Stomphia sp. 37.24 

C Chionoecetes opilio, Neptunea heros 39.68 

D Echinarachnius parma, Chionoecetes opilio 35.39 

E Strongylocentrotus pallidus, Eualus gaimardii gaimardii, Gersemia rubiformis 35.23 

F Psolus peronii, Hyas coarctatus, Strongylocentrotus pallidus, Argis sp., 

Chionoecetes opilio 

33.85 

G Argis sp. 30.37 

H Psolus peronii, Ophiura sarsii, Chionoecetes opilio, Hyas coarctatus 34.22 

I Ophiura sarsii, Chionoecetes opilio, Buccinum polare, Nemertea, Lesptasterias 

groenlandica 

31.42 

K Ophiura sarsii, Chionoecetes opilio, Pagurus capillatus, Myriotrochus rinkii 30.01 

L Chionoecetes opilio, Hyas coarctatus, Stomphia sp., Labidocheirus 

splendescens 

31.30 

M Chionoecetes opilio, Pagurus capillatus, Pagurus trigonocheirus 31.49 

 

 

Fig. 1: Map of the AMBON study area and sampling stations; stations that represent DBO coverage are 

outlined in red.  

Fig. 2: Epifaunal taxa proportional biomass (a) and frequency of occurrence (FO) (b). Only taxa 

contributing more than 1% to total average biomass and 50% FO are shown.   

Fig. 3: Fish taxa proportional biomass (a) and frequency of occurrence (FO) (b).   

Fig. 4: Epifaunal species richness (a) and fish species richness (b). Boxes indicate stations that represent 

DBO coverage (see Fig. 1). 
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Fig. 5: Epifauna (a) and fish (b) biomass per station. Stations that represent DBO coverage are circled in 

red.  

Fig. 6: Hierarchical clustering of epifaunal assemblages based on fourth-root transformed biomass data 

and a Bray-Curtis similarity matrix. Red lines indicate non-significant differences among stations; cluster 

assignment is guided by SIMPROF results but occasionally grouped at lower similarity level to obtain 

manageable cluster groupings. Clusters are denominated with upper-case letters A-M, “single” refers to 

stations that did not group with any cluster. Colors and letters are the same as in Fig. 7 but have no 

relationship to the fish assemblage clusters. 

Fig. 7: Spatial distribution of epifaunal assemblage clusters (A-M). “Single” refers to stations that did not 

group with any cluster. Stations that represent DBO coverage are encircled. Colors and letters are as in 

Fig. 6 but have no relationship to the fish assemblage clusters (Figs. 8 and 9). 

Fig. 8: Hierarchical clustering of fish assemblages based on fourth-root transformed biomass data and a 

Bray-Curtis similarity matrix. Clusters are assigned based SIMPROF results, with red connectors 

indicating non-significant differences among stations. Clusters are denominated with lower-case letters 

a and b; “single” refers to stations that did not group with any cluster. Colors and letters are the same as 

in Fig. 9 but have no relationship to the epifauna assemblage clusters. 

Fig. 9: Spatial distribution of fish assemblage clusters (a-b). Stations that represent DBO coverage are 

encircled. Colors and letters are as in Fig. 8 but have no relationship to the epifaunal assemblage clusters 

(Figs. 6 and 7). 
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