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Abstract

®

CrossMark

Novel mechanisms for zonal flow (ZF) generation for both large relative density fluctuations
and background density gradients are presented. In this non-Oberbeck—Boussinesq (NOB)
regime ZFs are driven by the Favre stress, the large fluctuation extension of the Reynolds
stress, and by background density gradient and radial particle flux dominated terms.
Simulations of a nonlinear full-F gyro-fluid model confirm the predicted mechanism for
radial ZF propagation and show the significance of the NOB ZF terms for either large relative
density fluctuation levels or steep background density gradients.
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1. Introduction

Self-organization from turbulent to coherent states is a ubig-
uitous process in fluids. In particular, much interest and effort
has been drawn to the formation of zonal flows (ZFs) [1-3].
These coherent flows arise in atmospheres, in the form of
banded cloud structures on Jupiter [4], Saturn’s north-polar
hexagon [5] or mid-latitude westerlies on earth and in the
ocean as stationary jets [6]. In magnetized fusion plasmas ZFs
are key players for the reduction of the radial transport of par-
ticles and heat and for the transition to improved confinement
regimes in tokamaks [7-12].

Reynolds stress is quintessential for ZF generation in all
fluids [1-3, 13—-17], but in magnetized plasmas also other
stresses like the Maxwell [18, 19] or the diamagnetic stress
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[20, 21] can become significant. Virtually all of the work on
ZF theory so far rely on ¢f models [1, 13, 22], which invoke
the so called Oberbeck—Boussinesq (or thin layer) approx-
imation [23, 24]. However, the latter breaks down, if the back-
ground density varies over more than one order of magnitude
or if the relative density fluctuations exceed roughly 10%. This
for example prevails in the edge of tokamak fusion plasmas,
where experimental measurements typically feature relative
density fluctuation levels around the order 0.1 in the edge and
up to unity at the last closed flux surface [25-33]. Moreover,
typical edge background density gradient (e-folding) lengths
reach from 50py in low-confinement to 10py in high-
confinement  tokamak  plasmas [34, 35]. Here,
050 := V/Teom;/(eBy) is the drift scale with reference electron
temperature T,y, ion particle charge e, ion mass m; and refer-
ence magnetic field By.

Non-Oberbeck—Boussinesq (NOB) effects on ZF genera-
tion are an unresolved issue. However, theoretical and exper-
imental studies of poloidal ZFs in the edge of fusion plasmas
indicate that unknown mechanisms beyond the Reynolds

© 2018 IAEA, Vienna Printed in the UK
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stress exist [36] and that steep background density gradients
and large relative density fluctuations affect the poloidal ZF
dynamics [15, 37, 38]. Moreover, the importance of large rela-
tive density fluctuations for toroidal momentum transport, as
suggested by theoretical estimates in the strong and weak tur-
bulence regime [39, 40] and experimental measurements in
the TORPEX and PANTA device [41, 42], point towards a
similar significance for poloidal momentum transport.

In the following we generalize the theory of ZFs to NOB
effects. To this end, we decompose the density and electric
potential of a full-F gyro-fluid model of a magnetized plasma
[43] with the help of a density weighted Favre average [44].
This well known decomposition strategy in compressible fluid
dynamics (see e.g. [45]) is here for the first time introduced
to plasma physics and enables us to disentangle the density
fluctuations from the ZF dynamics, while retaining the rel-
evant physical effects. As a result, we identify novel agents
in the poloidal ZF dynamics, which become significant for
high relative density fluctuations or steep background density
gradients. We confirm the herein proposed NOB mechanism
for radial advection of ZFs with the help of numerical simu-
lations of a fully nonlinear model for drift wave-ZF dynam-
ics. The exploited model is based on the specified extension
of the Hasegawa—Wakatani model to the full-F framework.
Additionally, we show how the ZF dynamics is distrib-
uted among the proposed NOB actors and provide scalings
with collisionality, reference background density gradient
length and the maximum of the relative density fluctuation
amplitude.

2. ZF theory

2.1. 6f formalism

We start our discussion with a short re-derivation of the con-
ventional ZF equation and Reynolds stress from a cold ion &f
gyro-fluid model, which couples small relative density fluctu-
ations to the electric potential via E x B advection and linear
polarization [46—48]

0
g0n V- onug) + o (1a)
0 1 0
@6N+ V - (6Nug) + LB~ 0, (1b)
1 Vig\ .
<Qo B > = én — ON. (1c)

Here, 0n := n/ng — 1 is the relative electron density fluctua-
tion, N := N/ng — 1 is the relative ion gyro-center density
fluctuation, ¢ is the electric potential and Qg := eBy/m; is
the ion gyro-frequency. The reference background density
ng(x) refers to a constant reference background gradient
length L, := —1/0;1n (ng/no) with constant reference den-
sity ng. For the sake of simplicity the magnetic field B = B
is assumed constant and the unit vector in the magnetic field

direction is b :== B /By = &,. The perpendicular gradient and

the E x B drift velocity are defined by V| := —b x (b x V)
and ug ;= b x V¢/By, respectively. The term As denotes a
closure for the parallel dynamics, which is discussed later
in more detail. Taking the time derivative over the polariza-
tion equation (lc) yields the df drift-fluid vorticity density
equation

0

EW(;—FV'

with the linear E x B vorticity density Ws :=

(Wsug) = QonoAs, )
noVi¢/By =
b-V x (noug). Now we apply the average over the ‘poloidal’
y coordinate (h) := L, ! fOL *dy h to equation (2), which is the
2D equivalent of a flux surface average. Reynolds decomposi-
tion h = (h) + h and integration over the ‘radial’ coordinate x
result in the Jf evolution equation for poloidal ZFs [13]

%w 2 (i) + Qo / dx(As). (3)
Here, we introduced u,:= —0,¢/By, u,:= 0:¢/By and
the anticipated Reynolds stress R := (u,u,) [49], where
(utty) = (uy)(uy) + (uyity) and (u,) = 0 was used. In passing
we note that we assume that radial boundary conditions give
rise to no additional terms in equation (3) and for the remain-
der of this letter.

2.2. Full-F formalism

In full-F theory the splitting of the gyro-fluid moment vari-
ables into fluctuating and background parts is avoided and the
quasi-neutrality constraint for electrons and ions is rendered
by the nonlinear polarization equation [43]. The cold ion full-
F gyro-fluid model [50, 51]

0
&n + V- (nug) = A, (4a)
QN+V~(NU)—O (4b)
(91‘ E - 9
NV,¢
(Qo B, ) n—N, (4c)

evolves the full electron density n and ion gyro-center density
N. In the gyro-center E x B drift velocity by Ug :=ug + U,
the ponderomotive correction U, := —b x VuZ/(2Q)
appears. Both, the latter ponderomotive correction and the
polarization charge nonlinearity on the left hand side of equa-
tion (4c) are crucial for energetic consistency and an exact
momentum conservation law [52]. We refer to the parallel
closure term A later on. In the long wavelength limit we can
again reformulate equations (4b) and (4¢) into a drift-fluid
vorticity density equation
0

WY

where the nonlinear E x B vorticity density is given by
W :=V.-(nV.$/By) =b-V x (nug). As above, we obtain
the averaged poloidal momentum equation [38, 53, 54]

(WllE) - Qov . (nU,,) = Q()A, (5)
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The divergence of the full-F stress drive terms of equation (6)
is related to the averaged radial flux of vorticity density minus
the ponderomotive correction via the full-F Taylor identity

(@) = o ()R + (i) ) + ()

+ Qo ,,Xn) @)

The interpretation of equation (6) is problematic since (i)
absolute density fluctuations 7 arise instead of relative den-
sity fluctuations 7/(n), (ii) the time evolution of the averaged
poloidal momentum (nuy) is given in terms of the averaged
poloidal velocity (u,) and (iii) background density gradi-
ent Oy In (n) effects are not obvious. Despite these obstacles
equation (6) has been recently used to show that the second
term, occasionally misinterpreted as advective, and the cubic
term can be comparable to the Reynolds stress related drive
o:({(n)R) [15, 37, 38].

Thus, we go a step further and utilize a density weighted
Favre decomposition instead of the Reynolds decomposition
according to h := [[h]] + h and [[h]] := (nh)/(n) [44]. Note
that the Favre decomposition reduces to the Reynolds decom-
position if the density n is only a function of x. Now we com-
bine the poloidal average of equation (4a) divided by (n)

0 0 0
ot n) = = =[] = [[]] - I )
+ W ®)

(n)
with equation (6) divided by (n) to obtain a ZF evolution
equation for the Favre averaged poloidal velocity

O il =~ 2 ] — (] & ]
~ (@]} )
e e [
lwliy + 8 [ @t o
where we used [[uwuy]] = [[u.]][[uy]] + [[tity]]. The Favre

stress JF := [[iyity]] can be rewritten into

F =R = [lulllw]] + (nuwy) / {n). (10)

Consequently, the first term —0,F on the right hand side
of equation (9) is the superposition of the conventional
Reynolds stress drive Ty := —0,R, the quadruple fluctua-
tion term T, := O, ([[ux]][[ty]]) and the triple fluctuation drive
T3 := —Ox ((nuyity) /(n)). The novel second term on the
right hand side of equation (9) represents radial advection
of poloidal ZFs [[uy]]. Its direction depends on the sign of the
averaged radial particle flux (T'}) := (n)[[u,]], which is typi-
cally positive, so that 7, describes an outward pinch of ZFs.
The novel third term 75 := F /L, on the right hand side of

Table 1. HW closures for of and full-F models.

Ordinary HW Modified HW
As/(asQ0) ed /T — 0n [57-59] EQNS/T;;O _n [60]
A/ (anof) ep/Teo —In(n/(n)) e&/Teo _ 1?1\(;)

equation (9) is proportional to the inverse of the background
density gradient length 1/L,y := —0;In(n). This term is
large for small reference background density gradient lengths
L,, or has large radially localized values if the density profile
(n) develops into a staircase like pattern [55]. In contrast to
the Favre stress drive —0,F, the background density gradient
drive T5 contributes to the ZF generation even if the Favre
stress is radially homogeneous 0,F = 0. Remarkably, the
background density gradient drive remains finite in the small
relative density fluctuation limit, where the density # is only
a function of x and the Favre stress F resembles the conven-
tional Reynolds stress R.

In order to interpret the dynamics of the background den-
sity gradient drive 75 let us assume for a moment that the

turbulent viscosity hypothesis F := —vy(x)0,[[uy]] holds
[13, 56]. In this case equation (9) reduces to a simple advec-
tion-diffusion equation for ZFs

9 9
5101 == (] + V) 5 (]
(A

+ 2 (rgelinl)) — ()20

Qo *
+ w /xo dx(A)

where the background density gradient pinch velocity
V := vr/Ly appears now in addition to the radial outward
pinch velocity [[u,]]. The direction of the additional pinch
depends on the sign of the turbulent viscosity vy.

Finally, we extend the theory for energy transfer inside
the kinetic E x B energy E(f) := m; [ dA(nu%)/2 to the full-
F formalism. Here, the Favre decomposition E = Ey + E;
is pivotal to derive the conservation laws for the zonal (or
mean) Ey(t) :==m; | dA(n)[[uyH2 /2 and turbulent part
E\(t) :== m; [ dA(n)u/2 of the kinetic E x B energy and
supersedes the Reynolds decomposition in the Jf formalism
[19, 21]. With the help of equations (8) and (9) we obtain the
conservation laws for the zonal and turbulent kinetic E x B

energy
7E0 / dAm,

Ng>

(11)

+ oll) / dx<A>), (120
2
o= [ aam(— o)+
_%%/“ wO0)



Nucl. Fusion 58 (2018) 104001

M. Held et a/

[luy]leso [luy1l/cso
-0.02 0 0.02 -0.1 0 0.1

[ el SES—

800

600

tcso/Ln

400

200 A

X/pso X/Pso

Figure 1. The spatio-temporal ZF evolution of the Favre averaged
poloidal velocity [[u,]] is shown for two different reference density
gradient lengths L, = {128, 32} pyo (left, right) in the high
collisionality regime (a = 0.0005). Radial outward ZF advection
occurs in the steep gradient regime (right).

— Ti= —uR
0.2 7 T2=ax(lluxllayl])
-- T3 = — 3 ((NlxU,)/(n))

— Ta= —[[uxlloxl[uy]]
Ts = — Foxn(n)

ty
J, dtTifcso
S o o
— o -

|
o
N]

t1 = 300ps0/(LnQ0)

0 20 40 60 80
X/Pso

100 120

Figure 2. The radial profile of the terms of the right hand side of
equation (9) for & = 0.0005 and L, = 32py. The ZF signature of
the radial advection term 7} is comparable to the Reynolds stress 7.

This unveils that the Favre stress term (n) F 0, [[uy]] is the central
mechanism for energy transfer between the zonal and turbulent
kinetic E x B energy. As a consequence, density fluctuations
(see equation (10)) manifest as an additional transfer channel
in the full-F formalism.

3. Parallel closures

Self-sustained drift wave turbulence is maintained by the non-
adiabatic parallel coupling of the relative density fluctuations
and the electric potential, which can arise due to various mech-
anisms. Here, we exemplarily consider resistive drift wave tur-
bulence, which arises due to resistive friction between electrons
and ions along the magnetic field line. This mechanism enters
the 2D gyro-fluid models via the parallel closure terms (Ag
or A) of the Hasegawa—Wakatani (HW) type as summarized
in table 1. Here, we introduced the full-F adiabaticity param-
eter v 1= Teokﬁ /(1) €*noQ) with parallel wavenumber k| and
parallel Spitzer resistivity 7 := 0.51mv,/(ne*) [61, 62]. In
the electron collision frequency v, the Coulomb logarithm is
treated as a constant so that 77 has no explicit dependence on
n. As opposed to this in §f models the density dependence in

the collision frequency v, (n) & v, is completely neglected so

that a5 1= Teokﬁ /(0.51m,v,082) reduces to a parameter. Only
then, the poloidal variations of the adiabaticity parameters
vanish (s = a = 0), and the full-F and §f closures coincide
in the limit of (n) ~ ng and én < 1.

4. Simulations

We use the open source library FELTOR [63] to numerically
solve the full-F gyro-fluid equations (4a)-(4c) with the
modified HW parallel closure of table 1. Numerical stabil-
ity is ensured by adding hyperdiffusive terms of second order
—vV4 nand —vV4 N to the right hand side of equations (4a)
and (4b). Moreover, we append the right hand side of equa-
tions (4a) and (4b) by a density source of the form wszO (z)
with z:= g(x) (ng — (n)) to maintain the initial profile in
a small region x € [0, x;]. Here, we defined the Heaviside
function ©(z) and g(x) := [l — tanh (x — xp)/03] /2. The
corresponding parameters are fixed to v = 5 x 10™*c,0ps0°,
ws = 0.1, x, = 0.1L, and o}, = 0.5p, with cold ion sound
speed ¢y := pso€do. The box with size L, = L, = 128py is
resolved by a discontinuous Galerkin discretization with
P =3 polynomial coefficients and at least N, = N, = 256
equidistant grid cells. The initial (gyro-center) density fields
n(x,0) = N(x,0) = ng(x) (1 4 dno(x)) consist of the refer-
ence background density profile ng, which is perturbed by a
turbulent bath dng(x).

NOB effects on drift wave-ZF dynamics, as it is described
by equations (8) and (9) with (A) = 0, are in this setup studied
by varying the adiabaticity parameter (or inverse collisional-
ity) o and the reference background gradient length L,,. In fig-
ure 1 we show that L, crucially determines the time evolution
of ZFs in the high collisionality regime with a = 0.0005.
While stationary ZFs emerge for L, = 128p;, a radial out-
ward pinch of ZFs occurs for a four times smaller reference
background density gradient length L, = 32p,.

In this steep gradient and high collisionality regime the
ZF signature is no longer solely determined by the conven-
tional Reynolds stress drive, which is illustrated in figure 2.
The Reynolds stress drive 7 is here comparable to the radial
advection term 7}, which explains the observed radial outward
propagation of ZFs in figure 1.

In the following the parametric dependence of each term
T; on the right hand side of equation (9) is investigated. To
this end, the contribution of each term 7; on ZF evolution is
measured by taking the L? norm, denoted by Hh| ,» Of the time
integrated contribution. Following this, we propose a measure
of the relative ZF contribution

L aml,
Zle H fotl d’TjHZ

In figure 3(a) we show that the relative contribution M;
of the NOB ZF terms (73, ..., Ts) decreases with the refer-
ence background density gradient length L, in the high col-
lisionality regime (o = 0.0005). The summed up relative
contribution of the NOB ZF terms exceeds the one of the

(13)

i
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Figure 3. (a) The NOB ZF terms decrease with the reference
background gradient length L, in the high collisionality regime

(a = 0.0005). (b) For a fixed L, = 32py all the NOB ZF terms
significantly contribute to the ZF dynamics in the high collisionality
regime. As opposed to this, only the background density gradient
drive Ts remains alongside the Reynolds stress drive 77 in the small
collisionality regime.

1.0

. + T1i= —oR
™ + o= IENIG)
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Figure 4. The relative contributions of the NOB ZF terms increase
with the relative density fluctuation amplitude. In particular they
can amount to roughly two thirds of the ZF dynamics.

conventional Reynolds stress for L, = 32p,. For steep refer-
ence background density gradients the radial advection term
T, exhibits the largest relative contribution to the ZF dynamics
of all the NOB terms.

In figure 3(b) the dependence of the relative importance
of each term on the adiabaticity parameter « is depicted
for a fixed reference background density gradient length
L, = 32ps. While the conventional Reynolds stress term is
again the dominating ZF contributor in particular for small
collisionalities, all the NOB terms, except the background
density gradient drive T, gain in importance for higher col-
lisionalities. Interestingly, in the small collisionality regime
(a > 0.01) the background density gradient drive Ts exceeds
all the remaining NOB actors. The quadruple fluctuation drive
T, is for all studied parameters the smallest contributor to the
ZF dynamics.

The dependence of the ZF terms on the time averaged max-
imum of the relative density fluctuation level (|/(n)||__): is
shown in figure 4. Here, we denote the time average by (i),
and compute the maximum with the help of the supremum

norm ||A||__. In figure 4 the conventional Reynolds stress
drive T contribution weakens with increasing relative density
fluctuation level. The radial advection term T4 and the triple
fluctuation drive T3 are the dominating NOB ZF contributors
for high relative density fluctuations, while the background
density gradient drive Ts can be relevant likewise for small
relative density fluctuations.

5. Conclusion

We have generalized the ZF equation (3) to account for NOB
effects in equation (9). Most importantly, the former Reynolds
stress R is replaced by the Favre stress F, which adds to its
predecessor in case of high relative density fluctuations. The
latter is accompanied by two new agents in the NOB ZF equa-
tion (9). The first of these radially advects ZFs by the Favre
averaged radial drift velocity, which is proportional to the
averaged radial particle flux. The second term scales inversely
with the background density gradient length and affects the
ZF dynamics even if the relative density fluctuations are small
or if the Favre stress is radially homogeneous. Thus, this term
may be of significance in or during the formation of radial
transport barriers, where steep density profiles form with
strongly reduced radial particle transport.

Additionally we extended the ordinary and modified HW
model to the full-F theory. We simulated the full-F gyro-
fluid model with the modified HW closure to numerically
corroborate our theoretical results. The simulations success-
fully reproduced the predicted radial advection of ZFs, which
appeared for small reference background density gradient
lengths and large averaged radial particle flux. Moreover, our
numerical parameter study showed that the NOB ZF drives
can be comparable to the Reynolds stress drive in the herein
scanned parameter range. In particular the deviation between
the Reynolds and Favre stress drive increases with the rela-
tive density fluctuation amplitude, collisionality and inversely
with the reference background density gradient length. This
deviation is mainly reasoned in the triple fluctuation drive. Its
importance in steep background density gradient regimes is
in qualitative agreement with the theoretical estimate in the
strong turbulence regime [38]. A similar dependence as for
the Favre stress drive is found for the radial ZF advection
mechanism. For the background density gradient drive only
a dependence on the reference background density gradient
is observed.

The presented results strongly argue in favor of the develop-
ment and application of full-F gyro-fluid or gyro-kinetic mod-
els for simulation of fusion edge plasma turbulence, and in
general demonstrate exemplarily the relevance of NOB effects
for ZF formation in fluids and plasmas with large fluctuations
and inhomogeneities. The latter conditions prevail e.g. during
the low- to high-confinement mode transition. Thus, a consist-
ent full-F simulation approach of this phenomenon is crucial
to allow for the herein presented NOB ZF mechanisms.
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Finally, we emphasize that the relative error between the
Favre and Reynolds average of the poloidal velocity, derived
to |[[iy]]/(uy)|, is typically below a few percent. Thus, our
proposed NOB ZF theory is also applicable to experimental
measurements of the Reynolds averaged poloidal velocity

(uty).
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