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Abstract
The first power weighted version of Hardy’s inequality can be rewritten as

∫ ∞

0

(
xα–1

∫ x

0

1
tα
f (t)dt

)p
dx ≤

[ p

p – α – 1

]p ∫ ∞

0
f p(x)dx, f ≥ 0,p ≥ 1,α < p – 1,

where the constant C = [ p
p–α–1 ]

p is sharp. This inequality holds in the reversed
direction when 0 ≤ p < 1. In this paper we prove and discuss some discrete
analogues of Hardy-type inequalities in fractional h-discrete calculus. Moreover, we
prove that the corresponding constants are sharp.
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1 Introduction
The theory of fractional h-discrete calculus is a rapidly developing area of great interest
both from a theoretical and applied point of view. Especially we refer to [1–8] and the
references therein. Concerning applications in various fields of mathematics we refer to
[9–16] and the references therein. Finally, we mention that h-discrete fractional calculus
is also important in applied fields such as economics, engineering and physics (see, e.g.
[17–22]).

Integral inequalities have always been of great importance for the development of many
branches of mathematics and its applications. One typical such example is Hardy-type
inequalities, which from the first discoveries of Hardy in the twentieth century now have
been developed and applied in an almost unbelievable way, see, e.g., monographs [23] and
[24] and the references therein. Let us just mention that in 1928 Hardy [25] proved the
following inequality:

∫ ∞

0

(
xα–1

∫ x

0

1
tα

f (t) dt
)p

dx ≤
(

p
p – α – 1

)p ∫ ∞

0
f p(x) dx, f ≥ 0, (1.1)

for 1 ≤ p < ∞ and α < p – 1 and where the constant [ p
p–α–1 ]p is best possible. Inequality

(1.1) is just a reformulation of the first power weighted generalization of Hardy’s original
inequality, which is just (1.1) with α = 0 (so that p > 1) (see [26] and [27]). Up to now there is
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no sharp discrete analogue of inequality (1.1). For example, the following two inequalities
were claimed to hold by Bennett([28, p. 40–41]; see also [29, p. 407]):

∞∑
n=1

[
1

n1–α

n∑
k=0

[
kα–1 – (k – 1)α–1]ak

]p

≤
[

1 – α

p – αp – 1

]p ∞∑
n=1

ap
n, an ≥ 0,

and

∞∑
n=1

[
1∑n

k=1
1

k–α

n∑
k=1

k–αak

]p

≤
[

1 – α

p – αp – 1

]p ∞∑
n=1

ap
n, an ≥ 0,

whenever α > 0, p > 1, αp > 1. Both inequalities were proved independently by Gao [30,
Corollary 3.1–3.2] (see also [31, Theorem 1.1] and [32, Theorem 6.1]) for p ≥ 1 and some
special cases of α (this means that there are still some regions of parameters with no proof
of (1.1)). Moreover, in [33, Theorems 2.1 and 2.3] proved another sharp discrete analogue
of inequality (1.1) in the following form:

∞∑
n=–∞

[
1

qnλ

n∑
k=0

qkλak

]p

≤ 1
(1 – qλ)p

∞∑
n=–∞

ap
n, an ≥ 0,

and

∞∑
n=1

[
1

qnλ

n∑
k=0

qkλak

]p

≤ 1
(1 – qλ)p

∞∑
n=1

ap
n, an ≥ 0,

for 0 < q < 1, p ≥ 1 and α < 1 – 1/p, where λ := 1 – 1/p – α.
The main aim of this paper is to establish the h-analogue of the classical Hardy-type

inequality (1.1) in fractional h-discrete calculus with sharp constants which is another
discrete analogue of inequality (1.1).

The paper is organized as follows: In order not to disturb our discussions later on some
preliminaries are presented in Sect. 2. The main results (see Theorem 3.1 and Theo-
rem 3.2) with the detailed proofs can be found in Sect. 3.

2 Preliminaries
We state the some preliminary results of the h-discrete fractional calculus which will be
used throughout this paper.

Let h > 0 and Ta := {a, a + h, a + 2h, . . .}, ∀a ∈ R.

Definition 2.1 (see [34]) Let f : Ta → R. Then the h-derivative of the function f = f (t) is
defined by

Dhf (t) :=
f (δh(t)) – f (t)

h
, t ∈ Ta, (2.1)

where δh(t) := t + h.

Let fg : Ta →R. Then the product rule for h-differentiation reads (see [34])

Dh
(
f (x)g(x)

)
:= f (x)Dhg(x) + g(x + h)Dhf (x). (2.2)
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The chain rule formula that we will use in this paper is

Dh
[
xγ (t)

]
:= γ

∫ 1

0

[
zx

(
δh(t)

)
+ (1 – z)x(t)

]γ –1 dzDhx(t), γ ∈R, (2.3)

which is a simple consequence of Keller’s chain rule [35, Theorem 1.90]. The integration
by parts formula is given by (see [34]) the following.

Definition 2.2 Let f : Ta →R. Then the h-integral (h-difference sum) is given by

∫ b

a
f (x) dhx :=

b/h–1∑
k=a/h

f (kh)h =

b–a
h –1∑
k=0

f (a + kh)h,

for a, b ∈ Ta, b > a.

Definition 2.3 We say that a function g : Ta −→ R, is nonincreasing (respectively, non-
decreasing) on Ta if and only if Dhg(t) ≤ 0 (respectively, Dhg(t) ≥ 0) whenever x ∈ Ta.

Let DhF(x) = f (x). Then F(x) is called a h-antiderivative of f (x) and is denoted by∫
f (x) dhx. If F(x) is a h-antiderivative of f (x), for a, b ∈ Ta, b > a we have (see [36])

∫ b

a
f (x) dhx := F(b) – F(a). (2.4)

Definition 2.4 (see [34]) Let t,α ∈R. Then the h-fractional function t(α)
h is defined by

t(α)
h := hα

�( t
h + 1)

�( t
h + 1 – α)

,

where � is Euler gamma function, t
h /∈ {–1, –2, –3, . . .} and we use the convention that

division at a pole yields zero. Note that

lim
h→0

t(α)
h = tα .

Hence, by (2.1) we find that

t(α–1)
h =

1
α

Dh
[
t(α)
h

]
. (2.5)

Definition 2.5 The function f : (0,∞) → R is said to be log-convex if f (ux + (1 – u)y) ≤
f u(x)f 1–u(y) holds for all x, y ∈ (0,∞) and 0 < u < 1.

Next, we will derive some properties of the h-fractional function, which we need for the
proofs of the main results, but which are also of independent interest.

Proposition 2.6 Let t ∈ T0. Then, for α,β ∈R,

t(α+β)
h = t(α)

h (t – αh)(β)
h , (2.6)
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t(pα)
h ≤ [

t(α)
h

]p ≤ (
t + α(p – 1)h

)(pα)
h , (2.7)

for 1 ≤ p < ∞, and

[
t(α)
h

]p ≤ t(pα)
h , (2.8)

for 0 < p < 1.

Proof By using Definition 2.4 we get

t(α+β)
h = hα+β

�( t
h + 1)

�( t
h + 1 – α – β)

= hα
�( t

h + 1)
�( t

h + 1 – α)
hβ

�( t
h + 1 – α)

�( t
h + 1 – α – β)

= t(α)
h (t – αh)(β)

h ,

i.e. (2.6) holds for α,β ∈ R.
It is well known that the gamma function is log-convex (see, e.g., [37], p. 21). Hence,

[
t(α)
h

]p = hpα

[
�( t

h + 1)
�( t

h + 1 – α)

]p

= hpα

[
�( 1

p ( t
h + 1 + α(p – 1)) + (1 – 1

p )( t
h + 1 – α))

�( t
h + 1 – α)

]p

≤ hpα

[
�

1
p ( 1

h + 1 + α(p – 1))�1– 1
p ( t

h + 1 – α)
�( t

h + 1 – α)

]p

= hpα
�( t

h + 1 + α(p – 1))
�( t

h + 1 – α)
=

(
t + α(p – 1)h

)(pα)
h

and

[
t(α)
h

]p = hpα

[
�( t

h + 1)
�( t

h + 1 – α)

]p

= hpα

[
�( t

h + 1)
�((1 – 1

p )( t
h + 1) + 1

p ( t
h + 1 – pα))

]p

≥ hpα

[
�( t

h + 1)

�
1– 1

p ( t
h + 1)�

1
p ( t

h + 1 – pα)

]p

= hpα
�( t

h + 1)
�( t

h + 1 – pα)
= t(pα)

h ,

so we have proved that (2.7) holds wherever 1 ≤ p < ∞. Moreover, for 0 < p < 1,

t(pα)
h = hpα

�( t
h + 1)

�( t
h + 1 – pα)

= hpα
�( t

h + 1)
�((1 – p)( t

h + 1) + p( t
h + 1 – α))
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≥ hpα
�( t

h + 1)
�(1–p)( t

h + 1)�p( t
h + 1 – α)

=
[

hα
�( t

h + 1)
�( t

h + 1 – α)

]p

=
[
t(α)
h

]p,

so we conclude that (2.8) holds for 0 < p < 1. The proof is complete. �

3 Main results
Our h-integral analogue of inequality (1.1) reads as follows.

Theorem 3.1 Let α < p–1
p and 1 ≤ p < ∞. Then the inequality

∫ ∞

0

(
x(α–1)

h

∫ δh(x)

0

f (t) dht
t(α)
h

)p

dhx ≤
(

p
p – αp – 1

)p ∫ ∞

0
f p(x) dhx, f ≥ 0, (3.1)

holds. Moreover, the constant [ p
p–αp–1 ]p is the best possible in (3.1).

Our second main result is the following h-integral analogue of the reversed form of (1.1)
for 0 < p < 1.

Theorem 3.2 Let α < p–1
p and 0 < p < 1. Then the inequality

∫ ∞

0
f p(x) dhx ≤

(
p – pα – 1

p

)p ∫ ∞

0

(
x(α–1)

h

∫ δh(x)

0

f (t) dht
t(α)
h

)p

dhx, f ≥ 0, (3.2)

holds. Moreover, the constant [ p–pα–1
p ]p is the best possible in (3.2).

To prove Theorem 3.1 we need the following lemma, which is of independent interest.

Lemma 3.3 Let α < p–1
p , p > 1 and 1

p + 1
p′ = 1. Then the function

φ(x) :=
[(

x –
(

α +
1
p

)
h
)(– 1

p )

h

] 1
p′ [(

x –
(

α –
1
p′

)
h
)( 1

p′ )

h

] 1
p

, x ∈ T0,

is nonincreasing on T0.

Proof Let α < p–1
p and 1 ≤ p < ∞. Since �(x) > 0 for x > 0, and using Definition 2.4, we

have

(
x –

(
α +

1
p

)
h
)(– 1

p )

h
= h– 1

p
�( x

h + 1
p′ – α)

�( x
h + 1

p + 1
p′ – α)

> 0

and

(
x –

(
α –

1
p′

)
h
)( 1

p′ )

h
= h

1
p′ �( x

h + 1 + 1
p′ – α)

�( x
h + 1 – α)

> 0.
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Denote ξ (x) := (x – (α + 1
p )h)

(– 1
p )

h and η(x) := (x – (α – 1
p′ )h)

( 1
p′ )

h . Then by using (2.5) we
find that

Dhη(x) =
(x – (α – 1

p′ )h)
(– 1

p )
h

p′ ≥ 0 (3.3)

and

Dhξ (x) = –
(x – (α + 1

p )h)
(– 1

p –1)
h

p
≤ 0, (3.4)

From (2.3), (2.6), (3.3) and (3.4) it follows that

Dh
[
ξ (x)

] 1
p′ =

1
p′

∫ 1

0

[
zξ (x + h) + (1 – z)ξ (x)

]– 1
p dzDhξ (x)

≤ –
[
ξ (x)

]– 1
p

(x – (α + 1
p )h)

(– 1
p –1)

h

pp′

≤ –
[
ξ (x)

] 1
p′ (x – αh)(–1)

h
pp′ (3.5)

and

Dh
[
η(x)

] 1
p =

1
p

∫ 1

0

[
zη(x + h) + zη(x)

]– 1
p′ dzDhη(x)

≤ [
η(x)

]– 1
p′ (x – (α – 1

p′ )h)
(– 1

p )
h

pp′ . (3.6)

By using the fact that (x + h – αh)(1)
h (x – αh)(–1)

h = 1, η(x + h) ≥ η(x),

η(x)
[(

x –
(

α –
1
p′

)
h
)(– 1

p )

h

]–1

= (x + h – αh)(1)
h ,

for x ∈ T0 and (2.2), (3.3), (3.4), (3.5) and (3.6) we obtain

Dh
(
φ(x)

)
=

[
ξ (x)

] 1
p′ Dh

[
η(x)

] 1
p +

[
η(x + h)

]1– 1
p′ Dh

[
ξ (x)

] 1
p′

≤ [ξ (x)]
1
p′ [η(x)]– 1

p′

pp′

[(
x –

(
α –

1
p′

)
h
)(– 1

p )

h
– η(x)(x – αh)(–1)

h

]

=
[ξ (x)]

1
p′ [η(x)]– 1

p′

pp′

(
x –

(
α –

1
p′

)
h
)(– 1

p )

h

[
1 – (x + h – αh)(1)

h (x – αh)(–1)
h

]

≤ 0.

Hence, we have proved that the function φ(x) is nonincreasing on T0 (see Definition 2.4)
so the proof is complete. �
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Proof of Theorem 3.1 Let p > 1. By using Lemma 3.3 and (2.6) in Proposition 2.6 we have

x(α–1)
h =

[
x(α–1)

h
] 1

p′ [x(α–1)
h

] 1
p

=
[

x
(α– 1

p′ )

h

(
x –

(
α –

1
p′

)
h
)(– 1

p )

h

] 1
p′ [

x
(α– 1

p′ –1)

h

(
x –

(
α –

1
p′ – 1

)
h
)( 1

p′ )

h

] 1
p

=
[
x

(α– 1
p′ )

h
] 1

p′ [x
(α– 1

p′ –1)

h
] 1

p

×
[(

x + h –
(

α +
1
p

)
h
)(– 1

p )

h

] 1
p′ [(

x + h –
(

α –
1
p′

)
h
)( 1

p′ )

h

] 1
p

=
[
x

(α– 1
p′ )

h
] 1

p′ [x
(α– 1

p′ –1)

h
] 1

p φ(x + h)

≤ [
x

(α– 1
p′ )

h
] 1

p′ [x
(α– 1

p′ –1)

h
] 1

p φ(t), (3.7)

for t, x ∈ T0 : t ≤ x. Moreover,

φ(t)
t(α)
h

=
[
(t – αh)(–α)

h
] 1

p′ [(t – αh)(–α)
h

] 1
p φ(t)

=
[

(t – αh)(–α)
h

(
t –

(
α +

1
p

)
h
)(– 1

p )

h

] 1
p′ [

(t – αh)(–α)
h

(
t –

(
α –

1
p′

)
h
)( 1

p′ )

h

] 1
p

=
[(

t –
(

α +
1
p

)
h
)(–α– 1

p )

h

] 1
p′ [(

t –
(

α –
1
p′

)
h
)( 1

p′ –α)

h

] 1
p

. (3.8)

According to (3.7) and (3.8) we have

L(f ) :=
∫ ∞

0

(
x(α–1)

h

∫ δh(x)

0

1
t(α)
h

f (t) dht
)p

dhx

≤
∫ ∞

0

([
x

(α– 1
p′ )

h
] 1

p′ [x
(α– 1

p′ –1)

h
] 1

p

∫ δh(x)

0

[(
t –

(
α +

1
p

)
h
)(–α– 1

p )

h

] 1
p′

×
[(

t –
(

α –
1
p′

)
h
)( 1

p′ –α)

h

] 1
p

f (t) dht
)p

dhx

=
∞∑
i=0

h1+p

([
(ih)

(α– 1
p′ )

h
] 1

p′ [(ih)
(α– 1

p′ –1)

h
] 1

p ×

×
i∑

k=0

[(
kh –

(
α +

1
p

)
h
)(–α– 1

p )

h

] 1
p′ [(

kh –
(

α –
1
p′

)
h
)( 1

p′ –α)

h

] 1
p

f (kh)

)p

= Ip(f ).

Let N0 = N ∪ {0}, g = {gk}∞k=1 ∈ lp′ (N0), g ≥ 0, and ‖g‖lp′ = 1. Moreover, let θ (z) be Heav-
iside’s unit step function (θ (z) = 1 for z ≥ 0 and θ (z) = 0 for z < 0). Then, based on the
duality principle in lp(N0) and the Hölder inequality, we find that

I(f ) = sup
‖g‖lp′ =1

∑
i,k

h1+ 1
p giθ (i – k)

[
(ih)

(α– 1
p′ )

h
] 1

p′ [(ih)
(α– 1

p′ –1)

h
] 1

p
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×
[(

kh –
(

α +
1
p

)
h
)(–α– 1

p )

h

] 1
p′ [(

kh –
(

α –
1
p′

)
h
)( 1

p′ –α)

h

] 1
p

f (kh)

≤ sup
‖g‖lp′ =1

(∑
i,k

hgp′
i θ (i – k)(ih)

(α– 1
p′ )

h

(
kh –

(
α +

1
p

)
h
)(–α– 1

p )

h

) 1
p′

×
(∑

i,k

h2θ (i – k)(ih)
(α– 1

p′ –1)

h

(
kh –

(
α –

1
p′

)
h
)( 1

p′ –α)

h
f p(kh)

) 1
p

= sup
‖g‖lp′ =1

Ip′
1 (g)Iq

2 (f ). (3.9)

By using Definition 2.3 and combining (2.4), (2.5) and (2.6) we can conclude that

I1(g) =
∞∑
i=0

gp′
i (ih)

(α– 1
p′ )

h

i∑
k=0

h
(

kh –
(

α +
1
p

)
h
)(–α– 1

p )

h

=
∞∑
i=0

gp′
i (ih)

(α– 1
p′ )

h

∫ δh(ih)

0

(
x –

(
α +

1
p

)
h
)(– 1

p –α)

h
dhx

=
1

1
p′ – α

∞∑
i=1

gp′
i (ih)

(α– 1
p′ )

h

∫ δh(ih)

0
Dh

[(
x –

(
α +

1
p

)
h
)( 1

p′ –α)

h

]
dhx

≤ 1
1
p′ – α

∞∑
i=1

gp′
i (ih)

(α– 1
p′ )

h

(
ih –

(
α –

1
p′

)
h
)( 1

p′ –α)

h

=
1

1
p′ – α

‖g‖p′
lp′ =

1
1
p′ – α

. (3.10)

Furthermore,

I2(f ) =
∞∑
i=0

h(ih)
(α– 1

p′ –1)

h

i∑
k=0

hf p(kh)
(

kh –
(

α –
1
p′

)
h
)( 1

p′ –α)

h

=
∞∑

k=0

hf p(kh)
(

kh –
(

α –
1
p′

)
h
)( 1

p′ –α)

h

∞∑
i=k

h(ih)
(α– 1

p′ –1)

h

=
1

α – 1
p′

∫ ∞

0
f p(x)

(
x –

(
α –

1
p′

)
h
)( 1

p′ –α)

h

∫ ∞

x
Dh

[
t

(α– 1
p′ )

h
]

dht dhx

=
1

1
p′ – α

∫ ∞

0
f p(x)

(
x –

(
α –

1
p′

)
h
)( 1

p′ –α)

h
x

(α– 1
p′ )

h dhx

=
1

1
p′ – α

∫ ∞

0
f p(x) dhx. (3.11)

By combining (3.9), (3.10) and (3.11) we obtain

L(f ) ≤
(

p
p – pα – 1

)p ∫ ∞

0
f p(x) dhx, (3.12)

i.e. (3.1) holds.
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Finally, we will prove that the constant [ p
p–αp–1 ]p is the best possible in inequality (3.1).

Let x, a ∈ T0 be such that a < x, and consider the test function fβ (t) = t(β)
h χ[a,∞)(t), t > 0, for

β = – 1
p – ε.

Then from (2.4), (2.5) and (2.7) it follows that

∫ ∞

0
f p
β (t) dht =

∫ ∞

a

[
t(β)
h

]p dht ≤
∫ ∞

a

(
t + β(p – 1)h

)(βp)
h dht

=
1

pβ + 1

∫ ∞

a
Dh

[(
t + β(p – 1)h

)(βp+1)
h

]
dht

=
(a + β(p – 1)h)(pβ+1)

h
|pβ + 1| < ∞.

Since

(∫ δh(x)

0
(t – hα)(–α)

h fβ (t) dht
)p

=
(∫ δh(x)

a
(t – hα)(–α+β)

h dht
)p

=
(

1
1 – α + β

∫ δh(x)

a
Dh

[
(t – hα)(1–α+β)

h
]

dht
)p

=
(

(x + h – hα)(1–α+β)
h

1 – α + β

[
1 –

(a – hα)(1–α+β)
h

(x + h – hα)(1–α+β)
h

])p

≥
(

(x + h – hα)(1–α+β)
h

1 – α + β

)p[
1 – p

(a – hα)(1–α+β)
h

(x + h – hα)(1–α+β)
h

]
,

we have

L(fβ ) ≥
(

1
1 – α + β

)p[∫ ∞

a

[
x(α–1)

h (x + h – hα)(1–α+β)
h

]p dhx

– p(a – hα)(1–α+β)
h

∫ ∞

a

[x(α–1)
h (x + h – hα)(1–α+β)

h ]p

(x + h – hα)(1–α+β)
h

dhx
]

=
(

1
1 – α + β

)p[∫ ∞

0
f p
β (x) dhx – p

∫ ∞

a

(a – hα)(1–α+β)
h [x(β)

h ]p

(x + h – hα)(1–α+β)
h

dhx
]

. (3.13)

By using (2.4), (2.5), (2.6) and (2.7) we obtain

∫ ∞

a

[x(β)
h ]p dhx

(x + h – hα)(1–α+β)
h

≤
∫ ∞

a

(x + β(p – 1)h)(pβ)
h dhx

(x + h – hα)(1–α+β)
h

=
∫ ∞

a

(
x + β(p – 1)h

)(β(p–1)+α–1)
h dhx

=
∫ ∞

a Dh((x + β(p – 1)h)(β(p–1)+α)
h ) dhx

β(p – 1) + α

=
1

|β(p – 1) + α|
(
a + β(p – 1)h

)(β(p–1)+α)
h (3.14)
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and

(a – hα)(1–α+β)
h = (a – hα)(–α)

h
(
a – h(pβ + 1)

)(β(1–p)
h a(pβ+1)

h

= (a – hα)(–α)
h

(
a – h(pβ + 1)

)(β(1–p)
h

∫ ∞

a
Dh

[
t(pβ+1)
h

]
dht

≤ (a – hα)(–α)
h

(
a – h(pβ + 1)

)(β(1–p)
h |βp + 1|

∫ ∞

a

[
t(β)
h

]p dht. (3.15)

According to (2.6), (3.13), (3.14) and (3.15) we can deduce that

L(fβ ) ≥
(

1
1 – α + β

)p[∫ ∞

0
f p
β (x) dhx – θβ (a)

∫ ∞

0
f p
β (x) dhx

]
,

where θβ (a) := p|βp+1|
|β(p–1)+α| (a + β(p – 1)h)(β(p–1))

h (a – h(pβ + 1))(β(1–p))
h → 0, ε → 0.

Therefore, limε→0
L(fβ )∫ ∞

0 f p
β (x) dhx

≥ limε→0( 1
1–α+β

)p = ( p
p–pα–1 )p, which implies that the con-

stant [ p
p–αp–1 ]p in (3.1) in sharp.

Let p = 1. By using Definition 2.3 and (2.5) we get

∫ ∞

0
x(α–1)

h

∫ δh(x)

0

1
t(α)
h

f (t) dht dhx =
∞∑
i=0

h(ih)(α–1)
h

i∑
k=0

h(kh – αh)(–α)
h f (kh)

=
∞∑

k=0

h(kh – αh)(–α)
h f (kh)

∞∑
i=k

h(ih)(α–1)
h

=
∫ ∞

0
(t – αh)(–α)

h f (t)
∫ ∞

t
x(α–1)

h dhx dht

=
1
α

∫ ∞

0
(t – αh)(–α)

h f (t)
∫ ∞

t
Dh

(
x(α)

h
)
dhx dht

= –
1
α

∫ ∞

0
f (t)(t – αh)(–α)

h t(α)
h dht = –

1
α

∫ ∞

0
f (t) dht,

which means that (3.1) holds even with equality in this case. The proof is complete. �

Proof of Theorem 3.2 Let 0 < p < 1. By using (2.4), (2.5) and (2.7) we get

[
x(α–1)

h
]p =

[
x(α–1)

h
]p–1x(α–1)

h

=
[

x
(α– 1

p′ )

h

(
x –

(
α –

1
p′

)
h
)(– 1

p )

h

]p–1

x
(α– 1

p′ –1)

h

(
x + h –

(
α –

1
p′

)
h
)( 1

p′ )

h

≥ [
x

(α– 1
p′ )

h
]p–1x

(α– 1
p′ –1)

h

(x – (α – 1
p′ )h)

( 1
p′ )

h

[(x – (α – 1
p′ )h)

(– 1
p )

h ]1–p

≥ [
x

(α– 1
p′ )

h
]p–1x

(α– 1
p′ –1)

h

(x – (α – 1
p′ )h)

( 1
p′ )

h

(x – (α – 1
p′ )h)

(– 1–p
p )

h

=
[
x

(α– 1
p′ )

h
]p–1x

(α– 1
p′ –1)

h
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=
[(

x –
(

α –
1
p′

)
h
)( 1

p′ –α)

h

]1–p

x
(α– 1

p′ –1)

h

≥
[

1
1
p′ – α

]p–1[∫ δh(x)

0

(
t –

(
α +

1
p

)
h
)(–α– 1

p )

h
dht

]1–p

x
(α– 1

p′ –1)

h (3.16)

and
[

1
t(α)
h

]p

=
[
(t – αh)(–α)

h
]p–1 1

t(α)
h

=
[(

t –
(

α +
1
p

)
h
)(–α– 1

p )

h
(t – αh)

( 1
p )

h

]p–1 1

t
(α– 1

p′ )

h (t – (α – 1
p′ )h)

( 1
p′ )

h

=
[(

t –
(

α +
1
p

)
h
)(–α– 1

p )

h

]p–1 1

t
(α– 1

p′ )

h

(t – αh)
(– 1

p′ )

h

[(t – αh)
( 1

p )
h ]1–p

≥
[(

t –
(

α +
1
p

)
h
)(–α– 1

p )

h

]p–1 1

t
(α– 1

p′ )

h

(t – αh)
(– 1

p′ )

h

(t – αh)
( 1–p

p )
h

=
[(

t –
(

α +
1
p

)
h
)(–α– 1

p )

h

]p–1 1

t
(α– 1

p′ )

h

. (3.17)

Moreover, by using Definition 2.3, (3.16) and (3.17), and applying the Hölder inequality
with powers 1/p and 1/(1 – p), we obtain

L(f )
[ 1

1
p′ –α

]p–1
≥

∫ ∞

0
x

(α– 1
p′ –1)

h

[∫ δh(x)

0

(
t –

(
α +

1
p

)
h
)(–α– 1

p )

h
dht

]1–p

×
[∫ δh(x)

0

1
t(α)
h

f (t) dht
]p

dhx

=
∞∑

k=0

h(kh)
(α– 1

p′ –1)

h

[ k∑
i=0

h
(

ih –
(

α +
1
p

)
h
)(–α– 1

p )

h

]1–p[ k∑
i=0

h
f (ih)

(ih)(α)
h

]p

≥
∞∑

k=0

h(kh)
(α– 1

p′ –1)

h

k∑
i=0

h
[(

ih –
(

α +
1
p

)
h
)(–α– 1

p )

h

]1–p[ f (ih)
(ih)(α)

h

]p

=
∞∑
i=0

hf p(ih)
[(

ih –
(

α +
1
p

)
h
)(–α– 1

p )

h

]1–p[ 1
(ih)(α)

h

]p ∞∑
k=i

h(kh)
(α– 1

p′ –1)

h

=
∫ ∞

0
f p(t)

[(
t –

(
α +

1
p

)
h
)(–α– 1

p )

h

]1–p[ 1
t(α)
h

]p ∫ ∞

t
x

(α– 1
p′ –1)

h dhx dht

≥ 1
1
p′ – α

∫ ∞

0
f p(t)

[(
t –

(
α +

1
p

)
h
)(–α– 1

p )

h

]1–p[(
t –

(
α +

1
p

)
h
)(–α– 1

p )

h

]p–1

× 1

t
(α– 1

p′ )

h

∫ ∞

t
Dh

[
x

(α– 1
p′ )

h
]

dhx dht



Persson et al. Journal of Inequalities and Applications  (2018) 2018:73 Page 12 of 14

=
1

1
p′ – α

∫ ∞

0
f p(t) ddt,

i.e.
[

1
p′ – α

]p

L(f ) ≥
∫ ∞

0
f p(t) ddt.

Therefore, we deduce that inequality (3.2) holds for all functions f ≥ 0 and the left hand
side of (3.2) is finite.

Finally, we prove that the constant [ p–1
p – α]p in inequality (3.2) is sharp. Let x, a ∈ T0,

be such that a < x, and fβ (t) = t(β)
h χ[a,∞)(t), where α – 1 < β < – 1

p . By using (2.4), (2.5) and
(2.8) we find that

∫ ∞

0
fβ (t) dht =

∫ ∞

a

(
t(β)
h

)p dht ≤
∫ ∞

a
t(βp)
h dht

=
1

pβ + 1

∫ ∞

a
Dh

[
t(βp+1)
h

]
dht

=
a(pβ+1)

h
|pβ + 1| < ∞

and

L(fβ ) =
∞∑
i=0

h

[
(ih)(α–1)

h

i∑
k=0

h(kh – αh)(–α)
h fβ (kh)

]p

=

a
h –1∑
i=0

h

[
(ih)(α–1)

h

i∑
k=0

h(kh – αh)(–α)
h fβ (kh)

]p

+
∞∑

i= a
h

h

[
(ih)(α–1)

h

i∑
k=0

h(kh – αh)(–α)
h fβ (kh)

]p

=
∫ ∞

a

[
x(α–1)

h

∫ δh(x)

0
(t – αh)(–α+β)

h dht
]p

dhx

=
[

1
1 – α + β

]p ∫ ∞

a

[
x(α–1)

h

∫ δh(x)

0
Dh

[
(t – αh)(1–α+β)

h
]

dht
]p

dhx

≤
[

1
1 – α + β

]p ∫ ∞

a

[
x(α–1)

h (x + h – αh)(1–α+β)
h

]p dhx

=
[

1
1 – α + β

]p ∫ ∞

a

[
x(β)

h
]p dhx =

(
1

1 – α + β

)p ∫ ∞

0
f p
β (x) dhx. (3.18)

From (3.18) its follows that

sup
α–1≥β≥– 1

p

∫ ∞
0 fβ (t) dht

L(fβ )
= sup

α–1<β<– 1
p

[1 – α + β]p =
[

1
p′ – α

]p

,

and this shows that the constant [ p–1
p – α]p in inequality (3.2) is sharp. The proof is com-

plete. �
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Now, let us comment which discrete analogue of Hardy inequality we are getting from
the Hardy h-inequality. Directly from the proof of Theorems 3.1 and 3.2 we obtain the
following discrete inequality, which is of independent interest.

Remark 3.4 On the basis of Definitions 2.4–2.5 we get

∞∑
n=0

[
�( nh

h + 1)
�( nh

h + 2 – α)

n∑
k=0

�( kh
h + 1 – α)

�( nh
h + 1)

ak

]p

≤
(

p
p – αp – 1

)p ∞∑
n=0

ap
k , ak ≥ 0,

for p ≥ 1 and α < 1 – 1/p.
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