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Abstract

Prolongating our previous paper on the Einstein relation, we study the motion of a

particle diffusing in a random reversible environment when subject to a small external

forcing. In order to describe the long time behavior of the particle, we introduce the

notions of steady state and weak steady state. We establish the continuity of weak steady

states for an ergodic and uniformly elliptic environment. When the environment has finite

range of dependence, we prove the existence of the steady state and weak steady state

and compute its derivative at a vanishing force. Thus we obtain a complete ’Fluctuation-

Dissipation Theorem’ in this context as well as the continuity of the effective variance.

1 Introduction

Prolongating the work started in [7], we study the motion of a particle diffusing in a random
reversible environment when subject to a small external forcing. The external force we consider
is a constant in time vector field in some direction e1 and strength λ. We think of λ as being
small.

Long time properties of the motion of our particle depend on the process of the environment
seen from the particle: in the absence of the external force, the process of the environment seen
from the particle is at equilibrium and the motion of the diffusing particle is diffusive (obeys the
central limit theorem). When a constant external force is added, the process of the environment
seen from the particle is off equilibrium and the motion of the particle becomes ballistic. In
order to get a law of large numbers, one has to study appropriate invariant measures for
the environment seen from the particle; we call such measures ’steady states’. Although the
existence of a steady state was proved for environments with a finite range of correlation in
[17], nothing was known until recently about the way it depends on λ. A first partial answer
was given in [7] where we computed the derivative of the effective velocity and thus obtained
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the so-called Einstein relation. In the present paper, we shall investigate regularity properties
of the steady state itself.

This question is of general interest in physics where studying the response of a system
to a small perturbation is often a fruitful experimental procedure. A first example of such a
situation is the work of Perrin on the Brownian motion of minute particles suspended in liquids,
see [27], that confirmed the theoretical predictions of Einstein about Brownian motion and the
existence of atoms, see [5]. Another well-known example is the Green-Kubo relation expressing
transport coefficients in terms of correlations, see [22]. Such results are usually referred to as
Fluctuation-Dissipation theorems or Linear Response theory in the physics literature. We refer
to [12] and their references for applications to climate change among others.

Reversible diffusions in a random environment are also an example of models obeying ho-
mogenization ([4], [13], [14], [20], [21], [25], [26] among others). Studying the effect of imposing
a small drift in the equation is then a way to test the robustness of homogenization properties.
Indeed our result on the continuity of the steady state rely on our ability to obtain bounds
on the effect of the external forcing that are uniform in time, see in particular Lemma 3.1.
Let us also mention that similar issues are currently addressed in the context of deterministic
dynamical systems, see [2] and references therein.

Let Ω be the space of smooth d×d symmetric non-negative matrix functions defined on Rd.
We equip this space with the topology of uniform convergence on compact subsets of Rd. We
let Rd act on Ω by additive translations. We denote this action by x.ω.

Let Q be a Borel probability measure on Ω.
Assumption 1. The action (x, ω) 7→ x. ω. preserves the measure Q and is ergodic.

We first introduce the diffusion process without external forcing. Let (Xω
0 (t) ; t ≥ 0) be the

solution of the stochastic differential equation in Rd:

dXω
0 (t) = bω(Xω

0 (t))dt+ σω(Xω
0 (t))dWt ; Xω

0 (0) = 0 , (1.1)

where σω(x) = σ(x.ω) is a stationary d× d matrix, bω(x) = 1
2
div(σω(x)(σω)∗(x)), and (Wt ; t ≥

0) is a d-dimensional Brownian motion defined on some probability space (W,F , P ). In the
sequel, we use the notation aω(x) = σω(x)(σω)∗(x) and a(ω) = σ(ω)(σ)∗(ω). The vector field
bω is stationary therefore of the form bω(x) = b(x.ω) for some vector valued function b defined
on Ω.

Our goal is to study the behaviour of the diffusion process Xω
0 (t) perturbed by a fixed small

force. The corresponding equation for the perturbed process reads

dXλ,ω
0 (t) = bω(Xλ,ω

0 (t))dt+ λaω(Xλ,ω
0 (t))e1 dt+ σω(Xλ,ω

0 (t))dWt ; Xλ,ω
0 (0) = 0 , (1.2)

where e1 is a fixed vector in Rd, and λ ∈ R.
In the paper we assume that the diffusion coefficient in (1.1), (1.2) satisfies the following

uniform ellipticity condition:
Assumption 2. There is κ > 0 such that the following estimates hold:

κ|ζ |2 ≤ |σ(ω)ζ |2 ≤ κ−1|ζ |2, for all ω ∈ Ω and ζ ∈ Rd.

We also assume that the diffusion coefficient in (1.1), (1.2) has smooth realizations:
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Assumption 3: for any environment ω, the function x → σω(x) is smooth.

The asymptotic behaviour of the non-perturbed symmetric diffusion (1.1) was widely studied
in the 70’s and 80’s. It was proved, see [14], [20], [21], [25], [26], that, under general ergodicity
assumptions, the process Xω

0 shows a diffusive behaviour and satisfies the invariance principle.
We endow the path space with the topology of locally uniform convergence. Then the law
of the family of rescaled processes (εXω

0 (t/ε
2) ; t ≥ 0) weakly converges towards the law of a

Brownian motion with some covariance matrix Σ.
If λ > 0 then the process Xλ,ω

0 is ballistic. It was shown in [7] that it satisfies the quenched
estimates

c1λt ≤ E(Xλ,ω
0 (t) · e1) ≤ c2λt

with deterministic constants c1, c2, 0 < c1 < c2 that only depend on the ellipticity constants
and the dimension and do not depend on λ; here the symbol E stands for the expectation
related to the measure P on (W,F). We generalize this estimate in Lemma 3.1.

However, these estimates do not automatically imply the law of large numbers (LLN). The
LLN was proved in [29] under the condition that the diffusion matrix aω(x) has a finite range of
dependence, see Assumption 4 below. The proof is based on the construction of regeneration
times. This technique also yields the central limit theorem for Xλ,ω

0 ; we call Σλ the asymptotic
variance.

These results can be better understood using the point of view of the particle introduced
in [26]. Define the process ω0(t) = Xω

0 .ω, respectively ωλ(t) = Xλ,ω
0 .ω. One checks that ω0(.)

and ωλ(.) are Markov processes, and that Q is a reversible invariant measure of ω0(.). Using
the Dirichlet form of ω0(.), we define the Sobolev space H1(Ω) and its adjoint H−1(Ω). It
was shown in [14], [4] that the invariance principle holds for additive functionals of elements
of H−1(Ω). The invariance principle stated above for the process Xω

0 is a consequence of these
more general results.

For positive λ the measure Q is not invariant any more. Following [16] we use the notion
of steady state:

Definition 1.1. Let λ > 0. A Borel probability measure νλ on Ω is called steady state if for
any bounded local function f , for Q almost all ω and P almost surely we have

lim
t→∞

1

t

∫ t

0

f(ωλ(s)) ds = νλ(f),

where ωλ(s) = Xλ,ω
0 (s).ω.

Note that, if it exists, the steady state is an invariant measure for the Markov process ωλ(.)
and it is unique.

The existence of the steady state is proved in [17] for a model of a diffusion in a random
environment that differs a bit from ours and satisfies Assumption 4 below on a finite range
of dependence. In Section 4 we shall also obtain the existence of νλ assuming finite range of
dependence by a method that is more explicit than in [17]. The existence of the steady state
is not known for a general stationary ergodic environment. Furthermore, even if we happened
to know that it exists for all λ, it would not directly follow from the definition whether νλ
converges to Q as λ → 0.
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This motivates us to modify the definition of a steady state and to introduce the notion of
weak steady state in the definition below.

The weak steady state is defined on a special subset of the space H−1(Ω) that we call
H̃−1

∞ (Ω). The precise definition will be given in Section 3. Loosely speaking, one may think of
elements in H−1(Ω) as function f on Ω that can be written as the divergence of some stationary,
square integrable vector field, say f = divF . We call H−1

∞ (Ω) the set of f in H−1(Ω) for which
we can choose a bounded F . Note that H−1

∞ (Ω) is naturally endowed with a Banach space
structure. We further let H̃−1

∞ (Ω) denote the closure in H−1
∞ (Ω) of the linear set of f in H−1

∞ (Ω)
for which we can choose a bounded and local F . Precise definitions are given at the beginning
of Section 3.

A typical example of an element of H−1
∞ (Ω) is obtained choosing F (ω) = a(ω). Then

f(ω) = 2b(ω) is the drift term in equation (1.1).
We shall see that, although an element of f ∈ H−1

∞ (Ω) need not be a function, it still makes
sense to consider the additive functional

Aλ,ω
0,f (t) =

∫ t

0

f(ωλ(s)) ds.

We thus define the notion of

Definition 1.2. Let λ > 0. A continuous linear functional νλ on H̃−1
∞ (Ω) is called weak steady

state if for any f in H̃−1
∞ (Ω), then

lim
t→∞

1

t
Aλ,ω

0,f (t) = νλ(f), (1.3)

in L1(W, P ) for Q almost all ω.

As we shall see in Section 3, if the convergence in (1.3) holds for any f in H̃−1
∞ (Ω), then the

limit is automatically a linear continuous functional on H̃−1
∞ (Ω).

Observe that due to Lemma 3.1 below, we could replace in Definition 1.2 the convergence
in L1(W, P ) with the convergence in Lp(W, P ) for any p ≥ 1. Also, due to the same Lemma,
if 1

t
Aλ,ω

0,f (t) converges P almost surely, then the convergence holds in L1(W, P ) as well.
We prove the Lipschitz continuity of weak steady states:

Theorem 1.3. There exists a constant C1 satisfying the following: if for λ with 0 ≤ λ ≤ 1 and
f in H−1

∞ (Ω) the limit

lim
t→∞

1

t
Aλ,ω

0,f (t) := νλ(f),

exists in L1(W, P ) for Q almost all ω, then

|νλ(f)| ≤ C1λ‖f‖H−1
∞ (Ω). (1.4)

In particular, if the weak steady state exists for all λ ∈ [0, 1], then νλ(f) converges to 0, as
λ → 0 for all f ∈ H̃−1

∞ (Ω).

Remark 1.4. In the next section we introduce the space H1(Ω) in such a way that these
functions have zero mean value. With this definition the duality between functions from H−1(Ω)
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and constants does not make sense. However, under our assumptions, the generators Dj,
j = 1, . . . , d of the action x.ω are such that

√
−1Dj are self-adjoint in L2(Ω). Therefore,

for any F = (F1, . . . , Fj) such that Fj belongs to the domain of Dj we have
∫
Ω
divF (ω)dQ =

−
∫
Ω
F · ∇(1)dQ = 0.

Thus all elements ofH−1(Ω) are centered in a certain sense. In particular,
∫
Ω
dQ(ω)E[A0,ω

0,f (t)] =
0 for all t.

Therefore Equation (1.4) does indeed express the Lipschitz continuity of the weak steady
state νλ, considered as a linear functional on H̃−1

∞ (Ω).

In Section 4, we prove that weak steady states exist for all λ if Q has finite range of
dependence, see Assumption 4 below.

From now on, we shall discuss properties of diffusions in a media satisfying the following
finite range of dependence property: for a Borel subset F ⊂ Rd, let HF denote the σ-field
generated by {σ(x.ω) : x ∈ F}. We assume that:
Assumption 4: there exists R such that for any Borel subsets F and G such that d(F,G) > R
(where d(F,G) = inf{|x− y| : x ∈ F, y ∈ G} is the distance between F and G) then

HF and HG are independent . (1.5)

As already mentioned, under Assumption 4, then steady states and weak steady states
exist for all λ and Theorem 1.3 applies. We can go one step further and show that νλ(f) has a
derivative at λ = 0. This is the content of the next Theorem.

Theorem 1.5. Let f belong to H̃−1
∞ (Ω). Then, the derivative of νλ(f) at λ = 0 exists.

Our main tool for proving the existence of the steady state and Theorem 1.5 are regeneration
times. As a matter of fact, regeneration times were already the main tools in [29] (for the proof
of the law of large numbers and c.l.t. for Xλ,ω

0 ) and in [17] to establish the existence of steady
states; see also [15] [30] for random walks.

In order to prove Theorem 1.5, one needs regeneration times that do not explode faster than
λ−2 as λ tends to 0. We already faced this issue in [7] and there we introduced appropriate
modifications to the definitions in [29] to achieve the right order of magnitude. The construction
we shall use here differs a bit from [7] but it also provides regeneration times of order λ−2. The
other key ingredient in the proof of Theorem 1.5 is an explicit expression of νλ(f) in terms of
regeneration times. Our definition makes the regeneration time depend on the function f .

The proof of Theorem 1.5 also gives the value of the derivative. Let us denote by Γ̄(f) the
derivative of νλ(f) at λ = 0 as in Theorem 1.5. We now give various interpretations of Γ̄(f).

One proof of the invariance principle is based on the existence of a corrector: let Lω be the
generator of the process Xω

0 . The corrector is a (random) function χ defined on Rd, with values
in Rd and satisfying the equation

Lωχ = −bω . (1.6)

One shows that equation (1.6) has a solution with a stationary gradient, see Section 2.4.1.
If σ(·) has finite range of dependence and d ≥ 3, then as was proved in [10] and [11], equation
(1.6) has a stationary solution. We show that

Γ̄(f) = −2

∫

Ω

χ(ω)f(ω) dQ. (1.7)
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Notice that in general equation (1.6) need not have a stationary solution. However, the in-
terpretation of the derivative of the steady state at λ = 0 as the corrector remains valid in a
weaker form, see Proposition 2.8.

In Lemma 2.9 we give another interpretation of Γ̄(f) as a covariance. Finally we can also
obtain Γ̄(f) as a drift term for the scaling limit of a perturbed diffusion with vanishing strength
in the so-called Lebowitz-Rost scaling discussed in Section 2.3.

These last interpretations of Γ̄(f) are in good agreement with Fluctuation-Dissipation-
Theorems that predict that the linear response of a system in equilibrium can be expressed as
a correlation.

In the Appendix A, we briefly discuss the case of a periodic environment where the construc-
tion of steady states is immediate and the expression of the derivative of the steady state in
terms of the corrector (1.7) follows by directly comparing the periodic boundary value problems
for PDE’s satisfied by these quantities.

The proof of Theorem 1.5 relies of the Continuity Lemma 5.8 which gives the scaling limit
on the regeneration scale of the joint law of Xλ,ω

0 and Aλ,ω
0,f for a local function f in H̃−1

∞ .
Another important consequence of Lemma 5.8 is the continuity of the asymptotic variance

Σλ at λ = 0.

The organization of the paper is as follows.
In Section 2 we consider rather general stationary environments and discuss scaling limits

of additive functionals of the environment seen from the particle either in the case λ = 0 or,
more generally, in the Lebowitz-Rost scaling. The material from this part cannot be called
‘new’: it is mainly a rephrasing of arguments borrowed from references [14], [4] and [23]. For
the background materials we refer to the books [13] and [18]. However we found it necessary to
include some details in this part as the precise statements needed in the sequel are not always
easy to find in the references. We believe it makes the paper more self-contained and easier to
read.

In Section 3 we investigate continuity properties of steady states and prove Theorem 1.3.
Section 4 is devoted to the construction of regeneration times and of the steady state and

weak steady state assuming the environment has finite range of dependence. Our regeneration
times are not exactly as in [16, 17]. Indeed, in our construction, the definition of the regeneration
times depends on the function f . This point of view allows for an explicit expression of νλ(f).

In Section 5 we let λ tend to 0. The crucial role here is played by the estimates obtained
in [7] and by uniform estimates for the scaled regeneration times in the case f ∈ H̃−1

∞ . We
obtain the general Continuity Lemma 5.8. As a first consequence we prove the existence of and
identify the derivative of νλ at λ = 0. Finally, in Section 6 we also obtain a continuity property
of the asymptotic variance Σλ and we derive from the general continuity lemma the validity of
the Einstein relation in a way that differs from [7].

Remark 1.6. The questions addressed in this paper can also be raised for discrete models of
random walks among random conductances. This is the object of the recent paper [8]. (Our two
papers are simultaneous. They cannot be called ’independent’ as the two teams kept contacts
during all the elaboration of the two preprints.)

In [8], the authors consider random walks with uniformly elliptic conductances, only the
i.i.d. case being studied. Their main result is the Einstein relation, which they obtain following
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a strategy similar to that in [7]. In particular they construct regeneration times of the correct
order. On top of it [8] discusses regularity properties of the steady state νλ.

The approach used in [8] is more quantitative than ours: the authors assume that d ≥ 3, so
that there exists a stationary corrector and local bounded functions are in H−1(Ω). Furthermore,
they crucially rely on results from [24] that quantify the ergodicity of the environment seen from
the particle. As a result, they obtain the continuity of the steady state acting on local bounded
continuous functions - that we do not get here - and they show, for d ≥ 3, fluctuation-dissipation
relations similar to our Theorem 5.1 and Corollary 5.2.

Here we preferred to take the ’H−1 point of view’ as a starting point: we view the steady
state as a linear functional on H̃−1

∞ rather than as a measure, see Definitions 1.1 and 1.2. This
allows us to include the two-dimensional case and to get continuity results for general ergodic
environments, see Theorem 1.3. As for the FDT, we do not use quantitative bounds on the
ergodicity of environment seen from the particle but rather make an extensive use of scaling
limits, see Lemma 5.8. Our approach also yields the results on the continuity of the variance.

2 Homogenization of additive functionals

Let Ω be a separable topological space, equipped with a measurable action of Rd that we denote

(x, ω) 7→ x. ω.

Let Q be a Borel probability on Ω. We denote by D = (D1, . . . , Dd) the generator of this action.
We refer to the books [13] and [18] for further details of the dynamical system x. ω and its

generator.

Assumption 1. The action (x, ω) 7→ x. ω. preserves the measure Q and is ergodic.

Let σ be a measurable symmetric d× d matrix valued function defined on Ω.

Assumption 2. There is κ > 0 such that the following estimates hold:

κ|ζ |2 ≤ |σ(ω)ζ |2 ≤ κ−1|ζ |2, for all ω ∈ Ω and ζ ∈ Rd.

Let D = {g ∈ L2(Ω) ; Dg ∈ (L2(Ω))d} be the L2 domain of the following bilinear form:

(f, g) −→ 1

2

∫

Ω

σDf · σDg dQ =: E(f, g).

The bilinear form E(f, g) with domain D is a Dirichlet form. We postulate the existence of
a Hunt process with continuous paths whose Dirichlet form is (E,D). We denote by ω(s) the
coordinate process on path space C(R+,Ω). We denote by P0 the law of the Hunt process with
initial law Q.

We also introduce the subspaces of centered functions

L2
0(Ω) =

{
u ∈ L2(Ω) :

∫

Ω

u dQ = 0

}
, D0 =

{
u ∈ D :

∫

Ω

u dQ = 0

}
.
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Due to the ergodicity, the quadratic form

E(f) =
1

2

∫

Ω

σDf · σDf dQ

defines a norm on D0. We introduce H1(Ω) as the completion of D0 with respect to E. By
construction, H1(Ω) is a Hilbert space.

We then define H−1(Ω) as the dual space to H1(Ω). Let A be the linear subset of L2
0(Ω)

consisting of functions f ∈ L2
0(Ω) such that for some constant c and for any u ∈ D0 the following

inequality holds (∫

Ω

fu dQ
)2

≤ c2E(u). (2.8)

The map u →
∫
Ω
fudQ defines an element in H−1(Ω) whose norm is the smallest constant c for

which inequality (2.8) holds true, so that we can interpret A as a subset of H−1(Ω). Then A
is dense in H−1(Ω). With this construction we may identify A with L2

0(Ω) ∩H−1(Ω). In what
follows we use the latter notation.

Let L2
pot(Ω) be the closure of {v = Du : u ∈ D0} in the space

(
L2(Ω)

)d
equipped with the

norm (1
2

∫
Ω
|σv|2 dQ)1/2. By construction L2

pot(Ω) is a Hilbert space.
Let f ∈ L2

0(Ω) ∩H−1(Ω). Setting

〈f,Du〉 =
∫

Ω

fu dQ

we can interpret f as a linear continuous functional on L2
pot(Ω). Using the Riesz theorem we

identify f with an element f̃ ∈ L2
pot(Ω). In other words, f̃ is the unique element of L2

pot(Ω)
such that ∫

Ω

fu dQ =
1

2

∫

Ω

σf̃ · σDu dQ for all u ∈ D0.

Observe that the map f 7→ f̃ preserves the norms in H−1(Ω) and L2
pot(Ω). Therefore, it extends

to an isometry between H−1(Ω) and L2
pot(Ω).

Let us introduce the notation

Σ(f) = 2‖f‖2H−1(Ω) =

∫

Ω

|σf̃ |2 dQ

and

Σ(f, g) = 2(f, g)H−1(Ω) =

∫

Ω

σf̃ · σg̃ dQ. (2.9)

2.1 Invariance principle

Given a square integrable and centered function f : Ω 7→ R satisfying (2.8), and given a
continuous trajectory (ω(s) ; s ≥ 0) in Ω, we set

Af (t) =

∫ t

0

f(ω(s)) ds.

Observe that the process (Af(t) ; t ≥ 0) is an additive functional of the process (ω(t) ; t ≥ 0).
As was proved in [14], the following invariance principle holds:
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Theorem 2.1. Let f : Ω 7→ R be a square integrable and centered function satisfying (2.8).
Then under P0 the family of processes (Aε

f(t) = εAf(t/ε
2) ; t ≥ 0) converges in law, as ε → 0,

in C([0,∞),R) towards a Brownian motion with variance Σ(f). Moreover,

1

t
E0

[
A2

f(t)
]
−→
t→∞

Σ(f).

In fact, the approach of [14] provides a martingale approximation for Af . It then follows that
for any finite collection (f1, . . . , fn) of functions satisfying the assumptions of the above theorem
the joint invariance principle holds for the n-dimensional additive functional (Af1 , . . . , Afn)
with limit covariance matrix {Σ(fi, fj)}ni,j=1. Moreover, if (M1, . . . ,Mk) are continuous square
integrable martingale additive functionals, then the (n + k)-dimensional additive functional
(Af1 , . . . , Afn,M1, . . . ,Mk) satisfies the joint invariance principle.

2.2 Extension to H−1

In this section we extend the previous result to all elements of H−1(Ω). This extension relies
on the following lemma.

Lemma 2.2. For any g : Ω 7→ R being a square integrable and centered function satisfying
(2.8) and any t > 0 we have

E0

[(
sup
s≤t

|Ag(s)|
)2
]
≤ 8t‖g‖2H−1(Ω). (2.10)

Proof. The proof relies on the forward-backward martingale representation of Ag; see [6, chapter
5.7]. Denote by rt the time reversal operator at time t: ω ◦ rt(s) = ω(t− s) for all s ∈ [0, t].
Then,

Ag(s) =
1

2

(
M(s) + (M(t)−M(t− s)) ◦ rt

)
, (2.11)

where, under P0, M is a continuous square integrable martingale with bracket

〈M〉(t) =
∫ t

0

|σg̃|2(ω(s)) ds.

The first martingale on the right hand side of (2.11) can be estimated using Doob’s inequality
as follows:

E0

[
sup
s≤t

|M(s)|2
]
≤ 4E0

[
〈M〉(t)

]
= 4t

∫

Ω

|σg̃|2 dQ = 8t‖g‖2H−1(Ω).

The second term can be treated in a similar way taking advantage of the fact that P0 is invariant
with respect to rt.

The first consequence of the lemma is that we can make sense of Af for f ∈ H−1(Ω).
Observe that f ∈ L2

0(Ω) ∩H−1(Ω) vanishes as an element of H−1(Ω) iff f = 0 Q-a.s. Due to
the lemma, the map f 7→ (Af(t) ; t ≥ 0) is linear continuous from L2

0(Ω) ∩ H−1(Ω) equipped
with H−1(Ω) topology to L2(Ω, C[0,∞)). Since L2

0(Ω) ∩H−1(Ω) is dense in H−1(Ω), this map
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extends to a linear continuous map on H−1(Ω). We will sometimes abuse notation and keep
the notation

Af(t) =

∫ t

0

f(ω(s)) ds

for f ∈ H−1(Ω).
The following extension of Theorem 2.1 follows from Lemma 2.2.

Theorem 2.3. Let f ∈ H−1(Ω). Then under P0 the family of processes
(Aε

f (t) = εAf(t/ε
2) ; t ≥ 0) converges in law, as ε → 0, in C[0,∞) towards a Brownian motion

with variance Σ(f). Moreover,
1

t
E0

[
A2

f(t)
]
−→
t→∞

Σ(f).

Notice that as in Theorem 2.1, for any finite collection (f1, . . . , fn) of elements of H−1(Ω),
the joint invariance principle holds for the vector (Af1, . . . , Afn) with limit covariance matrix
{Σ(fi, fj)}ni,j=1. If (M1, . . . ,Mk) are continuous square integrable martingale additive function-
als, then the (n + k)-dimensional additive functional (Af1 , . . . , Afn,M1, . . . ,Mk) satisfies the
joint invariance principle.

For f, g ∈ H−1(Ω) we have

1

t
E0 [Af(t)Ag(t)] −→

t→∞
Σ(f, g). (2.12)

2.3 Lebowitz-Rost type results

Let (M(t) ; t ≥ 0 be a continuous martingale additive functional of the Markov process ω(·).
Then M(t) is a continuous martingale with stationary increments under P0. We assume that
its bracket is of the form

〈M〉(t) =
∫ t

0

m(ω(s)) ds

with m ∈ L∞(Ω).
For λ ∈ R, let Pλ

0 be the measure on path space that satisfies

dPλ
0

∣∣
Ft

dP0

∣∣
Ft

= eλM(t)−λ2

2
〈M〉(t)

for all t ≥ 0.
It follows from our assumptions thatM(·) satisfies the invariance principle. Let f ∈ H−1(Ω).

Observe that the pair (Af ,M) satisfies the joint invariance principle under P0. We denote by
ΓM the off-diagonal term of the limit covariance matrix. It follows from the assumptions on
M(·) and (2.10) that

ΓM(f) = lim
t→∞

1

t
E0 [Af (t)M(t)] .

Theorem 2.4. Let f ∈ H−1(Ω), and let α be a positive real number. Then under Pλ
0 the family

of processes (Aε
f(t) = εAf (t/ε

2) ; t ≥ 0) converges in law in C[0,∞), as ε → 0, λ → 0 and
λ2/ε2 → α, towards a Brownian motion with variance Σ(f) and constant drift

√
αΓM(f).
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The statement of this theorem remains valid in the multi dimensional case. Namely, let
f1, . . . , fn belong to H−1(Ω), and let M1, . . . ,Mk be continuous square integrable martingale
additive functionals. Let Mε

j (t) = εMj(t/ε
2), j = 1, . . . , k. Then, as ε → 0, λ → 0 and λ2/ε2 →

α, under Pλ
0 the rescaled family (Aε

f1
, . . . , Aε

fn
,Mε

1 , . . . ,M
ε
k) converges in law in C([0,∞),Rn+k)

to a Brownian motion with constant drift. The limit covariance of Afi and Afj is Σ(fi, fj); the
limit covariance of Afi and Mj is ΓMj

(fi).

Proof. The arguments below are essentially borrowed from [23]. Let F be a continuous bounded
functional on path space on time interval [0, T ], T > 0. Then we have

Eλ
0

[
F (Aε

f(t) ; t ∈ [0, T ])
]
= E0

[
F (Aε

f(t) ; t ∈ [0, T ])eλM(T/ε2)−(λ2/2)〈M〉(T/ε2)]. (2.13)

By Theorem 2.3 and since λ2/ε2 tends to α, under P0 the law of (Aε
f , λM(·/ε2)) converges

to the law of a two-dimensional Brownian motion Ž = (Ž1, Ž2) defined on a probability space
(W,F ,P). Let E denote integration with respect to P.

Let Σ2 = {(Σ2)ij}2i,j=1 be the covariance matrix of Ž. It follows from the definitions

that (Σ2)11 = Σ(f) , and (Σ2)12 = (Σ2)21 =
√
αΓM(f). Notice also that E [(Ž2(T ))

2] =
αE0[〈M〉(T )] = αE0[〈M〉(1)]T . By the ergodic theorem, the process λ2〈M〉(·/ε2) converges in
probability under P0 to the deterministic process (α2E[〈M〉(1)]t ; t ≥ 0).
Therefore, the triple (Aε

f , λM(·/ε2) , 〈M〉(·/ε2)) converges in law under P0 towards the process(
(Ž(t), α2E[〈M〉(1)]t) ; t ≥ 0

)
.

Besides, under the assumption that m ∈ L∞(Ω), we can estimate

E0

[
e2λM(T/ε2)

]
= E0

[
e2λM(T/ε2)−2λ2〈M〉(T/ε2)e2λ

2〈M〉(T/ε2)
]

≤ e2α‖m‖L∞(Ω) .

Therefore, we can pass to the limit in (2.13), and the right-hand side converges to
E
[
F (Ž1(t) , t ∈ [0, T ])eŽ2(T )−E[(Ž2(T ))2]

]
. The Gaussian integration by parts formula yields

E
[
F (Ž1(t) , t ∈ [0, T ])eŽ2(T )−E[(Ž2(T ))2]

]
= E

[
F (Ž1(t) +

√
αΓM(f)t , t ∈ [0, T ])

]
.

The extension to the multidimensional case described in the comment that follows the
Theorem is an immediate consequence of the joint invariance principle stated just after Theorem
2.3.

2.4 Diffusions in a random environment

In this section we apply the above results to the case of a diffusion in random environment. We
choose for Ω the space of smooth d × d symmetric matrix functions defined on Rd. We equip
this space with the topology of uniform convergence on compact subsets of Rd. Besides, Rd

acts on Ω by additive translations.
Let Q be a stationary ergodic measure on Ω so Assumption 1 holds. Choose σ satisfying

Assumption 2. We define σω(x) = σ(x.ω) for x ∈ Rd. We further assume

Assumption 3: for any environment ω, the function x → σω(x) is smooth.

11



We introduce the notation

aω = (σω)2 and bω =
1

2
divaω .

Observe that both aω and bω are then stationary fields i.e. aω(x) = a(x.ω) and bω(x) = b(x.ω)
for some functions a = σ2 and b. It is immediate to check that b belongs to (H−1(Ω))d.

Let (Wt : t ≥ 0) be a Brownian motion defined on some probability space (W,F , P ). We
denote expectation with respect to P by E. We define the process Xω

x as the solution of the
following stochastic differential equation

dXω
x (t) = bω(Xω

x (t)) dt+ σω(Xω
x (t)) dWt ; X

ω
x (0) = x . (2.14)

Then Xω is a Markov process generated by the operator

Lωf(x) =
1

2
div( aω ∇f)(x) . (2.15)

Define the process ω(t) = Xω
0 (t).ω.

Proposition 2.5. Under P , the process ω(·) is a symmetric Hunt process with reversible mea-
sure Q and Dirichlet form (E,D) in L2(Ω,Q).

Proof. It is clear that ω(·) is a Hunt process with continuous paths. Since the generator Lω

is symmetric, the Lebesgue measure is reversible for the process Xω
x for all ω. This combined

with the fact that Q is stationary implies that the measure Q is reversible for the process ω(·).
Now we identify the Dirichlet form of ω(·). For a given ω the domain of the Dirichlet form
of the process Xω

x is H1(Rd). Let F ∈ D. For ω ∈ Ω we define F ω(x) = F (x.ω). Then for
almost all ω the function F ω(·) belongs to H1

loc(R
d) (see [13, page 232]). From these two facts

the desired statement follows.

According to Proposition 2.5 we are in the framework of this Section. Therefore, we set
P0(A) =

∫
Ω
dQ(ω)P (Xω

0 (·).ω ∈ A) for all measurable sets A in the path space.

Remark 2.6. One can retrieve the trajectory of Xω
0 from the trajectory ω(·) looking for x ∈ Rd

that solves the equation
x.ω = ω(t). (2.16)

If this equation has a unique solution x, then Xω
0 (t) = x, and it follows from the structure of

equation (2.16) that Xω
0 is an additive functional of the process ω(·). Furthermore, enlarging

the space Ω if necessary, we may always assume that equation (2.16) has a unique solution.
For instance, let (V1, . . . , Vd) be independent nonconstant random fields with finite range of
correlation indexed by R and defined on some probability space Ω′ = Ω1× . . .×Ωd. We assume
that each Ωj is equipped with a measure preserving ergodic action of R. For ω′ = (ω1, . . . , ωd)
and x ∈ Rd we define x.ω′ = (x1.ω1, . . . , xd.ωd), and let V ω′

(x) = V (x.ω′). We enlarge Ω by
taking the product space Ω×Ω′. Observe that if the equation (2.16) has two different solutions
then one of the components of V ω is periodic, and this happens with probability 0.

A similar argument is used in [4, Remark 4.2].
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The martingale part of Xω
0 , that can be expressed as

∫ ·
0
σ(ω(s)) dWs, is a martingale ad-

ditive functional of the process ω(·). The drift part is also an additive functional of the form∫ ·
0
b(ω(s)) ds with b ∈ (H−1(Ω))d. Therefore, Theorem 2.3 and the comment following this

theorem imply the joint invariance principle for these processes. As a consequence, the family
of processes

(
εXω

0 (t/ε
2) ; t ≥ 0

)
converges in law under P × Q, as ε → 0, towards a Brownian

motion with the effective covariance that we denote by Σ, and

e · Σe = lim
t→∞

1

t

∫

Ω

E[(Xω
0 (t) · e)2] dQ(ω), for any e ∈ Rd.

In the sequel we often use the notion of symmetric and antisymmetric additive functionals
of ω(·). For T > 0 the time reversal operator RT maps a trajectory (ω(t) ; 0 ≤ t ≤ T ) to the
trajectory (ω(T − t) ; 0 ≤ t ≤ T ). An additive functional is called symmetric with respect to
time reversal if its restriction to the time interval [0, T ] is invariant under RT for all T . It is
called antisymmetric if it changes sign upon the action of RT . For instance, Af is a symmetric
additive functional whereas Xω

0 is antisymmetric.
Let e1 be a non-zero vector and λ > 0. We define λ̂ to be the vector λ̂ = λe1. We consider

the perturbed stochastic differential equation:

dXλ, ω
x (t) = bω(Xλ, ω

x (t)) dt+ aω(Xλ, ω
x (t))λ̂ dt+ σω(Xλ, ω

x (t)) dWt ; X
λ, ω
x (0) = x . (2.17)

Then Xλ,ω is a Markov process with generator

Lλ,ωf(x) = Lωf(x) + aω(x)λ̂ · ∇f(x).

Applying the Girsanov formula (see [28] ) to the processes Xω and Xλ, ω, we get that, for any
ω,

E[F (Xλ, ω
0 ([0, t]))] = E[F (Xω

0 ([0, t])) e
λB̄(t)−λ2

2
〈B̄〉(t)] , (2.18)

where B̄ is the martingale

B̄(t) =

∫ t

0

σω(Xω
0 (s)) e1 · dWs (2.19)

and 〈B̄〉 is its bracket
〈B̄〉(t) =

∫ t

0

|σω(Xω
0 (s)) e1|2 ds .

Observe that the process B̄ is an additive functional of ω(·) which can be written as

B̄(t)− B̄(s) = e1 · (Xω
0 (t)−Xω

0 (s))−
∫ t

s

e1 · bω(Xω
0 (u)) du

= e1 · (Xω
0 (t)−Xω

0 (s))−
∫ t

s

e1 · b(ω(u)) du .
(2.20)

We let ωλ(t) = Xλ,ω
0 (t).ω. Then the law of the process ωλ(·) with the initial measure Q coincides

with the measure Pλ
0 defined in Section 2.3, where we set M = B. Let Γ̄ be the covariance

operator defined in Section 2.3 with M = B.
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Proposition 2.7. Let f ∈ H−1(Ω), Then, under P ×Q, the processes

(
λXλ,ω

0 (λ−2·), λ
∫ λ−2·

0

f(ωλ(s)) ds
)

converge in law in C([0,∞),Rd+1), as λ tends to 0, towards a Brownian motion with constant
drift. The limit covariance matrix and the drift are given, respectively, by

(
Σ 0

0 Σ(f)

)
,

(
Σe1

Γ(f)

)
.

Proof. Theorem 2.4 and the comment following this theorem apply and yield the convergence
in law of

(
λXλ,ω

0 (λ−2·), λAλ,ω
0,f (λ

−2·)
)
, under the annealed measure P ×Q.

According to Theorem 2.4 the limit covariance matrix is also the limit covariance matrix
under the annealed measure of

( 1√
t
Xω

0 (t),
1√
t

∫ t

0

f(ω(s) ds
)
, (2.21)

as t → ∞. By definition of Σ, the covariance of the Xω
0 component converges to Σ, while the

limit variance of the last component is Σ(f). The covariance of Xω
0 (t) and

∫ t

0
f(ω(s) ds vanishes

because Xω
0 (·) is an antisymmetric with respect to time reversal additive functional of ω(·), and∫ t

0
f(ω(s) ds is symmetric.
As for the limit drift part, Theorem 2.4 implies that it is given by the limit of the covariances

of the vector in (2.21) and t−1/2B(t). The contribution of the last component is Γ(f) by
definition. To identify the contribution of theXω

0 component we rely on formula (2.20) observing
once again that the covariance of Xω

0 (t) and
∫ t

0
e1 · b(ω(s)) ds vanishes for symmetry reasons.

2.4.1 The corrector

We recall that b ∈ (H−1(Ω))d. Let b̃ be the matrix whose columns are elements of L2
pot(Ω) such

that b̃e = b̃ · e for any e ∈ Rd. Let b̃ω(x) = b̃(x.ω) be the space realization of b̃. For any e ∈ Rd

for almost all ω ∈ Ω then b̃ω · e is a curl-free function in L2
loc(R

d). Therefore, there exists a

smooth vector valued function χ(·, ω) defined on Rd and such that ∇(χ(·, ω) · e) = b̃ω · e. The
function χ is called a corrector. Observe that it is uniquely defined up to an additive constant.
By the definition of b̃,

∫

Ω

(b · e)u dQ =
1

2

∫

Ω

σ(̃b · e) · σ∇u dQ, for any u ∈ D0.

Going to the space of realizations yields
∫

Rd

bω(x)·e u(x) dx =
1

2

∫

Rd

σω(x)∇(χ(x, ω) · e) · σω(x)∇u(x) dx

for any u ∈ C∞
0 (Rd). Integrating by parts we obtain

∫

Rd

bω(x)·e u(x) dx = −
∫

Rd

Lωχ(x, ω)·e u(x) dx.
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Thus, Lωχ · e = −bω · e. This implies that for almost all ω ∈ Ω the process χ(Xω
x (t), ω)+Xω

x (t)
is a martingale under P for all starting points x.

The following Proposition illustrates the role of the corrector. However, it will not be used
in the sequel.

Proposition 2.8. Let f ∈ H−1(Ω) ∩ L2(Ω). Then

E0

[1
t

∫ t

0

f(Xω
0 (s).ω)χ(X

ω
0 (s), ω) · e1ds

]
−→ −1

2
Γ̄(f), as t → ∞.

Proof. The proposition relies on the following statement. Recall that Σ(f, g) is defined in (2.9),
see also (2.12).

Lemma 2.9. We have

Γ̄(f) = −Σ(f, b · e1) for all f ∈ H−1(Ω).

Proof of Lemma 2.9. By definition,

Γ̄(f) = lim
t→∞

1

t
E0

[
Af(t)B(t)

]

with B defined in (2.19). Notice that

B(t) = (Xω
0 (t)−Xω

0 (0)) · e1 − Ab·e1(t).

As we already observed, Af is a symmetric additive functional and (Xω
0 (t) − Xω

0 (0)) is anti-
symmetric. Therefore, the covariance of Xω

0 (t)−Xω
0 (0) and Af vanishes. Thus,

Γ̄(f) = − lim
t→∞

1

t
E0 [Af (t)Ab·e1(t)] = −Σ(f, b · e1).

Define
mt = χ(Xω

0 (t), ω) · e1 − χ(0, ω) · e1 + Ab(t) · e1.
Then the process {mt : t ≥ 0} is a martingale under P . We have

E0

[1
t

∫ t

0

f(ω(s))χ(Xω
0 (s), ω) · e1 ds

]
= E0

[1
t

∫ t

0

f(ω(s))ms ds
]

−E0

[1
t

∫ t

0

f(ω(s))Ab(s) · e1 ds
]
+ E0

[1
t

∫ t

0

f(ω(s))χ(0, ω) · e1 ds
]
.

(2.22)

Using the martingale property of m·, we get

E0

[1
t

∫ t

0

f(ω(s))ms ds
]
= E0

[1
t

(∫ t

0

f(ω(s)) ds
)
mt

]

= E0

[1
t
Af(t)

(
χ(Xω

0 (t), ω)− χ(0, ω) + Ab(t)
)
· e1
]
= E0

[1
t
Af(t)Ab(t) · e1

]
;
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here we have also used the fact that Af is a symmetric with respect to time reversal additive
functional and χ(Xω

0 (·), ω)− χ(0, ω) is antisymmetric. Therefore, their covariance vanishes.
By stationarity and reversibility we have for all s ≤ v

E0

[
f(ω(s))b(ω(v))

]
= E0

[
f(ω(v))b(ω(s))

]
.

Therefore,

E0

[1
t

∫ t

0

f(ω(s))Ab(s) · e1 ds
]
= E0

[1
t

∫ t

0

f(ω(s))

∫ s

0

b(ω(v)) · e1 dvds
]

= E0

[1
t

∫ t

0

f(ω(s))

∫ t

s

b(ω(v)) · e1 dvds
]
=

1

2
E0

[1
t
Af (t)Ab(t) · e1

]
,

and we conclude that

E0

[1
t

∫ t

0

f(ω(s))χ(Xω
0 (s), ω) · e1 ds

]
=

1

2
E0

[1
t
Af (t)Ab(t) · e1

]
+E0

[1
t

∫ t

0

f(ω(s))χ(0, ω) · e1 ds
]
.

(2.23)

As t → ∞, according to Theorem 2.3, the term E0

[
1
t
Af (t)Ab(t) ·e1

]
converges to Σ(f, b ·e1).

By the Ergodic theorem the last term on the right-hand side of (2.23) converges to zero. Thus,

E0

[1
t

∫ t

0

f(Xω
0 (s).ω)χ(X

ω
0 (s), ω) · e1ds

]
−→ 1

2
Σ(f, b · e1) = −1

2
Γ̄(f), as t → ∞.

Remark 2.10. For a function g ∈ L2(Ω) by stationarity we have

∫

Ω

fg dQ =
1

t
E0

[ ∫ t

0

f(ω(s))g(ω(s)) ds
]
.

In general, χ(x, ω) is not of the form g(x.ω). This suggests that the expression

E0

[1
t

∫ t

0

f(Xω
0 (s).ω)χ(X

ω
0 (s), ω) · e1ds

]

need not have a limit for all f ∈ L2(Ω). However, the Proposition says that the limit exists for
all f ∈ H−1(Ω). In this respect, −1

2
Γ̄(f) can be interpreted as a substitute for the integral of a

function f against the corrector χ.
In the case of finite range of dependence and d ≥ 3, then the corrector exists and

−1

2
Γ̄(f) =

∫

Ω

fχdQ,

see [11] and [10].
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3 Continuity of steady states

In this section, we study continuity properties of the steady state νλ as λ tends to 0. In
particular we shall prove Theorem 1.3. Our main tool is Lemma 3.1. It will also be useful
in the other sections of the paper. An alternative version of Lemma 3.1, which also implies
Theorem 1.3, is given in Appendix B.

3.1 The spaces H−1
∞ (Ω) and H̃−1

∞ (Ω).

Let F be a vector-valued function in
(
L∞(Ω)

)d
.

The formula

〈F, u〉 = −
∫

Ω

F ·DudQ

defines a linear continuous functional on H1(Ω). Therefore there exists an element f ∈ H−1(Ω)
such that 〈F, u〉 is the duality product 〈f, u〉H−1,H1. We denote f by divF as it coincides with the
standard divergence if F is regular enough. Indeed, if F = (F1, . . . , Fd) is such that Fj belongs
to the domain of Dj , then 〈f, u〉H−1,H1 = −(F,Du)L2(Ω) = (

∑
DjFj, u)L2(Ω) = (divF, u)L2(Ω)

for any u ∈ H1(Ω). The second relation here follows from the fact that
√
−1Dj is a self-adjoint

operator in L2(Ω). We define H−1
∞ (Ω) to be the set of elements f in H−1(Ω) of the form

f = divF for some F in
(
L∞(Ω)

)d
. Let

‖f‖H−1
∞ (Ω) = min{‖F‖∞ ; divF = f}.

Then H−1
∞ (Ω) is a Banach space. Indeed, it is clear that ‖f‖H−1

∞ (Ω) is a norm. We have to check

that H−1
∞ (Ω) is complete with respect to this norm. To this end consider a Cauchy sequence

{fm}∞m=1 in H−1
∞ (Ω). Taking a subsequence {mj} we can assume that ‖fmj+1

− fmj
‖
H−1

∞
≤

2−(j+1). Then there exist F̃j ∈
(
L∞(Ω)

)d
such that ‖F̃j‖∞ ≤ 2−j and fmj+1

− fmj
= divF̃j .

Denote F = Fm1 +
∑∞

j=1 F̃j with divFm1 = fm1 and Fm1 ∈
(
L∞(Ω)

)d
. By construction

F ∈ L∞(Ω) and thus f := divF ∈ H−1
∞ (Ω). One can easily check that fmj

converges to f in
H−1

∞ (Ω) as j → ∞, and, by the triangle inequality, fm converges to f as m tends to ∞.

Observe that, for a given f in H−1
∞ (Ω) there may be several F ’s in

(
L2(Ω)

)d
such that

divF = f . They are characterized by the fact that a−1F + 1
2
f̃ is orthogonal to L2

pot(Ω).

We call a function f - or more generally an element f in H−1(Ω) - local if there exists Rf

such that f is measurable with respect to the σ-field HBRf
where BR is the ball of radius R.

We denote by H̃−1
∞ (Ω) the closure of the set of elements f in H−1

∞ (Ω) for which there exists
a bounded and local F such that divF = f .

3.2 Proof of Theorem 1.3.

In Section 2.2, we defined the continuous additive functional Af for f ∈ H−1(Ω). Since, for

all t > 0, for all ω, the laws of the processes (Xω
0 (s); 0 ≤ s ≤ t) and (Xλ,ω

0 (s); 0 ≤ s ≤ t) are
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equivalent, the same approximation procedure as in Section 2.2 can be used to give a meaning
to the continuous additive functional

Aλ,ω
0,f (t) :=

∫ t

0

f(ωλ(s)) ds,

for Q almost all ω.
We then have the following

Lemma 3.1. For all p ≥ 1 there exists a constant Cp such that for all 0 < λ ≤ 1, for all
f ∈ H−1

∞ (Ω), for Q almost all ω, for each t ≥ 1/λ2 the following estimate holds

E
(
max
0≤s≤t

|Aλ,ω
0,f (s)|p

)
≤ Cpλ

ptp‖f‖p
H−1

∞ (Ω)
; (3.24)

the constant Cp depends only on the ellipticity constant κ in Assumption 2 and the dimension.

Proof. Let us first observe that after multiplying f by an appropriate constant, we may assume

that ‖f‖H−1
∞ (Ω) < 1. We then choose F in

(
L∞(Ω)

)d
such that f = divF and supω |F (ω)| < 1.

We then consider processes taking on values in Rd+1. We use the notation z = (x, y), x ∈ Rd

and y ∈ R. Let us introduce the process

Zλ,ω
z (t) =

(
Xλ,ω

x (t), y + Aλ,ω
x,f (t) +W 1

t

)
,

where W 1 is an independent one-dimensional Brownian motion (which is assumed to be defined
on the same probability space (W,F , P ) as W ), and

Aλ,ω
x,f (t) =

∫ t

0

f(Xλ,ω
x (s).ω) ds.

Notice that Zλ,ω is a Markov process with generator

Mλ,ω = (Lλ,ω)x +
1

2
∂2
y + f(x.ω)∂y,

where, for a function q(z), the operator (Lλ,ω)x acts on q as a function of variable x.
Let us check that the operator Mλ,ω can be written in the form

Mλ,ωq =
1

2
divx(a

ω∇xq) + λaωe1∇xq + divx(F
ω∂yq)− ∂y(F

ω∇xq) +
1

2
∂2
yq, (3.25)

where as above we use the notation F ω(z) = F (x.ω). Indeed, since F ω does not depend on y,
we have

divx(F
ω∂yq)− ∂y(F

ω∇xq) = (divxF
ω)∂yq = fω∂yq.

This implies the desired representation. In the variables z̃ = λz and t̃ = λ2t, the generator
reads

1

2
divx̃(a

ω(λ−1x̃)∇x̃q)+aω((λ−1x̃)e1∇x̃q+divx̃(F
ω(λ−1x̃)∂ỹq)−∂ỹ(F

ω(λ−1x̃)∇x̃q)+
1

2
∂2
ỹq. (3.26)
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Note that all the coefficients of the operator in (3.26) are bounded. The parabolic Aronson
estimates (see [1, Theorems 8 and 9]) therefore hold uniformly in λ and in ω on any finite time
interval and in any fixed ball.

Denote T̃r = inf{s > 0 : |λZλ,ω
0 (s/λ2)| = r}. Applying Aronson’s lower bound to the

parabolic equation with generator given by (3.26), we obtain that there exists δ0 > 0 such that
for all λ ∈ (0, 1) and all ω such that sup |F ω| ≤ 2, then

P (T̃1 ≥ 1) ≥ δ0.

Therefore,

E
(
e−T̃1

)
≤ 1− ε0

for some ε0 > 0. Applying the Markov property we deduce that

E
(
e−T̃r

)
≤ (1− ε0)

r−1,

and
P (T̃r ≤ t) ≤ et(1− ε0)

r−1.

Let T ≤ 1. Since the events (T̃r ≤ T ) and (λ max
0≤s≤λ−2T

|Zλ,ω
0 (s)| ≥ r) coincide, we get that

E
(
λp max

0≤s≤λ−2T
|Zλ,ω

0 (s)|p
)

= p

∫ ∞

0

rp−1dr P (T̃r ≤ T ) ≤ peT
∫ ∞

0

rp−1dr (1− ε0)
r−1 ≤ η0,

(3.27)

where η0 = pe
∫∞
0

rp−1dr (1− ε0)
r−1 is a constant.

Let now T > 1 with integer part [T ]. Note that

max
0≤s≤λ−2T

|Zλ,ω
0 (s)| ≤

[T ]∑

j=0

max
jλ−2≤s≤(j+1)λ−2

|Zλ,ω
0 (s)− Zλ,ω

0 (λ−2j)|.

Therefore
E
(
λp max

0≤s≤λ−2T
|Zλ,ω

0 (s)|p
)
≤ (T + 1)pη0.

If we change variable to t = λ−2T , we obtain

E
(
max
0≤s≤t

|Zλ,ω
0 (s)|p

)
≤ λ−p(λ2t+ 1)pη0. (3.28)

On the other hand
E
(
max
0≤s≤t

|W 1
s |p
)
≤ Cpt

p/2.

Combining (3.27), (3.28) and the last estimate and considering the lower bound t ≥ λ−2, we
obtain the desired inequality.

Proof of Theorem 1.3. Apply Lemma 3.1.
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4 Construction of steady states

The goal of this section is to prove the existence of the steady state and weak steady state
under the assumption of finite range of dependence and get an explicit formula in terms of
regeneration times, see formula (4.44).

In this section we assume Assumptions 1–4 to hold.

We recall that a function f or an element f in H−1(Ω) is local if there exists Rf such that
f is measurable with respect to the σ-field HBRf

where BR is the ball of radius R.

Theorem 4.1. For all λ > 0 there exists a unique Borel probability measure νλ on Ω such that
for any bounded local function f , for Q almost all ω and P almost surely we have

lim
t→∞

1

t

∫ t

0

f(ωλ(s)) ds = νλ(f),

where ωλ(s) = Xλ,ω
0 (s).ω.

Theorem 4.2. For all λ > 0, for any local f in H−1
∞ (Ω), then

lim
t→∞

1

t

∫ t

0

f(ωλ(s)) ds := νλ(f)

exists for Q almost all ω and P almost surely.

Corollary 4.3. For all 0 < λ ≤ 1, the steady state and weak steady state exist.

Proof of Corollary 4.3. The existence of the steady state is an immediate consequence of The-
orem 4.1.

Let now f belong to H̃−1
∞ . Then there is a bounded F such that f = divF and F can be

approximated by bounded and local functions Fn. Apply Theorem 4.2 to each fn = divFn. By
Lemma 3.1, |νλ(fn) − νλ(fm)| ≤ C1λ ‖Fn − Fm‖∞. Therefore the sequence νλ(fn) has a limit,
say a.

From Lemma 3.1 (with p > 1) and Theorem 4.2, we deduce that 1
t
Aλ,ω

0,fn
(t) converges to

νλ(fn) in L1(W, P ) for Q almost all ω. Applying Lemma 3.1 again, we see that 1
t
Aλ,ω

0,f (t)
converges to a in L1(W, P ) for Q almost all ω. In particular, the limit a does not depend on
the choice of F and the approximating sequence (Fn). We call it νλ(f). That νλ is a linear
continuous functional on H̃−1

∞ (Ω) follows at once from Lemma 3.1.

The remainder of this section including subsections 4.1 and 4.2 is devoted to the proof of
Theorems 4.1 and 4.2

Recall from the proof of Lemma 3.1 the notation z = (x, y), x ∈ Rd and y ∈ R and the
definition the Rd+1 valued process

Zλ,ω
z (t) =

(
Xλ,ω

x (t), y + Aλ,ω
x,f (t) +W 1

t

)
,

where W 1 is an independent one-dimensional Brownian motion (which is assumed to be defined
on the same probability space (W,F , P ) as W ).
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Recall that the generator can be written as

Mλ,ω = (Lλ,ω)x +
1

2
∂2
y + f(x.ω)∂y.

We shall use this formula when f is bounded, as in Theorem 4.1. When f belongs to H−1
∞ (Ω),

we rather use the divergence form (see (3.25):

Mλ,ωq =
1

2
divx(a

ω∇xq) + λaωe1∇xq + divx(F
ω∂yq)− ∂y(F

ω∇xq) +
1

2
∂2
yq,

where F is bounded and satisfies divF = f . (Observe that although f is local, F need not be
local itself.)

4.1 Regeneration times

We assume that f is local and either f is bounded or f belongs to H−1
∞ (Ω).

Before embarking in the proofs of Theorems 4.1 and 4.2, let us sketch the main steps of the
construction of steady states and explain how this section of the paper is organized.

In both Theorems 4.1 and 4.2, we have to study the convergence of the additive functional
Aλ,ω

0,f (t) =
∫ t

0
f(ωλ(s))ds for Q almost all ω. As in the preceeding paragraph, we shall work

with the process Zλ,ω
x and deduce the convergence of Aλ,ω

0,f (t) from the regeneration properties

of Zλ,ω
x . More precisely, the main idea is to construct an increasing sequence of random times,

τλ1 < τλ2 < ..., that we call regeneration times and are such that the increments of the process
Zλ,ω

0 betweeen successive regeneration times are i.i.d. under the annealed law Pλ
z . Then the

convergence of 1
t
Aλ,ω

0,f (t) follows at once from the convergence of 1
t
Zλ,ω

0 (t) which in turn follows
from the law of large numbers for i.i.d. sequences.

Note that, in order to carry out this programm, we also need some bounds on the moments
of the regeneration times. Also observe that, as a useful by-product of this proof, we shall be
able to express the limit νλ(f) in terms of the increments of the additive functional between
two successive regeneration times, see formula 4.44.

Of course, the decoupling properties along regeneration times is tightly related to Assump-

tion 4. Very roughly speaking, we proved in [7] that the process Xλ,ω
0 , and therefore also the

process Zλ,ω
0 , is transient in direction e1. So there are non-backtracking times t such that:

before t, the diffusion only visited the half-space {x : e1 · x < e1 · Zλ,ω
0 (t)} and after time t,

it will only visit the half-space {x : e1 · x ≥ e1 · Zλ,ω
0 (t)}. And since, due to Assumption 4,

the restrictions of the environment in these two half-spaces are independent, we are done. This
is obviously wrong for at least two reasons. First a diffusion process never does such a thing
as non-backtracking. Secondly, in order to use Assumption 4, we need a little bit of space
between the two hyperplanes. Let us discuss how these issues are addressed in [29].

We carry the whole construction on path space, equipped with the annealed law. As a
first step towards the desired decoupling property we enlarge the path space with the addition
of a sequence of independent Bernoulli random variables Yk and provide a coupling of this
sequence and the diffusion Zλ,ω

0 , see Proposition 4.5. The coupling is constructed such that, at
times where a Bernoulli variable Yk takes the value 1, the canonical process temporarily forgets
about the environment and makes a ‘deterministic’ jump in direction e1 of size 9R(λ). (Here
‘deterministic’ means ‘independently of what the environment may look like’ and R(λ) is a
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parameter that will be chosen later.) If Yk takes the value 0, we just do what should be done to
retrieve the law of Zλ,ω

0 . Of course, we should tune the parameter δ of the Bernoulli variables Y
so that this ‘deterministic’ jump we impose has a positive probability to occur. How to choose
δ then depends on a lower bound of the transition kernel of the process Zλ,ω

0 , see Lemma 4.4
and note that we need a lower bound that is uniform with respect to ω and that, since the
process Zλ,ω

0 involves f , the best value we can use for δ depends on f . It also depends on λ.
Regeneration times will then be times t such that (1) at time t, the process reaches a local

maximum (with a variation of R(λ)) and the corresponding Bernoulli variable in the sequence
Yk takes the value 1 and (2) after time t, the process does not backtrack more than R(λ). This
construction allows one to explicitly express how the process depends on the restrictions of the
environment in the two half-spaces already discussed (and now separated by a distance R(λ)).
R(λ) is chosen larger than the range of dependence R from Assumption 4 and the size of the
support of the local function f : Rf .

The organization of the rest of this section is as follows. After introducing some notation
on path space, we state the bounds we shall need to choose the parameter δ. Proposition 4.5 is
borrowed from [29]; it describes the properties of the coupling construction of the diffusion and
the Bernoulli random variables. Then we give a detailed definition of the regeneration times
starting with formula (4.31). Theorem 4.7, also borrowed from [29], says that the increments of
the process between successive regeneration times are indeed i.i.d. We do not prove Theorem
4.7 but we do include the proof of Lemma 4.8, that we shall need later and which is actually
very close to the proof of Theorem 4.7. In Proposition 4.9, we establish some bounds on the
regeneration times. Finally, in sub-section 4.2, we finish the proofs of Theorems 4.1 and 4.2.

The construction of regeneration times will also be used in the proof of fluctuation-dissipation
relations and then we shall need bounds on the regeneration times that depend on λ, see sub-
section 5.1 .

The regeneration times will be constructed on canonical space C([0,∞),Rd+1). We use the
notation Z(t)t≥0 for the coordinate map on C([0,∞),Rd+1). The first d components of Z(·) will
be denoted by X(·). Let P λ,ω

z be the law of Zλ,ω
z , and Eλ,ω

z be the corresponding expectation.
Let Pλ

z be the annealed law

Pλ
z (A) =

∫
dQ(ω)

∫
dP λ,ω

z (w)1A(ω,w)

for any measurable subset A ⊂ Ω× C([0,∞),Rd+1).

Next we set

R(λ) = max
{
R,Rf ,

1

λ

}
,

where R is the constant from Assumption 4 and Rf is chosen so that f is measurable with
respect to the σ-field HBRf

. Denoting Br(z) the ball in Rd+1 centered at z of radius r, we let

Uz = B6R(λ)(z + 5R(λ)ě1), B
z = BR(λ)(z + 9R(λ)ě1) with ě1 = (e1, 0). Then we set

TUz = inf{s ≥ 0 : Z(s) 6∈ Uz} (4.29)

so that TUz is the exit time from Uz. We also define the corresponding transition densities
pλ,ω,Uz(s, z′, z′′) which satisfy the relation

P λ,ω
z′

{
Z(s) ∈ G, TUz′ > s} =

∫

G

pλ,ω,Uz(s, z′, z′′) dz′′
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for any Borel set G ⊂ Uz′ .

Lemma 4.4. Let 0 < λ ≤ 1. There exists δλf > 0 such that

pλ,ω,Uz(λ−2, z′, z′′) ≥
2δλf

|BR(λ)|
(4.30)

for all z′ ∈ Rd+1, z′′ ∈ Bz. Moreover for any R0 there exists δλ > 0 such that we may choose
δλf ≥ δλ for any f such that Rf ≤ R0 and either |f | ≤ 1 or ‖f‖H−1

∞ (Ω) ≤ 1.

Proof. The required bound is a consequence of the fundamental solution estimates obtained in
[1], see Lemma 5.2 in [7]. Remember that due to Assumption 2 the matrix a is uniformly
elliptic and either f is bounded or f = divF where F is bounded.

We proceed with introducing a coupling construction. We mostly follow the construction
of [29] (see also [7]). First, we enlarge the probability space by adding a sequence {Yk}∞k=0

of i.i.d. Bernoulli random variables. Let (Ft)t≥0 be the filtration generated by (Z(t))t≥0 and
Jm = σ{Y0, . . . , Ym}. Let θλm be the rescaled shift operator defined by

θλm(Z(·))(s) = Z(λ−2m+ s), s ≥ 0.

We extend these operators by setting

θλm((Z(s))s≥0, (Yk)k≥0) = ((Z(λ−2m+ s))s≥0, (Yk+m)k≥0), m ∈ N.

Part (i) of the Proposition below states that we indeed couple i.i.d. Bernoulli random

variables and P λ,ω
z . Part (ii) expresses the Markov property of the coupling P̂ λ,ω

z . Part (iii)
says that, when a variable Yk takes the value 1, then the diffusion makes this ‘deterministic’
jump we discussed in the introduction of this section.

Proposition 4.5. There exists, for every λ, ω and z, a probability measure P̂ λ,ω
z on the enlarged

probability space such that, with δ = δλf from Lemma 4.4,

(i) The law of (Z(t))t≥0 under P̂ λ,ω
z is P λ,ω

z , and the sequence (Yk)k≥0 is a sequence of i.i.d.

Bernoulli variables with success probability δ under P̂ λ,ω
z .

(ii) Under P̂ λ,ω
z , (Yn)n≥m is independent of Fλ−2m × Jm−1, and conditioned on Fλ−2m × Jm,

Z ◦ θλm has the same law as Z under P̂ λ,ω
Z(λ−2m),Ym

, where P̂ λ,ω
z,y denotes the conditioned law

P̂ λ,ω
z [·|Y0 = y], (for y ∈ {0, 1}).

(iii) P̂ λ,ω
z,1 -almost surely, Z(t) ∈ Uz for t ∈ [0, λ−2] and the distribution of Z(λ−2) under P̂ λ,ω

z,1

is the uniform distribution on Bz.

We refer to [29] for the proof.

Remark 4.6. As a consequence of Proposition 4.5, under P̂ λ,ω
z , conditioned on Fλ−2m×J(m−1),

Z ◦ θλm has the same law as Z under P̂ λ,ω
Z(λ−2m).
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We will now provide the construction of the sequence of regeneration times. This construc-
tion is algorithmic i.e., in the next paragraph, we describe an algorithm than eventually stops
after a certain number of steps, here denoted with K, and delivers the value of the first regen-
eration time τλ1 . The algorithm depends on the choice of the parameter a that we set equal to
3λR(λ). Its input is a trajectory.

First we introduce a sequence of random times V λ
k (a) when the process e1 ·X(s) reaches a

local maximum within a variation of R(λ). If we sampled the trajectory at the times V λ
k (a),

we would see increments of order λ−1 in the direction e1.
Because the coupling in Proposition 4.5 uses discrete times, we modify the times V λ

k (a)
by taking their integer part and thus define the sequence Ñλ

k (a). From the sequence Ñλ
k (a),

we extract Nλ
1 (a) for which the corresponding random variables Yk takes the value 1 for the

first time. Remember that, when a Bernoulli variable Yk takes the value 1, then the diffusion
performs a ‘deterministic’ jump of size λ−1 in direction e1 and in time λ−2. We look at the
process right after the jump.

At time Sλ
1 = Nλ

1 (a) + λ−2, we ask wether the diffusion is going to backtrack in direction e1
by a distance larger than R(λ). If the answer is ‘yes’, we then wait until the diffusion backtracks
- this defines the backtracking time D - and start the algorithm again: we then get a second
random time Sλ

2 ; ask if the diffusion will backtrack again ... The algorithm stops the first time
we reach a time Sλ

k after which the diffusion does not backtrack more than R(λ). The following
definitions provide a rigourous description of the algorithm, including some further technical
restrictions.

Observe that the times Sλ
k are stopping times. However, because it includes a non-backtracking

condition, the regeneration time τλ1 itself is not a stopping time.
Let

M(t) := sup{e1 · (X(s)−X(0)) : 0 ≤ s ≤ t}. (4.31)

For a > 0, define the stopping times V λ
k (a), k ≥ 1, as follows. We define TL = inf{t :

e1 · (X(t)−X(0)) = L}, and define

V λ
0 (a) := Tλ−1a, V λ

k+1(a) := TM(⌈V λ
k (a)⌉λ)+R(λ), k ≥ 1; (4.32)

here and later on ⌈r⌉λ stands for the min{n ∈ λ−2Z : r ≤ n}. Then define

Ñλ
1 (a) := inf

{
⌈
V λ
k (a)

⌉
λ
: k ≥ 0, sup

s∈[V λ
k (a),⌈V λ

k (a)⌉λ ]

∣∣∣e1 ·
(
X(s)−X

(
V λ
k (a))

)∣∣∣ ≤ R(λ)

2

}
, (4.33)

Ñλ
k+1(a) := Ñλ

1 (3λR(λ)) ◦ θλ
λ2Ñλ

k (a)
+ Ñλ

k (a), k ≥ 1 , (4.34)

Nλ
1 (a) := inf

{
Ñλ

k (a) : k ≥ 1, Yλ2Ñλ
k (a) = 1

}
, (4.35)

(we will see later that Ñλ
k (a) < ∞, for all k). The random times λ2Ñλ

k (a) are integer-valued

and sup
s≤Ñλ

k (a)

e1 · (X(s) − X(Ñλ
k (a))) ≤ R(λ). We next define random times Sλ

1 , J
λ
1 and Rλ

1 as

follows.

Sλ
1 := Nλ

1 (3λR(λ)) +λ−2, Jλ
1 := Sλ

1 + T−R(λ) ◦ θλλ2Sλ
1
, Rλ

1 := ⌈Jλ
1 ⌉λ = Sλ

1 +D ◦ θλλ2Sλ
1
, (4.36)
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where
D := ⌈T−R(λ)⌉λ . (4.37)

Now we proceed recursively:

Nλ
k+1 = Rλ

k +Nλ
1 (ak) ◦ θλλ2Rλ

k
with ak = λ

(
M(Rλ

k)− e1 · (X(Rλ
k)−X(0)) +R(λ)

)
(4.38)

and

Sλ
k+1 := Nλ

k+1 + λ−2, Jλ
k+1 := Sλ

k+1 + TR(λ) ◦ θλλ2Sλ
k+1

, Rλ
k+1 := ⌈Jλ

k+1⌉λ = Sλ
k+1 +D ◦ θλλ2Sλ

k+1
.

Note that for all k, the Ft × Sλ2⌈t⌉λ- stopping times λ2Nλ
k , λ2Sλ

k and λ2Rλ
k are integer-valued

(the value +∞ is possible). By definition, we have λ−2 ≤ Nλ
1 ≤ Sλ

1 ≤ Jλ
1 ≤ Rλ

1 ≤ Nλ
2 ≤ Sλ

2 ≤
Jλ
2 ≤ Rλ

2 ≤ Nλ
3 . . . ≤ ∞. The first regeneration time τλ1 is defined as

τλ1 := inf{Sλ
k : Sλ

k < ∞, Rλ
k = ∞} ≤ ∞ . (4.39)

Let
K = inf{k ≥ 1 : Sλ

k < ∞ and Rλ
k = ∞}. (4.40)

Then τλ1 = Sλ
K . By definition, λ2τλ1 is integer-valued and τλ1 ≥ 2λ−2 (since Nλ

1 ≥ λ−2). We see
that on the event τλ1 < ∞ it holds

e1 ·X(s) ≤ e1 ·X(τλ1 − λ−2) +R(λ) ≤ e1 ·X(τλ1 )− 7R(λ), for s ≤ τλ1 − λ−2, P̂ λ,ω
z − a.s.,

see also Proposition 4.5, i.e. (Z(s))s≤τ1−λ−2 remains in the half-space {z ∈ Rd+1 : ě1 · z ≤
ě1 · Z(τλ1 ) − 7R(λ)}. On the other hand, since the process (e1 · X(t))t≥0 never goes below

e1 · X(τλ1 ) − R(λ) after τλ1 , P̂
λ,ω
z -a.s., (Z(t))t>τλ1

remains in the half-space {z ∈ Rd+1 : ě1 · z ≥
ě1 · Z(τλ1 )− R(λ)}.

Let us define the annealed law

P̂λ
z [A] :=

∫
dQ(ω)

∫
dP̂ λ,ω

z (w)1A(ω,w) . (4.41)

It has been proved in [29] (see also Proposition 5.5 in [7] that τλ1 < ∞ P̂λ
0-a.s.

For k ≥ 2 we recursively define

τλk = τλk−1 + τλ1 ◦ θλλ2τλk−1
.

Then τλk is finite P̂λ
0-a.s. for all k. We set τλ0 = 0 for convenience.

The next theorem is Theorem 2.5 in [29].

Theorem 4.7. Under the measure P̂λ
0 , the random variables((

Z(τλk+1)− Z(τλk ), τ
λ
k+1 − τλk

)
, k ≥ 0

)
are independent; furthermore, for k ≥ 1 they are i.i.d.

and have the same law as
(
Z(τλ1 ), τ

λ
1

)
under P̂λ

0 [ · |D = ∞].

Furthermore, we have the following
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Lemma 4.8. Let (H(m))m≥0 be a random process such that H(m) is measurable with respect

to Fλ−2m × Jm−1 for all m and such that Êλ
0 [|H(λ2τλ1 )|] < ∞. Then

Êλ
0 [H(λ2τλ1 )|D = ∞] =

∞∑

k=1

Êλ
0 [H(λ2Sλ

k )1{Sλ
k<D}].

Proof.
Êλ
0

(
[H(λ2τλ1 )]1{D=∞}

)

=

∞∑

k=1

∫
Êλ,ω

0

(
[H(λ2Sλ

k )])1{Sλ
k<∞}1{D◦θλ

Sλ
k

=∞}1{D=∞}
)
dQ

=
∞∑

k=1

∫
Êλ,ω

0

(
[H(λ2Sλ

k )])1{Sλ
k<D}1{D◦θλ

Sλ
k

=∞}
)
dQ

=
∞∑

k=1

∫
Êλ,ω

0

(
[H(λ2Sλ

k )]1{Sλ
k<D}Ê

λ,ω

Z(Sλ
k )
1{D=∞}

)
dQ;

here, to justify the second equality, we have used the fact that if Sλ
k < D and D ◦ θλ

Sλ
k
= ∞,

then D = ∞. To justify the last equality we have used the fact that λ2Sλ
k1{Sλ

k<D} is a stopping

time with respect to the filtration (Fλ−2m × J(m−1) , m ≥ 0) and Remark 4.6.

For given ω and k, let ρλ,ωk be the law of Z(Sλ
k ) under P̂

λ,ω
0 . Then

∫ (
Êλ,ω

0

(
[H(λ2Sλ

k )]1{Sλ
k<D}Ê

λ,ω

Z(Sλ
k )
1{D=∞}

)
dQ

=

∫ (
Êλ,ω

0

{
Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k<D}

∣∣Z(Sλ
k )
]
Êλ,ω

Z(Sλ
k )

[
1{D=∞}

]
Êλ,ω

Z(Sλ
k )

})
dQ

=

∫

Ω

(∫

Rd

ρλ,ωk (dz)Êλ,ω
0

[
H(λ2Sλ

k )1{Sλ
k<D}

∣∣Z(Sλ
k ) = z

]
Eλ,ω

z 1{D=∞}

)
dQ

=

∫

Rd

∫

Ω

(
ρλ,ωk (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k<D}

∣∣Z(Sλ
k ) = z

]
Eλ,ω

z 1{D=∞}

)
dQ.

By the definition of D and Sλ
k , the term Eλ,ω

z 1{D=∞} is measurable with respect to the σ-field

generated by {σ(z′ ·ω) : z′ ·e1 ≥ z ·e1−R(λ)}, and ρλ,ωk (dz)Êλ,ω
0

[
H(λ2Sλ

k )1{Sλ
k<D}

∣∣Z(Sλ
k ) = z

]

is measurable with respect to the σ-field generated by {σ(z′ ·ω) : z′ · e1 ≤ z · e1 − 8R(λ)}. Due
to Assumption 4, these two terms are independent. Therefore,

∫

Rd

∫

Ω

(
ρλ,ωk (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k<D}

∣∣Z(Sλ
k ) = z

]
Eλ,ω

z 1{D=∞}

)
dQ

=

∫

Rd

∫

Ω

(
ρλ,ωk (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k<D}

∣∣Z(Sλ
k ) = z

] )
dQ

∫

Ω

(
Eλ,ω

z 1{D=∞}

)
dQ.

The term EEλ,ω
z 1{D=∞} does not depend on z and equals P̂λ

0(D = ∞). Thus the last term in
the previous formula is equal to

P̂λ
0(D = ∞)

∫ ∫ (
ρλ,ωk (dz)Êλ,ω

0

[
H(λ2Sλ

k )1{Sλ
k<D}

∣∣Z(Sλ
k ) = z

] )
dQ
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= P̂λ
0(D = ∞)Êλ

0

(
H(λ2Sλ

k )1{Sλ
k<D}

)
,

which implies the desired relation.

The next statement provides us with useful estimates for the regeneration times.

Proposition 4.9. There exists a constant Cλ
f > 0 such that

Êλ
0

[
eC

λ
f τ

λ
1
]
< ∞ and Êλ

0

[
eC

λ
f (e1·X(τλ1 ))

]
< ∞.

Moreover for any R0 there exists Cλ > 0 such that we may choose Cλ
f ≥ Cλ for any f such

that Rf ≤ R0 and either |f | ≤ 1 or ‖f‖H−1
∞ (Ω) ≤ 1.

Proof. The first claim of the Proposition is proved in [29], Theorem 4.9 and Corollary 4.10. As
for the second claim observe from the construction of τλ1 that, once R(λ) is chosen, and given
the Yk’s, the definition of τλ1 only involves the process e1 · X . Therefore, the rate of decay of
the distribution function of τλ1 depends on f only through Rf and δλf . Besides, the bigger δλf ,
the faster this distribution function decays. We conclude the proof with the second claim of
Lemma 4.4.

4.2 Proof of Theorems 4.1 and 4.2

The law of (Z(t))t≥0 under P̂ λ,ω
0 is the law of (Zλ,ω

0 (t))t≥0 under P . Therefore, under P̂ λ,ω
0 , the

last component of Z(·) is a semimartingale of the form W
1
· +Af(·) where W1· is a Brownian motion

and the law of Af is the law of Aλ,ω
0,f under P .

It follows from Theorem 4.7 and Proposition 4.9 that

1

k
τλk −→ Êλ

0

[
τλ1 |D = ∞

]
as k → ∞ P̂λ

0 − a.s.

and
1

k

(
Af (τ

λ
k ) + W

1
τλk

)
−→ Êλ

0

[
Af (τ

λ
1 ) + W

1
τλ1
|D = ∞

]
as k → ∞ P̂λ

0 − a.s.

Since k−1
W
1
τλk

a.s. converges to zero, we derive from the previous relation that

Af (τ
λ
k )

τλk
−→

Êλ
0

[
Af (τ

λ
1 ) + W

1
τλ1
|D = ∞

]

Êλ
0

[
τλ1 |D = ∞

] as k → ∞ P̂λ
0 − a.s. (4.42)

Let us show that the term Êλ
0

[
W
1
τλ1
|D = ∞

]
on the right-hand side of (4.42) vanishes. Since

Z and Af are additive functionals of Z, then W
1 is also an additive functional of Z. From

the Markov property of P λ,ω
Z(λ−2m), we get that the process (W1λ−2m+t − W

1
λ−2m)t≥0 is a Brownian

motion independent of Fλ−2m × J(m−1). Since 1{Sλ
k<D}λ

2Sλ
k is a stopping time with respect to

the filtration (Fλ−2m ×J(m−1))m≥0, we have Êλ
0 [W

1
Sλ
k
1{Sλ

k<D}] = 0 for all k. Combining this with

Lemma 4.8 yields that Êλ
0

[
W
1
τλ1
|D = ∞

]
vanishes. Therefore, (4.42) takes the form

Af(τ
λ
k )

τλk
−→ Êλ

0

[
Af (τ

λ
1 )|D = ∞

]

Êλ
0

[
τλ1 |D = ∞

] as k → ∞ P̂λ
0 − a.s. (4.43)
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We introduce the notation

νλ(f) =
Êλ
0

[
Af(τ

λ
1 )|D = ∞

]

Êλ
0

[
τλ1 |D = ∞

] =
Êλ
0

[
Af (τ

λ
1 ) + W

1
τλ1
|D = ∞

]

Êλ
0

[
τλ1 |D = ∞

] . (4.44)

Using standard arguments based on Proposition 4.9 we can replace the limit along the sequence
{τλk } in (4.43) with the limit with respect to t. Therefore, we conclude that t−1

Af(t) a.s.

converges to νλ(f). This implies that t−1Aλ,ω
0,f also converges to νλ(f) as t → ∞ for Q almost

all ω and P -a.s. This yields the statement of Theorem 4.2.
To complete the proof of Theorem 4.1, it remains to show that νλ is a Borel probability

measure on Ω. By construction, νλ is a non-negative linear functional on the space of bounded
local functions. For any such function f we have |Aλ,ω

0,f (f)| ≤ t‖f‖L∞(Ω). Therefore, |νλ(f)| ≤
‖f‖L∞(Ω). It is obvious that νλ(1) = 1. The only property to be justified is the sigma-additivity
of νλ. Let R0 > 0 and let (fn)n≥1 be a sequence of functions which are measurable with respect
to the σ-field generated by {σ(y.ω) : |y| ≤ R0} and such that 0 ≤ fn ≤ 1 and fn(ω) tends to
zero for all ω. For all T > 0 we have

Êλ
0 [Afn(τ

λ
1 )] ≤ Êλ

0 [Afn(T )] + Êλ
0 [(τ

λ
1 )1{τλ1 ≥T}].

Clearly, for any T > 0 we have Êλ
0 [Afn(T )] → 0, as n → ∞. Besides, although the law of τλ1

depends on fn, due to Proposition 4.9, Êλ
0 [(τ

λ
1 )1{τλ1 ≥T}] tends to zero, as T → ∞, uniformly in n.

This implies that Êλ
0 [Afn(τ

λ
1 )] converges to zero, and thus νλ(fn) converges to zero, as n → ∞.

Therefore, νλ is a probability Borel measure on the σ-field generated by {σ(y.ω) : |y| ≤ R0}.
And since it holds true for any R0, then νλ extends to the whole Borel σ-field of Ω.

5 Fluctuation dissipation theorem

In this Section we compute the derivative of the steady state as λ → 0. Our main tool is the
description of the scaling limit of regeneration times for small λ.

Everywhere in this Section Assumptions 1–4 are fulfilled.

Recall the properties of Γ̄(f) from Lemma 2.9.

Theorem 5.1. Let f be local and belong to H−1
∞ (Ω) . Then, the derivative of νλ(f) at λ = 0

exists and is equal to Γ̄(f).

An immediate corollary of Theorem 5.1 and Lemma 3.1 is the following version of Theorem
1.5:

Corollary 5.2. Let f belong to H̃−1
∞ (Ω) . Then, the derivative of νλ(f) at λ = 0 exists and is

equal to Γ̄(f).

The proof will be divided into several steps which are detailed in the following subsections.
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5.1 Estimates for regeneration times

Proposition 5.3. Under the conditions of Theorem 5.1 there exist constants C1(f) > 0 and
C(f) > 0 such that, for all λ with 0 < λ ≤ 1, we have

Êλ
0

[
eC1(f)λ2τλ1

]
≤ C(f) and Êλ

0

[
eC1(f)λ(e1·X(τλ1 ))

]
] ≤ C(f).

Remark 5.4. By the same arguments as in the proof of Proposition 4.9, the constants C1(f)
and C(f) can be chosen to be the same for all functions f such that Rf ≤ R0 and ‖f‖H−1

∞ (Ω) ≤ 1.

Proof. We will need a version of Lemma 4.4 uniform with respect to λ ∈ (0, 1).

Lemma 5.5. Let f be as in Theorem 5.1. Then there exists a constant δf > 0 such that
estimate (4.30) holds for all λ ∈ (0, 1) with δλf = δf .

Proof. We recall that the process

Zλ,ω
z (t) =

(
Xλ,ω

x (t), y + Aλ,ω
x,f (t) +W 1

t

)

has a generator in divergence form, see (3.25).
In the variables z̃ = λz and t̃ = λ2t, this generator reads, see (3.26):

divx̃(a
ω(λ−1x̃)∇x̃q) + aω((λ−1x̃)e1∇x̃q + divx̃(F

ω(λ−1x̃)∂ỹq)− ∂ỹ(F
ω(λ−1x̃)∇x̃q) + ∂2

ỹq.

Since F is bounded, then for the corresponding parabolic operator, the Aronson estimates (see
[1]) hold uniformly in λ and in F on any finite time interval and in any fixed ball and for almost
all ω. This implies that in the statement of Lemma 4.4 we can choose δλf independent of λ.

Turning back to the proof of Proposition 5.3, due to Lemma 5.5, in the construction of
τλ1 , we can choose the same Bernoulli random variables (Yk)k≥0 for all λ ∈ (0, 1]. Given the
sequence (Yk : k ≥ 0) and the trajectory e1 ·X(·), the definition of τλ1 in Section 4.1 coincides

with the definition of the regeneration time τ1 in [7] (Notice that the notation e1 ·X(·) and P̂ λ,ω
0

are used for the same objects both here and in [7]). We read from Lemma 5.8 and its proof in
[7] that

sup
ω

sup
0<λ≤1

Êλ,ω
0

[
eC1(f)λ(e1·X(τλ1 ))

]
< ∞,

and
sup
ω

sup
0<λ≤1

Êλ,ω
0

[
eC1(f)λ2τλ1

]
< ∞.

These estimates clearly imply the estimates stated in the Proposition.

Lemma 5.6. Under the conditions of Theorem 5.1 there exist constants C1(f) > 0 and C(f) >
0 such that, for all λ ≤ 1,

Êλ
0

[
exp

(
C1(f)λ sup

0≤s≤τλ1

|Z(s)|
)]

≤ C(f). (5.45)
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Proof. Denote T̃r = inf{s > 0 : |λZ(s/λ2)| = r}. Applying Aronson’s lower bound (see [1,
Theorems 8 and 9]) to the parabolic equation with generator given by (3.26), we obtain that
there exists δ0 > 0 such that for all λ ∈ (0, 1) and all ω

P λ,ω
0 (T̃1 ≥ 1) ≥ δ0.

Therefore,

Eλ,ω
0

(
e−T̃1

)
≤ 1− ε0

for some ε0 > 0. Applying the Markov property we deduce that

Eλ,ω
0

(
e−T̃r

)
≤ (1− ε0)

r−1.

Then

Eλ,ω
0

[
exp

(
c sup
0≤s≤t

λ|Z(s/λ2)|
)]

=

∫ ∞

0

ds esP λ,ω
0 (e−T̃(s/c) ≥ e−t)

≤ et
∫ ∞

0

ds es(1− ε0)
(s/c)−1 = Cet

provided we have chosen c small enough so that e1(1− ε0)
(1/c) < 1. Writing

P̂ λ,ω
0

(
sup

0≤s≤τλ1

λ|Z(s)| ≥ T
)
≤ P̂ λ,ω

0

(
λ2τλ1 ≥ T/2

)
+ P̂ λ,ω

0

(
sup

0≤s≤T/2

λ|Z(s/λ2)| ≥ T
)
,

we deduce from Proposition 5.3 and Lemma 5.5 that (5.45) holds true for sufficiently small
C1(f) > 0 and some C(f) > 0.

5.2 Scaling limit on regeneration scale

Proposition 5.7. Under the product measure P × Q, the process
(
λZλ,ω

0 (λ−2t) ; t ≥ 0
)
con-

verges in law, in C([0,∞),Rd+1), towards a Brownian motion with constant drift. The limit
covariance matrix and the limit drift are given, respectively, by

Σ̂ =

(
Σ 0

0 1 + Σ(f)

)
, B̂ =

(
Σe1

Γ(f)

)
. (5.46)

Proof. From Proposition 2.7 we get the convergence in law of
(
λXλ,ω

0 (λ−2·), λAλ,ω
0,f (λ

−2·)
)
, under

the annealed measure P ×Q. Since W 1 is an independent Brownian motion, then the process(
λXλ,ω

0 (λ−2·), λAλ,ω
0,f (λ

−2·), λW 1(λ−2·)
)
also converges in law. Since

(
λZλ,ω

0 (λ−2·)
)
is a linear

function of
(
λXλ,ω

0 (λ−2·), λAλ,ω
0,f (λ

−2·), λW 1(λ−2·)
)
, then it also converges in law.

We already computed the limit covariance and drift in Proposition 2.7.

5.3 Continuity lemma

Let P be the law of a Brownian motion with covariance and drift given by (5.46) on the
canonical space C([0,∞);Rd+1), and let E be the corresponding expectation. In the same way

as in Section 4.1, we introduce the measure P̂ defined on the extended path space that includes
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the sequence of Bernoulli random variables (Yk)k≥0. Choosing λ = 1, denote Šk = Sλ=1
k ,

τ̌1 = τλ=1
1 and the corresponding random variable Ď.

Let φ = φ(z, s, λ), z ∈ Rd+1, s ∈ R, λ ∈ (0, 1), be a continuous function such that

|φ(z, s, λ)| ≤ C(1 + |z| + |s|)|m

for some C > 0 and m > 0.

Lemma 5.8. The following continuity relation holds

lim
λ→0

Êλ
0

(
φ(λZ(τλ1 ), λ

2τλ1 , λ))1{D=∞}
)

Êλ
0

(
λ2τλ1 1{D=∞}

) =
Ê
(
φ(Z(τ̌1), τ̌1, 0))1{Ď=∞}

)

Ê
(
τ̌11{Ď=∞}

) .

Proof. By Lemma 4.8 with H(n) = φ(λZ(λ−2n), n, λ)) we get

Êλ
0

(
φ(λZ(τλ1 ), λ

2τλ1 , λ))
∣∣D = ∞

)
=

∞∑

k=1

Êλ
0

(
φ(λZ(Sλ

k ), λ
2Sλ

k , λ))1{Sλ
k<D}

)
. (5.47)

For each k, the functions Šk, Z(Šk) and 1{Šk<D} are P̂-a.s. continuous functions on path

space. By Theorem 5.7 and the continuity of φ, then the law of φ(λZ(Sλ
k ), λ

2Sλ
k , λ))1{Sλ

k<D}

under P̂λ
0 converges to the law of φ(Z(Šk), Šk, 0))1{Šk<Ď} under Ê . Combining the inequality

Sλ
k1{Sλ

k<∞} ≤ τλ1 with Lemma 5.6 and Proposition 5.3, we deduce uniform in λ exponential

tail estimates for λ2Sλ
k and for λ|Z(Sλ

k )|. Under our standing growth condition on φ, then
φ(λZ(Sλ

k ), λ
2Sλ

k , λ)) satisfies uniform in λ stretched exponential tail estimates. This implies
that

Êλ
0

(
φ(λZ(Sλ

k ), λ
2Sλ

k , λ))
∣∣D = ∞

)
−→ Ê

(
φ(Z(Šk), Šk, 0))1{Šk<Ď}

)

for each k. It remains to bound the tail of the series on the right-hand side of (5.47). By the
Cauchy-Schwartz inequality we have

[
Êλ
0

(
φ(λZ(Sλ

k ), λ
2Sλ

k , λ))1{Sλ
k<D}

)]2
≤ Êλ

0

[(
φ(λZ(Sλ

k ), λ
2Sλ

k , λ))1{Sλ
k<D}

)2]
P̂λ
0

(
Sλ
k < D

)
.

As in the preceding discussion, Proposition 5.3 and Lemma 5.6 imply that the first term on the
right-hand side is bounded uniformly in λ and k. On the other hand,

P̂λ
0

(
Sλ
k < D

)
≤ P̂λ

0

(
Sλ
k < ∞

)
≤ P̂λ

0

(
τλ1 ≥ λ−2k

)
.

The term on the right-hand side here converges to zero uniformly in λ at exponential speed.
Therefore, we can pass to the limit in (5.47).

Proof of Theorem 5.1. Denote by Zd+1(t) the (d + 1)-st component of Z(t). We read from
(4.44) that

1

λ
νλ(f) =

Êλ
0

[
Af (τ

λ
1 ) + W

1
τλ1
|D = ∞

]

λÊλ
0

[
τλ1 |D = ∞

] =
λÊλ

0

[
Zd+1(τ

λ
1 )|D = ∞

]

λ2Êλ
0

[
τλ1 |D = ∞

] .
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By Lemma 5.8 we have

λÊλ
0

[
Zd+1(τ

λ
1 )|D = ∞

]

λ2Êλ
0

[
τλ1 |D = ∞

] −→
λ→0

Ê
[
Zd+1(τ̌1)|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] .

As a special case of (4.44) with a constant σ and λ = 1, we know that

Ê
[
Zd+1(τ̌1)|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] = lim
t→∞

Zd+1(t)

t
P-a.s.

Obviously, the last limit is equal to Γ(f), see (5.46).

6 Continuity of variance and Einstein relation

We assume Assumptions 1–4 are fulfilled.

6.1 Einstein relation

In this section we obtain the Einstein relation as a consequence of the results of the previous
Section. This proof differs from that given in [7]. We refer to [5] for the original physical
intuition.

It follows from Theorem 4.7 and Proposition 4.9 taking f = 0, that for any fixed λ ∈ (0, 1),

then X satisfies the law of large numbers under P̂λ
0 . Equivalently, there exists a vector ℓ(λ) ∈ Rd

such that

lim
t→∞

1

t
Xλ,ω

0 (t) = ℓ(λ)

for Q almost all ω and P -a.s.

Theorem 6.1 (Einstein relation). As λ → 0, then

1

λ
ℓ(λ) −→ Σe1.

Proof. Using the regeneration structure as in the proof of (4.44), we can represent ℓ(λ) as
follows

ℓ(λ) =
Êλ
0

[
X(τλ1 )|D = ∞

]

Êλ
0

[
τλ1 |D = ∞

] .

Therefore,

1

λ
ℓ(λ) =

λÊλ
0

[
X(τλ1 )|D = ∞

]

λ2Êλ
0

[
τλ1 |D = ∞

] .

It follows from the continuity Lemma 5.8 that

1

λ
ℓ(λ) −→ Ê

[
X(τ̌1)|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] .

The expression on the right-hand side is the drift of the X-components of the process Z under
P. By (5.46), it is equal to Σe1.
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6.2 Continuity of variance

This section deals with the continuity of the effective variance of Xλ,ω
0 as λ → 0.

It follows from Theorem 4.7 and Proposition 4.9 taking f = 0, that for any fixed λ ∈ (0, 1),

then X satisfies the central limit theorem under P̂λ
0 : there exists a matrix Σλ such that the law

of 1√
t
(Xλ,ω

0 (t)− ℓ(λ)t) under the annealed measure P ×Q converges to the centered Gaussian
law with covariance matrix Σλ.

Theorem 6.2 (Continuity of variance). As λ → 0, we have

Σλ −→ Σ.

Proof. Using the regeneration structure, as in the proof of (4.44), we can represent Σλ as follows:
for any e ∈ Rd then

e · Σλe =
Êλ
0

[
(X(τλ1 ) · e− τλ1 ℓ(λ) · e)2|D = ∞

]

Êλ
0

[
τλ1 |D = ∞

] =
Êλ
0

[
(λX(τλ1 ) · e− λ2τλ1 λ

−1ℓ(λ) · e)2|D = ∞
]

Êλ
0

[
λ2τλ1 |D = ∞

] .

We apply the continuity Lemma 5.8 to the function φ(z, s, λ) = (e ·x− sλ−1ℓ(λ) · e)2 for λ 6= 0,
and φ(z, s, 0) = (e·x−sΣe1 ·e)2. Observe that according to the Theorem 6.1 (Einstein relation),
φ is continuous. Then we get

e · Σλe −→
Ê
[
(X(τ̌1) · e− τ̌1Σe1 · e)2|Ď = ∞

]

Ê
[
τ̌1|Ď = ∞

] .

The expression on the right-hand side is the diffusion matrix of theX-components of the process
Z under P. By (5.46), it is equal to Σe · e.

It follows from Theorem 4.7 and Proposition 4.9 that for any f , a local element in H−1
∞ (Ω)

and any fixed λ ∈ (0, 1), then Af satisfies the central limit theorem under P̂λ
0 : there exists

a matrix Σλ(f) such that the law of 1√
t

(
Af (t) − νλ(f)t

)
under the annealed measure P × Q

converges to the centered Gaussian law with covariance matrix Σλ(f).

Theorem 6.3. As λ → 0, we have Σλ(f) −→ Σ(f).

The proof is the same as above. We leave the details to the reader.

7 Appendix A

Although our main interest in this paper are diffusions in a random environment, in order to
better explain our results, we now briefly discuss the easier case of diffusions in a periodic
environment.

In the periodic setting, the role of the dynamics of the environment viewed from the particle
is now played by the projection of the diffusion Xλ

0 on the torus.
In the case λ = 0, we will get a stationary corrector χ1, see equation (7.51).
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When λ 6= 0, the process of the environment seen from the particle has an absolutely
continuous invariant measure - the steady state - whose density is given by equation (7.49).
The fluctuation-dissipation relation follows from a direct comparison of both equations (7.51)
and (7.49). There is no need to go through the interpretation of the derivative as a correlation
as we did in the random environment case.

Thus let a = (a(x), x ∈ T) be a smooth field of symmetric positive definite matrices defined
on the unit d-dimensional torus T = Rd/Zd. Let λ be a scalar, e1 be a vector in Rd and define
λ̂ = λe1. Let (X

λ
x (t) ; t ≥ 0) be the solution of the stochastic differential equation:

dXλ
x (t) = b(Xλ

x (t))dt+ λa(Xλ
x (t))e1 + σ(Xλ

x (t))dWt ; Xλ
x (0) = x , (7.48)

where we periodically extended a to Rd and defined b = 1
2
diva, σ =

√
a and (Wt ; t ≥ 0) is a

d-dimensional Brownian motion defined on some probability space (W,F , P ).
Then (Xλ

x (t) ; t ≥ 0, x ∈ T) is a Markov process with generator Lλ = 1
2
div(a∇) + λ̂ · a∇.

Its projection on T is a Markov process with generator L̇λ = 1
2
div(a∇) + λ̂ · a∇. It admits a

unique absolutely invariant measure (steady state), say νλ, with some density fλ with respect
to the Lebesgue measure on T and fλ is a solution of the equation

div(a(∇fλ − 2fλλ̂)) = 0 . (7.49)

Observe that f 0 is constant.
Let us now derive a first order expansion of fλ similar to what we did in Section 5.
Given the form of equation (7.49), one observes that fλ smoothly depends on λ. Besides

the successive derivatives of fλ (as a function of λ) can be expressed as solutions of the partial
differential equations obtained by differentiating (7.49) with respect to λ. Let us write f ′ for
the first derivative of fλ at λ = 0. Using the fact that f 0 = 1, we thus get that f ′ solves the
equation

div(a(∇f ′ − 2e1)) = 0 . (7.50)

Define χ1 = −1
2
f ′. Then (7.50) implies that χ1 is the solution of the equation

L̇0χ1 = −b · e1 . (7.51)

Equation (7.51) is the corrector equation for the operator L0 in the direction e1, see (1.6).
Thus we have indeed checked that the derivative at λ = 0 of the steady state of the operator

Lλ (symmetric diffusion operator perturbed by a constant drift of strength λ in the direction
e1) coincides up to multiplication by a factor −1

2
with the corrector of the symmetric drift-less

operator L0 in the direction e1.

Remark 7.1. The Einstein relation, in our context, is the equality between the so-called mobility
(the derivative at λ = 0 of the effective drift) and the diffusion matrix for the drift-less operator
L0, see [7].

One may observe that the Einstein relation in the periodic setting directly follows from the
discussion at the beginning of this introduction. Indeed, one deduces from the ergodic theorem
that the process Xλ

0 satisfies a law of large numbers: 1
t
Xλ

0 (t) P -almost surely converges to the
effective drift

ℓ(λ) =

∫

T

(b(ẋ) + λa(ẋ)e1) f
λ(ẋ)dẋ ,
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and therefore

d

dλ
ℓ(λ) · e1|λ=0 =

∫

T

(e1 · b(ẋ)f ′(ẋ) + e1 · a(ẋ)e1 f 0(ẋ)) dẋ .

Recall that f 0 = 1. So ∫

T

e1 · ae1 f 0 =

∫

T

e1 · ae1 .

We recall that X0(t) · e1 satisfies the Central Limit Theorem with asymptotic variance

Σ1 =

∫

T

(e1 +∇χ1(ẋ)) · a(ẋ)(e1 +∇χ1(ẋ)) dẋ . (7.52)

On the one hand, integration by parts, equations (7.51) and the definition of b imply that

1

2

∫

T

∇χ1 · a∇χ1 = −
∫

T

(L̇0χ1)χ1 =

∫

T

b · e1 χ1

=
1

2

∫

T

diva · e1 χ1 = −1

2

∫

T

e1 · a∇χ1 ,

so that (7.52) also reads

Σ1 =

∫

T

(e1 · ae1 −∇χ1 · a∇χ1) . (7.53)

Use the equation satisfied by f ′, see (7.50) and (7.51), to get that

∫

T

e1 · b f ′ = −2

∫

T

e1 · b χ1 = −
∫

T

e1 · divaχ1

=

∫

T

e1 · a∇χ1 = −
∫

T

∇χ1 · a∇χ1 .

Thus we obtain that

d

dλ
ℓ(λ) · e1|λ=0 =

∫

T

(−∇χ1 · a∇χ1 + e1 · ae1) = Σ1 . (7.54)

Remark 7.2. Let us further comment on the main differences between the periodic and random
cases.

The first difficulty one would face if trying to follow the PDE approach in the random
environment setting is the necessity to solve equation (7.49) (which is now an equation in the
space of environments Ω). It is because we do not even know how to make sense of equation
(7.49) on Ω, that we used the construction of regeneration times from section 4.1. The price
we pay is Assumption 4.

A possible approach to equation (7.49) could be to try to express its solution as a power series
in λ. This may not be sufficient to solve (7.49) for all values of λ but could be good enough
to get a solution for small λ’s and, provided the power series nicely converges, one would even
get the fluctuation-dissipation relation by looking at the first term of the expansion. Indeed the
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linear term of the expansion should be given by the equation for the corrector. However already
the equation that the quadratic term should satisfy is problematic.

To the best of our knowledge, this ‘expansion approach’ to construct steady states only works
for dynamics satisfying a spectral gap assumption. Then all square-integrable functions belong
to H−1 and this opens the way to iterate the corrector equation to build the different terms
of the expansion. This approach is detailed in [19] where the authors prove a power series
expansion of the density of νλ for small λ and obtain some version of the Einstein relation.
Under the spectral gap assumption for the un-perturbed dynamics, the perturbed dynamics with
a small but positive λ also satisfy the spectral gap inequality uniformly in λ. Therefore the
time it takes for the process to equilibrate stays of order 1 as λ tends to 0. This is a major
difference with the situation of diffusions in a random environment as discussed in the paper at
hands where the time it takes for the perturbed process to reach equilibrium - understood as the
regeneration time - is of order λ−2. In other words, the approach through regeneration times
shows that the fluctuation-dissipation relations are much much more general than what purely
analytic arguments based on computations of spectral gaps and perturbation methods would a
priori suggest. How general they are is an open problem.

8 Appendix B: alternative proof of Theorem 1.3

In this part of the paper, we give an alternative proof of Theorem 1.3 based on a spectral gap
argument. Recall we are assuming Assumptions 1-3. We use the notation from Section 2.4.

In the sequel, we fix an element f in the space H−1
∞ (Ω). To obtain an explicit bound in the

next lemma, we introduce a new norm on H−1
∞ (Ω), that we denote with ‖f‖H̄−1

∞ (Ω) and define
as

‖f‖H̄−1
∞ (Ω) = min{‖σ−1F‖∞ ; divF = f}.

Clearly, due to Assumption 2, the two norms ‖f‖H̄−1
∞ (Ω) and ‖f‖H−1

∞ (Ω) are equivalent.
Theorem 1.3 follows at once from the following Lemma:

Lemma 8.1. Let p ≥ 1. Then, for all λ > 0 and t > 0, we have
∫

E
[
|Aλ,ω

0,f (t)|p
]
dQ(ω) ≤ (4λt)p

(
‖σ‖p∞ +

2γp

λ
√
t

)
‖f‖p

H̄−1
∞
, (8.55)

where γp =
∫∞
0

psp−1e−
s2

2 ds.

Remark 8.2. Lemma 8.1 should be compared to Lemma 3.1. On the one hand, estimate (3.24)
in Lemma 3.1 gives a uniform upper bound that does not depend on ω, unlike (8.55) where we
average with respect to Q. On the other hand, the upper bound (8.55) is more explicit than
(3.24). Observe in particular that the only way the value of σ enters in (8.55) is through the
value of ‖σ‖∞ and, implicitely, in the definition of the norm ‖f‖H̄−1

∞ (Ω).

Proof. Let us derive an upper bound on the Laplace transform
∫
E
[
eηA

λ,ω
0,f (t)

]
dQ(ω).

Using the Girsanov transform (2.18), we get that
∫

E
[
eηA

λ,ω
0,f (t)

]
dQ(ω) =

∫
E
[
eηA

0,ω
0,f (t)eλB̄(t)−λ2

2
〈B̄〉(t)] dQ(ω)
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≤
√
E0

[
e2ηAf (t)

]
√∫

E
[
e2λB̄(t)−λ2〈B̄〉(t)

]
dQ(ω).

We have
E
[
e2λB̄(t)−λ2〈B̄〉(t)] = E

[
e2λB̄(t)−2λ2〈B̄〉(t)+λ2〈B̄〉(t)]

≤ eλ
2‖σ‖2∞ tE

[
e2λB̄(t)−2λ2〈B̄〉(t)] = eλ

2‖σ‖2∞ t.

Therefore ∫
E
[
eηA

λ,ω
0,f (t)

]
dQ(ω) ≤

√
E0

[
e2ηAf (t)

]
e

λ2

2
‖σ‖2∞ t. (8.56)

We claim that for all F ∈ (L∞(Ω))d such that f = div(σF ), it holds

E0

[
e2ηAf (t)

]
≤ e8η

2‖F‖2∞t. (8.57)

Let us prove (8.57). First we assume that there exists a smooth function F ∈ (L∞(Ω))d

such that f = div(σF ).
We use a spectral gap argument: since we are assuming that F is smooth, then f is a

bounded function and we have |Af(t)| ≤ ‖f‖∞t, for all t and Q almost surely. In particular
the Laplace transform E0

[
e2ηAf (t)

]
is finite.

Let
Qtu(ω) = E

[
u(Xω

0 (t).ω)e
2ηA0,ω

0,f (t)
]
.

Then (Qt ; t ≥ 0) defines a strongly continuous symmetric semigroup on L2(Ω) with Dirichlet
form −2η

∫
fu2 dQ+ E(u, u).

Let

Λ(η) = sup{2η
∫

fu2 dQ− E(u, u) :

∫
u2dQ = 1}

be the largest eigenvalue of the generator of (Qt ; t ≥ 0).
Then

E0

[
e2ηAf (t)

]
≤ eΛ(η)t. (8.58)

We now estimate Λ(η). Let u be a bounded function in D. Then u2 belongs to D and we
have ∫

fu2 dQ = −
∫

2uσDu · F dQ.

Therefore

|
∫

fu2 dQ| ≤ 2‖F‖∞
√
2E(u, u)

√∫
u2 dQ. (8.59)

Clearly inequality (8.59) extends by continuity to all functions u in D. In particular the
expression

∫
fu2 dQ appearing in the definition of Λ(η) defines a quadratic form on D.

It follows from (8.59) that, for a function u in D such that
∫
u2dQ = 1, then

2η

∫
fu2 dQ− E(u, u) ≤ 4η‖F‖∞

√
2E(u, u)− E(u, u) ≤ 8η2‖F‖2∞.

So that
Λ(η) ≤ 8η2‖F‖2∞
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and
E0

[
e2ηAf (t)

]
≤ e8η

2‖F‖2∞t.

This ends the proof of (8.57) if the function f is of the form f = div(σF ) for a smooth F .
Our goal now is to show that (8.57) holds for f in H−1

∞ (Ω) of the form f = div(σF ) with
an arbitrary bounded function F ∈ (L∞(Ω))d. We proceed by approximation: let F n be a
sequence of smooth functions in (L∞(Ω))d that converges to F in (L2(Ω))d and such that
supn ‖F n‖∞ ≤ ‖F‖∞. Let fn = div(σF n). Then the sequence fn converges to f in H−1(Ω).

We proved, in the discussion after Lemma 2.2, that, for any t > 0, then Afn(t) converges
towards Af (t) in L2(Ω). We may then extract a subsequence that converges almost surely and
apply Fatou’s Lemma to get (8.57).

We conclude from (8.56) and (8.57) that

∫
E
[
eηA

λ,ω
0,f (t)

]
dQ(ω) ≤ e4η

2‖F‖2∞t+λ2

2
‖σ‖2∞ t.

If now optimize on the choice of F , we obtain

∫
E
[
eηA

λ,ω
0,f (t)

]
dQ(ω) ≤ e

4η2‖f‖2
H̄−1

∞
t+λ2

2
‖σ‖2∞ t

. (8.60)

We now deduce (8.55) from (8.60). To make formula more readable, we use the shorthand
notation ‖f‖ = ‖f‖H̄−1

∞
.

By Markov’s inequality, we have

∫
P
[
Aλ,ω

0,f (t) ≥ Aλt
]
dQ(ω) ≤ e−ηAλt

∫
E
[
eηA

λ,ω
0,f (t)

]
dQ(ω).

By symmetry, the same holds for −Aλ,ω
0,f (t) and using (8.60), we get that

∫
P
[
|Aλ,ω

0,f (t)| ≥ Aλt
]
dQ(ω) ≤ 2e−ηAλte4η

2‖f‖2t+λ2

2
‖σ‖2∞ t.

We choose η = 1
8
Aλ‖f‖−1 and get that

∫
P
[
|Aλ,ω

0,f (t)| ≥ Aλt
]
dQ(ω) ≤ 2e

− 1
16

A2λ2

‖f‖2
t
e

λ2

2
‖σ‖2∞ t.

Therefore ∫
E
[
|Aλ,ω

0,f (t)|p
]
dQ(ω)

= (λt)p
∫ ∞

0

psp−1

∫
P
[
|Aλ,ω

0,f (t)| ≥ sλt
]
dQ(ω) ds

≤ (Aλt)p + 2e
λ2

2
‖σ‖2∞ t(λt)p

∫ ∞

A

psp−1e
− 1

16
s2λ2

‖f‖2
t

= (Aλt)p + 2e
λ2

2
‖σ‖2∞ t

(4‖f‖
λ
√
t

)p
(λt)p

∫ ∞

1
4
Aλ

√
t‖f‖−1

psp−1e−s2 ds
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≤ (Aλt)p + 2e
λ2

2
‖σ‖2∞ t

(4‖f‖
λ
√
t

)p
e−

1
32

A2λ2t‖f‖−2

(λt)p
∫ ∞

1
4
Aλ

√
t‖f‖−1

psp−1e−
s2

2 ds

Choose A2 = 16‖f‖2‖σ‖2∞ to get the upper bound

≤ (Aλt)p + 2
(4‖f‖
λ
√
t

)p
(λt)p

∫ ∞

1
4
Aλ

√
t‖f‖−1

psp−1e−
s2

2 ds

≤ (Aλt)p + 2
(4‖f‖
λ
√
t

)p
(λt)p

∫ ∞

0

psp−1e−
s2

2 ds

= (4λt‖f‖‖σ‖∞)p + 2γp(λt)
p
(4‖f‖
λ
√
t

)p
.
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