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Abstract. Let R be a real closed field. We prove that for any fixed d, the equi-

variant rational cohomology groups of closed symmetric semi-algebraic subsets
of Rk defined by polynomials of degrees bounded by d vanishes in dimensions d

and larger. This vanishing result is tight. Using a new geometric approach we

also prove an upper bound of dO(d)sdkbd/2c−1 on the equivariant Betti num-
bers of closed symmetric semi-algebraic subsets of Rk defined by quantifier-free

formulas involving s symmetric polynomials of degrees bounded by d, where

1 < d � s, k. This bound is tight up to a factor depending only on d. These
results significantly improve upon those obtained previously in [6] which were

proved using different techniques. Our new methods are quite general, and

also yield bounds on the equivariant Betti numbers of certain special classes
of symmetric definable sets (definable sets symmetrized by pulling back under

symmetric polynomial maps of fixed degree) in arbitrary o-minimal structures

over R.
Finally, we utilize our new approach to obtain an algorithm with polyno-

mially bounded complexity for computing these equivariant Betti numbers.
In contrast, the problem of computing the ordinary Betti numbers of (not

necessarily symmetric) semi-algebraic sets is considered to be an intractable

problem, and all known algorithms for this problem have doubly exponential
complexity.
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1. Introduction

The problem of bounding the Betti numbers of semi-algebraic sets defined over
the real numbers has a long history, and has attracted the attention of many re-
searchers – starting from the first results due to Olĕınik and Petrovskĭı [17], followed
by Thom [22], Milnor [16]. If there is an action of a (compact) group on a real vec-
tor space whose action leaves the given semi-algebraic set invariant, it makes sense
to separately study the topology modulo the group action. One classical notion to
do this is by means of the so called equivariant Betti numbers (see §2). The result-
ing question of studying the equivariant Betti numbers of symmetric semi-algebraic
subsets of Rk is relatively more recent and was initiated in [6], where polynomial
bounds for semi-algebraic sets defined by symmetric polynomials were given.

Before proceeding any further it will be useful to keep in mind the following
simple example (both as a guiding principle for proving upper bounds on and as a
lower bound for the equivariant Betti numbers).

Example 1. Let 1 < d� k, d even. We will think of d as a fixed constant and let
k be large. Also, let

P =

k∑
i=1

d/2∏
j=1

(Xi − j)2 ∈ R[X1, . . . , Xk].

Then, the set of real zeros, Vd,k of P in Rk is finite and consists of the (d/2)k

isolated points – namely the set {1, . . . , d/2}k. In other words the zero-th Betti
number of Vd,k equals

(d/2)k = (O(d))k,

which grows exponentially in k (for fixed d). However, P is a symmetric polynomial,
and as a result there is an action of the symmetric group Sk on Vd,k. The number
of orbits of this action equals the zero-th Betti number of the quotient Vd,k/Sk.
It is not too difficult to see that the orbit of a point x = (x1, . . . , xk) ∈ Vd,k is
determined by the tuple λ(x) = (λ1, . . . , λd/2), where λi = card({j | xj = i}).
Thus, the number of orbits of Vd,k, and thus the sum of the Betti numbers of the

quotient Vd,k/Sk equals
(
k+d/2−1
d/2−1

)
, which satisfies the inequalities

cd · kd/2−1 ≤
(
k + d/2− 1

d/2− 1

)
≤ Cd · kd/2−1,

where cd, Cd are constants that depend only on d. Notice that unlike the Betti
numbers of Vd,k itself, the Betti numbers of the quotient are bounded by a poly-
nomial in k (for fixed d), and moreover the degree of this polynomial is d/2 − 1.
One of the main new results of the current paper (see inequality (1.2) in Theorem
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6) is an upper bound on the sum of the equivariant Betti numbers of symmetric
real varieties that matches (up to a factor depending only on d) the lower bound
implied by Example 1.

In the present article we improve the existing quantitative results on the vanish-
ing of the higher equivariant cohomology groups of symmetric semi-algebraic sets
(Theorem 5) as well as bounding of the equivariant Betti numbers of symmetric
semi-algebraic sets (Theorems 6 and 7). Our techniques are completely different
than those used in [6] where the previous best known bounds for these quantities
were proved. Moreover, the new methods also yield bounds on the equivariant
Betti numbers of certain special classes of symmetric definable sets (definable sets
symmetrized by pulling back under symmetric polynomial maps of fixed degree) in
arbitrary o-minimal structures over R (Theorems 8 and 9).

While obtaining tight upper bounds on the Betti numbers of real varieties and
semi-algebraic sets is an extremely well-studied problem [3], there is also a related
algorithmic question that is of great importance – namely, designing efficient al-
gorithms for computing them. One reason for the importance of this algorithmic
question is that the existence or non-existence of such algorithms with polynomially
bounded complexity for real varieties defined by polynomials of degrees bounded by
some constant is closely related to the PR versus NPR and similar questions in the
Blum-Shub-Smale theory of computation and its generalizations (see for example
[9]).

The new method used in the proof for the tighter bounds allows us to give an
algorithm with polynomially bounded complexity for computing the equivariant
Betti numbers of semi-algebraic sets defined by symmetric polynomials of degrees
bounded by some constant (Theorem 10). This is particularly striking because the
problem of computing the ordinary Betti numbers in the non-symmetric case is
a PSPACE-hard problem, and is thus considered intractable. In particular, this
result also confirms a meta-theorem that suggests that for computing polynomially
bounded topological invariants of semi-algebraic sets algorithms with polynomially
bounded complexity should exist.

1.1. Notations and background. All our results will be stated not only for the
real numbers but more generally for arbitrary real closed fields. Note however, that
by the Tarski-Seidenberg transfer theorem (the reader may consult [4, Chapter 2]
for a detailed exposition of this statement) most statements valid over one such
field hold in any other real closed field. Therefore, we can fix a real closed field R,
and we denote by C the algebraic closure of R. We also introduce the following
notation.

Notation 1. Given k, d ∈ Z≥0, we denote by R[X]≤d = R[X1, . . . , Xk]≤d the
R-vector space of polynomials of degree at most d. More generally, given k =
(k1, . . . , kω),d = (d1, . . . , dω) ∈ Zω≥0, we will denote

R[X(1), . . . ,X(kω)]≤d = R[X(1)]≤d1 ⊗ · · · ⊗ R[X(ω)]≤dω ,

where for each i, 1 ≤ i ≤ ω,

R[X(i)] = R[X
(i)
1 , . . . , X

(i)
ki

].

For k = (k1, . . . , kω) ∈ Zω≥0, we will also denote by |k| =
∑ω
i=1 ki.
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Notation 2. For a given polynomial P ∈ R[X1, . . . , Xk] we denote the set of zeros
of P in Rk by Z(P,Rk). More generally, for any finite set P ⊂ R[X1, . . . , Xk], the
set of common zeros of P in Rk is denoted by Z(P,Rk).

Definition 1. Let P ⊂ R[X1, . . . , Xk] be a finite family of polynomials. An element
σ ∈ {0, 1,−1}P is called a sign condition on P. Given any semi-algebraic set
Z ⊂ Rk, and a sign condition σ ∈ {0, 1,−1}P , the realization of σ on Z is the
semi-algebraic set defined by

{x ∈ Z | sign(P (x)) = σ(P ), P ∈ P} .

More generally, let Φ be a Boolean formula such that the atoms of Φ are of the
from, P ∼ 0, P ∈ P, where the relation ∼ is one of =, >, or <. Then we will call
such a formula a P-formula. and the realization of Φ, i.e., the semi-algebraic set

R(Φ,Rk) = {x ∈ Rk | Φ(x)},

will be called a P-semi-algebraic set. Finally, a Boolean formula without negations,
and with atoms P ∼ 0, P ∈ P where ∼ is either ≤ or ≥, will be called a P-closed
formula, and we call its realization, R(Φ,Rk), a P-closed semi-algebraic set.

Notation 3. Let X ⊂ Rk be any semi-algebraic set and let F be a fixed field.
Then, we will consider the i-th cohomology group of X with coefficients in F,
which is denoted by Hi(X,F). We will study the dimensions of these F vector
spaces, which are denoted by bi(X,F) = dimF Hi(X,F), and their sum denoted by
b(X,F) =

∑
i≥0 b

i(X,F). It is worth noting that the precise definition of these
notions requires some care if the semi-algebraic set is defined over an arbitrary
(possibly non-archimedean) real closed field. For details we refer to [4, Chapter 6].

The following classical result, which is due to Olĕınik and Petrovskĭı [17], Thom
[22], and Milnor [16] gives a sharp upper bound on the Betti numbers of a real va-
riety in terms of the degree of the defining polynomial and the number of variables.

Theorem 1. [17, 22, 16] Let k, d ∈ Z≥0, and Q ∈ R[X1, . . . , Xk]≤d. Then, for any
field of coefficients F,

b(Z(Q,Rk),F) ≤ d(2d− 1)k−1.

More generally for P-closed semi-algebraic sets we have the following bound.

Theorem 2. [4, 12] Let k, d ∈ Z≥0, P ⊂ R[X1, . . . , Xk]≤d be a finite set of poly-
nomials, and S be a P-closed semi-algebraic set. Then, for any field of coefficients
F,

b(S,F) ≤
k∑
i=0

k−i∑
j=1

(
card(P) + 1

j

)
6jd(2d− 1)k−1.

We will need the following immediate corollary of Theorem 2. Using the same
notation as in Theorem 2 we have:

Corollary 1. Suppose that L ⊂ Rk is a subspace with dimL = k′. Then, for any
field of coefficients F,

b(L ∩ S,F) ≤
k′∑
i=0

k′−i∑
j=1

(
card(P) + 1

j

)
6jd(2d− 1)k

′−1.
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Proof. Note that a polynomial of degree bounded by d in Rk, pulls back to a
polynomial on L of degree at most d, under the inclusion ι : L ↪→ Rk. The corollary
now follows immediately from Theorem 2. �

In this paper we will consider bounding the equivariant Betti numbers of sym-
metric semi-algebraic sets in terms of the multi-degrees of the defining polynomials.
For this purpose it will be useful to have a more refined bound than the one in
Theorem 2. The following bound appears in [8]. Notice that in contrast to Theo-
rems 2 and 1 above which holds for coefficients in an arbitrary field F, Theorem 3
only provides bounds for the Z2-Betti numbers only. However, using the universal
coefficients theorem, it is clear that a bound on the Z2-Betti is also a bound on the
rational Betti numbers.

Theorem 3. Let k = (k1, . . . , kω),d = (d1, . . . , dω) ∈ Zω≥0, k = |k|, di ≥ 2, 1 ≤ i ≤
ω, and P ⊂ R[X(1), . . . ,X(p)]≤d a finite set of polynomials, where for 1 ≤ i ≤ ω,

X(i) = (X
(i)
1 , . . . , X

(i)
ki

).
If S is a P-closed semi-algebraic set, then

b(S,Z2) ≤ O(1)kcard(P)kω3kdk11 · · · dkωω .

We will need the following immediate corollary of Theorem 3. Using the same
notation as in Theorem 3 we have:

Corollary 2. Suppose for 1 ≤ i ≤ ω, L(i) ⊂ Rki is a subspace with dimL(i) = k′i,
and L = ⊕ωi=1L

(i), and k′ =
∑ω
i=1 k

′
i. Then,

b(S ∩ L,Z2) ≤ O(1)k
′
card(P)k

′
ω3k′d

k′1
1 · · · d

k′ω
ω .

Proof. Note that a polynomial of multi-degree bounded by d in Rk1 × · · · × Rkω ,
pulls back to a polynomial on L of degree at most d, under the inclusion

ι = (ι1 ⊕ · · · ⊕ ιω) : L(1) ⊕ · · · ⊕ L(ω) ↪→ Rk1 ⊕ · · · ⊕ Rkω .

The corollary now follows immediately from Theorem 3. �

1.2. Symmetric semi-algebraic sets. In this paper we are mostly concerned
with semi-algebraic sets which are symmetric. In order to define symmetric semi-
algebraic sets we first need some more notation.

Notation 4. Let k = (k1, . . . , kω) ∈ Zω≥0, with k = |k| :=
∑ω
i=1 ki, and let S be a

semi-algebraic subset of Rk, such that the product of symmetric groups

Sk := Sk1 × · · · ×Skω

acts on Rk by independently permuting each block of coordinates. If S is closed
under this action of Sk, then we say that S is a Sk-symmetric semi-algebraic set.
We will denote by X/Sk the orbit space of this action. Note that for any symmetric
semi-algebraic set S ⊂ Rk the corresponding orbit space S/Sk can be constructed
as the image of a polynomial map and thus is again semi-algebraic (for details see
[10, 18]). If ω = 1, then k = k1, and we will denote Sk simply by Sk.

Notation 5. Let k = (k1, . . . , kω) ∈ Zω>0, with k = |k|.
We will denote by R[X(1), . . . ,X(ω)]Sk

≤d the set of polynomials which are fixed
under the action of Sk = Sk1 × · · · × Skω acting by independently permuting
each block of variables X(i). In the case ω = 1, k1 = k, d = (d), we will denote

R[X(1)]Sk

≤d simply by R[X1, . . . , Xk]Sk≤d .
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1.3. Equivariant cohomology. We recall here a few basic facts about equivariant
cohomology.

The important point of the following discussion is that in the setting of the cur-
rent paper, for G-symmetric semi-algebraic subsets S ⊂ Rk (where G is a product
of symmetric groups), the G-equivariant cohomology groups of S with coefficients
in a field F of characteristic 0, are isomorphic to the singular cohomology of the
quotient S/G with coefficients in F (cf. (1.1)). Thus, bounding the Betti numbers
of S/G is equivalent to bounding the G-equivariant Betti numbers of S.

More precisely, recall that given a topological space X together with a topo-
logical action of an arbitrary compact Lie group G, one defines the equivariant
cohomology groups starting from a universal principal G-space, denoted EG, which
is contractible, and on which the group G acts freely on the right. The orbit space
of this action is called the classifying space BG, i.e., we have BG = EG/G.

Definition 2. (Borel construction) Let X be a space with a left action of the group
G. Then, G acts diagonally on the space EG×X by g(z, x) = (z ·g−1, g ·x). For any
field of coefficients F, the G-equivariant cohomology groups of X with coefficients
in F, denoted by H∗G(X,F), is defined by H∗G(X,F) = H∗(EG×X/G,F).

In the situation of interest in the current paper, where G = Sk acting on a
Sk-symmetric semi-algebraic subset S ⊂ Rk, and F is a field with characteristic
equal to 0, we have the isomorphisms (see [6]):

(1.1) H∗(S/Sk,F)
∼−→ H∗Sk

(S,F)
∼−→ H∗(S,F)Sk .

Therefore, the equivariant Betti numbers are precisely the Betti numbers of the
orbit space S/Sk, and we will state all the results in the paper in terms of the
ordinary Betti numbers of the orbit space.

As mentioned before, equivariant Betti numbers of symmetric real varieties and
semi-algebraic sets were studied from a quantitative point of view in [6]. We sum-
marize below the main results proved there.

1.4. Previous Results. Even though the following result was stated in [6] more
generally, with multiple blocks of variables, for ease of reading we state a simplified
version having only one block.

Let S ⊂ Rk be a P-closed-semi-algebraic set, where P ⊂ R[X1, . . . , Xk]Sk≤d , with

deg(P ) ≤ d for each P ∈ P, card(P) = s. Then, for all sufficiently large k > 0, and
any field field of coefficients F:

Theorem 4. 1. (Vanishing) For all i ≥ 5d,

Hi(S/Sk,F) ∼= 0;

2. (Quantitative bound)

b(S/Sk,F) ≤ s5d−1(O(k))4d−1.

The main tools that are used in the proof of Theorem 4 are the following:

1. Infinitesimal equivariant deformations of symmetric varieties, such that the de-
formed varieties are symmetric, and moreover has good algebraic and Morse-
theoretic properties (isolated, non-degenerate critical points with respect to the

first elementary symmetric function, namely e
(k)
1 (X1, . . . , Xk) =

∑k
i=1Xi) [6,

§4, Proposition 4];
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2. Certain equivariant Morse-theoretic results to quantify changes in the equivari-
ant Betti numbers at the critical points of a symmetric Morse function [6, §4,
Lemmas 6, 7];

3. A bound on the number of distinct coordinates of isolated real solutions of any
real symmetric polynomial system in terms of the degrees of the polynomials [6,
§4, Proposition 5], which leads to a polynomial bound on the number of orbits
of the set of critical points.

It was remarked in [6], that the vanishing results as well as the upper bounds
are perhaps not optimal. In particular, item (1) in the above list (equivariant
deformation) already requires a doubling of the degrees of the polynomials involved
mainly for a technical reason in order to prove non-degeneracy of the critical points.

In this paper, we improve both the vanishing result as well as the exponent of
the bounds in Theorem 4 using a completely different approach that does not rely
on Morse theory. We utilize instead certain theorems of Kostov [14], Arnold [1],
and Giventhal [13] (see Theorems 11, 13, and 12 below) on the level sets of power
sum polynomials.

Our main quantitative results are the following. We separate the vanishing part
from the quantitative part for clarity.

1.5. Main Quantitative Results.

1.5.1. Vanishing.

Theorem 5. (Vanishing) Let k = (k1, . . . , kω),d = (d1, . . . , dω) ∈ Zω≥0, with k =∑ω
i=1 ki. Let P ⊂ R[X(1), . . . ,X(ω)]Sk

≤d be a finite set, where for each i, 1 ≤ i ≤ ω,

X(i) is a block of ki variables. Let S ⊂ Rk be P-closed semi-algebraic set. Then,
for any field of coefficients F,

Hp(S/Sk,F) = 0,

for all

p ≥
ω∑
i=1

min(ki, di).

Remark 1. Notice that Theorem 5 improves the corresponding result in Theorem
4. Moreover, the new result is tight (see Remark 5 for an example).

1.5.2. Quantitative Bounds.

Theorem 6. Let S ⊂ Rk be a P-closed semi-algebraic set, where

P ⊂ R[X1, . . . , Xk]Sk≤d , card(P) = s, d > 1.

Let

F (d, k) = (2d − 1)

bd/2c−1∏
i=1

(k − dd/2e − i) if d ≤ k,

≤ (2k − 1)(k − 1)! if d > k,

and d′ = min(k, d). Then,

b(S/Sk,F) ≤ (O(sdd′))d
′
F (d, k)

= dO(d)sdkbd/2c−1 if 1 < d� s, k.
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In particular, if card(P) = 1, and S = Z(P,Rk), and 1 < d� k, then

(1.2) b(S/Sk,F) ≤ dO(d)kbd/2c−1.

Remark 2. Notice that the bounds in Theorem 6 are better than the corresponding
bound in Theorem 4 in the case of fixed d and s, k → ∞. Also it should be noted
that the exponent in the bound given in Theorem 6 is the same for d and d+ 1, if
d is even.

Finally, with regards to tightness, note that for fixed d and large s, k, the bound
in Theorem 6, takes the form dO(d)sdkbd/2c−1, and neither of the two exponents
(i.e the exponent of s which is equal to d, and the exponent of k which is equal to
bd/2c − 1) in the bound can be improved. In the case of s this follows from the
example in [6, Remark 7], and in the case of k this follows from Example 1.

In the case of multiple blocks we have the following bound (notice that the field
of coefficients F = Z2 in the following theorem).

Theorem 7. Let k = (k1, . . . , kω),d = (d1, . . . , dω) ∈ Zω≥0,d > 1ω, with k = |k|.
Let P ⊂ R[X(1), . . . ,X(ω)]Sk

≤d be a finite set of polynomials with card(P) = s. Let

S ⊂ Rk be P-closed semi-algebraic set.
Then,

b(S/Sk,Z2) ≤

(
ω∏
i=1

(O(ω3sdid
′
i))

d′iF (di, ki)

)
,

where

d′i = min(ki, di), 1 ≤ i ≤ ω,
and F (di, ki) as in Theorem 6.

It is worth noticing that requiring a description by symmetric polynomials is
not necessary in the case of symmetric real varieties. Since every real symmetric
variety defined by (possibly non-symmetric) polynomials of degree at most d, can
be defined by one symmetric polynomial of degree at most 2d (by taking the sum
of squares of all the polynomials appearing in the orbits of the given polynomials
under the action of the symmetric group), the above results in particular yield the
following.

Corollary 3. Let P ⊂ R[X1, . . . , Xk]≤d with 2d ≤ k such that Z(P,Rk) is Sk

invariant, then

b(S/Sk,F) ≤ dO(d)kd−1,

and

Hp(S/Sk,F) = 0, for all p ≥ 2d.

1.6. Symmetric definable sets in an o-minimal structure. While the main
goal of this paper is to study the equivariant Betti numbers of symmetric semi-
algebraic, the methods developed in this paper for bounding the equivariant Betti
numbers of symmetric semi-algebraic sets actually extend to more general situa-
tions. We illustrate this by considering certain classes of symmetric definable sets
in an arbitrary o-minimal expansion of the real closed field R (we refer the reader
to [23] and [11] for basic facts about o-minimal geometry). In the non-equivariant
case, quantitative upper bounds on the Betti numbers of definable sets belonging to
the Boolean algebra generated by a finite family of the fibers of some fixed definable
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map was studied in [2] and tight upper bounds were obtained. Here we consider
symmetric definable sets which are defined as the pull-back of a (not necessarily
symmetric ) definable set under a polynomial map which is symmetric (and of some
fixed degree). Our methods yield the following theorems.

Theorem 8. Let V ⊂ Rm be a closed definable set in an o-minimal structure
over R. Then, for all d > 0, there exists a constant CV,d > 0 such that for
all k ≥ d, and any polynomial map F = (F1, . . . , Fm) : Rk → Rm, where Fi ∈
R[X1, . . . , Xk]Sk≤d , 1 ≤ i ≤ m we have:

1. the definable set F−1(V ) ⊂ Rk is symmetric;
2. Hp(F−1(V )/Sk,F) = 0 for p ≥ d; and,
3.

b(F−1(V )/Sk,F) ≤ CV,d · kbd/2c−1.

Following [2] we now define the definable analog of P-closed semi-algebraic sets
(cf. Definition 1).

Definition 3 (A-closed sets). For any finite family A = {A1, . . . , As} of definable
subsets of Rk, we call a definable subset S ⊂ Rk to be an A-closed set, if S is a
finite union of sets of the form ⋂

i∈I
Ai

where I ⊂ [1, s].

The following generalization of Theorem 8 holds.

Theorem 9. Suppose that V ⊂ Rm ×R` is a closed definable set in an o-minimal
structure over R, and π1 : Rm × R` → Rm, π2 : Rm × R` → R` the two projection
maps, and for y ∈ R` denote by Vy the definable set π1(π−1

2 (y)∩V ). Then for each
d > 0, there exists a constant CV,d > 0, such that for every finite subset A ⊂ R`,
and every A-closed set S ⊂ Rm, where A = ∪y∈A{Vy}, the following holds.

For any k ≥ d, and any polynomial map F = (F1, . . . , Fm) : Rk → Rm, where

Fi ∈ R[X1, . . . , Xk]Sk≤d , 1 ≤ i ≤ m we have:

1. the definable set F−1(S) ⊂ Rk is symmetric;
2. Hp(F−1(S)/Sk,F) = 0 for p ≥ d; and,
3.

b(F−1(S)/Sk,F) ≤ CV,d · sd · kbd/2c−1,

where s = card(A).

Remark 3. In Theorem 9, if one wants to bound the ordinary Betti numbers of
F−1(S), then an upper bound of the form b(F−1(S),F) ≤ CV,d,k · sk follows im-
mediately from Theorem 2.3 in [2], however the constant CV,d,k depends on k and
hence the dependence of the bound on k is not explicit. In contrast, in Theorems
8 and 9, the constant CV,d is independent of k, and the dependence of the stated
bounds on k is explicit.

Example 2. We now give an illustration of application of Theorem 9 for bounding
the equivariant Betti numbers of a certain concrete sequence of definable sets in
an o-minimal structure larger than the o-minimal structure of semi-algebraic sets.
Consider the o-minimal structure Rexp (the real numbers equipped with the ex-
ponential function). Theorem 9 then implies that for every fixed m, d > 0, there
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exists a constant Cm,d > 0 such that for any F1, . . . , Fm ∈ R[X1, . . . , Xk]Sk≤d , and

(a1,1, . . . , a1,m), . . . , (as,1, . . . , as,m) ∈ Rm, denoting by S ⊂ Rk, the union of the s
definable subsets of Rk defined by the s equations

a1,1e
F1 + · · ·+ a1,me

Fm = 0,

...
...

...

as,1e
F1 + · · ·+ as,me

Fm = 0,

the inequality

b(S/Sk,F) ≤ Cm,d · sd · kbd/2c−1

holds.

1.7. Algorithm. An important consequence of our new method is that we also
obtain an algorithm with polynomially bounded complexity (for every fixed degree)
for computing the rational equivariant Betti numbers of closed, symmetric semi-
algebraic subsets of Rk. This answers a question posed in [6].

More precisely, it was asked in [6] whether there exists for every fixed d, an al-
gorithm for computing the equivariant Betti numbers of symmetric P-closed semi-
algebraic subsets of Rk, where P ⊂ R[X1, . . . , Xk]Sk≤d , and whose complexity is

bounded polynomially in card(P) and k (for constant d). Using the method of
equivariant deformation and equivariant Morse theory, an algorithm with poly-
nomially bounded complexity for computing (both the equivariant as well as the
ordinary) Euler-Poincaré characteristics of symmetric algebraic sets appears in [7].
However, this method does not extend to an algorithm for computing all the equi-
variant Betti numbers, and indeed it is well known that the algorithmic problem of
computing the Euler-Poincaré characteristic is simpler than that of computing all
the individual Betti numbers.

In the classical Turing machine model the problem of computing Betti numbers
(indeed just the number of connected components) of a real variety defined by a
polynomial of degree 4 is PSPACE-hard [19]. On the other hand it follows from
the existence of doubly exponential algorithms for semi-algebraic triangulation (see
[4] for definition) of real varieties, that there also exist algorithms with doubly
exponential complexity for computing the Betti numbers of real varieties and semi-
algebraic sets [20]. The following theorem that we prove in this paper shows that
the equivariant case is markedly different from the point of view of algorithmic
complexity.

Theorem 10. For every fixed d ≥ 0, there exists an algorithm that takes as input
a P-closed formula Φ, where P ⊂ R[X1, . . . , Xk]Sk≤d , and outputs bi(S/Sk,F), 0 ≤
i < d, where S = R(Φ,Rk). The complexity of this algorithm is bounded by

(card(P)kd)2O(d)

.

Remark 4. Notice that for fixed d the complexity of the algorithm in Theorem 10
is polynomial in card(P) and k.

2. Proofs of the main theorems

2.1. Outline of the proofs. As mentioned in the Introduction the main ideas
behind the proofs of Theorems 5, 6, and 7 are quite different from the Morse
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theoretic arguments used in [6]. For convenience of the reader we outline the main
ideas that are used first.

In order to prove to Theorem 5, we prove directly that if S ⊂ Rk is a closed and
bounded symmetric semi-algebraic set, defined by symmetric polynomials of degree
at most d ≤ k, then S/Sk is homologically equivalent to a certain semi-algebraic
subset of Rd (Part (2) of Proposition 7 below). This immediately implies the van-
ishing of the higher cohomology groups of S/Sk. In order to prove the homological
equivalence we use certain results on the properties of Vandermonde mappings due
to Kostov and Giventhal (see Theorems 11 and 12 below). This argument avoids
the technicalities of having to produce a good equivariant deformation required in
the Morse-theoretic arguments for proving a similar vanishing result in [6], which
led to a worse bound on the vanishing threshold in terms of the degrees (2d in the
algebraic case, and 5d in the semi-algebraic case).

In order to prove the upper bounds on the equivariant Betti numbers of symmet-
ric semi-algebraic sets (Theorems 6 and 7) we prove first that if S ⊂ Rk is a closed
and bounded symmetric semi-algebraic set, defined by symmetric polynomials of
degree at most d ≤ k, then S/Sk, is homologically equivalent to the intersection,
Sk,d, of S with a certain polyhedral complex of dimension d in Rk (Proposition
7) – namely, the subcomplex formed by certain d-dimensional faces of the Weyl
chamber defined by X1 ≤ X2 ≤ · · · ≤ Xk (cf. Propositions 7 and 9). Thus, in
order to bound the Betti numbers of S/Sk, it suffices to bound the Betti numbers
of Sk,d (see Part (2) of Proposition 9).

The number of d-dimensional faces of the Weyl chamber that we need to consider
is (

k − dd/2e − 1

bd/2c − 1

)
= (Od(k))bd/2c−1.

Since the intersection of each one of these faces with S is contained in a linear
subspace of dimension d, the Betti numbers of such intersections can be bounded
by a polynomial in s, k of degree d (cf. Corollary 2). Moreover, the intersections
amongst these sets are themselves intersections of S with faces of the Weyl chamber
of smaller dimensions. We then use inequalities coming from the Mayer-Vietoris
spectral sequence (cf. Proposition 15) to obtain a bound on S/Sk. However, a
straightforward argument using Mayer-Vietoris inequalities will produce a much
worse bound than claimed in Theorems 6 and 7. This is because the number
of possibly non-empty intersections that needs to be accounted for would be too
large. In order to control this combinatorial part we use an argument involving
infinitesimal thickening and shrinking of the faces of the Weyl chambers. Such
perturbations involve extending the field R, to a real closed field of Puiseux series
in the infinitesimals that are introduced with coefficients in R. We recall some
basic facts about fields of Puiseux series in §2.2.1. After replacing the faces of
the Weyl chambers by certain new sets defined in terms of infinitesimal thickening
and shrinking, we show that only flags (not necessarily complete flags) of faces
contribute to the Mayer-Vietoris inequalities (Corollary 5). The number of such
flags is bounded by (Od(k))bd/2c−1 (cf. Proposition 11). This together with bounds
on the Betti numbers of semi-algebraic sets in terms of the multi-degrees of the
defining polynomials (cf. Corollary 2) lead to the claimed bounds. In the o-minimal
category (proofs of Theorems 8 and 9), we follow the same strategy, except the
explicit bounds on the Betti numbers as in Corollary 2 are replaced by bounds
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involving a constant that depends on the given definable family (the dependence
of the other parameters remain the same as in the semi-algebraic case). Since
these proofs are quite similar to the ones in the semi-algebraic case, we only give
a sketch of the arguments indicating the modifications that need to be made from
the semi-algebraic case.

2.2. Preliminaries. In this section we recall some basic facts about real closed
fields and real closed extensions.

2.2.1. Real closed extensions and Puiseux series. We will need some properties of
Puiseux series with coefficients in a real closed field. We refer the reader to [4] for
further details.

Notation 6. For R a real closed field we denote by R 〈ε〉 the real closed field of al-
gebraic Puiseux series in ε with coefficients in R. We use the notation R 〈ε1, . . . , εm〉
to denote the real closed field R 〈ε1〉 〈ε2〉 · · · 〈εm〉. Note that in the unique ordering
of the field R 〈ε1, . . . , εm〉, 0 < εm � εm−1 � · · · � ε1 � 1.

Notation 7. For elements x ∈ R 〈ε〉 which are bounded over R we denote by limε x
to be the image in R under the usual map that sets ε to 0 in the Puiseux series x.

Notation 8. If R′ is a real closed extension of a real closed field R, and S ⊂ Rk

is a semi-algebraic set defined by a first-order formula with coefficients in R, then
we will denote by Ext(S,R′) ⊂ R′k the semi-algebraic subset of R′k defined by the
same formula. It is well-known that Ext(S,R′) does not depend on the choice of
the formula defining S [4].

Notation 9. For x ∈ Rk and r ∈ R, r > 0, we will denote by Bk(x, r) the open
Euclidean ball centered at x of radius r. If R′ is a real closed extension of the real
closed field R and when the context is clear, we will continue to denote by Bk(x, r)
the extension Ext(Bk(x, r),R′). This should not cause any confusion.

2.3. Mayer-Vietoris inequalities. We will need the following inequalities. They
are consequences of Mayer-Vietoris exact sequence.

Let S1, . . . , SN ⊂ Rk, N ≥ 1, be closed semi-algebraic subsets of Rk. For
J ⊂ [1, n], we denote

SJ =
⋂
j∈J

Sj ,

SJ =
⋃
j∈J

Sj .

Proposition 1. 1. For i ≥ 0,

(2.1) bi(S[1,s],F) ≤
i+1∑
j=1

∑
J⊂{1,...,s}
card(J)=j

bi−j+1(SJ ,F).

2.

(2.2) bi(S[1,s],F) ≤
k−i∑
j=1

∑
J⊂{1,...,s}
card(J)=j

bi+j−1(SJ ,F) +

(
s

k − i

)
bk(S∅,F).
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Proof. See [4, Proposition 7.33]. �

We will also need the following inequality that is a simple consequence of the
Mayer-Vietoris exact sequence. Let S1, S2 ⊂ Rk be closed, semi-algebraic sets.
Then for every p ≥ 0,

bp(S1,F) + bp(S2,F) ≤ bp(S1 ∪ S2,F) + bp(S1 ∩ S2,F).(2.3)

2.4. Bounds on the Betti numbers of P-closed semi-algebraic sets. In order
to get the desired bounds using the technique outlined in §2.1 we need to refine
slightly some arguments in [4, Chapter 7] on bounding the Betti numbers of closed
semi-algebraic sets. We explain these refinements in the current section. The main
results that will be needed later are Propositions 2 and 6.

We begin with:

Proposition 2. Let V ⊂ Rk be a closed semi-algebraic set and L ⊂ R[X1, . . . , Xk]
a finite set of polynomials, and let S = {x ∈ V |

∧
L∈L′ L(x) ≥ 0}. Then, for every

p ≥ 0, and any field F,

bp(S,F) ≤
∑
L′⊂L

bp(V ∩ Z(L′,Rk),F).

Proof. Let L = {L1, . . . , Lm}, and let for I ⊂ [1,m],

WI = R(
∧
i∈I

Li ≥ 0,Rk),

ZI = R(
∧
i∈I

Li = 0,Rk).

Then, S = V ∩W[1,m].
We prove the statement by induction on m. Clearly, the statement is true for

m = 0. Suppose the statement holds for m− 1.
Using the induction hypothesis, we have for each p ≥ 0,

bp(V ∩W[1,m−1],F) ≤
∑

I⊂[1,m−1]

bp(V ∩ ZI ,F),(2.4)

bp(V ∩ Zm ∩W[1,m−1],F) ≤
∑

I⊂[1,m−1]

bp(V ∩ ZI∪{m},F).(2.5)

Defining S′ = {x ∈ V ∩W[1,m−1] | Lm(x) ≤ 0}, we have

V ∩W[1,m−1] = S ∪ S′,
V ∩ Zm ∩W[1,m−1] = S ∩ S′.

Now, using inequality (2.3) we have that, for every p ≥ 0,

bp(S,F) + bp(S′,F) ≤ bp(V ∩W[1,m−1],F) + bp(V ∩ Zm ∩W[1,m−1],F),

from whence we get,

bp(S,F) ≤ bp(V ∩W[1,m−1],F) + bp(V ∩ Zm ∩W[1,m−1],F).(2.6)

The proposition now follows from (2.4), (2.5), and (2.6). �
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We fix for the remained of the section a closed and semi-algebraically con-
tractible semi-algebraic set W ⊂ Rk, and also finite sets P = {P1, . . . , Ps},F =
{F1, . . . , Fm} ⊂ Rk.

Let

W̃ = {x ∈W |
m∧
i=1

Fi(x) ≥ 0},

and we will also suppose that W̃ is semi-algebraically contractible.
Let δ1, · · · , δs be infinitesimals, and let R′ = R〈δ1, . . . , δs〉.

Notation 10. We define P>i = {Pi+1, . . . , Ps} and

Σi = {Pi = 0, Pi = δi, Pi = −δi, Pi ≥ 2δi, Pi ≤ −2δi},
Σ≤i = {Ψ | Ψ =

∧
j=1,...,i

Ψi,Ψi ∈ Σi}.

If Φ is a P-closed formula, and Z ⊂ Rk a closed semi-algebraic set we denote

Ri(Φ, Z) = R(Φ,R〈δ1, . . . , δi〉k) ∩ Ext(Z,R〈δ1, . . . , δi〉k),

and

Ri(Φ ∧Ψ, Z) = R(Ψ,R〈δ1, . . . , δi〉k) ∩Ri(Φ) ∩ Ext(Z,R〈δ1, . . . , δi〉k).

Finally, we denote for each P-closed formula Φ

b(Φ, Z,F) = b(R(Φ, Z),F).(2.7)

The proof of the following proposition is very similar to Proposition 7.39 in [4]
where it is proved in the non-symmetric case.

Proposition 3. For every P-closed formula Φ, such that R(Φ,Rk) is bounded,

b(Φ, Z,F) ≤
∑

Ψ∈Σ≤s
Rs(Ψ,R′k)⊂Rs(Φ,R′k)

b(Ψ, Z,F).

Proof. See Proposition 7.39 in [4]. �

For 1 ≤ i ≤ s, let

Qi = P 2
i (P 2

i − δ2
i )2(P 2

i − 4δ2
i ),

and for I ⊂ [1, s] let,

V I = R(
∨
i∈I

Qi = 0,R′k) ∩ Ext(W̃ ,R′k),(2.8)

T I = R(
∨
i∈I

Qi ≥ 0,R′k) ∩ Ext(W̃ ,R′k).(2.9)

Proposition 4. For p ≥ 0,∑
Ψ∈Σ≤s

bp(Ψ, W̃ ,F) ≤
k−p∑
`=1

∑
I⊂[1,s],card(I)=`

bp+`−1(T I ,F)

=
∑
I⊂[1,s]

bp+card(I)−1(T I ,F).(2.10)
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Proof. From (2.7) we have that bp(Ψ, W̃ ,F) = bp(R(Ψ, W̃ ),F), and it follows from

the definition of Ψ, thatR(Ψ, W̃ ) is a disjoint union of closed semi-algebraic subsets
of the closed semi-algebraic set

R(
∧

i∈[1,s]

Qi ≥ 0,R′k) ∩ Ext(W̃ ,R′k).

The proposition now follows from Part (2) of Proposition 1, and (2.9). �

Lemma 1.

bp(T I ,F) ≤ bp(V I ,F), if p > 0,

b0(T I ,F) ≤ b0(V I ,F) + 1.

Proof. Let

ZI = R(
∧

1≤i≤j

Qi ≤ 0 ∨
∨

1≤i≤j

Qi = 0,R〈δ1, . . . , δj〉)k) ∩ Ext(W,R〈δ1, . . . , δj〉).

Clearly

T I ∪ ZI = Ext(W̃ ,R〈δ1, . . . , δj〉), T I ∩ ZI = V I .

The lemma now follows from inequality (2.3), using the fact that W̃ is semi-
algebraically contractible. �

Lemma 2. For each p ≥ 0,

bp(V I ,F) ≤
p+1∑
`=1

∑
J⊂I,

card(J)=`

∑
τ∈{0,±1,±2}J

bp−`+1(Z(Pτ ,R′k) ∩ Ext(W̃ ,R′),F)

=
∑
J⊂I

∑
τ∈{0,±1,±2}J

bp−card(J)+1(Z(Pτ ,R′k) ∩ Ext(W̃ ,R′),F),

where

Pτ =
⋃
j∈J
{Pj + τ(j)δj}.(2.11)

Proof. Let for i ∈ [1, s], Vi = Z(Qi,R
′k)∩Ext(W̃ ,R′k). Then, for each i ∈ [1, s], Vi

is the disjoint union of the following five sets,

Z(Pi,R
′k) ∩ Ext(W̃ ,R′k),

Z(Pi ± δi,R′k) ∩ Ext(W̃ ,R′k),

Z(Pi ± 2δi,R
′k) ∩ Ext(W̃ ,R′k).

The lemma now follows from Part (1) of Proposition 1. �

Proposition 5. For every P-closed formula Φ, such that R(Φ,Rk) is bounded,

(2.12) b(Φ, W̃ ,F) ≤ 1 + s+
∑
p≥0

∑
I⊂[1,s],

1≤card(I)≤k−p,
J⊂I,

1≤card(J)≤p+1

∑
τ∈{0,±1,±2}J

F (p, card(I), J, τ),

where

F (p, q, J, τ), = bp+q−card(J)(Z(Pτ ,R′k) ∩ Ext(W̃ ,R′),F).(2.13)
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Proof. The proposition follows from Propositions 3 and 4, and Lemmas 1 and 2,
after noting that on the right side of (2.10) in Proposition 4, p + card(I) − 1 = 0
implies that card(I) = 0 or 1 since p ≥ 0. This accounts for the additive factor of
1 + s on the right side of (2.12). �

Finally, using the same notation as Proposition 5:

Proposition 6. For every P-closed formula Φ, such that R(Φ,Rk) is bounded,

b(Φ, W̃ ,F) ≤ 1 + s+
∑
p≥0

∑
I⊂[1,s],

1≤card(I)≤k−p,
J⊂I,

1≤card(J)≤p+1

∑
σ∈{0,±1,±2}J

∑
K⊂[1,m]

G(p, card(I), J,K, σ),

where

G(p, q, J,K, σ), = bp+q−card(J)(Z(Pσ,R′k) ∩ ṼK ,F),

where for K ⊂ [1,m],

ṼK = W
⋂
i∈K

Z(Fi,R
k).

Proof. Use Propositions 5 and 2. �

2.5. Proof of Theorem 5. Before proving Theorem 5 we need a preliminary
result.

We first need some notation.

Notation 11. Let W(k) ⊂ Rk denote the cone defined by X1 ≤ X2 ≤ · · · ≤ Xk.
More generally, for k = (k1, . . . , kω) ∈ Zω>0, we will denote

W(k) =W(k1) × · · · ×W(kω).

For every m ≥ 0, and w = (w1, . . . , wk) ∈ Rk
>0, let p

(k)
w,m : W(k) → R be the

polynomial map defined by:

∀x = (x1, . . . , xk) ∈ W(k),

p(k)
w,m(x) =

k∑
j=1

wjx
m
j .

For every d ≥ 0, and w ∈ Rk
>0 we denote by Ψ

(k)
w,d :W(k) → Rd′ , the continuous

map defined by

∀x = (x1, . . . , xk) ∈ W(k),

Ψ
(k)
w,d(x) = (p

(k)
w,1(x), . . . , p

(k)
w,d′(x)),

where d′ = min(k, d).

If w = 1k := (1, . . . , 1), then we will denote by p
(k)
m the polynomial p

(k)
w,m (the

m-th Newton sum polynomial), and by Ψ
(k)
d the map Ψ

(k)
w,d.

We will need the following theorem due to Kostov.

Theorem 11. [14, Theorem 1] For every w ∈ Rk
≥0, d, k ≥ 0, and y ∈ Rd, the fibre

Vw,d,y := (Ψ
(k)
w,d)

−1(y)

is either empty or contractible.
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We will also need:

Theorem 12. [13, first Corollary] The map Ψ
(k)
k :Wk → Rk is a homeomorphism

on to its image.

As an immediate corollary of Theorem 11 we have:

Corollary 4. Let

k = (k1, . . . , kω) ∈ Z≥0,

d = (d1, . . . , dω) ∈ Z≥0,

d′i = min(ki, di), 1 ≤ i ≤ ω.

Let

Ψ
(k)
d : W(k) → Rd′1 × · · · × Rd′ω

denote the map defined by

∀x = (x(1), . . . ,x(ω)) ∈W(k),

Ψ
(k)
d (x(1), . . . ,x(ω)) = (Ψ

(k1)
d′1

(x(1)), . . . ,Ψ
(kω)
d′ω

(x(ω))).

Then, for each y ∈ Rd′1 × · · · × Rd′ω , (Ψ
(k)
d )−1(y) is either empty or contractible.

We will need the following proposition. With the same notation as in Theorem
5:

Proposition 7. Let P ⊂ R[X(1), . . . ,X(ω)]Sk

≤d and let S ⊂ Rk be a bounded P-
closed semi-algebraic set.

1. The quotient S/Sk is semi-algebraically homeomorphic to Ψ
(k)
k (S).

2. For any field of coefficients F,

H∗(Ψ
(k)
k (S),F) ∼= H∗(Ψ

(k)
d (S),F).

Proof. Part (1) follows from the fact the map Ψ
(k)
k separates orbits of Sk, and

Theorem 12.
In order to prove Part (2) first note that

R[X(1), . . . ,X(ω)]Sk

≤d
∼= R[X(1)]

Sk1
≤d1 ⊗ · · · ⊗ R[X(ω)]

Skω
≤dω ,

and for each i, 1 ≤ i ≤ ω,

R[X(i)]Ski = R[p
(ki)
1 (X(i)), . . . , p

(ki)
ki

(X(i))].

It follows that for each P ∈ P, there exists P̃ ∈ R[Z(1), . . . ,Z(ω)], with Z(i) =

(Z
(i)
1 , . . . , Z

(i)
d′i

), 1 ≤ i ≤ ω, such that

P = P̃ (p
(k1)
1 (X(1)), . . . , p

(k1)
d′1

(X(1)), . . . , p
(kω)
1 (X(ω)), . . . p

(kω)
d′ω

(X(ω))).

Let P̃ = {P̃ | P ∈ P}. Also, let Θ be a P-closed formula defining S, and

Θ̃ be the P̃-closed formula obtained from Θ by replacing for each P ∈ P, every

occurrence of P by P̃ .
Now observe that

Ψ
(k)
d = πk,d ◦Ψ

(k)
k ,

where
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πk,d : Rk → Rd′1 × · · · × Rd′ω denotes the map

πk,d(x(1), . . . ,x(ω)) = (πk1,d1(x(1)), . . . , πkω,dω (x(ω))),

where for each i, 1 ≤ i ≤ ω, πki,di(x
(i)) = (x

(i)
1 , . . . , x

(i)
d′i

).

The quotient space S/Sk is homeomorphic to Ψ
(k)
k (S), and

Ψ
(k)
k (S) = R(Θ̃,Rk) ∩Ψ

(k)
k (Rk).

It is also clear from the definition of Θ̃, that

π−1
k,d(πk,d(R(Θ̃,Rk))) = R(Θ̃,Rk)

(in other wordsR(Θ̃,Rk) is equal to the cylinder over πk,d(R(Θ̃,Rk))). Also notice
that

πk,d(R(Θ̃,Rk)) = πk,d(S).

It follows from Corollary 4 that for every y ∈ πk,d(R(Θ̃,Rk)) = πk,d(Ψ
(k)
k (S)),

π−1
k,d(y) ∩Ψ

(k)
k (Rk)

is contractible.
Now in the case R = R, the Vietoris-Begle mapping theorem (see for instance,

[21, page 344]) implies that

H∗(Ψ
(k)
k (S),F) ∼= H∗(πk,d ◦ψk

k(S),F) = H∗(Ψk
d(S),F),

proving Part (2) in the case R = R. The general case follows from an application
of the Tarski-Seidenberg transfer principle. �

Proof of Theorem 5. First note that using Proposition 7,

H∗(S/Sk,F) ∼= H∗(Ψ
(k)
d (S),F),

and Ψ
(k)
d (S) is a semi-algebraic subset of RN , where N =

∑ω
i=1 min(ki, di). Since

no semi-algebraic subset of RN can have non-vanishing homology in dimensions N
or greater, the theorem follows. �

Remark 5 (Tightness). Suppose that d < k. Observe that the image of Ψ
(k)
d is a

non-empty semi-algebraic subset of Rd having dimension d, and thus has a non-

empty interior. Let y = (y1, . . . , yd) belong to the interior of the image of Ψ
(k)
d .

Then, for all small enough ε > 0, the intersection of the image of Ψ
(k)
d with the

union of the 2d hyperplanes defined by

(2.14) p
(k)
i = yi ± ε, 1 ≤ i ≤ d,

contains the boundary of the hypercube [y1−ε, y1+ε]×· · ·×[yd−ε, yd+ε] but not its
interior, and thus clearly has non-vanishing cohomology in dimension d− 1. Using
Part (2) of Theorem 7, it follows that the symmetric semi-algebraic S ⊂ Rk defined

by (2.14) has Hd−1(S,F) 6= 0. Finally note that, the symmetric polynomials,

p
(k)
i − yi ± ε, 1 ≤ i ≤ d,

defining S have degrees bounded by d.
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2.6. Proof of Theorem 6.

Notation 12. For k ∈ Z≥0, we denote by Comp(k) the set of integer tuples

λ = (λ1, . . . , λ`), λi > 0, |λ| :=
∑̀
i=1

λi = k.

Definition 4. For k ∈ Z≥0, and λ = (λ1, . . . , λ`) ∈ Comp(k), we denote by Wλ

the subset of W(k) defined by,

X1 = · · · = Xλ1 ≤ Xλ1+1 = · · · = Xλ1+λ2 ≤ · · · ≤ Xλ1+···+λ`−1+1 = · · · = Xk,

and denote by Wo
λ the subset of W(k) defined by,

X1 = · · · = Xλ1
< Xλ1+1 = · · · = Xλ1+λ2

< · · · < Xλ1+···+λ`−1+1 = · · · = Xk,

More generally, given k = (k1, . . . , kω) ∈ Z≥0, we denote

W(k) =W(k1) × · · · ×W(kω).

Given λ = (λ(1), . . . , λ(ω)) ∈ Comp(k,d) we denote

Wλ =Wλ(1) × · · · ×Wλ(ω) .

Definition 5. Let k ∈ Z≥0, and λ, µ ∈ Comp(k). We denote, λ ≺ µ, if Wλ ⊂ Wµ.
It is clear that ≺ is a partial order on Comp(k) making Comp(k) into a poset.

For k ∈ Zω≥0, and λ = (λ(1), . . . , λ(ω)),µ = (µ(1), . . . , µ(ω)) ∈ Comp(k), we

denote, λ ≺ µ, if λ(i) ≺ µ(i) for all i, 1 ≤ i ≤ ω. It its clear that ≺ extends the
partial order on Comp(k) defined above.

Notation 13. For λ = (λ1, . . . , λ`) ∈ Comp(k), we denote length(λ) = `, and for
k, d ∈ Z≥0, we denote

CompMax(k, d) = {λ = (λ1, . . . , λd) ∈ Comp(k) | λ2i+1 = 1, 0 ≤ i < d/2},
Comp(k, d) =

⋃
λ∈CompMax(k,d)

{λ′ ∈ Comp(k) | λ′ ≺ λ} if d ≤ k,

= Comp(k), if d > k.

More generally, for k,d ∈ Zω≥0, we denote

Comp(k,d) = Comp(k1, d1)× · · · × Comp(kω, dω).

Definition 6. Given k, d ∈ Z≥0, we denote

W(k)
d =

⋃
λ∈Comp(k,d)

Wλ.

For k, d ∈ Z≥0, and a semi-algebraic subset S ⊂ Rk, we denote

(2.15) Sk,d = S ∩W(k)
d .

(Notice that if d ≥ k, then Sk,d = S ∩W(k).)
We will denote by Lλ the linear span of Wλ. Note that

dimLλ = dimWλ = length(λ).

More generally, given d = (d1, . . . , dω),k = (k1, . . . , kω) ∈ Zω≥0 with k = |k|, we
denote

W(k)
d = W(k1)

d1
× · · · ×W(kω)

dω
.
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For any semi-algebraic subset S ⊂ Rk, we denote

Sk,d = S ∩W(k)
d .

We will denote by Lλ the linear span of Wλ. Note that

dimLλ = dimWλ =

ω∑
i=1

length(λ(i)).

We will use the following theorem due to Arnold [1].

Theorem 13. [1, Theorem 7]

1. For every w ∈ Rk
≥0, d, k ≥ 0, d′ = min(k, d), and y ∈ Rd′ the function p

(k)
w,d+1

has exactly one local maximum on (Ψ
(k)
w,d)

−1(y), which furthermore depends con-
tinuously on y.

2. Suppose that the real variety Vy ⊂ Rk defined by (p
(k)
1 , . . . , p

(k)
d′ ) = y is non-

singular. Then a point x ∈ Vy∩W(k) is a local maximum if and only if x ∈ W(k)
λ

for some λ ∈ CompMax(k, d′).

Remark 6. Note that in [1, Theorem 7] there is a slight inaccuracy in that the word
“minimum” should be replaced by the word “maximum” and vice versa. A correct
statement and a more detailed proof can be found in [15] (Proposition 8).

Let d > 1, and for y ∈ Ψ
(k)
d (W(k)), let

m(y) := min
x∈(Ψ

(k)
d )−1(y)

p
(k)
d+1(x).

By Part (1) of Theorem 13 the map, F
(k)
d : Ψ

(k)
d (W(k)) → W(k) which sends

y ∈ Ψ
(k)
d (W(k)) to the unique x ∈ W(k), such that m(y) = p

(k)
d+1(x) is a well-

defined semi-algebraic continuous map.

Let U
(k)
d ⊂ Ψ

(k)
d (W(k)) be the subset of points y = (y1, . . . , yd′) of Ψ

(k)
d (W(k))

such that Vy ⊂ Rk defined by (p
(k)
1 , . . . , p

(k)
d′ ) = y is non-singular.

We have the following equalities.

Proposition 8.

W(k)
d = F

(k)
d (U

(k)
d ) = F

(k)
d (Ψ

(k)
d (W(k))).

Proof. The second equality follows from the continuity of F
(k)
d , and the fact that

by semi-algebraic version of Sard’s theorem (see for example [4, Chapter 5]), U
(k)
d

is dense in Ψ
(k)
d (W(k)).

We now prove the first equality.

The inclusion F
(k)
d (U

(k)
d ) ⊂ W(k)

d is clear, since by Part (2) of Theorem 13,

F
(k)
d (U

(k)
d ) ⊂ W(k)

d , and W(k)
d is closed.

We now prove the inclusionW(k)
d ⊂ F (k)

d (U
(k)
d ). Let x ∈ W(k)

d . Then there exists

λ ∈ CompMax(k, d) such that x ∈ Wλ. The map Ψ
(k)
d is a local diffeomorphism on

Wo
λ, and the set dimension of the set of critical values of Ψ

(k)
d is of dimension at

most d− 1 by the semi-algebraic version of Sard’s theorem. Thus, there exists x′ ∈
Ext(Wo

λ,R〈ε〉) such that limε x′ = x, y′ = Ψ
(k)
d (x′) is a regular value of the map
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Ψ
(k)
d , and hence y′ ∈ Ext(U

(k)
d ,R〈ε〉). Then, x′ = F

(k)
d (y′) ∈ Ext(F

(k)
d (U

(k)
d ),R〈ε〉),

and since x = limε x′, x ∈ F (k)
d (U

(k)
d ). �

Proposition 9. Let 1 < d, and S ⊂ Rk a closed and bounded symmetric semi-
algebraic set defined by symmetric polynomials of degrees bounded by d. Then the
following holds.

1. The map Ψ
(k)
d restricted to Sk,d is a semi-algebraic homeomorphism on to its

image.
2.

H∗(Sk,d,F) ∼= H∗(S/Sk,F).

More generally, let d,k ∈ Zω>1 with 1ω < d, and S a bounded P-closed semi-

algebraic set, where P ⊂ R[X(1), . . . ,X(ω)]Sk

≤d. Then,

1′. Ψ
(k)
d restricted to Sk,d is a semi-algebraic homeomorphism on to its image, and

2′.

H∗(Sk,d,F) ∼= H∗(S/Sk,F).

Proof. We only prove Parts (1) and (2). The remaining parts follow directly from
these two. Part (1) follows from Proposition 8, and Part (2) follows from Part (1)
and Proposition 7. �

Example 3. In order to understand the geometry behind Proposition 9 it might
be useful to consider the example of the two-dimensional sphere in S ⊂ R3 defined
by the symmetric quadratic polynomial equation

p
(3)
2 (X!, X2, X3)− 1 = X2

1 +X2
2 +X2

3 − 1 = 0.

The intersection of S with the Weyl chamber, W(3) defined by X1 ≤ X2 ≤
X3, is contractible and is homologically equivalent to S/S3, via the map Ψ

(3)
2 =

(p
(3)
1 , p

(3)
2 ) : S ∩ W(3) → R2. The image of this map in R2 is the line segment

defined by −
√

3 ≤ p
(3)
1 ≤

√
3, p

(3)
2 = 1, and is homotopy equivalent to S/S3. For

each y = (y1, y2) ∈ R2 which belongs to the image, the fiber (Ψ
(3)
2 )−1(y) ⊂ S is

defined by

X1 +X2 +X3 = y1, X
2
1 +X2

2 +X2
3 = 1, X1 ≤ X2 ≤ X3,

and is easily seen to be a connected arc and hence contractible. Moreover, the

maximum of p
(3)
3 restricted to this arc belong to the face defined by X2 = X3 of

the Weyl chamber. The set, S3,2 of these maximums, is an arc defined by

X2
1 +X2

2 +X2
3 = 1, X1 ≤ X2 = X3,

and defines a section over the image of Ψ
(3)
2 (S ∩W(3)), and is homologically equiv-

alent to to S/S3. Notice also that S3,2 is contained in the face W(3)
λ , where

λ = (1, 2) ∈ Comp(k, 2). The two sets, S ∩W(3) and S3,2, are shown in Figure 1.

The following is easy to prove.

Proposition 10. Let λ, λ′ ∈ Comp(k, d). Then there exists λ′′ ∈ Comp(k, d) such
that Wλ′′ =Wλ ∩Wλ′ .

More generally, let k,d ∈ Zω≥0, and let λ,λ′ ∈ Comp(k,d). Then there exists

λ′′ ∈ Comp(k,d) such that Wλ′′ = Wλ ∩Wλ′ .
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(a) S ∩W(3) (b) S3,2

Figure 1. Visualization of Example 3.

Recall that a chain σ of a finite poset P is an ordered sequence σ1 ≺ σ2 ≺ · · · ≺
σm with σi 6= σi+1 for 1 ≤ i < m.

Notation 14. For d, k ≥ 0, we denote by Σk,d denote the set of chains of the poset
Comp(k, d). More generally, for k,d ∈ Zω≥0, we denote by Σk,d the chains of the

poset Comp(k,d).

Proposition 11. For d, k ≥ 0,

card(Σk,d) ≤ (2d − 1)

bd/2c−1∏
i=1

(k − dd/2e − i) if d ≤ k,

≤ (2k − 1)(k − 1)! if d > k.

More generally, for d = (d1, . . . , dω),k = (k1, . . . , kω) ∈ Zω≥0,

card(Σk,d) =

ω∏
i=1

card(Σki,di).

Proof. It is easy to see that the number of maximal chains (of length d in Comp(k, d))
is equal to

bd/2c−1∏
i=1

(k − dd/2e − i).

Each maximal chain has (2d−1) sub-chains. Some of these chains are being counted
more than once, but we are only interested in an upper bound. �

2.6.1. Systems of neighborhoods. Let ε = (ε0, . . . , εk), and for 0 ≤ i ≤ k, Ri =
R〈ε0, . . . , εi〉.
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W̃(2,1)

X1 = X2

X2 = X3
X1 = X3

W̃(1,2)

W̃(1,1,1)

W̃(3)

Figure 2. Cross-section of W̃ (3) in the hyperplane X1 +X2 +X3 = 0.

Definition 7. For k, d ∈ Z≥0, λ ∈ Comp(k, d), we denote

Pλ =

length(λ)∑
i=1

λ1+···+λi∑
j=λ1+···+λi−1+1

λ1+···+λi∑
j′=j+1

(Xj −Xj′)
2,

and

W̃λ = {x ∈ Ext(W(k),Rlength(λ)) | (Pλ− εlength(λ) ≤ 0)∧
∧
µ≺λ,
µ6=λ

(Pµ− εlength(µ) ≥ 0)}.

More generally, for k,d ∈ Zω≥0, and λ = (λ(1), . . . , λ(ω)) ∈ Comp(k,d), we
denote

Pλ =

ω∑
i=1

Pλ(i) ,

and

W̃λ = {x ∈ Ext(W(k),Rlength(λ)) | (Pλ−εlength(λ) ≤ 0)∧
∧

µ≺λ,
µ 6=λ

(Pµ−εlength(µ) ≥ 0)}.

Example 4. Before proceeding further it might be useful to visualize the different

W̃λ in the case k = 3. We display the intersections of different W̃λ, λ ∈ Comp(3)
with the hyperplane defined by X1 +X2 +X3 = 0 in Figure 2. The Hasse diagram
of the poset Comp(3) is as follows.
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(1, 1, 1)

(1, 2)

::

(2, 1)

dd

(3)

dd ::

It is clear from the Figure 2, that for Λ ⊂ Comp(3),⋂
λ∈Λ

W̃λ

is non-empty and only if the elements of Λ form a chain in Comp(3). The list of
chains in Comp(3) is

(3), (1, 2), (2, 1), (1, 1, 1),

(3) ≺ (1, 2), (3) ≺ (2, 1), (3) ≺ (1, 1, 1), (1, 2) ≺ (1, 1, 1), (2, 1) ≺ (1, 1, 1),

(3) ≺ (1, 2) ≺ (1, 1, 1), (3) ≺ (2, 1) ≺ (1, 1, 1).

It can be seen from Figure 2 that the corresponding intersections of the W̃λ’s for
each chain listed above is non-empty.

Notation 15. For k, d ∈ Z≥0, λ ∈ Comp(k, d), and for any semi-algebraic subset

S ⊂ Rk, we denote by S̃λ the set Ext(S,Rlength(λ)) ∩ W̃λ, and denote

S̃k,d =
⋃

λ∈Comp(k,d)

Ext(S̃λ,Rd′),

where d′ = min(k, d).
For a chain σ ∈ Σk,d, we denote

S̃σ =
⋂
λ∈σ

Ext(S̃λ,R`),

where ` = length(max(σ)).
More generally, for k = (k1, . . . , kω),d = (d1, . . . , dω) ∈ Zω≥0, k = |k|, λ ∈

Comp(k,d), and for any semi-algebraic subset S ⊂ Rk, we denote by S̃λ the set

Ext(S,Rlength(λ)) ∩ W̃λ, and denote

S̃k,d =
⋃

λ∈Comp(k,d)

Ext(S̃λ,R
′
d),

where d′ =
∑ω
i=1 min(ki, di). For a chain σ ∈ Σk,d, we denote

S̃σ =
⋂
λ∈σ

Ext(S̃λ,R`),

where ` = length(max(σ)).

Proposition 12. Let k, d ∈ Z≥0, and S ⊂ Rk a closed and bounded semi-algebraic
set. Then,

lim
ε0
S̃k,d = Sk,d.
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More generally, let k,d ∈ Zω≥0, k = |k|, and S ⊂ Rk a closed and bounded semi-
algebraic set. Then,

lim
ε0
S̃k,d = Sk,d.

Proof. Use Lemma 16.17 in [4]. �

Proposition 13. (A) Let k, d ∈ Z≥0, and λ, µ ∈ Comp(k, d) such that λ 6≺
µ, µ 6≺ λ. Then,

Ext(W̃λ,R`) ∩ Ext(W̃µ,R`) = ∅,

where ` = max(length(λ), length(µ)).
(B) More generally, let k,d ∈ Zω≥0, and λ,µ ∈ Comp(k,d) such that λ 6≺

µ,µ 6≺ λ. Then,

Ext(W̃λ,R`) ∩ Ext(W̃µ,R`) = ∅,

where ` = max(length(λ), length(µ)).

Proof. We first prove Part (A). Suppose that

Ext(W̃λ,R`) ∩ Ext(W̃µ,R`) 6= ∅,

and x ∈ Ext(W̃λ,R`) ∩ Ext(W̃µ,R`). This implies, using Definition 7 that

Pν(x) ≥ εlength(ν),(2.16)

where ν ∈ Comp(k, d) is characterized by Wν =Wλ ∩Wµ.
Note that, since λ, µ are not comparable by hypothesis, ν 6= λ, µ, and hence

` > length(ν).(2.17)

Let y ∈ limε` x. Then, y ∈ Wλ ∩Wµ =Wν , and hence

Pν(y) = 0.(2.18)

On the other hand,

Pµ(y) = Pµ(lim
ε`

(x))

= lim
ε`
Pµ(x)

= lim
ε`
εlength(µ) (using (2.16))

6= 0 (since ` > length(µ) by (2.17), which implies that εlength(µ) � ε`).

This contradicts (2.18), which finishes the proof.
Part (B) follows immediately from Part (A) and the definition of the partial

order on Comp(k,d) resulting from the restriction of the one on Comp(k) (cf.
Definition 5). �

Corollary 5. Let k, d ∈ Z≥0, and Λ ⊂ Comp(k, d). Then⋂
λ∈Λ

W̃λ 6= ∅

only if the elements of Λ form a chain in Comp(k, d).
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More generally, let k,d ∈ Zω≥0, and Λ ⊂ Comp(k,d). Then⋂
λ∈Λ

W̃λ 6= ∅

only if the elements of Λ form a chain in Comp(k,d).

Proof. Immediate from Proposition 13. �

Proposition 14. Let k, d ∈ Z≥0, σ ∈ Σk,d a non-empty chain, and S ⊂ Rk a
closed and bounded semi-algebraic set. Let λ = max(σ), and ` = length(λ). Then,
for any field of coefficients F,

H∗(Ext(Lλ,R`) ∩ S̃σ,F) ∼= H∗(S̃σ,F).

More generally, let k,d ∈ Zω≥0, k = |k|, σ ∈ Σk,d a non-empty chain, and S ⊂
Rk a closed and bounded semi-algebraic set. Let λ = max(σ), and ` = length(λ).
Then, for any field of coefficients F,

H∗(Ext(Lλ,R`) ∩ S̃σ,F) ∼= H∗(S̃σ,F).

Proof. Use Lemma 16.17 in [4]. �

Proposition 15. 1. Let k, d ∈ Z≥0, d > 1, and S a symmetric, P-closed, and

bounded semi-algebraic subset of Rk, where P ⊂ R[X1, . . . , Xk]Sk≤d . Then,

b(S/Sk,F) ≤
∑

σ∈Σk,d

b(S̃σ,F).

2. More generally, let k,d ∈ Zω≥0, k = |k|, and S a symmetric, P-closed, and

bounded semi-algebraic subset of Rk, where P ⊂ R[X(1), . . . ,X(kω)]Sk

≤d. Then,

b(S/Sk,F) ≤
∑

σ∈Σk,d

b(S̃σ,F).

Proof. Proof of Part (1): It follows from Part (2) of Proposition 9 and Proposition
12, that

H∗(Ext(S,Rd)/Sk,F) ∼= H∗(S̃k,d,F).

Now,

S̃k,d =
⋃

λ∈Comp(k,d)

S̃λ.

It follows from Part (1) of Proposition 1 (Mayer-Vietoris inequality) and Corol-
lary 5 that for every m, 0 ≤ m < d,

bm(S̃k,d,F) ≤
m∑
p=0

∑
σ∈Σk,d,

card(σ)=p+1

bm−p(S̃σ,F).

Part (1) of Proposition follows by taking a sum over all m, 0 ≤ m < d.
The proof of Part (2) is similar and omitted. �

Proof of Theorem 6. Suppose that S is defined by a P-closed formula Φ. We first
replace R by R′ = R〈ε0〉, and replace S by the P ′-closed semi-algebraic set S′

defined by the P ′-closed formula

Φ ∧ (ε0||X||2 − 1 ≤ 0).
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Then, using the conical structure theorem for semi-algebraic sets [4], we have
that,

(i) S′ is symmetric, closed and bounded over R′;
(ii)

bi(S/Sk,F) = bi(S′/Sk,F).(2.19)

We now obtain an upper bound b(S̃′σ,F) for each chain σ ∈ Σk,d as follows.
Using Proposition 14 we have that

b(S̃′σ,F) = b(Ext(Lλ,R
′
`) ∩ S̃′σ,F),

where λ = max(σ) and ` = length(λ). Notice that S̃′σ is the intersection of the
P ′-closed semi-algebraic set S′, with the basic closed semi-algebraic set, defined by

Pµ − εlength(µ) = 0, for µ ∈ σ, µ 6= λ,

Pν − εlength(ν) ≤ 0, ν 6∈ σ, ν ≺ λ.(2.20)

Let

Fσ =
⋃

µ∈σ,µ 6=λ

{Pµ − εlength(µ)}, Gσ =
⋃

ν 6∈σ,ν≺λ

{Pν − εlength(ν)}.

Using Corollary 5, the number of distinct subsets G′σ ⊂ Gσ, such that

Z(Fσ ∪ G′σ,R′`) ∩ Ext(W(k),R′`) 6= ∅
is bounded by

(2.21) (O(d′))d
′
.

We obtain using Proposition 6 that

b(S̃′σ,F) ≤ s+
∑
p≥0

∑
I⊂[1,s],

1≤card(I)≤k−p,
J⊂I,

1≤card(J)≤p+1

∑
τ∈{0,±1,±2}J

∑
G′σ⊂Gσ

G(p, card(I), J,K, τ),

where

G(p, q, J,K, τ) = bp+q−card(J)(Ext(Lλ,R
′
`)∩Z(Pτ ∪Fσ∪G′σ,R′`)∩Ext(W(k),R′`),F),

and Pτ is as in (2.11).
Since dim(Lλ) = length(λ) ≤ d′, we obtain using (2.21), Proposition 2, and

Corollary 1, that,

b(S̃′σ,F) ≤ (O(sdd′))d
′
.(2.22)

The theorem now follows from (2.19), Propositions 11, 15, and (2.22).
�

2.7. Proof of Theorem 7.

Proof of Theorem 7. The proof is very similar to that of Theorem 6. Suppose that
S is defined by a P-closed formula Φ. We first replace R by R′ = R〈ε0〉, and replace
S by the P ′-closed semi-algebraic set S′ defined by the P ′-closed formula

Φ ∧ (ε0||X||2 − 1 ≤ 0).

Then, using the conical structure theorem for semi-algebraic sets [4], we have
that,
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i S′ is symmetric, closed and bounded over R′;
ii

bi(S/Sk,Z2) = bi(S′/Sk,Z2).(2.23)

We now obtain an upper bound b(S̃′σ,Z2) for each chain σ ∈ Σk,d as follows.
Using Proposition 14 we have that

b(S̃′σ,Z2) = b(Ext(Lλ,R
′
`) ∩ S̃′σ,Z2),

where λ = max(σ) and ` = length(λ).

Notice that S̃′σ is the intersection of the P ′-closed semi-algebraic set S, with the
basic closed semi-algebraic set, defined by

Pµ − εlength(µ) = 0, for µ ∈ σ,µ 6= λ,

Pν − εlength(ν) ≤ 0,ν 6∈ σ,ν ≺ λ.(2.24)

Let

Fσ =
⋃

µ∈σ,µ6=λ

{Pµ − εlength(µ)},Gσ =
⋃

ν 6∈σ,ν≺λ

{Pν − εlength(ν)}.

Using Corollary 5, the number of distinct subsets G′σ ⊂ Gσ, such that

Z(Fσ ∪ G′σ,R′`) ∩ Ext(W(k),R′`) 6= ∅

is bounded by

(2.25)

ω∏
i=1

(O(d′i))
d′i .

We obtain using Proposition 6 that

b(S̃′σ,F) ≤ s+
∑
p≥0

∑
I⊂[1,s],

1≤card(I)≤k−p,
J⊂I,

1≤card(J)≤p+1

∑
τ∈{0,±1,±2}J

∑
G′σ⊂Gσ

G(p, card(I), J,K, τ),

where

G(p, q, J,K, τ) = bp+q−card(J)(Ext(Lλ,R
′
`)∩Z(Pσ∪Fσ∪G′σ,R′`)∩Ext(W(k),R′`),F).

Since,

dim(Lλ) = length(λ) ≤
ω∑
i=1

d′i,

we obtain using (2.21), Proposition 2, and Corollary 1, that,

b(S̃′σ,Z2) ≤
ω∏
i=1

(O(ω3sdid
′
i))

d′i .(2.26)

The theorem now follows from (2.23), Propositions 11, 15, and (2.26). �
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2.8. Proofs of Theorems 8 and 9. The proofs these theorems are adaptations
of the proofs of the corresponding theorems in the semi-algebraic case. These
adaptations involve replacing infinitesimal elements by appropriately small positive
elements of the ground field R, and Hardt’s triviality theorem for semi-algebraic sets
by its o-minimal version (see for example §5.7 [11, Theorem 5.22]), similar to those
already appearing in the proofs of the main results in [2]. The notion of limε S, of
a semi-algebraic set defined over R[ε] which is bounded over R, is replaced in the
definable case by the intersection of the closure of the definable set S′ ⊂ Rk × R
with the hyperplane defined by T = 0, where S′ is the definable set obtained from
S by replacing ε by the new variable T . If S belongs to a definable family, the limit
of S defined this way would also belong to a definable depending only on the first
definable family.

The final ingredient in the proofs of the bounds in the semi-algebraic case is the
use of Olĕınik and Petrovskĭı type bounds (cf. Theorem 1) to give a bound on the

Betti numbers of semi-algebraic subsets of Rd′ , defined by polynomials of degree at
most d (where d′ ≤ d) (cf. Corollary 1). In the definable case we will need to use
the following replacement of Corollary 1.

Proposition 16. 1. Let V ⊂ Rm be a closed definable set in an o-minimal struc-
ture over R and d > 0. Then, there exists a constant CV,d > 0 such that

for all polynomial maps F = (F1, . . . , Fm) : Rd′ → Rm, with d′ ≤ d and
deg(Fi) ≤ d, 1 ≤ i ≤ m,

b(f−1(V ),F) ≤ CV,d.

2. More generally, suppose that V ⊂ Rm × R` is a closed definable set in an o-
minimal structure over R, and π1 : Rm × R` → Rm, π2 : Rm × R` → R`

be the two projection maps, and for y ∈ R` denote by Vy the definable set

π1(π−1
2 (y) ∩ V ). Then for each d > 0, there exists a constant CV,d > 0, such

that for every finite subset A ⊂ R`, and every A-closed set S ⊂ Rm, where
A = ∪y∈A{Vy}, and all polynomial maps F = (F1, . . . , Fm) : Rd′ → Rm, with
d′ ≤ d and deg(Fi) ≤ d, 1 ≤ i ≤ m,

b(F−1(S),F) ≤ CV,d · nd
′
.

Proof. Part(1) of the proposition is a consequence of Hardt’s triviality theorem for
definable maps, which implies finiteness of topological types amongst the definable
sets F−1(V ) as F ranges all polynomial maps F = (F1, . . . , Fm) : Rd′ → Rm, where
the degree of each Fi is at most d.

Part (2) follows from Part (1) and the proof of Theorem 2.3 in [2]. �

We sketch below the proofs of Theorem 8 and 9 indicating only the modifications
needed from the algebraic and semi-algebraic cases.

Sketch of proof of Theorem 8. The proof of Part (1) is easy. In order to prove
Part (2) it suffices to modify appropriately the proof of Theorem 5 replacing the
symmetric semi-algebraic set S with the symmetric definable set S′ = F−1(V ).
Observe that the proof of Proposition 7 remains valid if we replace the symmetric
semi-algebraic set S with S′ and “semi-algebraic” with “definable”, after we observe

that each polynomial Fi is a polynomial in p
(k)
1 , . . . , p

(k)
d , and hence for each y ∈ Rd,

(Ψ
(k)
d )−1(y) maps on to a unique point in Rm under F , and the fibre (Ψ

(k)
d )−1(y)∩S′
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is either empty or equal to (Ψ
(k)
d )−1(y), depending on whether this point belongs to

V or not. Part (2) now follows using the same argument as in the proof of Theorem
5.

In order to prove Part (3), observe again that the proof of Proposition 9 remains
valid if we replace the symmetric semi-algebraic set S with S′ and “semi-algebraic”
with “definable”. After replacing the infinitesimals εi by appropriately small posi-
tive elements of R, and S by S′, definable analogs of Propositions 12 (replacing the
appropriately the notion of limε map by a definable analog as discussed above), 14,
15 all hold. Finally, in order to prove Part (3), we replace the use of Corollary 1
by Part (1) of Proposition 16. �

Sketch of proof of Theorem 9. The proof is similar to that of proof of Theorem 8,
except we replace the use of Corollary 1 by Part (2) of Proposition 16 instead of
Part (1). �

2.9. Proof of Theorem 10. Before proving Theorem 10 we will need a few pre-
liminary results that we list below.

2.9.1. Algorithmic Preliminaries. We begin with a notation.

Notation 16. Let P ⊂ R[X1, . . . , Xk, Y1, . . . , Y`] be finite, and let Π denote a
partition of the list of variables X = (X1, . . . , Xk) into blocks, X[1], . . . , X[ω], where
the block X[i] is of size ki, 1 ≤ i ≤ ω,

∑
1≤i≤ω ki = k.

A (P,Π)-formula Φ(Y ) is a formula of the form

Φ(Y ) = (Q1X[1]) . . . (QωX[ω])F (X,Y ),

where Qi ∈ {∀,∃}, Y = (Y1, . . . , Y`), and F (X,Y ) is a quantifier free P-formula.

We will use the following definition of complexity of algorithms in keeping with
the convention used in the book [4].

Definition 8 (Complexity of an algorithm). By complexity of an algorithm that
accepts as input a finite set of polynomials with coefficients in an ordered domain
D, we will mean the number of ring operations (additions and multiplications) in
D, as well as the number of comparisons, used in different steps of the algorithm.

The following algorithmic result on effective quantifier elimination is well-known.
We use the version stated in [4].

Theorem 14. [4, Chapter 14] Let P be a set of at most s polynomials each of
degree at most d in k + ` variables with coefficients in a real closed field R, and let
Π denote a partition of the list of variables (X1, . . . , Xk) into blocks, X[1], . . . , X[ω],
where the block X[i] has size ki, for 1 ≤ i ≤ ω. Given Φ(Y ), a (P,Π)-formula, there
exists an equivalent quantifier free formula,

Ψ(Y ) =

I∨
i=1

Ji∧
j=1

(

Ni,j∨
n=1

sign(Pijn(Y )) = σijn),

where Pijn(Y ) are polynomials in the variables Y , σijn ∈ {0, 1,−1},

I ≤ s(kω+1)···(k1+1)(`+1)dO(kω)···O(k1)O(`),

Ji ≤ s(kω+1)···(k1+1)dO(kω)···O(k1),

Nij ≤ dO(kω)···O(k1),
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and the degrees of the polynomials Pijk(y) are bounded by dO(kω)···O(k1). Moreover,
there is an algorithm to compute Ψ(Y ) with complexity

s(kω+1)···(k1+1)(`+1)dO(kω)···O(k1)O(`).

Corollary 6. There exists an algorithm that takes as input:

1. P, {F1, . . . , Fm} ⊂ D[X]≤d, where X = (X1, . . . , Xk);
2. a P-closed formula Φ;
3. a set of linear k − k′ linear equations defining a linear subspace L ⊂ Rk of

dimension k′;

and computes a quantifier-free formula

Ψ(Y1, . . . , Ym) =

I∨
i=1

Ji∧
j=1

(

Ni,j∨
n=1

sign(Pijn(Y)) = σijn),

where Pijn(Y) are polynomials in the variables Y, σijn ∈ {0, 1,−1}, such that
R(Ψ,Rm) = F (R(Φ,Rk)∩L), and F = (F1, . . . , Fm) : Rk → Rm is the polynomial
map defined by the tuple (F1, . . . , Fm).

The complexity of the algorithm is bounded by

(s+m)(k′+1)(m+1)dO(k′)O(m),

where s = card(P).
Moreover,

I ≤ s(k′+1)(m+1)dO(k′)O(m),

Ji ≤ (s+m)(k′+1)dO(k′),

Nij ≤ dO(k′),

and the degrees of the polynomials Pijn are bounded by dO(k′).

Proof. First compute a basis of L, and replace P by P̃ ⊂ R[X ′1, . . . , X
′
k′ ] of pull-

backs of polynomials in P to L, where X ′1, . . . , X
′
k′ are coordinates with respect

to the computed basis of L. Similarly, replace the polynomials F1, . . . , Fm by

F̃1, . . . , F̃m. Replace the given formula Φ(X1, . . . , Xk) by a new formula Φ̃(X ′1, . . . , X
′
k′)

be replacing each occurrence of P ∈ P by the corresponding P̃ ∈ P̃.
Now apply Theorem 14 with input the formula

(∃(X ′1, . . . , X ′k′)Φ̃ ∧
m∧
i=1

(Yi − F̃i = 0),

to obtain the desired quantifier-free formula.
The complexity statement follows directly from that in Theorem 14. �

Theorem 15. [20] There exists an algorithm which takes as input a P-closed for-
mula defining a bounded semi-algebraic subset S of Rn with P ⊂ D[X1, . . . , Xn],
and computes bi(S,Q), 0 ≤ i ≤ n. The complexity of this algorithm is bounded by

(card(P)D)2O(n)

, where D = maxP∈P deg(P ).

Proof. First compute a semi-algebraic triangulation of h : |K| → S, where K is a
simplicial complex, |K| the geometric realization of K, and h s semi-algebraic home-
omorphism, as in the proof of Theorem 5.43 [4]. It is clear from the construction that

the complexity, as well as the size of the output, is bounded by (card(P)D)2O(n)

.
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Finally, compute the dimensions of the simplicial homology groups of K using for
example the Gauss-Jordan elimination algorithm from elementary linear algebra.

Clearly, the complexity remains bounded by (card(P)D)2O(n)

. �

2.9.2. Proof of Theorem 10. We are finally in a position to prove Theorem 10.

Proof of Theorem 10. We first prove using Corollary 6 that it is possible to compute

a quantifier-free Θ such that R(Θ,Rd) = Ψ
(k)
d (S), and the complexity of this step

being bounded by

kO(d)(sd)O(d2).

To see this apply for each λ ∈ Comp(k, d) with length(λ) = d, apply Corollary
6 to obtain a formula Θλ such that

R(Θλ,R
d) = Ψ

(k)
d (S ∩Wλ).

The complexity of this step using the complexity statement in Corollary 6 is

bounded by (sd)O(d2), noting that Wλ ⊂ Lλ and dimLλ ≤ d. Moreover, the same
bound applies to the number and the degrees of the polynomials appearing in Θλ.

Finally, we can take

Θ =
∨

λ∈Comp(k,d),
length(λ)=d

Θλ.

Note that

card(Comp(k, d)) ≤ O(k)d(2.27)

(cf. Proposition 11).

Finally, we compute the Betti numbers of Ψ
(k)
d (S) = R(Θ,Rd), using Theorem

15. Using the complexity of the algorithm in Theorem 15, and (2.27), we see that
the complexity of this step is bounded by(

(O(k))d(sd)O(d2)
)2O(d)

= (skd)2O(d)

.

Finally, using Proposition 7 we have that,

bi(S/Sk,F) = bi(Ψ
(k)
d (S),F), 0 ≤ i < d,

finishing the proof. �

3. Conclusion and Open Problems

In this paper we have improved on previous bounds on equivariant Betti numbers
for symmetric semi-algebraic sets. It would be interesting to extend the method
used in this paper to other situations. Currently, it seems that Kostov’s result
which was a central ingredient of the approach used here relies on a particular
choice of generators for the ring of symmetric polynomials. Therefore, it is up to
further investigation if a similar result holds for other groups acting on the ring of
polynomials.

On the algorithmic side, we showed that it is possible to design an efficient
algorithm to compute the equivariant Betti numbers. It has been shown in [5]
that not only the equivariant Betti numbers can be bounded polynomially, but
in fact that the multiplicities of the various irreducible representations occurring
in an isotypic decomposition of the homology groups of symmetric semi-algebraic
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sets can also be bounded polynomially. Building on this result it is an interesting
question to ask if an algorithm with similar complexity can be designed to compute
these multiplicities as well, and thus in fact computing all the Betti numbers of
symmetric varieties with complexity that is polynomial in k, for every fixed d.
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