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Salmonid red blood cells are the main target cells for Piscine orthoreovirus (PRV).

Three genotypes of PRV (PRV-1,2,3) infect Atlantic salmon (Salmo salar), Chinook

salmon (Onchorhynchus tshawytscha), Coho salmon (Oncorhynchus kisutch), rainbow

trout (Onchorhynchus mykiss) and brown trout (Salmo trutta), and can cause diseases

like heart and skeletal muscle inflammation (HSMI), jaundice syndrome, erythrocyte

inclusion body syndrome (EIBS) and proliferative darkening syndrome (PDS). Purified

PRV administrated to fish has proven the causality for HSMI and EIBS. During the early

peak phase of infection, salmonid erythrocytes are the main virus-replicating cells. In

this initial phase, cytoplasmic inclusions called “virus factories” can be observed in the

erythrocytes, and are the primary sites for the formation of new virus particles. The

PRV-infected erythrocytes in Atlantic salmon mount a strong long-lasting innate antiviral

response lasting for many weeks after the onset of infection. The antiviral response of

Atlantic salmon erythrocytes involves upregulation of potential inhibitors of translation.

In accordance with this, PRV-1 protein production in erythrocytes halts while virus RNA

can persist for months. Furthermore, PRV infection in Coho salmon and rainbow trout are

associated with anemia, and in Atlantic salmon lower hemoglobin levels are observed.

Here we summarize and discuss the recently published findings on PRV infection,

replication and effects on salmonid erythrocytes, and discuss how PRV can be a useful

tool for the study of innate immune responses in erythrocytes, and help reveal novel

immune functions of the red blood cells in fish.
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PISCINE ORTHOREOVIRUS (PRV) TARGETS SALMONID
ERYTHROCYTES

The Piscine orthoreovirus (PRV) was first discovered in 2010 in Atlantic salmon (Salmo salar)
suffering from the disease heart and skeletal muscle inflammation (HSMI) (1). Outbreaks of HSMI
started to appear in Atlantic salmon aquaculture on the Norwegian west coast in 1999 (1, 2),
occurring primarily a couple of months after transfer of salmon from fresh water facilities to
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net pens in the sea. The clinical signs were anorectic fish with
abnormal swimming behavior, and accumulated mortality could
be up to 20% of the population (3). The name of the disease,
HSMI, was given due to the typical histological lesions; extensive
heart inflammation starting with mononuclear infiltration of
the epicardium which moves into the myocardium along with
increased severity of the disease (3–5). Initial experimental trials
showed transmission of HSMI to healthy fish after injection of
heart homogenate, and a virus was suspected (6). However, it
took ten more years before PRV was finally identified by RNA
sequencing in 2010, in tune with the development in sequencing
technology (1). In silico analyses of the viral genome defined PRV
as the first orthoreovirus fully sequenced from fish, related to
mammalian and avian orthoreoviruses (MRV, ARV) (7–10). PRV
also has similarities to the grass carp reovirus (GCRV), which
belong to the aquareoviruses. The compelling proof of causality
between PRV andHSMI inAtlantic salmonwas produced in 2017
when injected virus particles purified from fish blood were shown
to transfer HSMI (11).

When antisera were developed to detect PRV in situ in
sections from HSMI hearts, a surprising finding was made:
the virus was not only present in cardiomyocytes, but also in
unidentified blood cells (4). The infection of blood cells preceded
the myocardial infection, and this was confirmed in experimental
PRV infection (12). The findings of the latter study showed that
the red blood cells (RBC), or erythrocytes, were the primary
target cells for PRV in the primary phase of infection (12).
Electron microscopy of the erythrocytes revealed cytoplasmic
globular inclusions, which at the peak of infection were filled with
reovirus-like particles (12) (Figure 1).

Orthoreoviruses have a segmented, double stranded RNA
genome and replicate in the cellular cytoplasm. The virus particle,
primarily based on studies of MRV, consists of eight structural
proteins, whereas three non-structural proteins serve supportive
functions related to the replication process in the infected cell
(9). Orthoreoviruses have a double protein capsid with an inner
core containing the genome, and an outer capsid with protruding
surface proteins that can interact with cell surface receptors
and glycans (13). Membrane interaction between orthoreoviruses
and their cellular receptors trigger endocytosis, and in the
endosome the outer reovirus capsid is partly digested, a process
which exposes hydrophobic domains and triggers endosomal
membrane penetration of the virus. Orthoreoviruses can also be
subject to proteolysis in the extracellular environment, like the
gut, into infectious subviral particles (ISVPs) which can cross the
plasma membrane in a receptor-independent manner (14). In
the cytoplasm the viral particle ends up as a stripped virus core
containing the dsRNA genome, and the genome is transcribed
and replicated by the virus’ own RNA polymerase within the core.
The resulting transcripts are further translated by the cellular
translation system. A central protein isµNS, encoded by the virus
segment M3. The µNS protein acts as a scaffold and bring the
virus proteins together in the specific subcellular compartments
(15–17). The PRV µNS protein will, when overexpressed in fish
cells, form globular cytoplasmic clusters by itself, that resemble
the clusters found in PRV-infected erythrocytes (18). PRV µNS
directly interacts with several other PRV proteins, recruiting

FIGURE 1 | Purification of PRV from infected RBCs and PRV genotypes.

(A) Micrograph of PRV infected erythrocyte with virus-containing inclusions in

the cytoplasm (arrowhead). (B) Purification of PRV from infected blood cells

results in virus band in CsCl gradient. (C) Electron microscopy image of

purified PRV particles (Bar equals 100 nm). (D) Overview of PRV genotypes

and associated diseases.

them to these clusters which are considered the production
sites for viral progeny, so called “viral factories” (18). The virus
factories increase in size but decrease in number during the virus
cycle.

Fish red blood cells are nucleated and morphologically
different from mammalian erythrocytes, with additional
functions (19, 20). PRV infection in the red blood cells was
discovered soon after first report on innate immune cell
functions of rainbow trout erythrocytes, which were shown to
respond to the dsRNA mimic poly(I:C) (19). The initial studies
of PRV-infected erythrocytes revealed that the viral factories,
consisting of PRV proteins and viral progeny, were also visible
in a regular light microscope as dark spots in the red blood cells
(12, 21). This visual image of dense cytoplasmic inclusions led to
an assumption that PRV could also be responsible for a disease
with a hitherto undefined etiology; the erythrocyte inclusion
body syndrome (EIBS) (22, 23). EIBS had been described in
wild and farmed salmonids in several countries as a disease with
pathological characteristics different from HSMI, most strongly
associated with anemia (23). A new PRV variant was identified in
Coho salmon (Onchorynchus kisutch) suffering from EIBS, and
purified virus was shown to form the inclusions typical for EIBS
and anemia when given to fish experimentally (24). This PRV
variant was named PRV-2.

To further link different pathological symptoms with PRV
infection, another PRV genotype was detected in farmed
rainbow trout (Onchorhynchus mykiss) in Norway, associated
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with both heart inflammation and anemia (25). Infection
experiments performed with this PRV genotype, initially called
PRV-Om (Onchorhynchus mykiss) in contrast to PRV-Ss (Salmo
salar)/PRV-1, demonstrated formation of virus factory like
structures in the cytoplasm of RBC. The rainbow trout PRV
genotype is now referred to as PRV-3 (26).

PRV-Om/PRV-3 could infect both rainbow trout and Atlantic
salmon, but preferably infected and caused disease in rainbow
trout, whereas transmission and ability to cause disease in
Atlantic salmon was negligible (27). In Chile, both PRV-Ss/PRV-1
and PRV-Om/PRV-3 was detected in rainbow trout (28).

The novel PRV genotypes have similar dissemination
pattern and pathogenesis, but show preferences and differential
pathogenicity for different salmonid species. The best established
diseases are shown in table/Figure 1D. In addition, PRV-1 was
recently associated with Jaundice syndrome in Chinook salmon
(Oncorhynchus tshawytscha) (29); and PRV-3 with proliferative
darkening syndrome (PDS) in Brown trout (Salmo trutta) (30).

PRV-1-3 all have erythrocytes as their main target cells in
the initial peak phase of infection. The infected red blood cells
contribute to the further virus dissemination to various host
tissue, and the effects of PRV on erythrocytes in the different
species may provide a key to an explanation of subsequent
pathogenesis (11, 24, 27, 29).

EFFECTS OF PRV INFECTION ON
ERYTHROCYTE GENE EXPRESSION AND
FUNCTION

The responses to PRV infection have been studied using DNA
oligonucleotide microarray on red blood cells isolated from
PRV-infected fish after experimental infection. These analyses
revealed that that the infected erythrocytes strongly up-regulate
a large group of genes associated with antiviral responses (31)
(Figure 2A), similar to other tissues infected with RNA viruses
in Atlantic salmon (32). The antiviral response correlated closely
with increasing PRV levels in the red blood cells indicating that
sensing and replication were linked in the early phase.

The main inducer of the antiviral response is cellular sensing
of the PRV dsRNA genome. Two types of pattern recognition
receptors (PRRs) are involved in dsRNA sensing in fish: the
transmembrane dsRNA sensor toll-like receptor (TLR)3 in the
endosomes and the cytoplasmic RIG-like receptors (RLRs) (33,
34). Trout red blood cells have been reported to express TLR3 and
RIG-I (19), and induction by PRV was confirmed in red blood
cells (19, 31). Fish cells also express TLR22 and TLR19, which are
comparable to TLR3 by function, but is expressed primarily on
the cell surface (35, 36). In mammals, intact MRV triggers both
TLRs and RLRs, while intermediate subviral particles (ISVPs)
formed by partial proteolysis of the outer viral capsid (e.g., in the
gut) trigger RLRs only, leading to a less potent antiviral response
(14). It is so far unknown if PRV infects RBCs as an intact particle
or an ISVP.

The dsRNA receptors induce transcription of type I
interferons through activation of interferon response factors
(IRFs), which mediates further antiviral effects. Atlantic salmon

FIGURE 2 | (A) Upregulated and (B) downregulated functional groups of

genes in PRV-infected red blood cells.

RBCs express a panel of IRFs, of which expression of IRF7
showed highest correlation with PRV levels (31). In contrast
to the mammalian IFNα and IFNβ, Atlantic salmon type I
interferons form a large family divided into four groups IFNa–
d, with several subtypes for each (37). In mammals, IFNβ

is the main interferon induced by TLR3 and RLRs, and in
line with this, MRV replication is reported to be controlled
by IFNβ (38). Previous studies in fish have indicated that
IFNa (1 and 2) serve similar functions as IFNβ in mammals
(37, 39), which fits well with IFNa2 being one of the genes
expressed with strongest correlation to PRV levels in Atlantic
salmon RBC (31). Another study comparing expression of
IFNa, b and c after PRV infection in a context of PRV cross-
protection against IHNV, revealed preferential induction of
IFNa (40). Secreted interferons bind to interferon receptors
on surrounding cells, triggering a Jak/STAT signaling pathway
leading to expression of multiple antiviral effector genes, which
can inhibit further host dissemination of the virus. PRV-1
infection of Atlantic salmon RBCs induces numerous antiviral
genes (31). Interestingly, among the induced genes correlating
most strongly with PRV levels were the signaling mediators
STAT1 and Jak1 themselves (17). The second largest gene group
to be induced by PRV infection in RBC was genes involved in
viral antigen presentation, includingMHC class I antigen, tapasin
and several proteosome subunits (31). This suggests that infected
erythrocytes have the capability of presenting viral antigens to
the immune system. A recent transcriptome/proteome study
reported that rainbow trout RBC also express MHC Class
II, (41). This points to salmonid erythrocytes as inducers of
adaptive immunity. Another interesting finding in PRV-infected
Atlantic salmon erythrocytes was that genes associated with
immune suppression, like Interleukin 10 receptor and suppressor
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of cytokine signaling (SOCS) 1, was induced (31). SOCS1 is
shown to suppress pathogen signaling and promote replication
of salmonid alphavirus (SAV) in salmonid cell lines (42).
Interestingly, PRV infection is cross-protective against SAV (43).

Responses of red blood cells have also been observed in
Atlantic salmon infected with Piscine myocarditis virus (PMCV),
a small dsRNA virus associated with cardiomyopathy syndrome
(CMS) (44). Notably, PMCV is not shown to replicate in
erythrocytes. This indicates that the RBC innate immune
responses to viruses are induced independent of direct infection,
which is also in line with reported responses to infectious
pancreas necrosis virus (IPNV) (45).

Interestingly, we found that purified Atlantic salmon red
blood cells infected with PRV in culture also induced IFNa in
culture with subsequent induction of Mx and PKR, indicating
that infected RBC produce functional IFNa (21). An interesting
observation from RBC responses in culture, was the time course
of PRV-mediated IFN and antiviral gene expression compared to
the in vivo situation. In culture, IFNa expression peaked after
1 day and the antiviral effector genes after 1 week, followed
by a decrease to basal levels after 2–3 weeks. The fact that the
response did not decrease for months in vivo could point toward
continuous infection of new RBCs, or to interferon stimulation
from other sources.

Experimental infection of PRV-1 in Atlantic salmon and PRV-
3 in rainbow trout has confirmed that PRV infects RBC prior
to infection and induction of inflammatory lesions in the heart
(11, 27). The same PRV-1 genotype have been associated with
infection other target organs and differential disease pathology in
Chinook salmon, where the disease is characterized by necrosis
and degeneration in kidney and liver (29). Di Cicco et al proposed
that a difference in PRV load tolerance in the RBC could be
one reason for differential pathological outcomes from PRV-1
infection in the different species. Similarly, PRV-3 have been
reported to infect both rainbow trout and Brown trout with
differential outcomes (25, 30). Whereas, Heart inflammation and
anemia was the most notable findings in farmed rainbow trout
(25), wild brown trout suffered from proliferative darkening
syndrome (PDS), a high mortality disease characterized by
necrotic lesions and degeneration of the liver and to a lesser
degree spleen and kidney (30). Hence, both PRV-1 and PRV-3
appear to cause species-specific diseases.

While PRV-3 appear to be cleared from blood after infection in
rainbow trout (27), PRV-1 RNA persists in Atlantic salmon blood
long after HSMI has healed and heart tissue has regenerated
(11, 12, 46). The PRV-1 persistence can last for at least 50
weeks (47), which is in line with the >90% prevalence of PRV-
1 detection in farmed Atlantic salmon. It is unknown if PRV-2
or PRV-3 can persist in a similar manner in their host species,
but sustained carrier status has not been observed for these PRV
genotypes so far (24, 27).

When targeting PRV proteins with antibodies instead of
analyzing PRV RNA, a quite different result is obtained. PRV
protein production peaks for a couple of weeks and is then
decreased to undetectable levels (11, 12, 46). This discrepancy
between PRV RNA- and protein levels points to translational
blocking or degradation of viral protein. In line with this, the

protein decrease coincides with the peak gene expression of the
antiviral effectors (46).

When comparing with the mammalian counterpart, MRV has
been reported to counteract the antiviral response in several ways
to support its own replication.Mechanisms of interaction include
binding and inactivation of IRF3 by the PRV µNS protein (14),
or bypassing translational blocking through the PRV σ3 protein
(48). The long lasting transcription of interferon-regulated genes
in PRV-infected A. salmon indicates that PRV does not effectively
block interferon production or interferon-mediated stimulation
of antiviral gene expression in Atlantic salmon RBC. However,
there may be a block at the translational level. The persistence of
PRV RNA along with an apparent block in progeny production
points toward ineffective eradication of infected RBC, while
viral dissemination appears to be held back by innate immune
mechanisms.

When comparing antiviral responses to PRV-1 and PRV-3
cross-species, data so far indicate that the magnitude of innate
antiviral responses corresponds to virulence in the respective
target species (PRV-1 in A. salmon and PRV-3 in rainbow trout).
Although PRV-1 can replicate intensely in Coho salmon and
Sockeye salmon (O. nerka) blood cells, the antiviral response
to PRV-1 in Sockeye salmon is reported to be very low (49).
Similarly, PRV-3 replicates in Atlantic salmon blood but induce
weak antiviral response. This implies that the pathologic effects of
PRV infection could be coupled to the ability to induce antiviral
immune responses in the host.

Anemia is reported as a hallmark for PRV-2 infected Coho
salmon, and typical for PRV-3 infected farmed rainbow trout
(24, 25). In an infection that can affect up to 50% of the
erythrocytes in the peak phase, anemia is not unexpected.
However, experimental studies of PRV-3 infected rainbow trout
have not reproduced the anemia observed in field outbreaks (12,
27). Similarly, anemia is not produced in PRV-1 experimental
trials (11), and not commonly observed in farmed PRV-1
infected A. salmon in Norway. In contrast, reports from Chile
have indicated that 19% of HSMI diseased fish had pale gills
and heart, which could indicate anemia (50). Genes associated
with erythropoiesis are found to be induced in spleen after
PRV infection in Atlantic salmon (51), indicating that cleared,
erythrocytes are replaced efficiently enough to avoid anemia.
However, a reduction in hemoglobin is observed in PRV-infected
RBC in the period after the peak virus production in blood
(11, 52). The hemoglobin reduction is observed after the peak
in virus levels, suggesting that it may be caused by the same
translational block that reduces production of viral progeny
(11, 46). A direct effect of PRV-1 infection on the ability of
Atlantic salmon to tolerate hypoxia was revealed in a stress
test experiment, which indicated that PRV-infected fish could
be more prone to mortality due to stress or crowding at
suboptimal oxygen conditions (52), possibly due to hemoglobin
reduction.

The transcriptome study of PRV-1 infected RBCs indicated
a general decrease in the expression of a range of functional
gene groups. Although not fully understood in relation to
implications, the expression patterns strongly indicated that
PRV infection repressed genes that controlled erythrocyte
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shape/cytoskeleton, tissue interaction/adhesion, cell-cell
communication/cytokines/chemokines and metabolism (31)
(Figure 2B). This effect could be caused by infection and
antiviral immunity. In addition, adrenergic stress responses are
reported to reduce transcript stability in fish red blood cells (53),
and could be partly responsible for this effect.

Among the genes less suppressed by the infection were
genes directly related to heme and hemoglobin synthesis,
which supports the hypothesis that the hemoglobin reduction
associated with EIBS and HSMI is primarily due to post
trancriptional effects. Strong reduction in adhesion molecule
expression implies that the ability of RBC to interact with muscle
tissue for oxygen delivery could be affected, and thereby add to
the physiological consequences of hemoglobin reduction. When
keeping in mind that a translational inhibition may further
add to suppression at the transcriptional level, disturbed gas
exchange to muscle tissue would not be a surprising result.
Clarifying if these findings are coupled to PRV-mediated disease

will be an important step forward. In addition, the study of PRV
infection is a key to understanding the immunological role of
fish erythrocytes.

AUTHOR CONTRIBUTIONS

ØW wrote about PRV virus, Figure 1, read and approved the
manuscript. AK wrote about transcriptome data, Figure 2, read
and approved the manuscript. GT wrote about transcriptome
data, read and approved the manuscript. ER wrote about PRV
virus, read and approved the manuscript. MD coordinated
the draft, wrote about disease, immunology and erythrocyte
functions, read and approved the manuscript.

FUNDING

This work was support by Norwegian research council (Grant
Nos. 237315/E40 ViVaFish and 280847/E40 ViVaAct).

REFERENCES

1. Palacios G, Lovoll M, Tengs T, Hornig M, Hutchison S, Hui J, et al.

Heart and skeletal muscle inflammation of farmed salmon is associated

with infection with a novel reovirus. PLoS ONE (2010) 5:e11487. doi:

10.1371/journal.pone.0011487

2. Kongtorp RT, Kjerstad A, Taksdal T, Guttvik A, Falk K. Heart and skeletal

muscle inflammation in Atlantic salmon, Salmo salar L: a new infectious

disease. J Fish Dis. (2004) 27:351–8. doi: 10.1111/j.1365-2761.2004.00549.x

3. Kongtorp RT, Taksdal T, Lyngoy A. Pathology of heart and skeletal muscle

inflammation (HSMI) in farmed Atlantic salmon salmo salar. Dis Aquat

Organ. (2004) 59:217–24. doi: 10.3354/dao059217

4. Finstad OW, Falk K, Lovoll M, Evensen O, Rimstad E. Immunohistochemical

detection of piscine reovirus (PRV) in hearts of Atlantic salmon coincide with

the course of heart and skeletal muscle inflammation (HSMI). Vet Res. (2012)

43:27. doi: 10.1186/1297-9716-43-27

5. Mikalsen AB, Haugland O, Rode M, Solbakk IT, Evensen O. Atlantic salmon

reovirus infection causes a CD8T cell myocarditis in Atlantic Salmon

(Salmo salar L.). PLoS ONE (2012) 7:e37269. doi: 10.1371/journal.pone.

0037269

6. Kongtorp RT, Taksdal T. Studies with experimental transmission of heart and

skeletal muscle inflammation in Atlantic salmon, Salmo salar L. J Fish Dis.

(2009) 32:253–62. doi: 10.1111/j.1365-2761.2008.00983.x

7. Key T, Read J, Nibert ML,Duncan R. Piscine reovirus encodes a

cytotoxic, non-fusogenic, integral membrane protein and previously

unrecognized virion outer-capsid proteins. J Gen Virol. (2013) 94:1039–50.

doi: 10.1099/vir.0.048637-0

8. Kibenge MJ, Iwamoto T, Wang Y, Morton A, Godoy MG, Kibenge

FS. Whole-genome analysis of piscine reovirus (PRV) shows PRV

represents a new genus in family Reoviridae and its genome segment S1

sequences group it into two separate sub-genotypes. Virol J. (2013) 10:230.

doi: 10.1186/1743-422X-10-230

9. Markussen T, Dahle MK, Tengs T, Lovoll M, Finstad OW, Wiik-Nielsen

CR, et al. Sequence analysis of the genome of piscine orthoreovirus

(PRV) associated with heart and skeletal muscle inflammation

(HSMI) in Atlantic salmon (Salmo salar). PLoS ONE (2013) 8:e70075.

doi: 10.1371/journal.pone.0070075

10. Nibert ML, Duncan R. Bioinformatics of recent aqua– and orthoreovirus

isolates from fish: evolutionary gain or loss of FAST and fiber

proteins and taxonomic implications. PLoS ONE (2013) 8:e68607.

doi: 10.1371/journal.pone.0068607

11. Wessel O, Braaen S, Alarcon M, Haatveit H, Roos N, Markussen T,

et al. Infection with purified piscine orthoreovirus demonstrates a causal

relationship with heart and skeletal muscle inflammation in Atlantic salmon.

PLoS ONE (2017) 12:e0183781. doi: 10.1371/journal.pone.0183781

12. Finstad OW, Dahle MK, Lindholm TH, Nyman IB, Lovoll M, Wallace C,

et al. Piscine orthoreovirus (PRV) infects Atlantic salmon erythrocytes.Vet Res.

(2014) 45:35. doi: 10.1186/1297-9716-45-35

13. Attoui HMP, Becnel J, Belaganahalli S, Bergoin M, Brussaard CP, Chappell

JD, et al. Virus Taxonomy: Ninth Report of the International Committee on

Taxonomy of Viruses. Amsterdam: Academic Press (2012).

14. Stanifer ML, Rippert A, Kazakov A, Willemsen J, Bucher D, Bender S,

et al. Reovirus intermediate subviral particles constitute a strategy to infect

intestinal epithelial cells by exploiting TGF-beta dependent pro-survival

signaling. Cell Microbiol. (2016) 18:1831–45. doi: 10.1111/cmi.12626

15. Broering TJ, Parker JS, Joyce PL, Kim J, Nibert ML. Mammalian reovirus

nonstructural protein microNS forms large inclusions and colocalizes with

reovirus microtubule-associated protein micro2 in transfected cells. J Virol.

(2002) 76:8285–97. doi: 10.1128/JVI.76.16.8285-8297.2002

16. Becker MM, Peters TR, Dermody TS. Reovirus sigma NS and mu NS proteins

form cytoplasmic inclusion structures in the absence of viral infection. J Virol.

(2003) 77:5948–63. doi: 10.1128/JVI.77.10.5948-5963.2003

17. Broering TJ, Kim J, Miller CL, Piggott CD, Dinoso JB, Nibert ML, et al.

Reovirus nonstructural protein mu NS recruits viral core surface proteins and

entering core particles to factory-like inclusions. J Virol. (2004) 78:1882–92.

doi: 10.1128/JVI.78.4.1882-1892.2004

18. Haatveit HM, Nyman IB, Markussen T, Wessel O, Dahle MK, Rimstad E.

The non-structural protein muNS of piscine orthoreovirus (PRV) forms viral

factory-like structures. Vet Res. (2016) 47:5. doi: 10.1186/s13567-015-0302-0

19. Morera D, Roher N, Ribas L, Balasch JC, Donate C, Callol A, et al. RNA–Seq

reveals an integrated immune response in nucleated erythrocytes. PLoS ONE

(2011) 6:e26998. doi: 10.1371/journal.pone.0026998

20. Nombela I, Ortega-Villaizan MDM. Nucleated red blood cells: Immune

cell mediators of the antiviral response. PLoS Pathog. (2018) 14:e1006910.

doi: 10.1371/journal.ppat.1006910

21. Wessel O, Olsen CM, Rimstad E, Dahle MK. Piscine orthoreovirus (PRV)

replicates in Atlantic salmon (Salmo salar L.) erythrocytes ex vivo. Vet Res.

(2015) 46:26. doi: 10.1186/s13567-015-0154-7

22. Piacentini SCRJ, Fryer JL. Epizootiology of erythrocytic

inclusion body syndrome. J Aquat Anim Health (1989) 1:173–9.

doi: 10.1577/1548-8667(1989)001&lt;0173:EOEIBS&gt;2.3.CO;2

23. Rodger HD. Erythrocytic inclusion body syndrome virus in wild

Atlantic salmon, Salmo salar L. J Fish Dis. (2007) 30:411–8.

doi: 10.1111/j.1365-2761.2007.00831.x

24. Takano T, Nawata A, Sakai T, Matsuyama T, Ito T, Kurita J, et al. Full-genome

sequencing and confirmation of the causative agent of erythrocytic inclusion

Frontiers in Immunology | www.frontiersin.org 5 January 2019 | Volume 9 | Article 3182

https://doi.org/10.1111/j.1365-2761.2004.00549.x
https://doi.org/10.3354/dao059217
https://doi.org/10.1186/1297-9716-43-27
https://doi.org/10.1371/journal.pone.0037269
https://doi.org/10.1111/j.1365-2761.2008.00983.x
https://doi.org/10.1099/vir.0.048637-0
https://doi.org/10.1186/1743-422X-10-230
https://doi.org/10.1371/journal.pone.0070075
https://doi.org/10.1371/journal.pone.0068607
https://doi.org/10.1371/journal.pone.0183781
https://doi.org/10.1186/1297-9716-45-35
https://doi.org/10.1111/cmi.12626
https://doi.org/10.1128/JVI.76.16.8285-8297.2002
https://doi.org/10.1128/JVI.77.10.5948-5963.2003
https://doi.org/10.1128/JVI.78.4.1882-1892.2004
https://doi.org/10.1186/s13567-015-0302-0
https://doi.org/10.1371/journal.pone.0026998
https://doi.org/10.1371/journal.ppat.1006910
https://doi.org/10.1186/s13567-015-0154-7
https://doi.org/10.1577/1548-8667(1989)001&lt;0173:EOEIBS&gt;2.3.CO;2
https://doi.org/10.1111/j.1365-2761.2007.00831.x
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wessel et al. Piscine orthoreovirus Infection in Salmonid Erythrocytes

body syndrome in coho salmon identifies a new type of piscine orthoreovirus.

PLoS ONE (2016) 11:e0165424. doi: 10.1371/journal.pone.0165424

25. Olsen AB, Hjortaas M, Tengs T, Hellberg H, Johansen R. First Description

of a new disease in rainbow trout (Oncorhynchus mykiss (Walbaum)) similar

to heart and skeletal muscle inflammation (HSMI) and detection of a

gene sequence related to piscine orthoreovirus (PRV). PLoS ONE (2015)

10:e0131638. doi: 10.1371/journal.pone.0131638

26. Dhamotharan K, Vendramin N, Markussen T, Wessel O, Cuenca A, Nyman

IB, et al. Molecular and antigenic characterization of piscine orthoreovirus

(PRV) from rainbow trout (Oncorhynchus mykiss). Viruses (2018) 10:E170.

doi: 10.3390/v10040170

27. Hauge H, Vendramin N, Taksdal T, Olsen AB, Wessel O, Mikkelsen SS,

et al. Infection experiments with novel Piscine orthoreovirus from rainbow

trout (Oncorhynchus mykiss) in salmonids. PLoS ONE (2017) 12:e0180293.

doi: 10.1371/journal.pone.0180293

28. Cartagena J, Tambley C, Sandino AM, Spencer E, Tello M. Detection of

piscine orthoreovirus in farmed rainbow trout fromChile.Aquaculture (2018)

493:79–84. doi: 10.1016/j.aquaculture.2018.04.044

29. Di Cicco EFH, Kaukinen KH, Schulze AD, Li S, Tabata A, Günther OP,

et al. The same strain of Piscine orthoreovirus (PRV-1) is involved in the

development of different, but related, diseases in Atlantic and Pacific Salmon

in British Columbia. FACETS (2018) 3:599–64. doi: 10.1139/facets-2018-0008

30. Kuehn R, Stoeckle BC, Young M, Popp L, Taeubert JE, Pfaffl MW, et al.

Identification of a piscine reovirus-related pathogen in proliferative darkening

syndrome (PDS) infected brown trout (Salmo trutta fario) using a next-

generation technology detection pipeline. PLoS ONE (2018) 13:e0206164.

doi: 10.1371/journal.pone.0206164

31. Dahle MK, Wessel O, Timmerhaus G, Nyman IB, Jorgensen SM, Rimstad E,

et al. Transcriptome analyses of Atlantic salmon (Salmo salar L.) erythrocytes

infected with piscine orthoreovirus (PRV). Fish Shellfish Immunol. (2015)

45:780–90. doi: 10.1016/j.fsi.2015.05.049

32. Krasnov A, Timmerhaus G, Schiotz BL, Torgersen J, Afanasyev S, Iliev D, et al.

Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar

L.Mol Immunol. (2011) 49:163–74. doi: 10.1016/j.molimm.2011.08.007

33. Strandskog G, Skjaeveland I, Ellingsen T, Jorgensen JB. Double-

stranded RNA- and CpG DNA-induced immune responses in Atlantic

salmon: comparison and synergies. Vaccine (2008) 26:4704–15.

doi: 10.1016/j.vaccine.2008.06.054

34. Chen SN, Zou PF, Nie P. Retinoic acid-inducible gene I (RIG-I)-like receptors

(RLRs) in fish: current knowledge and future perspectives. Immunology (2017)

151:16–25. doi: 10.1111/imm.12714

35. Matsuo A, Oshiumi H, Tsujita T, Mitani H, Kasai H, Yoshimizu

M, et al. Teleost TLR22 recognizes RNA duplex to induce IFN

and protect cells from birnaviruses. J Immunol. (2008) 181:3474–85.

doi: 10.4049/jimmunol.181.5.3474

36. Ji J, Rao Y, Wan Q, Liao Z, Su J. Teleost-specific TLR19 localizes to endosome,

recognizes dsRNA, recruits TRIF, triggers both IFN andNF-kappaB pathways,

and protects cells from grass carp reovirus infection. J Immunol. (2018)

200:573–85. doi: 10.4049/jimmunol.1701149

37. Robertsen B. The role of type I interferons in innate and adaptive immunity

against viruses in Atlantic salmon. Dev Comp Immunol. (2018) 80: 41–52.

doi: 10.1016/j.dci.2017.02.005

38. Stewart MJ, Smoak K, Blum MA, Sherry B. Basal and reovirus-induced

beta interferon (IFN-beta) and IFN-beta-stimulated gene expression are cell

type specific in the cardiac protective response. J Virol. (2005) 79:2979–87.

doi: 10.1128/JVI.79.5.2979-2987.2005

39. Bergan V, Steinsvik S, Xu H, Kileng O, Robertsen B. Promoters of type I

interferon genes from Atlantic salmon contain two main regulatory regions.

FEBS J. (2006) 273:3893–906. doi: 10.1111/j.1742-4658.2006.05382.x

40. Vendramin N, Alencar ALF, Iburg TM, Dahle MK, Wessel O, Olsen AB,

et al. Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) protects

against subsequent challenge with infectious hematopoietic necrosis virus

(IHNV). Vet Res. (2018) 49:30. doi: 10.1186/s13567-018-0524-z

41. Puente-Marin S, Nombela I, Ciordia S, Mena MC, Chico V, Coll J, et al.

In silico functional networks identified in fish nucleated red blood cells

by means of transcriptomic and proteomic profiling. Genes (2018) 9:E202.

doi: 10.3390/genes9040202

42. Sobhkhez M, Joensen LL, Tollersrud LG, Strandskog G, Thim HL, Jorgensen

JB. A conserved inhibitory role of suppressor of cytokine signaling 1

(SOCS1) in salmon antiviral immunity.Dev Comp Immunol. (2017) 67:66–76.

doi: 10.1016/j.dci.2016.11.001

43. Lund M, Rosaeg MV, Krasnov A, Timmerhaus G, Nyman IB, Aspehaug V,

et al. Experimental Piscine orthoreovirus infection mediates protection against

pancreas disease in Atlantic salmon (Salmo salar). Vet Res. (2016) 47:107.

doi: 10.1186/s13567-016-0389-y

44. Timmerhaus G, Krasnov A, Nilsen P, Alarcon M, Afanasyev S, Rode M,

et al. Transcriptome profiling of immune responses to cardiomyopathy

syndrome (CMS) in Atlantic salmon. BMC Genomics (2011) 12:459.

doi: 10.1186/1471-2164-12-459

45. Nombela I, Carrion A, Puente–Marin S, Chico V, Mercado L, Perez L, et al.

Infectious pancreatic necrosis virus triggers antiviral immune response in

rainbow trout red blood cells, despite not being infective. F1000Res (2017)

6:1968. doi: 10.12688/f1000research.12994.2

46. Haatveit HM, Wessel O, Markussen T, Lund M, Thiede B, Nyman IB, et al.

Viral protein kinetics of piscine orthoreovirus infection in atlantic salmon

blood cells. Viruses (2017) 9:49. doi: 10.3390/v9030049

47. Garver KA, Johnson SC, Polinski MP, Bradshaw JC, Marty GD,

Snyman HN, et al. Piscine orthoreovirus from western north america is

transmissible to atlantic salmon and sockeye salmon but fails to cause

heart and skeletal muscle inflammation. PLoS ONE (2016) 11:e0146229.

doi: 10.1371/journal.pone.0146229

48. Schmechel S, Chute M, Skinner P, Anderson R, Schiff L. Preferential

translation of reovirus mRNA by a sigma3–dependent mechanism. Virology

(1997) 232:62–73. doi: 10.1006/viro.1997.8531

49. Polinski MP, Bradshaw JC, Inkpen SM, Richard J, Fritsvold C, Poppe TT,

et al. De novo assembly of Sockeye salmon kidney transcriptomes reveal

a limited early response to piscine reovirus with or without infectious

hematopoietic necrosis virus superinfection. BMC Genomics (2016) 17:848.

doi: 10.1186/s12864-016-3196-y

50. Godoy MG, Kibenge MJ, Wang Y, Suarez R, Leiva C, Vallejos F, et al. First

description of clinical presentation of piscine orthoreovirus (PRV) infections

in salmonid aquaculture in Chile and identification of a second genotype

(Genotype II) of PRV. Virol J. (2016) 13:98. doi: 10.1186/s12985-016-0554-y

51. Johansen LH, Dahle MK, Wessel O, Timmerhaus G, Lovoll M, Rosaeg M,

et al. Differences in gene expression in Atlantic salmon parr and smolt after

challenge with Piscine orthoreovirus (PRV). Mol Immunol. (2016) 73:138–50.

doi: 10.1016/j.molimm.2016.04.007

52. Lund M, Krudtaa Dahle M, Timmerhaus G, Alarcon M, Powell M, Aspehaug

V, et al. Hypoxia tolerance and responses to hypoxic stress during heart and

skeletal muscle inflammation in Atlantic salmon (Salmo salar). PLoS ONE

(2017) 12:e0181109. doi: 10.1371/journal.pone.0181109

53. Gotting M, Nikinmaa M. In vitro study on the regulation of cellular mRNA

levels by changes in transcription rate and transcript stability in fish red

blood cells. Comp Biochem Physiol B Biochem Mol Biol. (2017) 213:35–44.

doi: 10.1016/j.cbpb.2017.07.006

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The handling editor is currently co-editing a Research Topic with one of the

authors ER, and confirms the absence of any other collaboration.

Copyright © 2019 Wessel, Krasnov, Timmerhaus, Rimstad and Dahle. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Immunology | www.frontiersin.org 6 January 2019 | Volume 9 | Article 3182

https://doi.org/10.1371/journal.pone.0165424
https://doi.org/10.1371/journal.pone.0131638
https://doi.org/10.3390/v10040170
https://doi.org/10.1371/journal.pone.0180293
https://doi.org/10.1016/j.aquaculture.2018.04.044
https://doi.org/10.1139/facets-2018-0008
https://doi.org/10.1371/journal.pone.0206164
https://doi.org/10.1016/j.fsi.2015.05.049
https://doi.org/10.1016/j.molimm.2011.08.007
https://doi.org/10.1016/j.vaccine.2008.06.054
https://doi.org/10.1111/imm.12714
https://doi.org/10.4049/jimmunol.181.5.3474
https://doi.org/10.4049/jimmunol.1701149
https://doi.org/10.1016/j.dci.2017.02.005
https://doi.org/10.1128/JVI.79.5.2979-2987.2005
https://doi.org/10.1111/j.1742-4658.2006.05382.x
https://doi.org/10.1186/s13567-018-0524-z
https://doi.org/10.3390/genes9040202
https://doi.org/10.1016/j.dci.2016.11.001
https://doi.org/10.1186/s13567-016-0389-y
https://doi.org/10.1186/1471-2164-12-459
https://doi.org/10.12688/f1000research.12994.2
https://doi.org/10.3390/v9030049
https://doi.org/10.1371/journal.pone.0146229
https://doi.org/10.1006/viro.1997.8531
https://doi.org/10.1186/s12864-016-3196-y
https://doi.org/10.1186/s12985-016-0554-y
https://doi.org/10.1016/j.molimm.2016.04.007
https://doi.org/10.1371/journal.pone.0181109
https://doi.org/10.1016/j.cbpb.2017.07.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Antiviral Responses and Biological Concequences of Piscine orthoreovirus Infection in Salmonid Erythrocytes
	Piscine Orthoreovirus (PRV) Targets Salmonid Erythrocytes
	Effects of PRV Infection on Erythrocyte Gene Expression and Function
	Author Contributions
	Funding
	References


