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Abstract	19 

The exceptionally organic-rich rocks of the 1.98 Ga Zaonega Formation deposited in the Onega 20 

Basin, NW Russia, have refined our understanding of Earth System evolution during the 21 

Paleoproterozoic rise in atmospheric oxygen. These rocks were formed in vent- or seep-22 

influenced settings contemporaneous with voluminous mafic volcanism and contain strongly 23 
13C-depleted organic matter. Here we report new isotopic (δ34S, Δ33S, Δ36S, δ13Corg) and 24 

mineralogical, major element, total sulphur and organic carbon data for the upper part of the 25 

Zaonega Formation, which was deposited shortly after the termination of the Lomagundi-Jatuli 26 

positive carbon isotope excursion. The data were collected on a recently obtained 102 m drill-27 

core section and show a δ13Corg shift from -38‰ to -25‰. Sedimentary sulphides have δ34S 28 

values typically between +15‰ and +25‰ reflecting closed-system sulphur isotope behaviour 29 



2 
 

driven by high rates of microbial sulphate reduction, high sulphate demand, hydrothermal 30 

activity and hydrocarbon seepage. Four intervals record δ34S values that exceed +30‰. We 31 

interpret these unusually 34S-enriched sulphides to be a result of limited sulfate diffusion into 32 

pore waters due to changes in sedimentation and/or periods of basinal restriction. Additionally, 33 

there are four negative δ34S and positive Δ33S excursions that are interpreted to reflect changes 34 

in the open/closed-system behaviour of sulphate reduction or availability of reactive iron. Our 35 

findings highlight the influence of basinal processes in regulating sulphur isotope records and 36 

the need for care before interpreting such signals as reflecting global conditions. 37 

Keywords: Paleoproterozoic, Zaonega Formation, sulphur cycle, carbon cycle, Great 38 

Oxidation Event 39 

1.	Introduction	40 

The Paleoproterozoic represents a period in Earth’s history, when a series of (bio)geological 41 

events ultimately led to a change in the redox state of Earth's atmosphere-ocean system and the 42 

rise of atmospheric oxygen at ca. 2.3 Ga during the Great Oxidation Event (GOE; Bekker et al., 43 

2004; Holland, 2006; Guo et al., 2009; Luo et al., 2016; Gumsley et al., 2017; but see also 44 

Ohmoto et al., 2014). Following the GOE, the carbon cycle experienced unprecedented 45 

perturbations, featuring the large-magnitude Lomagundi-Jatuli positive carbonate carbon 46 

isotope excursion between 2.2 and 2.06 Ga (Karhu and Holland, 1996; Martin et al., 2013) and 47 

the subsequent accumulation of organic-rich sediments during the ca. 2.0 Ga Shunga Event 48 

(Melezhik et al., 1999, 2004; Strauss et al., 2013). It is postulated that these carbon cycle 49 

perturbations were driven by intensified subaerial oxidative weathering, with concomitant 50 

increases in riverine-derived nutrients, intensifying biological activity and facilitating the 51 

growth of the marine sulphate reservoir (Bekker et al., 2006; Schröder et al., 2008; Reuschel et 52 

al., 2012). Such inferences are supported by the presence of the oldest known globally 53 

significant phosphorites associated with the Shunga Event (Bekker et al., 2003; Lepland et al., 54 

2013, 2014) and the oldest extensive evaporites of the ca. 2.0 Ga Tulomozero Formation, which 55 

also archive the Lomagundi-Jatuli excursion in the Onega Basin of NW Russia (Morozov et al., 56 

2010; Krupenik et al., 2011; Blättler et al., 2018). Geochemical modelling of the evaporite 57 

mineralogy and calcium isotope systematics of the latter indicate that, by ca. 2.0 Ga, the 58 

concentration of seawater sulphate (SWS) was sufficiently high (>10 mM) to allow 59 

precipitation of marine evaporite sequences with gypsum/anhydrite, halite and bittern salts 60 

(Blättler et al., 2018). Such global-scale changes would seem to signify an irreversible trajectory 61 



3 
 

in Earth’s redox state following the GOE. However, pyrite-derived sulphur isotope data 62 

obtained from the organic-rich rocks of the 1.98 Ga Zaonega Formation and ca. 2.1 Ga 63 

Francevillian Group have been used to argue for an environmental change and contraction of 64 

the SWS reservoir (Scott et al., 2014; Ossa-Ossa et al., 2018). This conclusion was reached by 65 

combining iron-speciation results with multiple-sulphur isotope data, interpreted to reflect 66 

development of euxinic conditions on two different cratons with highly positive pyrite δ34S 67 

values coupled to opposing 33S-δ34S behaviour suggesting low sulphate concentrations (Scott 68 

et al., 2014; Ossa-Ossa et al., 2018). 69 

To assess the significance of the carbon- and sulphur-isotope signals archived in the Zaonega 70 

Formation against the backdrop of Earth System change, we have undertaken a multi-proxy 71 

geochemical and petrographic study using recently obtained drill core material from the upper 72 

part of the Formation (Fig.1). Samples were taken at approximately one metre intervals through 73 

a 102-m thick section drilled in 2012 in the upper part of the Formation. Our multi-proxy dataset 74 

extends the stratigraphic coverage of the isotopic profiles reported in previous studies to better 75 

characterise the physical and chemical conditions under which biogeochemical carbon and 76 

sulphur cycling occurred at ca. 2.0 Ga. 77 

2.	Geological	background	78 

The Zaonega Formation forms the upper part of the Paleoproterozoic succession of the Onega 79 

Basin (Melezhik et al., 2013b) in the Karelia region of NW Russia (Fig. 1a). The succession 80 

consists of mostly greenschist facies volcano-sedimentary rocks that lie unconformably on 81 

Archean granites and gneisses. The entire succession was deformed into a series of open folds 82 

cut by high-angle faults during the 1.89–1.79 Ga Svecofennian orogeny (Melezhik et al., 1999; 83 

Ojakangas et al., 2001). The 1500 m thick Zaonega Formation occurs above the 13C-enriched 84 

shallow-marine carbonate rocks of the Tulomozero Formation and is overlain by basalts of the 85 

Suisari Formation (Melezhik et al., 1999; Črne et al., 2013b). The proposed depositional model 86 

for the Zaonega Formation suggests accumulation in a rift basin marked by contemporaneous 87 

shallow-and deep-water mixed siliciclastic-carbonate deposition (Črne et al., 2014; Melezhik 88 

et al., 2015).  89 

The Zaonega Formation is younger than the Lomagundi-Jatuli event which terminated in 90 

Fennoscandia at 2.06 Ga (Karhu and Holland, 1996; Melezhik et al., 1999, 2004) and is older 91 

than a suite of cross-cutting dykes that yield ages of 1919 ± 18 Ma (Priyatkina et al., 2014), 92 
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1956 ± 5 Ma (Stepanova et al., 2014) and 1961.6 ± 5.1 Ma (Martin et al., 2015); it also predates 93 

the gabbro sills in the overlying Suisari Formation dated at 1969 ± 18 Ma (Puchtel et al., 1998) 94 

and 1988 ± 34 Ma (Puchtel et al., 1999). Hence the age of the Zaonega Formation has been 95 

previously constrained to a time interval between 2.06 and 1.98 Ga. More recently, Martin et 96 

al. (2015) place deposition between 1975.3 ± 2.8 Ma and 1967.6 ± 3.5 Ma, but these constraints 97 

require additional assessment. In the absence of an agreed upon precise depositional age, we 98 

adopt a 1.98 Ga estimate for the age of the Zaonega Formation. 99 

The Zaonega Formation features well-preserved organic- and phosphorous-rich siliciclastic and 100 

carbonate rocks with organic carbon contents reaching 40% in the mudstone units and up to 101 

90% in pyrobitumen-filled veins (Melezhik et al., 1999, 2004, 2013a). Graded greywackes 102 

interbedded with mudstones, dolostones and limestones have been interpreted as turbidity-103 

current deposits, punctuating background hemipelagic sedimentation. Deposition occurred 104 

alongside syndepositional mafic magmatism in the form of mafic tuffs, lavas and gabbroic sills. 105 

Peperitic contacts between the igneous and enclosing sedimentary rock indicate emplacement 106 

into wet and unconsolidated sediments (Galdobina, 1987; Črne et al., 2013a, b; Melezhik et al., 107 

2015). Heat provided by this igneous activity triggered hydrothermal circulation and oil 108 

generation as the organic-rich rocks passed through the oil window (Qu et al., 2012; Črne et al., 109 

2013a, b).  110 

A comprehensive δ13Corg dataset was previously obtained from FAR-DEEP cores 12AB and 111 

13A that intersect 550 m of the Zaonega Formation. These data reveal a decline in δ13Corg values 112 

from -25‰ to -40‰ in the middle–upper Zaonega Formation prior to a return to values of -113 

25‰ (Kump et al., 2011; Qu et al., 2012; Lepland et al., 2014). Abundant sulphide minerals 114 

associated with the organic-rich rocks have variable δ34S values ranging from -19‰ to +27‰ 115 

(Shatsky, 1990, Scott et al., 2014), but generally become more 34S-enriched up-section with 116 

typical values of ~+15‰ in δ34S (Scott et al., 2014). Several contrasting explanations have been 117 

proposed to explain these isotopic trends, including global-scale oxidation of organic matter 118 

(Kump et al., 2011), seepage/spillage of locally generated hydrocarbons to the seafloor 119 

triggering basinal methanotrophy (Qu et al., 2012), and a biogeochemical response to a global 120 

collapse of the SWS reservoir (Scott et al., 2014). The first scenario is questionable since the 121 

initial negative δ13Corg excursion coincides with the Lomagundi-Jatuli positive excursion in 122 

δ13Ccarb (Ossa-Ossa et al., 2018) and both excursions cannot be explained by a single, global 123 

underlying cause. Even though hydrocarbon migration and seepage are considered as the main 124 

factors in governing the negative δ13Corg shift in the Zaonega Formation, Qu et al. (2012) related 125 



5 
 

this to a local bloom of methanotrophic organisms that induced high rates of pore water sulphate 126 

reduction, while Scott et al. (2014) proposed that the negative co-variation of δ34S and δ13Corg 127 

values signalled water column methanotrophy and an overall increase in methane production 128 

as a response to low sulphate concentrations. Considering such contrasting scenarios, the need 129 

to discriminate between global, basinal and post-depositional controls becomes evident.  130 

2.1	Sulphur	isotope	systematics	131 

Geochemical and biological processes fractionate sulphur isotopes to different extents. The 132 

largest known non-photochemical sulphur isotope fractionations are associated with reduction, 133 

and to a lesser extent oxidation, reactions mediated by microbial communities (Johnston et al., 134 

2011). Microbial sulphate reduction (MSR) coupled to oxidation of organic matter is the 135 

dominant pathway for anaerobic respiration in contemporary sediments. In Phanerozoic marine 136 

environments with high SWS concentrations, precipitation and burial of sulphide minerals 137 

(ultimately pyrite), mediated by MSR, is the main sink for sulphide. When sulphate 138 

concentrations exceed 0.2 mM (Habicht et al., 2002; Bradley et al., 2016) the kinetic isotope 139 

effect associated with MSR becomes pronounced, depleting the sulphate pool in 32S via its 140 

preferential incorporation into the sulphide product. Owing to MSR, modern seawater has a 141 

δ34S value of 21‰, and the sulphide product (and resulting pyrite sink) can be depleted in 34S 142 

(Rees et al., 1978; Seal, 2006; Canfield et al., 2010) by as much as 70‰ based on experimental 143 

studies (Sim et al., 2011), although fractionations between 20‰ to 60‰ are common in nature 144 

(Zaback et al., 1993). In sediments where sulphate demand exceeds sulphate supply, the sulphur 145 

isotope composition of product sulphides will approach that of the sulphate (Goldhaber and 146 

Kaplan, 1975; Jørgensen, 1979). The final δ34S of sulphide that is preserved in the rock record 147 

primarily as pyrite will also depend on multiple factors including iron availability and organic 148 

carbon loading (Zaback et al., 1993; Aller et al., 2010; Fike et al., 2015). If the ambient sulphate 149 

reservoir is limiting then ongoing MSR will deplete the residual sulphate in 32S and generate 150 

parallel increases in local δ34SSWS and δ34Spyr, with similar effects registered in the minor 151 

sulphur isotope ratios (δ33S and δ36S; Johnston et al., 2008, 2007; Gomes and Hurtgen, 2013; 152 

Fike et al., 2015). Further, S-based chemoautotrophic metabolisms also impart a small but 153 

distinguishable δ34S fractionation, expressed when sulphide and other reduced sulphur 154 

compounds are oxidised to elemental sulphur and sulphate (Balci et al., 2007; Zerkle et al., 155 

2009, 2016). Additionally, microbial sulphur disproportionation (MSD) uses intermediate 156 

redox state sulphur species to produce both sulphate and sulphide, causing additional δ34S 157 
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fractionations of up to 20‰ (Canfield and Thamdrup, 1994; Farquhar et al., 2003; Johnston et 158 

al., 2005a).  159 

All these various sulphur-utilising metabolisms have the capacity to produce overlapping δ34S 160 

signatures, making it difficult to identify unambiguously specific metabolic pathways from δ34S 161 

values preserved in the rock record. Furthermore, the extent of fractionation during MSR 162 

depends on many factors such as cell-specific sulphate reduction rates, temperature, electron 163 

donor availability, sulphate concentration, salinity and pH (Fike et al., 2015). Moreover, pure 164 

culture experiments are rarely representative of natural environments where S-cycling consortia 165 

often do not produce unique δ34S isotope signatures (Detmers et al., 2001; Brüchert, 2004; 166 

Johnston et al., 2011; Sim et al., 2011). Recent studies, however, have demonstrated that 167 

biogeochemical sulphur cycling can cause mass-dependent fractionations that affect the 168 

partitioning of sulphur’s minor isotopes (Johnston et al., 2005a, 2011; Seal, 2006; Canfield et 169 

al., 2010; Zerkle et al., 2016). These small differences are resolvable in the minor sulphur 170 

isotopes ratios and can provide additional information even when δ34S values overlap.   171 

3.	Methods	172 

3.1	Materials		173 

Samples were collected from two 60-m long cores that were drilled 500 m apart: OnZap1 174 

(62.5870 N, 34.9310 E) and OnZap3 (62.5920 N, 34.9280 E) near the village of Shunga in 175 

Karelia, NW Russia (Fig. 1). A third core, OnZap2, was drilled 70 m from OnZap1 and was 176 

used for additional sedimentological and petrographic description. Between OnZap1 and 177 

OnZap3 is the site of the 240-m long FAR-DEEP 13A core. A distinct dolomite-chert unit 178 

occurs in each of the OnZap and FAR-DEEP cores (Črne et al., 2014), and its base is used as a 179 

lithostratigraphic marker to enable correlations between cores. The overlapping OnZap cores, 180 

therefore, provide a 102-m thick section of the upper Zaonega Formation, which we term the 181 

OnZap section. Unless otherwise stated, all depths discussed hereafter refer to the composite 182 

OnZap section (see the supplementary Tables for individual core depths and thicknesses). 183 

Detailed lithological logging of the cores was performed prior to sampling. Sample locations 184 

were carefully selected to minimise the effects of secondary overprints (e.g. large concretions, 185 

veins, fractures). In total 134 samples were obtained at approximately 1 metre intervals through 186 

cores OnZap1 and OnZap3 to produce our chemostratigraphic data set.  187 
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3.2	Petrographical,	mineralogical	and	major	element	analyses	188 

Petrographic characterisation of thin sections was performed by scanning electron microscope 189 

(SEM) analysis using a ZEISS EVO MA15 SEM at the University of Tartu. The images were 190 

captured in backscattered electron (BSE) mode. To complement the SEM imaging, chemical 191 

characterisation by point analyses and elemental mapping of the samples were performed using 192 

an Oxford AZTEC-MAX energy-dispersive spectrometer (EDS).  193 

Major element composition was determined by Bureau Veritas Minerals, Vancouver, Canada 194 

by inductively coupled plasma optical emission spectroscopy (ICP-OES). Powdered samples 195 

were fused at 950 °C with lithium metaborate flux and the fusion beads were digested with a 196 

combination of hydrofluoric and perchloric acids prior to analysis. Loss on ignition data were 197 

obtained from heating samples in a furnace at 950 °C for 1 h. For all elements, average percent 198 

relative standard deviation (average RSD%) was less than 5%. The mineralogical composition 199 

of whole rock samples was determined on unoriented powdered samples using a Bruker D8 200 

Advance X-ray diffractometer using Cu Kα radiation and LynxEye positive sensitive detector 201 

in 2–70° 2-Theta range at the University of Tartu. The obtained diffractograms were interpreted 202 

and modelled with the Rietveld algorithm-based program Topaz. The content of crystalline 203 

phases determined by XRD analysis were normalised to account for X-ray amorphous organic 204 

carbon using the TOC abundance data determined from the same samples. 205 

3.3	Sulphur	and	carbon	content	206 

The total carbon (TC), total organic carbon (TOC) and total sulphur (TS) abundances were 207 

quantified using ~100 mg aliquots of powdered sample admitted to a LECO SC-444 analyser 208 

at the Geological Survey of Norway. The TOC content was determined on acid-treated (10% 209 

HCl vol/vol) residues. Detection limits for TS, TC and TOC were 0.02 wt.%, 0.06 wt.% and 210 

0.1 wt.%, respectively. The relative precision was better than 2.5% for TC and 10% for TS and 211 

TOC. 212 

3.4	Sulphur	isotope	analyses	213 

Powdered samples were subjected to a two-step sulphur extraction procedure (Canfield et al., 214 

1986). In this sequential extraction method, sulphur is liberated first as H2S from acid volatile 215 

sulphur (AVS; monosulphides such as pyrrhotite, sphalerite, mackinawite or greigite) via a 6 216 

M HCl distillation, and pyrite is released via hot chromium(II) chloride distillation (CRS). To 217 

prevent incorporation of elemental sulphur to the CRS fraction, we used chromium(II) chloride 218 

solution adopted from Oduro et al. (2013).  In addition to pyrite, the CRS solution may have 219 
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attacked marcasite, however our XRD analysis failed to detect this pyrite polymorph, rendering 220 

any potential contribution negligible. The resulting H2S was converted into Ag2S by adding of 221 

0.1 M AgNO3. The precipitate was then cleaned using 1M NH4(OH) and rinsed to neutrality 222 

using ultra-pure (18 MΩꞏcm) water (Oduro et al., 2013).  223 

Sulphur isotope analyses were performed at McGill University. The Ag2S samples were reacted 224 

overnight with excess fluorine gas in nickel bombs at 250 °C to produce SF6 that was first 225 

purified cryogenically and then via gas chromatography. The sulphur isotope composition of 226 

purified SF6 was measured by dual-inlet gas-source mass spectrometry monitoring ion beams 227 

at m/z of 127, 128, 129, and 131 using a Thermo Finnigan MAT 253 gas source mass 228 

spectrometer. Sample reproducibility, as determined by replicate analyses of the in-house 229 

standard MSS-1, was generally better than 0.1‰ for δ34S values, 0.015‰ for Δ33S and 0.2‰ 230 

for Δ36S. Sulphur isotope ratios are reported in the standard delta notation as per mil deviations 231 

from the international reference standard the Vienna-Canyon Diablo Troilite (V-CDT):  232 

δ3xS = 1000 ꞏ (3xRsample/3xRV-CDT - 1), 233 

where 3xR = 3xS/32S, for 3x = 33, 34 or 36.  234 

We express the minor isotope values in capital delta notation: 235 

Δ33S = δ33S – 1000 ꞏ [(1 + δ34S/1000)0.515 - 1], 236 

and 237 

Δ36S = δ36S – 1000 ꞏ [(1 + δ34S/1000)1.9 - 1]. 238 

3.5	Organic	carbon	isotope	analyses	239 

Between 0.2 and 2 g aliquots of homogenised sample powders were reacted with 10% (vol/vol) 240 

HCl at room temperature in centrifuge tubes for 24 hours. Acid treatment was repeated until no 241 

further reaction was observed. The remaining residues were rinsed to neutrality using deionised 242 

water and dried at 45 ºC. Aliquots of dry decarbonated residue (0.2 mg) were then weighed into 243 

tin capsules and the organic carbon isotope (δ13Corg) composition was determined by flash 244 

combustion using an Elemental Analyser coupled to a Continuous Flow Isotope Ratio Mass 245 

Spectrometer (ThermoScientific Delta V Plus with Costech EA) at the NERC Life Sciences 246 

Mass Spectrometry Facility at the Scottish Universities Environmental Research Centre in East 247 

Kilbride, Scotland.  248 
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The carbon isotope results are reported in standard delta notation as per mil deviation from the 249 

Vienna-Pee Dee Belemnite (V-PDB) standard: 250 

δ13C = 1000 ꞏ (13Rorganic-C/13RV-PDB - 1). 251 

Accuracy and precision was monitored via replicate analyses of the international standard USGS40 252 

L-glutamic acid (δ13C= –26.39 ± 0.04‰ V-PDB), which yielded an average δ13C value of –253 

26.19 ± 0.04‰. The δ13C values have been corrected for the 0.2‰ offset between the measured 254 

and expected values of USGS40 measurements. 255 

4.	Results	256 

4.1	Lithology	and	mineralogy	257 

Characteristic rock types and lithostratigraphic columns together with selected mineralogical 258 

and geochemical parameters are presented in Figures 2 to 6. All mineralogical and geochemical 259 

results are provided in Supplementary Tables 1 to 4. Correlation between OnZap cores was 260 

made using the base of a massive dolomite interval that can be identified across the basin, 261 

occurring at 53 m in OnZap1 and at 10.8 m in OnZap3 (Figs. 4–6). The cores recovered organic-262 

rich mudstone, dolostone and calcareous mudstone from the upper part of the Zaonega 263 

Formation (Fig. 2). The upper part of OnZap1 provides an additional 25 m of stratigraphy with 264 

respect to previous studies (Qu et al., 2012; Črne et al., 2013 a, b, 2014; Lepland et al., 2014; 265 

Scott et al., 2014). Three units can be identified: Unit A, from 102–53 m depth, composed of 266 

black organic-rich mudstones with a few carbonate beds; Unit B, from 53–33 m, consisting 267 

predominantly of dolostone beds including the massive dolomite interval; and Unit C, from 33–268 

1.7 m, characterised by grey relatively organic-poor mudstone and marly carbonate beds (Figs. 269 

2, 4).  270 

4.1.1	Unit	A:	organic‐rich	mudstones	(102–53	m	depths)	271 

Organic-rich mudstones display wispy, low-angle cross lamination and pass upward into 272 

calcareous mudstones marked by clay partings. The former contain quartz comprising up to 72 273 

wt.%, mica at ~17 wt.%, variable amounts of K-feldspar up to ~24.6 wt.% and minor amounts 274 

of pyrite, calcite, talc and chlorite. The mica is predominantly a muscovite-type K-mica and a 275 

phlogopite-type Fe/Mg-mica with Fe/(Mg + Fe) ratios in the range of 0.03–0.04, hereafter 276 

referred to as Fe-poor Fe/Mg-mica. Pyrite abundances are relatively constant at 1–3 wt.% in 277 

the lower part of Unit A but are elevated (maximum of 13.8 wt.%) in organic-rich mudstones 278 
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in its upper part. Dolomite is the main carbonate mineral, but calcite reaches ~10 wt.% in some 279 

of the carbonate beds particularly along bed margins where it may co-occur with talc (also noted 280 

by Črne et al., 2014, in the FAR-DEEP cores). A few carbonate beds in the upper part of Unit 281 

A contain ~2 wt.% of an iron-rich dolomite to ankerite solid-solution phase, that can constitute 282 

up to 12.8 wt.%. The calcareous mudstone at 86–77 m contains up to 15.2 wt.% talc and 29.3 283 

wt.% calcite, but also has low abundances of other minerals.  284 

Cross-cutting veins are ubiquitous. Those in mudstones are predominantly filled with 285 

pyrobitumen, quartz and Fe-poor Fe/Mg-mica, whereas those in carbonate beds largely consist 286 

of calcite (Figs. 2d, e). The interval at 77–70 m depth displays intense veining and silicification 287 

at mudstone-dolostone contacts; here quartz can comprise up to 73.2 wt.% of the silicified 288 

intervals. The mudstones in this interval are finely laminated and exhibit soft-sediment 289 

deformation features that are cut by quartz veins (Fig. 2e).  290 

Organic matter occurs as disseminated particles, pyrobitumen veins or as nodular aggregates (a 291 

few hundred µm in diameter) in finely laminated mudstone and calcareous mudstone. An 292 

organic-rich mudstone interval at 59–53 m depth has Corg contents of up to 65 wt.% and contains 293 

a thin layer at 54 m depth of bedding-parallel nodules composed of pyrobitumen and varying 294 

amounts of mica and pyrite. Its upper margin is marked by apatite nodules, layers and lenses. 295 

4.1.2	Unit	B:	dolomite	unit	(53–33	m	depths)	296 

The dolostone interval defining the base of Unit B is cut by conspicuous black, massive chert 297 

veins that can be up to several meters thick and form an often bed-parallel network associated 298 

with thin mudstone interlayers. They contain relicts of the altered dolostone and their contacts 299 

with the dolostone layers are marked by calcite, Fe-poor Fe/Mg-mica and talc. Smaller, mm- to 300 

cm-scale veins are abundant and consist mainly of quartz, calcite, pyrobitumen and pyrite. The 301 

central parts of the dolostone beds are massive, nearly pure, dolomite that lacks pervasive silica 302 

veining and secondary calcite. The iron-rich dolomite to ankerite solid-solution phase is a 303 

common subcomponent (~6 wt.%) of the dolostone beds and increases in content up section, 304 

concomitant with a decrease in the frequency, extent and thickness of chert veining. In the upper 305 

part of Unit B dark grey mudstone beds become more numerous and are composed of quartz 306 

(~20 wt.%), mica (~40 wt.%; mainly muscovite-type K-mica but Fe-poor Fe/Mg-mica is also 307 

present) organic matter and K-feldspar (~2 wt.%, maximum of 11.4 wt.%). Pyrite is most 308 

abundant in the mudstones (~8 wt.%, maximum of 16.5 wt.%), but is also a common mineral 309 

component in the carbonate beds.  310 
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4.1.3	Unit	C:	relatively	organic‐poor	rocks	(33–1.7	m	depths)	311 

Unit C is composed of alternating fine-grained mudstone, calcareous mudstone and carbonate 312 

beds. The grey mudstones are finely parallel to ripple cross-laminated (Figs. 2a, c) and organic 313 

matter is lower than in Units A and B, with typical TOC values of ~1 wt.% but can be as high 314 

as 10 wt.%. Quartz and mica minerals comprise approximately ~35 wt.% and ~40 wt.%, 315 

respectively. The latter are muscovite-type K-mica and a biotite-type Fe/Mg-mica with Fe 316 

content ~20.8 wt.% (hereafter referred to as Fe-rich Fe/Mg-mica). Unlike the underlying units, 317 

the content of K-feldspar, Fe-poor Fe/Mg-mica and calcite is low and talc is absent. In contrast, 318 

plagioclase is more abundant reaching up to 13.2 wt.%. Overall, the content of disseminated 319 

pyrite in Unit C is lower than in Units A and B (~1.6 wt.%), although large pyrite aggregates 320 

and vein pyrite do occur. The iron-rich dolomite to ankerite solid-solution phase is a major 321 

mineral component of the marly carbonate beds of Unit C and its content increases upwards in 322 

the section reaching 38.5 wt.%. The marly carbonate beds vary from being massive with faint 323 

lamination in their centres to cross laminated with mud drapes (Fig. 2b). Siderite, in association 324 

with large anhedral pyrite, occurs in some of the marly carbonate beds and calcareous 325 

mudstones in the uppermost part of Unit C. Petrographically the siderite-pyrite aggregates occur 326 

as irregular to oval/lens-like masses of few hundred microns to few mm size. Siderite patches 327 

are to different extent replaced by pyrite aggregates composed of euhedral crystallites. 328 

Typically, the replacement of siderite aggregates starts at the contacts with the surrounding 329 

mudstone and progresses inwards. 330 

4.1.4	Pyrite	petrography	331 

Core inspection and petrographic analyses show that sulphide minerals are pervasive but are 332 

typically concentrated within mudstone beds, with the highest abundances at the top of Unit A. 333 

Pyrite is the main sulphide mineral, but minor pyrrhotite, sphalerite, and As-, Cu- and Ni-334 

bearing sulphides also occur. The minor sulphides are most abundant in Units A and B and 335 

mostly absent in Unit C. Most pyrite occurs as fine-grained euhedral and typically octahedral 336 

crystals ~10 µm in size (Figs. 3a, b, c). The central parts of individual pyrite crystals can be 337 

either hollow or contain inclusions of quartz, mica and rarely Cu-sulphide minerals. These 338 

minute pyrite crystals are concentrated in organic-rich layers within mudstones or carbonaceous 339 

mudstones and many occur as ellipsoidal, densely packed 30–100 µm sized clusters (Fig. 3a, 340 

b) encased within contorted mudstone layers. 341 

Pyrite also occurs throughout the succession as large euhedral or anhedral disseminated crystals 342 

or irregular aggregates (Fig. 3d). The latter is most abundant in Units A and B and is associated 343 
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with other metal sulphides, such as sphalerite. Solitary large pyrite crystals (> 100 µm) are 344 

abundant in carbonate and calcareous mudstone beds but less so in mudstones. These large 345 

pyrite crystals commonly contain numerous inclusions of quartz and dolomite. At 27 m in Unit 346 

C, a dolostone bed contains large aggregates of pyrite that form clusters several cm in size with 347 

dolomite inclusions that appear texturally co-genetic with calcite (Fig. 3d).  348 

4.2	Major	element	geochemistry	349 

Stratigraphic profiles of selected major elements are reported as oxides and shown in Figure 5. 350 

Full datasets are in Supplementary Tables 1–4. The stratigraphic distribution of SiO2, Al2O3 351 

and K2O show close correspondence with the mineral abundances of quartz, mica and feldspar, 352 

serving as a proxy for the respective mineral phases. The highest SiO2 (~78 wt.%) and the 353 

lowest Al2O3 (~5 wt.%), Fe2O3* (~2 wt.%; total Fe expressed as Fe2O3) and K2O (~2 wt.%) 354 

abundances are observed in the lower part of Unit A and in the dolostone interval at the base of 355 

Unit B (53–44 m). The SiO2 content slightly decreases in the upper part of Unit B and in Unit 356 

C, whereas Al2O3 (~14 wt.%), Fe2O3* (~9 wt.%) and K2O (~5 wt.%) abundances increase. 357 

Contents of TS and TOC vary from 0.02 wt.% to 10.9 wt.% and 0.12 wt.% to 65 wt.%, 358 

respectively. The highest TS and TOC abundances are observed in the upper parts of Units A 359 

and B with TS averaging ~2 wt.% (maximum of 10.9 wt.%) and TOC averaging ~13 wt.% 360 

(maximum of 65 wt.%). In Unit C, TS content has average values of ~1 wt.% (maximum of 4.3 361 

wt.%) and TOC ~1 wt.% (maximum of 3.3 wt.%). The depth profiles of TS and Fe2O3* 362 

abundances co-vary in Units A and B, but are decoupled in Unit C where iron concentrations 363 

are the highest. This marked change in Fe2O3*, TOC and TS contents in Unit C coincides with 364 

an increase in Al2O3, a change in the mica phase from Fe-poor to Fe-rich Fe/Mg mica, 365 

increasingly more abundant Fe-rich carbonate phases, and a decrease in pyrite abundance.  366 

4.3	Carbon	isotope	composition	of	organic	matter	367 

Organic carbon isotope (δ13Corg) values show an increase from -38.03‰ in Unit A to -24.51‰ 368 

in Unit C (Fig. 6). Unit B represents a transitional interval, with δ13Corg values varying from -369 

38‰ to -29‰. The same range of values and a similar shift in δ13Corg was documented in FAR-370 

DEEP 13A core by Lepland et al. (2014). As described below, this shift in δ13Corg values is 371 

accompanied by a shift to more 34S-enriched sulphides and lower TOC and TS concentrations.  372 

4.4	Sulphur	isotope	composition	of	sulphides	373 

Sulphur isotope data are shown in Figure 6 and the CRS and AVS data are reported in 374 

Supplementary Table 1. The δ34S, Δ33S and Δ36S values of the pyrite sulphur (CRS) in the 375 
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OnZap section range from -0.8‰ to +43.6‰, -0.09‰ to 0.09‰ and -0.50‰ to 0.56‰, 376 

respectively. Acid volatile sulphur (AVS) has δ34S values from +15.3‰ to +34.8‰, Δ33S values 377 

from -0.07‰ to +0.03‰ and Δ36S values from -0.37‰ to +0.68‰. The CRS δ34S values in the 378 

OnZap section are variable, with a slight trend towards heavier values in the upper part. Four 379 

distinct excursions exhibiting highly positive δ34S values (> +30‰) occur at 17.4 m, 27.8 m, 380 

62.4 m and 80 m depths. Throughout the section the δ34S and Δ33S values show an anti-381 

correlation: where the former increases the latter shifts towards more negative values and vice 382 

versa. Both Δ36S and Δ33S display small variations and correlate negatively, defining Δ36S/Δ33S 383 

arrays with a change in the slope from Unit A to Unit C (Fig. 9). In Unit A the Δ36S/Δ33S array 384 

has the slope of -8 whereas the difference between Units B and C is statistically insignificant 385 

and the Δ36S/Δ33S array has a slope of -4. Although the Δ36S-Δ33S relationships show significant 386 

scatter, Unit A has a R2 value of 0.75, whereas Units B and C show a weaker correlation, with 387 

an R2 value of 0.46. 388 

5.	Discussion	389 

5.1	Influence	of	hydrothermal	alteration	on	geochemical	signals	390 

The presence of lava flows and gabbroic sills with peperitic contacts demonstrate that the 391 

Zaonega Formation was deposited in a magmatically active setting (Črne et al., 2013a,b; 392 

Melezhik et al., 2015). This igneous activity triggered hydrothermal circulation, generating 393 

hydrocarbons and other diagenetic fluids that permeated the sub-seafloor, altering primary 394 

mineral assemblages and catalysing secondary mineral precipitation (Melezhik et al., 1999; Qu 395 

et al., 2012; Črne et al., 2014). Thus, it is important to differentiate between depositional and/or 396 

early diagenetic geochemical signals from those that formed later. For example, detailed 397 

petrographic observations from the FAR-DEEP 12AB core revealed that hydrothermally 398 

catalysed dedolomitisation reactions produced paragenetic mineral assemblages including 399 

calcite, phlogopite and talc (Črne et al., 2014). This type of alteration is ubiquitous in Unit A 400 

of the OnZap section, with enrichments of quartz and K-feldspar, as well elevated abundances 401 

of secondary calcite and talc at lithological contacts. The FAR-DEEP 13A core, drilled ca. 300 402 

m from the OnZap cores, contains a magmatic body at an equivalent stratigraphic level to Unit 403 

A of the OnZap section, which had the potential to sustain localised hydrothermal circulation 404 

(Črne et al., 2013a).  405 
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In contrast to Unit A, the upper part of Unit B and all of Unit C show less pronounced post-406 

depositional alteration, and thus are more likely to preserve the most pristine mineralogical and 407 

geochemical signatures within the OnZap section. We hypothesise that the massive dolostone 408 

body at the base of Unit B (53–44 m depth) acted as a stratigraphic seal, hindering the ascent 409 

of hydrothermal fluids; an inference supported by a decrease in veining intensity, decreasing 410 

quartz, calcite and K-feldspar abundances, and an increase in iron content of the Fe/Mg-micas 411 

through Unit B and up into Unit C. 412 

5.2	Distribution	of	iron	in	mineral	phases	413 

The conventional sequential iron extraction technique developed by Poulton and Canfield 414 

(2005), commonly referred to as “Fe speciation”, is widely used to constrain depositional redox 415 

conditions based on the quantity and distribution of highly reactive iron (e.g., Poulton and 416 

Canfield, 2011). Because of the ubiquity of Fe-rich carbonate phases (dolomite to ankerite solid 417 

solution and siderite) in our samples and their known recalcitrant nature (Raiswell et al., 1994, 418 

2012; Poulton and Raiswell, 2002; Poulton and Canfield, 2011; Clarkson et al., 2014; Slotznick 419 

et al., 2018), we used a combination of XRD and SEM-EDS analyses rather than the 420 

conventional wet-chemical extraction scheme to assess Fe partitioning in the main Fe-bearing 421 

carbonate (FeCarb = iron-rich dolomite to ankerite solid-solution phase and siderite), sulphide- 422 

(FePY = pyrite) and silicate-phase minerals (FeSIL). This procedure is preferable in that it exploits 423 

the intrinsic physical properties of the minerals of interest and is thus not hindered by 424 

incomplete dissolution. Previous work has demonstrated that pyrrhotite in the FAR-DEEP 13A 425 

core is a product of pyrite alteration (Asael et al., 2013), hence we consider pyrrhotite as part 426 

of the FePY pool. Iron-oxides and iron-oxyhydroxides were below the XRD quantification limit 427 

(<0.3 wt.%) in all the examined samples. We defined the silicate iron (FeSIL) pool as the sum 428 

of Fe in phyllosilicates (K-mica, Fe/Mg-mica and chlorite), the only Fe-carrying silicate phases 429 

identified in our samples. 430 

Owing to the variable Fe contents of the varied mineral phases and types (e.g. micas and 431 

carbonates), multiple measurements by SEM-EDS were made from several representative 432 

samples from Units A, B and C. These data were then used to calculate the average iron content 433 

of the individual phases. The average iron content of muscovite-type K-mica and chlorite was 434 

found to be 3.2 and 1.6 wt.% Fe, respectively. Multiple SEM-EDS analyses demonstrated that 435 

these values were constant throughout all examined samples, whereas the iron content of 436 

Fe/Mg-mica phases was found to be variable, with low iron contents (1.4 wt.%) typifying Units 437 

A and B and high iron (20.8 wt.%) contents dominating in Unit C. Iron-rich carbonate phases 438 
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in the dolomite to ankerite solid-solution series contained up to 10 wt.% iron and were confined 439 

to the upper part of the OnZap section. Siderite, with a stoichiometric Fe abundance, is present 440 

in few samples near the top of the section. Total XRD-derived iron (FeT-XRD) abundances were 441 

calculated as the sum of FeCarb, FePY and FeSIL. Generally, the calculated FeT-XRD and total Fe 442 

(FeT-OES) determined by ICP-OES displayed a good fit (R2 = 0.92); however, there are a few 443 

samples where FeT-XRD diverged by more than 20% from the FeT-OES. This discrepancy is likely 444 

due to the higher quantification limit (~0.3–0.5 wt.%) of XRD compared to ICP-OES. 445 

Regardless, these typically iron-impoverished samples were excluded from iron distribution 446 

assessments (Supplementary Fig. 1), as recommended by previous studies (Clarkson et al., 447 

2014). Although the XRD approach to Fe speciation is yet to be empirically calibrated, when 448 

both XRD and conventional Fe speciation approaches have been tested elsewhere there is good 449 

agreement between the two techniques (Raiswell et al., 2011), which, in the absence of full 450 

calibration (e.g., Poulton and Canfield, 2005; Clarkson et al., 2014), provide confidence in our 451 

approach. 452 

5.3	Redox	constraints	on	deposition	in	the	Onega	Basin	453 

The XRD-defined Fe distribution data are illustrated in Figure 6 along with our δ13Corg and δ34S 454 

data. The raw data are given in Supplementary Table 3. Herein, the biogeochemically reactive 455 

iron pool (Raiswell et al., 1994; Poulton and Raiswell, 2002; Poulton and Canfield, 2011; 456 

Clarkson et al., 2014) is defined as (FePY+FeCarb)/FeT-XRD, whereas the proportion of pyrite in 457 

the reactive iron pool is defined as FePY/(FePY+FeCarb). The ratios of (FePY+FeCarb)/FeT-XRD 458 

greater than 0.5 and FePY/(FePY+FeCarb) of approximately unity in OnZap Units A and B, as well 459 

as strong linear correlation between TS and FeT-OES (Fig. 7), show that pyrite is the main iron-460 

bearing phase in those strata.  In Unit C, sulphur and iron concentrations show no correlation 461 

(Fig. 7) and, (FePY+FeCarb)/FeT-XRD and FePY/(FePY+FeCarb) ratios are lower, albeit variable (Fig. 462 

6). Again, strengthening the applicability of our XRD approach, the XRD-derived data are in 463 

good agreement with conventionally Fe speciation data from correlative parts of the upper 464 

Zaonega Formation (Scott et al., 2014). 465 

If these ratios were to reflect Fe distribution patterns in the original sediment, anoxic-euxinic 466 

depositional environment would characterise Units A and B and variable redox conditions 467 

including oxic episodes would characterize Unit C. It has been shown that physical disturbance 468 

and non-steady state diagenesis of fine-grained sediments can produce highly reactive iron 469 

enrichments, even beneath an oxygenated water-mass (Aller et al., 2010). Given the complex 470 

depositional setting, featuring syn-depositional magmatism, turbidites and pervasively fluid-471 
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influenced intervals (Unit A and lower Unit B), these data must be first treated with caution, 472 

establishing the influence of post-depositional iron mobilisation before reaching any conclusion 473 

concerning depositional redox. 474 

Evidence for late-stage iron mobilisation is provided by the chemistry of the OnZap carbonate 475 

phases. Iron concentrations in dolomite can reach 10%, whereas secondary calcite that formed 476 

via dedolomitisation is essentially devoid of iron because of limited iron substitution and the 477 

instability of CaFe(CO3)2 solid solution series at temperatures below 450 °C (Davidson, 1994). 478 

There is, however, abundant evidence for sedimentary/early diagenetic pyrite. Petrographic 479 

observations reveal that organic-rich lamina throughout Unit A and the mudstones from Units 480 

B and C contain abundant disseminated fine-grained pyrite crystals (>10 µm) and ellipsoidal 481 

pyrite clusters (30–100 µm). Differential compaction of the organic-rich laminae around the 482 

pyrite clusters/crystals (Fig. 3a, b), and the lack of cross-cutting sedimentary fabrics, or 483 

association with quartz veins, attests to their formation early within the sediment prior to 484 

compaction and silica alteration.  Carbonate beds on the other hand contain large, inclusion-485 

laden, euhedral and anhedral pyrite crystals that clearly formed much later (Fig. 3d). 486 

Consequently, the iron distribution patterns, particularly in Unit A and the lower part of Unit 487 

B, were established within the diagenetic and metamorphic environments and cannot be used 488 

for reliably inferring water column redox conditions. 489 

Relative to Unit A and the lower part of Unit B, Unit C and the upper part of Unit B display 490 

less evidence for post-depositional alteration. Significant part of iron in Unit C is housed in Fe-491 

rich carbonate minerals and the increase in FeT-OES coincides with the transition from a Fe-poor 492 

to a Fe-rich mica phase, reflecting less hydrothermal alteration relative to the underlying strata. 493 

Accordingly, the lower and more variable (FePY+FeCarb)/FeT-XRD and FePY/(FePY+FeCarb) ratios, 494 

(Fig. 6), are a more reliable potential archive of depositional redox conditions, suggesting that 495 

the upper Zaonega Formation was deposited in a highly dynamic setting.   496 

Scott et al. (2014) used Fe-speciation data to conclude that the upper part of the Zaonega 497 

Formation records a transition from oxic or ferruginous depositional conditions to euxinic 498 

conditions. That conclusion was based on the assumption that a complete composite 499 

stratigraphic succession of the upper Zaonega Formation was recovered by two cores: core C-500 

5190, ~25 km south of the OnZap cores (see Fig. 1), was inferred to capture the older strata and 501 

core C-175, ~40 km south of the OnZap cores, the younger strata. Fe speciation data by those 502 

workers indicate oxic or ferruginous conditions for core C-5190 and euxinic conditions for core 503 
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C-175. However, the inference that the cores represent a composite stratigraphy is questionable. 504 

Many workers have documented a 150–200 m thick horizon containing strongly 13C-depleted 505 

organic matter (δ13Corg < -30‰) across the Onega Basin (Kump et al., 2011; Qu et al., 2012; 506 

Strauss et al, 2013; Lepland et al., 2014; Melezhik et al., 2015; Krupenik et al., 2011). In fact, 507 

Russian workers have considered it to be a basin-wide correlative marker (e.g., Filippov and 508 

Yesipko, 2016). Both cores (C-5190 and C-175) contain 13C-depleted organic matter (δ13Corg < 509 

-30‰), implying that they broadly overlap and are correlative with OnZap Units A and B. 510 

Adopting these chemostratigraphic constraints, the available Fe-speciation data are more 511 

consistent with spatially variable redox conditions across the Onega Basin, rather than a secular 512 

change in redox conditions (c.f., Scott et al., 2014). Until the relationship between cores C-5190 513 

and C-175 is better known, especially within the wider stratigraphic context of the Zaonega 514 

Formation, their utility for global correlations and environmental interpretations remains 515 

limited. 516 

In summary, post-depositional alteration most likely modified the iron inventory of Unit A and 517 

lower part of Unit B of the OnZap section. Unit C, by contrast, is the least altered and preserves 518 

a more primary mineral assemblage. Combining petrographic observations, with up-section 519 

trends of decreasing TOC, TS and increasing FeT-OES and Fe-rich dolomite-to-ankerite solid-520 

solution phase contents, as well as the appearance of siderite in Unit C, are consistent with a 521 

change toward more variable redox conditions. Integrating our observations with the findings 522 

of others indicates that the upper Zaonega Formation inherited its Fe inventory under spatially 523 

and temporally variable depositional and diagenetic conditions, as would be expected in a 524 

magmatically active and seep-influenced setting. In total, our data indicate that euxinia was not 525 

as pervasive in the upper part of the Zaonega Formation as suggested previously (Scott et al., 526 

2014) and, in fact, conditions may have been episodically oxic. 527 

5.4	Biogeochemical	sulphur	cycling	528 

5.4.1	Hydrothermal	influence	on	the	Zaonega	Formation	sulphides	529 

Sulphide minerals in marine settings with active hydrothermal circulation can be produced by 530 

several mechanisms and may have sulphur-isotope values that reflect contemporaneous but 531 

unrelated processes (Aoyama et al., 2014; Eickmann et al., 2014). For example, modern 532 

seawater sulphate is typically marked by positive δ34S (+21.5‰) and Δ33S (+0.04‰) values 533 

(Ono et al., 2012; Johnston et al., 2014; Tostevin et al., 2014; Masterson et al., 2016), whereas 534 

deep sourced hydrothermal fluids have values closer to primordial sulphur (δ33S = δ34S = δ36S 535 
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= 0‰; Ono et al., 2006, 2007, 2012). Furthermore, mass-dependent fractionations of up to 4‰ 536 

in δ34S and 0.07‰ in Δ33S can be imparted under certain oxygen fugacities and oxidation 537 

reactions in magmatic and hydrothermal systems (Fiorentini et al., 2012; Ono et al., 2007; 538 

Penniston-Dorland et al., 2012; Ripley et al., 2017). Thus, in a setting such as that in which the 539 

Zaonega Formation was deposited, care must be taken when ascribing a pyrite sulphur isotope 540 

value to a seawater sulphate source.  541 

Several features of our sulphur isotope data, particularly the negative excursions, warrant 542 

exploration. A prominent negative δ34S excursion to ~ 0‰ within silicified mudstones at 77–543 

70 m depth is accompanied by distinctly positive Δ33S values of ~+0.05‰ (Fig. 6). Three 544 

additional negative δ34S excursions to values below +5‰ punctuate the OnZap section. These, 545 

excursions occur at lithological boundaries between carbonate and mudstone beds at 86, 46 and 546 

32 m depth. Of these, those at 85 m and 32 m also exhibit positive >+0.05 Δ33S values. Pyrites 547 

associated with these shifts have different origins and may reflect different processes in space 548 

and time. Euhedral crystals associated with compacted sedimentary laminae, along with minute 549 

octahedral pyrite crystals, were precipitated early in unconsolidated sediments. By contrast, 550 

large inclusion-rich euhedral crystals that occur with minor sphalerite and pyrrhotite crystals, 551 

particularly in Units A and B, suggest later post-depositional pyrite formation as noted also by 552 

Asael et al. (2013). There are a variety of explanations for the observed negative S-isotope 553 

excursions. For example, the addition of hydrothermally derived sulphur could account for the 554 

observed δ34S shift toward 0‰ but would not explain a positive shift in Δ33S seen in the 555 

silicified interval at 77–70 m. Alternatively, there may have been short-lived, more open-system 556 

conditions that would have allowed the expression of larger microbially-induced S-isotope 557 

fractionation. Otherwise, iron limitation could also have conceivably lowered δ34S values by 558 

limited sulphide sequestration to the initially produced, and presumably most 34S-depleted, 559 

sulphide.  560 

We note that post-depositional isotope effects associated with pyrite remobilisation and AVS 561 

formation depend on the temperature and oxidation state of the percolating fluid and hence is 562 

difficult to constrain precisely (Wagner and Boyce, 2006). With few exceptions, the isotopic 563 

composition of AVS is only separated from the CRS by a few per mil, thus the fluids interacting 564 

with the Zaonega rocks were sufficiently reducing and were unlikely to have promoted large-565 

magnitude sulphur isotope fractionations during pyrite recrystallisation (Fig. 6). On the other 566 

hand, it is possible that recrystallisation homogenised the sulphur isotope composition of the 567 
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early-formed small pyrite crystals and clusters masking the extreme variability of individual 568 

crystals that are characteristic for modern seep environments (Lin et al., 2016).  569 

Thermochemical sulphate reduction (TSR) could also serve as a mechanism for precipitating 570 

secondary pyrites (Watanabe et al., 2009; Oduro et al., 2011). The Zaonega Formation is 571 

underlain by the evaporite-bearing Tulomozero Formation (Reuschel et al., 2012; Blättler et al., 572 

2018). It is possible, therefore, that hydrothermal fluids could have leached sulphur from the 573 

underlying evaporites, which could induce precipitation of late-stage pyrite upon reduction in 574 

contact with the organic-rich strata of the Zaonega Formation. However, the Tulomozero Ca-575 

sulphate evaporites have δ34S values ranging from +6 to +10‰ and Δ33S values of ~0‰ 576 

(Reuschel et al., 2012; Blättler et al., 2018) which are not compatible with the combination of 577 

S-isotope values encasing the negative excursions. Although progressive TSR could lead to 34S 578 

enrichments of sulphur-bearing fluids and Rayleigh distillation effects (Watanabe et al., 2009). 579 

Oduro et al. (2011) demonstrated that TSR is associated with a mass-independent magnetic 580 

isotope effect which influence odd-numbered isotope (33S), generating Δ36S/Δ33S slopes that 581 

deviate from thermodynamic predictions (Δ36S/Δ33S slope of ~7; Ono et al., 2006). Thus, TSR 582 

is not consistent with the Δ36S/Δ33S slope of ~-8 observed in Unit A which is more typical for 583 

MSR (Johnston et al., 2005a, 2007).  584 

Although the Δ36S-Δ33S relationship is more scattered in Units B and C, these intervals are 585 

relatively low in TOC, AVS is scarce and evidence for post-depositional alteration is infrequent, 586 

rendering TSR unlikely. Furthermore, progressive TSR of ascending fluids would cause vertical 587 

and lateral δ34S and Δ33S gradients, which are not observed in the OnZap pyrite record. We do 588 

note that, while a magmatic sulphur source for explaining the four negative δ34S and positive 589 

Δ33S excursions is unlikely, ambient seawater percolating in the sediments could have provided 590 

a sulphur source, localising TSR for secondary pyrite formation. With the available data, we 591 

cannot unequivocally preclude secondary processes, however, their effect appears to have been 592 

limited. The four negative δ34S shifts can most likely be explained by syndepositional and early 593 

diagenetic processes such as changes in the openness of the pore water with respect to the 594 

overlying water column or Fe availability. Further investigation by secondary ion mass-595 

spectrometry (SIMS) could test these competing hypotheses, and provide insight beyond the 596 

bulk approach leveraged herein. 597 
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5.4.2	Carbon	and	sulphur	isotope	records	of	microbial	processes	598 

Given the preceding discussion, we interpret the sedimentary pyrites of the upper Zaonega 599 

Formation as the product of sediment-hosted MSR, rather than direct precipitates from an 600 

euxinic water column (e.g. Scott et al., 2014). Previous work (Qu et al., 2012; Lepland et al., 601 

2014) has shown that the Zaonega sediments were deposited in a magmatically active setting 602 

with syndepositional hydrocarbon migration and venting. Such a nutrient replete environment 603 

likely sustained microbial activity in the water column, at the seafloor and in the shallow sub-604 

surface, in turn creating sharp chemoclines and a complex seafloor ecosystem of sulphur 605 

oxidisers and methanotrophic archaea. Evidence for migrating hydrocarbons is preserved as 606 

numerous pyrobitumen veins and nodules that occur variably throughout the Zaonega 607 

succession, including the OnZap section (e.g. nodules at 54 m depth). Comparisons of δ13Corg 608 

in the host rock and cross-cutting pyrobitumen veins have demonstrated only minor differences 609 

(< 0.5‰) in the FAR-DEEP 12AB core indicating a hydrocarbon source in adjacent organic-610 

rich sediments (e.g. Qu et al., 2012, 2018). Far-travelled hydrocarbon migration can be 611 

precluded because there is no other known source of highly 13C-depleted material in the Onega 612 

Basin. Moreover, thermal cracking of organic matter will exclusively shift the preserved δ13Corg 613 

to more positive values (Hayes, 1983; Lewan, 1983; Clayton, 1991; Schidlowski, 2001),  the 614 

opposite of what is seen. Thus, it appears likely that the highly 13C-depleted organic matter in 615 

Units A and Unit B contains a significant methanotrophic component. 616 

As anaerobic methanotrophy coupled to sulphate reduction (anaerobic oxidation of methane; 617 

AOM) proceeded, conditions in the diagenetic environment would have become increasingly 618 

sulphidic, driving the redox interface closer to the sediment-water interface. A combination of 619 

elevated methane and high biomass burial flux will have intensified pore-water sulphate 620 

reduction rates, possibly exceeding diffusive replenishment from above (Goldhaber and 621 

Kaplan, 1975; Jørgensen, 1979, 2004). Such a scenario would have resulted in the near 622 

quantitative uptake of sulphate, muting the fractionation expressed between the initial sulphate 623 

and product sulphide. Complete reduction of the available pore water sulphate pool would 624 

produce sulphides with δ34S values that approximate or even exceed those of the initial seawater 625 

sulphate (Pasquier et al., 2017). During the Paleoproterozoic, MSR is thought to have been the 626 

main sulphur utilising metabolism (Canfield and Teske, 1996; Johnston et al., 2005b, 2006, 627 

2011). Pure culture studies of sulphate reducers have shown that, as MSR proceeds under 628 

sulphate limiting conditions, the sulphate δ34S values increase whereas the Δ33S values decrease 629 

relative to the starting sulphate (Johnston et al., 2005a). When plotted on a δ34S vs Δ33S three-630 
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isotope plot, our sulphur isotope data mostly populate quadrant II (Fig. 8), which is indicative 631 

of MSR (Johnston et al., 2005a, b, 2007; Sim et al., 2011). This, however, does not necessarily 632 

exclude the presence of sulphur oxidisers, since sulphide oxidation results in much smaller 633 

sulphur isotope fractionations than MSR and it is possible that the signal for sulphur oxidation 634 

was not preserved and/or is masked within the sediments (Balci et al., 2007; Zerkle et al., 2009, 635 

2016). 636 

We propose that the inverse covariation between pyrite δ34S and Δ33S and the values that deviate 637 

from that trend (i.e. positive δ34S and Δ33S) observed in our data reflect an organic-rich seafloor 638 

or shallow subsurface diagenetic environment where sulphate was readily available, but under 639 

high demand, and rapidly consumed. Most of our δ34S and Δ33S values vary from +15‰ to 640 

+25‰ and -0.05‰ to -0.02‰, respectively, with some slight variation (δ34S 20.2 ± 3.2‰ and 641 

Δ33S -0.03 ± 0.01‰, 1σ). Such isotopic stability in sedimentary sulphides requires an almost 642 

constant sulphate flux with a uniform isotopic composition. Thus, the sulphate pool had to be 643 

large enough to maintain high rates of sulphate reduction. Additionally, there is a clear 644 

statistically significant (p <0.05) negative correlation between Δ33S and Δ36S (Fig. 9): in Unit 645 

A, Δ36S= -7.66*Δ33S -0.08, R2=0.75; in Units B and C Δ36S= -4.10*Δ33S -0.15, R2=0.46. These 646 

small magnitude Δ33S and Δ36S values, and the observed co-variation between Δ33S and Δ36S, 647 

approximate the theoretically predicted Δ36S/Δ33S ratio for mass-dependent low-temperature 648 

processes (~-7; Ono et al., 2006; Farquhar et al., 2007; Johnston et al., 2007). Moreover, 649 

although the Δ36S/Δ33S array recorded in Unit A deviates slightly from the equilibrium 650 

prediction, it is in the range of values measured for sulphate reduction in natural settings 651 

(between -11 and -5; Johnston et al., 2007, 2008) and is thus consistent with MSR being the 652 

dominant active sulphur-utilising metabolism in the lower part of the OnZap section. Given that 653 

closed-system isotope effects may influence the relationship between Δ33S and Δ36S, whilst 654 

generating large variability in δ34S (Ono et al., 2006; Johnston et al., 2007), the up-section 655 

increase in the Δ36S/Δ33S ratios (~ -4 in Units B and C) could relate to such effects. 656 

5.4.3	Conditions	during	deposition	of	relatively	organic‐poor	Unit	C	657 

Unit C, the uppermost interval of the OnZap cores, represents a newly recovered and unstudied 658 

part of the Zaonega Formation. This ca. 25-m-thick interval is marked by parallel-laminated to 659 

ripple cross-laminated grey mudstones and dolostone beds that are less organic-rich than those 660 

in underlying units. Unit C also lacks evidence for hydrocarbon generation or migration. There 661 

is a slight trend towards more positive δ34S values accompanied by a positive shift in δ13Corg 662 

from -38‰ to -25‰ and a decrease in TOC and TS. We interpret this trend as indicating a 663 
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decreasing contribution from methanotrophic biomass in favour of more typical CO2-fixing 664 

autotrophic biomass contributing to the C-isotopic signatures of Unit C. As the hydrocarbon 665 

flux decreased, sulphate reducing microbes capable of utilising both methane (AOM) and 666 

organic carbon as electron donors (Joye et al., 2004), could have switched to solely organic 667 

carbon. Despite changes in the microbial community, the TOC content in Unit C (≤ 3 wt.%) is 668 

sufficiently high to have sustained sulphate reduction. A waning hydrocarbon flux would have 669 

shifted the redox interface deeper into the sediments where the availability of labile organic 670 

matter, iron concentrations and connectivity of pore waters to the overlying water column could 671 

have influenced sulphate reduction rates and the extent of S isotope fractionation between 672 

sulphate and sulphide (Zaback et al., 1993; Sim et al., 2011; Fike et al., 2015). The most variable 673 

δ34S, Δ33S, Δ36S/Δ33S ratios and the highest 34S-enrichments (outside Unit A) are found in Unit 674 

C. These may represent Rayleigh-type effects either in the sediments or indicate episodes of at 675 

least partial basinal isolation from the open ocean.  676 

Most pyrites from the OnZap section exceed the lower estimate for SWS isotope composition 677 

of δ34S ~+10‰ and Δ33S ~0‰ derived from the underlying Ca-sulphate evaporites of the 678 

Tulomozero Formation (Reuschel et al., 2012; Blättler et al., 2018). In ancient pyrite records, 679 

sulphides with δ34S values that exceed SWS are typically interpreted to reflect enhanced pyrite 680 

burial or changes in the marine sulphate reservoir (Goldhaber and Kaplan, 1975; Johnston et 681 

al., 2006, 2008; Gomes and Hurtgen, 2013; Fike et al., 2015). However, it has been highlighted 682 

that the decoupling of pore water and seawater sulphate reservoirs via sedimentary and 683 

diagenetic mechanisms can also produce highly 34S-enriched pyrites approaching and, rarely, 684 

even exceeding the seawater δ34S value (Aller et al., 2010; Fike et al., 2015; Pasquier et al., 685 

2017). Within the tectonically active Onega Basin it is likely that a combination of changes in 686 

microbial metabolic activity and sulphate mobility into the sediment pile resulted in the near 687 

quantitative reduction of sulphate into sulphide. 688 

The Onega Basin has experienced major variations in basinal configuration throughout its 689 

history. Lower part of the underlying Tulomozero Formation with >800 m thick evaporate 690 

succession revealed in Onega Parametric Hole captures one of such episodes in Onega Basin 691 

history where a restricted marine embayment with sabkha/coastal plain was developed 692 

(Krupeinik et al., 2011; Blättler et al., 2018). The exact palaeogeography of the Onega Basin 693 

during Zaonega time is not known but it is possible that episodic volcanic activity could have 694 

created barriers that impeded water mass exchange between the Onega Basin and the open 695 

ocean. In such a setting, it is conceivable that constriction of the hydrographic connection 696 
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between the Onega Basin and the wider global ocean would result in a smaller sulphate reservoir 697 

that would be more susceptible to sulphate drawdown and closed-system effects (e.g. Gomes, 698 

2013; Fike et al., 2015). The occurrence of abundant Fe-rich dolomite to ankerite solid-solution 699 

phase and siderite in Unit C might also imply a limited sulphate pool (Moore et al., 1992). Such 700 

conditions would result in low pore water sulphide availability that would favour Fe2+ 701 

incorporation into carbonate phase(s). Speculatively, the four δ34S positive excursions in the 702 

OnZap section, rising from ~+20‰ to > +30‰, followed by a return to ~+20‰, could represent 703 

such repeated expansions and contractions in the sulphate reservoir in pore waters and/or the 704 

overlying seawater. 705 

Thus, changes in microbial metabolic rates and communities, pore water connectivity and 706 

basinal sulphate concentrations may all be imprinted into the Zaonega Formation Corg- and S-707 

isotope record. Previous workers have used the latter to argue for a postulated decrease in 708 

atmospheric oxygen driving a decrease in global SWS concentrations (e.g. Scott et al., 2014). 709 

Our new and more comprehensive geochemical dataset offers an alternative explanation, one 710 

not dependent on equivocal assumptions about long-distance correlations and assumed 711 

temporal equivalence. We argue that the relatively consistent pyrite δ34S (~20‰) and Δ33S (-712 

0.03‰) values are best explained by a stable flux of sulphate into the sediments and rapid MSR. 713 

These conditions would track fluctuations in basinal sulphate isotope composition and, thus, 714 

the Zaonega sulphur isotope record is most parsimoniously explained as reflecting local (basin-715 

scale) conditions under closed-system behaviour rather than a global-scale phenomenon.  716 

7.	Conclusions	717 

Detailed lithological, mineralogical and geochemical observations of the recently drilled 102-718 

m thick OnZap core encompassing the upper Zaonega Formation show that the organic-rich 719 

mudstones and carbonate beds in the lower part of the section were deposited coevally with 720 

mafic volcanism. This created a dynamic setting of high heat flux, hydrocarbon migration and 721 

abundant nutrients that stimulated microbial activity within the sediments. In the lower Zaonega 722 

Formation elevated TOC, TS, abundant sulphide minerals and 13C-depleted organic matter 723 

(δ13Corg < -30‰) are all consistent with basin-wide methanotrophy and a high sulphate demand. 724 

High rates of pore-water MSR fuelled quantitative conversion of sulphate to sulphide causing 725 

pyrite to become increasingly enriched in 34S and approach the δ34S of the precursor sulphate. 726 

In contrast, the finely laminated grey mudstone and marly dolostone beds in the uppermost part 727 

of the Zaonega Formation record more variable redox conditions in a partially isolated/closed-728 
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system basin setting. The decrease in TOC and TS abundances and less negative δ13Corg at the 729 

top of the section likely reflect changes in the microbial community, as methanotrophs were 730 

superseded by CO2-fixing autotrophs in response to a waning hydrocarbon flux. The excursion 731 

towards δ34S values that exceed +30‰ are best interpreted as recording changing basinal 732 

conditions rather than changes in global seawater sulphate concentrations. Our findings 733 

highlight the culmination of microbial and basin-specific processes (magmatic activity, 734 

hydrocarbon seepage, sedimentary processes and basinal restriction), suggesting that these 735 

local- to regional-scale processes dominated the sulphur isotope record of the Paleoproterozoic 736 

Zaonega Formation. 737 
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Figure	captions		1058 

Figure 1. A. Simplified geological map of the Onega basin, NW Russia. Circles show locations 1059 

of the OnZap 1 and 3 holes, FAR-DEEP holes 12AB, 13A, Onega Parametric Hole (OPH) and 1060 

the C-175 and C-5190 holes. Inset map shows location of the Onega basin and occurrence of 1061 

Paleoproterozoic rocks (black) across the eastern Fennoscandian Shield. B. Simplified 1062 

geological map of the Zaonega Formation (after Melezhik et al., 2013a) near locations of OnZap 1063 

1 and 3 holes and FAR-DEEP hole 13A. 1064 

Figure 2. Representative images of the OnZap cores. A. Fine-grained laminated mudstone with 1065 

pyrite concretions and layers (11.8 m depth). B. Laminated fine-grained dolostone (13.4 m 1066 

depth). C. Finely parallel-laminated to ripple cross-laminated grey mudstone (19.38 m depth). 1067 

D. Laminated organic-rich mudstone with soft-sediment deformation, quartz and pyrobitumen 1068 

veining (63.4 m depth). E. Silicified organic-rich mudstone displaying deformation, intense 1069 

veining and secondary pyrite (76.5 m depth). The width of all the images is 7 cm. 1070 

Figure 3. Scanning Electron Microscopy (SEM) images of different textural types of pyrite. A. 1071 

Organic-rich mudstone containing ellipsoidal clusters of fine pyrite crystals at 53.78 m depth; 1072 

early diagenetic origin is indicated by the deflection of laminae around the clusters. B. Organic-1073 

rich mudstone with abundant fine pyrite crystals at 56.66 m depth. C. Close-up of fine-grained 1074 

pyrite in image 3B containing inclusions of surrounding material in the central parts of the 1075 
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crystals. D. SEM EDS element composite map of large anhedral pyrite in a calcareous mudstone 1076 

that appears texturally co-genetic with calcite at 26.8 m depth.  1077 

Figure 4. Generalised lithostratigraphic profile of the OnZap section divided into Units A to C 1078 

(see text for details) and XRD-derived distributions of select mineral phases. The two OnZap 1079 

cores are correlated using the base of a dolomite-chert unit occurring at 53 m in OnZap1 and at 1080 

10.8 m in OnZap3. Horizontal grey-shaded bars show intervals with evidence for secondary 1081 

alteration. Grey and black data points denote samples from OnZap 1 and OnZap 3, respectively. 1082 

Figure 5. Generalised lithostratigraphic profile of the OnZap section divided into Units A to C 1083 

(see text for details) plotted alongside selected components (TOC; TS; Fe2O3; SiO2; Al2O3 and 1084 

K2O). The two OnZap cores are correlated using the base of a dolomite-chert unit occurring at 1085 

53 m in OnZap1 and at 10.8 m in OnZap3. Horizontal grey-shaded bars show intervals with 1086 

evidence for secondary alteration. Grey and black data points denote samples from OnZap1 and 1087 

OnZap3, respectively. 1088 

Figure 6. Generalised lithostratigraphic profile of the OnZap section divided into Units A to C 1089 

(see text for details) plotted alongside carbon and sulphur isotope data and XRD-derived iron 1090 

distribution data. The two OnZap cores are correlated using the base of a dolomite-chert unit 1091 

occurring at 53 m in OnZap1 and at 10.8 m in OnZap3. Horizontal grey-shaded areas show 1092 

intervals with evidence for secondary alteration. Grey and black data points denote samples 1093 

from OnZap 1 and OnZap 3, respectively, whereas blue dots represent AVS results. Errors for 1094 

the δ13Corg and δ34S are encompassed within the data points whereas the grey-shaded envelope 1095 

illustrates the 1σ estimates of the analytical uncertainty for the Δ33S (0.015‰) and Δ36S (0.2‰) 1096 

data. 1097 

Figure 7. Sulphur (TS) and iron (FeT-OES) concentrations for the entire OnZap section. Black 1098 

circles are derived from Unit A, grey circles from Unit B and orange circles from Unit C. Errors 1099 

are encompassed within each data point. 1100 

Figure 8. Triple-isotope plot of the pyrite sulphur isotope data for the entire OnZap section. 1101 

Black circles are derived from Unit A, grey circles from Unit B and orange circles from Unit 1102 

C. Uncertainties in the Δ33S values (0.015‰) are illustrated in grey, whereas the uncertainty in 1103 

δ34S values are encompassed within each data point.  1104 

Figure 9. Quadruple-isotope plot of the pyrite sulphur isotope data for the entire OnZap section. 1105 

Black circles are derived from Unit A and orange circles are from Units B and C. The dashed 1106 
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lines are regressions through the datasets derived from Unit A (-7.66; black) and Units B and 1107 

C (-4.10; orange). The analytical uncertainties (1σ) in both Δ33S (0.015‰) and Δ36S (0.2‰) are 1108 

illustrated in grey. 1109 

Supplementary	table	captions	1110 

Supplementary table 1. Sulphur and organic carbon isotope data for the OnZap1 and OnZap3 1111 

drill cores from the upper Zaonega Formation, NW Russia. 1112 

Supplementary table 2. Sulphur and carbon contents of the OnZap1 and OnZap3 drill cores 1113 

from the upper Zaonega Formation, NW Russia. *Inorganic carbon (IC) abundances were 1114 

calculated as the difference between TC and TOC. 1115 

Supplementary table 3. Mineralogical composition of whole rock samples and iron 1116 

distribution in different mineral phases for the OnZap1 and OnZap3 drill cores from the upper 1117 

Zaonega Formation, Onega Basin, NW Russia. 1118 

Supplementary table 4. Major element composition for the OnZap1 and 3 drill cores, from the 1119 

upper Zaonega Formation, Onega Basin, NW Russia. 1120 

Supplementary	figure	1121 

Supplementary figure 1.  Comparison of the calculated FeT-XRD and total Fe determined by 1122 

ICP-OES (FeT-OES). The FeT-OES and FeT-XRD converge on a trend line with a slope of 1.1053 1123 

and R2 = 0.92.  1124 


