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Abstract 
There has been a growing interest in accurately estimating surface solar radiation at high 

latitude locations. From a Scandinavian perspective, the installed solar photovoltaic share is 

increasing, primarily because of the declining cost of these systems, the introduction of various 

economic incentives and societal push to generate one’s own clean power. In the coming years, 

it is anticipated that the share of photovoltaics in the energy mix of Scandinavia will increase 

substantially.  

One of the main deterrent in an accurate estimation of surface solar radiation is the limited 

coverage of geostationary satellites. These satellites, which are widely used globally to estimate 

solar radiation, do not provide coverage above 65ºN. Alternatively, polar orbiting satellites can 

be used to estimate surface solar radiation but a low sensing frequency and difficulties in 

differentiating clouds from snow-covered surfaces result in a large number of missing values 

in the data. Moreover, reanalyses also provide surface solar radiation estimates and in recent 

years, it is seen that the accuracy of reanalyses with respect surface solar radiation is getting 

better. 

This thesis starts with providing an evaluation and comparative analyses of different solar 

radiation datasets for high latitude locations. First, an empirical model based on intra-day 

temperature differences and relative humidity is proposed. This model can be used at 

meteorological stations that do not have dedicated equipment to estimate surface solar radiation. 

Then, a comparative analysis is performed for Norwegian locations in which four different 

models were evaluated. It was found that satellite databases are more accurate than reanalyses 

and empirical models. However, satellite databases were found to underestimate solar radiation 

while reanalyses were found to overestimate it. After this, a study was performed to evaluate 

the CLARA-A1 and CLARA-A2 polar orbiting satellite based datasets. It was found that the 

CLARA-A2 dataset has less number of missing values but mostly the increase in data is at 

snow-covered surfaces. The data in CLARA-A2 has higher accuracy than CLARA-A1, but at 

these new data points which were previously not available in CLARA-A1, the errors are very 

large. 

Finally, a novel regression-based solar radiation dataset is proposed here that uses one polar 

orbiting satellite dataset (CLARA-A2), one global reanalysis (ERA5), and auxiliary data based 

on Sun-Earth geometric relationships. The proposed dataset has better accuracy and precision 

than CLARA-A2 and ERA5 datasets. 
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1. Introduction 
As the human population is increasing, so is the global energy requirement. The increase in the 

energy requirement has exerted an escalating pressure on the climate in the form of emitted 

greenhouse gases leading to global warming. In the past 200 years, the production of heat and 

electric energy has been mainly from fossil-based systems. Due to the increasing population 

and economic development, the energy consumption is increasing even though the amount of 

energy required to produce one unit of income has decreased because of the advancements in 

technology and innovation. To mitigate the effects of climate change, nowadays there is a global 

drive to move towards cleaner and safer renewable energy systems. In this regard, the solar 

photovoltaic (PV) systems that generate electric energy based on irradiance from the Sun are 

increasing rapidly as well. In 2017, solar PV installations generated over 460 TWh of energy, 

which represents around 2% of global power output. There has been a growing interest in solar 

PV in the Nordic regions, but due to high latitude and frequent snow covers, the estimation of 

surface solar radiation from remote sensing techniques is not straightforward in these regions. 

The motivation behind this thesis lies in assessing the existing methods to estimate surface solar 

radiation in high latitudes and to provide improvement strategies for a better estimation of solar 

radiation in these regions. The lack of published research in this area represents a significant 

knowledge gap; the outcome of this thesis and appended papers is intended to give the scientists 

and policy makers a better understanding of surface solar radiation at high latitudes. This thesis 

starts with the assessment of available solar radiation sources like satellite and reanalysis, and 

concludes by proposing a regression method that significantly improves the estimated surface 

solar radiation. 

1.1 Aim of the thesis 
The central aim of this thesis is to analyze existing models that estimate surface solar radiation 

and to propose methods that can improve the current models for high-latitude locations. 

Estimating surface solar radiation from satellites is a well-developed and widely used method. 

On the other hand, reanalyses also provide surface solar radiation in addition to a number of 

other meteorological variables. A Reanalysis is based on data assimilation of observations and 

model-based forecasts, to estimate weather conditions. Solar radiation estimates from 

reanalyses are not as accurate as those obtained from satellite methods, but some recent studies 

have shown that the solar radiation estimates from reanalysis are improving and these can be 
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used to fill the missing values in satellite databases. This thesis has the following specific aims, 

which are addressed in the appended papers: 

• Developing a mathematical model to estimate surface solar radiation by using 

meteorological variables (Paper I). 

• Analyzing the improvements in the recent polar-orbiting-satellite based datasets (Paper 

II). 

• Analyzing the available solar-radiation databases for high-latitude locations (Paper 

III).  

• Developing a regression model to improve the analyzed datasets (Paper IV). 

1.2 Overview of the thesis and appended papers 
This thesis is structured in the following manner. Section 2 provides a general background of 

solar energy from a global and Norwegian perspective. Then, Section 3 explains basic Earth-

Sun astronomical relationships that were used in the research and gives an overview of available 

solar radiation estimation technologies and resources. Section 4 explains the datasets used in 

the research, quality controls applied and validation metrics used to assess the datasets. Section 

5 gives an overview of the previous research carried out on the estimation of solar radiation and 

presents the available knowledge gaps that this thesis aims to address. Section 6 presents the 

results from the research carried out. Finally, Section 7 provides a discussion on the results and 

future activities. 

This thesis is composed of four papers that deal with the estimated solar radiation at high 

latitude locations. The results of this thesis are drawn from the appended papers, which are 

briefly presented below: 

• Paper I presents a model that is based on the Hargreaves and Samani’s maximum- and 

minimum-temperature difference model. In the proposed model, relative humidity was 

also used. The model was implemented and tested on eight locations in Norway for 10 

years of data. Like other temperature difference models, this model had two distinct 

coefficients; one for coastal regions and another for inland regions. The proposed model 

slightly improved the Hargreaves and Samani model that it is based on. Some 

shortcomings of this model include having a highest temporal resolution of daily 

averages and inaccuracies introduced by having large temperature differences in clears 

sky-days. Importantly, as this model required in-situ measurements of temperatures and 
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relative humidity, its spatial resolution was limited to the locations where these 

meteorological variables are measured. 

• Paper II presents a comparative analysis of CLARA-A1 and CLARA-A2 datasets for 

high latitude regions. The CLARA datasets are published by CM-SAF and these are 

constructed by using AVHRR instruments on-board the polar orbiting satellites. It was 

earlier found by some studies that satellite methods have high errors on snow-covered 

surfaces, which are frequent in high latitude regions. Because of this reason, CLARA 

datasets do not provide coverage on snow-covered regions. In this study, it was found 

that CLARA-A2 has less number of missing points than CLARA-A1. However, the new 

data points that were not available in CLARA-A1 had very high errors. Overall, it was 

found that CLARA-A2 is an improved data set, but it should be properly evaluated 

before using in regions that receive frequent snow cover. 

• Paper III In this study, four dataset are compared and assessed for high latitude 

locations. Two of these datasets, CLARA-A2 and SARAH-2 are based on satellite 

models while the other two are reanalyses; a global reanalysis ERA5 and a regional 

reanalysis ASRv2. In this study, it was found that at location above 65ºN, CLARA-A2 

provided better estimates then other datasets while below 65ºN SARAH-2 provided 

better estimates. It should be noted that SARAH-2 does not provide data above 65ºN. 

However, it was observed that for monthly averages of solar radiation, ERA5 provided 

comparable quality of estimates to CLARA-A2 and SARAH. ASR had the highest 

errors at all locations in this study. Furthermore, the cloud placement accuracy of ERA5 

was analyzed and it was found that these errors are possibly due to overestimation of 

TCWC (total cloud water content) in intermediate-cloudy and overcast categories and 

an underestimation in clear-sky category. Nevertheless, ERA5 reanalysis can be used as 

a substitute to satellite databases for gap-filling procedures as the satellite datasets have 

missing values. 

• Paper IV In this paper the knowledge gained from the previous papers is used to 

construct a novel data set by using an advanced regression method. In the previous 

studies, it was seen that generally satellite datasets underestimate solar radiations while 

reanalyses overestimate it. The hypothesis for this work is that combining two dataset 

with a regression model, where one dataset is having underestimation (Satellite based 

dataset) and other having overestimation (Reanalysis) can improve the estimated 

surface solar radiation. Random forest regression method was used with surface solar 

radiation estimates from ERA5 and CLARA-A2 for 31 locations in Norway and 16 
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years of data. In addition to surface solar radiation, solar azimuth angle, latitude, altitude 

and clear-sky index were used in the regression. The proposed dataset was improved on 

averages of daily, monthly, seasonal, and different-sky conditions. The regression 

model was tested on five locations from Sweden, which were not used in the training of 

the regression model. Almost the same degree of improvements was observed in 

Swedish locations as compared to the Norwegian locations that were used in the 

training. 
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2. Background 

This chapter presents the background of the research undertaken in this thesis. Section 2.1 

presents a historical overview on energy and climate change. In Section 2.2, the global energy 

demand and the available infrastructure are discussed. Then Section 2.3 gives an overview of 

the Norwegian energy infrastructure. Section 2.4 presents a global perspective on solar energy. 

Finally, in Section 2.5, the global solar energy perspective of Norway and current situation 

regarding solar installations are analyzed.  

2.1 Historical overview of energy and climate change 

Energy has played a central role in the evolution and prosperity of human societies. One of the 

first milestones of human evolution was the discovery of fire.  This can be considered as the 

starting point of using energy for converting materials from one form to another, as in cooking 

food, refining metals or making pottery (1). Around 2500 years ago, humans started using 

energy from wind and water by inventing mills that convert energy from these sources to a 

rotary motion. One of the first documented evidences of using windmills was in Persia in the 

tenth century (2). This invention made it possible to grind edibles and produce other valuable 

resources. These pre-industrial advancements required a modest supply of energy, which was 

in turn restricted by the population growth and land availability (3). Apparently, the pre-

industrial era can be considered as a hundred percent renewable based system, in which 

biomass, water and wind sources were the main drivers. This can be seen by observing the 

historical temperature anomalies in Figure 2.1, which shows a gradual increase in global 

temperatures after the industrial revolution.  
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Figure 2.1: Temperature anomalies for 1880 to 2018 with respect to 20th century average. In 

this period, there is a positive trend of 0.07º C per decade. A sharp rise can be observed after 

the industrial revolution* (4). 

This period was followed by the Industrial revolution in Britain from 1760 to 1830. Industrial 

revolution brought major transformation in the socio-economic aspects, which on one hand 

brought an evolution in the living standards, but on the other hand, came with an increase in the 

emitted greenhouse gases (GHG). The turning point of the industrial revolution was the 

invention of steam engine, which unlike the cleaner wind and water mills, used fossil fuels. One 

of the earliest evidences of global warming caused by GHG was pointed out by Prof. Svante 

Arrhenius in 1896 (5). From the start of the 20th century, many scientists believed that carbon 

dioxide is the main cause for the rise in global temperatures but these studies lacked a concrete 

evidence (6). However, in 1985 World Climate Program published a report that pointed out the 

temperature increase by using powerful computers and sophisticated climate models (7). 

Meanwhile in Antarctica, research teams from France and Soviet Union performed ice drills 

and showed that both temperatures and carbon dioxide concentration have increased in the past 

ice ages. These studies developed a relation between temperature rise and carbon dioxide 

concentration in the atmosphere, however, this cause and effect relation between GHG and 

global temperature may be different from today (8). Following these and other researches, in 

*NOAA National Centers for Environmental 
Information – accessed 10.11.2018 
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1988 World Meteorological Organization (WMO) and United Nations (UN) established 

Intergovernmental Panel on Climate Change (IPCC) that was tasked with publishing climate 

change reports. 

2.2 Current energy needs and infrastructures 

In the history of human evolution, energy has played a major role. As humans evolved and 

progressed, there was a tremendous increase in the energy requirements of the world. The 

energy demands are still increasing every year and in 2016, the total primary energy supply 

(TPES) of the world was 13 761.4 Mtoe (million tons of oil equivalent) (9) . TPES is defined 

as the total supply of energy that is consumed locally. Figure 2.2 (a) shows an overview of the 

energy supplies for 2016. Moreover, 2017 saw an enormous increase in the global energy 

consumption, which grew at a rate of 2.2% as compared to 1.1% in 2016. Such an accelerated 

increase in the demands for energy consumption brings an increase in the emitted GHG. In the 

same period, the carbon emissions grew by 1.6% (10). The main sources of GHG emission are 

associated with production of electricity, heating and transport, which accounted for 49% of the 

total emissions in 2017. In the meantime, renewable energy share grew by 17%, higher than the 

last 10 years average (10). Even though there was an increase in the share of renewable energy, 

a decrease in the GHG emission was not observed because of the increase in total energy 

demands, which is illustrated in Figure 2.2 (b). 

 

 (a)* 

*Based on IEA data from Renewables information: overview © 
OECD/IEA [IEA 2018], www.iea.org/statistics, License: 
www.iea.org/t&c 



 

8 
 

 

 

(b) 

Figure 2.2: (a) The total primary energy supply (TPES) for 2016. The major portion of the 

energy supply is from fossil-fuel based systems, while there is a constant increase in the 

renewable energy sources. (b) The increase in world consumption in terms of different 

resources from 1992 to 2017* (11). 

2.3 Energy Overview of Norway 

The Norwegian energy supply has one of the highest share of renewable energy in the world. 

Hydropower provides the backbone for the energy infrastructure in Norway, providing 96% of 

the electricity and a large reservoir capacity of 85 TWh (half of the total in Europe). Other 

renewables account for a mere 2% of the generated electricity. Among the IEA member 

countries, Norway has the fifth lowest share of fossil fuels in TPES, although this has increased 

by 10% in the past ten years. Oil is one of the biggest industries in Norway and it has enabled 

Norway not only to be independent from energy imports but also made it one of the major 

exporters of energy. However, Norway has to rely on importing electricity periodically from 

the Nordic market to meet its peak demands. Norway has a unique energy overview; on one 

*IEA/IRENA Global Renewable Energy Policies and Measures 
Database © OECD/IEA and IRENA, [28.11.2018] 
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hand most of the energy generated in the country comes from hydro power, and on the other 

hand Norway is Europe’s largest exporters of Oil (9). Figure 2.3 shows the overview of energy 

production of Norway.  

 

Figure 2.3: Energy production overview of Norway. TPES represent the total primary energy 

supply, which is defined as the total supply of energy that is consumed locally, expressed in 

million tons of oil equivalent. Total final consumption (TFC) represents the final consumption 

by the end user in the form of electricity, heat, gas, oil etc.* (9).  

The total final consumption (TFC), which is defined as the final consumption by the end user 

in the form of electricity, heat, gas, oil etc., has been around 20 Mtoe over the past 15 years. As 

depicted in Figure 2.3, industry is the largest energy-consuming sector with 40% of the TFC 

share. This is followed by transport, which accounts for 24% of TFC. Norway has been very 

progressive towards climate change mitigation and sustainability, and in this regard, the 

government plans to reduce emissions by 30% from 1990 to 2020, and become carbon neutral 

by 2030. By 2050, the state targets include to become a low emission society. Although Norway 

still has large shares of hydropower in the electricity mix, the oil industry and transport sector 

use fossil fuels that contribute the most to the carbon emissions. One of the primary targets to 

become a low emission society would be to use renewable sources in these sectors. The 

transport sector is very progressive where the government has implemented strong incentives 

for electric vehicles (9). 

*IEA/IRENA Global Renewable Energy Policies and Measures 
Database. Energy Policies of IEA Countries: Norway 2017 Review 
© OECD/IEA and IRENA, [28.11.2018] 
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2.4 A Global perspective on Solar Energy 

The Paris Agreement signed on December 2015, limits countries intent to the global warming 

to below 2ºC. To reach this target, solar energy will be one of the most important resources. 

Existing fossil-based energy systems can be replaced by more cleaner solar energy systems, 

meanwhile future energy needs can be fulfilled by using solar and other renewables. In 2016, 

renewable energy accounted for 18.2% of global TFC (10.4% of these systems were modern 

renewable, including wind turbine, solar photovoltaic (PV) etc.). A record increase in the 

installed PV capacity was observed in 2017 with 98 GW of PV additions, almost twice of the 

wind power additions and more net capacity than coal, natural gas, and nuclear power 

combined. The total global capacity of solar based energy systems reached 402 GW by the end 

of 2017 (12). These increments in installed capacity are largely due to the subsidies provided 

by the governments and the declining prices of PV. 

  

Figure 2.4: The increase in the installed PV capacity in the world from 2007 to 2017. 2017 saw 

a record addition of 98 GW and total installed capacity reaching 402 GW (12). 

Even though there has been an exponential rise in PV and other renewable sources in the world, 

the demand for energy has also been increasing. To mitigate the effects of increasing energy 

requirements, and the consequent increase in the carbon emissions, renewable sources needs to 

increase at least six times faster if the goals set by the Paris Agreement are to be met (13). 

*REN21. 2018. Global Status Report.  (Paris: REN21) 
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2.5 Solar energy in Norway 

There is a common misconception about the feasibility of harvesting solar energy in the Nordic 

regions. Unlike equatorial regions that have a daily regular variation in received solar radiation, 

high latitude locations have a very different variation; as in these regions, midnight Sun occurs 

in the summer months with 24 hours of sunlight and polar nights occur in the winter when the 

Sun remains below the horizon. Because of these characteristics, the distribution of solar 

radiation is skewed towards the summer months. In high latitude regions, solar energy-based 

systems become viable only in conjunction with other sources that can provide back up in 

winter months. In the summer months, the Sun lie’s above the horizon for a long time but PV 

systems become feasible only with at least one axis tracking. By employing a tracking system, 

the annual solar energy yields in Norway are comparable to that of Germany, which is the 

industry leader in PV installation.  

In Norway, the penetration of solar PV or thermal has not been very large but recent years saw 

an exponential rise in the installed solar PV systems. Figure 2.5 shows the increase in the 

installed PV capacity from 2012 to 2017 in Norway.  

 

Figure 2.5: Installed capacity of solar PV in Norway. The growth in the PV installed capacity 

have been exponential in Norway with 2017 having the highest growth* (14).  

The recent increase in the installed capacities of solar PV systems in Norway is also 

substantially due to the subsidies provided by government and the declining costs of these 

systems. A determining factor for the relative slow growth of solar systems is the price of 

*IEA Photovoltaic Power Systems Programme 
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electricity in Norway, which is considerably lower than in central and southern Europe. A low 

electricity price means that it is harder for solar systems to compete.  
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3. Solar radiation 
The technical and economic performance of solar thermal or solar PV systems depends on the 

total amount of solar radiation received on their exposed surface. Such estimations for specific 

locations give an insight into the pre-feasibility of these energy systems. This section describes 

the Earth-Sun astronomical relationships from the perspective of harnessing solar energy. 

Section 3.1 provides an overview of the potential of solar energy on the surface of Earth and 

different astronomical variables that affects it. Section 3.2 illustrates the path of the Sun for 

high latitude locations and demonstrates the usefulness of optimal angles and tracking strategies 

that increase the energy generation from solar energy systems. In the end, Section 3.3 gives an 

overview on the available solar radiation databases for Norwegian locations. 

3.1 Harnessing energy from the Sun 
The amount of energy from the Sun striking the surface of the Earth is very large. About 1.75 

x 105 TW of solar power constantly strikes the Earth’s surface. Even after considering a 40% 

loss from atmospheric cloud cover at any time, 1.05 x 105 TW is available on Earth’s surface 

at any time. By using only 1% of the surface of Earth and converting it with a 20% efficiency, 

it would provide a resource base of 210 TW. The total global energy needs for 2050 are 

projected to be approximately 25-30 TW (15). These figures show that with a little effort most 

of the future energy demands could be met by using a clean and GHG emission free resource. 

However, there are a few hindrances in achieving such goals. Despite the fact that solar resource 

is abundant, one of its limitations is that it has a low flux density, which requires very large 

areas to be used as collectors. The Earth has a surface area of 510 million km2, 1% of this 

surface is still a gigantic area. The second barrier is that most of the radiation falls on remote 

locations, which are far away from the human settlements. Equatorial regions between 25ºN 

and 25ºS receive large amounts of solar radiation on horizontal planes but most of these areas 

are desert regions (15). High temperatures, dust, lower availability of water and low population 

make these areas unfavorable for large installations. Some form of transmission infrastructure, 

which is expensive, must be developed prior to large installations in these areas (15). A viable 

solution can be achieved by installing medium and large power plants along with residential 

rooftop systems. Extreme northern and southern areas also receive adequate amount of 

radiation, but the average sun light duration is not constant throughout the year, as in equatorial 

regions. In these regions, tracking systems can enhance the generated energy production. The 

third deterrent is the need for storage. Solar energy is intermittent in nature and to be effective, 
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it needs a storage system that can provide backup when the Sun is below the horizon. 

Alternative methods are being developed that propose hybrid systems that employ solar, wind, 

hydro, biomass, and energy storage to flat out the intermittency (15).  

3.1.1 Extraterrestrial radiation 
The Sun emits tremendous amounts of energy while maintaining a surface temperature of 5760 

K. To sustain all kinds of life, the Earth uses this energy in various forms, e.g. photosynthesis, 

wind circulation, water circulation, vitamin D, and so forth. Sun emits its energy in the form of 

electromagnetic radiation mostly in the range of 0.15 μm to 120 μm. This bandwidth covers 

visible spectrum in addition to ultraviolet and a part of infrared spectrums. The solar radiation 

received just outside the Earth’s atmosphere is called extraterrestrial radiation (16). The value 

of extraterrestrial radiation changes throughout the year because of the changing distance 

between Sun and Earth (5.9% variation over a year). The variation in distance occurs because 

the Earth makes an elliptical orbit around the Sun. In solar radiation studies, a constant value 

of extraterrestrial radiation that is averaged over a year, called solar constant, is taken as 1361.1 

Wm-2 (17). Figure 3.1 shows the daily average extraterrestrial irradiance on a horizontal surface 

for Tromsø, Norway over a year (adapted from Paper I). 

 

Figure 3.1: Daily average extraterrestrial radiation for Tromsø. The extraterrestrial radiation is 

zero in winter months because the Sun remains below the horizon (adapted from Paper I).   
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3.1.2 Solar radiation at the surface of Earth 
To reach the surface of the Earth, the extraterrestrial radiation travels through the atmosphere. 

About 30% of the extraterrestrial radiation is reflected back by the atmosphere and 16% is 

absorbed by atmospheric gases (16). While passing through the atmosphere, solar radiation 

interacts with atmospheric gases like carbon dioxide, ozone and water vapors that cause 

absorption and scattering at certain wavelengths. Figure 3.2 depicts the spectral distribution of 

solar radiation outside the atmosphere, on the surface of Earth and the absorption caused by the 

atmospheric gases. Table 3.1 lists the distribution of energy in the solar spectrum on the surface 

of the Earth. It can be seen from Figure 3.2 and Table 3.1 that most of the energy in the terrestrial 

solar radiation lies in the visible and infrared bandwidths. 

Table 3.1: Distribution of spectral contents of the Sun on the surface of Earth (16) 

Type of radiation Range of wavelengths (nm) % of energy carried 
Ultraviolet 150 to 380 7.6 

Visible 380 to 720 48.4 

Infrared 720 to 4000 43 

Other  >4000 1 

 

 

Figure 3.2: The spectral irradiance of the Sun is shown for extraterrestrial and terrestrial 

radiation. The absorption caused by different atmospheric gases is also indicated (18). 

*Creative commons, Solar Spectrum, by Robert A. Rohde as part of the 
Global Warming Art Project 
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When the solar radiation passes through the Earth’s atmosphere or airmass, the direct optical 

path length that sunlight travel through the atmosphere determines the attenuation caused by 

scattering or absorption by the atmosphere (16). Airmass can be calculated by Equation 1: 

𝐴𝐴𝐴𝐴 =
1

cos(𝜃𝜃) , (1) 

where θ is the angle that rays of the Sun make with the vertical at any point on the surface of 

the Earth. The radiation outside the atmosphere (extraterrestrial radiation) is referred to as AM0. 

In equatorial or tropical regions, the Sun is at the highest position at solar-noon and the solar 

radiation has to travel the least amount of distance to reach the surface. This is type of airmass 

is called AM1. However, at high latitude locations, the elevation of the Sun remains very low 

and the solar radiation has to travel relatively longer through the atmosphere when compared 

to equatorial regions. θ, the angle the sunrays make with the vertical can be related to the solar 

elevation or altitude angle. It is the angular height of the Sun in the sky measured from the 

horizontal (19). Solar elevation is expressed by the following equation: 

𝛼𝛼 = 90 + 𝜑𝜑 − 𝛿𝛿, (2) 

where, α is the solar elevation, φ is the latitude of a location and δ is the declination angle 

(explained later). As this angle determines how much the sunlight has to travel in the 

atmosphere before striking the surface of the Earth, it plays a critical role in determining the 

total production from solar collectors and their optimal angles.  

 

 

Figure 3.3: Solar elevations for Tromsø, Norway and Tengger Desert Solar Park, China 
(biggest solar photovoltaic installation in the world). Tromsø lies at 69ºN latitude while Tengger 
Solar Park lies at 38ºN latitude. It can be seen that the highest elevation on summer solstice is 
43º in Tromsø while it is 76º at Tengger Solar Park. X-axis shows the number of hours in a year 
(8760 for non-leap years) 
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Figure 3.3 shows a comparison of solar elevations between Tromsø, Norway and Tengger 

Desert Solar Park (located in Zhongwei, Ningxia, China). Tengger Desert Solar Park is the 

largest solar PV installation in the world with a total peak power output of 1500 MW (20). The 

highest solar elevation occurs in summer solstice (21 June), which in Tromsø is low at 43º while 

at Tengger Desert Solar Park it is 76º. The negative values in Figure 3.3 show that the Sun is 

below the horizon. Another interesting point to note is even though the solar elevation is higher 

in Tengger Desert Solar Park, on 21st of June the sunsets while in Tromsø, even after having a 

low solar elevation, the Sun remains above the horizon. This indicates that despite having low 

solar elevation, the high latitude locations receive more solar radiation in summer months 

mainly because the Sun remains above the horizon for relatively longer periods.  

3.1.3 Declination angle 
The declination angle is defined as the angle between the equator and a line drawn from the 

center of the Earth to the center of the Sun (16, 19). Declination angle is independent of latitude 

and longitude, and it is responsible for changes in seasons. The maximum change in declination 

angle is less than 0.5º, which occurs at the equinoxes and for this reason a constant value is 

usually taken for a day (21). Declination angle is expressed by the following equation. 

𝛿𝛿 = 23.34 × 𝑠𝑠𝑠𝑠𝑠𝑠 �360
365

(284 + 𝑠𝑠)� , (3)

where δ is the declination angle and n is the day number (from 1 to 365). Figure 3.4 illustrates 

a plot of declination over a year. 
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Figure 3.4: The variation in declination angle over a year is shown here. The declination angle 

changes from -23.45º (December solstice) to 23.45º (June solstice), while twice a year the value 

of declination angle becomes zero at equinoxes (16). The x-axis represents the day number of 

the year ranging from 1 to 365 for non-leap years. 

3.1.4 Equation of time 
A solar day, not necessarily 24 hours, is based on one full revolution of the Earth around its 

axis. The solar day varies in length throughout the year because the Earth sweeps unequal areas 

on the elliptic plane as it revolves around the Sun because the Earth’s axis is tilted with respect 

to the elliptic plane (21). The inconsistency caused by such a revolution is called equation of 

time. As much as 16.45 minutes of variation can occur because of the eccentricity of Earth’s 

orbit (19, 22). The equation of time is given by: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 9.87 × sin(2𝐵𝐵) − 7.53 × cos(𝐵𝐵) − 1.5 × sin(𝐵𝐵), (4) 

where B is given by, 

𝐵𝐵 =
360
365

(𝑑𝑑 − 81), (5) 

where d is the day number (from 1 to 365). The equation of time is shown graphically in Figure 

3.5. 
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Figure 3.5: Graphical illustration of equation of time. The change in solar time occurs because 

of the eccentricity of Earth’s orbit. A maximum of 16.45 minutes of variation occurs in a year. 

The x-axis represents the day number of the year ranging from 1 to 365 for non-leap years. 

3.2 Path of the Sun at high latitude locations 
The path of the Sun relative to an observer changes significantly with latitude. Figure 3.6 shows 

the path of the Sun in Tromsø for solstices (when the Sun is farthest away from the Earth on 

June 21 and December 21) and equinoxes (when the Sun is exactly above the equator on March 

21 and September 23). For Tromsø, the path of the Sun for December 21 is not visible because 

the Sun lies below the horizon; however, on June 21 the Sun remains above the horizon for 24 

hours, hence a 360º visibility of the Sun. Nevertheless, comparing this Sun path to the one 

shown for Gavdos (Greece), the southernmost point of Europe (34º50′N 24º05′E) in Figure 3.7, 

it can be seen that at lower latitude, optimally inclined solar collectors can be feasible while at 

higher latitudes, solar collectors with tracking systems can increase the output significantly. 



 

20 
 

 

Figure 3.6: Path of the Sun motion for Tromsø. The paths are plotted for solstices and 

equinoxes, i.e. 21 June, 22 September, and 20 March. The path for 21 December is not visible 

because the Sun does not rise above the horizon. 

 

Figure 3.7: Path of Sun motion for Gavdos, Greece. The paths are plotted for solstices and 

equinoxes, i.e. 21 June, 22 September, 20 March, and 21 December.  
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3.2.1 Optimal angles for fixed collectors 
The angle of incidence of sunlight on a solar collector changes with time of the day and day of 

the year, as shown in Figures 3.6 and 3.7. A solar collector will harness more energy if its 

surface is oriented towards the Sun at all times. In most cases, primarily due to economic 

reasons, solar collectors are installed with a fixed optimal tilt. A rule of thumb for the optimal 

tilt is shown by equation 6. 

𝛽𝛽 = 𝜙𝜙 − 𝛿𝛿, (6) 

where β is the optimal inclination angle in degrees, 𝜙𝜙 is the latitude and δ is the declination 

angle. Over a year, as the average of declination angle δ is zero, the optimal inclination angle 

for a year at a particular location would be equal to the latitude of that location. It can be seen 

from Figures 3.6 and 3.7 that the optimal surface azimuth angle for the northern hemisphere is 

true south. Although, on the basis of average declination angle, specific optimal tilts could be 

calculated for different months or seasons to optimize solar energy systems (16). By using an 

optimal tilt angle, the received solar radiation at the surface of the solar collector can be 

increased by 10 to 25% when compared to horizontally mounted collectors (22).  

3.2.2 Solar energy systems with tracking 
A solar collector mounted on a tracking system keeps the plane of the collector perpendicular 

to the incoming sunlight at all times. Such a tracking system increases the energy production 

by 30 to 50% when compared with stationary optimally inclined systems (23-26). In a two axis 

tracking system, the surface of the solar collector is always kept perpendicular to the incidence 

angle of the Sun. However, a single axis tracking system has one degree of freedom, which acts 

as axis of rotation. Usually, the axis of rotation in such a system is aligned along the true north 

meridian. 

3.3 Estimation of surface solar radiation 
This section gives an overview on the measurement and estimation of surface solar radiation. 

Section 3.3.1 explains the equipment used to record solar radiation at ground. This section also 

provides an overview of the available databases of solar radiation. In Section 3.3.2, the 

availability of ground measurements and solar radiation databases in Norway are explored.  
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3.3.1 Global solar resource estimation  
The most accurate way to record solar radiation is by using equipment like pyranometers or 

pyrheliometers as shown in Figure 3.8. Pyranometers are used to measure global irradiance (or 

in most cases, global horizontal irradiance (GHI) as a pyranometer is installed on a horizontal 

plane). To record the direct normal irradiance (DNI), a pyrheliometer is used.  

  

(a) Kipp and Zonen CMP11 pyranometer (b) Kipp and Zonen CHP1 pyrheliometer 

Figure 3.8: Kipp and Zonen’s CMP11 pyranometer and CHP1 pyrheliometer. Pyranometers 

are used to record global horizontal irradiance and pyrheliometers are used to record direct 

normal irradiance (27)*. 

From the publicly available ground measurements of solar radiation in Norway, none of the 

stations provide  DNI. Figure 3.9 depicts the available stations from Norwegian Institute of 

Bioeconomy Research (NIBIO) network that provide ground measured solar radiation data in 

Norway. It can be seen that most of the measurement stations are in the southern part of the 

country. The data from NIBIO is used in all the appended papers.  

*Kipp and Zonen Instruments. Reprinted with permission. 
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Figure 3.9: The NIBIO network provides ground-measured GHI data. Most of the stations in 

this network are in the southern part of Norway*. 

Other indirect methods to estimate solar radiation explored in this thesis include satellites 

models, reanalyses and empirical models. Satellite models that are used to calculate solar 

radiation are well developed and widely used and provide solar radiation estimates with 

reasonable accuracy. Reanalysis, both global and regional, are also used to estimate solar 

radiation. Although these have lower accuracy than satellite models but very recent versions of 

reanalysis are improving and becoming sub-par with satellite estimations (28, 29). Generally, 

it is seen that satellite methods underestimate solar radiation while reanalysis overestimate (29-

31). Empirical models exploit the relation between solar radiation and meteorological variables 

like sunshine duration, cloud cover, precipitation, humidity, temperature and so on. These 

models are considered as the least accurate (32). 

Some specialized products provide solar radiation estimates by using the above-mentioned 

techniques. The PVGIS 4 (33), is one such product that provides solar radiation estimates based 

on CM-SAF Meteosat geostationary satellite images. The extent of the data provided by PVGIS 

Tromsø 

Sortland 

Tjøtta 

Lyngdal 

Tingvoll 

Favang 

Skogmo 

 *Agrometeorology Norway, lmt.nibio.no. Reprinted with 
permission. 
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is approximately 70ºN to 70ºS and 70ºW to 70ºE; however, the uncertainty in data is high at the 

edges of the coverage. The new version of this web database called PVGIS 5 is available for 

testing, for more information refer to Huld, Pascua (34).  

Other products include S@tel-light, which provide solar radiation estimates for central and 

western Europe for the years 1996 to 2000 (35). Figure 3.10 presents an example of the 

coverage of S@tel-light for Norway. Another such database called SoDa (Solar radiation data), 

which is based on Helioclim 3, provides solar radiation estimates from Meteosat geostationary 

satellites. This database is also limited to -66º to +66º both in latitude and longitude (36). The 

data is available cost-free for a short time scale, while for longer time series there is an annual 

subscription. The SolarGIS is another such web application providing solar radiation 

estimations at 250m x 250m spatial resolution but this database is also limited to -60º to +60ºN 

and the data is available from 2004 onwards (37). Meteonorm is another such paid global 

database that is widely used. The data in Meteonorm covers the period from 1986 to 2005, with 

a total number of 1942 ground-measuring stations in the database. Meteonorm uses both ground 

measurements and geostationary satellite data to derive an interpolated global radiation dataset 

(38). Solem (39) is another such kind of a data set based on geostationary satellites (40). Most 

of the data sets based on satellite methods mentioned here are limited to 60º to 70ºN of latitude 

because they mostly use geostationary satellite that do not provide coverage above these limits. 

In addition, their accuracy becomes worse when moving towards high latitude regions. 

 

Figure 3.10: Map from S@tel-light showing the frequency of sunny skies. It can be seen that 

the data is limited to less than 65ºN* (41).  

 *Copyright Satellight 
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Likewise, a reanalysis product by Swedish Meteorological and Hydrological Institute (SMHI) 

called STRÅNG provides surface solar radiation estimates for Nordic regions with a grid of 

size 630 x 779. This product uses Mesan meteorological analysis model to produce the input 

and output fields (42). The input data for the product are derived from AROMIE numerical 

weather prediction system which is maintained at SMHI. This product provides instantaneous 

fields of global radiation, direct radiation and sunshine duration at a horizontal resolution of 

about 2.5 x 2.5 km and a temporal resolution of one hour. The accuracy  of STRÅNG is 

approximately 30% for the global horizontal irradiance and 60% for the direct irradiance. Figure 

3.11 shows a coverage map of STRÅNG for June 2016 (43).  

 

Figure 3.11: Global irradiation for June, 2017 from STRÅNG. This model covers the Nordic 

countries, the extent of the coverage can be observed from the figure (43).  

3.3.2 Solar resource databases for Norway  
Most of the satellite-based databases use geostationary satellites for a few reasons. First, these 

satellites have high spatial/temporal resolutions. Second, because of a large number of these 
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satellites, they provide coverage on almost all of the Earth. Third, a large population resides in 

the equatorial and mid latitude regions. However, these satellites do not provide coverage above 

60º-65ºN. Most commercial and cost-free products of solar radiation use geostationary satellites 

in constructing their databases. Although some of these products provide coverage over 

southern parts of Norway, at region above 65ºN there are high errors in these datasets because 

of the slant viewing angles experienced by geostationary satellites. In addition to high latitudes, 

Norway presents a complex and challenging topography for estimating solar radiation. Figure 

3.12 shows a digital elevation model of Norway (adapted from Paper II). 

 

Figure 3.12: Digital elevation model of Norway, adapted from Paper II. It can be seen that 

there are complex elevations both in the southern and in the northern parts of the country. 

Furthermore, Norway has a very low population density (2nd to Iceland in Europe). Because of 

a low population, there are only a small number of meteorological stations and even fewer of 

them record solar radiation. NIBIO is an agricultural network of pyranometers and it is the main 

agency responsible for maintaining and providing ground-measured solar radiation data for 

Norway. NIBIO has 47 stations in their database and at least 46 of these stations provide long-

term solar radiation data series. The data is free to download as hourly, daily, and monthly 

means (44).  
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4. Methodology and data 
In this chapter, the methodologies and the data used in this thesis and appended papers are 

presented. Section 4.1 gives an overview of the data used and their implications on the quality 

of estimations. Then Section 4.2 gives an overview of the ground-measured data. After this, 

Section 4.3 explains the different modelled data used in this thesis and appended papers. In 

Section 4.4, the quality control measures applied on ground-measured data are explained. 

Section 4.5 gives an overview of the regression method used in Paper IV. Section 4.6 shows 

the validation metrics used to evaluate the models. Finally, Section 4.7 shows the extraction 

methods used in the datasets. 

4.1 Overview of the data 
In this thesis, two types of data are used; ground-measured and modelled data. The ground-

measured data include temperature, relative humidity and incoming shortwave solar radiation 

(temperature and relative humidity are used only in Paper I). The modelled data include solar 

radiation estimation from empirical model, satellite models, and reanalyses.  

The most basic method to model solar radiation is by using empirical models. These models 

develop a relationship between incoming solar radiation and meteorological variables to 

estimate solar radiation. However, these models are site dependent and not as accurate as 

satellite models or reanalyses (32).  

Reanalyses were first proposed in 1988 (45, 46) and are available since the mid-1990s. The 

global and regional reanalyses have been used to study both long- and short-wave down-welling 

solar radiation (47-53). Global reanalyses, as the name suggests, provide global coverage for 

major meteorological variables. Reanalyses are available at multi-decadal time scales and are 

usually cost-free. The data are available for monthly, daily, and sub-daily means (54-60). A 

regional-reanalysis is constructed by either dynamically or statistically downscaling a global-

reanalysis. Weather research and forecast model (WRF) (61) is widely used in meteorology to 

downscale a number of global reanalysis under different configurations. One such example of 

a dataset, which is used in Paper II, is the Arctic System Reanalysis version 2 (ASR). ASR is a 

downscaling of ERA-Interim global reanalysis by using a polar optimized configuration of 

WRF (55). In Paper III and IV, ERA5 a global reanalysis from European Centre for Medium-

Range Weather Forecast (ECMWF) is used. 
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Satellite models provide the most accurate remotely sensed estimates of solar radiation. Fritz, 

Rao (62) provided one of the earliest studies on the possibilities of estimating surface solar 

radiation by using visible sensors installed on satellites. They observed a high correlation 

between the radiance measured by the satellite sensors and ground-measured data. Later, Cano, 

Monget (63) introduced the basic idea that the surface solar radiation is inversely related to the 

top-of-atmosphere reflectance. Mainly, two types of satellites are used in these methods i.e. 

geostationary and polar orbiting satellites. Geostationary satellites are positioned at 35 786 km 

from the surface of the Earth and provide continuous observation on a spatial resolution of 3 - 

5 km. However, geostationary satellites do not provide coverage in the polar regions because 

the apparent pixel size of the observation increases with latitude and longitude (64). For high 

latitude locations polar orbiting satellite are used as they provide coverage on poles. These 

satellites are positioned at around 800 km above the surface of the Earth and provide 

observation on a high resolution of 200 - 1000 m but with a low temporal frequency that varies 

with latitude (twice a day at equator and 14 times a day at the poles). The accuracy of 

geostationary satellite based datasets are better than polar orbiting satellite based datasets 

because of the high sensing frequency which takes into account the intermittent nature of solar 

radiation (32). Satellite methods generally underestimate down-welling shortwave solar 

radiation and reanalysis generally overestimate it (28, 29). 

In the following subsections, the datasets used in this thesis and appended papers are explained 

in detail. 

4.2 Ground-measured data 
The ground-measured data used here was obtained from Norwegian Institute of Bioeconomy 

Research (NIBIO) for Norwegian locations, and Swedish Meteorological and Hydrological 

Institute (SMHI) for Swedish location. Both databases record average hourly measurement by 

Kipp and Zonen CMP11 or CMP13 pyranometers. The equipment is regularly maintained (on 

weekly or monthly basis) and datasets are quality controlled by the respective organizations 

(65, 66).  

To evaluate the remotely sensed solar radiation estimates in different geographical conditions, 

the analyzed locations were divided into inland, coastal, above 65ºN and below 65ºN regions 

(Papers III and IV). The division between inland and coastal regions was established by 

observing the proximity of the stations to the shoreline. Regions within 30 km of the shoreline 

were considered as coastal. From the 31 Norwegian locations studied in Papers III and IV, 14 
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locations were classified as coastal and the rest as inland. The other two groups were made 

based on the latitude of locations where regions lying above 65ºN were grouped together while 

locations lying below 65ºN were put in another group. From the 31 Norwegian locations studied 

in Paper III and IV, 4 locations lie above 65ºN and 27 lie below 65ºN. For details on this 

classification, refer to the Appendix, Table A. 

In Paper II, SMHI and NIBIO data were used and years having more than 10% of missing 

values were discarded. The rest of the years were having missing data and these were filled by 

using linear interpolation. In Paper III and IV, the ground-measured data was used after 

applying Baseline Surface Radiation Network  (BSRN) recommended Long and Dutton quality 

control (67) and a quality control based on comparing the ground deviation with reanalysis and 

satellite model proposed by Urraca, Gracia-Amillo (68). These quality control procedures are 

explained in Section 4.4. 

In addition to ground-measured solar radiation, temperature and relative humidity were used to 

construct a model to estimate solar radiation in Paper I. These data were acquired from NIBIO. 

4.3 Model data 
This section lists the model data used in this thesis and appended papers.  

4.3.1 Empirical model based on maximum temperature difference and 

relative humidity 
Empirical models estimate surface solar radiation by developing a relation between atmospheric 

transmissivity and other meteorological variables. One of the first such model was proposed by 

Ångström (69) in 1924. Ångström observed a high correlation between sunshine duration and 

daily solar radiation. Examples of other such empirical models use cloud cover (70), air 

temperature (71), precipitation and humidity (72, 73). However, the use of temperature and 

sunshine duration have been the most widely used technique in building such models because 

these variables are widely measured at weather stations (74, 75). In Paper I, a model based on 

Hargreaves, Samani (76) was proposed that uses the difference between maximum and 

minimum temperatures, and relative humidity in a day to estimate the average daily solar 

radiation. One of the shortcomings of empirical models is the use of difference between 

maximum and minimum temperatures in case of cloud-free conditions. In these conditions, the 

maximum and minimum temperature differences are relatively large due to low temperatures 

at night. In such cases the estimated solar radiation have high errors (32). However, the key 
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limitation of empirical model is the site-specific coefficient, which varies between coastal and 

inland regions (74), as these coefficients largely determines the accuracy of the estimated solar 

radiation (32). In addition, these types of models are dependent on ground based meteorological 

measurements and hence, these cannot produce a spatial distribution map of solar radiation 

estimates. 

4.3.2 CM-SAF CLARA dataset 
The Cloud, Albedo, Radiation (CLARA) dataset is a set of climate data records published by 

the Satellite Application Facility on Climate Monitoring (CM-SAF). The CM-SAF provides 

two categories of data: operational products and climate data records (CDR). The operational 

products are constructed by validating the data with on-ground stations and these are provided 

in near real time for variability studies in diurnal and seasonal time scales. However, CDRs 

are long-term data series that are used to assess inter-annual variability. CLARA-A1 and 

CLARA-A2 are two of such CDRs that provide long time series historical data. The CLARA 

datasets are based on polar orbiting satellites that provide a global coverage but their sensing 

frequency varies with latitude. These satellites have a sensing frequency of twice each day at 

the equator but with increasing latitude, the sensing frequency increases because of the 

overlap in the satellite swath. At the poles, these satellites have the highest sensing frequency 

of 14 observations each day. A single satellite has too low of a frequency to construct solar 

radiation datasets, hence, a series of satellites are used to obtain the surface solar radiation 

datasets. 
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Figure 4.1: CLARA-A2 monthly mean solar radiation map for 2009 on a horizontal surface. 

From Paper II. 

The first edition of this suite of dataset (CLARA-A1) was published in 2012 and it covers a 27 

years period, from 1982 until 2009. This dataset consists of cloud, surface albedo and radiation 

budget products derived from the Advanced Very High Resolution Radiometer (AVHRR) 

sensors on-board the polar orbiting NOAA and Metop satellites (77). The second edition of this 

dataset, CLARA-A2, was released in December 2016. CLARA-A2 is available from 1 January 

1982 to 31 December 2015, and constitutes an extension of 6 years relative to the CLARA-A1 

dataset. Both of these datasets have global coverage with a spatial resolution of 0.25ºx0.25º on 

a regular latitude-longitude grid and provide daily and monthly averages of surface incoming 

shortwave radiation (SIS). To calculate daily averages, at least 20 observations of incoming 

solar radiation in each grid box are required; similarly, 20 valid daily observations are required 

to generate monthly averages (78). Along with SIS, CLARA also provides longwave up and 

down-welling surface radiation.  

The fundamental method used in calculating surface solar irradiance from satellite observations 

is that the reflectance measured by the satellite instruments is related to the atmospheric 

transmittance. The SIS is calculated from the atmospheric transmittance (T) by the following 

equation. 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸0 cos(𝜃𝜃0)𝐸𝐸, (7) 
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where E0 is the extraterrestrial solar radiation and θ0 is the solar zenith angle. The value of E0 

is set as 1368 Wm-2 in CLARA-A1, however, a revision in extraterrestrial radiation was 

performed by Gueymard (17) and the value of E0 is set as 1361 Wm-2 in CLARA-A2. 

In CLARA dataset, the transmittance is calculated from solar zenith angle, vertically-integrated 

water vapor, aerosol information and the cloud cover (obtained from AVHRR sensors). Finding 

solar zenith angle is straightforward and can be calculated accurately. The vertically-integrated 

water vapor and aerosol optical depth are not available in the AVHRR data and for these fields, 

external sources are used. For vertically-integrated water vapor, ERA-Interim Reanalysis (55) 

is used and the vertical ozone column is set to a constant value of 335 DU, as its variability has 

negligible impact on the estimated solar radiation. Aerosol information is taken from the 

modified version of the monthly mean aerosol fields from Global Aerosol Data Set/Optical 

Properties of Aerosols and Cloud (GADS/OPAC) climatology. In addition to this, the algorithm 

in CLARA also requires the surface albedo information. This is calculated based on spatial 

distribution of 20 surface types, which is obtained from the (SARB) Surface and Atmospheric 

Radiation Budget (part of the Cloud and Earth’s Radiant Energy System (CERES)). In the 

algorithm, the cloud coverage is determined by using the visible channels of the AVHRR 

instrument. The first step in estimating surface solar radiation is the classification of the sky 

conditions. The Nowcasting SAF (SAFNWC) software is used to derive the information on 

cloud coverage for each pixel by using the information from the satellite sensors. If no cloud is 

detected (cloud free pixel), surface solar radiation is calculated by using only the auxiliary 

sources and clear-sky Mesoscale Atmospheric Global Irradiance Code (MAGIC) described in 

Haase, Calais (79) . If the pixel is classified as cloudy (cloud contaminated or fully cloudy), 

visible channels of the AVHRR instrument are used to derive broadband reflectance. This 

reflectance for each pixel is then transferred to broadband fluxes by using a bidirectional 

reflectance distribution function (BRDF). In the next step, these broadband top-of-the-

atmosphere albedos are used to derive transmissivity through a look-up table approach. Finally, 

the transmissivity is used in calculating surface solar radiation, as shown in Equation 7 (80). In 

this dataset, all data points with solar zenith angles larger than 80º are set to missing values and 

solar zenith angles larger than 90º are set to zero. Because a temporally constant surface albedo 

is used in the algorithm, this dataset does not provide radiation estimates on snow and sea ice 

coverage areas because changes in the albedo of the snow-covered surfaces are not considered 

(81). For more information on the CLARA datasets and their accuracy, refer to Karlsson, 

Riihelä (77) and Karlsson, Anttila (81). 
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High-latitude locations like those studied here, may have a very different surface albedo than 

the temporally constant albedos considered in the algorithm. These critical points are identified 

by using the monthly mean CLARA-SAL (surface albedo) data record and the surface albedo 

used in the processing of SIS. All grid points with a difference in surface albedo exceeding 35% 

are masked out and set to missing data in final SIS record. This process introduces large number 

of missing data points in high latitude locations. Furthermore, the accuracy is reduced because 

at the available data points, a constant surface albedo is used which can vary from the real 

conditions. For this reason, the accuracy of the CLARA datasets in snow-covered areas is 

outside the target accuracy of CM-SAF. Further inaccuracies may be introduced by the miss-

classification of SAFNWC software used in cloud detection. It was observed in Paper III that 

the aerosol information used in the CLARA dataset can introduce errors in clear-sky and 

intermediate-cloudy conditions because average monthly aerosol information can vary from the 

inter-annual and sub-monthly aerosol variability of a particular location (80). 

In Paper II, CLARA A1 and A2 datasets are compared for Norwegian and Swedish locations. 

It was found that CLARA-A2, thanks to a new snow-detecting algorithm, has less number of 

missing values as compared to CLARA-A1. However, the new values that were not available 

in CLARA-A1 have large errors because these points mostly lie on the snow-covered surfaces. 

In Paper III, CLARA-A2 data set was evaluated and compared with SARAH, ERA5, and ASR. 

In this study, it was found that CLARA provides good estimates of surface solar radiation at 

location above 65ºN, where SARAH has no coverage. In Paper IV, this knowledge was used to 

construct a new dataset by using CLARA-A2 and ERA5 (explained in Section 4.3.4). The new 

dataset, which was constructed by using a random forest regression method (explained in 

Section 4.5), provides substantially more accurate results than CLARA-A2 and ERA5. 

4.3.3 CM-SAF SARAH dataset 
The second version of surface solar radiation dataset – Heliosat (SARAH-2) is a CDR of surface 

solar radiation by CM-SAF (82). The SARAH dataset covers a period of 31 years from 1983 to 

2015 and the region from +65º to -65º in latitude and longitude. The spatial resolution of the 

data is 0.05ºx0.05º (approximately 5 km) and the data is available for 30 minutes instantaneous, 

hourly, daily, and monthly averages of surface incoming shortwave radiation on a horizontal 

surface (SIS), surface direct irradiance (SDI), sunshine duration (SDU) and effective cloud 

albedo (CAL), while spectrally resolved irradiance (SRI) is available as monthly means (83). 

To calculate daily averages at least three samples per day are required; similarly, 10 calculated 

daily observations are required to generate monthly averages. 
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Figure 4.2: Mean surface solar radiation for 1983–2013 in June over Scandinavia from 

SARAH. The spatial limits for the dataset can be seen in the figure (84). 

To obtain sufficiently large time series of data (spanning multiple decades), SARAH uses two 

generation of Meteosat satellites. The broadband visible channels from Meteosat Visible Infra-

Red Imager (MVIRI) instrument on-board the Meteosat first-generation satellites (Meteosat-2 

to Meteosat-7) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument 

on-board the Meteosat second-generation satellites (Meteosat-8 to currently Meteosat-10) are 

used to calculate the shortwave surface irradiance.  

The basic method of calculating surface solar radiation in SARAH is similar to that of CLARA. 

In SARAH, effective cloud albedo (CAL) and a clear-sky model are used to calculate surface 

solar radiation. The CAL is defined as the amount of reflected irradiance for all sky relative to 

the amount of reflected irradiance for clear-sky, and it is a measure of the cloud transmission 

and hence by calculating clear-sky radiation, the all sky radiation can be estimated. To calculate 

CAL, satellite data and a modified Heliosat method are used (85). This modification of the 

Heliosat method in combination with gnu-MAGIC/SPECMAGIC is called MAGICSOL. The 

Heliosat method uses reflection measurement given as normalized digital count to calculate the 

CAL. The effective cloud albedo from the Heliosat method is given by the following equation. 
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𝑠𝑠 =
𝜌𝜌 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠
, (8) 

where, ρ is the observed reflection for each pixel, ρsrf is the clear-sky reflection and ρmax is the 

estimated maximum reflectivity observed by the satellite sensor. The modifications made in 

this algorithm include a self-calibration algorithm that is based on an operational and automatic 

determination of the maximum reflectivity ρmax. 

In the next step, the clear-sky model and effective cloud albedo are used to calculate the surface 

solar radiation. The modified Heliosat method provides the broad band effective CAL but to 

consider the spectral effect of clouds a Radiative Transfer Model (libRadtran) based correction 

is applied. To calculate clear-sky radiation, SPECMAGIC model is used which is based on a so 

called hybrid eigenvector look-up table approach (86). The input parameters for gnu-

MAGIC/SPECMAGIC are date, time, solar zenith angle, coordinates, effective cloud albedo 

(cloud index), water vapor column density, surface albedo, aerosol optical thickness, and single 

scatter albedo for aerosols. Monthly mean values of vertically integrated water vapor are taken 

from ERA-Interim global reanalysis record (55), and monthly mean aerosol information is 

taken from Monitoring Atmospheric Composition and Climate project (MACC) aerosol 

climatology. Surface solar radiation is derived from combining SPECMAGIC algorithm and 

effective cloud albedo (82). Improvements in the new version of the dataset (SARAH-2)  

includes the stability in the early years of dataset and during the change of instrument from 

MVIRI to SEVIRI in 2006 and correction of viewing geometry for slant viewing angles (87). 

For more information on the retrieval methods refer to Müller, Pfeifroth (88). SARAH-2 was 

used in Paper III to evaluate the solar radiation estimates in location below 65ºN. 

4.3.4 ECMWF Reanalysis 5 (ERA5) 
ECMWF Reanalysis 5 (ERA5), is the fifth generation of European Centre for Medium-Range 

Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate and span a period 

of 1950 to near real time (39). At the time of writing, data from 2000 to 2017 is available. 

Further data back in time will be released in 2019-20 and will continue to update forward in 

real-time. In ERA5, the solar radiation variable has a spatial resolution of 31 km 

(0.28125ºx0.28125º) and an hourly temporal frequency. ERA5 uses the Integrated Forecasting 

System (IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4DVAR) 

assimilation system. ERA5 has more pressure levels than ERA-Interim (the previous edition of 

ECMWF reanalysis) and more variables are made available for this reanalysis than for those of 

earlier generation. For more information on ERA5, refer to ECMWF (89).  
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In this study, shortwave surface downward radiation, shortwave surface downward radiation 

clear-sky, and total cloud water content (the vertically-integrated cloud water concentration) 

are used from this dataset. In ERA5, the incoming short wave radiation is obtained from a 

Radiative Transfer Model (RTM). This model simulates the attenuation in solar radiation 

caused by the atmosphere, therefore, the quality of estimated radiation depends on the RTM 

used. Reanalysis generally do not assimilate aerosol, clouds, or water vapor data, which 

increases the uncertainty in the estimated surface irradiance (49, 90). ERA5 was used in Papers 

III and IV. 

4.3.5 Arctic System Reanalysis v2    
In polar regions, it is difficult to determine current weather and climate trends from a long-term 

climatology perspective when compared to the rest of the globe, primarily because of limited 

number of meteorological stations (91). In these areas, reanalysis can be used as an alternative 

to provide such climatologies. To provide a long-term climatological data, the Arctic system 

Reanalysis was made available in 2010 (92). The second edition of this dataset was proposed 

in 2017 (93) called the Arctic system reanalysis version 2 (93).  These are a set of regional 

reanalysis that are based on high-resolution regional assimilation of model output, observations 

and satellite data for the mid- and high-latitude regions of the northern hemisphere (94). In its 

core, ASR is a polar-optimized dynamic downscaling of ERA-Interim reanalysis by using 

Weather Research and Forecast Model (WRF) version 3.6.0 (95). The data set is available for 

the period of 2000 to 2012. The grid resolution is 15 km, which is finer than most global models 

and the previous release of ASR (ASRv01), whereas the time resolution of the dataset is 3 

hours. The downscaling is optimized for Polar Regions, and polar physics is used where 

possible, including heat transfer through snow and ice, the fractional sea ice cover, the ability 

to specify variable sea ice thickness, snow depth on sea ice and sea ice albedo, as well as other 

optimizations including the Noah Land Surface Model. The area covered by this dataset is 1.2 

x 108 km2, which is about 50% of Northern hemisphere. Spectral nudging from ERA-Interim is 

applied on geopotential height, temperature, and wind components above 100 hPa on the inner 

domain. ASR uses three-dimensional variational analysis (3DVAR) for observations, including 

radiance data, from a number of satellites (93). Figure 4.3 shows the inner and outer domains 

used in ASR. 
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Figure 4.3: The inner and outer domains of the Arctic System Reanalysis (ASR). The outer 

domain has a resolution of 90 km and inner domain has a resolution of 30 km. Colors refer to 

the terrain height*. 

4.4 Quality Control 
Ground measurement of solar radiation is generally more prone to recording errors than other 

meteorological variables (96). For long time series assessment of estimating datasets, the 

quality of the ground measurement is very important. A close examination of the ground-

measured solar radiation reveals that there are errors for extended periods of time (97). Younes, 

Claywell (97) identified two major types of errors in the ground measurements from 

pyranometers. The first type of error is called the uncertainty of equipment error, which is 

introduced because of the construction and calibration of the equipment. The second type of 

error is the operational error, which is related to the maintenance of the sensor. Because of the 

existence of such errors and their effects on the validation or feasibility studies, it is crucial to 

perform quality-control (QC) procedures on the solar radiation data (98). The ground-measured 

data used in this thesis is quality controlled by the respective organizations. In case of SMHI, 

Baseline Surface Radiation Network (BSRN) routines by Long and Dutton (67) are used for 

quality assurance. Missing or erroneous data is corrected by using meteorological variables 

described by Davies and McKay (99). The SMHI network was upgraded in 2006-2007 and the 

average correlation ratio between old and new measurements was found to be 0.997. More 

 *National Center for Atmospheric Research Staff (Eds). Last modified 09 Nov 2017. "The Climate Data Guide: Arctic System 
Reanalysis (ASR)." Retrieved from https://climatedataguide.ucar.edu/climate-data/arctic-system-reanalysis-asr.  

https://climatedataguide.ucar.edu/climate-data/arctic-system-reanalysis-asr
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detail on the upgrade is given by Carlund (65). SMHI provides data with quality flags and 

before using the data, these quality flags can be analyzed. In the case of NIBIO, the ground-

measured data is quality controlled and the equipment is regularly maintained on a daily or 

weekly basis (66). 

Although the data used here is quality controlled, Urraca, Gracia-Amillo (68) observed that 

operational and equipment errors exist especially in NIBIO stations. The first check performed 

in this regard is to look at the percentage of missing data. In Paper I and II, any year having 

more than 10% of missing data was discarded, however extra quality checks were not 

performed. In Paper III and IV, years having more than 5% of missing data were discarded. 

Moreover, the QC procedures described in the following sub-sections were performed in Papers 

III and IV. 

4.4.1 BSRN Global Network recommended Quality Control test V2 
The Baseline Surface radiation Network (BSRN) and its central archive – the World Radiation 

Monitoring Center (WRMC) provides the best possible quality controlled data for long- and 

short-wave surface solar radiation. To assure the quality, data received by WRMC/BSRN from 

ground-measuring stations runs through an inspection that includes the BSRN recommended 

quality checks V2.0 (67). The quality of the data is then represented in the form of flags (100). 

For global shortwave radiation, two tests are applied that check the physically possible limits 

and the extremely rare limits. The physically possible limits are shown in Equation 9 and the 

extremely rare limits are shown in Equation 10. 

𝐴𝐴𝑠𝑠𝑠𝑠: − 4 𝑊𝑊𝑚𝑚−2 

𝐴𝐴𝑎𝑎𝑎𝑎: 𝑆𝑆𝑚𝑚 × 1.5 × 𝜇𝜇𝑜𝑜1.2 + 100 𝑊𝑊𝑚𝑚−2 (9) 

𝐴𝐴𝑠𝑠𝑠𝑠: − 2 𝑊𝑊𝑚𝑚−2 

𝐴𝐴𝑎𝑎𝑎𝑎: 𝑆𝑆𝑚𝑚 × 1.2 × 𝜇𝜇𝑜𝑜1.2 + 50 𝑊𝑊𝑚𝑚−2 (10) 

 

𝜇𝜇𝑜𝑜 = cos(𝑆𝑆𝑆𝑆𝐴𝐴) (11) 

𝑆𝑆𝑚𝑚 = 𝑆𝑆𝑜𝑜
𝐴𝐴𝐴𝐴2� (12) 

Where, SZA is the solar zenith angle, So is the solar constant at mean Earth-Sun distance and 

AU is the Earth-Sun distance in Astronomical units. After performing these quality control 
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tests, years having more than 1% of the flags were discarded from the analyses. The BSRN and 

similar tests are designed to detect only large deviations in ground-measured records; however, 

small errors introduced by shading, soiling, frost, snow or calibration of the equipment are not 

detected by these procedures (68). 

4.4.2 Quality Control with Reanalysis and Satellite-based Products 
As described in the previous section, general quality control (QC) procedures that principally 

test the range, model comparison, and graphical analysis are not effective in detecting small but 

persistent errors. Keeping this in view a more sophisticated QC procedure by Urraca, Gracia-

Amillo (68) is presented here. This semi-automatic procedure is based on the statistical analysis 

of ground-measured solar radiation and radiation from reanalyses or satellite products. These 

products generally have larger errors than ground-measured data but operation and equipment 

errors are not as common in these as in ground-measured data. In the first step of this QC 

procedure, a confidence interval is constructed by calculating daily deviations (∂t) of the 

products as shown in Equation 13. 

𝜕𝜕𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑂𝑂𝑡𝑡, (13) 

where, Yt are the estimations, Ot are the observed values and t is the temporal resolution. The 

confidence interval is then calculated for monthly values (temporal averaging) and for groups 

of stations with similar characteristic (spatial averaging).  The averaging for the time and space 

is performed in two steps to increase the robustness of the confidence intervals. First, the bias 

with respect to median of daily deviations is calculated for each months and location as shown 

by Equation 14. 

𝐵𝐵𝐵𝐵𝑎𝑎𝑠𝑠� = 𝑚𝑚𝑚𝑚𝑑𝑑𝑠𝑠𝑎𝑎𝑠𝑠 (𝜕𝜕) (14) 

The Bias obtained from Equation 14 is again averaged on months of the year and stations within 

the same spatial group, resulting in a unique set of twelve values per group per product. To 

include the measure of dispersion, mean absolute deviation (MAD) is calculated by the 

following equation. 

𝐴𝐴𝐴𝐴𝑀𝑀 = 1.4286 × 𝑚𝑚𝑚𝑚𝑑𝑑𝑠𝑠𝑎𝑎𝑠𝑠��𝐵𝐵𝐵𝐵𝑎𝑎𝑠𝑠��� (15) 

The MAD includes a constant scale factor of 1.4286 to ensure the consistency of estimates for 

different sample sizes. Finally, the confidence interval (CI) is calculated by the following 

equation. 
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𝐶𝐶𝑆𝑆 = 𝐵𝐵𝐵𝐵𝑎𝑎𝑠𝑠� ± 𝑠𝑠 × 𝐴𝐴𝐴𝐴𝑀𝑀 (16) 

Where n is a coefficient that weighs the MAD in order to adjust the level of QC procedure. The 

value of n is set to respectively, 2.4 or 0.4 for flagging operational errors and equipment errors. 

Figure 4.4 illustrates the confidence intervals developed in Papers III and IV.  

 

 

(a) Above 65ºN locations in Norway 

  

(b) Below 65ºN locations in Norway 

Figure 4.4: The confidence intervals constructed for the quality control from ERA5 and 

CLARA. The locations in Norway were divided into two categories based on the latitude. 

Locations above 65ºN were placed in one group (a), and locations below 65ºN were placed in 

the second group (b). Based on the quality control procedures presented by Urraca, Gracia-

Amillo (68) and adapted from Papers III and IV. 

After constructing the confidence intervals, a window width parameter (w) is defined. As with 

the value of n, the window width can be set to either 20 for operational errors or 90 for 

equipment errors. The window starts increasing with a step of five days (fast moving filter), 
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and for each group of days it flags the data which is above or below the confidence interval. 

Days with an absolute relative deviation of 5% or absolute deviation of 5 Wm-2 are not 

accounted in flagging. The products that are more accurate provide a stricter confidence interval 

as can be seen in Figure 4.4. In the case here, as CLARA is a more accurate dataset, it has a 

much narrower confidence interval when compared with ERA5. Hence, CLARA will flag more 

data points than ERA5 because of the higher accuracy.  

In the final step of this QC procedure, two graphical plots are generated for visual analysis. The 

first graph is generated for the daily deviations between the product and the ground data and a 

second graph is generated for comparing the hourly irradiance of ground measurements and 

product. For information on these graphs, refer to Urraca, Gracia-Amillo (68). Both of these 

graphical plots are examined visually to detect any false alarms. As the graphical comparison 

is performed for hourly averaged values, it is convenient to include at least one product that has 

hourly resolution (68). Initially, the locations Pasvik, Mære, Ullensvang, and Njøs were 

included in Paper III but after performing this QC test, large numbers of errors were found. 

These locations were discarded from this thesis and from Papers III and IV. 

4.5 Random Forest Classification and Regression 
Recently, there has been a growing interest in ensemble learning techniques. Ensemble methods 

are based on generating many classifiers and the results of these are aggregated which increases 

the learning ability for the entire inputs and target (101). Random forest regression (RFR) is a 

regression tree method, which has become very popular in recent years due to its strong 

performance, ease of implementation and low computational cost. It is an ensemble learning 

technique developed by Leo Breiman (102), which is based on the construction of a multitude 

of decision trees, where branches of the trees represent a particular path for the input data and 

leaves represent the output values. In RFR, a particular tree is grown in accordance with the 

realization of a random vector. The final prediction is based on aggregation over the ensemble 

of trees, referred to as the forest (103). On each of the trees, branches or nodes are made which 

are based on comparing a randomly selected feature to a random threshold. The randomness 

introduced in both variable selection and threshold determination has been shown to results in 

attractive properties such as a controlled variance, resistance to overtraining, and robustness to 

outliers as well as irrelevant variables. Moreover, RFR inherently provides estimates of 

generalization error and measures of variable importance (104, 105). The process of dividing 

the input data over branches are repeated until one or a pre-set number of data points are 

contained in each branch. This final node of the tree is referred to as a leaf, and it represents the 
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final-outcome of that particular regression in the whole model. The structure of the forest and 

hence the RFR behavior can be controlled by three main parameters, namely the number of 

trees (with a default value of 500), the number of variables considered in each node (generally 

set to m=P/3 following common practice in RFR), and the final number of data points that can 

make a leaf (our default value is 1). Having very low number of leaves in the model can cause 

overfitting, which can be overcome by pruning, i.e. limiting the number of data points in each 

leaf. With an increase in the number of trees, the computation load increases. An initial increase 

in the accuracy of the regression will also be observed, before reaching a saturation point (106), 

after which improvements are limited by a strong correlation between the trees (102). The RFR 

is used in Paper IV to construct a multi variate regression data set based on CLARA-A2 and 

ERA5 datasets.  

4.6 Statistical Evaluation of Estimations 
In order to evaluate the performance of the datasets, some common statistical measures were 

used. The most widely used measure is the Root Mean Squared Deviation (RMSD), which is 

given by Equation 17. 

𝑅𝑅𝐴𝐴𝑆𝑆𝑀𝑀 = �
1
𝑁𝑁
��𝐺𝐺𝐺𝐺𝑆𝑆𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒,𝑒𝑒 − 𝐺𝐺𝐺𝐺𝑆𝑆𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑠𝑠𝑜𝑜𝑒𝑒𝑒𝑒,𝑒𝑒�
𝑁𝑁

𝑒𝑒=1

(17) 

Where, GHIestimated,i is the estimated global horizontal irradiance, GHIobserved,i is the ground-

measured global horizontal irradiance and N is the number of data points in time. As an 

additional measure, the MBD (Mean Bias Deviation) or bias was also used in the evaluation as 

shown in Equation 18. MBD gives an insight in the general trends of under or over estimations. 

𝐴𝐴𝐵𝐵𝑀𝑀 =
1
𝑁𝑁
��𝐺𝐺𝐺𝐺𝑆𝑆𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒,𝑒𝑒 − 𝐺𝐺𝐺𝐺𝑆𝑆𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑠𝑠𝑜𝑜𝑒𝑒𝑒𝑒,𝑒𝑒�
𝑁𝑁

𝑒𝑒=1

(18) 

Mean absolute bias deviation (MABD) was also used for the evaluations of datasets. Because 

of the absolute values used in this measure, the negative and positive errors do not cancel out 

each other as in MBD. This is a good measure to compare different models, as the one with 

smaller MABD will be the more reliable for estimations.  

𝐴𝐴𝐴𝐴𝐵𝐵𝑀𝑀 =
1
𝑁𝑁
��𝐺𝐺𝐺𝐺𝑆𝑆𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒,𝑒𝑒 − 𝐺𝐺𝐺𝐺𝑆𝑆𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒𝑠𝑠𝑜𝑜𝑒𝑒𝑒𝑒,𝑒𝑒�
𝑁𝑁

𝑒𝑒=1

(19) 

The standard deviation of the error (STD) is used to evaluate the data set presented in Paper 4. The 

sample STD is computed as 
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𝑆𝑆𝐸𝐸𝑀𝑀 = �
1

𝑁𝑁 − 1
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(20) 

 

In addition, a bias-variance decomposition was used to obtain the optimal configuration of the 

random forest regression model used in Paper 4, with respect to the number of trees and the 

number of leaves. Moreover, R2 and scatter plots were used to indicate the spread and overall 

correlation of the datasets with ground measurements. 

4.7 Data extraction 
The data extraction from the gridded datasets was performed in two ways. For high-resolution 

datasets like SARAH and ASR, the nearest grid point to the coordinates of the location was 

selected for data extraction. However, for coarse resolution datasets like ERA5 and CLARA, 

inverse distance weighting (IDW) interpolation was used. The IDW interpolation is given by 

the following equation. 

𝑉𝑉� =
∑ 1

𝑑𝑑𝑒𝑒
𝑉𝑉𝑒𝑒𝑛𝑛

𝑒𝑒=1

∑ 1
𝑑𝑑𝑒𝑒

𝑛𝑛
𝑒𝑒=1

(21) 

Where, 𝑉𝑉𝑒𝑒 are the known values, 𝑑𝑑𝑒𝑒 are the distance from the data point and estimated point, 

and 𝑉𝑉�  is the value to be estimated. The four nearest surrounding grid points to the location were 

selected from ERA5 and CLARA as inputs to the IDW interpolation. Missing values exist in 

the CLARA dataset and if two or more of the surrounding four grid points were not available; 

the interpolation was replaced by a missing value. 

4.7.1 Gap filling procedure 
Gaps are often available in the ground-measurement and estimated surface solar radiation 

databases. Gaps in the ground measurement may occur due to power loss, misalignment, failure 

of instrument, insufficient cleaning or other reasons (107). In the satellite databases used here, 

the gaps in the data exist generally because of low number of observations and snow covers. In 

most of the analysis made here, gap-filling procedures were not used except in energy 

calculations in Paper III. In Paper III, nearest-neighbor interpolation was used to fill the gaps 

in SARAH, CLARA and ground-measured data. In addition, linear interpolation was used in 

filling gaps in Paper I. 
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5. Previous research and current knowledge gaps 
In this section, an overview of the previous research done on estimating surface solar radiation 

is presented. In the last part of this section, the knowledge gaps are discussed from the 

perspective of estimating solar radiation in high latitude locations.  

5.1 Previous research 
Most of the research on remotely estimating solar radiation has been performed for mid- and 

low-latitude locations by using geostationary satellites. One of the earliest validation of these 

estimations was carried out by Hollmann, Mueller (108). In this research, the authors used the 

data from AVHRR sensor on-board polar orbiting satellites and showed that the average mean 

biases were small and were within the targeted accuracy of 10 Wm-2 on monthly mean time 

scales. In Posselt, Mueller (109), authors used geostationary Meteosat second generation 

satellites and evaluated the estimated radiation at 10 locations from the BSRN network. The 

highest latitude location analyzed in this study was Lerwick (UK) and this location had the 

highest mean absolute deviation (MABD). In a subsequent study (110), particular 

improvements were found at Lerwick because of the advancements in retrieval methods. The 

bias and MABD were remarkably low with 1.27 Wm-2 and 5.46 Wm-2, respectively. In total, 

about 94% of the monthly mean values showed an accuracy of 10 Wm-2 or better. In 

Bojanowski, Vrieling (111), authors showed that the solar radiation estimation from Meteosat 

first and second generation satellites had a similar accuracy, however the authors suggest that 

ERA-Interim can be used as an effective backdrop to satellite products. In Sanchez-Lorenzo, 

Enriquez-Alonso (112), authors studied the trends in surface solar radiation over Europe from 

CM-SAF geostationary satellite products but high altitude locations were excluded from the 

study, because such locations are known to have problems in deriving surface solar radiation 

as shown in some other previous studies (113, 114). Similarly in Cristóbal and Anderson (115), 

the authors used Meteosat second generation satellites to estimate solar radiation over the 

northeastern Iberian Peninsula. In this study, it was observed that the errors were small in flat 

areas while an increase in errors was observed in mountainous regions. Another such study 

outlined the difficulties of satellites in estimating solar radiation in mountainous regions (116). 

In this study, three different algorithms were used to estimate surface incoming solar radiation 

in Belgium. Although, all the algorithms underestimated solar radiation when compared to 

ground measurements, the authors of this study expected the sensitivity to increase in regions 

with strong influence of mesoscale meteorology such as coastlines and highlands as compared 
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to mid latitude regions with a rather flat orography. The reason for this shortcoming is explained 

in Amillo, Huld (117), which showed that the  accuracy of estimating effective cloud albedo 

(CAL) decreases towards the edge of the field of view of satellite, mainly because of very 

shallow angles. This slant-viewing angle introduces biases that tend to be larger near the edge 

of the satellite images, which start affecting the accuracy around ±65º latitude. 

In Alexandri, Georgoulias (118), authors compared CM-SAF SARAH dataset with CERES 

(Cloud and the Earth's Radiant Energy System), GEWEX (Global Energy and Water Cycle 

Experiment), ISCCP (International Satellite Cloud Climatology Project) and ERA-Interim for 

Eastern Mediterranean. Overall, SARAH performed better than other datasets. Similarly in 

Urraca, Martinez-de-Pison (119), authors analyzed global horizontal irradiance from SARAH, 

ERA-Interim, interpolated ground-measurements (Ordinary kriging) and a statistical model 

called XGBOOST. In this study, 38 ground stations in central Spain were evaluated and it was 

found that SARAH provides better solar radiation estimates with low variability. Both of these 

studies showed that satellite products underestimate solar radiation. In another study it was 

shown that intermediate-sky conditions are overestimated while these overestimations increase 

further in overcast conditions, however areas affected by snow may have larger uncertainties 

(117). In some studies, around 5-10 Wm-2 of mean absolute deviations for monthly means was 

observed in geostationary satellite databases (77, 109, 110, 114, 120, 121). Most of the studies 

reported satellite methods to underestimate incoming solar radiation, besides some studies like 

Žák, Mikšovský (120) and Hakuba, Folini (122)  that reported overestimation. 

One of the more relevant studies to this thesis was done by Riihelä, Carlund (84). In this study, 

authors validated the first editions of SARAH and CLARA datasets over multiple locations in 

Sweden and Finland, spanning from 55º to 70ºN. Both datasets were found to have monthly 

mean accuracy better than 10 Wm-2 and a daily mean accuracy of 15 Wm-2. SARAH was only 

able to provide coverage in southern Nordic regions because of its limited coverage. However, 

unlike CLARA, SARAH provide coverage on snow covered surfaces, although the 2nd edition 

of CLARA now provides more coverage on snow covers (30, 31). SARAH error characteristics 

were seen to have latitude dependence and errors increase with increasing latitude.  

Another very recent and relevant study was done by Urraca, Gracia-Amillo (30), in which  

authors made an extensive evaluation of CM-SAF products including SARAH-2 and CLARA-

A2 datasets. In this study, 313 ground stations were evaluated from several European countries, 

which included 29 stations from Norway. Satellite datasets underestimated at high latitudes 

while a slight overestimation was observed in southern regions. CLARA showed very good 
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temporal stability while keeping a small constant underestimation in majority of locations, 

however, the MABD in CLARA was larger than SARAH by 1-2 Wm-2. ERA-Interim was found 

to have a constant positive overestimation and absolute errors almost double that of the satellite 

datasets. In this study, although CLARA underestimated solar radiation, a significant decrease 

in the bias is found when compared to the first edition of CLARA dataset (81). Locations with 

seasonal snow covers, which are abundant at high latitude locations, were observed to have 

large underestimation. In a similar way, SARAH was seen to be underestimating as well but 

the underestimation was again larger for regions with snow covers. This is because the satellite 

algorithms only use the visible channel to detect the presence of clouds, hence these cannot 

differentiate if a bright pixel corresponds to a cloud or to a surface covered with snow. 

Moreover, satellite models fail on mountainous regions because the spatial and temporal 

resolutions are not high enough to account for the sharp terrain and changing weather conditions 

(30). 

On the contrary, reanalysis overestimate incoming solar radiation as reported in multiple studies 

(30, 111, 119, 123). Although, not as many studies have been performed on the evaluation of 

reanalyses for incoming solar radiation as there are on satellite estimations, some studies like 

Urraca, Huld (28), Bojanowski, Vrieling (111) suggest that reanalysis have been improving and 

these can be used where the satellite data is missing or inaccurate. 

5.2 Thesis work in relation to knowledge gaps 
The previous section highlighted a number of interesting topics that were chosen for further 

research in this thesis. The knowledge gaps associated with these research areas are summarized 

and linked to the appended papers in the following: 

• The number of meteorological stations recording shortwave incoming solar radiation is 

very low in Northern Norway. Even though there are many meteorological stations 

recording other atmospheric variables like temperature, precipitation, and humidity, the 

number of station recording solar radiation remains low. The model proposed in Paper 

I can be used to construct estimated solar radiation by using temperature and humidity 

at these stations. 

• There are very few studies carried out on evaluating solar radiation datasets from polar 

orbiting satellites. Paper II and III provide an evaluative analysis for polar orbiting 

CLARA dataset for high latitude locations. 
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• Arctic system reanalysis (ASR), which is a polar optimized dynamic downscaling of 

ERA-Interim, was not evaluated any further for solar radiation in high latitude regions. 

An assessment was provided in Paper III on ASR version 2. It was found that this dataset 

provides very large uncertainties in estimating solar radiation.  

• Because of the low coverage provided by geostationary satellites, they do not provide 

coverage in northern Norway. Moreover, the errors in geostationary datasets increase 

with increasing latitudes. Databases from polar orbiting satellites (CLARA-A1) can be 

used at high latitudes but because of snow covers, they have a large number of missing 

data as shown in Paper II. 

• New datasets based on polar orbiting satellites (CLARA-A2) provide less missing 

values but these improvements are mainly on high latitudes and snow cover periods. 

When analyzed, these new data points were seen to have large errors as shown in Paper 

II. 

• ERA5, a recently published reanalysis, is evaluated in Paper III. The results show that 

ERA5 provides reasonable errors and can be used as a supporting dataset when satellite 

datasets do not provide coverage, have missing values or large uncertainties.  

• Reanalyses are reported to overestimate solar radiation while satellite databases 

underestimate solar radiation. A new dataset is presented here which is constructed by 

using a Random forest regression on reanalysis and satellite dataset. This model 

improves the solar radiation estimations in a number of ways. In the proposed model, 

there are no missing values, and the accuracy is better than both the reanalysis and 

satellite datasets.  
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6. Results 
This chapter summarizes the results from the appended papers in two sections. In the first 

section, available resources of solar radiation estimation are analyzed and discussed. In the 

second section, the results from the evaluations of the datasets together with the use of a 

regression algorithm are used to create a novel and improved solar radiation dataset. 

6.1 Evaluation of available datasets of surface solar radiation at 

high latitudes 
This section summarizes the results from Papers I, II and III. In Section 6.1.1, a model based 

on the difference between maximum and minimum temperatures and relative humidity is 

presented from Paper I. In Section 6.1.2, the results from Paper II are presented which are based 

on a comparative analysis of CLARA-A1 and CLARA-A2. In Section 6.1.3, an analysis is 

presented on the estimation accuracies of CLARA-A2, SARAH-2, ERA5, and ASR from Paper 

III.  

6.1.1 A model to estimate surface solar radiation by using temperature 

and humidity 

This section provides an overview of the model developed in Paper I. The proposed model is 

based on the Hargreaves, Samani (76), in which authors have used the maximum temperature 

difference and extraterrestrial radiation in a day to estimate surface solar radiation, and 

eventually the evapotranspiration. The model presented by the same authors is shown in 

Equation 22. 

𝑅𝑅𝑠𝑠 = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝐸𝐸𝑅𝑅0.50 (22) 

Where, KRS is an empirical coefficient fitted to Rs/Ra versus TR data, TR is the diurnal 

temperature difference between the maximum recording and the minimum recording, Ra is the 

extraterrestrial radiation, and Rs is the surface solar radiation. The value of KRS in Equation 21 

can take two different values, one for interior, and one for coastal regions. A value of 0.162 is 

recommended for interior regions and a value of 0.19 is recommended for coastal regions. The 

extraterrestrial radiation is calculated by the following equation. 

𝑅𝑅𝑚𝑚 =
24
𝜋𝜋
𝑅𝑅𝑠𝑠𝑠𝑠 �1 + 0.33 × 𝑐𝑐𝐸𝐸𝑠𝑠

360 × 𝑃𝑃
365

� × 𝑐𝑐𝐸𝐸𝑠𝑠(𝜑𝜑) × 𝑐𝑐𝐸𝐸𝑠𝑠(𝛿𝛿) × 𝑠𝑠𝑠𝑠𝑠𝑠(ℎ𝑠𝑠)

+
(2 × 𝜋𝜋 × ℎ𝑠𝑠)

360
× 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) × 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿) (23)
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Where, Ra is the extraterrestrial radiation, Rsc is the solar constant with a value of 1366 Wm-2, 

P is the day number (ranging from 1 for the first day of the year and 365 for the last day of the 

year), 𝜑𝜑 is the latitude, 𝛿𝛿 is the declination angle and hs is the hour angles of sunrise and sunset. 

The model developed in Paper I is based on the model shown in Equation 22, but in addition to 

the temperature difference, relative humidity was taken into account. The proposed model is 

shown in the following equation. 

𝑅𝑅𝑠𝑠 = 0.04 × 𝑅𝑅𝑚𝑚 × 𝐸𝐸𝑅𝑅 + 𝐾𝐾𝑅𝑅𝑅𝑅 × 𝑅𝑅𝑚𝑚 × (𝑅𝑅𝐺𝐺)0.27 (24) 

Where RH is the relative humidity in Equation 24. The empirical constant KRS in Equation 24 

can take two values, like the model presented in Equation 22 (76). A KRS value of 0.01 is 

suggested for inland regions and a value of 0.04 is suggested for coastal regions. Figure 6.1 

depicts the model estimated, observed, and extraterrestrial radiation for Tromsø, Norway in 

2014. 

 

Figure 6.1: The model estimated GHI, observed GHI, and extraterrestrial radiation for Tromsø 

in 2014. The radiation is expressed in Wh.m-2 (energy). 

The model in Equation 24 was tested at eight locations in Norway. Compared to the original 

method proposed by Hargreaves and Samani, the daily average percentage error was improved 

by 0.2%, and yearly average percentage error was improved by 10.8%. 
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6.1.2 A comparison of CLARA datasets and an analysis of improvements 

in CLARA-A2 

Most solar radiation datasets do not provide coverage above 65ºN (or below 65ºS) because 

majority of these datasets are based on geostationary satellites (an example of which is the 

SARAH dataset, discussed in the next section). For areas above 65ºN, the CLARA datasets, 

published and managed by CM-SAF, provide precise surface solar radiation estimations. At the 

time of writing, CM-SAF has published two editions of CLARA datasets. For further 

information on these datasets please refer to Section 4.3.2 or Karlsson, Anttila (81) and 

Karlsson, Riihelä (77).  

In Paper II, a comparative analysis was presented for CLARA-A1 and CLARA-A2 datasets 

with an emphasis on the improvements of CLARA-A2. The study was performed for eight 

locations in Norway and seven locations in Sweden for 14 years between 1995 and 2009. The 

ground data for the analysis was acquired from NIBIO and SMHI, but unlike in Papers III and 

IV, quality control procedures were not applied except discarding years with more than 10% of 

missing values. 

In this analysis, it was observed that the new dataset (CLARA-A2) had less missing data points; 

however, the errors and biases were found to be reduced in the previously existing data points 

when compared to CLARA-A1. Figure 6.2 shows the Hovmöller plots for CLARA-A1 and A2 

datasets, which highlights the quantity of missing data points in each dataset. 
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Figure 6.2: Hovmöller plots for CLARA-A1 and A2 datasets for 1995 to 2009. These plots are 

centered at 10º longitude and span from 40ºN to 70ºN latitude.  

As seen from Figure 6.2, both the datasets have increasing number of missing values with 

increasing latitudes (latitudes increase from left to right in Figure 6.2). CLARA-A2 had less 

number of missing data points than the previous edition CLARA-A1. However, as can be seen 

from Figure 6.3, the improvement in the data availability is mostly on the high latitude areas 

that have more snow depth than the low latitude areas. 
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But 

  

(A1)           (A2) 

 

 

(B1)          (B2) 

Figure 6.3: Missing data in CLARA-A1 and A2 datasets is illustrated. From (A1) and (A2) it 

can be seen that the number of missing data is reduced in CLARA-A2, however the decrease 

in missing data is mostly on high latitude locations with high snow depths, as shown in (B1) 

and (B2). From Paper II. 

The increase in the availability in CLARA-A2 was mostly in snow-covered regions. As 

explained in Section 4.3.2, satellite estimation methods particularly those used in CLARA 

datasets have difficulties in differentiating between clouds and snow-covered surfaces because 

IR channels are not used in the radiation estimation algorithm. These new data points had very 

large errors especially at the locations studied in Paper II. Norwegian locations had a 12% 

increase in the availability of data and Swedish locations had a 9.6% increase, and as can be 
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seen from Figure 6.3 (B1), Norwegian locations receive more snow than Swedish location. 

Figure 6.4 depicts the increase in availability in CLARA-A2 dataset in quarter-yearly monthly 

averages. In the period from February to April, coastal regions in Norway and central parts of 

Sweden had the most increase in data availability. While in the period from May to July, the 

inland and southwestern parts of Norway and northern parts of Sweden had the largest increase. 

 

Figure 6.4: Percentage increase in the availability of CLARA-A2 dataset in each quarter. The 

highest increase is in the areas that have complex topography in addition to snow covers. 

For Norwegian locations, the new data points had a mean absolute bias deviation (MABD) of 

17.7 Wm-2 while for Swedish locations, an MABD of 15.2 Wm-2 was found. In comparison to 

the errors in new data points, other data points had an MABD of 8.3 Wm-2 for both Norwegian 

and Swedish locations. This showed that the new data points had large errors because these are 

primarily estimated on snow covers. 

Overall, CLARA-A1 had an MABD of 8.0 Wm-2 and CLARA-A2 had an MABD of 8.9 Wm-2 

for Norwegian location. For Swedish locations, CLARA-A1 had an MABD of 8.1 Wm-2 and 

CLARA-A2 had an MABD of 8.7 Wm-2. However, for all location including sites from Norway 

and Sweden, CLARA-A1 had an MABD of 8.0 Wm-2 and CLARA-A2 had an MABD of 8.8 
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Wm-2. The MABD was observed to be larger in the new edition of CLARA because as 

previously explained, this dataset had less number of missing values, and the new values were 

mostly on the snow-covered regions, which increased the overall errors in the dataset.  

In Paper II an energy analysis for CLARA-A1 and A2 was performed. The energy is expressed 

in kWh on a meter square in a year and it was calculated by integrating the daily average values. 

In this particular analysis, gap filling was not applied. Evidently, as CLARA-A2 had less 

missing values than CLARA-A1, it was found that CLARA-A2 estimated yearly energy values 

more accurately than CLARA-A1. The conclusion drawn from this study was that CLARA-A2 

brings improvements but at the cost of high errors on the new data points which were previously 

not available in CLARA-A1.  

6.1.3 Investigating solar radiation datasets for high latitude locations – A 

comparative analysis of CLARA-A2, SARAH-2, ERA5 and 

ASRv2 

In Paper III, CLARA-A2, SARAH-2, ERA5, and ASRv2 datasets were analyzed for their 

accuracy at 31 locations in Norway. The coordinates and land type of locations included in the 

study can be found in the Appendix, Table A. In addition to accounting for the accuracy, this 

study also gives a comparative analysis for the surface solar radiation datasets for high latitude 

locations. In Paper III, three quality-control procedures were applied as described in Section 

4.4. In the first control, years having more than 5% of missing data were removed from the 

analysis. A second quality control was applied by using BSRN Global Network recommended 

Quality Control test, V2.0 (67) as explained in Section 4.4.1. A final quality control procedure 

is applied based on Urraca, Gracia-Amillo (68), which is explained in Section 4.4.2. For a list 

of year not included in the study, refer to the Appendix, Table B. Table 6.1 shows the properties 

of the datasets used in this study. 
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Table 6.1: Description of the datasets used in this study. The period analyzed, spatial, and 

temporal resolutions are shown for each dataset. 

Datasets Method Years 
analyzed 

Spatial 
resolution 

Highest 
temporal 
resolution 

Spatial limits 

CLARA Polar-orbiting 
Satellite 

2000-2015 0.25ºx0.25º Daily Global 

SARAH Geostationary 
Satellite 

2000-2015 0.05ºx0.05º 30 min Limited to ±65º 
latitude and ±65º 

longitude 
ERA5 Reanalysis 

(Global) 
2000-2015 0.281ºx0.281º Hourly Global 

ASRv2 Reanalysis 
(Regional 
renalaysis 

downscaled 
from ERA-

Interim) 

2000-2012 0.136ºx0.136º 3 Hours 180W - 180E 
longitude 

24.643N - 90N 
latitude 

The datasets were assessed based on RMSD, MABD, and MBD for daily, monthly, and yearly 

averages of GHI. In addition, a yearly energy analysis was performed. To assess the accuracy 

for different geographical regions, the locations were divided into four categories, as explained 

in Section 4.2. Moreover, a sky stratification analysis was performed to assess the performance 

of these datasets in different sky conditions. In the end, ERA5 was analyzed in-depth for cloud 

placement by investigating the total column of water content and agreement on sky 

classification by comparing it to ground-measured data and CLARA-A2 dataset. 

Table 6.2: Error metrics expressed in Wm-2, for the datasets analyzed in Paper II. Numbers 

without parentheses are monthly averaged errors while those in parentheses are daily averaged 

errors. Numbers are averaged over all stations. Error metrics for different geographical groups 

are also shown. 

 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

All Sites 
9.5 

(18.2) 
8.7  

(17.9) 
9.9 

(26.4) 
21.7 

(42.6) 
6.3  

(12.6) 
5.8 

(11.6) 
6.4 

(16.7) 
14.5 

(27.1) 
-3.1 

(-1.7) 
-3.6 

 (-2.6) 
2.1 
(4) 

13.1 
(16.9) 

Above 
65ºN 

10.1 
(16.0) - 

10.9 
(26.3) 

20.3 
(39.4) 

5.4 
(9.7) - 

6.1 
(14.5) 

11.1 
(21.5) 

-3.4 
(-2.9) - 

3.7 
(5.6) 

8.0 
(11.0) 

Below 
65ºN 

9.3 
(18.4) 

8.7  
(17.9) 

9.8 
(26.5) 

21.9 
(43.0) 

6.4 
(13.0) 

5.8 
(11.6) 

6.4 
(17.0) 

15.0 
(27.9) 

-3.0 
(-1.5) 

-3.6 
 (-2.6) 

1.9 
(3.8) 

13.8 
(17.8) 

Coastal 
9.1 

(16.9) 
8.6 

(17.1) 
10.0 

(26.4) 
21.8 

(41.9) 
5.8 

(11.6) 
5.7 

 (11.2) 
6.2 

(16.3) 
13.9 

(25.6) 
-2.8 

(-1.4) 
-3.5 

(-2.3) 
2.2 

(4.2) 
11.9 

(15.7) 

Inland 
9.8 

(19.1) 
8.8 

 (18.1) 
9.9 

(26.4) 
21.7 

(43.1) 
6.7 

(13.4) 
5.8 

 (11.9) 
6.5 

(17.1) 
15.0 

(28.3) 
-3.3 

(-1.2) 
-3.7 

 (-2.8) 
2.1 

(4.0) 
14.0 

(18.0) 
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From Table 6.2, it can be seen that CLARA and SARAH are more accurate than ERA5 and 

ASR. ASR was observed to have very low accuracy when compared to other datasets, partly 

because it is a downscaling of ERA-Interim, which is a predecessor of ERA5. On location above 

65ºN, CLARA had smallest errors among all datasets. On monthly averages, CLARA provided 

an MABD of 5.4 Wm-2, whereas ERA5 had a MABD of 6.1 Wm-2. ASR had a large MABD of 

11.1 Wm-2. SARAH being a dataset based on geostationary satellites does not provide coverage 

above 65ºN. However, at location below 65ºN, SARAH had the smallest MABD of 8.7 Wm-2, 

followed by CLARA with an MABD of 9.3 Wm-2 and ERA5 with an MABD of 9.8 Wm-2. ASR 

again had the largest MABD among the datasets with 15.0 Wm-2. In coastal and inland 

locations, a very similar pattern was observed where SARAH performed better than other 

datasets. However, in inland regions, ERA5 had slightly smaller error than CLARA; because 

most of the inland regions of Norway receive more snow cover when compared to coastal 

regions (see Figure 6.3 (B1)). In agreement with many previous studies, this analysis found 

satellites databases to underestimate solar radiation and reanlyses to overestimate solar 

radiation.  

One of the main challenges of estimating surface solar radiation from any method is the accurate 

placement of clouds in time and space. However, even the most accurate and sophisticated 

methods fail to accurately estimate clouds in clear-sky and cloudy conditions. To assess the sky 

stratification accuracy of the datasets studied, a clear-sky index was used. The clear-sky index 

is defined as the ratio of clear-sky GHI to the GHI recorded on the ground, given by the 

following equation. 

𝐶𝐶𝑆𝑆𝑆𝑆 =
𝐺𝐺𝐺𝐺𝑆𝑆𝑔𝑔𝑠𝑠𝑜𝑜𝑔𝑔𝑛𝑛𝑒𝑒
𝐺𝐺𝐺𝐺𝑆𝑆𝑠𝑠𝑐𝑐𝑒𝑒𝑚𝑚𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠

(25) 

Where, CSI is the clear-sky index, GHIground is the global horizontal irradiance observed on 

ground and GHIclear-sky is the global horizontal irradiance from a clear sky model. For sky 

classification of these datasets, the Bird clear-sky model was used (124). After calculating clear-

sky indices, following Smith, Bright (125) and Widén, Shepero (126), values larger than 0.8 

were considered indicating a clear-sky day, values of CSI between 0.4 and 0.8 were considered 

as intermediate-cloudy and values below 0.4 were considered as overcast. This type of 

categorization is quite arbitrary in the sense that the actual conditions can vary to some degree, 

e.g. CSI values larger than 0.8 are categorized as clear-sky but a small amount of clouds may 

be present in any of the days in this category. Similarly, values below 0.4 are categorized as 
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overcast conditions but some days may have intermediate clouds. The main aim of making such 

a grouping was to separate the days into different types to assess the model performances. This 

can be seen in Figures 6.5 to 6.8 that the days categorized as clear-sky have larger maximum 

solar irradiance while days categorized as overcast have much smaller maximum solar 

irradiance. 

Figures 6.5 to 6.8 show the scatter plots of CLARA, SARAH, ERA5, and ASR datasets. These 

figures also list the RMSD, MABD, and MBD of these datasets in different sky categories. 

Overall, in the three categories, SARAH performed better than other datasets while ASR 

performed the worst. In clear-sky category, an underestimation was observed in SARAH, 

CLARA, and ERA5, while ASR overestimated radiation. Similarly, in the intermediate-cloudy 

category, both satellite databases underestimated, while reanalysis overestimated. Finally, in 

the overcast category, CLARA slightly underestimated solar radiation while other datasets 

overestimated. In conclusion, all the models were found to have discrepancies in presenting 

clouds in all types of sky conditions. 

   

(a) (b) (c) 

CLARA RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 21.6 13.8 -4.1 

 Intermediate-cloudiness 22.2 16.0 -3.4 
Overcast 13.8 8.7 -0.2 

Figure 6.5: CLARA daily errors under clear-sky, intermediate-cloudiness, and overcast 

conditions. Scatter plots for different sky-conditions are shown. The colored legend bar shows 

the density of points in the scatter plot. From Paper III. 

 



 

59 
 

   

(a) (b) (c) 

SARAH RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 20.5 12.8 -5.6 

 Intermediate-cloudiness 20.2 13.5 -3.1 
Overcast 13.3 8.7 4.4 

Figure 6.6: As in Figure 6.5 but for SARAH. 

   

(a) (b) (c) 

ERA5 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 25.5 16.8 -10.0 

 Intermediate-cloudiness 28.4 19.8 8.7 
Overcast 29.7 18.7 15.3 

Figure 6.7: As in Figure 6.5 but for ERA5. 

   

(a) (b) (c) 

ASR RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 29.2 21.1 11.6 

Intermediate-cloudiness 51.3 37.2 23.3 
Overcast 49.0 30.8 25.0 

Figure 6.8: As in Figure 6.5 but for ASR. 

Some shortcomings of satellite models in underestimating clear-sky and intermediate-cloudy 

conditions are explained here. Under clear-sky conditions, CLARA uses aerosol information 



 

60 
 

from Global Aerosol Data Set/Optical Properties of Aerosols and Clouds (GADS/OPAC) 

climatology and SARAH uses aerosol information from Monitoring Atmospheric Composition 

and Climate (MACC climatology). Both the datasets use integrated water-vapor information 

from ERA-Interim. Aerosol information from MACC climatology is observed to have higher 

accuracy than GADS/OPAC climatology (126). The maximum aerosol optical depth (AOD) is 

reduced in GADS/OPAC climatology for the CLARA dataset, but the results show that the 

climatology used in SARAH performs better than in CLARA even after the modifications. The 

negative biases observed in the clear-sky and intermediate-cloudy categories are possibly due 

to the aerosol climatology being too thick, which results in an underestimation of solar 

radiation. As reported in Mueller and Träger-Chatterjee (127) and Polo, Antonanzas-Torres 

(128), both MACC and GADS/OPAC climatologies cause an underestimation in surface solar 

radiation because of the apparent overestimation in AOD thickness. In addition to aerosol 

optical depth, vertically-integrated water vapor values taken from ERA-Interim are shown to 

be too large (129), which can further attenuate the surface solar radiation. In ERA5, the radiative 

transfer model RTTOV11 (Radiative Transfer for TOVS) has a tendency to underestimate 

reflectance of high cumulus cloud tops while the reflectance of lower water clouds is 

overestimated which can cause an underestimation in clear-sky conditions and overestimation 

in intermediate-cloudy and overcast conditions. In ASR, all the conditions are overestimated 

which shows that there is an underestimation in aerosol optical depth and cloudiness in the 

atmosphere. 

In the final analysis of this study, the cloud estimation accuracy of ERA5 was explored, as it is 

proposed as a complimenting alternative to satellite datasets. For all the locations, the RMSD 

of monthly values for ERA5 is similar to that of CLARA and SARAH, but the RMSD of daily 

values (in parentheses) was considerably larger in ERA5 when compared with the satellite 

databases. On even larger time scales (see Paper III), the difference decreased further. In this 

analysis, the total cloud water content (TCWC) and short wave solar radiation downward, clear-

sky (SWSDC) from ERA5 were used here. Clear-sky indices for ground-measured data, ERA5, 

and CLARA-A2 were calculated by using SWSDC from ERA5 because the clear-sky values 

from ERA5 have the aerosol and water content information, which is used in calculating the 

surface solar radiation. This analysis was performed for days when the solar zenith angle is 

lower than 90º. Times when the solar zenith angle is higher than 90º was not considered in this 

analysis, as the intent here is to analyze solar radiation and TCWC, however, when the solar 
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radiation is not available, the TCWC is present. Including nighttime values in this analysis 

would have influenced these results. 

Table 6.3: The number of days and mean TCWC from in-situ ground measurements, ERA5 

and CLARA are shown in the table for different sky categories. The number of days and mean 

TCWC in each cloudiness category for ERA5 is shown separately for cases when ERA5 and 

ground measurements agree on classification and for cases when there is a disagreement. Years 

from 2000 to 2015 were used in this analysis over all locations included in the study. 

 

In this analysis, it was found that ground measurement and CLARA classify almost the same 

percentage of days into each category, however, ERA5 was observed to classify a large number 

of days as intermediate-cloudy and a small number of days as overcast than in-situ observations, 

hence showing that it had a negative bias towards classifying a day as overcast. CLARA had 

very similar mean TCWC values as ground measurements but ERA5 slightly underestimated 

TCWC in the clear-sky category but largely overestimated it in overcast category, as shown in 

Table 6.3. Moreover, in ERA5 the mean TCWC was slightly underestimated in the clear-sky 

category but largely overestimated in overcast category. The agreement on sky conditions was 

also analyzed and it can be seen from Table 6.3 that the mean TCWC of days with agreement 

is the same as that of ERA5, but on the days of disagreement, there is an overestimation in mean 

TCWC in clear-sky days and an underestimation in overcast days. These results showed that 

on clear-sky days, ERA5 had more clouds than in-situ observations, which was seen by higher 

levels of TCWC, while on the overcast days there was a lower amount of clouds, which was 

seen by lower levels of TCWC. Figure 6.9 shows the scatter plot of ground measurements and 

ERA5 for both of these conditions, i.e. when there is an agreement on classification and when 

there is a disagreement. It can be seen that the spread is large when there is a disagreement. A 

correlation coefficient of 0.98 is found for agreement data points while a correlation coefficient 

of 0.90 is found for disagreement points. 

 Ground data CLARA data ERA5 data ERA and ground 
agree 

ERA and ground 
disagree 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. 
of 

days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 
Clear-sky 38265 

(30.2%) 
0.03 39516 

(31.3%) 
0.03 53211 

(33.4%) 
0.02 2950

0 
0.02 8765 0.07 

Intermediate-
cloudiness 

49207 
(38.8%) 

0.09 45244 
(35.8%) 

0.10 75268 
(47.4%) 

0.10 3470
0 

0.10 14507 0.07 

Overcast 39181 
(30.9%) 

0.22 41417 
(32.8%) 

0.22 30389 
(19.1%) 

0.29 2091
4 

0.30 18004 0.12 
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(a) (b) 

Figure 6.9: Scatter plots for the days when ERA5 and ground measurement agree on 

classification and when there is a disagreement. A correlation coefficient of 0.98 is found for 

agreement points and 0.90 for disagreement points. 

The RMSD, MABD, and MBD were calculated for different sky conditions and when ERA5 

and ground measurements agreed on sky conditions and for when there was a disagreement. 

This error analysis showed that the highest increase in errors was seen in clear-sky and overcast 

categories with MABD of 42.6 Wm-2 and 30.6 Wm-2, respectively. The MBD was positive in 

clear-sky category and negative in intermediate-cloudiness and overcast categories, which 

further showed that there was less amount of clouds in the clears-sky category and more amount 

of clouds in intermediate-cloudiness and overcast categories. From a solar energy-harvesting 

point of view, the clear-sky days produce more energy than intermediate-cloudy or overcast 

days. It can be observed that ground-measurement and ERA5 predicts almost the same 

percentage of clear-sky days, which further shows that on daily averages, reanalyses may not 

predict clouds accurately but on longer time scales, the solar radiation estimation improves. 

In conclusion, both CLARA and SARAH provided good estimates but both of these datasets 

had some shortcomings, including the spatial limits of SARAH and the low temporal frequency 

of CLARA. On the other hand, ERA5 provided advantages in the form of historical data series 

and global coverage. Based on these results, it was suggested that CLARA and SARAH provide 

better estimates for solar radiation, but ERA5 can be used to fill the missing data in these 

datasets. 
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6.2 A Random Forest regression based model  

As presented in previous section, satellite based models are more accurate than reanalyses, 

however the accuracy of satellite models deteriorate with increasing latitude. Moreover, unlike 

reanalyses, satellite models have missing values and a negative bias. In Paper IV, a novel 

method was presented which is based on taking advantage of these over and underestimation 

of ERA5 and CLARA datasets. A regression-based method was used to construct a new datasets 

by using CLARA and ERA5. The new dataset provided more accurate estimations of surface 

solar radiation than the input datasets.  

The regression model used in Paper IV is called Random Forest Regression (RFR), explained 

in Section 4.5. Initially in this study, Gaussian process regression was used to improve the solar 

radiation estimates, but experimenting with RFR provided better results. In this study, 31 

locations from NIBIO solar radiation-measuring network were used (refer to the Appendix, 

Table A for information on the locations and Table B for information on rejected years). In 

addition, five stations from SMHI solar radiation measuring network from Sweden were used 

to evaluate the performance of the proposed dataset (Appendix, Table C). To train the model, 

20% of the data from Norwegian ground-measuring stations was used. In addition to solar 

radiation measurements and estimates, latitude of locations, altitude, solar zenith angle, and 

clear-sky index was used as inputs to the regression model. To evaluate the robustness of the 

proposed model, locations from Sweden were used to check the accuracy of the proposed 

model. The data from Swedish locations were not used in the training of the model. The RFR 

was trained on a workstation with 16 cores and 64 GB of RAM. 

Table 6.4: RMSD, MABD, and MBD of the input data sets and the presented model are shown. 

The metrics are shown for different geographical locations, including below 65ºN, above 65ºN, 

coastal, and inland regions. Numbers without parentheses are monthly averaged errors while 

those in parentheses are daily averaged errors. 

 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
CLARA ERA5 Model CLARA ERA5 Model CLARA ERA5 Model 

All sites 9.6 
(19.1) 

10.2 
(26.7) 

6.6 
(15.7) 

6.3 
(13.1) 

7.0 
(16.7) 

4.3 
(10.2) 

-1.6 
(-2.0) 

3.9 
(3.9) 

-0.2 
(-0.2) 

Above 65ºN 9.6 
(16.0) 

10.1 
(26.3) 

6.5 
(13.7) 

6.3 
(9.7) 

6.9 
(14.5) 

4.2 
(8.2) 

-1.6 
(-2.9) 

3.8 
(5.6) 

-0.2 
(-0.1) 

Below 65ºN 9.7 
(19.5) 

12.7 
(26.8) 

8.0 
(15.9) 

6.5 
(13.6) 

9.4 
(17.3) 

5.4 
(10.5) 

-1.8 
(-1.8) 

5.7 
(3.9) 

0.1 
(-0.1) 

Coastal 9.7 
(16.7) 

10.1 
(26.7) 

6.6 
(14.8) 

6.4 
(11.4) 

7.0 
(16.3) 

4.3 
(9.4) 

-1.7 
(-1.1) 

3.8 
(4.9) 

-0.2 
(0.4) 

Inland 8.2 
(20.8) 

11.2 
(26.7) 

6.6 
(16.4) 

5.7 
(14.4) 

7.9 
(17.5) 

4.6 
(10.8) 

-0.6 
(-2.6) 

4.5 
(3.4) 

0.1 
(-0.4) 
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Table 6.4 shows the errors in CLARA, ERA5 and the proposed model for Norwegian locations. 

The model improves the MABD by more than 20%. On monthly averages for all sites, CLARA 

had an MABD of 6.3 Wm-2, ERA5 had an MABD of 7.0 Wm-2, and the proposed regression 

model had an MABD of 4.3 Wm-2, which shows a relative improvement of 32% and 39% with 

respect to CLARA and ERA5. The RMSD of the proposed model was also smaller than 

CLARA and ERA5, with improvements of 31% and 35%, respectively. However, the bias or 

MBD was negative for the proposed model as in the case of CLARA. The reason for the 

negative bias is that CLARA is a more accurate dataset than ERA5; hence, in the regression, 

more weightage is given to CLARA than ERA5. However, the magnitude of bias in the 

proposed model is smaller than CLARA. From the bias-variance decomposition of mean 

squared error (MSE=RMSD2), the variance can be computed as:    Var=RMSD2-Bias2. We can 

use this to use that the variances of CLARA and ERA5 are very similar, and the variance of the 

RFR model is less half of these. This proves that the RFR model also provides a large 

improvement in precision. 

Moreover, the R2 values and the standard deviation (STD) of the Norwegian locations were 

analyzed as well. Values of the coefficient of determination, R2, are computed from the ground-

measured and model data. The standard deviation is a measure of the spread of the prediction 

errors around their mean value. Table 6.5 shows the R2 values and standard deviation for all 

Norwegian locations, in addition to below 65°N, above 65°N, coastal and inland regions. The 

standard deviation in Table 6.5 has units of Wm-2, whereas R2 has no units. For standard 

deviation, the smaller the value, the better the model estimates and for R2, the larger the value, 

the better are the estimates. 

Table 6.5: The R2 and error standard deviation analysis of CLARA, ERA5, and the proposed 

RFR model for Norwegian locations is shown here. The RFR model improves the estimates in 

all types of geographical categories. The unit of the standard deviation (STD) is Wm-2 and R2 

is unit-less. Best results are indicated in bold. 

 NIBIO sites Above 65ºN Below 65ºN Coastal Inland 
R2 STD R2 STD R2 STD R2 STD R2 STD 

CLARA 0.96 23.8 0.96 18.4 0.95 25.0 0.97 21.1 0.95 25.9 
ERA 0.92 26.9 0.89 28.5 0.92 26.7 0.91 27.1 0.92 26.7 
RFR 

(proposed) 
0.97 16.0 0.97 15.3 0.97 16.1 0.97 15.3 0.97 16.5 

The proposed regression model improves the solar radiation estimates at all Norwegian 

locations. The largest improvements were observed in location above 65°N, although the 
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differences are small. The proposed model had lower standard deviation than CLARA and 

ERA5 in all geographical groups. 

The error analysis was also performed for locations above 65ºN, below 65ºN, coastal and inland 

regions. Although the model improved the estimated solar radiation, most of the improvements 

were seen in coastal regions and regions lying above 65ºN. In addition, a seasonal analysis was 

also performed on the accuracy of the proposed dataset (see Paper IV). Major improvements 

were observed in the period of February to July, which evidently are the months that receive 

largest portion of solar radiation in a year at high latitude locations. One of the shortcomings of 

the CLARA dataset is the high errors when the solar elevations angles are very low, as in the 

case of early winter period and late summer period. On the contrary, in these periods ERA5 

provides better estimates than CLARA does. The proposed model takes advantage of ERA5 

capabilities of improved surface solar radiation estimates at low solar elevation angles and 

improves the estimates by weighing ERA5 more at these times.  

   

   
Model RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 

Clear-sky 17.4 11.3 -6.6 
Intermediate cloudy 16.8 11.8 1.7 

Overcast 12.8 8.2 5.3 
Figure 6.10: Proposed regression model errors under clear-sky, intermediate cloudy and 

overcast skies. The scatter plots for different sky conditions are also shown. The colored legend 

bar shows the density of points. 

In this study, the sky stratification capability of the proposed data set was studied to assess its 

performance in different sky conditions. Figure 6.10 show the scatter plots of proposed model 

in different sky conditions. The method used in sky stratifications used here is the same as 

shown in the previous section and Paper III. 
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The proposed model improved the surface solar radiation accuracies in all three sky-categories. 

Large improvements were observed in clear-sky and intermediate-cloudy categories, while a 

somewhat small improvement was observed in overcast category. 

In the final analysis, solar radiation estimates from the model were evaluated against five 

Swedish ground-measuring stations. For information on these station refer to Appendix Table 

C (stations marked with *). As previously explained, the data from Swedish locations was not 

used in training the regression model. The analysis is shown in Table 6.6, and it can be seen 

that the model improves the solar radiation estimates in Swedish locations. This robustness test 

shows that this model can be used to improve solar radiation estimates at high latitude locations. 

Table 6.6: The RMSD, MABD, and MBD of the input data sets and the regression model for 

Swedish locations are listed. These locations were not used in the training of the regression 

model. Numbers without parentheses are monthly averaged errors while those in parentheses 

are daily averaged errors. 

 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
CLARA ERA5 Model CLARA ERA5 Model CLARA ERA5 Model 

Kiruna 17.2 
(26.6) 

7.6 
(24.0) 

11.0 
(18.7) 

10.1 
(16.6) 

4.9 
(14.4) 

6.8 
(11.7) 

-7.0 
(-8.2) 

-2.3 
(-2.5) 

-5.9 
(-6.0) 

Luleå 10.6 
(24.4) 

10.4 
(25.1) 

5.6 
(17.5) 

6.9 
(14.9) 

6.6 
(15.3) 

3.8 
(11.0) 

-4.4 
(-4.2) 

5.1 
(4.9) 

-2.1 
(-2.1) 

Umeå 8.3 
(16.4) 

7.1 
(23.0) 

5.5 
(13.5) 

6.1 
(11.5) 

4.4 
(14.2) 

3.8 
(9.1) 

-3.2 
(-3.5) 

2.0 
(2.1) 

-2.6 
(-2.5) 

Stockholm 6.8 
(16.4) 

7.0 
(23.6) 

5.9 
(14.6) 

5.1 
(11.5) 

4.8 
(15.7) 

4.5 
(10.0) 

2.6 
(2.5) 

3.1 
(3.1) 

3.9 
(4.0) 

Göteborg 4.7 
(14.9) 

9.5 
(26.1) 

4.8 
(14.4) 

3.5 
(10.5) 

7.3 
(17.0) 

3.7 
(9.9) 

1.6 
(1.8) 

6.9 
(6.8) 

3.0 
(2.9) 

SMHI 
locations 

10.4 
(20.3) 

8.4 
(24.4) 

6.9 
(15.9) 

6.3 
(13.0) 

5.6 
(15.3) 

4.5 
(10.3) 

-2.1 
(-2.3) 

2.9 
(2.9) 

-0.8 
(-0.7) 
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7. Discussion and future work 
This chapter presents a discussion on the topics covered in this thesis, appended paper, and 

provides an overview of the future work. 

7.1 Discussion 

This research provides an in-depth evaluation of surface solar radiation estimation datasets for 

high-latitude locations. The solar energy penetration in Norway has been very low when 

compared to the neighboring countries. One of the hindrances in having higher penetration is 

the available data and maps for a feasible decision making process. Ground measuring stations 

are sparse and there are a handful of these stations recording surface solar radiation at high 

latitude locations. The quality control of the ground-measured data is another important issue 

as it was observed in this work.  

Remotely sensed solar radiation data by satellites provides accurate estimation in mid latitude 

and equatorial regions, however, at high latitude regions these dataset deteriorate because of 

the complex viewing angles between terrain, satellites and the Sun. This thesis provides an 

overview of these available resources for high latitudes along with their accuracies.  

Recent studies have shown that the solar radiation estimation from reanalyses has been 

improving. These dataset provide a valuable support to the satellite datasets, which are currently 

more accurate than reanalyses. As the ground measuring stations in Norway are located at large 

distances from each other, reanalyses provide the most reliable and feasible solar radiation 

estimates for filling gaps in ground-measured and satellite data.  

In this thesis, advanced regression method was used to improve the surface solar radiation 

estimates from satellite and reanalyses datasets. With increasing computing power and 

sophisticated machine learning algorithms, large datasets are now easier to model. These 

methods show that with low computing power, large improvements can be made in the available 

data. In addition to solar radiation, these methods can be used on other renewable energy 

sources. 
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7.2 Future work 
This thesis provides models and research regarding solar radiation estimation in high-latitude 

locations. There could be a number of extensions to this works. Some planned research targets 

are as follows: 

• The main solar radiation measurement provider in Norway is NIBIO. This research has 

found quality control issues in the in-situ measurements in the NIBIO data. This data 

can be quality controlled by using advanced and sophisticated methods. Flags can be 

introduced for erroneous data, in addition to replacing the erroneous data with the model 

datasets analyzed in this thesis. 

• The regression model presented in Paper IV is more accurate than other available 

dataset. However, the highest temporal resolution of the proposed data set is limited to 

daily averages. A future extension of this work includes increasing the temporal and 

spatial resolution of this data set by using statistical methods. 

• The evaluation of the regression model was limited to Scandinavia in this thesis. The 

data used to train the model was also limited to Norwegian locations. An interesting 

research extension could be to include data from northern American and Russian 

regions, so as to have a larger training and testing datasets. 

• The datasets analyzed here and the proposed model will be used in performing multiple 

rooftop solar potential studies by using ArcGIS. 

• The new regression based dataset should be used to compute and present a complete 

solar radiation resource map over the entire Scandinavia and other high latitude regions. 

• As shown in this thesis, satellite estimation of solar radiation deteriorates on snow-

covered surfaces. A possible research extension is to investigate snow-covered areas 

through auxiliary data, e.g. IR data from satellites, snow depth data from ERA5 and 

improve the surface solar radiation on snow-covered surfaces. 
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8. Summary of conclusions 

This chapter summarizes the main conclusions of the research presented in this thesis. These 

concluding remarks are related to the aims of the thesis presented in Section 1.1 and the 

knowledge gaps indicated in Section 5. 

Modelling surface solar radiation by using meteorological variables (Paper I) 

• It was shown that meteorological variables could be used to estimate surface solar 

radiations in high latitude locations. Moreover, when compared to other such models, 

the inclusion of relative humidity improves the results. These kind of models can be 

used at meteorological stations that do not record surface solar radiations. 

Comparative analysis of CLARA-A1 and CLARA-A2 (Paper II) 

• The CLARA datasets provide surface solar radiation estimates in the Polar Regions. In 

2017, the latest version of this dataset called CLARA-A2 was published. A study was 

performed to assess the improvement of the new edition. It was found that the new 

edition is more accurate than the CLARA-A1 along with having reduction in the number 

of missing values. However, the new data points in CLARA-A2 mostly lie on the snow-

covered surfaces that have large errors.  

• As the northern Scandinavian regions have frequent snow covers in winter, the CLARA-

A2 dataset should be used after a proper analysis of land surface properties and biases 

in solar radiation estimation. 

Assessment of satellite and reanalyses datasets for high latitude regions (Paper 

III) 

• A number of satellite and reanalyses provide surface solar radiation estimates at high 

latitude regions. This analysis showed that surface solar radiation datasets based on 

satellites provide better estimates than reanalyses. 

• Above 65ºN, CLARA delivers the best estimates and below 65ºN, SARAH gives the 

best estimates. However, the solar radiation estimates from these datasets deteriorate on 

snow-covered surfaces.  
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• The newly published reanalysis by ECMWF called the ERA5 provides surface solar 

radiation estimates on a high temporal resolution. Even though this dataset is not as 

accurate as satellite dataset, the solar radiation estimates from ERA5 can be used to fill 

the missing gaps in the monthly mean values of the CLARA datasets. 

• Arctic System Reanalysis, which is a polar optimized downscaling of ERA-Interim, was 

found to have very large errors. 

A random forest regression based solar radiation dataset (Paper IV) 

• The knowledge gained from preceding studies was used in proposing a dataset based on 

a random forest regression by using CLARA-A2, ERA5 and auxiliary data. It was found 

that the proposed model has a considerably improved accuracy compared to CLARA-

A2 and ERA5. 

• The proposed regression model was trained on 20% data from Norwegian locations. On 

the Norwegian testing data, substantial improvements were observed. In addition, the 

same regression model that was trained on Norwegian data was also tested on five 

Swedish locations with very similar improvements. 
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Appendix 

Table A: Information about the site locations from Norway used in the thesis and appended 

papers. The table shows the coordinates of ground measuring stations along with their altitudes, 

and land type. Paper III and IV. 

 Station Latitude Longitude Altitude Land type 
1 Holt 69.65 18.91 12 Coastal 
2 Sortland 68.65 15.28 14 Coastal 
3 Vågønes 67.28 14.45 26 Coastal 
4 Tjøtta 65.83 12.43 10 Coastal 
5 Skogmo 64.51 12.02 32 Inland 
6 Rissa 63.59 9.97 23 Coastal 
7 Kvithamar 63.49 10.88 28 Inland 
8 Skjetlein 63.34 10.3 44 Coastal 
9 Surnadal 62.98 8.69 5 Inland 

10 Tingvoll 62.91 8.19 23 Coastal 
11 Fåvgang 61.46 10.19 184 Inland 
12 Fureneset 61.29 5.04 12 Coastal 
13 Gausdal 61.22 10.26 375 Inland 
14 Løken 61.12 9.06 527 Inland 
15 Ilseng 60.8 11.2 182 Inland 
16 Kise 60.77 10.81 129 Inland 
17 Apelsvoll 60.7 10.87 262 Inland 
18 Hønefoss 60.14 10.27 126 Inland 
19 Årnes 60.13 11.39 162 Inland 
20 Etne 59.66 5.95 8 Inland 
21 Ås 59.66 10.78 94 Inland 
22 Bø 59.42 9.03 105 Inland 
23 Rakkestad 59.39 11.39 102 Inland 
24 Ramnes 59.38 10.24 39 Coastal 
25 Tomb 59.32 10.81 12 Coastal 
26 Gjerpen 59.23 9.58 41 Coastal 
27 Hjelmeland 59.23 6.15 43 Inland 
28 Tjølling 59.05 10.13 19 Coastal 
29 Særheim 58.76 5.65 90 Coastal 
30 Landvik 58.34 8.52 10 Coastal 
31 Lyngdal 58.13 7.05 4 Inland 
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Table B: List of years not included in Paper III and IV. 

 

Station 
Years having more than 5% 

missing data 

Years 
failing 

Long and 
Dutton test 

Years having 
operational error 

(snow/frost/ 
shading/soiling) 

Years having 
equipment 

error 

1 Holt 2001,2002,2006,2007,2008,2010 2013  2000 
2 Sortland 2000,2006,2007,2010,2013    
3 Vågønes 2006,2007  2002  
4 Tjøtta 2006,2007   2008, 2012 
5 Skogmo 2006,2007,2008,2015  2011 2013, 2014 
6 Rissa 2006,2007 2000   
7 Kvithamar 2006,2007,2013    
8 Skjetlein 2006,2007 2000   
9 Surnadal 2006,2007,2014    
10 Tingvoll 2006,2007,2012    
11 Fåvang 2006,2007   2001 
12 Fureneset 2006,2007,2011,2012    
13 Gausdal 2006,2007,2009   2015 
14 Løken 2006,2007    
15 Ilseng 2006,2007,2004 2000 2009  
16 Kise 2002,2006,2007,2015  2013  
17 Apelsvoll 2006,2007  2002,2003,2004 2009 
18 Hønefoss 2006,2007 2000   
19 Årnes 2006,2007    
20 Etne 2006,2007  2004,2012  
21 Ås 2006,2007    
22 Bø 2000,2006,2007    
23 Rakkestad 2006,2007    
24 Ramnes 2006,2007  2009  
25 Tomb 2006,2007 2009   
26 Gjerpen 2006,2007,2015    
27 Hjelmeland 2006,2007   2002, 2015 
28 Tjølling 2006,2007,2008,2014  2012,2015 2009, 2010 
29 Særheim 2000,2006,2007    
30 Landvik 2006,2007  2005,2010,2014,2015  
31 Lyngdal 2006,2007 2001   
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Table C: Information about the site locations from Sweden used in the Paper II and IV. Location 

marked with (*) were used in Paper IV. The table shows the coordinates of ground measuring 

stations along with their altitudes, land type, and years not included in the study. 

 Sweden Latitude Longitude Altitude Land Cover Years not 
included 

1 Kiruna* 67.83 20.43 408 Sparse forest N.A 
2 Luleå* 65.55 22.13 17 Coastal/archipelago N.A 
3 Umeå* 63.82 20.25 10 rural N.A 
4 Borlange 60.48 15.43 140 Urban/forest N.A 
5 Stockholm* 59.35 18.07 30 Coastal/archipelago 1998 
6 Goteborg* 57.70 12.00 5 Coastal N.A 
7 Lund 55.71 13.21 73 Urban N.A 
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Estimating solar irradiation in the Arctic
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This is an O
Abstract. Solar radiation data plays an important role in pre-feasibility studies of solar electricity and/or
thermal system installations. Measured solar radiation data is scarcely available due to the high cost of installing
and maintaining high quality solar radiation sensors (pyranometers). Indirect measured radiation data received
from geostationary satellites is unreliable at latitudes above 60 degrees due to the resulting flat viewing angle. In
this paper, an empirical method to estimate solar radiation based on minimum climatological data is proposed.
Eight sites in Norway are investigated, all of which lie above 60N. The estimations by themodel are compared to
the ground measured values and a correlation coefficient of 0.88 was found while over all percentage error was
−1.1%. The proposed models is 0.2% efficient on diurnal and 10.8% better in annual estimations than previous
models.
1 Introduction

Solar radiation data is required when designing active or
passive solar installations. Information about solar radia-
tion is also widely used in agriculture, forestry and
biological processes [1]. In this study, the emphasis is on
the active solar installations in northern Norway and the
Arctic. Solar radiation is not an easily obtained quantity,
even though it is of great importance. In the case of
northern Europe, solar irradiation data is scarcely
available. One of the main reasons is the unavailability
of weather stations having pyranometers, and that data
from geostationary satellites is not very accurate because of
the flat viewing angle. In this study, we present an
empirical method to calculate the solar irradiation based on
only temperature and relative humidity recordings.

The most straightforward method to measure solar
radiation would be the installation of pyranometers, but
there are two main limiting constraints in this approach.
The first being the high cost of the equipment, and
secondly, the regular maintenance. Due to these con-
straints all over the world and especially in northern
Norway, such equipment is often not installed even at the
weather stations, set up and maintained by the Norwegian
Meteorological Institute. Globally, the percentage of
weather stations recording the solar radiation is small,
roughly 10%, as compared to the stations recording other
climatological quantities like temperature, precipitation,
humidity, etc. while the ratio of weather station recording
short wave solar radiation to stations recording tempera-
ture is 1:500 [1]. In the context of Norway, Bioforsk and
ilal.babar@uit.no

pen Access article distributed under the terms of the Creative Com
which permits unrestricted use, distribution, and reproduction
Meteorologisk Institut have 70 high quality weather
stations recording the radiation. In addition, Energinettet
has 32 station installed with pyranometers (low quality
recordings, non-ISO9060 compliant) and Norwegian Radi-
ation Protection Authority has 10 stations in Norway [2].
Of the 1044 weather stations in Norway [3], only 112
stations provide radiation data. Online resources are
available but they also do not cover the area of Scandinavia
thoroughly, for example, PVGIS is having only one station
of solar radiation from Norway, while Meteonorm is having
three Norwegian station in their database of 1200
worldwide stations [2]. Satellites can be used to estimate
solar radiation, but above 60 degrees north the estimations
from satellites are not reliable because of the flat viewing
angle. Consequently there is a need for finding the solar
irradiation quantity using methods for plus 60 degree
latitudes. We propose to use an empirical model that can
calculate solar irradiation based on only temperature and
mean relative humidity as input data.

2 Estimation of solar radiation

Analytical, stochastic, empirical and artificial neural
network models have been used in the past for the
estimation of solar irradiation [4,5]. In reference [6], the
author used satellite images to calculate the ground solar
radiation through heliosat, a solar radiation estimation
method based on geostationary satellites. The modelling
of such a system is very difficult and the required
information is most of the times incomplete. Stochastic
models are used in [7] to estimate the solar radiation, but
because of the linear property of such models, they cannot
produce good enough results, as the behavior of solar
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.
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radiation, especially in the presence of clouds, is non-
linear. Artificial neural network are very competitive in
estimating solar radiation. Authors in [8–10] have used
this AI technique to estimate the solar radiation. The
problem with this technique is the higher computational
power required in solving the problem, and secondly, the
results are not precise when the area between the
observation points is large. Such models do not take into
account the regional factors involved in the variation of
the solar radiation.

Empirical models for the estimation of solar radiation
exists since long. In 1924, one of the first models for such
estimations was proposed [11]. With this model, there is
always a need to calculate two coefficients, which vary for
different areas [12]. In reference [13], the authors showed
the dependency of temperature and solar radiation on the
evapotranspiration of an area. The proposedmodel is based
on the model from [13], but instead of only temperature
difference, the model takes into account the effect of
relative humidity as well.

3 Methodology

The Arctic poses a unique problem when it comes to
estimating solar radiation as the length of sunlight hour's
changes very rapidly, from the sun being below the horizon
during two winter months to 24-h sunlight during the
summer months. For the estimation of solar radiation,
equations from [13] can be used. A general form of the
equation is given below:

Rs ¼ KT � ReðTmax � TminÞ0:5; ð1Þ
where Rs is the estimated radiation, Re is the extraterres-
trial radiation, KT is constant, Tmax and Tmin are the
maximum and minimum temperatures. In such a model,
the global horizontal solar radiation is estimated by the
recorded levels of maximum and minimum temperatures
on a particular day. The value of constant KT varies from
0.162 for interior regions and 0.19 for coastal regions. The
main shortcoming of such a model is that it does not take
into account the effect of clouds. When observing
radiation, clouds may be the biggest affecting factor,
and the variation in the radiation caused by clouds is very
rapid and could be at a large scale.

4 Proposed model

In this paper, we propose a novel method to estimate the
solar radiation. The proposedmethod is based on themodel
given in [13], but instead of using only temperature
difference, this method uses the relative humidity as well.
By using relative humidity as an extra variable, this system
becomes more robust and efficient. In addition, the
radiation effect on humidity is twice that of tempera-
ture [14]. A critical value of relative humidity results in the
cloud formation, which increases from zero at some
specified relative humidity, to overcast when relative
humidity is 100%. It becomes evident that for an overcast
day the estimation model from equation (1) could be
improved by taking in to account the relative humidity
(a commonly recorded meteorological variable). This
model performs relatively better on days having clouds.
The equation used in this study is shown below:

Rs¼0:04 � Re � ðTmax � TminÞ þ CT � Re � ðRHÞ0:27:
ð2Þ

In equation (2), Rs is the estimated horizontal global
solar radiation, Re is the extraterrestrial solar radiation,
RH is daily averaged ground-measured relative humidity,
Tmin and Tmax are the minimum and maximum temper-
atures, respectively. CT is a constant, which varies
geographically. The parameter Re limits the estimated
values of the global radiation to certain levels. In the
Arctic, between the months of November and January
when there is no light, the value of extraterrestrial
radiation is zero, driving the estimated curve also to zero.
The following equation was used to calculate the
extraterrestrial radiation [15].

Re ¼ 24

p
Rsc 1þ 0:033 � cos

360 � P

365

� �
� cosð’Þ

� cosðdÞ � sinðhsÞ þ 2 � p � hs

360

� �
� sinð’Þ

� sinðdÞ; ð3Þ

where Re is the extraterrestrial radiation, Rsc is the solar
constant with a value of 1.366 kW/m2, P is the day number
from 1 to 365 (366 leap), ’ is the latitude of the area, d is
the declination angle and hs is the hour angles of sunrise
and sunset.

5 Results and discussion

In the literature, many types of evaluation techniques are
used for finding the accuracy and precision of empirical
models.When estimating solar radiation, root mean square
error was found to be the most widely used parameter.
Other parameters such as standard deviation, mean bias
error, mean absolute error and mean square error are also
used to find the accuracy of models. However, in
reference [16], it is suggested that for such empirical
models, root mean square error may results in a higher
value if there are a few high values in the sample, while
mean bias errors can cancel out if negative and positive
biases are present.

In this study, the evaluation of the proposed model was
checked with four statistical indices: normalized root
mean square error (RMSE), t-statistic (t-stat), yearly
percentage error (YPE) and correlation coefficient (Corr).
The model is further evaluated by correlating all the
observed and calculated values and plotting the data on a
scatter plot.

The proposedmodel was tested on eight sites in Norway
for a period of 10 years. The sites were Tromso, Bodo,
Sortland, Tingvoll, Pasvik, Overhalla, Gausdal and Etne.
The data for these sites was taken from Bioforsk and all
the sites are located at latitude higher than 60 degrees



Fig. 1. Observed, calculated and extraterrestrial radiation.

 (a)( )

(b) 
Fig. 2. (a) Scatter plot of the data for calculated and observed values, the correlation coefficient for the model is 0.88. (b) Mean
percentage error for Tromso, average over 2005–2014.
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Table 1. Statistical performance parameters for the sites.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Tromso RMSE 0.10 0.11 0.11 – 0.10 – 0.09 0.11 0.11 0.09
t-Stat 0.52 2.5 2.1 – 1.8 – 0.95 0.57 2.2 1.2
YPE 1.35 8.41 4.8 – 4.87 – 1.84 1.87 6.7 3.6
Corr 0.9 0.83 0.93 – 0.88 – 0.90 0.88 0.85 0.91

Bodo RMSE 0.10 0.20 – 0.09 0.11 0.11 0.10 0.09 0.10 –

t-Stat 0.36 5.5 – 2.1 1.4 0.87 1.22 1.02 3.5 –

YPE 0.9 22.9 – 4.27 3.31 2.22 3.14 2.3 9.03 –

Corr 0.89 0.74 – 0.93 0.9 0.88 0.89 0.91 0.90 –

Sortland RMSE 0.09 0.11 0.15 0.10 0.10 0.14 0.09 0.12 – 0.09
t-Stat 3.2 3.7 1.6 2.8 0.53 0.52 0.98 1.2 – 2.8
YPE 7.3 10.9 5.14 6.05 1.07 1.82 2.53 3.16 – 6.9
Corr 0.91 0.86 0.85 0.92 0.93 0.80 0.90 0.89 – 0.91

Tingvoll RMSE – 0.09 0.06 0.09 0.09 – – 0.10 0.12 0.11
t-Stat – 2.9 2.3 1.3 2.7 – – 1.5 2.3 5.05
YPE – 7.28 5.83 2.55 5.5 – – 3.5 5.51 12.6
Corr – 0.90 0.91 0.93 0.92 – – 0.90 0.90 0.91

Pasvik RMSE 0.11 – 0.33 0.11 0.10 0.09 0.09 0.10 0.10 0.08
t-Stat 0.82 – 0.48 0.61 1.8 1.8 0.17 1.25 1.4 1.7
YPE 2.64 – 3.43 1.6 5.25 6.15 0.3 3.19 3.77 4.4
Corr 0.86 – 0.16 0.87 0.87 0.85 0.92 0.89 0.89 0.92

Overhala RMSE – 0.08 0.05 0.09 0.08 0.11 0.08 0.07 0.09 0.10
t-Stat – 7.7 2.1 1.04 2.1 2.5 0.3 0.87 5.2 0.42
YPE – 15.1 8.76 2.67 6.2 7.9 0.7 2.13 15.4 1.1
Corr – 0.92 0.80 0.90 0.87 0.85 0.92 0.91 0.91 0.90

Gausdal RMSE 0.09 0.08 0.27 0.10 0.08 0.06 0.11 0.10 – 0.09
t-Stat 5.59 5.06 2.98 4.7 5.4 3.7 3.5 1.14 – 0.36
YPE 13.2 12.6 26.1 10.9 13.8 17.5 10.8 2.5 – 0.7
Corr 0.92 0.93 0.07 0.93 0.91 0.77 0.85 0.90 – 0.93

Etne RMSE – 0.09 0.10 0.09 0.10 0.12 0.10 0.09 0.12 0.10
t-Stat – 3.5 1.6 2.09 2.7 5.4 2.05 1.8 3.05 1.4
YPE – 7.67 4.49 4.38 5.9 11.9 5.06 3.9 7.1 3.3
Corr – 0.91 0.89 0.93 0.91 0.90 0.88 0.92 0.88 0.90
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north. Sites were selected on the basis that they provide
solar radiation recorded by a pyranometer, so that after
using the empirical model a correlation could be made for
evaluation. Constant CT in equation (2) was found by
regressing one year data from the data sets. For areas
under consideration, Etne, Overhalla and Pasvik were
having CT value of 0.001 while all other areas were having
a CT value of 0.04. For the credibility of the model it is
very important that the model performs well with the
same constants when data from other data bases is
used. With 0.04 constant for Tromso, model was checked
with data from the weather station of the University of
Tromso and similar results were obtained. In addition to
the application on higher latitudes, it is expected that the
model could be used at almost any place after tuning
the constants.
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As a comparison, proposed model performs better than
the model in equation (1). The average t statistic value for
our model is 1.4 as compared to 5.5 from equation (1). The
daily average percentage error is improved by 0.2%, while
yearly average percentage error is improved by 10.8%. In
Figure 1, a yearly plot of radiation is shown. The observed,
extraterrestrial and calculated values are daily figures. It
can be seen that the estimated values are very close to the
observed values of radiation.

In Figure 2(a), a scatter plot is shown for all the eight
sites over the 10 years period. A very good positive
correlation of 0.88 was found in this case. Furthermore,
in Figure 2(b), a graph of daily average errors for Tromso is
shown. The percentage errors are calculated for each year
and an average was taken for the 10 years period. Negative
error values in Figure 2(b) can be observed in the start and
end of the year. It is because of the polar night observed at
higher latitudes. After and before these negative means
there is a high positive mean which is because of the low
solar latitude, daily values of irradiation are very low in
these days of the year. Both the scatter plot and the daily
average error shows a promising result for the model.

In Table 1, we have shown the error statistics for all the
sites. These statistics were evaluated for each year
separately. The table gives a complete overview of the
performance of the model. YPE is in percentage while t-
stat, Corr and RMSE (normalized) is unit less. For all the
parameters accept correlation coefficient, lower the value
better the models performance, while for Corr, the closer to
1 the better is the models performance. The years for which
the data was not available were omitted.
6 Conclusion

In this paper, we presented a novel method to calculate the
global solar radiation on horizontal surface by using
minimum climatological data. For calculating solar radia-
tion, only temperature difference and relative humidity
values were used. The models performance was checked on
eight sites in Norway. The performance of the model was
evaluated through four statistical measures and the results
obtained are acceptable, having a correlation coefficient of
0.88 and an overall percentage error of −1.1%. The daily
error values of the model are also quite stable where most of
the values are lying below 4%.
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A B S T R A C T

Estimating/retrieving solar radiation through satellite-based remote sensing provides larger spatial coverage
compared to other methods. Accurate estimates of incoming solar radiation is important when planning new
solar energy installations. In addition, these estimates are also used in climate studies. Geostationary satellites
are ideal for estimating solar radiation but cannot be used for high latitudes because of an unfavourable viewing
angle; however, polar-orbiting satellites provide an alternative. CLoud, Albedo RAdiation edition 2 (CLARA-A2)
is the latest retrieval product of cloud properties, surface albedo and surface solar radiation by Satellite
Application Facility on Climate Monitoring (CM-SAF) based on Advance Very High Resolution Radiometer
(AVHRR) observations from polar orbiting satellites. This data set covers the whole earth and provides daily and
monthly averages. In this study, we have evaluated the CLARA-A2 data set and the previous version CLARA-A1
to in-situ high-quality observations from specific locations in Scandinavia, with a focus on solar radiation at high
latitudes. The results show that both datasets perform within the target accuracies of CM-SAF, although the new
data points, which were previously not available in CLARA-A1 due to snow-cover and cloud differentiation, have
high deviations. Nevertheless, yearly average energy estimates are more accurate in CLARA-A2 because of these
new points. For Swedish locations, mean absolute deviation (MAD) of 8.1Wm−2 and 8.7Wm−2 for CLARA-A1
and A2 respectively were calculated for updated values. Similarly, for Norwegian locations MAD of 8Wm−2 and
8.9Wm−2 were calculated for CLARA-A1 and A2. Overall, for all locations MAD lies at 8.1Wm−2 and
8.8Wm−2 for CLARA-A1 and A2, respectively. CLARA A2 has more temporal data points than CLARA A1,
however, the MAD of the new data points that were not available in CLARA-A1 are 15.2Wm−2 and 17.7Wm−2

for Swedish and Norwegian sites, respectively.

1. Introduction

The surface radiation budget at the Earth plays a central role in
climate monitoring and analysis of different meteorological parameters.
Recent studies such as (Stroeve et al., 2014; Arndt and Nicolaus, 2014)
make use of the surface radiation fluxes to indicate changing atmo-
spheric and environmental conditions. In addition, surface radiation
averages are used in the planning phase of the feasibility of solar energy
conversion installations such as solar thermal or photovoltaic systems.
Feasibility studies are important for choosing the optimal energy mix,
as evident from the recent global status report by Renewable Energy
Policy Network for the 21st Century (Ren21, 2017). The increase in the
solar energy deployment in the past few years makes such datasets even
more important for feasibility studies of future installations. In the
Arctic regions there has been a growing interest in the use of clean and
renewable energy sources, but the lack of reliable solar data hinders the
socio-political decision-making processes. The focus of this paper is on

validation and discussion of the improvements and shortcomings of the
second edition of CLoud, Albedo RAdiation (CLARA) dataset for high
latitude areas of Norway and Sweden. The retrieval quality of both data
sets is tested against in-situ observations from locations at varying la-
titudes. In addition, these sites have different topography, especially in
the Norwegian part.

Large solar power plants require preliminary data such as potential
site locations and area-specific designs. The potential of a location is
needed on a monthly and annual basis (Stoffel et al., 2010). The designs
may vary, for example at high latitude locations, single or dual axis
tracking increases the output energy by approximately 50% (Huld
et al., 2010; Good et al., 2011). In addition, inter-annual variability of
solar energy is used as a measure of change in received levels of ra-
diation through a certain period to find uncertainties in the energy
production at the locations where the solar energy units are planned
(Kariuki and Sato, 2018). Long time series usually of the magnitude of
multi-decadal order of solar radiation are analyzed in the preplanning
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of power plants (Meyer et al., 2006). In most cases satellite-based da-
tabases or climate models are used to simulate solar-radiation para-
meters on a longer term, as these are usually not available from in-situ
ground measuring stations. A common belief is that active solar energy
production at high latitudes is not feasible since often the solar energy
potential is underestimated. It is often neglected that the cold climate
can be beneficial for solar energy harvesting as the efficiency of silicon
solar cells increase at low temperatures (Skoplaki and Palyvos, 2009),
and the presence of snow covers reflect solar radiation thereby boosting
the output power. However, there are some challenges with solar en-
ergy at high latitudes such as a large seasonal variation in solar in-
solation, and a mismatch with the users demands. In this paper we focus
on the challenge of accessing accurate solar irradiation data at high
latitudes.

Various specialized databases are available for surface radiation
estimation, including, European Solar Radiation Atlas (ESRA), solar
data (SoDa), Satel-Light, Meteonorm, Photovoltaic Geographical
Information System (PVGIS) etc (Dunlop et al., 2006). However, most
datasets are based on geostationary satellites and therefore do not
provide coverage above 60–65 degrees latitude. Others that use dif-
ferent satellite assimilation techniques take very few ground measuring
stations into account, and thus cannot be considered as accurate for
high latitudes. For locations above 60 degrees, retrieval methods based
on observations from polar-orbiting satellites provide a solution, since
these are shown to result in more accurate estimates than those ob-
tained based on other remote sensing methods or empirical model es-
timation technique (Pinker and Laszlo, 1992; Besharat et al., 2013). As
shown by Polo et al. (2016), satellite estimation of solar radiation has
considerably improved and it is the second best option after the ground
measurement methods. The Satellite Application Facility on Climate
Monitoring (CM-SAF) provides multiple climate data records for cloud
detection, albedo and surface radiation. CLARA data sets are one such
product that can be used at high latitude locations because of its global
coverage.

The most accurate in-situ instrument for recording global horizontal
irradiance (GHI) is a pyranometer (Iqbal, 2012). In high-latitude Arctic
regions, there are few meteorological stations and only a subset of these
record solar radiation. The large distances between measurement
hinder the exploitation of new sites for solar energy based on in-situ
observations. Alternatively, solar radiation maps based on polar or-
biting satellites can be used at these locations.

Some previous studies including Riihelä et al. (2015) and Urraca
et al. (2017) have performed error statistics on the estimation of
CLARA-A1 and CLARA-A2. In Riihelä et al. (2015), authors performed
an extensive evaluation of CLARA-A1 and SARAH-A1 over Sweden and
Finland, while in Urraca et al. (2017) a few sites from Norway were
included. The novelty of this work lies in the comparison of the 2 da-
tasets on Norway and Sweden over a larger number of sites and years.
Moreover, the strength and weakness of the datasets are analyzed in
depth.

This paper is organised as follows. Section 2 describes the sites used
in the study and the sources of in-situmeasurements. Section 3 describes
methods used to process the data and the statistical evaluations per-
formed. Section 4 presents the result and a discussion on these results.
Section 5 concludes this work.

2. Sites

The locations used in this study are at different latitudes in Norway
and Sweden. The reason for this is that the performance of Cloud,
Albedo Radiation (CLARA) datasets can be assessed by taking into ac-
count that at higher latitudes there are more images provided by polar
orbiting satellites (14 per day at poles). Coordinates of the locations,
altitude and terrain information are provided in Table 1. The in-situ
data used to validate both data sets are acquired from two different
sources. For Norway, the data are from Norsk institutt for bioøkonomi

(NIBIO), and for the Swedish locations, the data are from the database
of Sveriges meteorologiska och hydrologiska institut (SMHI). Both da-
tabases contain average hourly measurement by Kipp and Zonen
CPM11 or CMP13 pyranometers. The equipment is regularly main-
tained and datasets are quality controlled by the respective organiza-
tions. In case of SMHI, Baseline Surface Radiation Network (BSRN)
routines by Long and Dutton (2010) are used for quality assurance.
Missing or erroneous data are corrected by using meteorological vari-
ables described by Davies and McKay (1989). The network was up-
graded in 2006–2007 and the average ratio between old and new
measurements was found to be 0.997. More detail on the upgrade is
given by Carlund (2011). NIBIO calibrates the equipment once every
year and had a major overhaul in 2013. The equipment is inspected and
maintained on daily or weekly basis (http://lmt.bioforsk.no/about). In
this study, an additional quality check of the on-site observations was
performed, and any data flagged for low quality were discarded. In
addition, NIBIO measurements having more than 10% of hourly
missing values in a year were discarded (see appendix for details about
the years not included in the study).

3. Method

3.1. Data source

CLARA edition 2 (CLARA-A2) by CM-SAF is the latest edition of
CLARA datasets and was released in December 2016. The solar radia-
tion estimates for CLARA are derived from the Advance Very High
Resolution Radiometer (AVHRR) sensors on board METOP and NOAA
polar orbiting satellites. The dataset is available for a 34 year period
from 1st January 1982 to 31st December 2015, which is an extension of
6 years relative to the previous edition. The dataset covers the whole
globe with a spatial resolution of 0.25×0.25 degrees on a regular lat-
lon grid, which translates to 27.8 km at the equator. Average Surface In-
coming Shortwave radiation (SIS) values are available for daily and
monthly time resolutions. Instantaneous AVHRR images are processed
to derive a spatio-temporal averaged dataset, consisting of cloud cover,
surface albedo and surface-radiation products. The second edition is an
improvement over the first edition because of the upgraded retrieval
method and 6 years of additional data.

CLARA-A2 uses aerosol information, vertical integrated vapor and
ozone, along with the surface albedo product to estimate incoming solar
radiation (Jörg Trentmann, 2016). Estimation of surface albedo is a
challenging task, which includes calculating top-of-the-atmosphere re-
flectance, classification of snow covered pixels, radiometric and

Table 1
Information on the location, altitude and land cover type of the sites included in
the study.

Norway Latitude Longitude Altitude (m) Land Cover Type

Tromsø 69.65 18.9 12 Island
Pasvik 69.45 30.04 27 Lakes/forest
Sortland 68.6 15.28 14 Coastal/fjords
Vågønes 67.28 14.45 26 Forest/Coastal
Tjøtta 65.83 12.43 10 Coastal/archipelago
Oslo 60.12 11.3 162 Rural/agricultural

Særheim 58.76 5.65 90 Inland/rural/agricultural
Lyngdal 58.13 7.04 4 Urban/Fjords/near coastal

Sweden Latitude Longitude Altitude (m) Land Cover Type

Kiruna 67.83 20.43 408 Sparse forest
Luleå 65.55 22.13 17 Coastal
Umeå 63.82 20.25 10 Near coastal

Borlange 60.48 15.43 140 Urban/forest
Stockholm 59.35 18.07 30 Coastal
Göteborg 57.70 12.00 5 Coastal
Lund 55.71 13.21 73 Urban
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geolocation topography correction, land use classification, etc. (Kati
Anttila and Jääskelinen, 2016). In the case of high-latitude complex
topography, a number of these methods are used to calculate the sur-
face albedo including topography correction and classification of snow
covered pixels. The viewing and illumination geometry at the satellite
sensor becomes complex at low sun elevation. Such conditions increase
the bidirectional surface reflectance thereby making the estimation
process more complex (Kati Anttila and Jääskelinen, 2016). This aspect
will be further discussed in later sections. Fig. 1 shows the CLARA-A2
yearly-averaged incoming solar radiation for 2009 on a horizontal
surface.

Certain limitations exist in CLARA-A2; one of the main limitation is
the availability of AVHRR observations. For calculating the daily
averages, at least 20 observations are needed within a day and in each
grid cell. In case of less than 20 images, the daily average field in
question is filled with a value of −999Wm−2 that represents a missing
value. For a given grid cell, at least 20 days of observations is required
to produce the monthly averages for SIS for a given grid cell. In case of
availability of less than 20 days, the field is filled with a missing value.

A shortcoming of the dataset is the low number of satellites in the
1980s and the early 1990s, and for this reason only the period from
1995 and beyond is considered in this study. Another shortcoming in-
cludes the orbital drift of the satellites that results in different local
observation times, which changes the observation conditions. Over
Greenland the data quality was found to be insufficient to fulfil the
threshold accuracy requirements, therefore, the southern tip of
Greenland appears to be white which shows the area having missing
values.

The major improvements in the latest CLARA edition on grid cell are
from the cleaning and homogenizing of the basic level-1 AVHRR ra-
diance data and the use of Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) cloud information. In the second edition, the
cloud screening ability near poles is enhanced. Especially cloud detec-
tion over snow-covers is optimized and false cloud detection is reduced
by using CALIOP cloud mask and CALIOP estimated cloud-optical
thickness (Karlsson et al., 2017). A new dynamic aerosol optical depth
(AOD) is used in CLARA-A2 surface albedo (SAL) calculations, which
was previously set at a constant value of 0.1 (Kati Anttila and
Jääskelinen, 2016). Moreover, the new edition uses wind speed in ad-
dition to sun zenith angles in SAL calculations (Kati Anttila and
Jääskelinen, 2016). Digital elevation model used in this study is from
NOAA (National Centers for Environmental Information). The snow
depth data used to show the average snow depth of the areas in the

analysis was obtained from ERA-Interim reanalysis (Dee et al., 2011).

3.2. Data processing

The ground-measured data used in this study are hourly averaged
global horizontal irradiation. Refer to Section 2 for more details. The
data from the SMHI database are quality controlled and flagged. From
this dataset, sites flagged for bad quality were not used in the com-
parison. The NIBIO database is also quality controlled but not flagged.
For Norway, hourly data for any year with large data gaps (10% or
more of hourly values) were discarded. Missing values in this dataset
were replaced by linear interpolation without taking diurnal solar ele-
vation variation into account. For both NIBIO and SMHI, secondary
standard pyranometers are used to record but these quality equipment
have errors even when well-maintained and serviced. CMP11 Kipp and
Zonen pyranometer have a flux measurement error of 2–5%. For
monthly values lower uncertainty of 2% is expected in summer periods
and 5% is expected in winter period (Wang et al., 2012). These un-
certainties set an upper limit to the evaluation accuracy when estimates
are compared with ground measured data (Riihelä et al., 2015).

Both CLARA datasets provide data of daily and monthly averages
with a spatial resolution of 0.25× 0.25 degrees (27.8 km×27.8 km at
the equator). Instead of fetching data for the closest grid point from the
site locations, inverse distance weighted interpolation was used to
calculated radiation values at precisely the site locations. Whenever the
surrounding four grid points have more than 1 missing value for a
certain time; the interpolation was replaced by a missing value of
−999Wm−2. By using this method, a slight improvement was ob-
served in the overall deviations.

3.3. Statistical evaluation of estimations

Different statistical measures are used to evaluate the model de-
viations. The most widely used measure is the Root Mean Squared
Deviation (RMSD). As an additional measure the BIAS or mean bias
deviation (MBD) is used in the evaluation. Using MBD gives an insight
in the general trends of under or over estimations. Mean absolute de-
viation (MAD) is also used for the evaluations of datasets. Because of
the absolute values used in this measure, the negative and positive
deviations do not cancel out each other as in the MBD. This is a good
measure to compare different models as the one with smaller MAD will
be the more reliable for estimations (Last et al., 2001).

Fig. 1. CLARA-A2 yearly averaged solar irradiation data for 2009 on a horizontal surface.
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4. Results and discussion

Table 2 shows the results of the statistical evaluation performed
over the period of 1995–2009 over Sweden and Norway. The evalua-
tions are arranged in decreasing latitudes in the tables. For most of the
sites, CLARA-A2 provides lower RMSD values for daily means, but for
monthly means, CLARA-A1 performs better or very similar to CLARA-
A2.

In terms of biases, CLARA-A1 performs better at most of the sites. At
some locations though the opposite pattern is found, but overall the
Swedish locations show an overestimation and the Norwegian locations
an underestimation. In a previous work by Riihelä et al. (2015), a si-
milar overestimation was reported for CLARA-A1 in Sweden. The fre-
quency of observations of the satellite also contributes to the errors,
where 20 images are used to estimate daily and monthly averages,
while the available frequency of ground observations is once every
hour.

For both data sets, the threshold, target and the optimal accuracy is
15, 10 and 8Wm−2 respectively, for monthly averages and 30, 25 and
20Wm−2 for daily averages as described in Karlsson et al. (2012), Jörg
Trentmann (2012), Karlsson et al. (2017), and Jörg Trentmann (2016),
respectively. The MAD in Table 2 indicates that all the results are well
within these specified thresholds, and most of the sites show an optimal
accuracy of 8 and 20Wm−2 for monthly and daily averages, respec-
tively. For Norwegian locations, monthly MAD of 8Wm−2 was re-
corded for CLARA-A1 while for CLARA-A2 it was 8.9Wm−2 and for
Swedish locations, monthly MAD was 8.1Wm−2 for CLARA-A1 and
8.7Wm−2 for CLARA-A2Wm−2. The overall MAD for CLARA-A1 and
A2 for daily averages were 20.05Wm−2 and 15.65Wm−2 and for
monthly averages 8.06Wm−2 and 8.82Wm−2, which is also within
the limits of CM-SAF. For most of the sites the daily accuracies are
improved in the later CLARA edition relative to the former, while
CLARA-A1 performs better on monthly accuracies for most of the sites.
Furthermore, CLARA-A2 has more monthly and daily mean data points
than CLARA-A1, especially at higher latitudes as shown by the Hov-
möller diagram in Fig. 2. Higher latitudes have more snow covers,
which are estimated more frequently in CLARA-A2. The availability of
the datasets will be elaborated further in the subsequent sections.

Polar orbiting satellites follow a sun synchronous orbit in which the
temporal resolution of sensing increases with latitude. About 14 daily
observations are recorded close to the poles per satellite swath, whereas
only two observations are available close to the equator (Karlsson et al.,
2017). At latitudes below 65 degrees the number of images captured by
polar orbiting satellites is not high enough to obtain the daily means
when the day length is short, while the availability rises again above 65
degrees because of the overlapping of the satellite swath. At even
higher latitude, the coverage is larger but the main challenge at such

Table 2
CLARA-A1 and CLARA-A2 monthly averaged comparison results from 1995 to
2009. The deviations are represented by root mean square deviation (RMSD),
mean bias deviation (MBD) and mean absolute deviation (MAD). Numbers in
parenthesis are the results for daily mean values. The table shows the results for
Norway and Sweden seperately along with results from all sites.

RMSD (Wm−2) MBD (Wm−2) MAD (Wm−2)

Location A1 A2 A1 A2 A1 A2

Norwegian Locations
Tromsø 18 16 3.4 −4 4.2 8.7

(46) (24) (4.3) (−3) (10.4) (12)
Pasvik 11 16 1 −2.9 3.3 6.2

(36) (22) (2.1) (−2) (8.6) (8.8)
Sortland 11 18 −3.7 −11.3 4.4 11.5

(21) (24) (−2.8) (−10.7) (7.6) (14.3)
Vågønes 13 11 1.3 −2 4.3 5.4

(35) (17) (2.8) (−1) (9.9) (9.6)
Tjøtta 8 7 2.2 −1.3 3.7 4.2

(33) (16) (3.6) (−0.3) (10.7) (8.4)
Oslo 9 10 −2.3 −3.7 4.1 5.8

(33) (18) (−0.6) (−2.3) (12.5) (10.4)
Særheim 7 7 1.2 −1.9 4.3 4.4

(31) (16) (2.7) (−0.3) (13.8) (9.5)
Lyngdal 12 20 −2.7 −7.6 6.4 9.5

(24) (34) (−1.7) (−6.6) (11.6) (13.9)
All Norwegian

locations
11 14.2 −0.1 −5.6 8 8.9

(34) (24.9) (1.9) (−4.1) (18.7) (13.5)

Swedish Locations
Kiruna 8 18 −0.5 −0.5 2.6 7.8

(29) (24) (0.8) (0.8) (7.5) (11.1)
Luleå 9 9 1.2 −0.8 3.5 4.3

(27) (16) (2.7) (0.1) (8.4) (7.4)
Umeå 8 11 0.5 −4 3.7 6.8

(27) (17) (2.5) (−2.6) (8.9) (9.3)
Borlange 9 9 −1 −3.6 4 9.4

(27) (17) (0.7) (−2.1) (10.8) (5.5)
Stockholm 8 9 2.4 3.2 4.7 5.5

(28) (18) (4.6) (1.7) (12.5) (9.9)
Göteborg 7 7 1.9 0.8 4.5 4.5

7 (25) (16) (3.6) (2.3) (12.4) (9.4)
Lund 9 8 −2.1 −1.8 4.9 5.2

(25) (17) (−0.9) (−0.1) (11) (10.4)
All Swedish Locations 11.7 13 0.5 −2.5 8.1 8.7

(41.6) (46.5) (2.9) (−1.1) (21) (17.4)
All Locations 11.4 13.5 0.2 −3.8 8 8.8

(38.7) (38.5) (2.5) (−2.4) (20) (15.6)

Fig. 2. Hovmöller plots for CLARA-A1 and A2 datasets for the included years in the study. The plots are centered at 10 degrees longitude and span from 40 to 70
degrees latitude.
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high latitudes is the snow covered surfaces (Urraca et al., 2017). In this
study, the Norwegian locations have snow covers in addition to a very
complex terrain including a high number of fjords and mountains (see
Fig. 5). It is highly likely that satellite retrieval estimation methods

deteriorate on mountain regions because the spatial resolution of in-
cident light on satellite sensor is not high enough to compensate for the
complex terrain, while sudden changes in weather conditions due to
mountains are not compensated for with low sensing frequency as in

Fig. 3. Box plot showing the inter annual stability of CLARA-A1 and A2. The stability is shown in terms of mean bias deviation. 25th and 75th percentile values are
shown by the length of the box.

Fig. 4. Percentage of monthly averaged data missing values in the datasets. Figure on the left shows the missing points in CLARA-A1 dataset between 1995 and 2009.
Figure on the right shows the missing points in CLARA-A2 for the same period.

Fig. 5. Average snow depth between 1995 to 2009 from ERA-Interim and topography. Larger snow depth occurs at complex terrains, and most missing data points lie
in such regions.
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the case of polar orbiting satellites.
This study is conducted on mountainous regions with snow covers,

which not only introduces random errors but also negative biases.
Furthermore, because the satellite estimation methods use the visible
spectrum channels for the detection of clouds, the sensors cannot dif-
ferentiate between clouds and snow cover, which further contributes to
increasing the errors (Urraca et al., 2017). However, 0.6 and 0.8 μm
channels are used separately in order to detect snow covers and cal-
culating the albedo (Kati Anttila and Jääskelinen, 2016). Albedos for
snow are high in the near ultra-violet and visible spectrum, but it starts
dropping drastically in the near infra-red region between 0.8 and
1.5 μm (Wiscombe and Warren, 1980). Most of the high latitude sites in
this study have snow cover for a large part of the year. Which implies a
further increase of errors in the datasets. Although the new dataset have
more coverage over snow-covers, which was previously not available in
CLARA-A1, but such new values have large errors. These large errors
are likely due to the differentiation between snow and cloud covers (see
Fig. 5).

4.1. Inter-annual stability

As discussed earlier, inter-annual stability of a dataset provides

insight into the uncertainties associated with the energy production of
solar energy plants. Areas where typical ground measuring equipment
are not available can take advantage of datasets provided by CM-SAF.
Therefore, such datasets should be consistent throughout the periods of
investigation. In Fig. 3 the box plot of MBD of both CLARA-A1 and A2
datasets are shown. It can be seen from the figure that the CLARA-A2
dataset has lower median bias than the CLARA-A1 dataset, with median
values being closer to the zero bias. The CLARA-A2 dataset has more
extreme minimum values, compared to CLARA-A1, while the maximum
values are in most cases better in the CLARA-A2 dataset. Moreover, the
25th and 75th percentile values in CLARA-A2 data set lies approxi-
mately around −2 and 2Wm−2, while in CLARA-A1 these values are
approximately around 0 and 4Wm−2. These results show that the
newer edition of CLARA has more stability in terms of biases over the
years included in the study period.

4.2. Data availability

One of the improvements of CLARA-A2 is the differentiation of
snow-covered surfaces from cloud covers in the surface albedo calcu-
lations. Both CLARA datasets do not provide coverage over snow-cov-
ered surfaces (Riihelä et al., 2015; Karlsson et al., 2017) and such time
periods are filled with missing values. Nevertheless, because of the
improvement in surface albedo calculations, CLARA-A2 provide more
data points than CLARA-A1. The additional data points in CLARA-A2
are mostly from the snow-cover time periods, hence there is not much
improvement in the overall skills. In most cases, there is a higher degree
of deviation at such locations, which further increase the deviations as a
whole. As shown in Fig. 4, CLARA-A1 has roughly between 50 and 80%
missing values in Norway and around 40 to 60% missing values in
Sweden. In comparison CLARA-A2 has approximately 30 to 60%
missing data in Norway and 20 to 50% missing data in Sweden. This
further explains the results in Table 2, where CLARA-A1 performs better
than CLARA-A2 and that the skills for the Swedish locations are better
than those at the Norwegian locations. The complex topography of
Norwegian locations along with a high percentage of snow covers at
these areas have resulted in inaccurate estimations that previously were
replaced by missing values and thus not taken into account in statistical
evaluations. Fig. 5 below shows the average snow depth in the study
period between 1995 and 2009 along with a digital elevation model of
the study area. By comparing Fig. 5 with the maps in Fig. 4, it can be
seen that in CLARA-A1 snow-covers correspond to missing values.

Similarly, in CLARA-A2 there are less missing values on snow cov-
ered grid points, but still the highest amount of missing data are found
on the higher snow-depth grid points and high elevation locations.

4.3. Seasonal variations in the datasets

To further investigate the datasets, seasonal variation of both da-
tasets were calculated. Data from 1995 to 2009 were divided into
quarterly datasets by assigning the months from February to April to
the 1st quarter, May to July to the 2nd quarter, August to October to the
3rd quarter and November to January to the 4th quarter. In this
manner, we could separate the darker and snow covered periods from
the summer months.

Fig. 6 illustrate the quarterly frequency of missing data in the
CLARA-A1 data set and illustrates the increase in the availability of data
points in the new edition compared with the previous edition. It further
illustrates that due to the fact that most of the northern parts of Norway
and Sweden has snow-covers, most of the missing data point in CLARA-
A2 lie in these regions. The availability has increased in these northern
location in CLARA-A2 when compared to CLARA-A1, though not so
much in the high snow-depth mountain regions (see Fig. 5). The highest
amount of missing values lie in the February to April months when the
polar night has ended and the snow is melting.

Table 3 gives the seasonal deviations of the two datasets. It can be

Fig. 6. The top figure shows the percentage of monthly missing data in CLARA-
A1 in each quarter. The lower figure shows the percentage increase in the
availability of CLARA-A2 dataset in each quarter. The highest increase is in the
areas that have complex topography in addition to snow covers.
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Table 3
Quarterly deviations for CLARA-A1 and CLARA-A2 datasets. The table shows the seasonal variation in the biases of both datasets. Monthly average values for the
years included in the study were divided into four quarters that are denoted by Q. CLARA A1 and A2 datasets are denoted by A1 and A2, respectively.

Norway/Quarter RMSD (Wm−2) MBD (Wm−2) MAD (Wm−2) Correlation

A1 A2 A1 A2 A1 A2 A1 A2

Tromsø Q1 – 11.6 – −5 – 5 – 0.9
Q2 26 25.2 5.6 −11.3 5.9 19.8 0.60 0.9
Q3 14.6 11.4 7.8 1.2 11 8.7 0.98 0.9
Q4 – 2.3 – −1.2 – 1.2 – –

Pasvik Q1 – 3.2 – −0.6 – 0.6 – –
Q2 13.9 27.5 4.3 −5.9 4.8 13 0.95 0.7
Q3 10.2 11.5 0 −3.5 8.4 9.7 0.98 0.9
Q4 – 3.7 – −1.4 – 1.4 – –

Sortland Q1 22.3 22.9 −1.6 −11.6 1.6 11.6 – 0.97
Q2 12 22.6 −5.1 −17.9 6.7 18.4 0.9 0.97
Q3 10 13.7 −7.6 −11.9 8.5 12 0.9 0.99
Q4 4.7 9.6 −0.5 −3.7 0.6 4 0.9 0.88

Vågønes Q1 5.1 8 0.2 −4 0.2 4 – 0.99
Q2 12 8.4 6.9 3 6.9 6.8 0.9 0.99
Q3 15 15.5 −1.4 −5.3 8.6 8.8 0.9 0.96
Q4 9.4 7.2 −0.4 −2 1.4 2.1 0.6 0.94

Tjøtta Q1 9.4 7.8 0.6 −1.9 0.6 2.2 – 0.89
Q2 10.8 7.7 6.9 2.1 8.5 6.6 0.9 0.98
Q3 6.5 7.8 1 −3.9 5 6.4 0.9 0.99
Q4 3 3.4 0.3 −1.5 0.6 1.5 0.9 0.99

Oslo Q1 10.7 29.4 −1.2 −12.5 1.2 12.5 0.97 0.87
Q2 21.5 20.6 −6 −3.4 10 8.3 0.88 0.89
Q3 12.4 11.7 −5.3 −3.8 9.1 8.5 0.97 0.97
Q4 6.1 9.3 −1 −2.5 1.5 2.5 0.93 0.93

Særheim Q1 5.7 6.7 1.5 −3 2.9 3.3 0.99 0.98
Q2 6.8 5.8 3.3 1.7 5.6 4.5 0.99 0.99
Q3 7.9 9 −0.3 −3.6 7 7.3 0.99 0.99
Q4 3.7 5.9 0.4 −2.5 1.5 2.6 0.98 0.99

Lyngdal Q1 10.2 34.5 −0.5 −10.8 2.9 10.8 0.97 0.66
Q2 12.5 13.8 −1.2 −4.4 9.7 10.9 0.96 0.96
Q3 14.4 16.6 −8.2 −11.2 10.2 11.9 0.97 0.98
Q4 8.3 11.5 −1.1 −4.2 2.8 4.2 0.90 0.90

Kiruna Q1 – 15 – −4.3 – 4.3 – 1.00
Q2 8.3 29.6 0.9 −12.6 3.1 18.3 0.94 0.84
Q3 8 8.7 −3.1 −3.3 6.4 6.8 0.99 0.99
Q4 3.1 4 0.2 −1.7 0.7 1.7 0.86 0.99

Luleå Q1 – – – – – – – –
Q2 12.5 12.1 6 2.6 7 7.6 0.94 0.96
Q3 7.9 8.8 −1.3 −3.5 6.3 7.3 0.99 0.99
Q4 3.7 4.5 −0.1 −2.3 0.9 2.2 0.76 0.99

Umeå Q1 2.3 13.9 0.3 −6.4 0.4 6.4 0.84 0.99
Q2 9.3 11.6 4.8 −1.5 6 9.3 0.97 0.98
Q3 9.3 10 −2.7 −5.2 7.5 8.6 0.99 0.99
Q4 3.3 5.4 −0.3 −3 0.8 3 0.85 0.99

Borlange Q1 4.2 11 −0.8 −6.5 0.9 6.5 1.00 0.99
Q2 7.7 6.4 0.2 −1 6 5.1 0.98 0.99
Q3 9.7 9.6 −4.3 −5.6 7.3 8.2 0.98 0.99
Q4 10 9.7 0.8 −1.2 2 2.3 0.61 0.68

Stockholm Q1 14.1 13.5 1.2 −2 5.2 6.1 0.88 0.90
Q2 22 23 5 7 18.2 19.3 0.81 0.82
Q3 29.9 31.4 −1.2 0.2 22.9 23.2 0.81 0.80
Q4 10 11.1 0.6 −2 3.9 4.2 0.84 0.83

Göteborg Q1 5.5 3.5 2.5 −0.9 3 1.8 1.00 1.00
Q2 9 8.9 5.8 6.4 7.5 7.7 0.99 0.99
Q3 7.5 7.6 −0.9 0.01 6.1 6.2 0.99 0.99
Q4 4 6.2 0.2 −2.4 1.5 2.5 0.98 0.98

(continued on next page)
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seen that in the 1st and 2nd quarter, CLARA-A2 provides more valid
data points than does CLARA-A1 (see also Fig. 6). Missing data or no
valid value at grid points means that these months are not taken into
account when making any of the calculations in the study. When
compared to the snow-depth map in Fig. 5, the regions of missing va-
lues lie approximately on the areas having higher snow-depth and
complex topography. The 1st and 4th quarters have special conditions,
where the 1st quarter has low sun-elevation angles and the 4th quarter
includes the polar-night period. Moreover, the 1st and 3rd quarter have
similar and opposite sun elevation angles (in the 1st quarter the solar
elevation increases while in the 3rd quarter it decreases) but the 1st
quarter has more snow-cover than the 3rd quarter. It also shows that in
the 1st quarter both the MBD and MAD are larger in CLARA-A2 than
CLARA-A1. Low RMSD values are observed below 60 degrees in
Swedish locations but not in Norwegian locations. The MBD or bias is
mostly negative for CLARA-A2, with high values for Norway than for
Sweden. However, due to the unavailability of data in some high

latitude locations it was not possible to calculate the deviations. In the
2nd quarter, CLARA-A1 has better RMSD measures until around north
of 60 degrees after which CLARA-A2 either starts improving or provides
similar values as CLARA-A1 (except for Pasvik, Sortland and Kiruna).
Similarly, CLARA-A1 again provides better MBD and MAD values. In
the 3rd and 4th quarters, all the measures are either similar in both the
datasets or slightly worse in CLARA-A2 for both Norwegian and
Swedish location. Based on the observations it can be said that although
CLARA-A2 has more coverage over snow-covered areas it still provides
large deviations at high latitude locations.

4.4. Analysis of the new and updated monthly average values in CLARA-A2

By comparing CLARA-A1 and A2, it can be seen that there are two
major changes in the availability of data. First, there are fewer missing
values in A2 and secondly, the adjacent grid point values are also up-
dated in CLARA-A2 due to the use of different methods of estimation.
This section provides an evaluation of the new and updated monthly
means estimations separately. The values marked with “New” are the
values which were not available in CLARA-A1 (marked as a missing
values) but that are available in CLARA-A2. The values marked with
“Updated” are those values which were available in CLARA-A1 but
these got updated because of the use of new algorithms. In this way we
could separately analyse the improvement of CLARA-A2. Table 4 shows
the RMSD, MBD, MAD and the number of new values in CLARA-A2. For
the newly added added data points in CLARA-A2 the MAD target ac-
curacies for all locations are above the limits (17.7Wm−2 for Norway
and 15.2Wm−2 for Sweden). Individually for both Sweden and
Norway, the updated values are very similar and within the target
(8.3Wm−2 for both Norway and Sweden). Table 4 also shows the
overall accuracies of both datasets for all Norwegian and Swedish lo-
cations. Overall accuracies for both datasets also are within the limits.

Furthermore, the new values in CLARA-A2 have a constant negative
bias that shows the underestimation in these values. The cause for this
underestimation can be attributed to the inaccurate detection of snow-
covers. The RMSD section of the table shows that the new values have
very high deviations for high-latitude locations in both countries;
nevertheless, the updated values have relatively low RMSD because of
the upgraded retrieval method and absence of snow-covers.

4.5. Analysis of annual energy estimates

The total annual energy estimate at a site is an important parameter
for planning purposes. In addition to daily and monthly averages that
are used in the inter-annual stability for energy production, annual
energy averages give an insight into the total energy that can be har-
vested at potential site locations. Table 5 shows the RMSD, MBD and
MAD of yearly averaged hourly solar irradiances of CLARA-A1 and A2.
In this analysis, CLARA-A2 performs considerably better than CLARA-
A1 in all areas. Moreover, average annual energy is also listed for both
CLARA datasets and in-situ values. For calculating yearly energy values,
mean hourly values from ground-measured data and mean daily values
from CLARA datasets were used. By comparing the energy potential
estimates it can be seen that CLARA-A2 provides better estimates than
CLARA-A1. The energy estimates are better in CLARA-A2 due to the fact

Table 3 (continued)

Norway/Quarter RMSD (Wm−2) MBD (Wm−2) MAD (Wm−2) Correlation

A1 A2 A1 A2 A1 A2 A1 A2

Lund Q1 5 6.6 1.8 −2.8 2.7 4 1.00 0.99
Q2 8.5 7.5 −1.5 2.9 4.9 6.2 0.98 0.99
Q3 12.6 9.1 −8.8 −4 9.4 7.1 0.98 0.99
Q4 4.6 6 −0.03 −3.3 2.5 3.4 0.99 0.99

Table 4
Analysis of the new and updated solar radiation values in CLARA-A2 for
Norwegian and Swedish locations. The column marked with New are the values
which were not available in CLARA-A1 (shown in last column, No. of new
values), while the updated values are the ones which were available in CLARA-
A1 but were updated in CLARA-A2.

Norwegian
Location

RMSD (Wm−2) MBD (Wm−2) MAD (Wm−2) No. of
new
valuesNew Update New Update New Update

Tromsø 25 14 −4.7 0.9 5 3.2 20
Pasvik 44 12 −2.3 −0.1 2.3 3.4 8
Sortland 30 15 −4.4 −6 4.5 6.1 18
Vågønes 9 13 −1.1 −0.7 1.3 3.9 23
Tjøtta 7 8 −0.7 −0.5 0.7 3.4 14
Oslo 16 8 −2 −1.7 2 3.8 15
Særheim 9 7 −0.3 −1.6 0.3 4.2 4
Lyngdal 46 14 −2 −5.6 2 7.4 12
ALL SITES 25.9 11.5 −17 −3.7 17.7 8.3 114

(12%)

CLARA-A1 (All
Included)

11 −0.1 8

CLARA-A2 (All
included)

14.2 −5.6 8.9

Swedish
Location

RMSD (Wm−2) MBD (Wm−2) MAD (Wm−2) No. of
new
valuesNew Update New Update New Update

Kiruna 37 8 −4.7 −0.6 4.7 2.9 26
Luleå 17 9 −0.5 −0.1 0.5 3.6 6
Umeå 18 8 −2.4 −1.3 2.4 4.1 27
Borlange 12 8 −1.1 −2.4 1.1 4.4 18
Stockholm 6 23 −0.2 2 0.2 13 8
Göteborg 6 7 −0.1 0.9 0.1 4.4 6
Lund 9 7 −0.6 −1.1 1.1 4.1 30
ALL SITES 20.6 11.9 −14.5 −0.7 15.2 8.3 121

(9.6%)

CLARA-A1 (All
included)

11.7 0.5 8.1

CLARA-A2 (All
included)

13 −2.5 8.7
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that it provides more data points than CLARA-A1. Fewer data points in
the time series means that the energy estimates for CLARA-A1 results in
lower estimates than both CLARA-A2 and ground observed data.

The energy estimates provided in Table 5 are for the yearly solar
radiation received on a horizontal plane per area averaged over the
study period. At high latitude locations, the elevations of the sun are
often very low and consequently the horizontal solar density decreases.
The difference between high and low latitude locations is considerably
less when looking at an optimally inclined or a tracking surface.

5. Conclusion

In this work, we evaluated two datasets derived from polar orbiting
satellites. CLARA-A2, the newer version of the CM-SAF polar orbiting
satellite-based database, is derived with a procedure including im-
provements in cloud cover and snow cover distinction; hence, there are
more data points taken into account in the new dataset. Still, missing
values exist in the new dataset due to lack of differentiation between
clouds and snow covers. However, the newer edition does not con-
siderably improve the estimates for Northern Scandinavia. The eva-
luation metrics used in the study provides an insight into the perfor-
mance of these datasets. CLARA-A2 is observed to provide
underestimation at most locations, while CLARA-A1 provides more
positive biases. This underestimation can be associated with the snow
and cloud detection and the difficulties to differentiate between the
two, which hopefully will be further improved in CLARA-A3, the next
edition of this dataset that is planned to be launched in 2020. The
CLARA-A2 dataset has less intra-annual variability than CLARA-A1, and

along with the spatiotemporal resolution, it provides a more reliable
dataset for areas below 60 degrees latitude. For the magnitude of errors
presented in this study, consideration should be given to the complex
topography especially in the case of Norwegian sites. Table 2 shows
that MBD and MAD values are predominantly higher at Norwegian
location. However, at most locations the target monthly average ac-
curacies of 9Wm−2 for CLARA-A2 and 10Wm−2 for CLARA-A1 are
achieved, along with daily average accuracies of 18Wm−2 for CLARA-
A2 and 20Wm−2 for CLARA-A1. A quarterly deviation analysis shows
that due to the complex topography and snow cover in Norwegian lo-
cations, CLARA-A2 does not provide more accurate estimates than
CLARA-A1. Analysis on the new data points of CLARA-A2, that were
previously not available, shows that these new values have very high
deviations. Nevertheless, yearly energy estimates of CLARA-A1 are
predominantly lower than CLARA-A2 estimates since there are simply
more data points in CLARA-A2. To conclude, even if CLARA-A2 has a
higher negative bias than CLARA-A1 at the specific common data
points, CLARA-A2 still has more accurate yearly energy estimates be-
cause it has more data points than CLARA-A1.
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Appendix A

Years within the studying period of 1995 to 2009 not included in this work (see Table 6).

Table 5
This table shows annual average solar radiations error analysis for CLARA-A1 and A2 for Norwegian and Swedish locations in terms of RMSD, MBD and MAD. The
portion of the table labelled as Power is expressed inWm−2. The right side of the table shows the annual average energy estimates of CLARA-A1, A2 and ground-
observed data expressed in kW hm−2 y.

Norwegian Locations Power Energy

RMSD (Wm−2) MBD (Wm−2) MAD (Wm−2) A1 (avg) kW hm−2 y A2 (avg) kW hm−2 y Obs (avg) kW hm−2 y

A1 A2 A1 A2 A1 A2

Tromsø 69.7 9.8 68.7 7.7 68.7 7.7 469.1 643.7 687.4
Pasvik 65.7 12 65.3 9.3 65.3 9.8 497.4 544.6 718.2
Sortland 50.7 4.7 48.8 2.1 48.8 3.7 600.3 664.8 780.4
Vågønes 53.7 13.8 53.1 12.9 53.1 12.9 600 724 733.9
Tjøtta 57.5 25.6 56.8 25.3 56.8 25.3 698.9 749.9 768.2
Oslo 48.2 31.3 47.2 30.2 47.2 30.2 827.5 902.4 948.7
Særheim 29.7 21.6 28.8 21.3 28.8 21.3 913.8 901.7 921.7
Lyngdal 31.9 21.7 29.7 17.2 29.7 18.7 915.7 939.8 1032.9

Swedish Locations Power Energy

RMSD (Wm−2) MBD (Wm−2) MAD (Wm−2) A1 (avg) kW hm−2 y A2 (avg) kW hm−2 y Obs (avg) kW hm−2 y

A1 A2 A1 A2 A1 A2

Kiruna 48.6 9.1 47.5 8.4 47.5 8.4 525 654.7 804.5
Luleå 62.3 34.5 61.5 34.3 61.5 34.3 704.3 728.1 895.8
Umeå 51 18.9 48.6 17.4 48.6 17.4 777.2 860.4 916.7
Borlange 43.7 29.8 42.7 28.9 42.7 28.9 846.7 893.3 937.2
Stockholm 38.3 32.8 36.6 30.4 36.6 30.4 984.5 998 993.4
Göteborg 32.1 26.9 30.3 24.9 30.3 24.9 968.3 966.5 969.6
Lund 18.8 17.4 4.9 9 13.4 11.8 791.1 1013 1034.7
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Abstract 6 

There is a growing demand for the estimation of solar energy potential at high latitude locations. This study 7 
compares four datasets; Cloud, Albedo, Radiation dataset Edition 2 (CLARA), Surface Solar Radiation dataset – 8 
Heliosat Edition 2 (SARAH), ECMWF Reanalysis 5 (ERA5) and Arctic System Reanalysis v2 (ASR) on high 9 
latitude locations. Global horizontal irradiance (GHI) from these datasets is compared with in-situ ground-10 
measurements over multiple locations in Norway. The first two datasets are mainly based on satellite estimation 11 
of solar radiation, while the latter two are based on a combination of a weather-prediction model, satellite data, 12 
and other observations. The datasets are evaluated against quality-controlled in-situ measurements of solar 13 
radiation from pyranometers. Overall, CLARA, SARAH, and ERA5 show moderate errors, while those of ASR 14 
are considerably larger. Monthly averages of global horizontal irradiance have mean absolute deviation (MAD) of 15 
6.3 Wm-2, 5.8 Wm-2, 6.4 Wm-2, and 14.5 Wm-2 for CLARA, SARAH, ERA5, and ASR, respectively. Seasonal 16 
error analysis of these datasets reveals that SARAH has the lowest errors in all seasons. The datasets are classified 17 
into clear-sky, intermediate-cloudiness, and overcast categories, by using two thresholds of cloudiness based on 18 
the ratio of radiation at ground to its corresponding clear-sky value (clear-sky index). The categories obtained from 19 
satellite and reanalysis data are then compared against estimates based on corresponding in-situ observations; this 20 
analysis shows that both CLARA and SARAH perform better than ERA5 and ASR for these categories. SARAH 21 
and CLARA perform similarly in all types of conditions, but a gradual increase in errors for an increase of 22 
cloudiness is observed for ERA5 and ASR. Yearly energy analysis shows that CLARA performs better than other 23 
datasets for locations above latitude 65ºN, and SARAH performs better in locations below 65ºN. A further analysis 24 
is performed to assess the cloud sensing abilities of ERA5. On a shorter time scale, there are errors due to inaccurate 25 
representation of clouds, however on longer time scales i.e. months and years, these errors are considerably 26 
reduced. ERA5 is observed to overestimate TCWC (the total cloud water content defined as the mass of water and 27 
ice in a cloud) in clear-sky and intermediate-cloudy categories, while in overcast category it is underestimated. 28 
Generally, an overestimation of solar radiation is observed in reanalysis and an underestimation is observed in 29 
satellite methods. 30 

Keywords: Solar radiation, Arctic, Reanalysis, Satellite estimations, CMSAF, ECMWF 31 

1. Introduction 32 

Accurate solar resource measurements at potential photovoltaic (PV)/thermal installation sites are usually not 33 
available. For example, only a few meteorological stations record high-quality measurements in Norway (Øyvind 34 
et al., 2013). The assessment of solar resource at a specific location forms the basis for future installations. 35 
However, solar radiation is intermittent in nature and its variation on longer times scales is important for the 36 
planning of future installations (Crabtree et al., 2011). In addition, such information is also used in the long and 37 
short-term forecasting of power production and in optimizing energy dispatch strategies (Heinemann et al., 2006; 38 
Remund et al., 2008). Long time series of global horizontal irradiance (GHI) is used in the energy sector as well 39 
as in meteorology, agriculture, and climate studies. 40 

The three main components to consider before installing a solar energy system are site selection, annual output 41 
and temporal performance/operating strategy. These components are directly related to the resource potential of 42 
the site, and can be evaluated by analysing long-term historical data series. Often a typical meteorological year 43 
(TMY), which is derived from the historical data e.g. within the past 30 years, is used to assess site locations for 44 
feasibility (Hall et al., 1978). Recent studies like those of Huld et al. (2018) and  Stoffel et al. (2010) have shown 45 
that TMY is not a good indicator for predicting solar radiation for a given year, but rather it represents typical 46 
estimates of the average long-term conditions. Sufficiently long historical records from ground-measurements are 47 
seldom available for a given location for constructing a reliable TMY. Therefore satellite estimations and 48 
reanalyses provide an alternative to the ground-measurements for these estimations (Stoffel et al., 2010).  49 



 
 

Estimating surface solar radiation from the visible spectrum of sensors installed on satellites is a well-developed 50 
procedure (Cano et al., 1986; Gautier et al., 1980; Rigollier et al., 2004; Tarpley, 1979). However, the accuracy of 51 
these methods is lower than ground measurements, but the advantages of the satellite methods include large spatial 52 
and temporal coverage (Noia et al., 1993). Surface solar radiation estimated from geostationary satellites provide 53 
up to sub-hourly values on a few km grid resolution, while polar orbiting satellites provide up to daily average 54 
solar radiation. All geostationary satellites have a limited spatial coverage because these are positioned over the 55 
equator at 0º. In the case of Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) 56 
geostationary satellites, they have a coverage of ±65º in latitude and longitude. At latitudes higher than these, they 57 
encounter a flat angle of view that decreases the spatial resolution and increases errors. Alternatively, polar orbiting 58 
satellites can be used at high-latitude locations, as they provide almost global coverage. The main shortcoming of 59 
polar orbiting satellites is low sensing frequency, which varies from twice daily at the equator to 14 times a day 60 
near poles (Pinker and Laszlo, 1992; Platt, 1983). Satellite-based solar radiation-estimation methods have high 61 
accuracy, but some studies like that of Gueymard (2011) and Ineichen (2014) have shown that large errors may 62 
exist.  For uncertainties and known issues within the satellite-based solar radiation estimation techniques see Suri 63 
and Cebecauer (2014). 64 

In Earth System Models (ESM) or reanalysis, solar radiation is often referred to as down-welling surface shortwave 65 
flux. There are a number of studies where reanalyses have been used to estimate solar radiation and power (Boilley 66 
and Wald, 2015; Juruš et al., 2013; Wild et al., 2015). However, an increase in bias with increasing latitude  was 67 
observed in one of the studies (Yi et al., 2011). The main advantages of reanalyses include multi-decadal time 68 
series, worldwide coverage, and free-of-cost availability. Recently, it has been found that reanalysis-based 69 
irradiance estimates can be a useful supplement when satellite irradiance is not available (Bojanowski et al., 2014; 70 
Urraca et al., 2018), although, many studies have reported overestimations in reanalysis (Boilley and Wald, 2015; 71 
Kennedy et al., 2011; Wild, 2008). 72 

The aim of this paper is to analyse four different datasets regarding their accuracy and provide a comparative 73 
analysis for high-latitude conditions. Two of these are based on satellite methods, a polar orbital Cloud, Albedo, 74 
Radiation dataset Edition 2 (CLARA 2), and a geostationary Surface Solar Radiation dataset – Heliosat Edition 2 75 
(SARAH 2). The other two are based on a combination of a weather-prediction model and various types of 76 
observations; a global reanalysis; ECMWF Reanalysis 5 (ERA5), and a dynamical downscaling of such a 77 
reanalysis (ERA-interim); Arctic System Reanalysis v2 (ASRv2). The analysis is performed for Norway, which 78 
represents a complex topography and a large variation in latitudes ranging from 59º to 70ºN. Previously, CLARA-79 
A1 and CLARA-A2 datasets have been compared for multiple locations in Norway and Sweden (Babar et al., 80 
2018). It was found that the new edition of CLARA has less number of missing data points. However, CLARA-81 
A2’s new data points, which previously were missing in CLARA-A1, have high errors. These points mostly lie in 82 
the high latitude locations where a snow cover is frequent. Because of the difficulties in differentiating snow covers 83 
from clouds, such errors exist. Here we extend this work and the novelty lies in evaluating the above-mentioned 84 
datasets for GHI for high-latitude locations and providing an analysis of these datasets in different conditions. The 85 
datasets are evaluated for daily means, monthly means, yearly means, seasonal analysis, energy analysis, and 86 
performance in different sky categories. Daily and monthly averages are evaluated by dividing the locations in 87 
four groups, including above 65ºN, below 65ºN, coastal and inland regions. In the final section, the effects of 88 
clouds in ERA5 are computed for different sky categories and compared with ground-measured solar radiation, 89 
which gives an insight into the challenges of estimating solar radiation in ERA5. 90 

This paper is formatted as follows: Section 2 gives a description of the datasets analysed in this study. Section 3 91 
provides an overview of the quality control procedures applied on the ground data and validation metrics. Section 92 
4 presents the results and provides a brief discussion. Section 5 concludes the findings of this work. 93 

2. Datasets 94 

The datasets analysed in this study have different spatial and temporal resolution. Table 1 shows an overview of 95 
the datasets. SARAH and ASR can be considered as high-resolution datasets, while CLARA and ERA5 are coarse 96 
resolution datasets. SARAH is the highest resolution dataset with hourly temporal resolution and a spatial 97 
resolution of 0.05ºx0.05º. ASR contains data with three-hour temporal resolution and a spatial resolution of 15 km 98 
(0.136º). For both of these datasets, the nearest grid point from the site location is selected for data extraction. 99 
However, CLARA and ERA5 provide data on a much coarser grid of 0.25ºx0.25º and 0.28ºx0.28º, respectively. 100 
Data extraction from these datasets is performed by selecting the four surrounding grid points at site locations and 101 
applying inverse weighted-distance interpolation to obtain solar radiation at the coordinates of the site. In case of 102 



 
 

CLARA, there are missing data points, which imply that at some of the periods there are no available data in the 103 
surrounding four points. When the surrounding points have less than three valid values, the interpolation is 104 
replaced by a missing value indicating that no valid values exist at that particular time and place. ASR and ERA5 105 
do not contain missing values.  106 

The datasets used in this study have certain spatial and temporal limitations. SARAH is limited to ±65º in latitude 107 
and longitude due to the shape of the viewing disc of MFG/MSG satellites and because of the flat viewing angle 108 
of geostationary satellites that results in increased errors above 65ºN. The evaluation of SARAH dataset is 109 
performed for locations below 65ºN latitude. CLARA and ERA5 are global datasets, whereas ASR is regional but 110 
covers all locations analysed in this study. SARAH and CLARA are available from 1983 to 2015 and 1982 to 111 
2015, respectively. At the time of writing, ERA5 is available from 2000 to 2017. The years from 2000 to 2015 are 112 
included in this study from these datasets. ASRv2 is available from 2000 to 2012 and its complete available time 113 
series is used.  114 

Table 1 115 

Description of the datasets used in this study. The period analysed, spatial and temporal resolutions are shown for 116 
each dataset. 117 

 Method Years 
analysed 

Spatial resolution Highest 
temporal 
resolution 

Spatial limits 

CLARA
-A2 

Polar-orbiting Satellite  2000-2015 0.25ºx0.25º 24 Hours Global 

SARAH
-2 

Geostationary Satellite 2000-2015 0.05ºx0.05º 0.5 Hour Limited to ±65º latitude 
and ±65º longitude 

ERA5 Reanalysis (Global) 2000-2015 0.281ºx0.281º 1 Hour Global 
ASRv2 Reanalysis (Regional 

renalaysis downscaled from 
ERA-interim) 

2000-2012 0.136ºx0.136º 3 Hours 180W - 180E longitude 
24.643N - 90N latitude 

2.1 CLARA-A2 118 

The CLARA-A2 dataset was released in December 2016 and it is the second edition of CLARA (Cloud, Albedo, 119 
Radiation dataset) by satellite application facility on climate monitoring (CM-SAF). The dataset is available from 120 
1 January 1982 to 31 December 2015, and constitutes an extension of 6 years relative to the previous CLARA-A1 121 
dataset. This dataset has global coverage with a spatial resolution of 0.25ºx0.25º on a regular lat-lon grid and it 122 
provides daily and monthly averages of surface incoming shortwave radiation (SIS). To calculate daily averages, 123 
at least 20 observations of incoming solar radiation in each grid box are required; similarly, 20 valid daily averages 124 
are required to generate monthly averages (Trentmann and Kothe, 2016). Along with SIS, CLARA also provides 125 
longwave up and down-welling surface radiation.  126 

The fundamental method used in calculating surface solar irradiance from satellite observations is based on the 127 
reflectance measured by the satellite instruments, which is related to the atmospheric transmittance. The underlying 128 
algorithm in CLARA uses the Advanced Very High Resolution Radiometer (AVHRR) sensor data to derive the 129 
atmospheric transmittance, which is used in calculating surface incoming solar radiation. The solar radiation is 130 
estimated by using the solar zenith angle, cloud coverage, vertically-integrated water vapour, and aerosol optical 131 
depth. Finding solar zenith angles is straightforward and can be calculated accurately. The vertically-integrated 132 
water vapour and aerosol optical depth are not available in the AVHRR data and for these fields, external sources 133 
are used. For vertically-integrated water vapour, ERA-Interim Reanalysis (Dee et al., 2011) is used and the vertical 134 
ozone column is set to a constant value of 335 DU, as its variability has negligible impact on the estimated solar 135 
radiation. Aerosol information is taken from the modified version of the monthly mean aerosol fields from Global 136 
Aerosol Data Set/ Optical Properties of Aerosols and Cloud (GADS/OPAC) climatology. In the algorithm, 137 
AVHRR data is used to retrieve only the cloud cover information. The first step in estimating surface solar 138 
radiation is the classification of the sky condition. The Nowcasting SAF (SAFNWC) software is used to derive 139 
the information on cloud coverage for each pixel by using the information from the satellite sensors. If no cloud is 140 
detected (cloud free pixel), surface solar radiation is calculated by using the clear-sky Mesoscale Atmospheric 141 
Global Irradiance Code (MAGIC) by using only auxiliary sources. If the pixel is classified as cloudy (cloud 142 
contaminated or fully cloudy), visible channels of AVHRR instrument are used to derive broadband reflectance. 143 
These reflectances are then transferred to broadband fluxes by using a bidirectional reflectance distribution 144 
function (BRDF). In the next step, these broadband top-of-the-atmosphere albedos are used to derive transmissivity 145 
through a look-up table approach. Finally, the transmissivity is used in calculating surface solar radiation. In this 146 



 
 

dataset, all data points with a solar zenith angle larger than 80o are set to missing values and solar zenith angle 147 
larger than 90o is set to zero. However, because a temporally constant surface albedo is used in the algorithm, this 148 
dataset does not provide radiation estimates on snow and sea ice coverage areas because changes in the albedo of 149 
the snow-covered surfaces are not considered (Karlsson et al., 2017). High-latitude locations may have a very 150 
different surface albedo than the temporally constant albedos considered in the algorithm. Such grid points are 151 
identified by calculating the difference between monthly mean CLARA-A2 SAL (surface albedo) data record and 152 
the surface albedo used in the processing of SIS. These critical grid points, which have a difference in surface 153 
albedo exceeding 35%, are masked-out from the final product by setting them as missing values. For more 154 
information on the CLARA dataset and its accuracy refer to Karlsson et al. (2017). 155 

2.2 SARAH-2 156 

The second version of surface solar radiation dataset – Heliosat (SARAH-2) is a climate data record of surface 157 
solar radiation by CMSAF (Pfeifroth et al., 2017a) and covers a period of 32 years from 1983 to 2015 and the 158 
region from 65ºN to 65ºS latitude and 65ºW to 65ºE longitude. The spatial resolution of the data is 0.05ºx0.05º 159 
(approximately 5km) and the data is available for 30 minutes instantaneous, hourly, daily, and monthly averages 160 
of surface incoming shortwave radiation on a horizontal surface, direct normal irradiance (DNI) and effective 161 
cloud albedo (CAL). To calculate daily averages at least three samples per day are required; similarly, 10 existing 162 
daily averages are required to generate monthly averages.  163 

In this dataset, the broadband visible channels from Meteosat Visible Infra-Red Imager (MVIRI) instrument on-164 
board the Meteosat first generation satellites and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) 165 
instruments on-board the Meteosat second generation satellites are used to calculate the shortwave surface 166 
radiation. In the first step, the effective cloud albedo (CAL) is retrieved from the satellite data by using a modified 167 
Heliosat method (Hammer et al., 2003). This modification of the Heliosat method in combination with gnu-168 
MAGIC/SPECMAGIC is called MAGICSOL. The modified Heliosat method provides the broadband effective 169 
CAL, but to consider the spectral effect of clouds, a Radiative Transfer Model (libRadtran) based correction is 170 
applied. The CAL is related to the cloud transmission and, hence, by calculating clear-sky radiation, the all-sky 171 
radiation can be estimated. In this dataset, for calculating clear-sky radiation the SPECMAGIC model is used, 172 
which is based on a so-called hybrid eigenvector look-up table approach (Mueller et al., 2012). The input 173 
parameters for gnu-MAGIC/SPECMAGIC are date, time, solar zenith angle, coordinates, effective cloud albedo 174 
(cloud index), water vapour column density, surface albedo, aerosol optical thickness, and single scatter albedo 175 
for aerosols. Monthly mean values of vertically-integrated water vapour are taken from ERA-interim global 176 
reanalysis record (Dee et al., 2011), and monthly mean aerosol information is taken from Monitoring Atmospheric 177 
Composition and Climate project (MACC) aerosol climatology. Surface solar radiation is derived from combining 178 
the SPECMAGIC algorithm and the effective cloud albedo (Pfeifroth et al., 2017b). One of the limitation of 179 
SARAH is that for solar zenith angles between 88º  and 90º, the corresponding data points are set as missing values, 180 
and above solar zenith angle of 90º, the data points are set to zero. Improvements in the new version of the dataset 181 
includes stability during the change of instrument from MVIRI to SEVIRI in 2006, and correction of the cloud 182 
albedo to account for the slant viewing geometry effects (Pfeifroth et al., 2018). For more information on the 183 
retrieval methods refer to Müller et al. (2015). 184 

2.3 ERA5 185 

ECMWF Reanalysis 5 (ERA5), is the fifth generation of European Centre for Medium-Range Weather Forecasts 186 
(ECMWF) atmospheric reanalysis of the global climate and span a period of 1950 to near real time (Hans and 187 
Dick, 2016). At the time of this study, data from 2000 to 2017 are available. Further data back in time will be 188 
released in 2019-20 and will continue to update forward in real-time. In ERA5, the solar radiation variable has a 189 
spatial resolution of 31km (0.28125ºx0.28125º) and an hourly temporal frequency. ERA5 uses the Integrated 190 
Forecasting System (IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4DVAR) 191 
assimilation system. ERA5 has more pressure levels than ERA-Interim (the previous edition of ECMWF 192 
reanalysis) and more variables are made available for this reanalysis than for those of earlier generation. For more 193 
information on ERA5 refer to ECMWF (2018).  194 

In this study, shortwave surface downward radiation, shortwave surface downward radiation clear-sky, and total 195 
cloud water content (the vertically-integrated cloud water concentration) are used from this dataset. In ERA5, the 196 
incoming short wave radiation is obtained from a Radiative Transfer Model (RTM). This model simulates the 197 
attenuation in solar radiation caused by the atmosphere, therefore, the quality of estimated radiation depends on 198 



 
 

the RTM used. Reanalysis generally do not assimilate aerosol, clouds or water vapour data, which increases the 199 
uncertainty in the estimated surface irradiance (You et al., 2013; Zhao et al., 2013). 200 

2.4 Arctic System Reanalysis v2    201 

Arctic system reanalysis version 2 (ASRv2) is a polar-optimized dynamic downscaling of ERA-Interim reanalysis 202 
by using Weather Research and Forecast Model (WRF) version 3.6.0. The data set is available for the period of 203 
2000 to 2012. The grid resolution is 15km, which is finer than most global models and the previous release of ASR 204 
(ASRv01), whereas the time resolution of the dataset is 3 hours. The downscaling is optimized for Polar Regions, 205 
and polar physics is used where possible, including heat transfer through snow and ice, the fractional sea ice cover, 206 
the ability to specify variable sea ice thickness, snow depth on sea ice and sea ice albedo, as well as other 207 
optimizations included in the Noah Land Surface Model. The area covered by this dataset is 1.2 x 108 km2, which 208 
is about 50% of Northern hemisphere. Spectral nudging from ERA-Interim is applied on geopotential height, 209 
temperature, and wind components above 100 hPa on the inner domain. ASR uses three-dimensional variational 210 
analysis (3DVAR) for observations, including radiance data, from a number of satellites (Bromwich et al., 2017).  211 

3. Ground data 212 

In this study, 31 locations from Norway are analysed for the four mentioned datasets. The coordinates of the 213 
locations, altitudes, and land type are indicated in appendix A and an overview of site locations is shown in Figure 214 
1. The ground-measured data is acquired from the Norwegian Institute of Bioeconomy Research (NIBIO). NIBIO 215 
registers hourly-average GHI by using Kipp and Zonen CMP11 or CMP13 pyranometers. The data is quality 216 
controlled and the equipment is maintained regularly on a daily or weekly basis (http://lmt.bioforsk.no/about). The 217 
daily averages of ground data were calculated by following Urraca et al. (2017b), where these were calculated for 218 
those days when at least 20 valid hourly means were available, however when this criteria was not met the daily 219 
average was replaced by a missing value. Similarly, the monthly averages were calculated for those months when 220 
all the hourly values were available. If this condition was not met, the monthly average was replaced by a missing 221 
value (Roesch et al., 2011). The amount of missing data in the ground measurement was largely reduced because 222 
of the application of quality control procedures (explained in the next section). 223 

In this study, the numbers of years used from each data set are different. For ASR, 12 years of data is used and 16 224 
years of data is used for ERA5, CLARA, and SARAH. Furthermore, the sites are divided four groups; above 65ºN, 225 
below 65ºN, inland and coastal regions. The studied locations are divided into coastal and inland regions are 226 
grouped by observing the proximity to the shoreline. Regions within 30 km of the shoreline are considered as 227 
coastal. From the 31 locations studied here, 14 sites are classified as coastal and 17 sites as inland, while 4 sites 228 
lie above 65ºN and 27 lie below 65ºN latitude. For details on the land-type classification, refer to appendix A. 229 

http://lmt.bioforsk.no/about


 
 

 230 

Figure 1: Locations of the sites included in the study. To avoid overlapping of names some locations are shown 231 
with only white dots. 232 

3.1 Quality Control 233 

Although the data provided by NIBIO is quality controlled, Urraca et al. (2017a) observed that operational and 234 
equipment errors exist in NIBIO stations. The first quality-control check performed in this study is to look at the 235 
percentage of missing data. Any year having more than 5% of missing values is discarded from the analysis. The 236 
second check is performed by using BSRN Global Network recommended Quality Control tests, V2.0 (Long and 237 
Dutton, 2010). These quality checks test values that are extremely rare and physically impossible. From this test, 238 
years having more than 1% of flagged values are removed from the ground data. The third quality control 239 
procedure is applied by using the Urraca et al. (2017a) quality control technique. In this test, CLARA and ERA5 240 
datasets are used to check the quality of ground measurements by constructing confidence intervals to detect the 241 
operational and equipment errors. Following Urraca et al. (2017a), the locations in Norway are divided into two 242 
sections by grouping locations above 65ºN and locations below 65ºN. Separate confidence intervals are 243 
constructed for these groups of locations. After constructing these confidence intervals, the ground data is passed 244 
through an algorithm to check the data with errors, which appear in the form of flags. Following Urraca et al. 245 
(2017a) two checks are performed, one to see the operational errors and the other to see the equipment errors. After 246 
these checks, the years having large number of flags are visually inspected and removed from the analysis. Initially 247 
Pasvik, Mære, Njøs, and Ullensvang were included in the study but due to a large number of flags from the third 248 
quality control test, these were discarded. Pasvik and Ullensvang were found to have equipment errors and frosting, 249 
while Mære and Njøs were found to have shading errors. For more information on this quality control procedure 250 
refer to Urraca et al. (2017a). 2006 and 2007 were found to have a large number of missing data points; these were 251 
discarded from all locations. Gap filling methods are only used in calculating yearly energy averages by using 252 
nearest-neighbour interpolation. See appendix B for details about the years not included in the study. After 253 
performing quality control on the ground data, errors might still exist but in addition to validating the datasets, this 254 
study provides a comparative analysis of these datasets for high latitude locations. From a comparative point of 255 
view, the errors in the ground data will have a similar effect on all datasets. 256 

3.2 Validation 257 

In order to evaluate the performance of the datasets, some common statistical measures are used. The most widely 258 
used measure is the root mean square deviation (RMSD). As an addition, the BIAS or mean bias deviation (MBD) 259 
is used in the evaluation. MBD gives an insight in under or over estimations. Mean absolute deviation (MAD) is 260 



 
 

also used for the evaluations. Because of the absolute values used in this measure, the negative and positive errors 261 
do not cancel out as in the BIAS. MAD is a good measure for comparing different models. Moreover, Pearson 262 
correlation and scatter plots are used to indicate the spread and overall correlation of the datasets with ground 263 
measurements.  264 

4. Results and discussion 265 

Table 2 lists the RMSD, MAD, and MBD of the datasets for the locations included in the study. The error indicators 266 
in table 2 are expressed in Wm-2 and values in parentheses are daily averages. Night-time values are included in 267 
calculating daily and monthly averages. Along with all sites included in the study, table 2 also shows error metrics 268 
for above 65ºN, below 65ºN, inland and coastal regions. 269 

Table 2  270 
Error metrics expressed in Wm-2, for the datasets analysed in this study. Numbers without parentheses are monthly 271 
averaged errors while those in parentheses are daily averaged errors. Numbers are averaged over all stations. Error 272 
metrics for different geographical groups are also shown. 273 

 RMSD(Wm-2) MAD(Wm-2) MBD(Wm-2) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

All Sites 
9.5 

(18.3) 
8.7  

(18.0) 
9.9 

(26.4) 
21.7 

(42.6) 
6.3 

(12.8) 
5.8 

(11.8) 
6.4 

(16.7) 
14.5 

(27.1) 
-3.0 

(-1.7) 
-3.6 

 (-2.5) 
2.1 

(4.0) 
13.1 

(16.9) 
Above 
65ºN 

10.1 
(16.0) - 

10.9 
(26.3) 

20.3 
(39.4) 

5.3 
(9.7) - 

6.1 
(14.5) 

11.1 
(21.5) 

-3.4 
(-2.8) - 

3.8 
(5.6) 

8.0 
(11.0) 

Below 
65ºN 

9.4 
(18.6) 

8.7  
(18.0) 

9.9 
(26.8) 

21.9 
(43.0) 

6.5 
(13.2) 

5.8 
(11.8) 

6.5 
(17.3) 

15.0 
(27.9) 

-3.0 
(-1.5) 

-3.6 
 (-2.5) 

2.0 
(4.0) 

13.8 
(17.8) 

Coastal 9.1 
(17.5) 

8.5 
(17.1) 

10.0 
(26.5) 

21.8 
(41.9) 

5.9 
(12.1) 

5.6 
 (11.2) 

6.2 
(16.3) 

13.9 
(25.6) 

-2.7 
(-3.1) 

-3.4 
(-2.2) 

2.3 
(4.3) 

11.9 
(15.7) 

Inland 9.3 
(23.4) 

8.8 
 (18.4) 

10.0 
(26.9) 

21.7 
(43.1) 

6.2 
(14.5) 

5.9 
 (12.1) 

6.7 
(17.6) 

15.0 
(28.3) 

-3.0 
(-5.0) 

-3.7 
 (-2.7) 

2.2 
(4.1) 

14.0 
(18.0) 

 274 

From the table it can be seen that for all locations, SARAH provides the best estimation in terms of RMSD, while 275 
ASR performs the worst. The same pattern follows on the MAD errors where SARAH performs better than other 276 
datasets, while ASR has the highest errors. ERA5 and ASR (reanalysis models) are observed to be overestimating, 277 
similar to previous studies (Boilley and Wald, 2015; Kennedy et al., 2011; Wild, 2008). Both CLARA and SARAH 278 
(satellite databases) underestimate solar radiation (Posselt et al., 2012; Riihelä et al., 2015). At slant angles of 279 
view, such as those experienced by geostationary satellites at high latitudes, solar radiation is often underestimated 280 
by satellite methods because of an overestimation in cloud. The highest bias is seen in ASR while biases of 281 
CLARA, SARAH, and ERA5 are very similar in magnitude. 282 

The table also shows RMSD, MAD, and MBD for location categories above 65ºN, below 65ºN, coastal and inland. 283 
Above 65ºN latitude, CLARA has the lowest errors and ASR has the highest errors while ERA5 provides moderate 284 
errors. SARAH does not provide coverage above 65ºN latitude. At locations below 65ºN, SARAH and CLARA 285 
have low errors as compared to other datasets. The ASR has the highest errors at such locations as well. SARAH 286 
and CLARA have lower errors in coastal regions than inland, mainly due to less snow covers in coastal regions 287 
(Babar et al., 2018). Note that CLARA and ERA provide data at a similar spatial resolution, i.e. 0.25º and 0.28º, 288 
however the surface radiation in CLARA is calculated at much finer resolution (around 4km) than in ERA5, 289 
therefore, CLARA performs better at coastal regions. On the contrary, in inland locations SARAH provides better 290 
estimates than other datasets. CLARA comes second in terms of both daily and monthly means, while ASR 291 
performs the worst. In this analysis, ERA5 is seen to perform better at locations below 65ºN than above 65ºN 292 
latitude.   293 

Figure 2 (a-h) illustrates the scatter plots of the monthly and daily averages of the datasets. The black coloured 294 
line represents the x=y line for reference. Evidently, CLARA and SARAH have a very similar spread on both 295 
monthly and daily averages. A correlation of 0.98 for daily means and 0.99 for monthly means are observed for 296 
both of these datasets. ASR has a wider spread in scatter plots with correlation coefficients of 0.99 and 0.92 for 297 
monthly and daily means respectively. In addition, a positive bias in ASR monthly averages can be observed. 298 
ERA5 has an intermediate spread with a correlation of 0.99 for monthly averages and 0.95 for daily averages. 299 
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Figure 2: Monthly mean and daily mean GHI scatter plots of the datasets. Ground in-situ observations and 300 
estimated values of solar radiation are given in Wm-2. The legend bar shows the density of data points on a coloured 301 
scale. Satellite data show narrow spread and underestimation while reanalyses show wider spread and 302 
overestimation. 303 

Table 3 304 
Statistical errors of the yearly average energy estimates for the datasets in kWh per square meter and year on a 305 
horizontal surface. Energy statistics for different geographical groups are also shown.  306 

 
Energy (KWh.m-2.year-1/percentage error) 

CLARA SARAH ERA5 ASR 
Est. Obs. %Err. Est. Obs. %Err. Est. Obs. %Err. Est. Obs. %Err. 

All Sites 838.4 862.9 -2.8 861.2  880.5 -2.2 908.1  862.9 +5.2 1017.1  865.5 +17.5 
Above 65ºN 711.7 715.5 -0.5 - - - 806.0 715.5 +12.6 870.4  751.3 +15.9 
Below 65ºN 853.5 880.5 -3.1 861.2  881.2 -2.3 920.3  881.2 +4.4 1034.8  879.3 +17.7 

Coastal 845.4 857.6 -1.4 882.2  899.9 -1.9 904.9 857.6 +5.5 1009.4  862.6 +17.0 
Inland 832.3 867.5 -4.1 847.1  867.5 -2.4 911.0 867.5 +5.0 1023.2  867.9 +17.9 

 307 

In addition to daily and monthly errors, energy stakeholders use the yearly solar radiation energy averages to 308 
evaluate the existing energy systems and plan new projects. Estimated yearly radiation gives an insight into the 309 
total production of such systems and can be compared with the yearly consumption to increase efficiency of such 310 
systems. Table 3 shows yearly average energy outputs in terms of estimated, observed and percentage error. The 311 
yearly energy averages were calculated by integrating the daily averages of the datasets. The gaps in CLARA, 312 
SARAH and ground-measured data are filled by using nearest-neighbour interpolation. The SARAH performs 313 
better than other datasets, but with CLARA following just behind. Above 65ºN, CLARA gives much lower 314 
deviations than ERA5 and ASR, while SARAH has no coverage. It can be observed from the table that ERA5 315 
performs better at inland locations while other datasets perform better at coastal regions. It has been documented 316 
that satellite estimation methods deteriorate over snow-covered surfaces. In Norway, usually inland locations have 317 
a higher snow-depth than the coastal regions. Because of the shortcoming of satellite estimation algorithm in the 318 
differentiation of clouds from snow covers, satellite-based data do not perform as well in snow-covered areas as 319 
on snow-free areas. However, both satellite-based datasets underestimated the energy as shown by a previous study 320 
(Babar et al., 2018), while the reanalyses are observed to be overestimating. ERA5 overestimates the energy 321 
production much more at locations above 65ºN than below; other datasets give very similar deviations in energy 322 
averages at different locations. The results of this analysis shows that below 65ºN latitude, the SARAH 323 
performance is better than that of the other data sets. In addition to higher spatial and temporal resolution, the 324 
errors in this dataset are low. Above 65ºN, only CLARA gives reasonable errors.  325 

Analysis of yearly averaged GHI in terms of RMSD, MAD and MBD is shown in appendix D. For the yearly 326 
averages, high errors are observed in ASR when all locations are taken into account, while CLARA, SARAH, and 327 
ERA5 give considerably lower errors. CLARA is observed to perform better at coastal locations than in the inland 328 
regions, while the errors increase at locations above 65ºN. SARAH has no coverage above 65ºN, and the deviations 329 
are larger at inland regions than at the coast. ERA5 provides similar errors as those of CLARA in inland, above 330 



 
 

65ºN and below 65ºN, but shows high errors in coastal regions. CLARA performs better than ERA5 at coastal 331 
regions, because the surface radiation calculation in CLARA is made at a much finer resolution (0.05º) than in 332 
ERA5, and therefore, takes into account the changing surface conditions of the coastal regions to a larger degree. 333 
ASR on the other hand gives the highest errors among the datasets for all locations.  334 

A seasonal analysis of the datasets is performed by dividing a typical year into 4 parts, where February to April 335 
are grouped in FMA, May to July are grouped in MJJ, August to October are grouped in ASO and November to 336 
January are grouped in NDJ. This division into seasons is made so that summer solstice is approximately in the 337 
middle of the summer season. Table E1 in appendix E illustrates the seasonal error analysis of the datasets and it 338 
shows that the RMSD values are high in FMA, and decreases as the year progresses. ASR is observed to have high 339 
monthly and daily RMSD. MAD values in the table show that monthly mean values are similar for CLARA, 340 
SARAH, and ERA5 while ASR gives considerably larger MAD. MBD shows that both reanalyses overestimate 341 
solar radiation and satellite methods mostly underestimate it. In this analysis, SARAH, CLARA, and ERA5 342 
perform similarly and better than ASR. Moreover, there are larger errors in satellite methods than reanalyses in 343 
FMA and MJJ, mostly because of the presence of snow covers, which are difficult to differentiate from clouds in 344 
such methods (Babar et al., 2018). Low solar elevation angles at high latitude locations make this differentiation 345 
further challenging. On the contrary, ERA5 performs better than satellite datasets in FMA and NDJ at high 346 
latitudes. However, the performance of satellite methods improves in summer and autumn months. 347 

4.1 Evaluation of different sky conditions 348 

To evaluate the datasets for their performances in different sky conditions, the datasets were divided into clear-349 
sky, intermediate-cloudiness, and overcast categories. This division is established based on the clear-sky index 350 
(Kc), which is defined as the ratio of GHI recorded on the ground to the clear-sky GHI. The BIRD clear-sky model 351 
is used to calculate the clear-sky values at the ground measurement locations (Bird and Hulstrom, 1981). After 352 
calculating clear-sky index, Kc, following Smith et al. (2017) and Widén et al. (2017), values higher than 0.8 are 353 
considered indicating a clear-sky day, values of Kc between 0.4 and 0.8 are considered as intermediate-cloudy and 354 
values below 0.4 are considered as overcast.  355 

 

 

 

 

 

 
(a) (b) (c) 

CLARA RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 21.5 13.8 -4.0 

 Intermediate-cloudiness 22.1 16.0 -3.3 
Overcast 12.8 8.7 -0.2 

Figure 3: CLARA daily averaged errors under clear-sky, intermediate-cloudiness, and overcast categories. Scatter 356 
plots for the different sky-categories are shown. The coloured legend bar shows the density of points in the scatter 357 
plot. 358 

 359 



 
 

   
(a) (b) (c) 

SARAH RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 20.4 12.8 -5.5 

 Intermediate-cloudiness 20.2 13.5 -3.0 
Overcast 13.2 8.7 4.4 

Figure 4: As Figure 3, but for SARAH. 360 

   
(a) (b) (c) 

ERA5 RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 25.5 16.8 -10.0 

 Intermediate-cloudiness 28.5 19.9 8.7 
Overcast 29.6 18.6 15.2 

Figure 5: As Figure 3, but for ERA5. 361 

    
(a) (b) (c) 

ASR RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 29.2 21.1 11.6 

 Intermediate-cloudiness 51.3 37.2 23.3 
Overcast 49.0 30.8 25.0 

Figure 6: As Figure 3, but for ASR. 362 

Figure 3-6 show the results of cloudiness classification of the datasets. Overall in the three categories, SARAH 363 
performs better than other datasets while ASR performs the worst. In clear-sky category, an underestimation is 364 
observed in SARAH, CLARA, and ERA5, while ASR overestimates radiation. CLARA performs slightly worse 365 
than SARAH in this category, but both have the same correlation coefficients of 0.98, while ERA5 and ASR both 366 
have a correlation of 0.97. Similarly, in the intermediate-cloudy category, both satellite databases underestimate, 367 
while reanalyses overestimate. Finally, in the overcast category, CLARA slightly underestimates solar radiation 368 
while other datasets overestimate. In this category, SARAH and CLARA are found to perform very similar with 369 
correlation coefficients of 0.95 and 0.94, respectively. It should be noted that the sky cloudiness differentiation is 370 



 
 

performed on the basis of a clear-sky model and ground observed GHI. In conclusion, all the models have 371 
discrepancies in presenting clouds in all types of sky conditions.  372 

As explained in Section 2, under clear-sky conditions CLARA uses aerosol information from Global Aerosol Data 373 
Set/Optical Properties of Aerosols and Clouds (GADS/OPAC) climatology and integrated water-vapour 374 
information from ERA-interim, and SARAH uses both Monitoring Atmospheric Composition and Climate 375 
(MACC climatology) and integrated water-vapour from ERA-Interim. Aerosol information from MACC 376 
climatology is observed to have higher accuracy than GADS/OPAC climatology (Mueller and Träger-Chatterjee, 377 
2014). The maximum aerosol optical depth (AOD) is reduced in GADS/OPAC climatology for the CLARA 378 
dataset, but the results show that the climatology used in SARAH performs better than in CLARA even after the 379 
modifications. The negative biases observed in the clear-sky and intermediate-cloudy categories are possibly due 380 
to incorrect prediction of clouds and the aerosol climatology being too thick, which results in an underestimation 381 
of solar radiation. As reported in Mueller and Träger-Chatterjee (2014) and Polo et al. (2014), both MACC and 382 
GADS/OPAC climatologies result in underestimation of surface solar radiation because of the apparent 383 
overestimation in AOD thickness. In addition to aerosol optical depth, vertically-integrated water vapour values 384 
taken from ERA-Interim are shown to be too large (Kishore et al., 2011), which can further attenuate the surface 385 
solar radiation. Moreover, monthly mean values of aerosol optical depths are used which might also cause errors 386 
for daily resolutions. In ERA5, the radiative transfer model RTTOV11 (Radiative Transfer for TOVS) has a 387 
tendency to underestimate reflectance of high cumulus cloud tops while the reflectance of lower water clouds is 388 
overestimated. These cloud top reflectance errors possibly result in an underestimation in clear-sky conditions and 389 
overestimation in intermediate-cloudy and overcast conditions. In ASR, all the conditions are overestimated which 390 
shows that there is an underestimation in aerosol optical depth and cloudiness in the atmosphere. 391 

After analysing different sky conditions, it can be concluded that estimations based solely on satellite retrievals 392 
generally provide a much better result. However, SARAH is limited to 60-65ºN (in Scandinavia) and CLARA is 393 
limited to daily and monthly means. For high latitude and high recording frequency, ERA5 can still provide an 394 
alternative, especially for clear-sky and intermediate-cloudy conditions in cases where satellite coverage is not 395 
available or have missing data. 396 

4.2 Analysis of daily average TCWC and daily sky-condition classification in ERA5  397 

To analyse the cloud placement of ERA5, the total cloud water content (TCWC) and short wave solar radiation 398 
downward, clear-sky (SWSDC) from ERA5 are used here. To obtain TCWC, total column liquid condensate and 399 
total column ice condensate from ERA5 were added together. ERA5 and other reanalyses have an overestimation 400 
or a positive bias in solar radiation as documented here and in accordance with Urraca et al. (2017b) and Urraca 401 
et al. (2018). On the contrary, satellite methods have a negative bias but higher accuracy (Riihelä et al., 2015). 402 
Reanalyses are based on weather-prediction models, and although assimilation of observations to some extent 403 
constrains these models, the weather patterns of the reanalysis may still be out of phase with reality. A small 404 
misrepresentation of clouds in space and time may have a large impact on the high-frequency correlation between 405 
model and in-situ observations, with regard to radiative fluxes such as solar radiation, and hereby large RMSD are 406 
induced. However at longer time scales, i.e. monthly or yearly time scales, the reanalysis may represent cloud 407 
frequency to a satisfactory degree because large errors in daily averages are compensated for in the seasonal mean, 408 
implying that reanalysis becomes a valuable alternative for estimating local solar resources. This can be observed 409 
by comparing the daily and monthly RMSD of ERA5 with satellite based datasets in table 2. For all the locations, 410 
the RMSD of monthly values for ERA5 is similar to that of CLARA and SARAH, but the RMSD of daily values 411 
(in parentheses) is considerably larger in ERA5 as compared to the satellite databases. On even longer time scales 412 
the difference decreases further, which can be observed by analysing yearly averages from table D1 in appendix 413 
D. In this section, the cloud representation in ERA5 on daily averages is explored (for years 2000 to 2015) and an 414 
analysis is given on the random errors in the presence of clouds at lower time scales. Clear-sky indices for all 415 
datasets are obtained by using SWSDC from ERA5 because the clear-sky values from ERA5 have the aerosol and 416 
water content information, which is used in calculating the surface solar radiation. The approach used in Section 417 
4.1 is used here to classify days into the three categories by using clear-sky index, Kc. The analysis in this section 418 
is performed for days when the solar zenith angle is lower than 90º. 419 

 420 

 421 



 
 

Table 4 422 
The number of days and mean TCWC from in-situ ground measurements, ERA5 and CLARA are shown in the 423 
table for different sky categories. The number of days and mean TCWC in each cloudiness category for ERA5 is 424 
shown separately for cases when ERA5 and ground measurements agree on classification and for cases when there 425 
is a disagreement. Years from 2000 to 2015 are used in the analysis over all locations included in the study (see 426 
appendix B). 427 

 428 

Table 4 shows the number of days and mean TCWC for each of the sky categories. In table 4, daily averages of 429 
solar radiation from CLARA are used to make a comparison with ERA5 in sky classification. It can be seen that 430 
ground measurement and CLARA classify almost the same percentage of days into each category even though the 431 
number of days available for these are not the same because of the missing values. CLARA also gives very similar 432 
mean TCWC values as ground measurements. On the contrary, ERA5 is observed to classify a higher number of 433 
days as intermediate-cloudy and a lower number of days as overcast than in-situ observations, hence showing that 434 
it has a negative bias towards classifying a day as overcast. Moreover, in ERA5 the mean TCWC is slightly 435 
underestimated in the clear-sky category but largely overestimated in overcast category. Table 4 further shows the 436 
number of days and mean TCWC for conditions when ERA5 and ground measurements agree on classification 437 
and for when there is a disagreement. Here it can be seen that the mean TCWC of days with agreement is the same 438 
as that of ERA5, but on the days of disagreement, there is an overestimation in mean TCWC in clear-sky days and 439 
an underestimation in overcast days. These results show that on clear-sky days, ERA5 has more clouds than in-440 
situ observations, which is seen by higher levels of TCWC, while on the overcast days there are a lower amount 441 
of clouds, which is seen by lower levels of TCWC. However, it can be seen from the table that in clear-sky 442 
category, ERA5 and ground-measurements agree 77% of the time. The agreement on sky-condition is smaller in 443 
intermediate-cloudy category where 41% of the time ERA5 predicts the same conditions as in-situ observations, 444 
while the agreement in overcast category is 53%. Overall, 67.3% of the times it is seen that ERA5 and ground 445 
measurements classify the same conditions. Figure 7 shows the scatter plot of ground measurements and ERA5 446 
for both of these conditions, when there is an agreement on classification and when there is a disagreement. It can 447 
be seen that the spread is large when there is a disagreement. A correlation coefficient of 0.98 is found for 448 
agreement data points while a correlation coefficient of 0.90 is found for disagreement point.  449 

(a) (b) 
Figure 7: Scatter plots for the days when ERA5 and ground measurement agree in classification and when there 450 
is a disagreement. A correlation coefficient of 0.98 is found for agreement points and 0.90 for disagreement points. 451 

 Ground data CLARA data ERA5 data ERA and ground agree ERA and ground 
disagree 

No. 
of 

days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 
(Kg.m-2) 

Clear-sky 38265 
(30.2
%) 

0.03 39516 
(31.3%) 

0.03 53211 
(33.4%) 

0.02 29500 0.02 8765 0.07 

Intermediate
-cloudiness 

49207 
(38.8
%) 

0.09 45244 
(35.8%) 

0.10 75268 
(47.4%) 

0.10 34700 0.10 14507 0.07 

Overcast 39181 
(30.9
%) 

0.22 41417 
(32.8%) 

0.22 30389 
(19.1%) 

0.29 20914 0.30 18004 0.12 



 
 

Table 5 illustrates RMSD, MAD, and MBD of ERA5 in different sky categories. It shows the error metrics for the 452 
days when ERA5 and ground measurements agree on a category and for when there is a disagreement. The days 453 
of agreement on sky categories in table 5 can be compared to the deviations presented in Section 4.1, Figure 3. It 454 
can be seen that on the days of agreement ERA5 performs very similar to CLARA. However, large errors are 455 
observed when ERA5 does not agree with ground measurements in sky categorization. In terms of RMSD and 456 
MAD, the highest increase is seen in clear-sky and overcast categories. The MBD is positive in clear-sky category 457 
and negative in intermediate-cloudiness and overcast categories, which again shows that there are less amount of 458 
clouds in the clear-sky category and more clouds in intermediate-cloudiness and overcast categories. From a solar 459 
energy-harvesting point of view, the clear-sky days produce more energy than intermediate-cloudy or overcast 460 
days. It can be observed that ground-measurement and ERA5 predicts almost the same percentage of clear-sky 461 
days, which further shows that on daily averages reanalyses may not predict clouds accurately but on longer time 462 
scales, the solar radiation estimation improves.  463 

Table 5 464 
RMSD, MAD, and MBD for ERA5 daily averages in different sky categories. The errors are shown for the days 465 
when ERA5 and ground measurements agree on classification and for when they do not agree. Years from 2000 466 
to 2015 are used in the analysis over all locations included in the study (see appendix B). 467 

 Agreement on sky conditions Disagree on sky conditions 
RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 

Clear-sky 16.9 11.8 5.6 42.9 31.2 31.2 
Intermediate-

cloudiness 
25.7 17.7 -7.4 33.8 24.2 -15.1 

Overcast 15.3 9.6 -4.5 38.4 26.3 -26.3 
5. Conclusion 468 

This study provides a comprehensive evaluation of different GHI estimating datasets for high-latitude 469 
locations. Overall, SARAH provides lower errors than other datasets but is limited to 60-65ºN latitudes in 470 
Scandinavia; hence, it cannot provide complete coverage on the northern Scandinavian locations. For monthly 471 
averages of GHI, MAD of 5.8 Wm-2 is found for SARAH. Nevertheless, it provides very high quality solar-472 
radiation estimates for the area it covers. The second best dataset found in this study is CLARA that has a 473 
global coverage and provides multi-decadal time series. For monthly mean estimates of GHI, CLARA gives 474 
a MAD of 6.3 Wm-2. One of the challenges for estimating GHI at high latitude locations is the ability of the 475 
satellite estimation algorithms to differentiate between clouds and snow covers. ERA5 being a coarse-476 
resolution global dataset is observed to perform nearly as well as CLARA with a MAD of 6.4 Wm-2 for 477 
monthly averages of GHI. ERA5 has similar spatial resolution as CLARA but it provides data on higher 478 
temporal resolutions and unlike CLARA, it has no missing values. ASR is found to have the highest errors in 479 
this analysis. MAD of 14.5 Wm-2 is found for ASR monthly means. In a similar study performed by Urraca et 480 
al. (2017b), MAD of 8 – 13 Wm-2 was reported for CM-SAF daily means datasets.   481 
Both satellite estimation and reanalyses have problems in estimating solar radiation in intermediate-cloudiness 482 
and overcast conditions. To evaluate the strength of the datasets, the ground-measured data is divided into 483 
clear-sky, intermediate-cloudiness, and overcast categories and error statistics are calculated. In this test, 484 
satellite based estimations perform better than reanalyses. However, ERA5 has larger errors than CLARA and 485 
SARAH, but still considerably smaller errors than ASR. At high latitude locations, the seasonal variation in 486 
the length of the day is extreme. Taking this into consideration, an analysis is performed for different seasons. 487 
In this analysis, CLARA, SARAH and ERA5 have similar errors in the range of 6-13 Wm-2 in the summer 488 
months; however, ASR has relatively high errors in all seasons. On yearly GHI averages, SARAH provides 489 
the lowest MAD of 3.9 Wm-2, followed by 4.8 Wm-2 for CLARA, 5.6 Wm-2 for ERA5, and 17.8 Wm-2 for 490 
ASR. SARAH and CLARA also provide better yearly energy estimates than ERA5 and ASR. CLARA and 491 
ERA5 are observed to provide lower errors below 65ºN than above, while CLARA and SARAH perform 492 
better at coastal regions, and ERA5 performs better in inland locations that have more snow covers.  493 
Finally, an in-depth analysis is performed on ERA5 for its compatibility in sky stratification. It is found that 494 
in clear-sky conditions, the TCWC is overestimated, while in intermediate-cloudiness and overcast conditions 495 
it is underestimated. It is also observed that ERA5 has a positive bias on estimating clear-sky and intermediate-496 
cloudy conditions, while a negative bias is seen in estimating overcast conditions. In conclusion, both CLARA 497 
and SARAH provide good estimates but both of these datasets have disadvantages, including the spatial limits 498 
of SARAH and the low temporal frequency of CLARA. On the other hand, ERA5 provides advantages in the 499 
form of historical data series and global coverage. On the basis of these results it is suggested that CLARA 500 
and SARAH provides better estimates for solar radiation, but ERA5 can be used to fill the missing data in 501 
these datasets. 502 
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Appendix A 539 

Table A1 540 

Locations of the Norwegian measurement stations analysed in this study. 541 
 Station Latitude Longitude Altitude Land type 

1 Holt 69.65 18.91 12 Coastal 
2 Sortland 68.65 15.28 14 Coastal 
3 Vågønes 67.28 14.45 26 Coastal 
4 Tjøtta 65.83 12.43 10 Coastal 
5 Skogmo 64.51 12.02 32 Inland 
6 Rissa 63.59 9.97 23 Coastal 
7 Kvithamar 63.49 10.88 28 Inland 
8 Skjetlein 63.34 10.3 44 Coastal 
9 Surnadal 62.98 8.69 5 Inland 
10 Tingvoll 62.91 8.19 23 Coastal 
11 Fåvgang 61.46 10.19 184 Inland 
12 Fureneset 61.29 5.04 12 Coastal 
13 Gausdal 61.22 10.26 375 Inland 
14 Løken 61.12 9.06 527 Inland 
15 Ilseng 60.8 11.2 182 Inland 
16 Kise 60.77 10.81 129 Inland 
17 Apelsvoll 60.7 10.87 262 Inland 
18 Hønefoss 60.14 10.27 126 Inland 
19 Årnes 60.13 11.39 162 Inland 
20 Etne 59.66 5.95 8 Inland 
21 Ås 59.66 10.78 94 Inland 
22 Bø 59.42 9.03 105 Inland 
23 Rakkestad 59.39 11.39 102 Inland 
24 Ramnes 59.38 10.24 39 Coastal 
25 Tomb 59.32 10.81 12 Coastal 
26 Gjerpen 59.23 9.58 41 Coastal 
27 Hjelmeland 59.23 6.15 43 Inland 
28 Tjølling 59.05 10.13 19 Coastal 
29 Særheim 58.76 5.65 90 Coastal 
30 Landvik 58.34 8.52 10 Coastal 
31 Lyngdal 58.13 7.05 4 Inland 

 542 

 543 

 544 

 545 

 546 

 547 



 
 

Appendix B 548 

Table B1 549 

List of years not included in the study. 550 

 

 
Station 

Years having more than 5% missing 
data 

Years failing 
Long and Dutton 
test 

Years having 
operational error 
(snow/frost/ 
shading/soiling) 

Years 
having 
equipment 
error 

1 Holt 2001,2002,2006,2007,2008,2010 2013  2000 
2 Sortland 2000,2006,2007,2010,2013    
3 Vågønes 2006,2007  2002  
4 

Tjøtta 2006,2007 
  2008, 

2012 
5 

Skogmo 2006,2007,2008,2015 
 2011 2013, 

2014 
6 Rissa 2006,2007 2000   
7 Kvithamar 2006,2007,2013    
8 Skjetlein 2006,2007 2000   
9 Surnadal 2006,2007,2014    
10 Tingvoll 2006,2007,2012    
11 Fåvang 2006,2007   2001 
12 Fureneset 2006,2007,2011,2012    
13 Gausdal 2006,2007,2009   2015 
14 Løken 2006,2007    
15 Ilseng 2006,2007,2004 2000 2009  
16 Kise 2002,2006,2007,2015  2013  
17 Apelsvoll 2006,2007  2002,2003,2004 2009 
18 Hønefoss 2006,2007 2000   
19 Årnes 2006,2007    
20 Etne 2006,2007  2004,2012  
21 Ås 2006,2007    
22 Bø 2000,2006,2007    
23 Rakkestad 2006,2007    
24 Ramnes 2006,2007  2009  
25 Tomb 2006,2007 2009   
26 Gjerpen 2006,2007,2015    
27 

Hjelmeland 2006,2007 
  2002, 

2015 
28 

Tjølling 2006,2007,2008,2014 
 2012,2015 2009, 

2010 
29 Særheim 2000,2006,2007    
30 

Landvik 2006,2007 
 2005,2010,2014,

2015 
 

31 Lyngdal 2006,2007 2001   
 551 

 552 



 
 

Appendix C  553 

Table C1 554 

Error metrics expressed in Wm-2, for the datasets analysed in this study. Number without parentheses are monthly 555 
averaged errors while in parentheses are daily averaged errors.  556 

Station RMSD(Wm-2) MAD(Wm-2) MBD(Wm-2) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

Holt 
5.5 

(9.1) - 
4.7 

(12.0) 
9.6 

(18.8) 
1.5 

(2.9) - 
1.1 

(3.5) 
2.8 

(4.8) 
-1.5 

(-1.4) - 
1.1 

(1.4) 
2.5 

(3.4) 

Sortland 
17.5 

(23.0) - 
12.5 

(29.9) 
15.1 

(38.2) 
11.4 

(16.0) - 
7.7 

(18.9) 
9.7 

(24.4) 
-11.0 

(-12.0) - 
1.1 

(2.4) 
0.6 

(2.2) 

Vågønes 
5.1 

(13.8) - 
10.4 

(26.7) 
20.9 

(42.1) 
3.2 

(8.7) - 
5.7 

(15.0) 
12.8 

(24.8) 
-0.7 
(0.3) - 

3.9 
(6.3) 

11.8 
(16.2) 

Tjøtta 
6.1 

(13.8) - 
12.8 

(29.2) 
27.8 

(47.9) 
4.6 

(9.5) - 
8.4 

(17.4) 
16.9 

(28.0) 
-0.3 
(1.3) - 

7.9 
(10.7) 

15.2 
(19.4) 

Skogmo 
12.4 

(20.0) 
11.8 

(20.8) 
8.2 

(23.6) 
20.2 

(41.6) 
7.8 

(13.3) 
8.2 

(13.4) 
5.3 

(14.2) 
12.5 

(25.8) 
-3.7 

(-2.4) 
-6.3 

(-5.6) 
1.0 

(2.5) 
11.4 

(15.3) 

Rissa 
8.2 

(17.3) 
7.2 

(17.6) 
8.2 

(27.1) 
24.1 

(45.4) 
5.5 

(12.3) 
4.9 

(11.5) 
5.1 

(17.1) 
14.8 

(27.7) 
-2.7 

(-1.5) 
-3.3 

(-2.4) 
2.1 

(4.2) 
13.6 

(19.5) 

Kvithamar 
7.3 

(16.0) 
7.8 

(16.8) 
7.7 

(26.4) 
31.6 

(47.7) 
5.1 

(11.4) 
1.0 

(10.6) 
5.2 

(16.4) 
20.3 

(29.5) 
-2.4 

(-1.2) 
-0.2 

(-4.4) 
-0.1 
(1.4) 

19.2 
(23.1) 

Skjetlein 
7.9 

(17.4) 
8.8 

(17.6) 
7.2 

(25.9) 
29.9 

(46.5) 
6.0 

(12.7) 
6.4 

(11.6) 
5.1 

(16.5) 
19.7 

(28.6) 
-1.0 
(0.8) 

-6.0 
(-4.8) 

0.4 
(2.0) 

18.9 
(22.6) 

Surnadal 
9.7 

(20.8) 
11.1 

(23.5) 
10.9 

(28.4) 
19.0 

(41.2) 
7.0 

(14.1) 
7.7 

(14.5) 
7.5 

(17.9) 
12.9 

(25.2) 
-4.1 

(-2.7) 
-6.0 

(-5.1) 
6.5 

(8.3) 
11.9 

(14.8) 

Tingvoll 
8.3 

(18.0) 
9.3 

(20.0) 
10.4 

(27.1) 
16.9 

(40.0) 
6.4 

(13.4) 
6.4 

(12.6) 
6.5 

(16.9) 
10.7 

(24.5) 
-1.7 

(-0.1) 
-4.8 

(-4.0) 
5.1 

(7.0) 
8.4 

(11.1) 

Fåvang 
13.1 

(22.3) 
10.0 

(18.8) 
10.4 

(27.3) 
21.2 

(43.9) 
9.5 

(16.3) 
7.3 

(12.8) 
6.8 

(18.0) 
14.6 

(29.2) 
-8.4 

(-7.6) 
-6.8 

(-6.6) 
1.8 

(2.8) 
14.1 

(19.5) 

Fureneset 
4.7 

(14.9) 
5.7 

(16.8) 
10.7 

(28.3) 
18.5 

(42.0) 
3.5 

(10.4) 
3.8 

(9.2) 
6.9 

(17.0) 
12.6 

(26.3) 
-1.1 
(0.6) 

-2.8 
(-1.8) 

6.4 
(8.6) 

11.3 
(14.1) 

Gausdal 
11.4 

(20.6) 
7.0 

(17.4) 
13.2 

(27.7) 
20.9 

(42.6) 
8.8 

(15.3) 
5.2 

(12.1) 
8.8 

(18.3) 
14.8 

(29.0) 
-1.2 
(0.4) 

-1.9 
(-0.6) 

5.1 
(7.1) 

14.6 
(17.9) 

Løken 
14.3 

(24.3) 
10.7 

(21.0) 
9.2 

(28.3) 
12.7 

(40.5) 
9.5 

(17.6) 
7.4 

(14.5) 
5.9 

(18.6) 
8.2 

(26.6) 
-8.4 

(-7.2) 
-6.7 

(-6.1) 
1.8 

(4.0) 
3.7 

(6.1) 

Ilseng 
11.8 

(23.4) 
9.3 

(19.2) 
11.0 

(28.0) 
21.4 

(43.9) 
8.8 

(16.8) 
5.8 

(12.9) 
7.6 

(18.7) 
16.7 

(29.7) 
-5.9 

(-4.1) 
-2.2 

(-1.0) 
-1.1 
(1.0) 

16.7 
(19.8) 

Kise 
9.9 

(20.6) 
8.3 

(18.2) 
8.9 

(25.9) 
22.6 

(42.7) 
6.8 

(15.1) 
5.5 

(12.4) 
6.0 

(17.0) 
16.1 

(28.6) 
-1.0 
(0.9) 

-1.5 
(0.4) 

2.3 
(4.3) 

16.1 
(20.8) 

Apelsvoll 
10.2 

(19.6) 
8.4 

(17.4) 
9.1 

(25.8) 
31.8 

(48.2) 
7.7 

(14.7) 
5.0 

(11.9) 
6.3 

(17.3) 
25.0 

(34.0) 
1.6 

(4.2) 
-0.2 
(1.5) 

2.8 
(5.1) 

25.0 
(29.0) 

Hønefoss 
7.0 

(16.6) 
7.1 

(15.8) 
8.9 

(25.7) 
20.8 

(41.6) 
5.3 

(12.2) 
4.8 

(10.8) 
6.1 

(17.0) 
15.2 

(28.0) 
-3.3 

(-1.3) 
-3.5 

(-2.2) 
-0.1 
(2.0) 

15.1 
(20.3) 

Årnes 
9.0 

(17.3) 
7.8 

(16.2) 
7.9 

(24.6) 
19.8 

(40.0) 
6.2 

(12.7) 
5.1 

(11.0) 
5.2 

(16.3) 
14.9 

(26.6) 
-4.0 

(-2.8) 
-3.8 

(-3.0) 
-1.3 
(0.1) 

13.3 
(18.4) 

Etne 
9.3 

(20.0) 
9.7 

(22.0) 
12.8 

(29.4) 
23.1 

(48.6) 
6.9 

(14.5) 
7.0 

(14.8) 
8.9 

(19.6) 
15.0 

(31.0) 
-4.4 

(-2.9) 
-5.4 

(-4.6) 
6.4 

(8.9) 
14.5 

(19.4) 

Ås 
7.3 

(13.6) 
7.1 

(14.6) 
8.0 

(24.5) 
21.1 

(41.0) 
4.8 

(8.7) 
5.1 

(10.0) 
5.3 

(16.1) 
15.1 

(26.7) 
-3.5 

(-1.9) 
-4.0 

(-2.8) 
-2.1 

(-0.5) 
14.4 

(19.2) 

Bø 
7.9 

(17.8) 
6.5 

(16.6) 
10.3 

(25.4) 
21.5 

(43.2) 
5.7 

(13.0) 
4.6 

(11.6) 
7.1 

(17.1) 
16.4 

(29.4) 
1.4 

(3.0) 
1.5 

(3.0) 
4.9 
7.5) 

16.2 
(20.3) 

Rakkestad 
7.2 

(15.9) 
7.8 

(17.8) 
8.2 

(26.1) 
21.0 

(40.6) 
5.5 

(11.5) 
5.5 

(10.3) 
5.8 

(16.4) 
16.1 

(27.2) 
-2.9 

(-1.4) 
-4.3 

(-3.6) 
0.6 

(2.5) 
15.2 

(18.3) 

Ramnes 
8.9 

(16.7) 
7.5 

(15.4) 
8.2 

(24.0) 
22.1 

(40.8) 
7.1 

(12.3) 
5.5 

(10.6) 
5.8 

(15.8) 
16.4 

(26.5) 
-5.6 

(-4.1) 
-3.4 

(-2.0) 
-1.3 
(0.3) 

15.8 
(18.7) 

Tomb 
11.5 

(19.0) 
12.7 

(19.0) 
11.2 

(28.0) 
20.3 

(40.9) 
7.0 

(12.8) 
8.9 

(14.0) 
6.9 

(17.7) 
14.4 

(25.6) 
-5.9 

(-4.5) 
-5.0 

(-3.9) 
-3.3 

(-2.1) 
12.5 

(16.9) 

Gjerpen 
11.5 

(19.1) 
8.8 

(19.9) 
11.6 

(25.8) 
20.4 

(40.8) 
8.3 

(14.5) 
1.1 

(14.3) 
8.4 

(18.1) 
14.8 

(27.9) 
-4.3 

(-3.0) 
-0.2 

(-4.1) 
-1.3 
(0.3) 

10.7 
(15.4) 

Hjelmeland 
4.7 

(16.6) 
5.5 

(16.1) 
10.9 

(29.5) 
19.7 

(46.0) 
3.4 

(12.1) 
3.6 

(10.9) 
7.5 

(19.6) 
13.9 

(31.1) 
-0.1 
(1.6) 

-0.9 
(0.2) 

6.6 
(9.8) 

13.5 
(18.1) 

Tjølling 
8.2 

(18.0) 
7.5 

(13.8) 
11.4 

(26.5) 
28.5 

(45.1) 
6.0 

(12.8) 
5.2 

(9.6) 
7.5 

(16.8) 
19.7 

(29.6) 
-0.1 
(1.9) 

-1.9 
(-0.6) 

4.4 
(7.2) 

19.1 
(25.1) 

Særheim 
5.9 

(15.2) 
6.2 

(16.0) 
7.4 

(26.4) 
17.0 

(43.5) 
4.4 

(10.8) 
4.3 

(10.8) 
4.9 

(16.7) 
11.6 

(28.0) 
-1.2 
(0.3) 

-1.9 
(-0.7) 

2.2 
(4.1) 

9.7 
(12.8) 

Landvik 
7.3 

(16.5) 
6.3 

(14.3) 
10.2 

(25.7) 
23.0 

(42.2) 
5.2 

(11.6) 
4.6 

(9.7) 
6.5 

(16.7) 
15.8 

(28.1) 
1.2 

(3.9) 
-0.4 
(1.8) 

5.5 
(8.8) 

15.5 
(21.3) 

Lyngdal 
11.3 

(21.8) 
9.6 

(22.8) 
12.1 

(29.9) 
15.8 

(41.5) 
7.4 

(13.7) 
1.2 

(13.5) 
8.3 

(19.5) 
10.9 

(25.9) 
-6.0 

(-6.1) 
-0.4 

(-1.8) 
2.9 

(3.6) 
5.9 

(7.0) 
  557 
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APPENDIX D 560 
Table D1 561 
Statistical errors of the yearly average solar radiation for the datasets included in the study. This table shows the 562 
deviations for inland, coastal, above 65 º N, and below 65ºN latitude regions. RMSD, MAD, and MBD are 563 
expressed in Wm-2.  564 

 RMSD (Wm-2year-1) MAD (Wm-2year-1) MBD (Wm-2year-1) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

All Sites 7.4 5.2 6.8 18.7 4.8 3.9 5.6 17.8 -4.2 -2.8 4.4 17.5 
Above 
65ºN 8.9 - 9.6 16.6 5.2 - 8.8 15.6 -4.4 - 7.1 13.4 

Below 
65ºN 7.2 5.2 6.4 18.9 4.8 3.9 5.2 18.1 -4.1 -2.9 4.1 18.0 

Coastal 6.2 4.9 7.4 18.1 3.8 3.5 6.2 17.1 -3.1 -2.4 4.6 16.6 
Inland 8.2 5.4 6.4 19.2 5.6 4.0 5.0 18.4 -5.0 -3.0 4.2 18.2 

 565 

Appendix E 566 
Table E1 567 
Seasonal analysis of the datasets showing the variations in terms of RMSD, MAD, and MBD and expressed in 568 
Wm-2. CLARA and SARAH performs similarly and better than other datasets, while ERA5 gives median values 569 
and ASR performs the worst 570 

 571 
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Abstract 

Datasets from meteorological reanalyses and measurements from polar orbiting satellites are the 
available sources of large-scale information about solar radiation. However, both the reanalyses and the 
satellite-based estimates can be severely biased, especially in high latitude regions. In this study, solar 
radiation estimates from the ECMWF Reanalysis 5 (ERA5) and the Cloud, Albedo, Radiation dataset 
Edition 2 (CLARA-A2) were used as input to a random forest regression (RFR) model to construct a 
novel dataset with higher accuracy and precision than the input datasets. For monthly averages of global 
horizontal irradiance (GHI) at Norwegian sites, CLARA-A2 and ERA5 respectively produced a root 
mean squared deviation (RMSD) of 9.6 Wm-2 and 10.2 Wm-2, a mean absolute deviation (MAD) of 6.3 
Wm-2 and 7.0 Wm-2, and a bias of -1.6 Wm-2 and 3.9 Wm-2. In contrast, the proposed regression model 
provided an RMSD of 6.6 Wm-2, an MAD of 4.3 Wm-2, and a bias of -0.2 Wm-2. This shows that the 
RFR model is both accurate and precise, and significantly reduces both dispersion and bias in the new 
dataset with respect to the constituent sources. The proposed model provided more accurate and precise 
estimates in a seasonal error analysis as well. A sky stratification analysis was performed to evaluate the 
accuracy of the datasets under different sky conditions. It was found that the proposed model provides 
better estimates under all sky conditions with particular improvements in overcast conditions. The 
proposed regression model was also tested on five Swedish locations and it was found to improve solar 
radiation estimates to a similar degree as for the Norwegian locations, thus proving its consistency under 
similar climatic conditions. 

Keywords: Solar radiation; High latitudes; ERA5; CLARA; CMSAF; Random forest regression  

1. Introduction  

The bankability of solar power plants largely depends on the accuracy and precision of the solar radiation 
measurements or estimates, which are required at all stages of solar energy projects. Time series or 
temporal averages of solar radiation are obtained initially before a particular system can be simulated 
and its design criteria and performance are evaluated. In the case of flat plate collectors, such as 
photovoltaic (PV) and thermal, global horizontal irradiance (GHI) or global tilted irradiance (GTI) are 
used in the feasibility and planning phases. Additionally, long-term variability in solar radiation is used 
to quantify the solar resource and project worst-case scenarios of energy production in such systems. 
During operation, real-time data are typically required to verify the performance of the system and 
detect problems. In both cases, the required data can be obtained from measurement, modelling, or 
a combination of both (Sengupta et al., 2017; Urraca et al., 2017b).  

High quality solar resource assessments make technology deployment possible by helping the decision 
makers to reduce the uncertainty in investment decisions. However, the assessments cannot rely 
exclusively on ground measurements of solar radiation, because these are usually not available at most 
locations in the world. Even though such measurements exist at some locations, they frequently contain 
missing or erroneous data that must be filled in by using modelled data or interpolation from nearby 
measurement stations. Lastly, the cost of maintaining local equipment is larger than operating a model, 
assuming that satellite data and the output of reanalyses are provided free of charge or at a reasonable 
cost. Although model data are not as accurate as ground measurements, they can be used as an alternative 



 
 

(Stoffel et al., 2010). Nevertheless, quality ground measurements remain essential because they have 
low errors and can be used to validate models (Sengupta et al., 2017). 

Geostationary satellites are widely used for estimating surface solar radiation at low and medium 
latitudes, where their measurements of top-of-atmosphere upwelling radiances and surface albedos are 
used to derive GHI at the surface (Cano et al., 1986; Pinker and Laszlo, 1992; Rigollier et al., 2004; 
Tarpley, 1979). These satellites are positioned over the equator at different longitudes in order to provide 
a global coverage between -60° and +60° in latitudes. For instance, the Meteosat first and second 
generation geostationary satellites provide coverage of most of continental Europe (Müller et al., 2015; 
Pfeifroth et al., 2017; Schmetz et al., 2002; Urraca et al., 2017b). However, estimates above 65°N are 
prohibited by the slant viewing angle that geostationary satellites experience when they point away from 
nadir i.e., the vertical direction directly below the satellite (Schulz et al., 2009). 

Above the critical latitudes that limit geostationary satellites, polar orbiting satellites can be used to 
estimate surface solar radiation (Karlsson et al., 2017). Polar orbiting satellites traverse the entire Earth 
and provide global coverage, but their accuracy decrease at high latitudes because of the large angles 
between the satellite sensor and the Sun. Another factor that decreases the accuracy at high latitude is 
the frequent snow cover, which the satellites sensors cannot differentiate from clouds in the visible 
spectrum. The temporal resolution of solar radiation estimated by polar orbiting satellites is lower than 
that of geostationary satellites, since the revisit time of the former is higher than the repeat time of image 
acquisitions used by geostationary satellites. Whereas the latter capture images at least every 15 minutes, 
the polar orbiting satellites sense a given location twice each day on the equator and about 14 times each 
day near the poles. The sensing frequency of polar orbiting satellites is best at high latitudes, since swath 
overlap increases towards the poles, where their orbits converge. The accuracy of solar radiation 
estimated from satellite data is lower than ground measurements, but the advantages include large spatial 
and temporal coverage (Noia et al., 1993). In another study it was observed that estimates from polar 
orbiting satellites provide reasonable accuracy, but estimates obtained over snow-covered surfaces result 
in high errors because it is difficult to differentiate clouds from snow in the visible spectrum of light 
(Babar et al., 2018a). For a list of known issues and uncertainty sources, refer to Suri and Cebecauer 
(2014). 

In addition to satellite measurements, meteorological reanalyses also provide surface short-wave 
incoming radiation estimates (Wild, 2008; Wild et al., 2015). Reanalysis datasets are produced by data 
assimilation of historical observational data, aiming to obtain the initial state of selected parameters 
which best fits a numerical weather prediction (NWP) model to the available data (Kennedy et al., 2011). 
Reanalyses are not as accurate as satellite-based estimates, but they provide global coverage for multi-
decadal time range (Babar et al., 2018b; Urraca et al., 2017b; Urraca et al., 2018). 

Both the satellite-derived estimates and reanalyses have a certain degree of uncertainty, but proper 
identification and removal of errors can improve the results. Site adaptation refers to the improvements 
that can be obtained in satellite-derived or model-based solar irradiance by using short-term ground 
measurements to reduce the systematic bias in the original dataset. In Polo et al. (2016), the authors have 
provided a preliminary survey of available site adaptation techniques. Site adaptation can be physically 
based methods in which the atmospheric input data such as aerosol optical depth and vertically-
integrated water column are adjusted to better match the ground based observations (Gueymard, 2012). 
Other such methods include the use of clear-sky models to adjust the atmospheric aerosol on clear sky 
days (Cebecauer and Šúri, 2012). The second type of site adaptation is based on statistical adjustment 
of meteorological observations, such as rain, wind and so forth. The linear statistical methods for bias 
removal is performed by first fitting a line to the observations and estimations. In the next step an x=y 
line is subtracted from all observations (Polo et al., 2015). This type of adjustment removes the 
systematic errors that exist due to the regional inconsistencies or from the radiative models. Moreover, 
non-parametric regression by using multiple input datasets has been performed by Davy et al. (2016) 
for Australia. In this study, the authors used generalized additive models with cubic smoothing splines 



 
 

to improve accuracy. By including an NWP model-derived irradiance as input, they reduced the root 
mean square deviation by a few percent. In the study presented here, an approach similar to the site 
adaptation technique by  Davy et al. (2016) is used. 

This study presents a novel dataset that is obtained by using mainly the solar radiation estimates from 
ECMWF Reanalysis 5 (ERA5) and Cloud, Albedo, Radiation dataset Edition 2 (CLARA-A2), hereafter 
referred as ERA5 and CLARA. It is observed that reanalyses usually overestimate surface solar radiation 
and satellite methods usually underestimate it (Babar et al., 2018a; Riihelä et al., 2015; Urraca et al., 
2017b). The main motivation behind constructing a new estimate is that we want to overcome the 
underestimation tendency of satellite methods and the overestimation tendency of reanalyses by 
combining them into a dataset with lower bias and variance. The input datasets were used together with 
in-situ measurements to develop a novel random forest regression (RFR) model, which can be used to 
produce accurate and precise estimates of solar radiation at high latitudes. 

This paper is formatted as follows: Section 2 describes the datasets, quality control procedures, RFR 
model and pre-processing used in this study. Section 3 describes the results of the study. Section 4 
provides a conclusion of this work. 

2. Datasets 

CLARA and ERA5 are coarse resolution datasets and provide data on a grid of 0.25° x 0.25° and 0.28° 
x 0.28°, respectively. Data extraction from these datasets is performed by selecting the four grid points 
surrounding any location where we have ground measurements, and applying inverse distance weighted 
interpolation to obtain solar radiation at these coordinates. In case of CLARA, there are missing data 
points, which implies that at some of the time frames there is data lacking in the surrounding four grid 
points. When the surrounding points have less than three valid values, the interpolation is replaced by a 
missing data value, indicating that a valid value could not be extracted for that particular time. The 
ERA5 dataset does not contain missing values. It will be explained in section 2.6 how the proposed 
regression model handles missing data values. 

2.1 CLARA-A2 

This dataset was released in December 2016 and it is the second edition of CLARA (Cloud, Albedo, 
Radiation dataset) produced by Eumetsat’s Satellite Application Facility on Climate Monitoring (CM-
SAF) (Karlsson et al., 2017). The dataset covers 1 January 1982 to 31 December 2015, and constitutes 
an extension of 6 years relative to the previous CLARA-A1 dataset. This dataset has global coverage 
with a spatial resolution of 0.25° x 0.25° on a regular latitude-longitude grid and it provides daily and 
monthly averages of surface incoming shortwave (SIS) radiation. To calculate daily averages, at least 
20 observations of incoming solar radiation in each grid box are required. Similarly, 20 valid daily 
averages are required to generate monthly averages (SAF, 2016). Along with SIS, CLARA also provides 
longwave up- and down-welling surface radiation.  

The fundamental method used in calculating surface solar irradiance from satellite observations is that 
the reflectance measured by the satellite instruments is related to the atmospheric transmittance. The 
underlying algorithm in CLARA uses Advanced Very High Resolution Radiometer (AVHRR) sensor 
data to derive the cloud cover, which is used to calculate surface incoming solar radiation (Karlsson et 
al., 2017). In addition to the cloud cover information, the solar radiation is estimated by using auxiliary 
data like the solar zenith angle, vertically-integrated water vapour and aerosol optical depth. Finding 
solar zenith angles is straightforward and can be calculated accurately. In this dataset, all data points 
with solar zenith angles larger than 80° are set to missing values and solar zenith angles larger than 90° 
are set to zero. The vertically-integrated water vapour and aerosol optical depth are not available in the 
AVHRR data and for these external sources are used. For vertically-integrated water vapour, the ERA-
Interim Reanalysis (Dee et al., 2011) is used and the vertical ozone column is set to a constant value of 
335 DU, as its variability has negligible impact on the estimated solar radiation. Aerosol information 



 
 

for the algorithm is taken from the modified version of the monthly mean aerosol fields from the Global 
Aerosol Data Set/Optical Properties of Aerosols and Cloud (GADS/OPAC) climatology. In the 
algorithm, AVHRR data is used to retrieve only the cloud cover information. The first step in estimating 
surface solar radiation is the classification of the sky condition. Software from Eumetsat’s Nowcasting 
Satellite Application Facility (SAFNWC) is used to derive the information on cloud coverage for each 
pixel by using the information from the satellite sensor (SAF, 2016). If no cloud is detected (cloud free 
pixel), surface solar radiation is calculated by using the clear-sky Mesoscale Atmospheric Global 
Irradiance Code (MAGIC) (Mueller et al., 2009) by using only auxiliary sources. If the pixel is classified 
as cloudy (cloud contaminated or fully cloudy), visible channels of AVHRR instrument are used to 
derive broadband reflectance. The reflectance for each pixel is then transferred to broadband fluxes by 
using a bidirectional reflectance distribution function (BRDF). In the next step, the broadband top-of-
the-atmosphere albedo is used to derive transmissivity through a look-up table approach. Finally, the 
transmissivity is used to calculate the surface solar radiation. However, as a temporally constant surface 
albedo is used by the algorithm, it does not provide radiation estimates on snow and sea ice coverage 
areas (Karlsson et al., 2017). For more information on the CLARA dataset and its accuracy, refer to 
Karlsson et al. (2017). 

2.2 ERA5 

ECMWF Reanalysis 5 (ERA5) is the fifth generation atmospheric reanalysis of the global climate from 
the European Centre for Medium-Range Weather Forecasts (ECMWF). It spans a period from 1950 to 
near present time (Hersbach and Dee, 2016). At the time of this study, data from 2000 to 2017 is 
available. Further data back in time will be released in 2019-20, and the dataset will continue to update 
forward in near real-time. In ERA5, the solar radiation variable has a spatial resolution of 31km 
(0.28125° x 0.28125°) and an hourly temporal frequency. ERA5 uses Integrated Forecasting System 
(IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4DVAR) assimilation 
system. ERA5 has a higher number of pressure levels than ERA-Interim (the previous edition of 
ECMWF reanalysis) and provides more parameters, including hourly estimates of atmospheric, land and 
oceanic climate variables. For more information on ERA5 refer to ECMWF (2018).  

In this study, shortwave surface downward radiation and shortwave surface downward radiation clear-
sky are used from this dataset. In ERA5, the incoming shortwave irradiance is obtained from a Radiative 
Transfer Model (RTM). This model simulates the attenuation in solar radiation caused by the 
atmosphere. Therefore, the quality of the radiation estimates depends on the RTM used. Reanalyses 
generally do not assimilate aerosol, clouds or water vapour data, which increases the uncertainty in the 
estimated surface irradiance (You et al., 2013; Zhao et al., 2013). 

2.3 Ground data 

The ground-measured data used in this study for regression and validation is obtained from the 
Norwegian Institute of Bioeconomy Research (NIBIO) for Norwegian locations and from the Swedish 
Meteorological and Hydrological Institute (SMHI) for Swedish locations. NIBIO and SMHI collect, 
maintain, and provide data from their respective networks of meteorological measurement stations in 
Norway and Sweden, including ground-measured solar radiation. NIBIO and SMHI register hourly-
average GHI by using Kipp and Zonen CMP11 or CMP13 pyranometers. The data is quality controlled 
and the equipment is maintained regularly on a daily or weekly basis (NIBIO, 2018; Persson, 2000). 
The coordinates of the locations, their altitudes and land type are indicated in Appendix A, Tables A1-
A2 and an overview of the site locations is shown in Figure 1. The Swedish locations were only used in 
the testing of regression model, so as to prove its robustness.  

For the analysis, the Norwegian sites were divided into inland and coastal regions by observing the 
proximity to the shoreline. Regions within 30 km of the shoreline were considered as coastal. From the 
31 Norwegian locations studied here, 14 sites were classified as coastal and 17 sites as inland. The 



 
 

locations were also divided into two other groups, where locations lying above 65°N were grouped 
together and locations lying below 65°N were put in another group. In this latitude-based grouping, four 
sites were in the above 65°N group and 27 sites belonged to below 65°N group. For details on this 
classification, refer to appendix A, Table A1. 

 

 

Figure 1: Locations of the Norwegian sites included in the study. To avoid overlapping of names 
some locations are shown with only white dots. 

2.4 Quality Control 

Although the data provided by NIBIO are quality controlled, Urraca et al. (2017a) observed that 
operational and equipment errors exist in NIBIO stations. The first check performed in this study is to 
look at the percentage of missing data. Any year having more than 5% of missing values was discarded 
from the analysis. The second check was performed by using the BSRN Global Network recommended 
quality control (QC) tests, version 2.0 (Long and Dutton, 2010). The BSRN QC test highlights values 
that are extremely rare and physically impossible. Based on this test, years having more than 1% of 
flagged values were removed from the ground data. The third quality control procedure was applied by 
using the QC technique of Urraca et al. (2017a). In this test, CLARA and ERA5 datasets are used to 
check the quality of ground measurements by constructing confidence intervals to detect the operational 
and equipment errors. Following Urraca et al. (2017a), the locations in Norway were divided into two 
sections by grouping locations above 65°N and locations below 65°N. Separate confidence intervals 
were constructed for both groups. After constructing these confidence intervals, the ground data was 
passed through an algorithm to check the data with errors, which appear in the form of flags. Following  
Urraca et al. (2017a) two checks were performed, one to see the operational errors and the other to see 
the equipment errors. After these checks, the years having large number of flags were visually inspected 
and removed from the analysis. For example, Pasvik, Mære, Njøs and Ullensvang were found to have a 
large number of flags from the third QC test, hence these locations were discarded. For more information 
on this quality control procedure, refer to Urraca et al. (2017a). A number of Norwegian locations were 
found to have large percentage of missing data points in years 2006 and 2007, hence these years were 



 
 

rejected from all Norwegian locations. See Appendix B, Table B1 for details of the years not included 
in this study. 

2.5 Random forest regression 

The motivation for adopting a regression model from the recent machine learning literature came from 
the hypothesis that our regression analysis might benefit from using an algorithm, which applies 
different regression functions for different subsets of the predictor data space. Conventional regression 
methods apply the same regression function, parametric or nonparametric, to the whole dataset and 
include all independent variables (predictors) as arguments to this function. More advanced methods 
can, on the other hand, allow more flexibility by judiciously selecting subsets of predictors or tailoring 
the regression function for subsets of the data in a manner that improves the overall performance in the 
regression analysis.  

An example of such an approach is stratified regression analysis (Anderson et al., 1980; Tso and Yau, 
2007), where separate regression models are set up for stratified samples of the independent variables, 
that are observed or hypothesized to exhibit different relations to the dependent variable. The strata can 
often be identified directly from the independent variables as natural groupings of the data. This idea is 
further developed in so-called clusterwise regression or regression clustering (Bagirov et al., 2017; Hsu, 
2015; Späth, 1979), where clusters in the independent data are identified during the adaption of the 
regression model. Both the cluster-specific regression functions and the optimal clustering of the 
independent variable space are learnt iteratively from a training dataset containing paired independent 
and dependent samples. Input data points (vectors of predictor data) may be assigned to a unique cluster, 
or they may be given a fuzzy membership in multiple clusters. These membership values may then be 
used as weights in an ensemble approach where the dependent variable is predicted as a weighted 
average of the clusterwise regression functions. Another approach is the use of regression trees (Tso and 
Yau, 2007; Yu et al., 2010), where the predictor data space is recursively partitioned into finer regions 
using a tree structure, hoping that stronger relationships between independent and dependent variables 
can be formulated in these fine regions or branches of the tree. This may capture relations that are 
difficult to perceive in an explanatory data analysis if structures in the data are not visually apparent. 

RFR is a regression tree method that has become very popular in recent years due to its strong 
performance, ease of implementation and low computational cost. It is an ensemble learning technique 
developed by Leo Breiman (Breiman, 2001), which is based on the construction of a multitude of 
decision trees. Branches of the trees represent particular paths that the input data can traverse, 
determined by threshold tests at the bisections. Leaves represent the output values stored at the end 
points of branching. In RFR, a particular tree is grown in accordance with the realization of a random 
vector in order to introduce variation. The final prediction is based on aggregation over the ensemble of 
trees, referred to as the forest (Segal, 2004). On each of the trees, branches or nodes are made which are 
based on comparing a randomly selected feature to a random threshold. The randomness introduced in 
both variable selection and threshold determination has been shown to result in attractive properties such 
as a controlled variance, resistance to overtraining, and robustness to outliers as well as irrelevant 
variables. Moreover, RFR inherently provides estimates of generalization error and measures of variable 
importance (Bylander, 2002; Siroky, 2009). The process of dividing the input training data over 
branches are repeated until one or a pre-set number of data points are contained in each branch. This 
final node of the tree is referred to as a leaf, and it represents the outcome of that particular regression 
in the whole model. The structure of the forest and hence the RFR behaviour can be controlled by three 
parameters: the number of trees, the number of variables considered in each node (set to m=P/3, where 
P is the total number of predictor variables), and the number of data points that can reside in a leaf (our 
default value is 10). Having a very high number of leaves in the model can cause overfitting, which can 
be overcome by pruning, i.e. limiting the number of data points in each leaf. Increasing the number of 
trees in the forest has two main effects: The computation load will increase. An initial increase in the 



 
 

accuracy of the regression will also be observed, before reaching a saturation point (Luppino et al., 
2018), after which improvements are limited by a strong correlation between the trees (Breiman, 2001). 

2.6 Pre-processing and input data for the model 

The regression algorithm presented in Section 2.5 requires a training dataset for training the model and 
a test dataset to validate the trained model.  In this study, the main inputs to the model are the surface 
solar radiations from CLARA and ERA5. In addition to these, clear sky indices were obtained by using 
shortwave surface radiation downward clear-sky (SWSDC) from ERA5 and GHI from ground 
measurements. By using clear sky indices, the RFR algorithm can take advantage of the sky stratification 
in different conditions. The daytime averages of solar zenith angle were also used as an input as it can 
provide the regression algorithm with the variation in solar elevation and its effects on surface radiations. 
Furthermore, latitudes and altitudes of the locations were used as input to the algorithm. In the training 
phase, 20% of randomly selected data was used from Norwegian locations, while the rest of the 80% 
data and data from Swedish locations were used in testing phase for validation of the model. The size 
of the training data was selected after running multiple runs with different sizes of data. Using more 
than 20% of data did not result in significant improvements. The model was tested with a number of 
trees ranging from 32 to 256 and pruning from 1 to 10 data points per leaf node. After multiple runs, 
128 trees were selected with 10 data points per leaf node. The results presented in the next section are 
for the whole dataset. 

Two main pre-processing procedures were applied in the training data of the regression model. Because 
of problems with convergence of the regression model, the missing data in CLARA and ground 
measurements was treated. First, training data with missing values in the ground measurements were 
discarded. This step eliminates the missing values in the ground data so that the regression model can 
converge, and also reduces the number of missing values in CLARA. This process was not performed 
on the test dataset, as missing values in the ground-measured data used in validation would not affect 
the errors statistics. Following previous studies that have shown that reanalyses can be used to fill the 
gaps in satellite datasets, we replaced in the second step the missing values of CLARA by corresponding 
values from ERA5 (Babar et al., 2018b; Urraca et al., 2017b; Urraca et al., 2018). These pre-processing 
steps enable the regression model to converge although with less training data.  

2.7 Validation 

In order to evaluate the performance of the RFR model, we introduce some common statistical measures. 
We first introduce the deviation (sometimes called error or residual) as the difference between the 
estimated (or predicted) and the observed global horizontal irradiance: 𝛿𝛿 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑒𝑒 −
𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒,𝑒𝑒, where the subscript 𝑖𝑖 is a data point index. 

A widely used measure of dispersion is the root mean square deviation (RMSD), computed from a 
sample of 𝑁𝑁 data points as 
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This measure combines both accuracy and precision. 
 
The bias (or mean deviation) is used in the evaluation to quantify under- or overestimation. The bias is 
a measure of accuracy and is computed from the sample as 
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where 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒����������������  and 𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒��������������� are the sample means of the estimated and the observed GHI 
values, respectively. 

The mean absolute deviation (MAD) is another measure of dispersion, which give less weight to and is 
therefore less sensitive to outliers than the RMSD (and the variance). The sample MAD is computed as 
(Sanchez-Lorenzo et al., 2013; Willmott and Matsuura, 2005)  
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Following Karlsson et al. (2017), the standard deviation of 𝛿𝛿 (STD) is also used in the evaluation. The 
sample STD is computed as 
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In addition, a bias-variance decomposition was used to obtain the optimal configuration of the RFR, 
with respect to the number of trees and the number of leaves. Moreover, R2 and scatter plots are used to 
indicate the spread and overall correlation of the datasets with ground measurements. 

3. Results 

Table 1 compares performance of the models in terms of RMSD, MAD and bias for CLARA, ERA5 
and the proposed RFR model. The RFR model performs better than the models that were used to 
construct it. 

We start by looking at accuracy. For monthly averages of GHI at Norwegian locations, CLARA and 
ERA5 produced a bias of -1.6 Wm-2 and 3.9 Wm-2, respectively. The RFR model delivered a bias of  
−0.2 𝑊𝑊𝑚𝑚−2. The underestimation of the satellite model and the overestimation of the reanalysis is in 
agreement with previous studies (Babar et al., 2018a; Babar et al., 2018b; Urraca et al., 2017b; Urraca 
et al., 2018). The regression model underestimates the GHI, but the magnitude of the bias is reduced 
with 88% with respect to CLARA and with 95% with respect to ERA5, proving that the RFR model 
substantially improves the accuracy. These percentages are, as we will see, somewhat exaggerated when 
compared to seasonal values of the bias. Nonetheless, the seasonal biases are also much improved. The 
underestimation of the RFR model indicates that it weights CLARA higher than ERA5 on the whole, 
although the algorithm clearly adapts to exploit the strengths of either source under different conditions, 
as we will discuss below. 

Regarding the dispersion measures, CLARA and ERA5 gave an MAD of 6.3 Wm-2 and 7.0 Wm-2, 
respectively. The RFR model produced an MAD of 4.3 Wm-2, which is a relative improvement of 32% 
and 39% with respect to CLARA and ERA5. Similarly, an RMSD of 6.6 Wm-2 was observed for the 
RFR model, while the RMSD of CLARA and ERA were 9.6 Wm-2 and 10.2 Wm-2, respectively. The 
relative improvement in the RMSD was 31% and 35%, respectively. From the bias-variance 
decomposition of mean squared error (𝑅𝑅𝑅𝑅𝑀𝑀 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2), the variance can be computed as: 𝑉𝑉𝐵𝐵𝑉𝑉 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 − 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵2. We can use this to use that the variances of CLARA and ERA5 are very similar, and 
the variance of the RFR model is less half of these. This proves that the RFR model also provides a large 
improvement in precision. Table 1 also lists bias, MAD and RMSD for daily averages of GHI that show 
similar patterns as for the monthly averages. 

Table 1 lists the error metrics after geographically grouping the ground measurement sites as explained 
in section 2.3. A brief overview of Table 1 shows that the proposed regression model improved all the 
four groups (above 65°N, below 65°N, coastal and inland). Like CLARA and ERA5, the proposed RFR 



 
 

model performed better at above 65°N than below 65°N. Nevertheless, the accuracy and precision is 
improved in both of these groups.  

Table 1: The RMSD, MAD and bias of the input datasets and the presented model are shown. The error 
metrics for all locations in addition to providing an analysis on below 65°N, above 65°N, coastal and 
inland locations are shown. Numbers without parentheses are monthly averaged errors while those in 
parentheses are daily averaged errors. Best results are indicated in bold. 

 RMSD (Wm-2) MAD (Wm-2) Bias (Wm-2) 
CLARA ERA5 RFR CLARA ERA5 RFR CLARA ERA5 RFR 

NIBIO 
sites 

9.6 
(19.1) 

10.2 
(26.7) 

6.6 
(15.7) 

6.3 
(13.1) 

7.0 
(16.7) 

4.3 
(10.2) 

-1.6 
(-2.0) 

3.9 
(3.9) 

-0.2 
(-0.2) 

Above 
65oN 

9.6 
(16.0) 

10.1 
(26.3) 

6.5 
(13.7) 

6.3 
(9.7) 

6.9 
(14.5) 

4.2 
(8.2) 

-1.6 
(-2.9) 

3.8 
(5.6) 

-0.2 
(-0.1) 

Below 
65oN 

9.7 
(19.5) 

12.7 
(26.8) 

8.0 
(15.9) 

6.5 
(13.6) 

9.4 
(17.3) 

5.4 
(10.5) 

-1.8 
(-1.8) 

5.7 
(3.9) 

0.1 
(-0.1) 

Coastal 9.7 
(16.7) 

10.1 
(26.7) 

6.6 
(14.8) 

6.4 
(11.4) 

7.0 
(16.3) 

4.3 
(9.4) 

-1.7 
(-1.1) 

3.8 
(4.9) 

-0.2 
(0.4) 

Inland 8.2 
(20.8) 

11.2 
(26.7) 

6.6 
(16.4) 

5.7 
(14.4) 

7.9 
(17.5) 

4.6 
(10.8) 

-0.6 
(-2.6) 

4.5 
(3.4) 

0.1 
(-0.4) 

 

In addition, a seasonal error analysis was performed after dividing the yearly time series in groups of 
three months, i.e. February to April in FMA, May to July in MJJ, August to October in ASO, and 
November to January in NDJ. This type of grouping was preferred in this analysis because most 
locations analysed in this study are high latitude locations and at such locations the spread of solar 
radiation density is not as uniform as at other regions closer to the equator. At high latitude locations, 
most of the sun hours occur in summer months and least sun hours occur in winter months. By having 
such a grouping, summer and winter seasons are analysed separately. The seasonal analyses in Table 2 
shows that errors decreased in all of the seasonal groups with the RFR model. However, the largest 
improvements were seen in FMA and MJJ. An analysis of the results of CLARA and ERA5 in NDJ and 
FMA shows that ERA5 performed better than CLARA in this period. This is mainly because of the low 
solar elevation in winter months, which increases errors in satellite-based estimates. However, CLARA 
performed better than ERA5 in MJJ and ASO.  

The RFR model improves the accuracy and precision through all seasons. Nonetheless, the seasonal 
analysis reveals some interesting features: The bias of the RFR model varies over the year. The model 
underestimates in winter and overestimates in summer. However, we see that the biases of CLARA and 
ERA5 also fluctuate, and the RFR model succeeds in maintaining a much lower bias throughout the 
year. We may take this as a sign that the RFR model is flexible and adaptive, and manages to weight the 
input datasets in an appropriate way and combine their strengths to obtain good performance under 
various conditions. When it comes to the dispersion measures, the values of the RFR model follow the 
pattern of CLARA and ERA and largely decrease over the year. The largest relative improvements are 
seen in the FMA quarter, when the RFR model produces a 25% improvement in RMSD and a 39% 
improvement in MDA with respect to ERA5 (the best alternative). The magnitude of the bias reduction 
also over 70% for both models. The seasonal improvements are lower than the improvement in monthly 
averaged values, but the RFR model has much more consistent performance over the year than the input 
datasets. This is evident if one studies and compares the ranges or totals of the seasonal error metrics 
for the three models. 

 



 
 

Table 2: The seasonal error analysis of CLARA, ERA5 and the RFR model are shown here. Major 
improvements occur in the FMA and MJJ quarters. Numbers without parentheses are monthly averaged 
errors while those in parentheses are daily averaged errors. Best results are indicated in bold. 

 RMSD (Wm-2) MAD (Wm-2) Bias (Wm-2) 
FMA MJJ ASO NDJ FMA MJJ ASO NDJ FMA MJJ ASO NDJ 

CLARA 15.3 
(21.4) 

8.8 
(21.9) 

8.9 
(15.8) 

6.9 
(11.0) 

10.4 
(14.7) 

6.7 
(16.5) 

4.9 
(11.0) 

4.4 
(5.3) 

-6.9 
(-8.3) 

1.3 
(1.2) 

1.4 
(1.1) 

0.3 
(-2.3) 

ERA 12.9 
(23.5) 

14.3 
(40.7) 

9.8 
(23.7) 

6.2 
(9.3) 

9.2 
(16.4) 

11.4 
(30.9) 

6.7 
(16.5) 

2.7 
(4.2) 

7.0 
(7.0) 

7.2 
(7.1) 

2.0 
(2.1) 

0.2 
(0.3) 

RFR 
Model 

9.7 
(15.9) 

7.4 
(21.2) 

7.8 
(14.4) 

5.6 
(8.8) 

5.6 
(11.1) 

5.6 
(15.9) 

4.4 
(10.0) 

2.3 
(3.9) 

-1.8 
(-1.7) 

-0.1 
(-0.2) 

1.5 
(1.5) 

0.0 
(0.0) 

 

Finally, the R2 values and the standard deviation (STD) of the Norwegian locations is analysed. Values 
of the coefficient of determination, R2, are computed from the ground-measured and model data. The 
standard deviation is a measure of the spread of the prediction errors around their mean value. Table X 
shows the R2 values and standard deviation for all Norwegian locations, in addition to below 65°N, 
above 65°N, coastal and inland regions. The standard deviation in Table 3 has units of Wm-2, whereas 
R2 has no units. For standard deviation, the smaller the value, the better the model estimates and for R2, 
the larger the value, the better are the estimates. 

Table 3: The R2 and error standard deviation analysis of CLARA, ERA5 and the proposed RFR model 
for Norwegian locations is shown here. The RFR model improves the estimates in all types of 
geographical categories. The units of the standard deviation (STD) is Wm-2 and R2 is unit-less. Best 
results are indicated in bold. 

 NIBIO sites Above 65ºN Below 65ºN Coastal Inland 
R2 STD R2 STD R2 STD R2 STD R2 STD 

CLARA 0.96 23.8 0.96 18.4 0.95 25.0 0.97 21.1 0.95 25.9 

ERA 0.92 26.9 0.89 28.5 0.92 26.7 0.91 27.1 0.92 26.7 

RFR model 0.97 16.0 0.97 15.3 0.97 16.1 0.97 15.3 0.97 16.5 

It can be observed that the proposed regression model improves the solar radiation estimates at all 
Norwegian locations. The largest improvements were observed in location above 65°N, although the 
differences are small. The proposed model had lower standard deviation than CLARA and ERA5 in all 
geographical groups. Note that CLARA performs better in coastal regions than in inland regions, while 
the opposite is true for ERA5. 

3.1 Sky stratification in CLARA, ERA5 and the regression model  

To evaluate the datasets for their performances in different sky conditions, the datasets were divided 
into clear-sky, intermediate-cloudiness and overcast categories. This division was established based on 
the clear-sky index (Kc), which is defined as the ratio of clear-sky GHI to the GHI recorded on the 
ground. Shortwave solar radiation clear-sky downwards (SWSCD) from ERA5 was used to obtain the 
clear-sky index. After calculating clear-sky index, Kc, following Smith et al. (2017) and Widén et al. 
(2017), values higher than 0.8 were considered as indicating a clear-sky day, values of Kc between 0.4 
and 0.8 were considered as intermediate-cloudy, and values below 0.4 were considered as overcast. This 
kind of categorization is quite arbitrary, as days with Kc value of 0.8 or higher are not necessarily days 
with completely clear sky, but a majority of these days are expected to have a clear sky. This analysis is 
used here to roughly divide the sky conditions followed by a rigorous analysis. Any misclassification 
based on the clear sky indices will have similar effects on all the datasets. 

Figures 2-4 show the errors in the datasets under different sky categories. It can be seen from the figures 
and the tables that the RFR model improves the results in the clear-sky and intermediate cloudy 



 
 

categories. However, in the overcast category, CLARA and the RFR model performed similarly besides 
that CLARA had a lower bias. On average, CLARA underestimated radiation in clear and cloudy 
conditions, while an overestimation was observed in overcast conditions. On the contrary, ERA5 
overestimated radiation in cloudy and overcast conditions, while it was underestimated in clear-sky 
condition. ERA5 is reported to have a positive bias towards estimating days as clear sky and a negative 
bias towards estimating overcast days (Babar et al., 2018b). The reason for these biases is the higher 
concentration of total cloud water content in the ERA5 model on rather clear sky days and a lower 
concentration of total cloud water content in cloudy conditions. The underestimation in CLARA in clear 
sky and intermediate-cloudy days is possibly due to the use of an optically thick aerosol climatology – 
in this case the Global Aerosol Data Set/Optical Properties of Aerosols and Cloud (GADS/OPAC) 
climatology (Babar et al., 2018b; Mueller and Träger-Chatterjee, 2014). The RFR model underestimated 
solar radiation in clear sky condition and overestimated radiation in intermediate-cloudy and overcast 
conditions. Nevertheless, large improvements were observed in clear-sky and cloudy conditions. 
However, from a solar energy harvesting point of view, in overcast conditions smaller amounts of energy 
is produced as compared to clear-sky and intermediate-cloudy days. 

      
   

CLARA RMSD (Wm-2) MAD (Wm-2) Bias (Wm-2) 
Clear-sky 21.3 14.4 -7.1 

Intermediate-cloudy 20.0 14.9 -2.8 
Overcast 12.4 8.2 0.7 

Figure 2: CLARA errors under clear-sky, intermediate-cloudy and overcast conditions for Norwegian sites. The 
scatter plots for different sky categories are also shown. The coloured legend bar shows the density of points. 

 

      
   

ERA5 RMSD (Wm-2) MAD (Wm-2) Bias (Wm-2) 
Clear-sky 25.0 15.9 -11.2 

Intermediate-cloudy 28.2 19.4 9.5 
Overcast 28.3 17.2 14.4 

Figure 3: Same as Figure 2, but for ERA5. 

 



 
 

      
   

RFR model RMSD (Wm-2) MAD (Wm-2) Bias (Wm-2) 
Clear-sky 17.4 11.3 -6.6 

Intermediate-cloudy 16.8 11.8 1.7 
Overcast 12.8 8.2 5.3 

Figure 4: Same as Figure 2, but for the RFR model. 

3.2 Testing the regression model on Swedish locations 

In this section, the regression model is tested on five Swedish locations. Data from these locations were 
not used in the training of the model, therefore this analysis tests the robustness of the regression model 
proposed in this study. Table A2 in Appendix A lists the information on the Swedish locations used in 
the analysis. 

Table 3 lists the errors for CLARA, ERA5 and the RFR model for individual Swedish locations. The 
errors for all locations are summarized in the last row of the table. In this analysis, it was found that the 
RFR model improved the solar radiation estimates for Swedish locations as well. The monthly MAD 
for all Swedish locations for CLARA and ERA5 was found to be 6.3 Wm-2 and 5.6 Wm-2, respectively. 
At these locations, the RFR model gave a MAD of 4.5 Wm-2. Similarly, the daily averages were also 
improved in the RFR model. As previously observed for Norwegian locations, CLARA underestimated 
the solar radiation and ERA5 overestimated it for Swedish locations. The proposed RFR model 
underestimated the solar radiation as well, but the magnitude of the bias was smaller than for CLARA 
and ERA5. This analysis shows that the proposed model can at least be used for Swedish locations that 
may have a similar climate in terms of cloud, snow and sunlight conditions.  

Table 3: The RMSD, MAD and Bias of the input datasets and the RFR model for Swedish locations is 
shown here. These locations were not used in the training of the regression model. Numbers without 
parentheses are monthly averaged errors while those in parentheses are daily averaged errors. Best 
results are indicated in bold. 

 RMSD (Wm-2) MAD (Wm-2) Bias (Wm-2) 
CLARA ERA5 RFR CLARA ERA5 RFR CLARA ERA5 RFR 

Kiruna 17.2 
(26.6) 

7.6 
(24.0) 

11.0 
(18.7) 

10.1 
(16.6) 

4.9 
(14.4) 

6.8 
(11.7) 

-7.0 
(-8.2) 

-2.3 
(-2.5) 

-5.9 
(-6.0) 

Luleå 10.6 
(24.4) 

10.4 
(25.1) 

5.6 
(17.5) 

6.9 
(14.9) 

6.6 
(15.3) 

3.8 
(11.0) 

-4.4 
(-4.2) 

5.1 
(4.9) 

-2.1 
(-2.1) 

Umeå 8.3 
(16.4) 

7.1 
(23.0) 

5.5 
(13.5) 

6.1 
(11.5) 

4.4 
(14.2) 

3.8 
(9.1) 

-3.2 
(-3.5) 

2.0 
(2.1) 

-2.6 
(-2.5) 

Stockholm 6.8 
(16.4) 

7.0 
(23.6) 

5.9 
(14.6) 

5.1 
(11.5) 

4.8 
(15.7) 

4.5 
(10.0) 

2.6 
(2.5) 

3.1 
(3.1) 

3.9 
(4.0) 

Göteborg 4.7 
(14.9) 

9.5 
(26.1) 

4.8 
(14.4) 

3.5 
(10.5) 

7.3 
(17.0) 

3.7 
(9.9) 

1.6 
(1.8) 

6.9 
(6.8) 

3.0 
(2.9) 

SMHI 
locations 

10.4 
(20.3) 

8.4 
(24.4) 

6.9 
(15.9) 

6.3 
(13.0) 

5.6 
(15.3) 

4.5 
(10.3) 

-2.1 
(-2.3) 

2.9 
(2.9) 

-0.8 
(-0.7) 

 



 
 

4 Conclusion 

Studies have shown that satellite estimation of solar radiation provide reasonable estimates and 
reanalyses can be used to fill the gaps when satellite datasets are not available or they contain missing 
data. It has also been observed that at high latitude locations there are a larger number of missing values 
in satellite-derived data, as in CLARA. Some previous studies have reported that prediction errors 
increase with latitude, so the available datasets have a systematic bias that grows with latitude. This 
study proposes a novel method to construct an improved dataset by combining a surface solar radiation 
dataset based on satellite measurements (CLARA-A2) and a newly published global reanalysis dataset 
(ERA5). The assumption used in this study is that the underestimation in satellite models and the 
overestimation in reanalyses can be largely cancelled and overcome if they are fused in a regression 
model to improve the estimates of surface solar radiation. The proposed regression model is constructed 
by using the random forest regression method, which is a machine learning algorithm based on 
regression trees and ensemble learning.  

It is seen that on monthly and daily averages of radiation, the regression model provided more accurate 
estimations than CLARA and ERA5. On monthly averages of surface solar radiation for Norwegian 
locations, CLARA provided an MAD of 6.3 Wm-2 while ERA5 provided an MAD of 7.0 Wm-2. The 
regression model reduced the error to a MAD of 4.3 Wm-2. Similarly, on daily averages, CLARA and 
ERA5 provided MADs of 13.1 Wm-2 and 16.7 Wm-2, respectively, while the regression model gave a 
MAD of 10.2 Wm-2. Similar improvements were seen in RMSE values, proving that the RFR model has 
significantly improved precision with respect to the input datasets. In addition the RFR model was seen 
to provide large reductions in both annual and seasonal bias, showing that the accuracy improves as 
much as the precision.  

A discussion of the seasonal analysis concluded that the RFR model succeeds in combining the input 
datasets in an adaptive fashion, such that the strengths of both models are exploited to produce 
consistently high performance under all conditions and throughout the whole year. Moreover, from a 
geographical analysis of errors it was observed that large improvements were obtained in locations 
above 65°N and coastal regions. A seasonal error analysis is performed and it is observed that the 
regression model provided better estimates than CLARA and ERA5 in all seasons of the year with large 
improvements in the period of November to April. A sky stratification analysis was performed on 
Norwegian locations to assess the datasets in different sky conditions. It was observed that the regression 
model improved solar radiation estimates in all sky condition, especially in clear-sky and intermediate-
cloudy conditions. Additionally, in terms of standard deviation, large improvements were found inland 
and below 65°N. The proposed model was also tested on Swedish locations, that were not included in 
the training set, and very similar improvements were observed.  

Overall, the regression model provides an improved alternative to the available reanalyses and satellite 
based estimates of surface solar radiation. In addition to an improved dataset, this study also highlights 
the important role of machine learning algorithms in the production of sophisticated databases for high 
latitude locations. 

 

 

 

 

 

 

 



 
 

Appendix A 

Table A1 

Lists of Norwegian locations with their coordinates, altitudes and land type. 

 Station Latitude Longitude Altitude Land type 
1 Holt 69.65 18.91 12 Coastal 
2 Sortland 68.65 15.28 14 Coastal 
3 Vågønes 67.28 14.45 26 Coastal 
4 Tjøtta 65.83 12.43 10 Coastal 
5 Skogmo 64.51 12.02 32 Inland 
6 Rissa 63.59 9.97 23 Coastal 
7 Kvithamar 63.49 10.88 28 Inland 
8 Skjetlein 63.34 10.3 44 Coastal 
9 Surnadal 62.98 8.69 5 Inland 
10 Tingvoll 62.91 8.19 23 Coastal 
11 Fåvang 61.46 10.19 184 Inland 
12 Fureneset 61.29 5.04 12 Coastal 
13 Gausdal 61.22 10.26 375 Inland 
14 Løken 61.12 9.06 527 Inland 
15 Ilseng 60.8 11.2 182 Inland 
16 Kise 60.77 10.81 129 Inland 
17 Apelsvoll 60.7 10.87 262 Inland 
18 Hønefoss 60.14 10.27 126 Inland 
19 Årnes 60.13 11.39 162 Inland 
20 Etne 59.66 5.95 8 Inland 
21 Ås 59.66 10.78 94 Inland 
22 Bø 59.42 9.03 105 Inland 
23 Rakkestad 59.39 11.39 102 Inland 
24 Ramnes 59.38 10.24 39 Coastal 
25 Tomb 59.32 10.81 12 Coastal 
26 Gjerpen 59.23 9.58 41 Coastal 
27 Hjelmeland 59.23 6.15 43 Inland 
28 Tjølling 59.05 10.13 19 Coastal 
29 Særheim 58.76 5.65 90 Coastal 
30 Landvik 58.34 8.52 10 Coastal 
31 Lyngdal 58.13 7.05 4 Inland 

Table A2  
Lists of Swedish locations with their coordinates, altitudes and land type. 

 Station Latitude Longitude Altitude Land type 
1 Kiruna 67.83 20.43 408 Inland 
2 Luleå 65.55 22.13 17 Coastal 
3 Umeå 63.82 20.25 10 Coastal 
4 Stockholm 59.35 18.07 30 Coastal 
5 Goteborg 57.70 12.00 5 Coastal 



 
 

Appendix B 

Table B1 

The following years are not included in the study. 

 

 
Station 

Years having more than 5% missing 
data 

Years failing 
Long and Dutton 
test 

Years having 
operational error 
(snow/frost/ 
shading/soiling) 

Years 
having 
equipment 
error 

1 Holt 2001,2002,2006,2007,2008,2010 2013  2000 
2 Sortland 2000,2006,2007,2010,2013    
3 Vågønes 2006,2007  2002  
4 

Tjøtta 2006,2007 
  2008, 

2012 
5 

Skogmo 2006,2007,2008,2015 
 2011 2013, 

2014 
6 Rissa 2006,2007 2000   
7 Kvithamar 2006,2007,2013    
8 Skjetlein 2006,2007 2000   
9 Surnadal 2006,2007,2014    
10 Tingvoll 2006,2007,2012    
11 Fåvang 2006,2007   2001 
12 Fureneset 2006,2007,2011,2012    
13 Gausdal 2006,2007,2009   2015 
14 Løken 2006,2007    
15 Ilseng 2006,2007,2004 2000 2009  
16 Kise 2002,2006,2007,2015  2013  
17 Apelsvoll 2006,2007  2002,2003,2004 2009 
18 Hønefoss 2006,2007 2000   
19 Årnes 2006,2007    
20 Etne 2006,2007  2004,2012  
21 Ås 2006,2007    
22 Bø 2000,2006,2007    
23 Rakkestad 2006,2007    
24 Ramnes 2006,2007  2009  
25 Tomb 2006,2007 2009   
26 Gjerpen 2006,2007,2015    
27 

Hjelmeland 2006,2007 
  2002, 

2015 
28 

Tjølling 2006,2007,2008,2014 
 2012,2015 2009, 

2010 
29 Særheim 2000,2006,2007    
30 

Landvik 2006,2007 
 2005,2010,2014,

2015 
 

31 Lyngdal 2006,2007 2001   
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