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Abstract

There has been a growing interest in accurately estimating surface solar radiation at high
latitude locations. From a Scandinavian perspective, the installed solar photovoltaic share is
increasing, primarily because of the declining cost of these systems, the introduction of various
economic incentives and societal push to generate one’s own clean power. In the coming years,
it is anticipated that the share of photovoltaics in the energy mix of Scandinavia will increase

substantially.

One of the main deterrent in an accurate estimation of surface solar radiation is the limited
coverage of geostationary satellites. These satellites, which are widely used globally to estimate
solar radiation, do not provide coverage above 65°N. Alternatively, polar orbiting satellites can
be used to estimate surface solar radiation but a low sensing frequency and difficulties in
differentiating clouds from snow-covered surfaces result in a large number of missing values
in the data. Moreover, reanalyses also provide surface solar radiation estimates and in recent
years, it is seen that the accuracy of reanalyses with respect surface solar radiation is getting
better.

This thesis starts with providing an evaluation and comparative analyses of different solar
radiation datasets for high latitude locations. First, an empirical model based on intra-day
temperature differences and relative humidity is proposed. This model can be used at
meteorological stations that do not have dedicated equipment to estimate surface solar radiation.
Then, a comparative analysis is performed for Norwegian locations in which four different
models were evaluated. It was found that satellite databases are more accurate than reanalyses
and empirical models. However, satellite databases were found to underestimate solar radiation
while reanalyses were found to overestimate it. After this, a study was performed to evaluate
the CLARA-AL and CLARA-A2 polar orbiting satellite based datasets. It was found that the
CLARA-A2 dataset has less number of missing values but mostly the increase in data is at
snow-covered surfaces. The data in CLARA-A2 has higher accuracy than CLARA-A1L, but at
these new data points which were previously not available in CLARA-A1, the errors are very
large.

Finally, a novel regression-based solar radiation dataset is proposed here that uses one polar
orbiting satellite dataset (CLARA-A2), one global reanalysis (ERA5), and auxiliary data based
on Sun-Earth geometric relationships. The proposed dataset has better accuracy and precision
than CLARA-A2 and ERADS datasets.
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1. Introduction

As the human population is increasing, so is the global energy requirement. The increase in the
energy requirement has exerted an escalating pressure on the climate in the form of emitted
greenhouse gases leading to global warming. In the past 200 years, the production of heat and
electric energy has been mainly from fossil-based systems. Due to the increasing population
and economic development, the energy consumption is increasing even though the amount of
energy required to produce one unit of income has decreased because of the advancements in
technology and innovation. To mitigate the effects of climate change, nowadays there is a global
drive to move towards cleaner and safer renewable energy systems. In this regard, the solar
photovoltaic (PV) systems that generate electric energy based on irradiance from the Sun are
increasing rapidly as well. In 2017, solar PV installations generated over 460 TWh of energy,
which represents around 2% of global power output. There has been a growing interest in solar
PV in the Nordic regions, but due to high latitude and frequent snow covers, the estimation of
surface solar radiation from remote sensing techniques is not straightforward in these regions.
The motivation behind this thesis lies in assessing the existing methods to estimate surface solar
radiation in high latitudes and to provide improvement strategies for a better estimation of solar
radiation in these regions. The lack of published research in this area represents a significant
knowledge gap; the outcome of this thesis and appended papers is intended to give the scientists
and policy makers a better understanding of surface solar radiation at high latitudes. This thesis
starts with the assessment of available solar radiation sources like satellite and reanalysis, and
concludes by proposing a regression method that significantly improves the estimated surface

solar radiation.

1.1 Aim of the thesis

The central aim of this thesis is to analyze existing models that estimate surface solar radiation
and to propose methods that can improve the current models for high-latitude locations.
Estimating surface solar radiation from satellites is a well-developed and widely used method.
On the other hand, reanalyses also provide surface solar radiation in addition to a number of
other meteorological variables. A Reanalysis is based on data assimilation of observations and
model-based forecasts, to estimate weather conditions. Solar radiation estimates from
reanalyses are not as accurate as those obtained from satellite methods, but some recent studies

have shown that the solar radiation estimates from reanalysis are improving and these can be



used to fill the missing values in satellite databases. This thesis has the following specific aims,

which are addressed in the appended papers:

e Developing a mathematical model to estimate surface solar radiation by using
meteorological variables (Paper 1).

e Analyzing the improvements in the recent polar-orbiting-satellite based datasets (Paper
).

e Analyzing the available solar-radiation databases for high-latitude locations (Paper
I").

e Developing a regression model to improve the analyzed datasets (Paper V).

1.2 Overview of the thesis and appended papers

This thesis is structured in the following manner. Section 2 provides a general background of
solar energy from a global and Norwegian perspective. Then, Section 3 explains basic Earth-
Sun astronomical relationships that were used in the research and gives an overview of available
solar radiation estimation technologies and resources. Section 4 explains the datasets used in
the research, quality controls applied and validation metrics used to assess the datasets. Section
5 gives an overview of the previous research carried out on the estimation of solar radiation and
presents the available knowledge gaps that this thesis aims to address. Section 6 presents the
results from the research carried out. Finally, Section 7 provides a discussion on the results and

future activities.

This thesis is composed of four papers that deal with the estimated solar radiation at high
latitude locations. The results of this thesis are drawn from the appended papers, which are

briefly presented below:

e Paper | presents a model that is based on the Hargreaves and Samani’s maximum- and
minimum-temperature difference model. In the proposed model, relative humidity was
also used. The model was implemented and tested on eight locations in Norway for 10
years of data. Like other temperature difference models, this model had two distinct
coefficients; one for coastal regions and another for inland regions. The proposed model
slightly improved the Hargreaves and Samani model that it is based on. Some
shortcomings of this model include having a highest temporal resolution of daily
averages and inaccuracies introduced by having large temperature differences in clears
sky-days. Importantly, as this model required in-situ measurements of temperatures and



relative humidity, its spatial resolution was limited to the locations where these
meteorological variables are measured.

Paper Il presents a comparative analysis of CLARA-A1 and CLARA-A2 datasets for
high latitude regions. The CLARA datasets are published by CM-SAF and these are
constructed by using AVHRR instruments on-board the polar orbiting satellites. It was
earlier found by some studies that satellite methods have high errors on snow-covered
surfaces, which are frequent in high latitude regions. Because of this reason, CLARA
datasets do not provide coverage on snow-covered regions. In this study, it was found
that CLARA-AZ2 has less number of missing points than CLARA-AL. However, the new
data points that were not available in CLARA-AL had very high errors. Overall, it was
found that CLARA-A2 is an improved data set, but it should be properly evaluated
before using in regions that receive frequent snow cover.

Paper Il In this study, four dataset are compared and assessed for high latitude
locations. Two of these datasets, CLARA-A2 and SARAH-2 are based on satellite
models while the other two are reanalyses; a global reanalysis ERA5 and a regional
reanalysis ASRV2. In this study, it was found that at location above 65°N, CLARA-A2
provided better estimates then other datasets while below 65°N SARAH-2 provided
better estimates. It should be noted that SARAH-2 does not provide data above 65°N.
However, it was observed that for monthly averages of solar radiation, ERA5 provided
comparable quality of estimates to CLARA-A2 and SARAH. ASR had the highest
errors at all locations in this study. Furthermore, the cloud placement accuracy of ERA5
was analyzed and it was found that these errors are possibly due to overestimation of
TCWC (total cloud water content) in intermediate-cloudy and overcast categories and
an underestimation in clear-sky category. Nevertheless, ERA5 reanalysis can be used as
a substitute to satellite databases for gap-filling procedures as the satellite datasets have
missing values.

Paper IV In this paper the knowledge gained from the previous papers is used to
construct a novel data set by using an advanced regression method. In the previous
studies, it was seen that generally satellite datasets underestimate solar radiations while
reanalyses overestimate it. The hypothesis for this work is that combining two dataset
with a regression model, where one dataset is having underestimation (Satellite based
dataset) and other having overestimation (Reanalysis) can improve the estimated
surface solar radiation. Random forest regression method was used with surface solar
radiation estimates from ERA5 and CLARA-A2 for 31 locations in Norway and 16

3



years of data. In addition to surface solar radiation, solar azimuth angle, latitude, altitude
and clear-sky index were used in the regression. The proposed dataset was improved on
averages of daily, monthly, seasonal, and different-sky conditions. The regression
model was tested on five locations from Sweden, which were not used in the training of
the regression model. Almost the same degree of improvements was observed in
Swedish locations as compared to the Norwegian locations that were used in the

training.



2. Background

This chapter presents the background of the research undertaken in this thesis. Section 2.1
presents a historical overview on energy and climate change. In Section 2.2, the global energy
demand and the available infrastructure are discussed. Then Section 2.3 gives an overview of
the Norwegian energy infrastructure. Section 2.4 presents a global perspective on solar energy.
Finally, in Section 2.5, the global solar energy perspective of Norway and current situation

regarding solar installations are analyzed.
2.1 Historical overview of energy and climate change

Energy has played a central role in the evolution and prosperity of human societies. One of the
first milestones of human evolution was the discovery of fire. This can be considered as the
starting point of using energy for converting materials from one form to another, as in cooking
food, refining metals or making pottery (1). Around 2500 years ago, humans started using
energy from wind and water by inventing mills that convert energy from these sources to a
rotary motion. One of the first documented evidences of using windmills was in Persia in the
tenth century (2). This invention made it possible to grind edibles and produce other valuable
resources. These pre-industrial advancements required a modest supply of energy, which was
in turn restricted by the population growth and land availability (3). Apparently, the pre-
industrial era can be considered as a hundred percent renewable based system, in which
biomass, water and wind sources were the main drivers. This can be seen by observing the
historical temperature anomalies in Figure 2.1, which shows a gradual increase in global

temperatures after the industrial revolution.



Global Land and Ocean Temperature Anomalies, July
1820-2018 Trend +0.07*C/Decade
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Figure 2.1: Temperature anomalies for 1880 to 2018 with respect to 20" century average. In
this period, there is a positive trend of 0.07° C per decade. A sharp rise can be observed after
the industrial revolution* (4).

This period was followed by the Industrial revolution in Britain from 1760 to 1830. Industrial
revolution brought major transformation in the socio-economic aspects, which on one hand
brought an evolution in the living standards, but on the other hand, came with an increase in the
emitted greenhouse gases (GHG). The turning point of the industrial revolution was the
invention of steam engine, which unlike the cleaner wind and water mills, used fossil fuels. One
of the earliest evidences of global warming caused by GHG was pointed out by Prof. Svante
Arrhenius in 1896 (5). From the start of the 20" century, many scientists believed that carbon
dioxide is the main cause for the rise in global temperatures but these studies lacked a concrete
evidence (6). However, in 1985 World Climate Program published a report that pointed out the
temperature increase by using powerful computers and sophisticated climate models (7).
Meanwhile in Antarctica, research teams from France and Soviet Union performed ice drills
and showed that both temperatures and carbon dioxide concentration have increased in the past
ice ages. These studies developed a relation between temperature rise and carbon dioxide
concentration in the atmosphere, however, this cause and effect relation between GHG and
global temperature may be different from today (8). Following these and other researches, in

*NOAA National Centers for Environmental
Information — accessed 10.11.2018
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1988 World Meteorological Organization (WMO) and United Nations (UN) established
Intergovernmental Panel on Climate Change (IPCC) that was tasked with publishing climate
change reports.

2.2 Current energy needs and infrastructures

In the history of human evolution, energy has played a major role. As humans evolved and
progressed, there was a tremendous increase in the energy requirements of the world. The
energy demands are still increasing every year and in 2016, the total primary energy supply
(TPES) of the world was 13 761.4 Mtoe (million tons of oil equivalent) (9) . TPES is defined
as the total supply of energy that is consumed locally. Figure 2.2 (a) shows an overview of the
energy supplies for 2016. Moreover, 2017 saw an enormous increase in the global energy
consumption, which grew at a rate of 2.2% as compared to 1.1% in 2016. Such an accelerated
increase in the demands for energy consumption brings an increase in the emitted GHG. In the
same period, the carbon emissions grew by 1.6% (10). The main sources of GHG emission are
associated with production of electricity, heating and transport, which accounted for 49% of the
total emissions in 2017. In the meantime, renewable energy share grew by 17%, higher than the
last 10 years average (10). Even though there was an increase in the share of renewable energy,
a decrease in the GHG emission was not observed because of the increase in total energy
demands, which is illustrated in Figure 2.2 (b).

Renewables
13.7%

Solar, wind,
gaoth., tide
1.6%
(@*
7

*Based on IEA data from Renewables information: overview ©
OECD/IEA [IEA 2018], www.iea.org/statistics, License:
Www.iea.org/t&c
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World primary energy consumption grew by 2.2% in 2017, up from 1.2% in 2016 and the highest since 2013. Growth was below average in Asia Pacific, the Middle East
and S. & Cent. America but above average in other regions. All fuels except coal and hydroelectricity grew at above-average rates. Natural gas provided the largest
increment to energy consumption at 83 million tonnes of oil equivalent (mtos), followed by renewable power (89 mtoe) and oil (65 mtos).

(b)

Figure 2.2: (a) The total primary energy supply (TPES) for 2016. The major portion of the
energy supply is from fossil-fuel based systems, while there is a constant increase in the
renewable energy sources. (b) The increase in world consumption in terms of different
resources from 1992 to 2017* (11).

2.3 Energy Overview of Norway

The Norwegian energy supply has one of the highest share of renewable energy in the world.
Hydropower provides the backbone for the energy infrastructure in Norway, providing 96% of
the electricity and a large reservoir capacity of 85 TWh (half of the total in Europe). Other
renewables account for a mere 2% of the generated electricity. Among the IEA member
countries, Norway has the fifth lowest share of fossil fuels in TPES, although this has increased
by 10% in the past ten years. Oil is one of the biggest industries in Norway and it has enabled
Norway not only to be independent from energy imports but also made it one of the major
exporters of energy. However, Norway has to rely on importing electricity periodically from
the Nordic market to meet its peak demands. Norway has a unique energy overview; on one

8
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hand most of the energy generated in the country comes from hydro power, and on the other
hand Norway is Europe’s largest exporters of Oil (9). Figure 2.3 shows the overview of energy

production of Norway.
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Figure 2.3: Energy production overview of Norway. TPES represent the total primary energy
supply, which is defined as the total supply of energy that is consumed locally, expressed in
million tons of oil equivalent. Total final consumption (TFC) represents the final consumption

by the end user in the form of electricity, heat, gas, oil etc.* (9).

The total final consumption (TFC), which is defined as the final consumption by the end user
in the form of electricity, heat, gas, oil etc., has been around 20 Mtoe over the past 15 years. As
depicted in Figure 2.3, industry is the largest energy-consuming sector with 40% of the TFC
share. This is followed by transport, which accounts for 24% of TFC. Norway has been very
progressive towards climate change mitigation and sustainability, and in this regard, the
government plans to reduce emissions by 30% from 1990 to 2020, and become carbon neutral
by 2030. By 2050, the state targets include to become a low emission society. Although Norway
still has large shares of hydropower in the electricity mix, the oil industry and transport sector
use fossil fuels that contribute the most to the carbon emissions. One of the primary targets to
become a low emission society would be to use renewable sources in these sectors. The
transport sector is very progressive where the government has implemented strong incentives

for electric vehicles (9).

9
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2.4 A Global perspective on Solar Energy

The Paris Agreement signed on December 2015, limits countries intent to the global warming
to below 2°C. To reach this target, solar energy will be one of the most important resources.
Existing fossil-based energy systems can be replaced by more cleaner solar energy systems,
meanwhile future energy needs can be fulfilled by using solar and other renewables. In 2016,
renewable energy accounted for 18.2% of global TFC (10.4% of these systems were modern
renewable, including wind turbine, solar photovoltaic (PV) etc.). A record increase in the
installed PV capacity was observed in 2017 with 98 GW of PV additions, almost twice of the
wind power additions and more net capacity than coal, natural gas, and nuclear power
combined. The total global capacity of solar based energy systems reached 402 GW by the end
of 2017 (12). These increments in installed capacity are largely due to the subsidies provided
by the governments and the declining prices of PV.
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Figure 2.4: The increase in the installed PV capacity in the world from 2007 to 2017. 2017 saw
a record addition of 98 GW and total installed capacity reaching 402 GW (12).

Even though there has been an exponential rise in PV and other renewable sources in the world,
the demand for energy has also been increasing. To mitigate the effects of increasing energy
requirements, and the consequent increase in the carbon emissions, renewable sources needs to

increase at least six times faster if the goals set by the Paris Agreement are to be met (13).
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2.5 Solar energy in Norway

There is a common misconception about the feasibility of harvesting solar energy in the Nordic
regions. Unlike equatorial regions that have a daily regular variation in received solar radiation,
high latitude locations have a very different variation; as in these regions, midnight Sun occurs
in the summer months with 24 hours of sunlight and polar nights occur in the winter when the
Sun remains below the horizon. Because of these characteristics, the distribution of solar
radiation is skewed towards the summer months. In high latitude regions, solar energy-based
systems become viable only in conjunction with other sources that can provide back up in
winter months. In the summer months, the Sun lie’s above the horizon for a long time but PV
systems become feasible only with at least one axis tracking. By employing a tracking system,
the annual solar energy yields in Norway are comparable to that of Germany, which is the
industry leader in PV installation.

In Norway, the penetration of solar PV or thermal has not been very large but recent years saw
an exponential rise in the installed solar PV systems. Figure 2.5 shows the increase in the

installed PV capacity from 2012 to 2017 in Norway.
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Figure 2.5: Installed capacity of solar PV in Norway. The growth in the PV installed capacity
have been exponential in Norway with 2017 having the highest growth* (14).

The recent increase in the installed capacities of solar PV systems in Norway is also
substantially due to the subsidies provided by government and the declining costs of these

systems. A determining factor for the relative slow growth of solar systems is the price of
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electricity in Norway, which is considerably lower than in central and southern Europe. A low

electricity price means that it is harder for solar systems to compete.
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3. Solar radiation

The technical and economic performance of solar thermal or solar PV systems depends on the
total amount of solar radiation received on their exposed surface. Such estimations for specific
locations give an insight into the pre-feasibility of these energy systems. This section describes
the Earth-Sun astronomical relationships from the perspective of harnessing solar energy.
Section 3.1 provides an overview of the potential of solar energy on the surface of Earth and
different astronomical variables that affects it. Section 3.2 illustrates the path of the Sun for
high latitude locations and demonstrates the usefulness of optimal angles and tracking strategies
that increase the energy generation from solar energy systems. In the end, Section 3.3 gives an

overview on the available solar radiation databases for Norwegian locations.

3.1 Harnessing energy from the Sun

The amount of energy from the Sun striking the surface of the Earth is very large. About 1.75
x 10° TW of solar power constantly strikes the Earth’s surface. Even after considering a 40%
loss from atmospheric cloud cover at any time, 1.05 x 10° TW is available on Earth’s surface
at any time. By using only 1% of the surface of Earth and converting it with a 20% efficiency,
it would provide a resource base of 210 TW. The total global energy needs for 2050 are
projected to be approximately 25-30 TW (15). These figures show that with a little effort most
of the future energy demands could be met by using a clean and GHG emission free resource.
However, there are a few hindrances in achieving such goals. Despite the fact that solar resource
is abundant, one of its limitations is that it has a low flux density, which requires very large
areas to be used as collectors. The Earth has a surface area of 510 million km?, 1% of this
surface is still a gigantic area. The second barrier is that most of the radiation falls on remote
locations, which are far away from the human settlements. Equatorial regions between 25°N
and 25°S receive large amounts of solar radiation on horizontal planes but most of these areas
are desert regions (15). High temperatures, dust, lower availability of water and low population
make these areas unfavorable for large installations. Some form of transmission infrastructure,
which is expensive, must be developed prior to large installations in these areas (15). A viable
solution can be achieved by installing medium and large power plants along with residential
rooftop systems. Extreme northern and southern areas also receive adequate amount of
radiation, but the average sun light duration is not constant throughout the year, as in equatorial
regions. In these regions, tracking systems can enhance the generated energy production. The

third deterrent is the need for storage. Solar energy is intermittent in nature and to be effective,
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it needs a storage system that can provide backup when the Sun is below the horizon.
Alternative methods are being developed that propose hybrid systems that employ solar, wind,
hydro, biomass, and energy storage to flat out the intermittency (15).

3.1.1 Extraterrestrial radiation

The Sun emits tremendous amounts of energy while maintaining a surface temperature of 5760
K. To sustain all kinds of life, the Earth uses this energy in various forms, e.g. photosynthesis,
wind circulation, water circulation, vitamin D, and so forth. Sun emits its energy in the form of
electromagnetic radiation mostly in the range of 0.15 um to 120 um. This bandwidth covers
visible spectrum in addition to ultraviolet and a part of infrared spectrums. The solar radiation
received just outside the Earth’s atmosphere is called extraterrestrial radiation (16). The value
of extraterrestrial radiation changes throughout the year because of the changing distance
between Sun and Earth (5.9% variation over a year). The variation in distance occurs because
the Earth makes an elliptical orbit around the Sun. In solar radiation studies, a constant value
of extraterrestrial radiation that is averaged over a year, called solar constant, is taken as 1361.1
Wm2 (17). Figure 3.1 shows the daily average extraterrestrial irradiance on a horizontal surface

for Tromsg, Norway over a year (adapted from Paper ).
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Figure 3.1: Daily average extraterrestrial radiation for Tromsg. The extraterrestrial radiation is

zero in winter months because the Sun remains below the horizon (adapted from Paper 1).
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3.1.2 Solar radiation at the surface of Earth

To reach the surface of the Earth, the extraterrestrial radiation travels through the atmosphere.

About 30% of the extraterrestrial radiation is reflected back by the atmosphere and 16% is

absorbed by atmospheric gases (16). While passing through the atmosphere, solar radiation

interacts with atmospheric gases like carbon dioxide, ozone and water vapors that cause

absorption and scattering at certain wavelengths. Figure 3.2 depicts the spectral distribution of

solar radiation outside the atmosphere, on the surface of Earth and the absorption caused by the

atmospheric gases. Table 3.1 lists the distribution of energy in the solar spectrum on the surface

of the Earth. It can be seen from Figure 3.2 and Table 3.1 that most of the energy in the terrestrial

solar radiation lies in the visible and infrared bandwidths.

Table 3.1: Distribution of spectral contents of the Sun on the surface of Earth (16)

Type of radiation Range of wavelengths (nm) | % of energy carried
Ultraviolet 150 to 380 7.6

Visible 380 to 720 48.4

Infrared 720 to 4000 43

Other >4000 1

Solar Radiation Spectrum
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Figure 3.2: The spectral irradiance of the Sun is shown for extraterrestrial and terrestrial

radiation. The absorption caused by different atmospheric gases is also indicated (18).
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When the solar radiation passes through the Earth’s atmosphere or airmass, the direct optical
path length that sunlight travel through the atmosphere determines the attenuation caused by
scattering or absorption by the atmosphere (16). Airmass can be calculated by Equation 1:

1
M =m, (D

where 0 is the angle that rays of the Sun make with the vertical at any point on the surface of
the Earth. The radiation outside the atmosphere (extraterrestrial radiation) is referred to as AMO.
In equatorial or tropical regions, the Sun is at the highest position at solar-noon and the solar
radiation has to travel the least amount of distance to reach the surface. This is type of airmass
is called AM1. However, at high latitude locations, the elevation of the Sun remains very low
and the solar radiation has to travel relatively longer through the atmosphere when compared
to equatorial regions. 6, the angle the sunrays make with the vertical can be related to the solar
elevation or altitude angle. It is the angular height of the Sun in the sky measured from the

horizontal (19). Solar elevation is expressed by the following equation:
a=90+¢ -6, (2)

where, a is the solar elevation, ¢ is the latitude of a location and & is the declination angle
(explained later). As this angle determines how much the sunlight has to travel in the
atmosphere before striking the surface of the Earth, it plays a critical role in determining the

total production from solar collectors and their optimal angles.

Tromso, Norway Tengger Desert Solar Park, China

80

[S] . @
=1 =] =1

sun elevation, degrees
)
[=]

sun elevation, degrees
[=]

IS
o

&
=]

L L L L L L L L 80 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000  8OOD o] 1000 2000 3000 4000 5000 6000 7OOO 8OOD

hour number hour number

-50

Figure 3.3: Solar elevations for Tromsg, Norway and Tengger Desert Solar Park, China
(biggest solar photovoltaic installation in the world). Tromsg lies at 69°N latitude while Tengger
Solar Park lies at 38°N latitude. It can be seen that the highest elevation on summer solstice is
43°in Tromsg while it is 76° at Tengger Solar Park. X-axis shows the number of hours in a year
(8760 for non-leap years)
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Figure 3.3 shows a comparison of solar elevations between Tromsg, Norway and Tengger
Desert Solar Park (located in Zhongwei, Ningxia, China). Tengger Desert Solar Park is the
largest solar PV installation in the world with a total peak power output of 1500 MW (20). The
highest solar elevation occurs in summer solstice (21 June), which in Tromsg is low at 43° while
at Tengger Desert Solar Park it is 76°. The negative values in Figure 3.3 show that the Sun is
below the horizon. Another interesting point to note is even though the solar elevation is higher
in Tengger Desert Solar Park, on 21% of June the sunsets while in Tromsg, even after having a
low solar elevation, the Sun remains above the horizon. This indicates that despite having low
solar elevation, the high latitude locations receive more solar radiation in summer months

mainly because the Sun remains above the horizon for relatively longer periods.

3.1.3 Declination angle
The declination angle is defined as the angle between the equator and a line drawn from the
center of the Earth to the center of the Sun (16, 19). Declination angle is independent of latitude
and longitude, and it is responsible for changes in seasons. The maximum change in declination
angle is less than 0.5°, which occurs at the equinoxes and for this reason a constant value is

usually taken for a day (21). Declination angle is expressed by the following equation.

§ = 23.34 x sin |22 (284 +n)|, (3)

where 6 is the declination angle and n is the day number (from 1 to 365). Figure 3.4 illustrates

a plot of declination over a year.
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Variation in declination angle over a year
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Figure 3.4: The variation in declination angle over a year is shown here. The declination angle
changes from -23.45° (December solstice) to 23.45° (June solstice), while twice a year the value
of declination angle becomes zero at equinoxes (16). The x-axis represents the day number of

the year ranging from 1 to 365 for non-leap years.

3.1.4 Equation of time
A solar day, not necessarily 24 hours, is based on one full revolution of the Earth around its
axis. The solar day varies in length throughout the year because the Earth sweeps unequal areas
on the elliptic plane as it revolves around the Sun because the Earth’s axis is tilted with respect
to the elliptic plane (21). The inconsistency caused by such a revolution is called equation of
time. As much as 16.45 minutes of variation can occur because of the eccentricity of Earth’s
orbit (19, 22). The equation of time is given by:

EoT = 9.87 X sin(2B) — 7.53 X cos(B) — 1.5 x sin(B), 4)
where B is given by,

B—36O(d 81) 5

where d is the day number (from 1 to 365). The equation of time is shown graphically in Figure
3.5.
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Graph of equation of time
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Figure 3.5: Graphical illustration of equation of time. The change in solar time occurs because
of the eccentricity of Earth’s orbit. A maximum of 16.45 minutes of variation occurs in a year.

The x-axis represents the day number of the year ranging from 1 to 365 for non-leap years.

3.2 Path of the Sun at high latitude locations

The path of the Sun relative to an observer changes significantly with latitude. Figure 3.6 shows
the path of the Sun in Tromsg for solstices (when the Sun is farthest away from the Earth on
June 21 and December 21) and equinoxes (when the Sun is exactly above the equator on March
21 and September 23). For Tromsg, the path of the Sun for December 21 is not visible because
the Sun lies below the horizon; however, on June 21 the Sun remains above the horizon for 24
hours, hence a 360° visibility of the Sun. Nevertheless, comparing this Sun path to the one
shown for Gavdos (Greece), the southernmost point of Europe (34°50'N 24°05'E) in Figure 3.7,
it can be seen that at lower latitude, optimally inclined solar collectors can be feasible while at

higher latitudes, solar collectors with tracking systems can increase the output significantly.
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Path of sun motion for Tromso, 21 June, 22 September and 20 March
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Figure 3.6: Path of the Sun motion for Tromsg. The paths are plotted for solstices and

equinoxes, i.e. 21 June, 22 September, and 20 March. The path for 21 December is not visible
because the Sun does not rise above the horizon.

Path of sun motion for Gavdos, 21 June, 22 September and 20 March
0
330 o 30

WU /

270 | 90
\m \HH"“——»& e \

.K"

21 Jun

Sep and 20 Mar

f
#

i R

21 Dec
210

180

Figure 3.7: Path of Sun motion for Gavdos, Greece. The paths are plotted for solstices and
equinoxes, i.e. 21 June, 22 September, 20 March, and 21 December.
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3.2.1 Optimal angles for fixed collectors

The angle of incidence of sunlight on a solar collector changes with time of the day and day of
the year, as shown in Figures 3.6 and 3.7. A solar collector will harness more energy if its
surface is oriented towards the Sun at all times. In most cases, primarily due to economic
reasons, solar collectors are installed with a fixed optimal tilt. A rule of thumb for the optimal

tilt is shown by equation 6.
B=¢-6, (6)

where B is the optimal inclination angle in degrees, ¢ is the latitude and & is the declination
angle. Over a year, as the average of declination angle 6 is zero, the optimal inclination angle
for a year at a particular location would be equal to the latitude of that location. It can be seen
from Figures 3.6 and 3.7 that the optimal surface azimuth angle for the northern hemisphere is
true south. Although, on the basis of average declination angle, specific optimal tilts could be
calculated for different months or seasons to optimize solar energy systems (16). By using an
optimal tilt angle, the received solar radiation at the surface of the solar collector can be

increased by 10 to 25% when compared to horizontally mounted collectors (22).

3.2.2 Solar energy systems with tracking

A solar collector mounted on a tracking system keeps the plane of the collector perpendicular
to the incoming sunlight at all times. Such a tracking system increases the energy production
by 30 to 50% when compared with stationary optimally inclined systems (23-26). In a two axis
tracking system, the surface of the solar collector is always kept perpendicular to the incidence
angle of the Sun. However, a single axis tracking system has one degree of freedom, which acts
as axis of rotation. Usually, the axis of rotation in such a system is aligned along the true north

meridian.

3.3 Estimation of surface solar radiation

This section gives an overview on the measurement and estimation of surface solar radiation.
Section 3.3.1 explains the equipment used to record solar radiation at ground. This section also
provides an overview of the available databases of solar radiation. In Section 3.3.2, the
availability of ground measurements and solar radiation databases in Norway are explored.
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3.3.1 Global solar resource estimation

The most accurate way to record solar radiation is by using equipment like pyranometers or
pyrheliometers as shown in Figure 3.8. Pyranometers are used to measure global irradiance (or
in most cases, global horizontal irradiance (GHI) as a pyranometer is installed on a horizontal
plane). To record the direct normal irradiance (DNI), a pyrheliometer is used.

(a) Kipp and Zonen CMP11 pyranometer (b) Kipp and Zonen CHP1 pyrheliometer
Figure 3.8: Kipp and Zonen’s CMP11 pyranometer and CHP1 pyrheliometer. Pyranometers
are used to record global horizontal irradiance and pyrheliometers are used to record direct

normal irradiance (27)*.

From the publicly available ground measurements of solar radiation in Norway, none of the
stations provide DNI. Figure 3.9 depicts the available stations from Norwegian Institute of
Bioeconomy Research (NIBIO) network that provide ground measured solar radiation data in
Norway. It can be seen that most of the measurement stations are in the southern part of the

country. The data from NIBIO is used in all the appended papers.
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Figure 3.9: The NIBIO network provides ground-measured GHI data. Most of the stations in

this network are in the southern part of Norway*.

Other indirect methods to estimate solar radiation explored in this thesis include satellites
models, reanalyses and empirical models. Satellite models that are used to calculate solar
radiation are well developed and widely used and provide solar radiation estimates with
reasonable accuracy. Reanalysis, both global and regional, are also used to estimate solar
radiation. Although these have lower accuracy than satellite models but very recent versions of
reanalysis are improving and becoming sub-par with satellite estimations (28, 29). Generally,
it is seen that satellite methods underestimate solar radiation while reanalysis overestimate (29-
31). Empirical models exploit the relation between solar radiation and meteorological variables
like sunshine duration, cloud cover, precipitation, humidity, temperature and so on. These

models are considered as the least accurate (32).

Some specialized products provide solar radiation estimates by using the above-mentioned
techniques. The PVGIS 4 (33), is one such product that provides solar radiation estimates based
on CM-SAF Meteosat geostationary satellite images. The extent of the data provided by PVGIS
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is approximately 70°N to 70°S and 70°W to 70°E; however, the uncertainty in data is high at the
edges of the coverage. The new version of this web database called PVGIS 5 is available for
testing, for more information refer to Huld, Pascua (34).

Other products include S@tel-light, which provide solar radiation estimates for central and
western Europe for the years 1996 to 2000 (35). Figure 3.10 presents an example of the
coverage of S@tel-light for Norway. Another such database called SoDa (Solar radiation data),
which is based on Helioclim 3, provides solar radiation estimates from Meteosat geostationary
satellites. This database is also limited to -66° to +66° both in latitude and longitude (36). The
data is available cost-free for a short time scale, while for longer time series there is an annual
subscription. The SolarGIS is another such web application providing solar radiation
estimations at 250m x 250m spatial resolution but this database is also limited to -60° to +60°N
and the data is available from 2004 onwards (37). Meteonorm is another such paid global
database that is widely used. The data in Meteonorm covers the period from 1986 to 2005, with
a total number of 1942 ground-measuring stations in the database. Meteonorm uses both ground
measurements and geostationary satellite data to derive an interpolated global radiation dataset
(38). Solem (39) is another such kind of a data set based on geostationary satellites (40). Most
of the data sets based on satellite methods mentioned here are limited to 60° to 70°N of latitude
because they mostly use geostationary satellite that do not provide coverage above these limits.
In addition, their accuracy becomes worse when moving towards high latitude regions.

S@tel-Light Zone :S From : Sunrise To: Sunset Clock Time, 1996 to 2000
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Figure 3.10: Map from S@tel-light showing the frequency of sunny skies. It can be seen that
the data is limited to less than 65°N™* (41).
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Likewise, a reanalysis product by Swedish Meteorological and Hydrological Institute (SMHI)
called STRANG provides surface solar radiation estimates for Nordic regions with a grid of
size 630 x 779. This product uses Mesan meteorological analysis model to produce the input
and output fields (42). The input data for the product are derived from AROMIE numerical
weather prediction system which is maintained at SMHI. This product provides instantaneous
fields of global radiation, direct radiation and sunshine duration at a horizontal resolution of
about 2.5 x 2.5 km and a temporal resolution of one hour. The accuracy of STRANG is
approximately 30% for the global horizontal irradiance and 60% for the direct irradiance. Figure
3.11 shows a coverage map of STRANG for June 2016 (43).
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Figure 3.11: Global irradiation for June, 2017 from STRANG. This model covers the Nordic
countries, the extent of the coverage can be observed from the figure (43).

3.3.2 Solar resource databases for Norway

Most of the satellite-based databases use geostationary satellites for a few reasons. First, these
satellites have high spatial/temporal resolutions. Second, because of a large number of these
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satellites, they provide coverage on almost all of the Earth. Third, a large population resides in
the equatorial and mid latitude regions. However, these satellites do not provide coverage above
60°-65°N. Most commercial and cost-free products of solar radiation use geostationary satellites
in constructing their databases. Although some of these products provide coverage over
southern parts of Norway, at region above 65°N there are high errors in these datasets because
of the slant viewing angles experienced by geostationary satellites. In addition to high latitudes,
Norway presents a complex and challenging topography for estimating solar radiation. Figure

3.12 shows a digital elevation model of Norway (adapted from Paper I1).
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Figure 3.12: Digital elevation model of Norway, adapted from Paper Il. It can be seen that

there are complex elevations both in the southern and in the northern parts of the country.

Furthermore, Norway has a very low population density (2" to Iceland in Europe). Because of
a low population, there are only a small number of meteorological stations and even fewer of
them record solar radiation. NIBIO is an agricultural network of pyranometers and it is the main
agency responsible for maintaining and providing ground-measured solar radiation data for
Norway. NIBIO has 47 stations in their database and at least 46 of these stations provide long-
term solar radiation data series. The data is free to download as hourly, daily, and monthly

means (44).
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4. Methodology and data

In this chapter, the methodologies and the data used in this thesis and appended papers are
presented. Section 4.1 gives an overview of the data used and their implications on the quality
of estimations. Then Section 4.2 gives an overview of the ground-measured data. After this,
Section 4.3 explains the different modelled data used in this thesis and appended papers. In
Section 4.4, the quality control measures applied on ground-measured data are explained.
Section 4.5 gives an overview of the regression method used in Paper IV. Section 4.6 shows
the validation metrics used to evaluate the models. Finally, Section 4.7 shows the extraction

methods used in the datasets.

4.1 Overview of the data

In this thesis, two types of data are used; ground-measured and modelled data. The ground-
measured data include temperature, relative humidity and incoming shortwave solar radiation
(temperature and relative humidity are used only in Paper I). The modelled data include solar

radiation estimation from empirical model, satellite models, and reanalyses.

The most basic method to model solar radiation is by using empirical models. These models
develop a relationship between incoming solar radiation and meteorological variables to
estimate solar radiation. However, these models are site dependent and not as accurate as

satellite models or reanalyses (32).

Reanalyses were first proposed in 1988 (45, 46) and are available since the mid-1990s. The
global and regional reanalyses have been used to study both long- and short-wave down-welling
solar radiation (47-53). Global reanalyses, as the name suggests, provide global coverage for
major meteorological variables. Reanalyses are available at multi-decadal time scales and are
usually cost-free. The data are available for monthly, daily, and sub-daily means (54-60). A
regional-reanalysis is constructed by either dynamically or statistically downscaling a global-
reanalysis. Weather research and forecast model (WRF) (61) is widely used in meteorology to
downscale a number of global reanalysis under different configurations. One such example of
a dataset, which is used in Paper 11, is the Arctic System Reanalysis version 2 (ASR). ASR is a
downscaling of ERA-Interim global reanalysis by using a polar optimized configuration of
WREF (55). In Paper Il and 1V, ERAGS a global reanalysis from European Centre for Medium-
Range Weather Forecast (ECMWEF) is used.
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Satellite models provide the most accurate remotely sensed estimates of solar radiation. Fritz,
Rao (62) provided one of the earliest studies on the possibilities of estimating surface solar
radiation by using visible sensors installed on satellites. They observed a high correlation
between the radiance measured by the satellite sensors and ground-measured data. Later, Cano,
Monget (63) introduced the basic idea that the surface solar radiation is inversely related to the
top-of-atmosphere reflectance. Mainly, two types of satellites are used in these methods i.e.
geostationary and polar orbiting satellites. Geostationary satellites are positioned at 35 786 km
from the surface of the Earth and provide continuous observation on a spatial resolution of 3 -
5 km. However, geostationary satellites do not provide coverage in the polar regions because
the apparent pixel size of the observation increases with latitude and longitude (64). For high
latitude locations polar orbiting satellite are used as they provide coverage on poles. These
satellites are positioned at around 800 km above the surface of the Earth and provide
observation on a high resolution of 200 - 1000 m but with a low temporal frequency that varies
with latitude (twice a day at equator and 14 times a day at the poles). The accuracy of
geostationary satellite based datasets are better than polar orbiting satellite based datasets
because of the high sensing frequency which takes into account the intermittent nature of solar
radiation (32). Satellite methods generally underestimate down-welling shortwave solar

radiation and reanalysis generally overestimate it (28, 29).

In the following subsections, the datasets used in this thesis and appended papers are explained

in detail.

4.2 Ground-measured data

The ground-measured data used here was obtained from Norwegian Institute of Bioeconomy
Research (NIBIO) for Norwegian locations, and Swedish Meteorological and Hydrological
Institute (SMHI) for Swedish location. Both databases record average hourly measurement by
Kipp and Zonen CMP11 or CMP13 pyranometers. The equipment is regularly maintained (on
weekly or monthly basis) and datasets are quality controlled by the respective organizations
(65, 66).

To evaluate the remotely sensed solar radiation estimates in different geographical conditions,
the analyzed locations were divided into inland, coastal, above 65°N and below 65°N regions
(Papers 11l and 1V). The division between inland and coastal regions was established by
observing the proximity of the stations to the shoreline. Regions within 30 km of the shoreline

were considered as coastal. From the 31 Norwegian locations studied in Papers Il and 1V, 14

28



locations were classified as coastal and the rest as inland. The other two groups were made
based on the latitude of locations where regions lying above 65°N were grouped together while
locations lying below 65°N were put in another group. From the 31 Norwegian locations studied
in Paper Il and IV, 4 locations lie above 65°N and 27 lie below 65°N. For details on this

classification, refer to the Appendix, Table A.

In Paper I, SMHI and NIBIO data were used and years having more than 10% of missing
values were discarded. The rest of the years were having missing data and these were filled by
using linear interpolation. In Paper Il and IV, the ground-measured data was used after
applying Baseline Surface Radiation Network (BSRN) recommended Long and Dutton quality
control (67) and a quality control based on comparing the ground deviation with reanalysis and
satellite model proposed by Urraca, Gracia-Amillo (68). These quality control procedures are

explained in Section 4.4.

In addition to ground-measured solar radiation, temperature and relative humidity were used to

construct a model to estimate solar radiation in Paper I. These data were acquired from NIBIO.

4.3 Model data

This section lists the model data used in this thesis and appended papers.

4.3.1 Empirical model based on maximum temperature difference and

relative humidity
Empirical models estimate surface solar radiation by developing a relation between atmospheric
transmissivity and other meteorological variables. One of the first such model was proposed by
Angstrom (69) in 1924. Angstrém observed a high correlation between sunshine duration and
daily solar radiation. Examples of other such empirical models use cloud cover (70), air
temperature (71), precipitation and humidity (72, 73). However, the use of temperature and
sunshine duration have been the most widely used technique in building such models because
these variables are widely measured at weather stations (74, 75). In Paper |, a model based on
Hargreaves, Samani (76) was proposed that uses the difference between maximum and
minimum temperatures, and relative humidity in a day to estimate the average daily solar
radiation. One of the shortcomings of empirical models is the use of difference between
maximum and minimum temperatures in case of cloud-free conditions. In these conditions, the
maximum and minimum temperature differences are relatively large due to low temperatures

at night. In such cases the estimated solar radiation have high errors (32). However, the key
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limitation of empirical model is the site-specific coefficient, which varies between coastal and
inland regions (74), as these coefficients largely determines the accuracy of the estimated solar
radiation (32). In addition, these types of models are dependent on ground based meteorological
measurements and hence, these cannot produce a spatial distribution map of solar radiation

estimates.

4.3.2 CM-SAF CLARA dataset

The Cloud, Albedo, Radiation (CLARA) dataset is a set of climate data records published by
the Satellite Application Facility on Climate Monitoring (CM-SAF). The CM-SAF provides
two categories of data: operational products and climate data records (CDR). The operational
products are constructed by validating the data with on-ground stations and these are provided
in near real time for variability studies in diurnal and seasonal time scales. However, CDRs
are long-term data series that are used to assess inter-annual variability. CLARA-A1 and
CLARA-AZ2 are two of such CDRs that provide long time series historical data. The CLARA
datasets are based on polar orbiting satellites that provide a global coverage but their sensing
frequency varies with latitude. These satellites have a sensing frequency of twice each day at
the equator but with increasing latitude, the sensing frequency increases because of the
overlap in the satellite swath. At the poles, these satellites have the highest sensing frequency
of 14 observations each day. A single satellite has too low of a frequency to construct solar
radiation datasets, hence, a series of satellites are used to obtain the surface solar radiation

datasets.

30



CLARA-A2: Monthly averaged data for 2009
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Figure 4.1: CLARA-A2 monthly mean solar radiation map for 2009 on a horizontal surface.
From Paper II.

The first edition of this suite of dataset (CLARA-A1) was published in 2012 and it covers a 27
years period, from 1982 until 2009. This dataset consists of cloud, surface albedo and radiation
budget products derived from the Advanced Very High Resolution Radiometer (AVHRR)
sensors on-board the polar orbiting NOAA and Metop satellites (77). The second edition of this
dataset, CLARA-A2, was released in December 2016. CLARA-AZ2 is available from 1 January
1982 to 31 December 2015, and constitutes an extension of 6 years relative to the CLARA-A1
dataset. Both of these datasets have global coverage with a spatial resolution of 0.25°x0.25° on
a regular latitude-longitude grid and provide daily and monthly averages of surface incoming
shortwave radiation (SIS). To calculate daily averages, at least 20 observations of incoming
solar radiation in each grid box are required; similarly, 20 valid daily observations are required
to generate monthly averages (78). Along with SIS, CLARA also provides longwave up and
down-welling surface radiation.

The fundamental method used in calculating surface solar irradiance from satellite observations
is that the reflectance measured by the satellite instruments is related to the atmospheric
transmittance. The SIS is calculated from the atmospheric transmittance (T) by the following
equation.

SIS = Eycos(6y) T, (7)
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where Eo is the extraterrestrial solar radiation and 6q is the solar zenith angle. The value of Eg
is set as 1368 Wm™2 in CLARA-A1, however, a revision in extraterrestrial radiation was
performed by Gueymard (17) and the value of Eq is set as 1361 Wm in CLARA-A2.

In CLARA dataset, the transmittance is calculated from solar zenith angle, vertically-integrated
water vapor, aerosol information and the cloud cover (obtained from AVHRR sensors). Finding
solar zenith angle is straightforward and can be calculated accurately. The vertically-integrated
water vapor and aerosol optical depth are not available in the AVHRR data and for these fields,
external sources are used. For vertically-integrated water vapor, ERA-Interim Reanalysis (55)
is used and the vertical ozone column is set to a constant value of 335 DU, as its variability has
negligible impact on the estimated solar radiation. Aerosol information is taken from the
modified version of the monthly mean aerosol fields from Global Aerosol Data Set/Optical
Properties of Aerosols and Cloud (GADS/OPAC) climatology. In addition to this, the algorithm
in CLARA also requires the surface albedo information. This is calculated based on spatial
distribution of 20 surface types, which is obtained from the (SARB) Surface and Atmospheric
Radiation Budget (part of the Cloud and Earth’s Radiant Energy System (CERES)). In the
algorithm, the cloud coverage is determined by using the visible channels of the AVHRR
instrument. The first step in estimating surface solar radiation is the classification of the sky
conditions. The Nowecasting SAF (SAFNWC) software is used to derive the information on
cloud coverage for each pixel by using the information from the satellite sensors. If no cloud is
detected (cloud free pixel), surface solar radiation is calculated by using only the auxiliary
sources and clear-sky Mesoscale Atmospheric Global Irradiance Code (MAGIC) described in
Haase, Calais (79) . If the pixel is classified as cloudy (cloud contaminated or fully cloudy),
visible channels of the AVHRR instrument are used to derive broadband reflectance. This
reflectance for each pixel is then transferred to broadband fluxes by using a bidirectional
reflectance distribution function (BRDF). In the next step, these broadband top-of-the-
atmosphere albedos are used to derive transmissivity through a look-up table approach. Finally,
the transmissivity is used in calculating surface solar radiation, as shown in Equation 7 (80). In
this dataset, all data points with solar zenith angles larger than 80° are set to missing values and
solar zenith angles larger than 90° are set to zero. Because a temporally constant surface albedo
is used in the algorithm, this dataset does not provide radiation estimates on snow and sea ice
coverage areas because changes in the albedo of the snow-covered surfaces are not considered
(81). For more information on the CLARA datasets and their accuracy, refer to Karlsson,
Riihel& (77) and Karlsson, Anttila (81).
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High-latitude locations like those studied here, may have a very different surface albedo than
the temporally constant albedos considered in the algorithm. These critical points are identified
by using the monthly mean CLARA-SAL (surface albedo) data record and the surface albedo
used in the processing of SIS. All grid points with a difference in surface albedo exceeding 35%
are masked out and set to missing data in final SIS record. This process introduces large number
of missing data points in high latitude locations. Furthermore, the accuracy is reduced because
at the available data points, a constant surface albedo is used which can vary from the real
conditions. For this reason, the accuracy of the CLARA datasets in snow-covered areas is
outside the target accuracy of CM-SAF. Further inaccuracies may be introduced by the miss-
classification of SAFNWC software used in cloud detection. It was observed in Paper IlI that
the aerosol information used in the CLARA dataset can introduce errors in clear-sky and
intermediate-cloudy conditions because average monthly aerosol information can vary from the

inter-annual and sub-monthly aerosol variability of a particular location (80).

In Paper I, CLARA Al and A2 datasets are compared for Norwegian and Swedish locations.
It was found that CLARA-A2, thanks to a new snow-detecting algorithm, has less number of
missing values as compared to CLARA-AL. However, the new values that were not available
in CLARA-AL have large errors because these points mostly lie on the snow-covered surfaces.
In Paper 111, CLARA-A2 data set was evaluated and compared with SARAH, ERA5, and ASR.
In this study, it was found that CLARA provides good estimates of surface solar radiation at
location above 65°N, where SARAH has no coverage. In Paper 1V, this knowledge was used to
construct a new dataset by using CLARA-A2 and ERAS (explained in Section 4.3.4). The new
dataset, which was constructed by using a random forest regression method (explained in
Section 4.5), provides substantially more accurate results than CLARA-A2 and ERADb.

4.3.3 CM-SAF SARAH dataset

The second version of surface solar radiation dataset — Heliosat (SARAH-2) is a CDR of surface
solar radiation by CM-SAF (82). The SARAH dataset covers a period of 31 years from 1983 to
2015 and the region from +65° to -65° in latitude and longitude. The spatial resolution of the
data is 0.05°x0.05° (approximately 5 km) and the data is available for 30 minutes instantaneous,
hourly, daily, and monthly averages of surface incoming shortwave radiation on a horizontal
surface (SIS), surface direct irradiance (SDI), sunshine duration (SDU) and effective cloud
albedo (CAL), while spectrally resolved irradiance (SRI) is available as monthly means (83).
To calculate daily averages at least three samples per day are required; similarly, 10 calculated

daily observations are required to generate monthly averages.
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Figure 4.2: Mean surface solar radiation for 1983-2013 in June over Scandinavia from
SARAH. The spatial limits for the dataset can be seen in the figure (84).

To obtain sufficiently large time series of data (spanning multiple decades), SARAH uses two
generation of Meteosat satellites. The broadband visible channels from Meteosat Visible Infra-
Red Imager (MVIRI) instrument on-board the Meteosat first-generation satellites (Meteosat-2
to Meteosat-7) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument
on-board the Meteosat second-generation satellites (Meteosat-8 to currently Meteosat-10) are
used to calculate the shortwave surface irradiance.

The basic method of calculating surface solar radiation in SARAH is similar to that of CLARA.
In SARAH, effective cloud albedo (CAL) and a clear-sky model are used to calculate surface
solar radiation. The CAL is defined as the amount of reflected irradiance for all sky relative to
the amount of reflected irradiance for clear-sky, and it is a measure of the cloud transmission
and hence by calculating clear-sky radiation, the all sky radiation can be estimated. To calculate
CAL, satellite data and a modified Heliosat method are used (85). This modification of the
Heliosat method in combination with gnu-MAGIC/SPECMAGIC is called MAGICSOL. The
Heliosat method uses reflection measurement given as normalized digital count to calculate the

CAL. The effective cloud albedo from the Heliosat method is given by the following equation.
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n= P — Psrf ’ (8)
Pmax — Psrf

where, p is the observed reflection for each pixel, psrf is the clear-sky reflection and pmax is the
estimated maximum reflectivity observed by the satellite sensor. The modifications made in
this algorithm include a self-calibration algorithm that is based on an operational and automatic

determination of the maximum reflectivity pmax.

In the next step, the clear-sky model and effective cloud albedo are used to calculate the surface
solar radiation. The modified Heliosat method provides the broad band effective CAL but to
consider the spectral effect of clouds a Radiative Transfer Model (libRadtran) based correction
is applied. To calculate clear-sky radiation, SPECMAGIC model is used which is based on a so
called hybrid eigenvector look-up table approach (86). The input parameters for gnu-
MAGIC/SPECMAGIC are date, time, solar zenith angle, coordinates, effective cloud albedo
(cloud index), water vapor column density, surface albedo, aerosol optical thickness, and single
scatter albedo for aerosols. Monthly mean values of vertically integrated water vapor are taken
from ERA-Interim global reanalysis record (55), and monthly mean aerosol information is
taken from Monitoring Atmospheric Composition and Climate project (MACC) aerosol
climatology. Surface solar radiation is derived from combining SPECMAGIC algorithm and
effective cloud albedo (82). Improvements in the new version of the dataset (SARAH-2)
includes the stability in the early years of dataset and during the change of instrument from
MVIRI to SEVIRI in 2006 and correction of viewing geometry for slant viewing angles (87).
For more information on the retrieval methods refer to Miller, Pfeifroth (88). SARAH-2 was
used in Paper 11 to evaluate the solar radiation estimates in location below 65°N.

4.3.4 ECMWF Reanalysis 5 (ERA5)
ECMWEF Reanalysis 5 (ERAD), is the fifth generation of European Centre for Medium-Range

Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate and span a period
of 1950 to near real time (39). At the time of writing, data from 2000 to 2017 is available.
Further data back in time will be released in 2019-20 and will continue to update forward in
real-time. In ERADS, the solar radiation variable has a spatial resolution of 31 km
(0.28125°x0.28125°) and an hourly temporal frequency. ERA5 uses the Integrated Forecasting
System (IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4ADVAR)
assimilation system. ERA5 has more pressure levels than ERA-Interim (the previous edition of
ECMWEF reanalysis) and more variables are made available for this reanalysis than for those of

earlier generation. For more information on ERADS, refer to ECMWF (89).
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In this study, shortwave surface downward radiation, shortwave surface downward radiation
clear-sky, and total cloud water content (the vertically-integrated cloud water concentration)
are used from this dataset. In ERAS5, the incoming short wave radiation is obtained from a
Radiative Transfer Model (RTM). This model simulates the attenuation in solar radiation
caused by the atmosphere, therefore, the quality of estimated radiation depends on the RTM
used. Reanalysis generally do not assimilate aerosol, clouds, or water vapor data, which
increases the uncertainty in the estimated surface irradiance (49, 90). ERAS was used in Papers
Il and IV.

4.3.5 Arctic System Reanalysis v2

In polar regions, it is difficult to determine current weather and climate trends from a long-term
climatology perspective when compared to the rest of the globe, primarily because of limited
number of meteorological stations (91). In these areas, reanalysis can be used as an alternative
to provide such climatologies. To provide a long-term climatological data, the Arctic system
Reanalysis was made available in 2010 (92). The second edition of this dataset was proposed
in 2017 (93) called the Arctic system reanalysis version 2 (93). These are a set of regional
reanalysis that are based on high-resolution regional assimilation of model output, observations
and satellite data for the mid- and high-latitude regions of the northern hemisphere (94). In its
core, ASR is a polar-optimized dynamic downscaling of ERA-Interim reanalysis by using
Weather Research and Forecast Model (WRF) version 3.6.0 (95). The data set is available for
the period of 2000 to 2012. The grid resolution is 15 km, which is finer than most global models
and the previous release of ASR (ASRv01), whereas the time resolution of the dataset is 3
hours. The downscaling is optimized for Polar Regions, and polar physics is used where
possible, including heat transfer through snow and ice, the fractional sea ice cover, the ability
to specify variable sea ice thickness, snow depth on sea ice and sea ice albedo, as well as other
optimizations including the Noah Land Surface Model. The area covered by this dataset is 1.2
x 108 km?, which is about 50% of Northern hemisphere. Spectral nudging from ERA-Interim is
applied on geopotential height, temperature, and wind components above 100 hPa on the inner
domain. ASR uses three-dimensional variational analysis (3DVAR) for observations, including
radiance data, from a number of satellites (93). Figure 4.3 shows the inner and outer domains
used in ASR.
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Figure 4.3: The inner and outer domains of the Arctic System Reanalysis (ASR). The outer
domain has a resolution of 90 km and inner domain has a resolution of 30 km. Colors refer to

the terrain height*.

4.4 Quality Control

Ground measurement of solar radiation is generally more prone to recording errors than other
meteorological variables (96). For long time series assessment of estimating datasets, the
quality of the ground measurement is very important. A close examination of the ground-
measured solar radiation reveals that there are errors for extended periods of time (97). Younes,
Claywell (97) identified two major types of errors in the ground measurements from
pyranometers. The first type of error is called the uncertainty of equipment error, which is
introduced because of the construction and calibration of the equipment. The second type of
error is the operational error, which is related to the maintenance of the sensor. Because of the
existence of such errors and their effects on the validation or feasibility studies, it is crucial to
perform quality-control (QC) procedures on the solar radiation data (98). The ground-measured
data used in this thesis is quality controlled by the respective organizations. In case of SMHI,
Baseline Surface Radiation Network (BSRN) routines by Long and Dutton (67) are used for
quality assurance. Missing or erroneous data is corrected by using meteorological variables
described by Davies and McKay (99). The SMHI network was upgraded in 2006-2007 and the

average correlation ratio between old and new measurements was found to be 0.997. More
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detail on the upgrade is given by Carlund (65). SMHI provides data with quality flags and
before using the data, these quality flags can be analyzed. In the case of NIBIO, the ground-
measured data is quality controlled and the equipment is regularly maintained on a daily or

weekly basis (66).

Although the data used here is quality controlled, Urraca, Gracia-Amillo (68) observed that
operational and equipment errors exist especially in NIBIO stations. The first check performed
in this regard is to look at the percentage of missing data. In Paper | and Il, any year having
more than 10% of missing data was discarded, however extra quality checks were not
performed. In Paper 11l and 1V, years having more than 5% of missing data were discarded.
Moreover, the QC procedures described in the following sub-sections were performed in Papers
Il and IV.

4.4.1 BSRN Global Network recommended Quality Control test V2
The Baseline Surface radiation Network (BSRN) and its central archive — the World Radiation
Monitoring Center (WRMC) provides the best possible quality controlled data for long- and
short-wave surface solar radiation. To assure the quality, data received by WRMC/BSRN from
ground-measuring stations runs through an inspection that includes the BSRN recommended
quality checks V2.0 (67). The quality of the data is then represented in the form of flags (100).
For global shortwave radiation, two tests are applied that check the physically possible limits
and the extremely rare limits. The physically possible limits are shown in Equation 9 and the

extremely rare limits are shown in Equation 10.
Min: —4 Wm™2
Max:S, X 1.5 X ut? + 100 Wm™=2 9

Min: —2Wm™2

Max:S, X 1.2 X ut? + 50 Wm™2 (10)
U, = cos(SZA) (11)

S,
Sa = O/AUz (12)

Where, SZA is the solar zenith angle, S, is the solar constant at mean Earth-Sun distance and

AU is the Earth-Sun distance in Astronomical units. After performing these quality control
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tests, years having more than 1% of the flags were discarded from the analyses. The BSRN and
similar tests are designed to detect only large deviations in ground-measured records; however,
small errors introduced by shading, soiling, frost, snow or calibration of the equipment are not

detected by these procedures (68).

4.4.2 Quality Control with Reanalysis and Satellite-based Products

As described in the previous section, general quality control (QC) procedures that principally
test the range, model comparison, and graphical analysis are not effective in detecting small but
persistent errors. Keeping this in view a more sophisticated QC procedure by Urraca, Gracia-
Amillo (68) is presented here. This semi-automatic procedure is based on the statistical analysis
of ground-measured solar radiation and radiation from reanalyses or satellite products. These
products generally have larger errors than ground-measured data but operation and equipment
errors are not as common in these as in ground-measured data. In the first step of this QC
procedure, a confidence interval is constructed by calculating daily deviations (&;) of the

products as shown in Equation 13.
0y =Y, — O, (13)

where, Y: are the estimations, Ot are the observed values and t is the temporal resolution. The
confidence interval is then calculated for monthly values (temporal averaging) and for groups
of stations with similar characteristic (spatial averaging). The averaging for the time and space
is performed in two steps to increase the robustness of the confidence intervals. First, the bias
with respect to median of daily deviations is calculated for each months and location as shown

by Equation 14.
Bias = median () (14)

The Bias obtained from Equation 14 is again averaged on months of the year and stations within
the same spatial group, resulting in a unique set of twelve values per group per product. To
include the measure of dispersion, mean absolute deviation (MAD) is calculated by the

following equation.
MAD = 1.4286 x median(|Bias|) (15)

The MAD includes a constant scale factor of 1.4286 to ensure the consistency of estimates for
different sample sizes. Finally, the confidence interval (Cl) is calculated by the following

equation.
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Cl = Bias £+ n Xx MAD (16)

Where n is a coefficient that weighs the MAD in order to adjust the level of QC procedure. The
value of n is set to respectively, 2.4 or 0.4 for flagging operational errors and equipment errors.

Figure 4.4 illustrates the confidence intervals developed in Papers 111 and 1V.
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Figure 4.4: The confidence intervals constructed for the quality control from ERA5 and

CLARA. The locations in Norway were divided into two categories based on the latitude.

Locations above 65°N were placed in one group (a), and locations below 65°N were placed in

the second group (b). Based on the quality control procedures presented by Urraca, Gracia-

Amillo (68) and adapted from Papers |1l and 1V.

After constructing the confidence intervals, a window width parameter (w) is defined. As with
the value of n, the window width can be set to either 20 for operational errors or 90 for

equipment errors. The window starts increasing with a step of five days (fast moving filter),
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and for each group of days it flags the data which is above or below the confidence interval.
Days with an absolute relative deviation of 5% or absolute deviation of 5 Wm™ are not
accounted in flagging. The products that are more accurate provide a stricter confidence interval
as can be seen in Figure 4.4. In the case here, as CLARA is a more accurate dataset, it has a
much narrower confidence interval when compared with ERA5. Hence, CLARA will flag more

data points than ERA5 because of the higher accuracy.

In the final step of this QC procedure, two graphical plots are generated for visual analysis. The
first graph is generated for the daily deviations between the product and the ground data and a
second graph is generated for comparing the hourly irradiance of ground measurements and
product. For information on these graphs, refer to Urraca, Gracia-Amillo (68). Both of these
graphical plots are examined visually to detect any false alarms. As the graphical comparison
is performed for hourly averaged values, it is convenient to include at least one product that has
hourly resolution (68). Initially, the locations Pasvik, Mare, Ullensvang, and Njgs were
included in Paper 11l but after performing this QC test, large numbers of errors were found.

These locations were discarded from this thesis and from Papers Il and IV.

4.5 Random Forest Classification and Regression

Recently, there has been a growing interest in ensemble learning techniques. Ensemble methods
are based on generating many classifiers and the results of these are aggregated which increases
the learning ability for the entire inputs and target (101). Random forest regression (RFR) is a
regression tree method, which has become very popular in recent years due to its strong
performance, ease of implementation and low computational cost. It is an ensemble learning
technique developed by Leo Breiman (102), which is based on the construction of a multitude
of decision trees, where branches of the trees represent a particular path for the input data and
leaves represent the output values. In RFR, a particular tree is grown in accordance with the
realization of a random vector. The final prediction is based on aggregation over the ensemble
of trees, referred to as the forest (103). On each of the trees, branches or nodes are made which
are based on comparing a randomly selected feature to a random threshold. The randomness
introduced in both variable selection and threshold determination has been shown to results in
attractive properties such as a controlled variance, resistance to overtraining, and robustness to
outliers as well as irrelevant variables. Moreover, RFR inherently provides estimates of
generalization error and measures of variable importance (104, 105). The process of dividing
the input data over branches are repeated until one or a pre-set number of data points are

contained in each branch. This final node of the tree is referred to as a leaf, and it represents the
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final-outcome of that particular regression in the whole model. The structure of the forest and
hence the RFR behavior can be controlled by three main parameters, namely the number of
trees (with a default value of 500), the number of variables considered in each node (generally
set to m=P/3 following common practice in RFR), and the final number of data points that can
make a leaf (our default value is 1). Having very low number of leaves in the model can cause
overfitting, which can be overcome by pruning, i.e. limiting the number of data points in each
leaf. With an increase in the number of trees, the computation load increases. An initial increase
in the accuracy of the regression will also be observed, before reaching a saturation point (106),
after which improvements are limited by a strong correlation between the trees (102). The RFR
is used in Paper 1V to construct a multi variate regression data set based on CLARA-A2 and
ERADS datasets.

4.6 Statistical Evaluation of Estimations

In order to evaluate the performance of the datasets, some common statistical measures were
used. The most widely used measure is the Root Mean Squared Deviation (RMSD), which is
given by Equation 17.

N
1
RMSD = |+ (GHleseimateas = GHlobservea;) (17)

i=1
Where, GHlestimated,i is the estimated global horizontal irradiance, GHlopserved,i iS the ground-
measured global horizontal irradiance and N is the number of data points in time. As an
additional measure, the MBD (Mean Bias Deviation) or bias was also used in the evaluation as
shown in Equation 18. MBD gives an insight in the general trends of under or over estimations.

N
1
MBD = NZ(GHIestimated,i - GHIobserved,i) (18)

i=1
Mean absolute bias deviation (MABD) was also used for the evaluations of datasets. Because
of the absolute values used in this measure, the negative and positive errors do not cancel out
each other as in MBD. This is a good measure to compare different models, as the one with

smaller MABD will be the more reliable for estimations.

N
1
MABD = =" |6Hlestimateat — GHlopservea] (19)
i=1

The standard deviation of the error (STD) is used to evaluate the data set presented in Paper 4. The

sample STD is computed as
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N
1

STD = mz ((GHIestimated,i - GHIobserved,i) - (GHIesthated - GHIobserved))

i=1 (20)

2

In addition, a bias-variance decomposition was used to obtain the optimal configuration of the
random forest regression model used in Paper 4, with respect to the number of trees and the
number of leaves. Moreover, R? and scatter plots were used to indicate the spread and overall

correlation of the datasets with ground measurements.

4.7 Data extraction

The data extraction from the gridded datasets was performed in two ways. For high-resolution
datasets like SARAH and ASR, the nearest grid point to the coordinates of the location was
selected for data extraction. However, for coarse resolution datasets like ERAS5 and CLARA,
inverse distance weighting (IDW) interpolation was used. The IDW interpolation is given by
the following equation.

1
?=1d—iVi

p=—2="_ 21
—4 (21)

i=1 d_l
Where, V; are the known values, d; are the distance from the data point and estimated point,
and ¥ is the value to be estimated. The four nearest surrounding grid points to the location were
selected from ERAS and CLARA as inputs to the IDW interpolation. Missing values exist in
the CLARA dataset and if two or more of the surrounding four grid points were not available;
the interpolation was replaced by a missing value.

4.7.1 Gap filling procedure

Gaps are often available in the ground-measurement and estimated surface solar radiation
databases. Gaps in the ground measurement may occur due to power loss, misalignment, failure
of instrument, insufficient cleaning or other reasons (107). In the satellite databases used here,
the gaps in the data exist generally because of low number of observations and snow covers. In
most of the analysis made here, gap-filling procedures were not used except in energy
calculations in Paper I11. In Paper Il1, nearest-neighbor interpolation was used to fill the gaps
in SARAH, CLARA and ground-measured data. In addition, linear interpolation was used in

filling gaps in Paper I.
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5. Previous research and current knowledge gaps

In this section, an overview of the previous research done on estimating surface solar radiation
is presented. In the last part of this section, the knowledge gaps are discussed from the

perspective of estimating solar radiation in high latitude locations.

5.1 Previous research

Most of the research on remotely estimating solar radiation has been performed for mid- and
low-latitude locations by using geostationary satellites. One of the earliest validation of these
estimations was carried out by Hollmann, Mueller (108). In this research, the authors used the
data from AVHRR sensor on-board polar orbiting satellites and showed that the average mean
biases were small and were within the targeted accuracy of 10 Wm on monthly mean time
scales. In Posselt, Mueller (109), authors used geostationary Meteosat second generation
satellites and evaluated the estimated radiation at 10 locations from the BSRN network. The
highest latitude location analyzed in this study was Lerwick (UK) and this location had the
highest mean absolute deviation (MABD). In a subsequent study (110), particular
improvements were found at Lerwick because of the advancements in retrieval methods. The
bias and MABD were remarkably low with 1.27 Wm2 and 5.46 Wm2, respectively. In total,
about 94% of the monthly mean values showed an accuracy of 10 Wm™2 or better. In
Bojanowski, Vrieling (111), authors showed that the solar radiation estimation from Meteosat
first and second generation satellites had a similar accuracy, however the authors suggest that
ERA-Interim can be used as an effective backdrop to satellite products. In Sanchez-Lorenzo,
Enriquez-Alonso (112), authors studied the trends in surface solar radiation over Europe from
CM-SAF geostationary satellite products but high altitude locations were excluded from the
study, because such locations are known to have problems in deriving surface solar radiation
as shown in some other previous studies (113, 114). Similarly in Cristobal and Anderson (115),
the authors used Meteosat second generation satellites to estimate solar radiation over the
northeastern Iberian Peninsula. In this study, it was observed that the errors were small in flat
areas while an increase in errors was observed in mountainous regions. Another such study
outlined the difficulties of satellites in estimating solar radiation in mountainous regions (116).
In this study, three different algorithms were used to estimate surface incoming solar radiation
in Belgium. Although, all the algorithms underestimated solar radiation when compared to
ground measurements, the authors of this study expected the sensitivity to increase in regions

with strong influence of mesoscale meteorology such as coastlines and highlands as compared
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to mid latitude regions with a rather flat orography. The reason for this shortcoming is explained
in Amillo, Huld (117), which showed that the accuracy of estimating effective cloud albedo
(CAL) decreases towards the edge of the field of view of satellite, mainly because of very
shallow angles. This slant-viewing angle introduces biases that tend to be larger near the edge

of the satellite images, which start affecting the accuracy around +65° latitude.

In Alexandri, Georgoulias (118), authors compared CM-SAF SARAH dataset with CERES
(Cloud and the Earth's Radiant Energy System), GEWEX (Global Energy and Water Cycle
Experiment), ISCCP (International Satellite Cloud Climatology Project) and ERA-Interim for
Eastern Mediterranean. Overall, SARAH performed better than other datasets. Similarly in
Urraca, Martinez-de-Pison (119), authors analyzed global horizontal irradiance from SARAH,
ERA-Interim, interpolated ground-measurements (Ordinary kriging) and a statistical model
called XGBOOST. In this study, 38 ground stations in central Spain were evaluated and it was
found that SARAH provides better solar radiation estimates with low variability. Both of these
studies showed that satellite products underestimate solar radiation. In another study it was
shown that intermediate-sky conditions are overestimated while these overestimations increase
further in overcast conditions, however areas affected by snow may have larger uncertainties
(117). In some studies, around 5-10 Wm™2 of mean absolute deviations for monthly means was
observed in geostationary satellite databases (77, 109, 110, 114, 120, 121). Most of the studies
reported satellite methods to underestimate incoming solar radiation, besides some studies like
Zé&k, Mik3ovsky (120) and Hakuba, Folini (122) that reported overestimation.

One of the more relevant studies to this thesis was done by Riiheld, Carlund (84). In this study,
authors validated the first editions of SARAH and CLARA datasets over multiple locations in
Sweden and Finland, spanning from 55° to 70°N. Both datasets were found to have monthly
mean accuracy better than 10 Wm and a daily mean accuracy of 15 Wm2. SARAH was only
able to provide coverage in southern Nordic regions because of its limited coverage. However,
unlike CLARA, SARAH provide coverage on snow covered surfaces, although the 2" edition
of CLARA now provides more coverage on snow covers (30, 31). SARAH error characteristics

were seen to have latitude dependence and errors increase with increasing latitude.

Another very recent and relevant study was done by Urraca, Gracia-Amillo (30), in which
authors made an extensive evaluation of CM-SAF products including SARAH-2 and CLARA-
A2 datasets. In this study, 313 ground stations were evaluated from several European countries,
which included 29 stations from Norway. Satellite datasets underestimated at high latitudes
while a slight overestimation was observed in southern regions. CLARA showed very good
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temporal stability while keeping a small constant underestimation in majority of locations,
however, the MABD in CLARA was larger than SARAH by 1-2 Wm™. ERA-Interim was found
to have a constant positive overestimation and absolute errors almost double that of the satellite
datasets. In this study, although CLARA underestimated solar radiation, a significant decrease
in the bias is found when compared to the first edition of CLARA dataset (81). Locations with
seasonal snow covers, which are abundant at high latitude locations, were observed to have
large underestimation. In a similar way, SARAH was seen to be underestimating as well but
the underestimation was again larger for regions with snow covers. This is because the satellite
algorithms only use the visible channel to detect the presence of clouds, hence these cannot
differentiate if a bright pixel corresponds to a cloud or to a surface covered with snow.
Moreover, satellite models fail on mountainous regions because the spatial and temporal
resolutions are not high enough to account for the sharp terrain and changing weather conditions
(30).

On the contrary, reanalysis overestimate incoming solar radiation as reported in multiple studies
(30, 111, 119, 123). Although, not as many studies have been performed on the evaluation of
reanalyses for incoming solar radiation as there are on satellite estimations, some studies like
Urraca, Huld (28), Bojanowski, Vrieling (111) suggest that reanalysis have been improving and
these can be used where the satellite data is missing or inaccurate.

5.2 Thesis work in relation to knowledge gaps

The previous section highlighted a number of interesting topics that were chosen for further
research in this thesis. The knowledge gaps associated with these research areas are summarized
and linked to the appended papers in the following:

e The number of meteorological stations recording shortwave incoming solar radiation is
very low in Northern Norway. Even though there are many meteorological stations
recording other atmospheric variables like temperature, precipitation, and humidity, the
number of station recording solar radiation remains low. The model proposed in Paper
I can be used to construct estimated solar radiation by using temperature and humidity
at these stations.

e There are very few studies carried out on evaluating solar radiation datasets from polar
orbiting satellites. Paper Il and Il provide an evaluative analysis for polar orbiting
CLARA dataset for high latitude locations.
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Arctic system reanalysis (ASR), which is a polar optimized dynamic downscaling of
ERA-Interim, was not evaluated any further for solar radiation in high latitude regions.
An assessment was provided in Paper I11 on ASR version 2. It was found that this dataset
provides very large uncertainties in estimating solar radiation.

Because of the low coverage provided by geostationary satellites, they do not provide
coverage in northern Norway. Moreover, the errors in geostationary datasets increase
with increasing latitudes. Databases from polar orbiting satellites (CLARA-AL) can be
used at high latitudes but because of snow covers, they have a large number of missing
data as shown in Paper II.

New datasets based on polar orbiting satellites (CLARA-A2) provide less missing
values but these improvements are mainly on high latitudes and snow cover periods.
When analyzed, these new data points were seen to have large errors as shown in Paper
.

ERAJS, a recently published reanalysis, is evaluated in Paper Ill. The results show that
ERAS provides reasonable errors and can be used as a supporting dataset when satellite
datasets do not provide coverage, have missing values or large uncertainties.
Reanalyses are reported to overestimate solar radiation while satellite databases
underestimate solar radiation. A new dataset is presented here which is constructed by
using a Random forest regression on reanalysis and satellite dataset. This model
improves the solar radiation estimations in a number of ways. In the proposed model,
there are no missing values, and the accuracy is better than both the reanalysis and

satellite datasets.
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6. Results

This chapter summarizes the results from the appended papers in two sections. In the first
section, available resources of solar radiation estimation are analyzed and discussed. In the
second section, the results from the evaluations of the datasets together with the use of a
regression algorithm are used to create a novel and improved solar radiation dataset.

6.1 Evaluation of available datasets of surface solar radiation at
high latitudes

This section summarizes the results from Papers I, 11 and I11. In Section 6.1.1, a model based
on the difference between maximum and minimum temperatures and relative humidity is
presented from Paper 1. In Section 6.1.2, the results from Paper Il are presented which are based
on a comparative analysis of CLARA-A1 and CLARA-A2. In Section 6.1.3, an analysis is
presented on the estimation accuracies of CLARA-A2, SARAH-2, ERA5, and ASR from Paper
Il.

6.1.1 A model to estimate surface solar radiation by using temperature
and humidity
This section provides an overview of the model developed in Paper I. The proposed model is
based on the Hargreaves, Samani (76), in which authors have used the maximum temperature
difference and extraterrestrial radiation in a day to estimate surface solar radiation, and
eventually the evapotranspiration. The model presented by the same authors is shown in

Equation 22.
R, = KrsR,TR50 (22)

Where, Krs is an empirical coefficient fitted to Rs/Ra versus TR data, TR is the diurnal
temperature difference between the maximum recording and the minimum recording, Ra is the
extraterrestrial radiation, and Rs is the surface solar radiation. The value of Krs in Equation 21
can take two different values, one for interior, and one for coastal regions. A value of 0.162 is
recommended for interior regions and a value of 0.19 is recommended for coastal regions. The
extraterrestrial radiation is calculated by the following equation.

360 X P
365

(2 X 1 X hs) ] (5 23
+szm(<p) X sin(8) (23)

24
R, = ?RSC (1 + 0.33 X cos ) X cos(p) X cos(6) X sin(hs)

49



Where, R, is the extraterrestrial radiation, R is the solar constant with a value of 1366 Wm?,
P is the day number (ranging from 1 for the first day of the year and 365 for the last day of the

year), ¢ is the latitude, ¢ is the declination angle and hs is the hour angles of sunrise and sunset.

The model developed in Paper | is based on the model shown in Equation 22, but in addition to
the temperature difference, relative humidity was taken into account. The proposed model is

shown in the following equation.
Ry = 0.04 X R, X TR + Kgg X Ry X (RH)?7 (24)

Where RH is the relative humidity in Equation 24. The empirical constant Krs in Equation 24
can take two values, like the model presented in Equation 22 (76). A Kgs value of 0.01 is
suggested for inland regions and a value of 0.04 is suggested for coastal regions. Figure 6.1
depicts the model estimated, observed, and extraterrestrial radiation for Tromsg, Norway in
2014,

THR Extraterrestrial, Observed and Calculated Irradiation for Tromso (2014)
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Figure 6.1: The model estimated GHI, observed GHI, and extraterrestrial radiation for Tromsg

in 2014. The radiation is expressed in Wh.m (energy).

The model in Equation 24 was tested at eight locations in Norway. Compared to the original
method proposed by Hargreaves and Samani, the daily average percentage error was improved

by 0.2%, and yearly average percentage error was improved by 10.8%.
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6.1.2 A comparison of CLARA datasets and an analysis of improvements
in CLARA-A2

Most solar radiation datasets do not provide coverage above 65°N (or below 65°S) because
majority of these datasets are based on geostationary satellites (an example of which is the
SARAH dataset, discussed in the next section). For areas above 65°N, the CLARA datasets,
published and managed by CM-SAF, provide precise surface solar radiation estimations. At the
time of writing, CM-SAF has published two editions of CLARA datasets. For further
information on these datasets please refer to Section 4.3.2 or Karlsson, Anttila (81) and
Karlsson, Riihela (77).

In Paper 11, a comparative analysis was presented for CLARA-A1 and CLARA-A2 datasets
with an emphasis on the improvements of CLARA-A2. The study was performed for eight
locations in Norway and seven locations in Sweden for 14 years between 1995 and 2009. The
ground data for the analysis was acquired from NIBIO and SMHI, but unlike in Papers Il and
IV, quality control procedures were not applied except discarding years with more than 10% of

missing values.

In this analysis, it was observed that the new dataset (CLARA-A2) had less missing data points;
however, the errors and biases were found to be reduced in the previously existing data points
when compared to CLARA-AL. Figure 6.2 shows the Hovmodller plots for CLARA-AL and A2
datasets, which highlights the quantity of missing data points in each dataset.
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CLARA-A1, longitude=10, latitude=40:70, 1995-2009 CLARA-A2, longitude=10, latitude=40:70, 1995-2009
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Figure 6.2: Hovmoller plots for CLARA-A1 and A2 datasets for 1995 to 2009. These plots are
centered at 10° longitude and span from 40°N to 70°N latitude.

As seen from Figure 6.2, both the datasets have increasing number of missing values with
increasing latitudes (latitudes increase from left to right in Figure 6.2). CLARA-A2 had less
number of missing data points than the previous edition CLARA-AL. However, as can be seen
from Figure 6.3, the improvement in the data availability is mostly on the high latitude areas

that have more snow depth than the low latitude areas.
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GLARA A2:Missing (monthly mean) data points between 1995-2009 CLARA A1:Missing (monthly mean) data points between 1995-2009
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Figure 6.3: Missing data in CLARA-AL and A2 datasets is illustrated. From (A1) and (A2) it
can be seen that the number of missing data is reduced in CLARA-A2, however the decrease
in missing data is mostly on high latitude locations with high snow depths, as shown in (B1)
and (B2). From Paper I1.

The increase in the availability in CLARA-A2 was mostly in snow-covered regions. As
explained in Section 4.3.2, satellite estimation methods particularly those used in CLARA
datasets have difficulties in differentiating between clouds and snow-covered surfaces because
IR channels are not used in the radiation estimation algorithm. These new data points had very
large errors especially at the locations studied in Paper Il. Norwegian locations had a 12%

increase in the availability of data and Swedish locations had a 9.6% increase, and as can be
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seen from Figure 6.3 (B1), Norwegian locations receive more snow than Swedish location.
Figure 6.4 depicts the increase in availability in CLARA-A2 dataset in quarter-yearly monthly
averages. In the period from February to April, coastal regions in Norway and central parts of
Sweden had the most increase in data availability. While in the period from May to July, the
inland and southwestern parts of Norway and northern parts of Sweden had the largest increase.
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Figure 6.4: Percentage increase in the availability of CLARA-A2 dataset in each quarter. The

highest increase is in the areas that have complex topography in addition to snow covers.

For Norwegian locations, the new data points had a mean absolute bias deviation (MABD) of
17.7 Wm while for Swedish locations, an MABD of 15.2 Wm™ was found. In comparison to
the errors in new data points, other data points had an MABD of 8.3 Wm for both Norwegian
and Swedish locations. This showed that the new data points had large errors because these are

primarily estimated on snow covers.

Overall, CLARA-A1 had an MABD of 8.0 Wm and CLARA-A2 had an MABD of 8.9 Wm
for Norwegian location. For Swedish locations, CLARA-A1 had an MABD of 8.1 Wm and
CLARA-A2 had an MABD of 8.7 Wm2. However, for all location including sites from Norway
and Sweden, CLARA-A1 had an MABD of 8.0 Wm and CLARA-A2 had an MABD of 8.8
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Wm=2. The MABD was observed to be larger in the new edition of CLARA because as
previously explained, this dataset had less number of missing values, and the new values were

mostly on the snow-covered regions, which increased the overall errors in the dataset.

In Paper Il an energy analysis for CLARA-A1 and A2 was performed. The energy is expressed
in KWh on a meter square in a year and it was calculated by integrating the daily average values.
In this particular analysis, gap filling was not applied. Evidently, as CLARA-A2 had less
missing values than CLARA-AL, it was found that CLARA-A2 estimated yearly energy values
more accurately than CLARA-AL. The conclusion drawn from this study was that CLARA-A2
brings improvements but at the cost of high errors on the new data points which were previously
not available in CLARA-AL.

6.1.3 Investigating solar radiation datasets for high latitude locations — A
comparative analysis of CLARA-A2, SARAH-2, ERA5 and
ASRv2

In Paper Ill, CLARA-A2, SARAH-2, ERA5, and ASRv2 datasets were analyzed for their
accuracy at 31 locations in Norway. The coordinates and land type of locations included in the
study can be found in the Appendix, Table A. In addition to accounting for the accuracy, this
study also gives a comparative analysis for the surface solar radiation datasets for high latitude
locations. In Paper Il1, three quality-control procedures were applied as described in Section
4.4. In the first control, years having more than 5% of missing data were removed from the
analysis. A second quality control was applied by using BSRN Global Network recommended
Quality Control test, V2.0 (67) as explained in Section 4.4.1. A final quality control procedure
is applied based on Urraca, Gracia-Amillo (68), which is explained in Section 4.4.2. For a list
of year not included in the study, refer to the Appendix, Table B. Table 6.1 shows the properties
of the datasets used in this study.
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Table 6.1: Description of the datasets used in this study. The period analyzed, spatial, and
temporal resolutions are shown for each dataset.

Datasets Method Years Spatial Highest Spatial limits
analyzed resolution temporal
resolution
CLARA | Polar-orbiting | 2000-2015 0.25%x0.25° Daily Global
Satellite
SARAH | Geostationary | 2000-2015 0.05°x0.05° 30 min Limited to +65°
Satellite latitude and £65°
longitude
ERA5 Reanalysis 2000-2015 | 0.281°x0.281° Hourly Global
(Global)

ASRv2 Reanalysis 2000-2012 | 0.136°x0.136° 3 Hours 180W - 180E
(Regional longitude
renalaysis 24.643N - 90N

downscaled latitude
from ERA-
Interim)

The datasets were assessed based on RMSD, MABD, and MBD for daily, monthly, and yearly
averages of GHI. In addition, a yearly energy analysis was performed. To assess the accuracy
for different geographical regions, the locations were divided into four categories, as explained
in Section 4.2. Moreover, a sky stratification analysis was performed to assess the performance
of these datasets in different sky conditions. In the end, ERA5 was analyzed in-depth for cloud
placement by investigating the total column of water content and agreement on sky
classification by comparing it to ground-measured data and CLARA-A2 dataset.

Table 6.2: Error metrics expressed in Wm2, for the datasets analyzed in Paper Il. Numbers
without parentheses are monthly averaged errors while those in parentheses are daily averaged
errors. Numbers are averaged over all stations. Error metrics for different geographical groups

are also shown.

RMSD (Wm?2) MABD (Wm?) MBD (Wm?)

CLARA[SARAH| ERA5 | ASR |CLARAJSARAH| ERA5 | ASR |CLARA|SARAH| ERA5 | ASR
95 | 87 99 | 217 | 63 5.8 64 | 145 | 31 | -36 | 21 | 131
All Sites | (18.2) | (17.9) | (26.4) | (42.6) | (12.6) | (11.6) | 16.7) | (27.1) | (-1.7) | (-26) | (@) | (16.9)
Above | 10.1 109 | 203 | 54 61 | 111 | -3.4 37 | 80
65N | (16.0) | - | (26.3) | (39.4) | (9.7) - | @45 | @15) | (29 | - (5.6) | (11.0)
Below | 93 | 87 98 | 219 | 64 | 58 64 | 150 | 30 | -36 | 19 | 138
65°N | (18.4) | (17.9) | (265) | (43.0) | (13.0) | (11.6) | 17.0) | (27.9) | (-15) | (-2.6) | (3.8) | (17.8)
91 | 86 | 100 | 218 | 58 5.7 62 | 139 | 28 | -35 | 22 | 119
(16.9) | (17.1) | (26.4) | (41.9) | (11.6) | 11.2) | (16.3) | (25.6) | (-1.4) | (-2.3) | (4.2) | (15.7)
98 | 88 99 | 217 | 67 5.8 65 | 150 | 33 | -37 | 21 | 140
(19.1) | (18.1) | (26.4) | (43.1) | (13.4) | 11.9) | 17.1) | (283) | (-1.2) | (-2.8) | (4.0) | (18.0)

Coastal

Inland
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From Table 6.2, it can be seen that CLARA and SARAH are more accurate than ERA5 and
ASR. ASR was observed to have very low accuracy when compared to other datasets, partly
because it is a downscaling of ERA-Interim, which is a predecessor of ERA5. On location above
65°N, CLARA had smallest errors among all datasets. On monthly averages, CLARA provided
an MABD of 5.4 Wm, whereas ERA5 had a MABD of 6.1 Wm™. ASR had a large MABD of
11.1 Wm. SARAH being a dataset based on geostationary satellites does not provide coverage
above 65°N. However, at location below 65°N, SARAH had the smallest MABD of 8.7 Wm?,
followed by CLARA with an MABD of 9.3 Wm2 and ERAS5 with an MABD of 9.8 Wm™. ASR
again had the largest MABD among the datasets with 15.0 Wm™. In coastal and inland
locations, a very similar pattern was observed where SARAH performed better than other
datasets. However, in inland regions, ERA5 had slightly smaller error than CLARA; because
most of the inland regions of Norway receive more snow cover when compared to coastal
regions (see Figure 6.3 (B1)). In agreement with many previous studies, this analysis found
satellites databases to underestimate solar radiation and reanlyses to overestimate solar
radiation.

One of the main challenges of estimating surface solar radiation from any method is the accurate
placement of clouds in time and space. However, even the most accurate and sophisticated
methods fail to accurately estimate clouds in clear-sky and cloudy conditions. To assess the sky
stratification accuracy of the datasets studied, a clear-sky index was used. The clear-sky index
is defined as the ratio of clear-sky GHI to the GHI recorded on the ground, given by the
following equation.

GH Iground

CSI = (25)

GHI iear—sky
Where, CSI is the clear-sky index, GHlground is the global horizontal irradiance observed on
ground and GHlciear-sky IS the global horizontal irradiance from a clear sky model. For sky
classification of these datasets, the Bird clear-sky model was used (124). After calculating clear-
sky indices, following Smith, Bright (125) and Widén, Shepero (126), values larger than 0.8
were considered indicating a clear-sky day, values of CSI between 0.4 and 0.8 were considered
as intermediate-cloudy and values below 0.4 were considered as overcast. This type of
categorization is quite arbitrary in the sense that the actual conditions can vary to some degree,
e.g. CSl values larger than 0.8 are categorized as clear-sky but a small amount of clouds may

be present in any of the days in this category. Similarly, values below 0.4 are categorized as
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overcast conditions but some days may have intermediate clouds. The main aim of making such
a grouping was to separate the days into different types to assess the model performances. This
can be seen in Figures 6.5 to 6.8 that the days categorized as clear-sky have larger maximum
solar irradiance while days categorized as overcast have much smaller maximum solar

irradiance.

Figures 6.5 to 6.8 show the scatter plots of CLARA, SARAH, ERA5, and ASR datasets. These
figures also list the RMSD, MABD, and MBD of these datasets in different sky categories.
Overall, in the three categories, SARAH performed better than other datasets while ASR
performed the worst. In clear-sky category, an underestimation was observed in SARAH,
CLARA, and ERAD5, while ASR overestimated radiation. Similarly, in the intermediate-cloudy
category, both satellite databases underestimated, while reanalysis overestimated. Finally, in
the overcast category, CLARA slightly underestimated solar radiation while other datasets
overestimated. In conclusion, all the models were found to have discrepancies in presenting

clouds in all types of sky conditions.

Clear-sky days comn. Intermediate-cloudy days ot Overcast days

N'; 380 . N'; & N'; ”

= w0 oE™ =

< i < 45 p N

& % "

D o " @) ;

Grou;:d {;."\.fm'2 ) ‘ ' Gr;)und {Wm'Z} h Ground {V\Ifm'z; .
@ (b) ©
CLARA RMSD (Wm?) MABD (Wm?) MBD (Wm?)
Clear-sky 21.6 13.8 -4.1
Intermediate-cloudiness 22.2 16.0 -3.4
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Figure 6.5: CLARA daily errors under clear-sky, intermediate-cloudiness, and overcast
conditions. Scatter plots for different sky-conditions are shown. The colored legend bar shows

the density of points in the scatter plot. From Paper I1I.
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Figure 6.6: As in Figure 6.5 but for SARAH.
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Figure 6.7: As in Figure 6.5 but for ERA5.
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Figure 6.8: As in Figure 6.5 but for ASR.

Some shortcomings of satellite models in underestimating clear-sky and intermediate-cloudy
conditions are explained here. Under clear-sky conditions, CLARA uses aerosol information
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from Global Aerosol Data Set/Optical Properties of Aerosols and Clouds (GADS/OPAC)
climatology and SARAH uses aerosol information from Monitoring Atmospheric Composition
and Climate (MACC climatology). Both the datasets use integrated water-vapor information
from ERA-Interim. Aerosol information from MACC climatology is observed to have higher
accuracy than GADS/OPAC climatology (126). The maximum aerosol optical depth (AOD) is
reduced in GADS/OPAC climatology for the CLARA dataset, but the results show that the
climatology used in SARAH performs better than in CLARA even after the modifications. The
negative biases observed in the clear-sky and intermediate-cloudy categories are possibly due
to the aerosol climatology being too thick, which results in an underestimation of solar
radiation. As reported in Mueller and Tréager-Chatterjee (127) and Polo, Antonanzas-Torres
(128), both MACC and GADS/OPAC climatologies cause an underestimation in surface solar
radiation because of the apparent overestimation in AOD thickness. In addition to aerosol
optical depth, vertically-integrated water vapor values taken from ERA-Interim are shown to
be too large (129), which can further attenuate the surface solar radiation. In ERADS, the radiative
transfer model RTTOV11 (Radiative Transfer for TOVS) has a tendency to underestimate
reflectance of high cumulus cloud tops while the reflectance of lower water clouds is
overestimated which can cause an underestimation in clear-sky conditions and overestimation
in intermediate-cloudy and overcast conditions. In ASR, all the conditions are overestimated
which shows that there is an underestimation in aerosol optical depth and cloudiness in the

atmosphere.

In the final analysis of this study, the cloud estimation accuracy of ERA5 was explored, as it is
proposed as a complimenting alternative to satellite datasets. For all the locations, the RMSD
of monthly values for ERAS is similar to that of CLARA and SARAH, but the RMSD of daily
values (in parentheses) was considerably larger in ERA5 when compared with the satellite
databases. On even larger time scales (see Paper 111), the difference decreased further. In this
analysis, the total cloud water content (TCWC) and short wave solar radiation downward, clear-
sky (SWSDC) from ERAS were used here. Clear-sky indices for ground-measured data, ERAS5,
and CLARA-A2 were calculated by using SWSDC from ERA5 because the clear-sky values
from ERAS have the aerosol and water content information, which is used in calculating the
surface solar radiation. This analysis was performed for days when the solar zenith angle is
lower than 90°. Times when the solar zenith angle is higher than 90° was not considered in this
analysis, as the intent here is to analyze solar radiation and TCWC, however, when the solar
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radiation is not available, the TCWC is present. Including nighttime values in this analysis

would have influenced these results.

Table 6.3: The number of days and mean TCWC from in-situ ground measurements, ERA5
and CLARA are shown in the table for different sky categories. The number of days and mean
TCWC in each cloudiness category for ERAS is shown separately for cases when ERAS5 and
ground measurements agree on classification and for cases when there is a disagreement. Years

from 2000 to 2015 were used in this analysis over all locations included in the study.

Ground data CLARA data ERAS data ERA and ground ERA and ground
agree disagree
No. of Mean No. of Mean No. of Mean No. Mean No. of Mean
days TCWC days TCwWC days TCWC of TCWC days TCWC
(Kg.m-2) (Kg.m-2) (Kg.m-2) | days | (Kg.m-2) (Kg.m-2)
Clear-sky 38265 0.03 39516 0.03 53211 0.02 2950 0.02 8765 0.07
(30.2%) (31.3%) (33.4%) 0
Intermediate- 49207 0.09 45244 0.10 75268 0.10 3470 0.10 14507 0.07
cloudiness (38.8%) (35.8%) (47.4%) 0
Overcast 39181 0.22 41417 0.22 30389 0.29 2091 0.30 18004 0.12
(30.9%) (32.8%) (19.1%) 4

In this analysis, it was found that ground measurement and CLARA classify almost the same
percentage of days into each category, however, ERA5 was observed to classify a large number
of days as intermediate-cloudy and a small number of days as overcast than in-situ observations,
hence showing that it had a negative bias towards classifying a day as overcast. CLARA had
very similar mean TCWC values as ground measurements but ERA5 slightly underestimated
TCWC in the clear-sky category but largely overestimated it in overcast category, as shown in
Table 6.3. Moreover, in ERA5 the mean TCWC was slightly underestimated in the clear-sky
category but largely overestimated in overcast category. The agreement on sky conditions was
also analyzed and it can be seen from Table 6.3 that the mean TCWC of days with agreement
is the same as that of ERAS, but on the days of disagreement, there is an overestimation in mean
TCWC in clear-sky days and an underestimation in overcast days. These results showed that
on clear-sky days, ERA5 had more clouds than in-situ observations, which was seen by higher
levels of TCWC, while on the overcast days there was a lower amount of clouds, which was
seen by lower levels of TCWC. Figure 6.9 shows the scatter plot of ground measurements and
ERADS for both of these conditions, i.e. when there is an agreement on classification and when
there is a disagreement. It can be seen that the spread is large when there is a disagreement. A
correlation coefficient of 0.98 is found for agreement data points while a correlation coefficient

of 0.90 is found for disagreement points.
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Figure 6.9: Scatter plots for the days when ERA5 and ground measurement agree on

classification and when there is a disagreement. A correlation coefficient of 0.98 is found for

agreement points and 0.90 for disagreement points.

The RMSD, MABD, and MBD were calculated for different sky conditions and when ERA5
and ground measurements agreed on sky conditions and for when there was a disagreement.
This error analysis showed that the highest increase in errors was seen in clear-sky and overcast
categories with MABD of 42.6 Wm and 30.6 Wm™, respectively. The MBD was positive in
clear-sky category and negative in intermediate-cloudiness and overcast categories, which
further showed that there was less amount of clouds in the clears-sky category and more amount
of clouds in intermediate-cloudiness and overcast categories. From a solar energy-harvesting
point of view, the clear-sky days produce more energy than intermediate-cloudy or overcast
days. It can be observed that ground-measurement and ERAS predicts almost the same
percentage of clear-sky days, which further shows that on daily averages, reanalyses may not

predict clouds accurately but on longer time scales, the solar radiation estimation improves.

In conclusion, both CLARA and SARAH provided good estimates but both of these datasets
had some shortcomings, including the spatial limits of SARAH and the low temporal frequency
of CLARA. On the other hand, ERA5 provided advantages in the form of historical data series
and global coverage. Based on these results, it was suggested that CLARA and SARAH provide
better estimates for solar radiation, but ERA5 can be used to fill the missing data in these

datasets.
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6.2 A Random Forest regression based model

As presented in previous section, satellite based models are more accurate than reanalyses,
however the accuracy of satellite models deteriorate with increasing latitude. Moreover, unlike
reanalyses, satellite models have missing values and a negative bias. In Paper IV, a novel
method was presented which is based on taking advantage of these over and underestimation
of ERA5 and CLARA datasets. A regression-based method was used to construct a new datasets
by using CLARA and ERAS5. The new dataset provided more accurate estimations of surface
solar radiation than the input datasets.

The regression model used in Paper 1V is called Random Forest Regression (RFR), explained
in Section 4.5. Initially in this study, Gaussian process regression was used to improve the solar
radiation estimates, but experimenting with RFR provided better results. In this study, 31
locations from NIBIO solar radiation-measuring network were used (refer to the Appendix,
Table A for information on the locations and Table B for information on rejected years). In
addition, five stations from SMHI solar radiation measuring network from Sweden were used
to evaluate the performance of the proposed dataset (Appendix, Table C). To train the model,
20% of the data from Norwegian ground-measuring stations was used. In addition to solar
radiation measurements and estimates, latitude of locations, altitude, solar zenith angle, and
clear-sky index was used as inputs to the regression model. To evaluate the robustness of the
proposed model, locations from Sweden were used to check the accuracy of the proposed
model. The data from Swedish locations were not used in the training of the model. The RFR

was trained on a workstation with 16 cores and 64 GB of RAM.

Table 6.4: RMSD, MABD, and MBD of the input data sets and the presented model are shown.
The metrics are shown for different geographical locations, including below 65°N, above 65°N,
coastal, and inland regions. Numbers without parentheses are monthly averaged errors while

those in parentheses are daily averaged errors.

RMSD (Wm?) MABD (Wm?) MBD (Wm?)

CLARA | ERAS Model CLARA | ERA5 Model CLARA | ERA5 Model

All sites 96 10.2 6.6 6.3 7.0 43 16 39 0.2
(19.1) (26.7) (15.7) (13.1) (16.7) (10.2) (-2.0) (3.9) (-0.2)

Above 65°N 96 10.1 65 6.3 6.9 42 16 38 0.2
(16.0) (26.3) (13.7) 9.7) (14.5) (8.2) (-2.9) (5.6) (-0.1)

Below 65°N 97 12.7 8.0 65 94 54 18 57 0.1
(19.5) (26.8) (15.9) (13.6) (17.3) (10.5) (-1.8) (3.9) (-0.1)

Coastal 97 10.1 6.6 6.4 70 43 17 38 0.2
(16.7) (26.7) (14.8) (11.4) (16.3) (9.4) (-1.1) (4.9) (0.4)

Inland 8.2 11.2 6.6 57 79 46 06 45 0.1
(20.8) (26.7) (16.4) (14.4) (17.5) (10.8) (-2.6) (3.4) (-0.4)
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Table 6.4 shows the errors in CLARA, ERAS5 and the proposed model for Norwegian locations.
The model improves the MABD by more than 20%. On monthly averages for all sites, CLARA
had an MABD of 6.3 Wm2, ERA5 had an MABD of 7.0 Wm™, and the proposed regression
model had an MABD of 4.3 Wm, which shows a relative improvement of 32% and 39% with
respect to CLARA and ERA5. The RMSD of the proposed model was also smaller than
CLARA and ERAS5, with improvements of 31% and 35%, respectively. However, the bias or
MBD was negative for the proposed model as in the case of CLARA. The reason for the
negative bias is that CLARA is a more accurate dataset than ERAS5; hence, in the regression,
more weightage is given to CLARA than ERA5. However, the magnitude of bias in the
proposed model is smaller than CLARA. From the bias-variance decomposition of mean
squared error (MSE=RMSD?), the variance can be computed as: Var=RMSD?-Bias?. We can
use this to use that the variances of CLARA and ERAGS are very similar, and the variance of the
RFR model is less half of these. This proves that the RFR model also provides a large

improvement in precision.

Moreover, the R? values and the standard deviation (STD) of the Norwegian locations were
analyzed as well. Values of the coefficient of determination, R?, are computed from the ground-
measured and model data. The standard deviation is a measure of the spread of the prediction
errors around their mean value. Table 6.5 shows the R? values and standard deviation for all
Norwegian locations, in addition to below 65°N, above 65°N, coastal and inland regions. The
standard deviation in Table 6.5 has units of Wm™, whereas R? has no units. For standard
deviation, the smaller the value, the better the model estimates and for R?, the larger the value,
the better are the estimates.

Table 6.5: The R? and error standard deviation analysis of CLARA, ERAS, and the proposed
RFR model for Norwegian locations is shown here. The RFR model improves the estimates in
all types of geographical categories. The unit of the standard deviation (STD) is Wm-2 and R2

is unit-less. Best results are indicated in bold.

NIBIO sites Above 65°N Below 65°N Coastal Inland
R? STD R? STD R? STD R? STD R? STD

CLARA 0.96 23.8 0.96 18.4 0.95 25.0 0.97 211 0.95 25.9

ERA 0.92 26.9 0.89 28.5 0.92 26.7 0.91 27.1 0.92 26.7
RFR 0.97 16.0 0.97 15.3 0.97 16.1 0.97 15.3 0.97 16.5
(proposed)

The proposed regression model improves the solar radiation estimates at all Norwegian

locations. The largest improvements were observed in location above 65°N, although the
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differences are small. The proposed model had lower standard deviation than CLARA and

ERADS in all geographical groups.

The error analysis was also performed for locations above 65°N, below 65°N, coastal and inland
regions. Although the model improved the estimated solar radiation, most of the improvements
were seen in coastal regions and regions lying above 65°N. In addition, a seasonal analysis was
also performed on the accuracy of the proposed dataset (see Paper 1V). Major improvements
were observed in the period of February to July, which evidently are the months that receive
largest portion of solar radiation in a year at high latitude locations. One of the shortcomings of
the CLARA dataset is the high errors when the solar elevations angles are very low, as in the
case of early winter period and late summer period. On the contrary, in these periods ERA5
provides better estimates than CLARA does. The proposed model takes advantage of ERA5S
capabilities of improved surface solar radiation estimates at low solar elevation angles and

improves the estimates by weighing ERAS5 more at these times.
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Figure 6.10: Proposed regression model errors under clear-sky, intermediate cloudy and
overcast skies. The scatter plots for different sky conditions are also shown. The colored legend

bar shows the density of points.

In this study, the sky stratification capability of the proposed data set was studied to assess its
performance in different sky conditions. Figure 6.10 show the scatter plots of proposed model
in different sky conditions. The method used in sky stratifications used here is the same as

shown in the previous section and Paper IlI.
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The proposed model improved the surface solar radiation accuracies in all three sky-categories.
Large improvements were observed in clear-sky and intermediate-cloudy categories, while a

somewhat small improvement was observed in overcast category.

In the final analysis, solar radiation estimates from the model were evaluated against five
Swedish ground-measuring stations. For information on these station refer to Appendix Table
C (stations marked with *). As previously explained, the data from Swedish locations was not
used in training the regression model. The analysis is shown in Table 6.6, and it can be seen
that the model improves the solar radiation estimates in Swedish locations. This robustness test

shows that this model can be used to improve solar radiation estimates at high latitude locations.

Table 6.6: The RMSD, MABD, and MBD of the input data sets and the regression model for
Swedish locations are listed. These locations were not used in the training of the regression
model. Numbers without parentheses are monthly averaged errors while those in parentheses

are daily averaged errors.

RMSD (Wm?) MABD (Wm?) MBD (Wm)
CLARA | ERA5 | Model | CLARA | ERA5 | Model | CLARA | ERA5 | Model
Kiruna 17.2 7.6 11.0 10.1 49 6.8 -7.0 2.3 -5.9
(26.6) | (24.0) | (18.7) (16.6) | (14.4) | (11.7) (-8.2) (-2.5) | (-6.0)
Luled 10.6 10.4 5.6 6.9 6.6 3.8 -4.4 5.1 2.1
(24.4) | (25.1) | (17.5) (14.9) | (15.3) | (11.0) (-4.2) (4.9 | (-2.1)
Umed 8.3 7.1 55 6.1 4.4 3.8 -3.2 2.0 -2.6
(16.4) | (23.0) | (13.5) (11.5) | (14.2) | (9.1) (-3.5) (2.1) | (-2.5)
Stockholm 6.8 7.0 5.9 5.1 4.8 45 2.6 3.1 3.9
(16.4) | (23.6) | (14.6) (11.5) | (15.7) | (10.0) (2.5) (3.1) (4.0)
Goteborg 47 9.5 4.8 35 7.3 3.7 1.6 6.9 3.0
(14.9) | (26.1) | (14.4) (10.5) | (17.0) | (9.9) (1.8) (6.8) (2.9)
SMHI 10.4 8.4 6.9 6.3 5.6 45 2.1 2.9 -0.8
locations (20.3) | (24.4) | (15.9) (13.0) | (15.3) | (10.3) (-2.3) (2.9) | (-0.7)
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7. Discussion and future work

This chapter presents a discussion on the topics covered in this thesis, appended paper, and

provides an overview of the future work.

7.1 Discussion

This research provides an in-depth evaluation of surface solar radiation estimation datasets for
high-latitude locations. The solar energy penetration in Norway has been very low when
compared to the neighboring countries. One of the hindrances in having higher penetration is
the available data and maps for a feasible decision making process. Ground measuring stations
are sparse and there are a handful of these stations recording surface solar radiation at high
latitude locations. The quality control of the ground-measured data is another important issue

as it was observed in this work.

Remotely sensed solar radiation data by satellites provides accurate estimation in mid latitude
and equatorial regions, however, at high latitude regions these dataset deteriorate because of
the complex viewing angles between terrain, satellites and the Sun. This thesis provides an

overview of these available resources for high latitudes along with their accuracies.

Recent studies have shown that the solar radiation estimation from reanalyses has been
improving. These dataset provide a valuable support to the satellite datasets, which are currently
more accurate than reanalyses. As the ground measuring stations in Norway are located at large
distances from each other, reanalyses provide the most reliable and feasible solar radiation

estimates for filling gaps in ground-measured and satellite data.

In this thesis, advanced regression method was used to improve the surface solar radiation
estimates from satellite and reanalyses datasets. With increasing computing power and
sophisticated machine learning algorithms, large datasets are now easier to model. These
methods show that with low computing power, large improvements can be made in the available
data. In addition to solar radiation, these methods can be used on other renewable energy

Sources.
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7.2 Future work

This thesis provides models and research regarding solar radiation estimation in high-latitude
locations. There could be a number of extensions to this works. Some planned research targets

are as follows:

e The main solar radiation measurement provider in Norway is NIBIO. This research has
found quality control issues in the in-situ measurements in the NIBIO data. This data
can be quality controlled by using advanced and sophisticated methods. Flags can be
introduced for erroneous data, in addition to replacing the erroneous data with the model
datasets analyzed in this thesis.

e The regression model presented in Paper IV is more accurate than other available
dataset. However, the highest temporal resolution of the proposed data set is limited to
daily averages. A future extension of this work includes increasing the temporal and
spatial resolution of this data set by using statistical methods.

e The evaluation of the regression model was limited to Scandinavia in this thesis. The
data used to train the model was also limited to Norwegian locations. An interesting
research extension could be to include data from northern American and Russian
regions, so as to have a larger training and testing datasets.

e The datasets analyzed here and the proposed model will be used in performing multiple
rooftop solar potential studies by using ArcGIS.

e The new regression based dataset should be used to compute and present a complete
solar radiation resource map over the entire Scandinavia and other high latitude regions.

e As shown in this thesis, satellite estimation of solar radiation deteriorates on snow-
covered surfaces. A possible research extension is to investigate snow-covered areas
through auxiliary data, e.g. IR data from satellites, snow depth data from ERA5 and

improve the surface solar radiation on snow-covered surfaces.

68



8. Summary of conclusions

This chapter summarizes the main conclusions of the research presented in this thesis. These

concluding remarks are related to the aims of the thesis presented in Section 1.1 and the

knowledge gaps indicated in Section 5.

Modelling surface solar radiation by using meteorological variables (Paper I)

It was shown that meteorological variables could be used to estimate surface solar
radiations in high latitude locations. Moreover, when compared to other such models,
the inclusion of relative humidity improves the results. These kind of models can be

used at meteorological stations that do not record surface solar radiations.

Comparative analysis of CLARA-A1 and CLARA-A2 (Paper I1)

The CLARA datasets provide surface solar radiation estimates in the Polar Regions. In
2017, the latest version of this dataset called CLARA-A2 was published. A study was
performed to assess the improvement of the new edition. It was found that the new
edition is more accurate than the CLARA-A1 along with having reduction in the number
of missing values. However, the new data points in CLARA-A2 mostly lie on the snow-
covered surfaces that have large errors.

As the northern Scandinavian regions have frequent snow covers in winter, the CLARA-
A2 dataset should be used after a proper analysis of land surface properties and biases

in solar radiation estimation.

Assessment of satellite and reanalyses datasets for high latitude regions (Paper

1)

A number of satellite and reanalyses provide surface solar radiation estimates at high
latitude regions. This analysis showed that surface solar radiation datasets based on
satellites provide better estimates than reanalyses.

Above 65°N, CLARA delivers the best estimates and below 65°N, SARAH gives the
best estimates. However, the solar radiation estimates from these datasets deteriorate on

snow-covered surfaces.
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The newly published reanalysis by ECMWEF called the ERA5 provides surface solar
radiation estimates on a high temporal resolution. Even though this dataset is not as
accurate as satellite dataset, the solar radiation estimates from ERA5 can be used to fill
the missing gaps in the monthly mean values of the CLARA datasets.

Arctic System Reanalysis, which is a polar optimized downscaling of ERA-Interim, was

found to have very large errors.

A random forest regression based solar radiation dataset (Paper 1V)

The knowledge gained from preceding studies was used in proposing a dataset based on
a random forest regression by using CLARA-A2, ERAS and auxiliary data. It was found
that the proposed model has a considerably improved accuracy compared to CLARA-
A2 and ERAS.

The proposed regression model was trained on 20% data from Norwegian locations. On
the Norwegian testing data, substantial improvements were observed. In addition, the
same regression model that was trained on Norwegian data was also tested on five

Swedish locations with very similar improvements.
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Appendix

Table A: Information about the site locations from Norway used in the thesis and appended
papers. The table shows the coordinates of ground measuring stations along with their altitudes,

and land type. Paper 1l and IV.

Station Latitude Longitude Altitude Land type
1 Holt 69.65 18.91 12 Coastal
2 Sortland 68.65 15.28 14 Coastal
3 Vaganes 67.28 14.45 26 Coastal
4 Tjetta 65.83 12.43 10 Coastal
5 Skogmo 64.51 12.02 32 Inland
6 Rissa 63.59 9.97 23 Coastal
7 Kvithamar 63.49 10.88 28 Inland
8 Skjetlein 63.34 10.3 44 Coastal
9 Surnadal 62.98 8.69 5 Inland
10 Tingvoll 62.91 8.19 23 Coastal
11 Favgang 61.46 10.19 184 Inland
12 Fureneset 61.29 5.04 12 Coastal
13 Gausdal 61.22 10.26 375 Inland
14 Loken 61.12 9.06 527 Inland
15 llseng 60.8 11.2 182 Inland
16 Kise 60.77 10.81 129 Inland
17 Apelsvoll 60.7 10.87 262 Inland
18 Hgnefoss 60.14 10.27 126 Inland
19 Arnes 60.13 11.39 162 Inland
20 Etne 59.66 5.95 8 Inland
21 As 59.66 10.78 94 Inland
22 Bo 59.42 9.03 105 Inland
23 Rakkestad 59.39 11.39 102 Inland
24 Ramnes 59.38 10.24 39 Coastal
25 Tomb 59.32 10.81 12 Coastal
26 Gjerpen 59.23 9.58 41 Coastal
27 Hjelmeland 59.23 6.15 43 Inland
28 Tjelling 59.05 10.13 19 Coastal
29 Seaerheim 58.76 5.65 90 Coastal
30 Landvik 58.34 8.52 10 Coastal
31 Lyngdal 58.13 7.05 4 Inland
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Table B: List of years not included in Paper Il and IV.

Years Years having Years having
failing operational error equipment
Years having more than 5% Long and (snow/frost/ error
Station missing data Dutton test shading/soiling)
1 Holt 2001,2002,2006,2007,2008,2010 2013 2000
2 Sortland 2000,2006,2007,2010,2013
3 | Vagenes 2006,2007 2002
4 Tjotta 2006,2007 2008, 2012
5 Skogmo 2006,2007,2008,2015 2011 2013, 2014
6 Rissa 2006,2007 2000
7 | Kvithamar 2006,2007,2013
8 | Skjetlein 2006,2007 2000
9 | Surnadal 2006,2007,2014
10 | Tingvoll 2006,2007,2012
1 Favang 2006,2007 2001
12 | Fureneset 2006,2007,2011,2012
13 | Gausdal 2006,2007,2009 2015
14 Loken 2006,2007
15 llseng 2006,2007,2004 2000 2009
16 Kise 2002,2006,2007,2015 2013
17 Apelsvoll 2006,2007 2002,2003,2004 2009
18 | Hgnefoss 2006,2007 2000
19 Arnes 2006,2007
20 Etne 2006,2007 2004,2012
21 As 2006,2007
22 Bo 2000,2006,2007
23 | Rakkestad 2006,2007
24 | Ramnes 2006,2007 2009
25 Tomb 2006,2007 2009
26 | Gjerpen 2006,2007,2015
27 | Hjelmeland 2006,2007 2002, 2015
28 | Tjelling 2006,2007,2008,2014 2012,2015 2009, 2010
29 | Serheim 2000,2006,2007
30 | Landvik 2006,2007 2005,2010,2014,2015
31| Lyngdal 2006,2007 2001




Table C: Information about the site locations from Sweden used in the Paper Il and V. Location
marked with (*) were used in Paper V. The table shows the coordinates of ground measuring
stations along with their altitudes, land type, and years not included in the study.

Sweden Latitude | Longitude | Altitude | Land Cover Years not
included
1 | Kiruna* 67.83 20.43 408 Sparse forest N.A
2 | Luled* 65.55 22.13 17 Coastal/archipelago N.A
3 | Umed* 63.82 20.25 10 rural N.A
4 | Borlange 60.48 15.43 140 Urban/forest N.A
5 | Stockholm* | 59.35 18.07 30 Coastal/archipelago 1998
6 | Goteborg* 57.70 12.00 5 Coastal N.A
7 | Lund 55.71 13.21 73 Urban N.A
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Abstract. Solar radiation data plays an important role in pre-feasibility studies of solar electricity and/or
thermal system installations. Measured solar radiation data is scarcely available due to the high cost of installing
and maintaining high quality solar radiation sensors (pyranometers). Indirect measured radiation data received
from geostationary satellites is unreliable at latitudes above 60 degrees due to the resulting flat viewing angle. In
this paper, an empirical method to estimate solar radiation based on minimum climatological data is proposed.
Eight sites in Norway are investigated, all of which lie above 60 N. The estimations by the model are compared to
the ground measured values and a correlation coefficient of 0.88 was found while over all percentage error was
—1.1%. The proposed models is 0.2% efficient on diurnal and 10.8% better in annual estimations than previous

models.

1 Introduction

Solar radiation data is required when designing active or
passive solar installations. Information about solar radia-
tion is also widely used in agriculture, forestry and
biological processes [1]. In this study, the emphasis is on
the active solar installations in northern Norway and the
Arctic. Solar radiation is not an easily obtained quantity,
even though it is of great importance. In the case of
northern KEurope, solar irradiation data is scarcely
available. One of the main reasons is the unavailability
of weather stations having pyranometers, and that data
from geostationary satellites is not very accurate because of
the flat viewing angle. In this study, we present an
empirical method to calculate the solar irradiation based on
only temperature and relative humidity recordings.

The most straightforward method to measure solar
radiation would be the installation of pyranometers, but
there are two main limiting constraints in this approach.
The first being the high cost of the equipment, and
secondly, the regular maintenance. Due to these con-
straints all over the world and especially in northern
Norway, such equipment is often not installed even at the
weather stations, set up and maintained by the Norwegian
Meteorological Institute. Globally, the percentage of
weather stations recording the solar radiation is small,
roughly 10%, as compared to the stations recording other
climatological quantities like temperature, precipitation,
humidity, etc. while the ratio of weather station recording
short wave solar radiation to stations recording tempera-
ture is 1:500[1]. In the context of Norway, Bioforsk and

* e-mail: bilal.babar@uit.no

Meteorologisk Institut have 70 high quality weather
stations recording the radiation. In addition, Energinettet
has 32 station installed with pyranometers (low quality
recordings, non-ISO9060 compliant) and Norwegian Radi-
ation Protection Authority has 10 stations in Norway [2].
Of the 1044 weather stations in Norway [3], only 112
stations provide radiation data. Online resources are
available but they also do not cover the area of Scandinavia
thoroughly, for example, PVGIS is having only one station
of solar radiation from Norway, while Meteonorm is having
three Norwegian station in their database of 1200
worldwide stations [2]. Satellites can be used to estimate
solar radiation, but above 60 degrees north the estimations
from satellites are not reliable because of the flat viewing
angle. Consequently there is a need for finding the solar
irradiation quantity using methods for plus 60 degree
latitudes. We propose to use an empirical model that can
calculate solar irradiation based on only temperature and
mean relative humidity as input data.

2 Estimation of solar radiation

Analytical, stochastic, empirical and artificial neural
network models have been used in the past for the
estimation of solar irradiation [4,5]. In reference [6], the
author used satellite images to calculate the ground solar
radiation through heliosat, a solar radiation estimation
method based on geostationary satellites. The modelling
of such a system is very difficult and the required
information is most of the times incomplete. Stochastic
models are used in [7] to estimate the solar radiation, but
because of the linear property of such models, they cannot
produce good enough results, as the behavior of solar
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radiation, especially in the presence of clouds, is non-
linear. Artificial neural network are very competitive in
estimating solar radiation. Authors in [8-10] have used
this AI technique to estimate the solar radiation. The
problem with this technique is the higher computational
power required in solving the problem, and secondly, the
results are not precise when the area between the
observation points is large. Such models do not take into
account the regional factors involved in the variation of
the solar radiation.

Empirical models for the estimation of solar radiation
exists since long. In 1924, one of the first models for such
estimations was proposed [11]. With this model, there is
always a need to calculate two coefficients, which vary for
different areas[12]. In reference [13], the authors showed
the dependency of temperature and solar radiation on the
evapotranspiration of an area. The proposed model is based
on the model from [13], but instead of only temperature
difference, the model takes into account the effect of
relative humidity as well.

3 Methodology

The Arctic poses a unique problem when it comes to
estimating solar radiation as the length of sunlight hour's
changes very rapidly, from the sun being below the horizon
during two winter months to 24-h sunlight during the
summer months. For the estimation of solar radiation,
equations from [13| can be used. A general form of the
equation is given below:

R, =KT x Re(Tmax - Tmin)0'5a (1)
where R, is the estimated radiation, R, is the extraterres-
trial radiation, KT is constant, T,,.« and Ty, are the
maximum and minimum temperatures. In such a model,
the global horizontal solar radiation is estimated by the
recorded levels of maximum and minimum temperatures
on a particular day. The value of constant KT varies from
0.162 for interior regions and 0.19 for coastal regions. The
main shortcoming of such a model is that it does not take
into account the effect of clouds. When observing
radiation, clouds may be the biggest affecting factor,
and the variation in the radiation caused by clouds is very
rapid and could be at a large scale.

4 Proposed model

In this paper, we propose a novel method to estimate the
solar radiation. The proposed method is based on the model
given in[13], but instead of using only temperature
difference, this method uses the relative humidity as well.
By using relative humidity as an extra variable, this system
becomes more robust and efficient. In addition, the
radiation effect on humidity is twice that of tempera-
ture [14]. A critical value of relative humidity results in the
cloud formation, which increases from zero at some
specified relative humidity, to overcast when relative
humidity is 100%. It becomes evident that for an overcast
day the estimation model from equation (1) could be

improved by taking in to account the relative humidity
(a commonly recorded meteorological variable). This
model performs relatively better on days having clouds.
The equation used in this study is shown below:

R,=0.04 X Re X (Tmax — Tmin) + CT x R, x (RH)**.

(2)

In equation (2), R, is the estimated horizontal global
solar radiation, R, is the extraterrestrial solar radiation,
RH is daily averaged ground-measured relative humidity,
Trin and T}, are the minimum and maximum temper-
atures, respectively. CT is a constant, which varies
geographically. The parameter R, limits the estimated
values of the global radiation to certain levels. In the
Arctic, between the months of November and January
when there is no light, the value of extraterrestrial
radiation is zero, driving the estimated curve also to zero.
The following equation was used to calculate the
extraterrestrial radiation [15].

24

R, = ;Rsc(l 40.033 x cos 00 X P

x cos(g)
365

2 X T X hs) .
—————— | x sin(p)

) in(h
x cos(8) x sin(hs) + ( 360

x sin(3), (3)
where R, is the extraterrestrial radiation, R, is the solar
constant with a value of 1.366 kW/mZ, Pis the day number
from 1 to 365 (366 leap), ¢ is the latitude of the area, § is
the declination angle and hs is the hour angles of sunrise
and sunset.

5 Results and discussion

In the literature, many types of evaluation techniques are
used for finding the accuracy and precision of empirical
models. When estimating solar radiation, root mean square
error was found to be the most widely used parameter.
Other parameters such as standard deviation, mean bias
error, mean absolute error and mean square error are also
used to find the accuracy of models. However, in
reference [16], it is suggested that for such empirical
models, root mean square error may results in a higher
value if there are a few high values in the sample, while
mean bias errors can cancel out if negative and positive
biases are present.

In this study, the evaluation of the proposed model was
checked with four statistical indices: normalized root
mean square error (RMSE), tstatistic (t-stat), yearly
percentage error (YPE) and correlation coefficient (Corr).
The model is further evaluated by correlating all the
observed and calculated values and plotting the data on a
scatter plot.

The proposed model was tested on eight sites in Norway
for a period of 10years. The sites were Tromso, Bodo,
Sortland, Tingvoll, Pasvik, Overhalla, Gausdal and Etne.
The data for these sites was taken from Bioforsk and all
the sites are located at latitude higher than 60 degrees
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Extraterrestrial, Observed and Calculated Irradiation for Tromso (2014)
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Fig. 1. Observed, calculated and extraterrestrial radiation.
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Fig. 2. (a) Scatter plot of the data for calculated and observed values, the correlation coefficient for the model is 0.88. (b) Mean
percentage error for Tromso, average over 2005-2014.
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Table 1. Statistical performance parameters for the sites.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Tromso RMSE 0.10 0.11 0.11 - 0.10 - 0.09 0.11 0.11 0.09
t-Stat 0.52 2.5 2.1 - 1.8 - 0.95 0.57 2.2 1.2
YPE 1.35 8.41 4.8 - 4.87 - 1.84 1.87 6.7 3.6
Corr 0.9 0.83 0.93 - 0.88 - 0.90 0.88 0.85 0.91
Bodo RMSE 0.10 0.20 - 0.09 0.11 0.11 0.10 0.09 0.10 -
t-Stat 0.36 5.5 - 2.1 1.4 0.87 1.22 1.02 3.5 -
YPE 0.9 22.9 - 4.27 3.31 2.22 3.14 2.3 9.03 -
Corr 0.89 0.74 - 0.93 0.9 0.88 0.89 0.91 0.90 -
Sortland RMSE 0.09 0.11 0.15 0.10 0.10 0.14 0.09 0.12 - 0.09
t-Stat 3.2 3.7 1.6 2.8 0.53 0.52 0.98 1.2 - 2.8
YPE 7.3 10.9 5.14 6.05 1.07 1.82 2.53 3.16 - 6.9
Corr 0.91 0.86 0.85 0.92 0.93 0.80 0.90 0.89 - 0.91
Tingvoll RMSE - 0.09 0.06 0.09 0.09 - - 0.10 0.12 0.11
t-Stat - 2.9 2.3 1.3 2.7 - - 1.5 2.3 5.05
YPE - 7.28 5.83 2.55 5.5 - - 3.5 5.51 12.6
Corr - 0.90 0.91 0.93 0.92 - - 0.90 0.90 0.91
Pasvik RMSE 0.11 - 0.33 0.11 0.10 0.09 0.09 0.10 0.10 0.08
t-Stat 0.82 - 0.48 0.61 1.8 1.8 0.17 1.25 14 1.7
YPE 2.64 - 3.43 1.6 5.25 6.15 0.3 3.19 3.77 4.4
Corr 0.86 - 0.16 0.87 0.87 0.85 0.92 0.89 0.89 0.92
Overhala RMSE - 0.08 0.05 0.09 0.08 0.11 0.08 0.07 0.09 0.10
t-Stat - 7.7 2.1 1.04 2.1 2.5 0.3 0.87 5.2 0.42
YPE - 15.1 8.76 2.67 6.2 7.9 0.7 2.13 15.4 1.1
Corr - 0.92 0.80 0.90 0.87 0.85 0.92 0.91 0.91 0.90
Gausdal RMSE 0.09 0.08 0.27 0.10 0.08 0.06 0.11 0.10 - 0.09
t-Stat 5.59 5.06 2.98 4.7 5.4 3.7 3.5 1.14 - 0.36
YPE 13.2 12.6 26.1 10.9 13.8 17.5 10.8 2.5 - 0.7
Corr 0.92 0.93 0.07 0.93 0.91 0.77 0.85 0.90 - 0.93
Etne RMSE - 0.09 0.10 0.09 0.10 0.12 0.10 0.09 0.12 0.10
t-Stat - 3.5 1.6 2.09 2.7 5.4 2.05 1.8 3.05 1.4
YPE - 7.67 4.49 4.38 5.9 11.9 5.06 3.9 7.1 3.3
Corr - 0.91 0.89 0.93 0.91 0.90 0.88 0.92 0.88 0.90

north. Sites were selected on the basis that they provide
solar radiation recorded by a pyranometer, so that after
using the empirical model a correlation could be made for
evaluation. Constant CT in equation (2) was found by
regressing one year data from the data sets. For areas
under consideration, Etne, Overhalla and Pasvik were
having CT value of 0.001 while all other areas were having
a CT value of 0.04. For the credibility of the model it is

very important that the model performs well with the
same constants when data from other data bases is
used. With 0.04 constant for Tromso, model was checked
with data from the weather station of the University of
Tromso and similar results were obtained. In addition to
the application on higher latitudes, it is expected that the
model could be used at almost any place after tuning
the constants.
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As a comparison, proposed model performs better than
the model in equation (1). The average ¢ statistic value for
our model is 1.4 as compared to 5.5 from equation (1). The
daily average percentage error is improved by 0.2%, while
yearly average percentage error is improved by 10.8%. In
Figure 1, a yearly plot of radiation is shown. The observed,
extraterrestrial and calculated values are daily figures. It
can be seen that the estimated values are very close to the
observed values of radiation.

In Figure 2(a), a scatter plot is shown for all the eight
sites over the 10years period. A very good positive
correlation of 0.88 was found in this case. Furthermore,
in Figure 2(b), a graph of daily average errors for Tromso is
shown. The percentage errors are calculated for each year
and an average was taken for the 10 years period. Negative
error values in Figure 2(b) can be observed in the start and
end of the year. It is because of the polar night observed at
higher latitudes. After and before these negative means
there is a high positive mean which is because of the low
solar latitude, daily values of irradiation are very low in
these days of the year. Both the scatter plot and the daily
average error shows a promising result for the model.

In Table 1, we have shown the error statistics for all the
sites. These statistics were evaluated for each year
separately. The table gives a complete overview of the
performance of the model. YPE is in percentage while ¢
stat, Corr and RMSE (normalized) is unit less. For all the
parameters accept correlation coefficient, lower the value
better the models performance, while for Corr, the closer to
1 the better is the models performance. The years for which
the data was not available were omitted.

6 Conclusion

In this paper, we presented a novel method to calculate the
global solar radiation on horizontal surface by using
minimum climatological data. For calculating solar radia-
tion, only temperature difference and relative humidity
values were used. The models performance was checked on
eight sites in Norway. The performance of the model was
evaluated through four statistical measures and the results
obtained are acceptable, having a correlation coefficient of
0.88 and an overall percentage error of —1.1%. The daily
error values of the model are also quite stable where most of
the values are lying below 4%.
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ARTICLE INFO ABSTRACT

Keywords: Estimating/retrieving solar radiation through satellite-based remote sensing provides larger spatial coverage
CLARA Al and A2 compared to other methods. Accurate estimates of incoming solar radiation is important when planning new
Scandinavia solar energy installations. In addition, these estimates are also used in climate studies. Geostationary satellites
i(r:iv[ﬁ‘CNF are ideal for estimating solar radiation but cannot be used for high latitudes because of an unfavourable viewing

angle; however, polar-orbiting satellites provide an alternative. CLoud, Albedo RAdiation edition 2 (CLARA-A2)
is the latest retrieval product of cloud properties, surface albedo and surface solar radiation by Satellite
Application Facility on Climate Monitoring (CM-SAF) based on Advance Very High Resolution Radiometer
(AVHRR) observations from polar orbiting satellites. This data set covers the whole earth and provides daily and
monthly averages. In this study, we have evaluated the CLARA-A2 data set and the previous version CLARA-A1
to in-situ high-quality observations from specific locations in Scandinavia, with a focus on solar radiation at high
latitudes. The results show that both datasets perform within the target accuracies of CM-SAF, although the new
data points, which were previously not available in CLARA-A1 due to snow-cover and cloud differentiation, have
high deviations. Nevertheless, yearly average energy estimates are more accurate in CLARA-A2 because of these
new points. For Swedish locations, mean absolute deviation (MAD) of 8.1 W m~2and 8.7Wm ™2 for CLARA-A1
and A2 respectively were calculated for updated values. Similarly, for Norwegian locations MAD of 8 W m ™2 and
8.9Wm 2 were calculated for CLARA-A1 and A2. Overall, for all locations MAD lies at 8.1 Wm ™2 and
8.8Wm™?2 for CLARA-A1 and A2, respectively. CLARA A2 has more temporal data points than CLARA Al,
however, the MAD of the new data points that were not available in CLARA-A1 are 15.2Wm ™2 and 17.7 Wm ™2
for Swedish and Norwegian sites, respectively.

Solar radiation estimation
Polar orbiting satellites

1. Introduction validation and discussion of the improvements and shortcomings of the

second edition of CLoud, Albedo RAdiation (CLARA) dataset for high

The surface radiation budget at the Earth plays a central role in
climate monitoring and analysis of different meteorological parameters.
Recent studies such as (Stroeve et al., 2014; Arndt and Nicolaus, 2014)
make use of the surface radiation fluxes to indicate changing atmo-
spheric and environmental conditions. In addition, surface radiation
averages are used in the planning phase of the feasibility of solar energy
conversion installations such as solar thermal or photovoltaic systems.
Feasibility studies are important for choosing the optimal energy mix,
as evident from the recent global status report by Renewable Energy
Policy Network for the 21st Century (Ren21, 2017). The increase in the
solar energy deployment in the past few years makes such datasets even
more important for feasibility studies of future installations. In the
Arctic regions there has been a growing interest in the use of clean and
renewable energy sources, but the lack of reliable solar data hinders the
socio-political decision-making processes. The focus of this paper is on
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latitude areas of Norway and Sweden. The retrieval quality of both data
sets is tested against in-situ observations from locations at varying la-
titudes. In addition, these sites have different topography, especially in
the Norwegian part.

Large solar power plants require preliminary data such as potential
site locations and area-specific designs. The potential of a location is
needed on a monthly and annual basis (Stoffel et al., 2010). The designs
may vary, for example at high latitude locations, single or dual axis
tracking increases the output energy by approximately 50% (Huld
et al., 2010; Good et al., 2011). In addition, inter-annual variability of
solar energy is used as a measure of change in received levels of ra-
diation through a certain period to find uncertainties in the energy
production at the locations where the solar energy units are planned
(Kariuki and Sato, 2018). Long time series usually of the magnitude of
multi-decadal order of solar radiation are analyzed in the preplanning
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of power plants (Meyer et al., 2006). In most cases satellite-based da-
tabases or climate models are used to simulate solar-radiation para-
meters on a longer term, as these are usually not available from in-situ
ground measuring stations. A common belief is that active solar energy
production at high latitudes is not feasible since often the solar energy
potential is underestimated. It is often neglected that the cold climate
can be beneficial for solar energy harvesting as the efficiency of silicon
solar cells increase at low temperatures (Skoplaki and Palyvos, 2009),
and the presence of snow covers reflect solar radiation thereby boosting
the output power. However, there are some challenges with solar en-
ergy at high latitudes such as a large seasonal variation in solar in-
solation, and a mismatch with the users demands. In this paper we focus
on the challenge of accessing accurate solar irradiation data at high
latitudes.

Various specialized databases are available for surface radiation
estimation, including, European Solar Radiation Atlas (ESRA), solar
data (SoDa), Satel-Light, Meteonorm, Photovoltaic Geographical
Information System (PVGIS) etc (Dunlop et al., 2006). However, most
datasets are based on geostationary satellites and therefore do not
provide coverage above 60-65 degrees latitude. Others that use dif-
ferent satellite assimilation techniques take very few ground measuring
stations into account, and thus cannot be considered as accurate for
high latitudes. For locations above 60 degrees, retrieval methods based
on observations from polar-orbiting satellites provide a solution, since
these are shown to result in more accurate estimates than those ob-
tained based on other remote sensing methods or empirical model es-
timation technique (Pinker and Laszlo, 1992; Besharat et al., 2013). As
shown by Polo et al. (2016), satellite estimation of solar radiation has
considerably improved and it is the second best option after the ground
measurement methods. The Satellite Application Facility on Climate
Monitoring (CM-SAF) provides multiple climate data records for cloud
detection, albedo and surface radiation. CLARA data sets are one such
product that can be used at high latitude locations because of its global
coverage.

The most accurate in-situ instrument for recording global horizontal
irradiance (GHI) is a pyranometer (Igbal, 2012). In high-latitude Arctic
regions, there are few meteorological stations and only a subset of these
record solar radiation. The large distances between measurement
hinder the exploitation of new sites for solar energy based on in-situ
observations. Alternatively, solar radiation maps based on polar or-
biting satellites can be used at these locations.

Some previous studies including Riiheld et al. (2015) and Urraca
et al. (2017) have performed error statistics on the estimation of
CLARA-A1 and CLARA-A2. In Riihela et al. (2015), authors performed
an extensive evaluation of CLARA-A1 and SARAH-A1 over Sweden and
Finland, while in Urraca et al. (2017) a few sites from Norway were
included. The novelty of this work lies in the comparison of the 2 da-
tasets on Norway and Sweden over a larger number of sites and years.
Moreover, the strength and weakness of the datasets are analyzed in
depth.

This paper is organised as follows. Section 2 describes the sites used
in the study and the sources of in-situ measurements. Section 3 describes
methods used to process the data and the statistical evaluations per-
formed. Section 4 presents the result and a discussion on these results.
Section 5 concludes this work.

2. Sites

The locations used in this study are at different latitudes in Norway
and Sweden. The reason for this is that the performance of Cloud,
Albedo Radiation (CLARA) datasets can be assessed by taking into ac-
count that at higher latitudes there are more images provided by polar
orbiting satellites (14 per day at poles). Coordinates of the locations,
altitude and terrain information are provided in Table 1. The in-situ
data used to validate both data sets are acquired from two different
sources. For Norway, the data are from Norsk institutt for biogkonomi
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Table 1
Information on the location, altitude and land cover type of the sites included in
the study.

Norway Latitude  Longitude  Altitude (m) Land Cover Type
Tromsg 69.65 18.9 12 Island
Pasvik 69.45 30.04 27 Lakes/forest
Sortland 68.6 15.28 14 Coastal/fjords
Végenes 67.28 14.45 26 Forest/Coastal
Tjotta 65.83 12.43 10 Coastal/archipelago
Oslo 60.12 11.3 162 Rural/agricultural
Saerheim 58.76 5.65 90 Inland/rural/agricultural
Lyngdal 58.13 7.04 4 Urban/Fjords/near coastal
Sweden Latitude  Longitude  Altitude (m) Land Cover Type
Kiruna 67.83 20.43 408 Sparse forest
Luled 65.55 22.13 17 Coastal
Umed 63.82 20.25 10 Near coastal
Borlange 60.48 15.43 140 Urban/forest
Stockholm 59.35 18.07 30 Coastal
Goteborg 57.70 12.00 5 Coastal
Lund 55.71 13.21 73 Urban

(NIBIO), and for the Swedish locations, the data are from the database
of Sveriges meteorologiska och hydrologiska institut (SMHI). Both da-
tabases contain average hourly measurement by Kipp and Zonen
CPM11 or CMP13 pyranometers. The equipment is regularly main-
tained and datasets are quality controlled by the respective organiza-
tions. In case of SMHI, Baseline Surface Radiation Network (BSRN)
routines by Long and Dutton (2010) are used for quality assurance.
Missing or erroneous data are corrected by using meteorological vari-
ables described by Davies and McKay (1989). The network was up-
graded in 2006-2007 and the average ratio between old and new
measurements was found to be 0.997. More detail on the upgrade is
given by Carlund (2011). NIBIO calibrates the equipment once every
year and had a major overhaul in 2013. The equipment is inspected and
maintained on daily or weekly basis (http://Imt.bioforsk.no/about). In
this study, an additional quality check of the on-site observations was
performed, and any data flagged for low quality were discarded. In
addition, NIBIO measurements having more than 10% of hourly
missing values in a year were discarded (see appendix for details about
the years not included in the study).

3. Method
3.1. Data source

CLARA edition 2 (CLARA-A2) by CM-SAF is the latest edition of
CLARA datasets and was released in December 2016. The solar radia-
tion estimates for CLARA are derived from the Advance Very High
Resolution Radiometer (AVHRR) sensors on board METOP and NOAA
polar orbiting satellites. The dataset is available for a 34 year period
from 1st January 1982 to 31st December 2015, which is an extension of
6 years relative to the previous edition. The dataset covers the whole
globe with a spatial resolution of 0.25 x 0.25 degrees on a regular lat-
lon grid, which translates to 27.8 km at the equator. Average Surface In-
coming Shortwave radiation (SIS) values are available for daily and
monthly time resolutions. Instantaneous AVHRR images are processed
to derive a spatio-temporal averaged dataset, consisting of cloud cover,
surface albedo and surface-radiation products. The second edition is an
improvement over the first edition because of the upgraded retrieval
method and 6 years of additional data.

CLARA-A2 uses aerosol information, vertical integrated vapor and
ozone, along with the surface albedo product to estimate incoming solar
radiation (Jorg Trentmann, 2016). Estimation of surface albedo is a
challenging task, which includes calculating top-of-the-atmosphere re-
flectance, classification of snow covered pixels, radiometric and
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CLARA-A2: Yearly averaged data for 2009
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Fig. 1. CLARA-A2 yearly averaged solar irradiation data for 2009 on a horizontal surface.

geolocation topography correction, land use classification, etc. (Kati
Anttila and Jaaskelinen, 2016). In the case of high-latitude complex
topography, a number of these methods are used to calculate the sur-
face albedo including topography correction and classification of snow
covered pixels. The viewing and illumination geometry at the satellite
sensor becomes complex at low sun elevation. Such conditions increase
the bidirectional surface reflectance thereby making the estimation
process more complex (Kati Anttila and Jaaskelinen, 2016). This aspect
will be further discussed in later sections. Fig. 1 shows the CLARA-A2
yearly-averaged incoming solar radiation for 2009 on a horizontal
surface.

Certain limitations exist in CLARA-A2; one of the main limitation is
the availability of AVHRR observations. For calculating the daily
averages, at least 20 observations are needed within a day and in each
grid cell. In case of less than 20 images, the daily average field in
question is filled with a value of —999 W m ™2 that represents a missing
value. For a given grid cell, at least 20 days of observations is required
to produce the monthly averages for SIS for a given grid cell. In case of
availability of less than 20 days, the field is filled with a missing value.

A shortcoming of the dataset is the low number of satellites in the
1980s and the early 1990s, and for this reason only the period from
1995 and beyond is considered in this study. Another shortcoming in-
cludes the orbital drift of the satellites that results in different local
observation times, which changes the observation conditions. Over
Greenland the data quality was found to be insufficient to fulfil the
threshold accuracy requirements, therefore, the southern tip of
Greenland appears to be white which shows the area having missing
values.

The major improvements in the latest CLARA edition on grid cell are
from the cleaning and homogenizing of the basic level-1 AVHRR ra-
diance data and the use of Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) cloud information. In the second edition, the
cloud screening ability near poles is enhanced. Especially cloud detec-
tion over snow-covers is optimized and false cloud detection is reduced
by using CALIOP cloud mask and CALIOP estimated cloud-optical
thickness (Karlsson et al., 2017). A new dynamic aerosol optical depth
(AOD) is used in CLARA-A2 surface albedo (SAL) calculations, which
was previously set at a constant value of 0.1 (Kati Anttila and
Jadskelinen, 2016). Moreover, the new edition uses wind speed in ad-
dition to sun zenith angles in SAL calculations (Kati Anttila and
Jadskelinen, 2016). Digital elevation model used in this study is from
NOAA (National Centers for Environmental Information). The snow
depth data used to show the average snow depth of the areas in the
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analysis was obtained from ERA-Interim reanalysis (Dee et al., 2011).

3.2. Data processing

The ground-measured data used in this study are hourly averaged
global horizontal irradiation. Refer to Section 2 for more details. The
data from the SMHI database are quality controlled and flagged. From
this dataset, sites flagged for bad quality were not used in the com-
parison. The NIBIO database is also quality controlled but not flagged.
For Norway, hourly data for any year with large data gaps (10% or
more of hourly values) were discarded. Missing values in this dataset
were replaced by linear interpolation without taking diurnal solar ele-
vation variation into account. For both NIBIO and SMHI, secondary
standard pyranometers are used to record but these quality equipment
have errors even when well-maintained and serviced. CMP11 Kipp and
Zonen pyranometer have a flux measurement error of 2-5%. For
monthly values lower uncertainty of 2% is expected in summer periods
and 5% is expected in winter period (Wang et al., 2012). These un-
certainties set an upper limit to the evaluation accuracy when estimates
are compared with ground measured data (Riiheld et al., 2015).

Both CLARA datasets provide data of daily and monthly averages
with a spatial resolution of 0.25 x 0.25 degrees (27.8 km x 27.8 km at
the equator). Instead of fetching data for the closest grid point from the
site locations, inverse distance weighted interpolation was used to
calculated radiation values at precisely the site locations. Whenever the
surrounding four grid points have more than 1 missing value for a
certain time; the interpolation was replaced by a missing value of
—999Wm™2 By using this method, a slight improvement was ob-
served in the overall deviations.

3.3. Statistical evaluation of estimations

Different statistical measures are used to evaluate the model de-
viations. The most widely used measure is the Root Mean Squared
Deviation (RMSD). As an additional measure the BIAS or mean bias
deviation (MBD) is used in the evaluation. Using MBD gives an insight
in the general trends of under or over estimations. Mean absolute de-
viation (MAD) is also used for the evaluations of datasets. Because of
the absolute values used in this measure, the negative and positive
deviations do not cancel out each other as in the MBD. This is a good
measure to compare different models as the one with smaller MAD will
be the more reliable for estimations (Last et al., 2001).
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Table 2

CLARA-A1 and CLARA-A2 monthly averaged comparison results from 1995 to
2009. The deviations are represented by root mean square deviation (RMSD),
mean bias deviation (MBD) and mean absolute deviation (MAD). Numbers in
parenthesis are the results for daily mean values. The table shows the results for
Norway and Sweden seperately along with results from all sites.

RMSD (Wm™?) MBD (Wm™?) MAD (Wm™?)
Location Al A2 Al A2 Al A2
Norwegian Locations

Tromsg 18 16 3.4 -4 4.2 8.7
(46) 24) (4.3) (-3 (10.4) 12)

Pasvik 11 16 1 -2.9 3.3 6.2
(36) (22) 2.1 (-2) (8.6) (8.8)

Sortland 11 18 -3.7 -11.3 4.4 11.5
(21) 24) (-2.8) (-10.7) (7.6) (14.3)

Végenes 13 11 1.3 -2 4.3 5.4
(35 a7 2.8) (-1 9.9 9.6)

Tjgtta 8 7 2.2 -1.3 3.7 4.2
(33) (16) (3.6) (-0.3) (10.7) (8.4)

Oslo 9 10 -23 -3.7 4.1 5.8
(33) (18) (-0.6) (-23) (12.5) (10.4)

Seerheim 7 7 1.2 -1.9 4.3 4.4
31 (16) 2.7) (-0.3) (13.8) (9.5)

Lyngdal 12 20 —-2.7 -7.6 6.4 9.5
(24) (34) (-1.7) (-6.6) (11.6) (13.9)

All Norwegian 11 14.2 -0.1 -5.6 8 8.9

locations
34) (24.9) (1.9) (-4.1) (18.7) (13.5)
Swedish Locations

Kiruna 8 18 -0.5 -0.5 2.6 7.8
(29) 249 (0.8) 0.8) (7.5) (11.1)

Luled 9 9 1.2 -0.8 3.5 4.3
27) (16) 2.7 0.1) (8.4) (7.4)

Umea 8 11 0.5 -4 3.7 6.8
27) a7 (2.5) (—2.6) 8.9 9.3)

Borlange 9 9 -1 —-3.6 4 9.4
27) a7) 0.7) (-2.1) (0.8 (5.5)

Stockholm 8 9 2.4 3.2 4.7 5.5
(28) (18) (4.6) 1.7) (12.5) 9.9

Goteborg 7 7 1.9 0.8 4.5 4.5
7 (25) (16) (3.6) (2.3) (12.4) 9.4)

Lund 9 8 -21 -1.8 4.9 5.2
(25) a7) (=09 (=01 a1 (10.49)

All Swedish Locations 11.7 13 0.5 -25 8.1 8.7
(41.6) (46.5) (2.9) (-1.1) 21 (17.4)

All Locations 11.4 13.5 0.2 -3.8 8 8.8
(38.7) (38.5) (2.5) (—-2.4) (20) (15.6)

CLARA-A1, longitude=15, latitude=40:70, 1995-2009
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4. Results and discussion

Table 2 shows the results of the statistical evaluation performed
over the period of 1995-2009 over Sweden and Norway. The evalua-
tions are arranged in decreasing latitudes in the tables. For most of the
sites, CLARA-A2 provides lower RMSD values for daily means, but for
monthly means, CLARA-A1 performs better or very similar to CLARA-
A2.

In terms of biases, CLARA-A1 performs better at most of the sites. At
some locations though the opposite pattern is found, but overall the
Swedish locations show an overestimation and the Norwegian locations
an underestimation. In a previous work by Riiheld et al. (2015), a si-
milar overestimation was reported for CLARA-A1 in Sweden. The fre-
quency of observations of the satellite also contributes to the errors,
where 20 images are used to estimate daily and monthly averages,
while the available frequency of ground observations is once every
hour.

For both data sets, the threshold, target and the optimal accuracy is
15, 10 and 8 W m ~ 2 respectively, for monthly averages and 30, 25 and
20 W m ™~ 2 for daily averages as described in Karlsson et al. (2012), Jorg
Trentmann (2012), Karlsson et al. (2017), and Jorg Trentmann (2016),
respectively. The MAD in Table 2 indicates that all the results are well
within these specified thresholds, and most of the sites show an optimal
accuracy of 8 and 20 Wm ™2 for monthly and daily averages, respec-
tively. For Norwegian locations, monthly MAD of 8 Wm ™2 was re-
corded for CLARA-A1 while for CLARA-A2 it was 8.9 Wm ™2 and for
Swedish locations, monthly MAD was 8.1 Wm ™2 for CLARA-A1 and
8.7 Wm ™2 for CLARA-A2 W m ™~ 2. The overall MAD for CLARA-A1 and
A2 for daily averages were 20.05Wm™2 and 15.65Wm ™2 and for
monthly averages 8.06 Wm ™2 and 8.82 Wm ™2, which is also within
the limits of CM-SAF. For most of the sites the daily accuracies are
improved in the later CLARA edition relative to the former, while
CLARA-A1 performs better on monthly accuracies for most of the sites.
Furthermore, CLARA-A2 has more monthly and daily mean data points
than CLARA-A1, especially at higher latitudes as shown by the Hov-
moller diagram in Fig. 2. Higher latitudes have more snow covers,
which are estimated more frequently in CLARA-A2. The availability of
the datasets will be elaborated further in the subsequent sections.

Polar orbiting satellites follow a sun synchronous orbit in which the
temporal resolution of sensing increases with latitude. About 14 daily
observations are recorded close to the poles per satellite swath, whereas
only two observations are available close to the equator (Karlsson et al.,
2017). At latitudes below 65 degrees the number of images captured by
polar orbiting satellites is not high enough to obtain the daily means
when the day length is short, while the availability rises again above 65
degrees because of the overlapping of the satellite swath. At even
higher latitude, the coverage is larger but the main challenge at such

CLARA-A2, longitude=15, latitude=40:70, 1995-2009
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Fig. 4. Percentage of monthly averaged data missing values in the datasets. Figure on the left shows the missing points in CLARA-A1 dataset between 1995 and 2009.

Figure on the right shows the missing points in CLARA-A2 for the same period.
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Fig. 5. Average snow depth between 1995 to 2009 from ERA-Interim and topography. Larger snow depth occurs at complex terrains, and most missing data points lie

in such regions.

high latitudes is the snow covered surfaces (Urraca et al., 2017). In this
study, the Norwegian locations have snow covers in addition to a very
complex terrain including a high number of fjords and mountains (see
Fig. 5). It is highly likely that satellite retrieval estimation methods

deteriorate on mountain regions because the spatial resolution of in-
cident light on satellite sensor is not high enough to compensate for the
complex terrain, while sudden changes in weather conditions due to
mountains are not compensated for with low sensing frequency as in
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Fig. 6. The top figure shows the percentage of monthly missing data in CLARA-
Al in each quarter. The lower figure shows the percentage increase in the
availability of CLARA-A2 dataset in each quarter. The highest increase is in the
areas that have complex topography in addition to snow covers.

the case of polar orbiting satellites.

This study is conducted on mountainous regions with snow covers,
which not only introduces random errors but also negative biases.
Furthermore, because the satellite estimation methods use the visible
spectrum channels for the detection of clouds, the sensors cannot dif-
ferentiate between clouds and snow cover, which further contributes to
increasing the errors (Urraca et al., 2017). However, 0.6 and 0.8 pym
channels are used separately in order to detect snow covers and cal-
culating the albedo (Kati Anttila and Jadskelinen, 2016). Albedos for
snow are high in the near ultra-violet and visible spectrum, but it starts
dropping drastically in the near infra-red region between 0.8 and
1.5 um (Wiscombe and Warren, 1980). Most of the high latitude sites in
this study have snow cover for a large part of the year. Which implies a
further increase of errors in the datasets. Although the new dataset have
more coverage over snow-covers, which was previously not available in
CLARA-A1, but such new values have large errors. These large errors
are likely due to the differentiation between snow and cloud covers (see
Fig. 5).

4.1. Inter-annual stability

As discussed earlier, inter-annual stability of a dataset provides
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insight into the uncertainties associated with the energy production of
solar energy plants. Areas where typical ground measuring equipment
are not available can take advantage of datasets provided by CM-SAF.
Therefore, such datasets should be consistent throughout the periods of
investigation. In Fig. 3 the box plot of MBD of both CLARA-A1 and A2
datasets are shown. It can be seen from the figure that the CLARA-A2
dataset has lower median bias than the CLARA-A1 dataset, with median
values being closer to the zero bias. The CLARA-A2 dataset has more
extreme minimum values, compared to CLARA-A1, while the maximum
values are in most cases better in the CLARA-A2 dataset. Moreover, the
25th and 75th percentile values in CLARA-A2 data set lies approxi-
mately around —2 and 2 W m ™2, while in CLARA-A1 these values are
approximately around 0 and 4 Wm™2. These results show that the
newer edition of CLARA has more stability in terms of biases over the
years included in the study period.

4.2. Data availability

One of the improvements of CLARA-A2 is the differentiation of
snow-covered surfaces from cloud covers in the surface albedo calcu-
lations. Both CLARA datasets do not provide coverage over snow-cov-
ered surfaces (Riiheld et al., 2015; Karlsson et al., 2017) and such time
periods are filled with missing values. Nevertheless, because of the
improvement in surface albedo calculations, CLARA-A2 provide more
data points than CLARA-A1. The additional data points in CLARA-A2
are mostly from the snow-cover time periods, hence there is not much
improvement in the overall skills. In most cases, there is a higher degree
of deviation at such locations, which further increase the deviations as a
whole. As shown in Fig. 4, CLARA-A1 has roughly between 50 and 80%
missing values in Norway and around 40 to 60% missing values in
Sweden. In comparison CLARA-A2 has approximately 30 to 60%
missing data in Norway and 20 to 50% missing data in Sweden. This
further explains the results in Table 2, where CLARA-A1 performs better
than CLARA-A2 and that the skills for the Swedish locations are better
than those at the Norwegian locations. The complex topography of
Norwegian locations along with a high percentage of snow covers at
these areas have resulted in inaccurate estimations that previously were
replaced by missing values and thus not taken into account in statistical
evaluations. Fig. 5 below shows the average snow depth in the study
period between 1995 and 2009 along with a digital elevation model of
the study area. By comparing Fig. 5 with the maps in Fig. 4, it can be
seen that in CLARA-A1 snow-covers correspond to missing values.

Similarly, in CLARA-A2 there are less missing values on snow cov-
ered grid points, but still the highest amount of missing data are found
on the higher snow-depth grid points and high elevation locations.

4.3. Seasonal variations in the datasets

To further investigate the datasets, seasonal variation of both da-
tasets were calculated. Data from 1995 to 2009 were divided into
quarterly datasets by assigning the months from February to April to
the 1st quarter, May to July to the 2nd quarter, August to October to the
3rd quarter and November to January to the 4th quarter. In this
manner, we could separate the darker and snow covered periods from
the summer months.

Fig. 6 illustrate the quarterly frequency of missing data in the
CLARA-A1 data set and illustrates the increase in the availability of data
points in the new edition compared with the previous edition. It further
illustrates that due to the fact that most of the northern parts of Norway
and Sweden has snow-covers, most of the missing data point in CLARA-
A2 lie in these regions. The availability has increased in these northern
location in CLARA-A2 when compared to CLARA-A1, though not so
much in the high snow-depth mountain regions (see Fig. 5). The highest
amount of missing values lie in the February to April months when the
polar night has ended and the snow is melting.

Table 3 gives the seasonal deviations of the two datasets. It can be
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Table 3
Quarterly deviations for CLARA-A1 and CLARA-A2 datasets. The table shows the seasonal variation in the biases of both datasets. Monthly average values for the
years included in the study were divided into four quarters that are denoted by Q. CLARA Al and A2 datasets are denoted by Al and A2, respectively.

Norway/Quarter RMSD (W m’z) MBD (W m’z) MAD (W m’z) Correlation

Al A2 Al A2 Al A2 Al A2
Tromsg Q1 - 11.6 - -5 - 5 - 0.9
Q2 26 25.2 5.6 -11.3 5.9 19.8 0.60 0.9
Q3 14.6 11.4 7.8 1.2 11 8.7 0.98 0.9

Q4 - 2.3 - -1.2 - 1.2 - -

Pasvik Q1 - 3.2 - -0.6 - 0.6 - -
Q2 13.9 27.5 4.3 -5.9 4.8 13 0.95 0.7
Q3 10.2 11.5 0 -35 8.4 9.7 0.98 0.9

Q4 - 3.7 - -1.4 - 1.4 - -
Sortland Q1 22.3 22.9 -1.6 —-11.6 1.6 11.6 - 0.97
Q2 12 22.6 —5.1 -17.9 6.7 18.4 0.9 0.97
Q3 10 13.7 -7.6 -11.9 8.5 12 0.9 0.99
Q4 4.7 9.6 -0.5 -3.7 0.6 4 0.9 0.88
Véggnes Q1 5.1 8 0.2 -4 0.2 4 - 0.99
Q2 12 8.4 6.9 3 6.9 6.8 0.9 0.99
Q3 15 15.5 —-1.4 -5.3 8.6 8.8 0.9 0.96
Q4 9.4 7.2 -0.4 -2 1.4 21 0.6 0.94
Tjotta Q1 9.4 7.8 0.6 -19 0.6 2.2 - 0.89
Q2 10.8 7.7 6.9 2.1 8.5 6.6 0.9 0.98
Q3 6.5 7.8 1 -39 5 6.4 0.9 0.99
Q4 3 3.4 0.3 -15 0.6 1.5 0.9 0.99
Oslo Q1 10.7 29.4 -1.2 -12.5 1.2 12.5 0.97 0.87
Q2 21.5 20.6 -6 —-3.4 10 8.3 0.88 0.89
Q3 12.4 11.7 -5.3 -3.8 9.1 8.5 0.97 0.97
Q4 6.1 9.3 -1 -25 1.5 2.5 0.93 0.93
Saerheim Q1 5.7 6.7 1.5 -3 2.9 3.3 0.99 0.98
Q2 6.8 5.8 3.3 1.7 5.6 4.5 0.99 0.99
Q3 7.9 9 -0.3 -3.6 7 7.3 0.99 0.99
Q4 3.7 5.9 0.4 —-25 1.5 2.6 0.98 0.99
Lyngdal Q1 10.2 34.5 -0.5 -10.8 2.9 10.8 0.97 0.66
Q2 12.5 13.8 -1.2 —4.4 9.7 10.9 0.96 0.96
Q3 14.4 16.6 —-8.2 -11.2 10.2 11.9 0.97 0.98
Q4 8.3 11.5 -1.1 —4.2 2.8 4.2 0.90 0.90
Kiruna Q1 - 15 - —-4.3 - 4.3 - 1.00
Q2 8.3 29.6 0.9 -12.6 3.1 18.3 0.94 0.84
Q3 8 8.7 -3.1 -3.3 6.4 6.8 0.99 0.99
Q4 3.1 4 0.2 -1.7 0.7 1.7 0.86 0.99

Luled Q1 - - - - - - - -
Q2 12,5 121 6 2.6 7 7.6 0.94 0.96
Q3 7.9 8.8 -1.3 -3.5 6.3 7.3 0.99 0.99
Q4 3.7 4.5 -0.1 -2.3 0.9 2.2 0.76 0.99
Umea Q1 2.3 13.9 0.3 -6.4 0.4 6.4 0.84 0.99
Q2 9.3 11.6 4.8 -15 6 9.3 0.97 0.98
Q3 9.3 10 —-2.7 -5.2 7.5 8.6 0.99 0.99
Q4 3.3 5.4 -0.3 -3 0.8 3 0.85 0.99
Borlange Q1 4.2 11 -0.8 -6.5 0.9 6.5 1.00 0.99
Q2 7.7 6.4 0.2 -1 6 5.1 0.98 0.99
Q3 9.7 9.6 —-4.3 -5.6 7.3 8.2 0.98 0.99
Q4 10 9.7 0.8 -1.2 2 2.3 0.61 0.68
Stockholm Q1 14.1 13.5 1.2 -2 5.2 6.1 0.88 0.90
Q2 22 23 5 7 18.2 19.3 0.81 0.82
Q3 29.9 31.4 -1.2 0.2 22.9 23.2 0.81 0.80
Q4 10 11.1 0.6 -2 3.9 4.2 0.84 0.83
Goteborg Q1 5.5 3.5 2.5 -0.9 3 1.8 1.00 1.00
Q2 9 8.9 5.8 6.4 7.5 7.7 0.99 0.99
Q3 7.5 7.6 -0.9 0.01 6.1 6.2 0.99 0.99
Q4 4 6.2 0.2 —-2.4 1.5 2.5 0.98 0.98

(continued on next page)
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Norway/Quarter RMSD (Wm™?2) MBD (Wm™?) MAD (Wm™?2) Correlation
Al A2 Al A2 Al A2 Al A2
Lund Q1 5 6.6 1.8 —-2.8 2.7 4 1.00 0.99
Q2 8.5 7.5 -15 2.9 4.9 6.2 0.98 0.99
Q3 12.6 9.1 —-8.8 -4 9.4 7.1 0.98 0.99
Q4 4.6 6 —0.03 -3.3 2.5 3.4 0.99 0.99
Table 4 latitude locations it was not possible to calculate the deviations. In the

Analysis of the new and updated solar radiation values in CLARA-A2 for
Norwegian and Swedish locations. The column marked with New are the values
which were not available in CLARA-A1 (shown in last column, No. of new
values), while the updated values are the ones which were available in CLARA-
Al but were updated in CLARA-A2.

Norwegian RMSD (Wm~2) MBD(Wm~2) MAD(Wm 2  No.of
Location new
New  Update  New Update New Update values
Tromsg 25 14 —-47 09 5 3.2 20
Pasvik 44 12 -2.3 -0.1 2.3 3.4 8
Sortland 30 15 -44 -6 45 6.1 18
Végenes 9 13 -1.1 -07 13 39 23
Tjgtta 7 8 -0.7 -0.5 0.7 3.4 14
Oslo 16 8 -2 -1.7 2 3.8 15
Seerheim 9 7 -03 -16 03 4.2 4
Lyngdal 46 14 -2 —5.6 2 7.4 12
ALL SITES 25.9 11.5 -17 —-3.7 17.7 8.3 114
(12%)
CLARA-A1 (All 11 -0.1 8
Included)
CLARA-A2 (Al  14.2 -5.6 8.9
included)
Swedish RMSD (Wm~™?) MBD(Wm™2) MAD(Wm™?)  No. of
Location new
New  Update New Update New Update values
Kiruna 37 8 —-4.7 —-0.6 4.7 2.9 26
Luled 17 9 -05 -0.1 0.5 3.6 6
Umed 18 8 -24 -13 24 41 27
Borlange 12 8 -1.1 —-2.4 1.1 4.4 18
Stockholm 6 23 -02 2 0.2 13 8
Goteborg 6 7 -0.1 09 0.1 4.4 6
Lund 9 7 -06 -—1.1 1.1 41 30
ALL SITES 20.6 11.9 —-145 -0.7 15.2 8.3 121
(9.6%)
CLARA-A1 (All 11.7 0.5 8.1
included)
CLARA-A2 (Al 13 -2.5 8.7
included)

seen that in the 1st and 2nd quarter, CLARA-A2 provides more valid
data points than does CLARA-A1 (see also Fig. 6). Missing data or no
valid value at grid points means that these months are not taken into
account when making any of the calculations in the study. When
compared to the snow-depth map in Fig. 5, the regions of missing va-
lues lie approximately on the areas having higher snow-depth and
complex topography. The 1st and 4th quarters have special conditions,
where the 1st quarter has low sun-elevation angles and the 4th quarter
includes the polar-night period. Moreover, the 1st and 3rd quarter have
similar and opposite sun elevation angles (in the 1st quarter the solar
elevation increases while in the 3rd quarter it decreases) but the 1st
quarter has more snow-cover than the 3rd quarter. It also shows that in
the 1st quarter both the MBD and MAD are larger in CLARA-A2 than
CLARA-A1l. Low RMSD values are observed below 60 degrees in
Swedish locations but not in Norwegian locations. The MBD or bias is
mostly negative for CLARA-A2, with high values for Norway than for
Sweden. However, due to the unavailability of data in some high
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2nd quarter, CLARA-A1 has better RMSD measures until around north
of 60 degrees after which CLARA-A2 either starts improving or provides
similar values as CLARA-A1 (except for Pasvik, Sortland and Kiruna).
Similarly, CLARA-A1 again provides better MBD and MAD values. In
the 3rd and 4th quarters, all the measures are either similar in both the
datasets or slightly worse in CLARA-A2 for both Norwegian and
Swedish location. Based on the observations it can be said that although
CLARA-A2 has more coverage over snow-covered areas it still provides
large deviations at high latitude locations.

4.4. Analysis of the new and updated monthly average values in CLARA-A2

By comparing CLARA-A1 and A2, it can be seen that there are two
major changes in the availability of data. First, there are fewer missing
values in A2 and secondly, the adjacent grid point values are also up-
dated in CLARA-A2 due to the use of different methods of estimation.
This section provides an evaluation of the new and updated monthly
means estimations separately. The values marked with “New” are the
values which were not available in CLARA-A1 (marked as a missing
values) but that are available in CLARA-A2. The values marked with
“Updated” are those values which were available in CLARA-A1 but
these got updated because of the use of new algorithms. In this way we
could separately analyse the improvement of CLARA-A2. Table 4 shows
the RMSD, MBD, MAD and the number of new values in CLARA-A2. For
the newly added added data points in CLARA-A2 the MAD target ac-
curacies for all locations are above the limits (17.7 W m ~2 for Norway
and 15.2Wm™? for Sweden). Individually for both Sweden and
Norway, the updated values are very similar and within the target
(8.3Wm ™2 for both Norway and Sweden). Table 4 also shows the
overall accuracies of both datasets for all Norwegian and Swedish lo-
cations. Overall accuracies for both datasets also are within the limits.

Furthermore, the new values in CLARA-A2 have a constant negative
bias that shows the underestimation in these values. The cause for this
underestimation can be attributed to the inaccurate detection of snow-
covers. The RMSD section of the table shows that the new values have
very high deviations for high-latitude locations in both countries;
nevertheless, the updated values have relatively low RMSD because of
the upgraded retrieval method and absence of snow-covers.

4.5. Analysis of annual energy estimates

The total annual energy estimate at a site is an important parameter
for planning purposes. In addition to daily and monthly averages that
are used in the inter-annual stability for energy production, annual
energy averages give an insight into the total energy that can be har-
vested at potential site locations. Table 5 shows the RMSD, MBD and
MAD of yearly averaged hourly solar irradiances of CLARA-A1 and A2.
In this analysis, CLARA-A2 performs considerably better than CLARA-
Al in all areas. Moreover, average annual energy is also listed for both
CLARA datasets and in-situ values. For calculating yearly energy values,
mean hourly values from ground-measured data and mean daily values
from CLARA datasets were used. By comparing the energy potential
estimates it can be seen that CLARA-A2 provides better estimates than
CLARA-A1. The energy estimates are better in CLARA-A2 due to the fact
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This table shows annual average solar radiations error analysis for CLARA-A1 and A2 for Norwegian and Swedish locations in terms of RMSD, MBD and MAD. The
portion of the table labelled as Power is expressed in W m ™2 The right side of the table shows the annual average energy estimates of CLARA-A1, A2 and ground-

observed data expressed in kWhm™?2y.

Norwegian Locations Power Energy

RMSD (Wm™?) MBD (Wm™?) MAD (Wm™?) Al (avg) kWhm™2y A2 (avg) kWhm™2y Obs (avg) kWhm ™2y

Al A2 Al A2 Al A2
Tromsg 69.7 9.8 68.7 7.7 68.7 7.7 469.1 643.7 687.4
Pasvik 65.7 12 65.3 9.3 65.3 9.8 497.4 544.6 718.2
Sortland 50.7 4.7 48.8 2.1 48.8 3.7 600.3 664.8 780.4
Véggnes 53.7 13.8 53.1 12.9 53.1 12.9 600 724 733.9
Tjotta 57.5 25.6 56.8 25.3 56.8 25.3 698.9 749.9 768.2
Oslo 48.2 31.3 47.2 30.2 47.2 30.2 827.5 902.4 948.7
Seerheim 29.7 21.6 28.8 21.3 28.8 21.3 913.8 901.7 921.7
Lyngdal 31.9 21.7 29.7 17.2 29.7 18.7 915.7 939.8 1032.9
Swedish Locations Power Energy

RMSD (Wm™?) MBD (Wm™?) MAD (Wm™?) Al (avg) kWhm™2y A2 (avg) kWhm ™2y Obs (avg) kWhm ™2y

Al A2 Al A2 Al A2
Kiruna 48.6 9.1 47.5 8.4 47.5 8.4 525 654.7 804.5
Luled 62.3 34.5 61.5 34.3 61.5 34.3 704.3 728.1 895.8
Umed 51 18.9 48.6 17.4 48.6 17.4 777.2 860.4 916.7
Borlange 43.7 29.8 42.7 28.9 42.7 28.9 846.7 893.3 937.2
Stockholm 38.3 32.8 36.6 30.4 36.6 30.4 984.5 998 993.4
Géteborg 32.1 26.9 30.3 24.9 30.3 24.9 968.3 966.5 969.6
Lund 18.8 17.4 4.9 9 13.4 11.8 791.1 1013 1034.7

that it provides more data points than CLARA-A1. Fewer data points in
the time series means that the energy estimates for CLARA-A1 results in
lower estimates than both CLARA-A2 and ground observed data.

The energy estimates provided in Table 5 are for the yearly solar
radiation received on a horizontal plane per area averaged over the
study period. At high latitude locations, the elevations of the sun are
often very low and consequently the horizontal solar density decreases.
The difference between high and low latitude locations is considerably
less when looking at an optimally inclined or a tracking surface.

5. Conclusion

In this work, we evaluated two datasets derived from polar orbiting
satellites. CLARA-A2, the newer version of the CM-SAF polar orbiting
satellite-based database, is derived with a procedure including im-
provements in cloud cover and snow cover distinction; hence, there are
more data points taken into account in the new dataset. Still, missing
values exist in the new dataset due to lack of differentiation between
clouds and snow covers. However, the newer edition does not con-
siderably improve the estimates for Northern Scandinavia. The eva-
luation metrics used in the study provides an insight into the perfor-
mance of these datasets. CLARA-A2 is observed to provide
underestimation at most locations, while CLARA-A1 provides more
positive biases. This underestimation can be associated with the snow
and cloud detection and the difficulties to differentiate between the
two, which hopefully will be further improved in CLARA-A3, the next
edition of this dataset that is planned to be launched in 2020. The
CLARA-A2 dataset has less intra-annual variability than CLARA-A1, and

Appendix A

along with the spatiotemporal resolution, it provides a more reliable
dataset for areas below 60 degrees latitude. For the magnitude of errors
presented in this study, consideration should be given to the complex
topography especially in the case of Norwegian sites. Table 2 shows
that MBD and MAD values are predominantly higher at Norwegian
location. However, at most locations the target monthly average ac-
curacies of 9Wm ™2 for CLARA-A2 and 10 Wm ™2 for CLARA-A1 are
achieved, along with daily average accuracies of 18 Wm ™2 for CLARA-
A2 and 20 Wm ™2 for CLARA-A1. A quarterly deviation analysis shows
that due to the complex topography and snow cover in Norwegian lo-
cations, CLARA-A2 does not provide more accurate estimates than
CLARA-A1. Analysis on the new data points of CLARA-A2, that were
previously not available, shows that these new values have very high
deviations. Nevertheless, yearly energy estimates of CLARA-Al are
predominantly lower than CLARA-A2 estimates since there are simply
more data points in CLARA-A2. To conclude, even if CLARA-A2 has a
higher negative bias than CLARA-A1l at the specific common data
points, CLARA-A2 still has more accurate yearly energy estimates be-
cause it has more data points than CLARA-A1.
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Table 6
Detail of years not included in the study for each location.
Kiruna N.A
Luled N.A
Umed N.A
Borlange N.A
Stockholm 1998
Goteborg N.A
Lund N.A
Tromsg 1995, 1996, 2000, 2001, 2002, 2006, 2007, 2008
Pasvik 1995, 1996, 2006, 2007
Sortland 1995, 1996, 1997, 2000, 2003, 2007
Vagenes 1995, 1996, 1997, 2007
Tjstta 1995, 1996, 1997, 2006, 2007
Oslo 1995, 1996, 1997, 1998, 2006, 2007
Serheim 1995, 1996, 2000, 2006, 2007
Lyngdal 1995, 1996, 2003
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Abstract

There is a growing demand for the estimation of solar energy potential at high latitude locations. This study
compares four datasets; Cloud, Albedo, Radiation dataset Edition 2 (CLARA), Surface Solar Radiation dataset —
Heliosat Edition 2 (SARAH), ECMWF Reanalysis 5 (ERA5) and Arctic System Reanalysis v2 (ASR) on high
latitude locations. Global horizontal irradiance (GHI) from these datasets is compared with in-situ ground-
measurements over multiple locations in Norway. The first two datasets are mainly based on satellite estimation
of solar radiation, while the latter two are based on a combination of a weather-prediction model, satellite data,
and other observations. The datasets are evaluated against quality-controlled in-situ measurements of solar
radiation from pyranometers. Overall, CLARA, SARAH, and ERA5 show moderate errors, while those of ASR
are considerably larger. Monthly averages of global horizontal irradiance have mean absolute deviation (MAD) of
6.3 Wm?2, 5.8 Wm?, 6.4 Wm?, and 14.5 Wm™ for CLARA, SARAH, ERAS, and ASR, respectively. Seasonal
error analysis of these datasets reveals that SARAH has the lowest errors in all seasons. The datasets are classified
into clear-sky, intermediate-cloudiness, and overcast categories, by using two thresholds of cloudiness based on
the ratio of radiation at ground to its corresponding clear-sky value (clear-sky index). The categories obtained from
satellite and reanalysis data are then compared against estimates based on corresponding in-situ observations; this
analysis shows that both CLARA and SARAH perform better than ERAS and ASR for these categories. SARAH
and CLARA perform similarly in all types of conditions, but a gradual increase in errors for an increase of
cloudiness is observed for ERA5 and ASR. Yearly energy analysis shows that CLARA performs better than other
datasets for locations above latitude 65°N, and SARAH performs better in locations below 65°N. A further analysis
is performed to assess the cloud sensing abilities of ERA5. On a shorter time scale, there are errors due to inaccurate
representation of clouds, however on longer time scales i.e. months and years, these errors are considerably
reduced. ERADS is observed to overestimate TCWC (the total cloud water content defined as the mass of water and
ice in a cloud) in clear-sky and intermediate-cloudy categories, while in overcast category it is underestimated.
Generally, an overestimation of solar radiation is observed in reanalysis and an underestimation is observed in
satellite methods.

Keywords: Solar radiation, Arctic, Reanalysis, Satellite estimations, CMSAF, ECMWF
1. Introduction

Accurate solar resource measurements at potential photovoltaic (PV)/thermal installation sites are usually not
available. For example, only a few meteorological stations record high-quality measurements in Norway (dyvind
et al., 2013). The assessment of solar resource at a specific location forms the basis for future installations.
However, solar radiation is intermittent in nature and its variation on longer times scales is important for the
planning of future installations (Crabtree et al., 2011). In addition, such information is also used in the long and
short-term forecasting of power production and in optimizing energy dispatch strategies (Heinemann et al., 2006;
Remund et al., 2008). Long time series of global horizontal irradiance (GHI) is used in the energy sector as well
as in meteorology, agriculture, and climate studies.

The three main components to consider before installing a solar energy system are site selection, annual output
and temporal performance/operating strategy. These components are directly related to the resource potential of
the site, and can be evaluated by analysing long-term historical data series. Often a typical meteorological year
(TMY), which is derived from the historical data e.g. within the past 30 years, is used to assess site locations for
feasibility (Hall et al., 1978). Recent studies like those of Huld et al. (2018) and Stoffel et al. (2010) have shown
that TMY is not a good indicator for predicting solar radiation for a given year, but rather it represents typical
estimates of the average long-term conditions. Sufficiently long historical records from ground-measurements are
seldom available for a given location for constructing a reliable TMY. Therefore satellite estimations and
reanalyses provide an alternative to the ground-measurements for these estimations (Stoffel et al., 2010).
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Estimating surface solar radiation from the visible spectrum of sensors installed on satellites is a well-developed
procedure (Cano et al., 1986; Gautier et al., 1980; Rigollier et al., 2004; Tarpley, 1979). However, the accuracy of
these methods is lower than ground measurements, but the advantages of the satellite methods include large spatial
and temporal coverage (Noia et al., 1993). Surface solar radiation estimated from geostationary satellites provide
up to sub-hourly values on a few km grid resolution, while polar orbiting satellites provide up to daily average
solar radiation. All geostationary satellites have a limited spatial coverage because these are positioned over the
equator at 0° In the case of Meteosat First Generation (MFG) and Meteosat Second Generation (MSG)
geostationary satellites, they have a coverage of +65° in latitude and longitude. At latitudes higher than these, they
encounter a flat angle of view that decreases the spatial resolution and increases errors. Alternatively, polar orbiting
satellites can be used at high-latitude locations, as they provide almost global coverage. The main shortcoming of
polar orbiting satellites is low sensing frequency, which varies from twice daily at the equator to 14 times a day
near poles (Pinker and Laszlo, 1992; Platt, 1983). Satellite-based solar radiation-estimation methods have high
accuracy, but some studies like that of Gueymard (2011) and Ineichen (2014) have shown that large errors may
exist. For uncertainties and known issues within the satellite-based solar radiation estimation techniques see Suri
and Cebecauer (2014).

In Earth System Models (ESM) or reanalysis, solar radiation is often referred to as down-welling surface shortwave
flux. There are a number of studies where reanalyses have been used to estimate solar radiation and power (Boilley
and Wald, 2015; Jurus et al., 2013; Wild et al., 2015). However, an increase in bias with increasing latitude was
observed in one of the studies (Yi et al., 2011). The main advantages of reanalyses include multi-decadal time
series, worldwide coverage, and free-of-cost availability. Recently, it has been found that reanalysis-based
irradiance estimates can be a useful supplement when satellite irradiance is not available (Bojanowski et al., 2014;
Urraca et al., 2018), although, many studies have reported overestimations in reanalysis (Boilley and Wald, 2015;
Kennedy et al., 2011; Wild, 2008).

The aim of this paper is to analyse four different datasets regarding their accuracy and provide a comparative
analysis for high-latitude conditions. Two of these are based on satellite methods, a polar orbital Cloud, Albedo,
Radiation dataset Edition 2 (CLARA 2), and a geostationary Surface Solar Radiation dataset — Heliosat Edition 2
(SARAH 2). The other two are based on a combination of a weather-prediction model and various types of
observations; a global reanalysis; ECMWF Reanalysis 5 (ERA5), and a dynamical downscaling of such a
reanalysis (ERA-interim); Arctic System Reanalysis v2 (ASRv2). The analysis is performed for Norway, which
represents a complex topography and a large variation in latitudes ranging from 59° to 70°N. Previously, CLARA-
Al and CLARA-A2 datasets have been compared for multiple locations in Norway and Sweden (Babar et al.,
2018). It was found that the new edition of CLARA has less number of missing data points. However, CLARA-
A2’s new data points, which previously were missing in CLARA-A1, have high errors. These points mostly lie in
the high latitude locations where a snow cover is frequent. Because of the difficulties in differentiating snow covers
from clouds, such errors exist. Here we extend this work and the novelty lies in evaluating the above-mentioned
datasets for GHI for high-latitude locations and providing an analysis of these datasets in different conditions. The
datasets are evaluated for daily means, monthly means, yearly means, seasonal analysis, energy analysis, and
performance in different sky categories. Daily and monthly averages are evaluated by dividing the locations in
four groups, including above 65°N, below 65°N, coastal and inland regions. In the final section, the effects of
clouds in ERAS are computed for different sky categories and compared with ground-measured solar radiation,
which gives an insight into the challenges of estimating solar radiation in ERAS.

This paper is formatted as follows: Section 2 gives a description of the datasets analysed in this study. Section 3
provides an overview of the quality control procedures applied on the ground data and validation metrics. Section
4 presents the results and provides a brief discussion. Section 5 concludes the findings of this work.

2. Datasets

The datasets analysed in this study have different spatial and temporal resolution. Table 1 shows an overview of
the datasets. SARAH and ASR can be considered as high-resolution datasets, while CLARA and ERAS are coarse
resolution datasets. SARAH is the highest resolution dataset with hourly temporal resolution and a spatial
resolution of 0.05°x0.05°. ASR contains data with three-hour temporal resolution and a spatial resolution of 15 km
(0.136°). For both of these datasets, the nearest grid point from the site location is selected for data extraction.
However, CLARA and ERAS5 provide data on a much coarser grid of 0.25°x0.25° and 0.28°x0.28°, respectively.
Data extraction from these datasets is performed by selecting the four surrounding grid points at site locations and
applying inverse weighted-distance interpolation to obtain solar radiation at the coordinates of the site. In case of
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CLARA, there are missing data points, which imply that at some of the periods there are no available data in the
surrounding four points. When the surrounding points have less than three valid values, the interpolation is
replaced by a missing value indicating that no valid values exist at that particular time and place. ASR and ERA5
do not contain missing values.

The datasets used in this study have certain spatial and temporal limitations. SARAH is limited to +65° in latitude
and longitude due to the shape of the viewing disc of MFG/MSG satellites and because of the flat viewing angle
of geostationary satellites that results in increased errors above 65°N. The evaluation of SARAH dataset is
performed for locations below 65°N latitude. CLARA and ERADS are global datasets, whereas ASR is regional but
covers all locations analysed in this study. SARAH and CLARA are available from 1983 to 2015 and 1982 to
2015, respectively. At the time of writing, ERAS5 is available from 2000 to 2017. The years from 2000 to 2015 are
included in this study from these datasets. ASRv2 is available from 2000 to 2012 and its complete available time
series is used.

Table 1

Description of the datasets used in this study. The period analysed, spatial and temporal resolutions are shown for
each dataset.

Method Years Spatial resolution Highest Spatial limits
analysed temporal
resolution
CLARA | Polar-orbiting Satellite 2000-2015 0.25°%0.25° 24 Hours Global
-A2
SARAH | Geostationary Satellite 2000-2015 0.05°x0.05° 0.5 Hour Limited to +65° latitude
-2 and +65° longitude
ERA5 Reanalysis (Global) 2000-2015 0.281°x0.281° 1 Hour Global
ASRVv2 Reanalysis (Regional | 2000-2012 0.136°x0.136° 3 Hours 180W - 180E longitude
renalaysis downscaled from 24.643N - 90N latitude
ERA-interim)
2.1 CLARA-A2

The CLARA-A2? dataset was released in December 2016 and it is the second edition of CLARA (Cloud, Albedo,
Radiation dataset) by satellite application facility on climate monitoring (CM-SAF). The dataset is available from
1 January 1982 to 31 December 2015, and constitutes an extension of 6 years relative to the previous CLARA-A1
dataset. This dataset has global coverage with a spatial resolution of 0.25°x0.25° on a regular lat-lon grid and it
provides daily and monthly averages of surface incoming shortwave radiation (SIS). To calculate daily averages,
at least 20 observations of incoming solar radiation in each grid box are required; similarly, 20 valid daily averages
are required to generate monthly averages (Trentmann and Kothe, 2016). Along with SIS, CLARA also provides
longwave up and down-welling surface radiation.

The fundamental method used in calculating surface solar irradiance from satellite observations is based on the
reflectance measured by the satellite instruments, which is related to the atmospheric transmittance. The underlying
algorithm in CLARA uses the Advanced Very High Resolution Radiometer (AVHRR) sensor data to derive the
atmospheric transmittance, which is used in calculating surface incoming solar radiation. The solar radiation is
estimated by using the solar zenith angle, cloud coverage, vertically-integrated water vapour, and aerosol optical
depth. Finding solar zenith angles is straightforward and can be calculated accurately. The vertically-integrated
water vapour and aerosol optical depth are not available in the AVHRR data and for these fields, external sources
are used. For vertically-integrated water vapour, ERA-Interim Reanalysis (Dee et al., 2011) is used and the vertical
ozone column is set to a constant value of 335 DU, as its variability has negligible impact on the estimated solar
radiation. Aerosol information is taken from the modified version of the monthly mean aerosol fields from Global
Aerosol Data Set/ Optical Properties of Aerosols and Cloud (GADS/OPAC) climatology. In the algorithm,
AVHRR data is used to retrieve only the cloud cover information. The first step in estimating surface solar
radiation is the classification of the sky condition. The Nowcasting SAF (SAFNWC) software is used to derive
the information on cloud coverage for each pixel by using the information from the satellite sensors. If no cloud is
detected (cloud free pixel), surface solar radiation is calculated by using the clear-sky Mesoscale Atmospheric
Global Irradiance Code (MAGIC) by using only auxiliary sources. If the pixel is classified as cloudy (cloud
contaminated or fully cloudy), visible channels of AVHRR instrument are used to derive broadband reflectance.
These reflectances are then transferred to broadband fluxes by using a bidirectional reflectance distribution
function (BRDF). In the next step, these broadband top-of-the-atmosphere albedos are used to derive transmissivity
through a look-up table approach. Finally, the transmissivity is used in calculating surface solar radiation. In this



147
148
149
150
151
152
153
154
155

156

157
158
159
160
161
162
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185

186
187
188
189
190
191
192
193
194

195
196
197
198

dataset, all data points with a solar zenith angle larger than 80° are set to missing values and solar zenith angle
larger than 90° is set to zero. However, because a temporally constant surface albedo is used in the algorithm, this
dataset does not provide radiation estimates on snow and sea ice coverage areas because changes in the albedo of
the snow-covered surfaces are not considered (Karlsson et al., 2017). High-latitude locations may have a very
different surface albedo than the temporally constant albedos considered in the algorithm. Such grid points are
identified by calculating the difference between monthly mean CLARA-A2 SAL (surface albedo) data record and
the surface albedo used in the processing of SIS. These critical grid points, which have a difference in surface
albedo exceeding 35%, are masked-out from the final product by setting them as missing values. For more
information on the CLARA dataset and its accuracy refer to Karlsson et al. (2017).

2.2 SARAH-2

The second version of surface solar radiation dataset — Heliosat (SARAH-2) is a climate data record of surface
solar radiation by CMSAF (Pfeifroth et al., 2017a) and covers a period of 32 years from 1983 to 2015 and the
region from 65°N to 65°S latitude and 65°W to 65°E longitude. The spatial resolution of the data is 0.05°x0.05°
(approximately 5km) and the data is available for 30 minutes instantaneous, hourly, daily, and monthly averages
of surface incoming shortwave radiation on a horizontal surface, direct normal irradiance (DNI) and effective
cloud albedo (CAL). To calculate daily averages at least three samples per day are required; similarly, 10 existing
daily averages are required to generate monthly averages.

In this dataset, the broadband visible channels from Meteosat Visible Infra-Red Imager (MVIRI) instrument on-
board the Meteosat first generation satellites and the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
instruments on-board the Meteosat second generation satellites are used to calculate the shortwave surface
radiation. In the first step, the effective cloud albedo (CAL) is retrieved from the satellite data by using a modified
Heliosat method (Hammer et al., 2003). This modification of the Heliosat method in combination with gnu-
MAGIC/SPECMAGIC is called MAGICSOL. The modified Heliosat method provides the broadband effective
CAL, but to consider the spectral effect of clouds, a Radiative Transfer Model (libRadtran) based correction is
applied. The CAL is related to the cloud transmission and, hence, by calculating clear-sky radiation, the all-sky
radiation can be estimated. In this dataset, for calculating clear-sky radiation the SPECMAGIC model is used,
which is based on a so-called hybrid eigenvector look-up table approach (Mueller et al., 2012). The input
parameters for gnu-MAGIC/SPECMAGIC are date, time, solar zenith angle, coordinates, effective cloud albedo
(cloud index), water vapour column density, surface albedo, aerosol optical thickness, and single scatter albedo
for aerosols. Monthly mean values of vertically-integrated water vapour are taken from ERA-interim global
reanalysis record (Dee et al., 2011), and monthly mean aerosol information is taken from Monitoring Atmospheric
Composition and Climate project (MACC) aerosol climatology. Surface solar radiation is derived from combining
the SPECMAGIC algorithm and the effective cloud albedo (Pfeifroth et al., 2017b). One of the limitation of
SARAH is that for solar zenith angles between 88° and 90°, the corresponding data points are set as missing values,
and above solar zenith angle of 90°, the data points are set to zero. Improvements in the new version of the dataset
includes stability during the change of instrument from MVIRI to SEVIRI in 2006, and correction of the cloud
albedo to account for the slant viewing geometry effects (Pfeifroth et al., 2018). For more information on the
retrieval methods refer to Muller et al. (2015).

2.3 ERA5

ECMWEF Reanalysis 5 (ERADb), is the fifth generation of European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis of the global climate and span a period of 1950 to near real time (Hans and
Dick, 2016). At the time of this study, data from 2000 to 2017 are available. Further data back in time will be
released in 2019-20 and will continue to update forward in real-time. In ERAS, the solar radiation variable has a
spatial resolution of 31km (0.28125°%0.28125°) and an hourly temporal frequency. ERA5 uses the Integrated
Forecasting System (IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4DVAR)
assimilation system. ERAS5 has more pressure levels than ERA-Interim (the previous edition of ECMWF
reanalysis) and more variables are made available for this reanalysis than for those of earlier generation. For more
information on ERAS5 refer to ECMWF (2018).

In this study, shortwave surface downward radiation, shortwave surface downward radiation clear-sky, and total
cloud water content (the vertically-integrated cloud water concentration) are used from this dataset. In ERAS5, the
incoming short wave radiation is obtained from a Radiative Transfer Model (RTM). This model simulates the
attenuation in solar radiation caused by the atmosphere, therefore, the quality of estimated radiation depends on
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the RTM used. Reanalysis generally do not assimilate aerosol, clouds or water vapour data, which increases the
uncertainty in the estimated surface irradiance (You et al., 2013; Zhao et al., 2013).

2.4 Arctic System Reanalysis v2

Acrctic system reanalysis version 2 (ASRv2) is a polar-optimized dynamic downscaling of ERA-Interim reanalysis
by using Weather Research and Forecast Model (WRF) version 3.6.0. The data set is available for the period of
2000 to 2012. The grid resolution is 15km, which is finer than most global models and the previous release of ASR
(ASRvO01), whereas the time resolution of the dataset is 3 hours. The downscaling is optimized for Polar Regions,
and polar physics is used where possible, including heat transfer through snow and ice, the fractional sea ice cover,
the ability to specify variable sea ice thickness, snow depth on sea ice and sea ice albedo, as well as other
optimizations included in the Noah Land Surface Model. The area covered by this dataset is 1.2 x 108 km?, which
is about 50% of Northern hemisphere. Spectral nudging from ERA-Interim is applied on geopotential height,
temperature, and wind components above 100 hPa on the inner domain. ASR uses three-dimensional variational
analysis (3DVAR) for observations, including radiance data, from a number of satellites (Bromwich et al., 2017).

3. Ground data

In this study, 31 locations from Norway are analysed for the four mentioned datasets. The coordinates of the
locations, altitudes, and land type are indicated in appendix A and an overview of site locations is shown in Figure
1. The ground-measured data is acquired from the Norwegian Institute of Bioeconomy Research (NIBIO). NIBIO
registers hourly-average GHI by using Kipp and Zonen CMP11 or CMP13 pyranometers. The data is quality
controlled and the equipment is maintained regularly on a daily or weekly basis (http://Imt.bioforsk.no/about). The
daily averages of ground data were calculated by following Urraca et al. (2017b), where these were calculated for
those days when at least 20 valid hourly means were available, however when this criteria was not met the daily
average was replaced by a missing value. Similarly, the monthly averages were calculated for those months when
all the hourly values were available. If this condition was not met, the monthly average was replaced by a missing
value (Roesch et al., 2011). The amount of missing data in the ground measurement was largely reduced because
of the application of quality control procedures (explained in the next section).

In this study, the numbers of years used from each data set are different. For ASR, 12 years of data is used and 16
years of data is used for ERA5, CLARA, and SARAH. Furthermore, the sites are divided four groups; above 65°N,
below 65°N, inland and coastal regions. The studied locations are divided into coastal and inland regions are
grouped by observing the proximity to the shoreline. Regions within 30 km of the shoreline are considered as
coastal. From the 31 locations studied here, 14 sites are classified as coastal and 17 sites as inland, while 4 sites
lie above 65°N and 27 lie below 65°N latitude. For details on the land-type classification, refer to appendix A.
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Figure 1: Locations of the sites included in the study. To avoid overlapping of names some locations are shown
with only white dots.

3.1 Quality Control

Although the data provided by NIBIO is quality controlled, Urraca et al. (2017a) observed that operational and
equipment errors exist in NIBIO stations. The first quality-control check performed in this study is to look at the
percentage of missing data. Any year having more than 5% of missing values is discarded from the analysis. The
second check is performed by using BSRN Global Network recommended Quality Control tests, V2.0 (Long and
Dutton, 2010). These quality checks test values that are extremely rare and physically impossible. From this test,
years having more than 1% of flagged values are removed from the ground data. The third quality control
procedure is applied by using the Urraca et al. (2017a) quality control technique. In this test, CLARA and ERA5
datasets are used to check the quality of ground measurements by constructing confidence intervals to detect the
operational and equipment errors. Following Urraca et al. (2017a), the locations in Norway are divided into two
sections by grouping locations above 65°N and locations below 65°N. Separate confidence intervals are
constructed for these groups of locations. After constructing these confidence intervals, the ground data is passed
through an algorithm to check the data with errors, which appear in the form of flags. Following Urraca et al.
(2017a) two checks are performed, one to see the operational errors and the other to see the equipment errors. After
these checks, the years having large number of flags are visually inspected and removed from the analysis. Initially
Pasvik, Mare, Njgs, and Ullensvang were included in the study but due to a large number of flags from the third
quality control test, these were discarded. Pasvik and Ullensvang were found to have equipment errors and frosting,
while Mare and Njgs were found to have shading errors. For more information on this quality control procedure
refer to Urraca et al. (2017a). 2006 and 2007 were found to have a large number of missing data points; these were
discarded from all locations. Gap filling methods are only used in calculating yearly energy averages by using
nearest-neighbour interpolation. See appendix B for details about the years not included in the study. After
performing quality control on the ground data, errors might still exist but in addition to validating the datasets, this
study provides a comparative analysis of these datasets for high latitude locations. From a comparative point of
view, the errors in the ground data will have a similar effect on all datasets.

3.2 Validation

In order to evaluate the performance of the datasets, some common statistical measures are used. The most widely
used measure is the root mean square deviation (RMSD). As an addition, the BIAS or mean bias deviation (MBD)
is used in the evaluation. MBD gives an insight in under or over estimations. Mean absolute deviation (MAD) is
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also used for the evaluations. Because of the absolute values used in this measure, the negative and positive errors
do not cancel out as in the BIAS. MAD is a good measure for comparing different models. Moreover, Pearson
correlation and scatter plots are used to indicate the spread and overall correlation of the datasets with ground
measurements.

4, Results and discussion

Table 2 lists the RMSD, MAD, and MBD of the datasets for the locations included in the study. The error indicators
in table 2 are expressed in Wm2 and values in parentheses are daily averages. Night-time values are included in
calculating daily and monthly averages. Along with all sites included in the study, table 2 also shows error metrics
for above 65°N, below 65°N, inland and coastal regions.

Table 2

Error metrics expressed in Wm2, for the datasets analysed in this study. Numbers without parentheses are monthly
averaged errors while those in parentheses are daily averaged errors. Numbers are averaged over all stations. Error
metrics for different geographical groups are also shown.

RMSD(Wm?) MAD(Wm?) MBD(Wm?)

CLARA [SARAH | ERA5 | ASR | CLARA [SARAH | ERA5 | ASR | CLARA [SARAH | ERA5 | ASR

95 87 9.9 217 6.3 58 6.4 145 30 36 2.1 131

AllSites | (18.3) | (18.0) | (26.4) | (426) | (128) | (11.8) | @6 | @7.) | (17 | (25 | (40 | (169
Above | 10.1 10.9 203 53 6.1 111 34 38 8.0
65°N | (16.0) - (26.3) | 39.4) | (0.7 - 145) | @15 | (-2.8) - 6.6) | (11.0)
Below 94 87 9.9 21.9 65 58 65 15.0 30 36 2.0 13.8
65°N | (186) | (18.0) | (26.8) | (43.0) | (13.2) | (18) | (173) | 279) | (15 | (25 | (40) | (17.8)
Coastal 9.1 85 10.0 218 59 56 6.2 13.9 27 34 23 11.9
175 | @71 | @65 | 419 | (121) | (11.2) | (163) | 256) | (31 | (2.2 | 43) | (157

infand 93 838 10.0 217 6.2 59 6.7 15.0 30 37 22 14.0
(234) | a84) | 269) | 43.0) | (145 | (121) | (176) | @83) | (5.00 | (21 | 4.1 | (18.0)

From the table it can be seen that for all locations, SARAH provides the best estimation in terms of RMSD, while
ASR performs the worst. The same pattern follows on the MAD errors where SARAH performs better than other
datasets, while ASR has the highest errors. ERA5 and ASR (reanalysis models) are observed to be overestimating,
similar to previous studies (Boilley and Wald, 2015; Kennedy et al., 2011; Wild, 2008). Both CLARA and SARAH
(satellite databases) underestimate solar radiation (Posselt et al., 2012; Riihela et al., 2015). At slant angles of
view, such as those experienced by geostationary satellites at high latitudes, solar radiation is often underestimated
by satellite methods because of an overestimation in cloud. The highest bias is seen in ASR while biases of
CLARA, SARAH, and ERAS are very similar in magnitude.

The table also shows RMSD, MAD, and MBD for location categories above 65°N, below 65°N, coastal and inland.
Above 65°N latitude, CLARA has the lowest errors and ASR has the highest errors while ERA5 provides moderate
errors. SARAH does not provide coverage above 65°N latitude. At locations below 65°N, SARAH and CLARA
have low errors as compared to other datasets. The ASR has the highest errors at such locations as well. SARAH
and CLARA have lower errors in coastal regions than inland, mainly due to less snow covers in coastal regions
(Babar et al., 2018). Note that CLARA and ERA provide data at a similar spatial resolution, i.e. 0.25° and 0.28°,
however the surface radiation in CLARA is calculated at much finer resolution (around 4km) than in ERAS5,
therefore, CLARA performs better at coastal regions. On the contrary, in inland locations SARAH provides better
estimates than other datasets. CLARA comes second in terms of both daily and monthly means, while ASR
performs the worst. In this analysis, ERAS5 is seen to perform better at locations below 65°N than above 65°N
latitude.

Figure 2 (a-h) illustrates the scatter plots of the monthly and daily averages of the datasets. The black coloured
line represents the x=y line for reference. Evidently, CLARA and SARAH have a very similar spread on both
monthly and daily averages. A correlation of 0.98 for daily means and 0.99 for monthly means are observed for
both of these datasets. ASR has a wider spread in scatter plots with correlation coefficients of 0.99 and 0.92 for
monthly and daily means respectively. In addition, a positive bias in ASR monthly averages can be observed.
ERADS has an intermediate spread with a correlation of 0.99 for monthly averages and 0.95 for daily averages.
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Figure 2: Monthly mean and daily mean GHI scatter plots of the datasets. GI‘O(UI’)ld in-situ observations and
estimated values of solar radiation are given in Wm-2, The legend bar shows the density of data points on a coloured
scale. Satellite data show narrow spread and underestimation while reanalyses show wider spread and
overestimation.

Table 3
Statistical errors of the yearly average energy estimates for the datasets in kWh per square meter and year on a
horizontal surface. Energy statistics for different geographical groups are also shown.

Energy (KWh.m2.year/percentage error)

CLARA SARAH ERAS ASR

Est. Obs. | %Err. | Est. Obs. | %Err. | Est. Obs. | %Err. | Est. Obs. | %Err.
All Sites 838.4 | 862.9 2.8 861.2 | 880.5 2.2 908.1 | 862.9 +5.2 | 1017.1 | 8655 | +175
Above 65°N | 711.7 | 7155 -05 - - - 8060 | 7155 | +126 | 8704 | 751.3 | +15.9
Below 65°N | 853.5 | 8805 3.1 861.2 | 881.2 2.3 9203 | 881.2 +4.4 | 10348 | 879.3 | +17.7
Coastal 8454 | 857.6 1.4 882.2 | 899.9 -1.9 9049 | 857.6 +55 | 1009.4 | 862.6 | +17.0
Inland 8323 | 8675 4.1 847.1 | 8675 2.4 911.0 | 8675 +50 | 10232 | 867.9 | +17.9

In addition to daily and monthly errors, energy stakeholders use the yearly solar radiation energy averages to
evaluate the existing energy systems and plan new projects. Estimated yearly radiation gives an insight into the
total production of such systems and can be compared with the yearly consumption to increase efficiency of such
systems. Table 3 shows yearly average energy outputs in terms of estimated, observed and percentage error. The
yearly energy averages were calculated by integrating the daily averages of the datasets. The gaps in CLARA,
SARAH and ground-measured data are filled by using nearest-neighbour interpolation. The SARAH performs
better than other datasets, but with CLARA following just behind. Above 65°N, CLARA gives much lower
deviations than ERA5 and ASR, while SARAH has no coverage. It can be observed from the table that ERA5
performs better at inland locations while other datasets perform better at coastal regions. It has been documented
that satellite estimation methods deteriorate over snow-covered surfaces. In Norway, usually inland locations have
a higher snow-depth than the coastal regions. Because of the shortcoming of satellite estimation algorithm in the
differentiation of clouds from snow covers, satellite-based data do not perform as well in snow-covered areas as
on snow-free areas. However, both satellite-based datasets underestimated the energy as shown by a previous study
(Babar et al., 2018), while the reanalyses are observed to be overestimating. ERAS5 overestimates the energy
production much more at locations above 65°N than below; other datasets give very similar deviations in energy
averages at different locations. The results of this analysis shows that below 65°N latitude, the SARAH
performance is better than that of the other data sets. In addition to higher spatial and temporal resolution, the
errors in this dataset are low. Above 65°N, only CLARA gives reasonable errors.

Analysis of yearly averaged GHI in terms of RMSD, MAD and MBD is shown in appendix D. For the yearly
averages, high errors are observed in ASR when all locations are taken into account, while CLARA, SARAH, and
ERAS give considerably lower errors. CLARA is observed to perform better at coastal locations than in the inland
regions, while the errors increase at locations above 65°N. SARAH has no coverage above 65°N, and the deviations
are larger at inland regions than at the coast. ERA5 provides similar errors as those of CLARA in inland, above
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65°N and below 65°N, but shows high errors in coastal regions. CLARA performs better than ERAS5 at coastal
regions, because the surface radiation calculation in CLARA is made at a much finer resolution (0.05°) than in
ERADS, and therefore, takes into account the changing surface conditions of the coastal regions to a larger degree.
ASR on the other hand gives the highest errors among the datasets for all locations.

A seasonal analysis of the datasets is performed by dividing a typical year into 4 parts, where February to April
are grouped in FMA, May to July are grouped in MJJ, August to October are grouped in ASO and November to
January are grouped in NDJ. This division into seasons is made so that summer solstice is approximately in the
middle of the summer season. Table E1 in appendix E illustrates the seasonal error analysis of the datasets and it
shows that the RMSD values are high in FMA, and decreases as the year progresses. ASR is observed to have high
monthly and daily RMSD. MAD values in the table show that monthly mean values are similar for CLARA,
SARAH, and ERA5 while ASR gives considerably larger MAD. MBD shows that both reanalyses overestimate
solar radiation and satellite methods mostly underestimate it. In this analysis, SARAH, CLARA, and ERA5
perform similarly and better than ASR. Moreover, there are larger errors in satellite methods than reanalyses in
FMA and MJJ, mostly because of the presence of snow covers, which are difficult to differentiate from clouds in
such methods (Babar et al., 2018). Low solar elevation angles at high latitude locations make this differentiation
further challenging. On the contrary, ERA5S performs better than satellite datasets in FMA and NDJ at high
latitudes. However, the performance of satellite methods improves in summer and autumn months.

4.1 Evaluation of different sky conditions

To evaluate the datasets for their performances in different sky conditions, the datasets were divided into clear-
sky, intermediate-cloudiness, and overcast categories. This division is established based on the clear-sky index
(Kc), which is defined as the ratio of GHI recorded on the ground to the clear-sky GHI. The BIRD clear-sky model
is used to calculate the clear-sky values at the ground measurement locations (Bird and Hulstrom, 1981). After
calculating clear-sky index, Kc, following Smith et al. (2017) and Widén et al. (2017), values higher than 0.8 are
considered indicating a clear-sky day, values of Kc between 0.4 and 0.8 are considered as intermediate-cloudy and
values below 0.4 are considered as overcast.

Clear-sky days o Intermediate-cloudy days ot Overcast days _ el
f}'; 250 ] f}'; e
E 200 E
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3 3 .
.(I3rou;:d {;Nm'z; ’ G%}und {\;'Vm'z.} J o Grourlid {V\;m'zi"
(a) (b) (©)
CLARA RMSD (Wm2) MAD (Wm?) MBD (Wm?2)
Clear-sky 21.5 13.8 -4.0
Intermediate-cloudiness 22.1 16.0 -3.3
Overcast 12.8 8.7 -0.2

Figure 3: CLARA daily averaged errors under clear-sky, intermediate-cloudiness, and overcast categories. Scatter
plots for the different sky-categories are shown. The coloured legend bar shows the density of points in the scatter
plot.
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Figure 5: As Figure 3, but for ERA5.
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ASR RMSD (Wm) MAD (Wm) MBD (Wm?)
Clear-sky 29.2 21.1 11.6
Intermediate-cloudiness 51.3 37.2 23.3
Overcast 49.0 30.8 25.0

Figure 6: As Figure 3, but for ASR.

Figure 3-6 show the results of cloudiness classification of the datasets. Overall in the three categories, SARAH
performs better than other datasets while ASR performs the worst. In clear-sky category, an underestimation is
observed in SARAH, CLARA, and ERA5, while ASR overestimates radiation. CLARA performs slightly worse
than SARAH in this category, but both have the same correlation coefficients of 0.98, while ERA5 and ASR both
have a correlation of 0.97. Similarly, in the intermediate-cloudy category, both satellite databases underestimate,
while reanalyses overestimate. Finally, in the overcast category, CLARA slightly underestimates solar radiation
while other datasets overestimate. In this category, SARAH and CLARA are found to perform very similar with
correlation coefficients of 0.95 and 0.94, respectively. It should be noted that the sky cloudiness differentiation is
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performed on the basis of a clear-sky model and ground observed GHI. In conclusion, all the models have
discrepancies in presenting clouds in all types of sky conditions.

As explained in Section 2, under clear-sky conditions CLARA uses aerosol information from Global Aerosol Data
Set/Optical Properties of Aerosols and Clouds (GADS/OPAC) climatology and integrated water-vapour
information from ERA-interim, and SARAH uses both Monitoring Atmospheric Composition and Climate
(MACC climatology) and integrated water-vapour from ERA-Interim. Aerosol information from MACC
climatology is observed to have higher accuracy than GADS/OPAC climatology (Mueller and Tréger-Chatterjee,
2014). The maximum aerosol optical depth (AOD) is reduced in GADS/OPAC climatology for the CLARA
dataset, but the results show that the climatology used in SARAH performs better than in CLARA even after the
madifications. The negative biases observed in the clear-sky and intermediate-cloudy categories are possibly due
to incorrect prediction of clouds and the aerosol climatology being too thick, which results in an underestimation
of solar radiation. As reported in Mueller and Tréger-Chatterjee (2014) and Polo et al. (2014), both MACC and
GADS/OPAC climatologies result in underestimation of surface solar radiation because of the apparent
overestimation in AOD thickness. In addition to aerosol optical depth, vertically-integrated water vapour values
taken from ERA-Interim are shown to be too large (Kishore et al., 2011), which can further attenuate the surface
solar radiation. Moreover, monthly mean values of aerosol optical depths are used which might also cause errors
for daily resolutions. In ERADB, the radiative transfer model RTTOV11 (Radiative Transfer for TOVS) has a
tendency to underestimate reflectance of high cumulus cloud tops while the reflectance of lower water clouds is
overestimated. These cloud top reflectance errors possibly result in an underestimation in clear-sky conditions and
overestimation in intermediate-cloudy and overcast conditions. In ASR, all the conditions are overestimated which
shows that there is an underestimation in aerosol optical depth and cloudiness in the atmosphere.

After analysing different sky conditions, it can be concluded that estimations based solely on satellite retrievals
generally provide a much better result. However, SARAH is limited to 60-65°N (in Scandinavia) and CLARA is
limited to daily and monthly means. For high latitude and high recording frequency, ERA5 can still provide an
alternative, especially for clear-sky and intermediate-cloudy conditions in cases where satellite coverage is not
available or have missing data.

4.2 Analysis of daily average TCWC and daily sky-condition classification in ERAS

To analyse the cloud placement of ERAD5, the total cloud water content (TCWC) and short wave solar radiation
downward, clear-sky (SWSDC) from ERAS5 are used here. To obtain TCWC, total column liquid condensate and
total column ice condensate from ERAS were added together. ERAS5 and other reanalyses have an overestimation
or a positive bias in solar radiation as documented here and in accordance with Urraca et al. (2017b) and Urraca
et al. (2018). On the contrary, satellite methods have a negative bias but higher accuracy (Riiheld et al., 2015).
Reanalyses are based on weather-prediction models, and although assimilation of observations to some extent
constrains these models, the weather patterns of the reanalysis may still be out of phase with reality. A small
misrepresentation of clouds in space and time may have a large impact on the high-frequency correlation between
model and in-situ observations, with regard to radiative fluxes such as solar radiation, and hereby large RMSD are
induced. However at longer time scales, i.e. monthly or yearly time scales, the reanalysis may represent cloud
frequency to a satisfactory degree because large errors in daily averages are compensated for in the seasonal mean,
implying that reanalysis becomes a valuable alternative for estimating local solar resources. This can be observed
by comparing the daily and monthly RMSD of ERA5 with satellite based datasets in table 2. For all the locations,
the RMSD of monthly values for ERAS is similar to that of CLARA and SARAH, but the RMSD of daily values
(in parentheses) is considerably larger in ERAS as compared to the satellite databases. On even longer time scales
the difference decreases further, which can be observed by analysing yearly averages from table D1 in appendix
D. In this section, the cloud representation in ERA5 on daily averages is explored (for years 2000 to 2015) and an
analysis is given on the random errors in the presence of clouds at lower time scales. Clear-sky indices for all
datasets are obtained by using SWSDC from ERAS because the clear-sky values from ERAS5 have the aerosol and
water content information, which is used in calculating the surface solar radiation. The approach used in Section
4.1 is used here to classify days into the three categories by using clear-sky index, Kc. The analysis in this section
is performed for days when the solar zenith angle is lower than 90°.
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Table 4

The number of days and mean TCWC from in-situ ground measurements, ERA5 and CLARA are shown in the
table for different sky categories. The number of days and mean TCWC in each cloudiness category for ERAS5 is
shown separately for cases when ERA5 and ground measurements agree on classification and for cases when there
is a disagreement. Years from 2000 to 2015 are used in the analysis over all locations included in the study (see
appendix B).

Ground data CLARA data ERADS data ERA and ground agree | ERA and ground
disagree
No. Mean No. of Mean No. of Mean No. of Mean No. of | Mean
of TCWC days TCWC days TCWC days TCWC days TCWC
days | (Kg.m? (Kg.m?) (Kg.m?) (Kg.m?) (Kg.m?)
Clear-sky 38265 0.03 39516 0.03 53211 0.02 29500 0.02 8765 0.07
(30.2 (31.3%) (33.4%)
%)
Intermediate | 49207 0.09 45244 0.10 75268 0.10 34700 0.10 14507 0.07
-cloudiness (38.8 (35.8%) (47.4%)
%)
Overcast 39181 0.22 41417 0.22 30389 0.29 20914 0.30 18004 0.12
(30.9 (32.8%) (19.1%)
%)

Table 4 shows the number of days and mean TCWC for each of the sky categories. In table 4, daily averages of
solar radiation from CLARA are used to make a comparison with ERAS in sky classification. It can be seen that
ground measurement and CLARA classify almost the same percentage of days into each category even though the
number of days available for these are not the same because of the missing values. CLARA also gives very similar
mean TCWC values as ground measurements. On the contrary, ERA5 is observed to classify a higher number of
days as intermediate-cloudy and a lower number of days as overcast than in-situ observations, hence showing that
it has a negative bias towards classifying a day as overcast. Moreover, in ERA5 the mean TCWC is slightly
underestimated in the clear-sky category but largely overestimated in overcast category. Table 4 further shows the
number of days and mean TCWC for conditions when ERAS5 and ground measurements agree on classification
and for when there is a disagreement. Here it can be seen that the mean TCWC of days with agreement is the same
as that of ERA5, but on the days of disagreement, there is an overestimation in mean TCWC in clear-sky days and
an underestimation in overcast days. These results show that on clear-sky days, ERA5 has more clouds than in-
situ observations, which is seen by higher levels of TCWC, while on the overcast days there are a lower amount
of clouds, which is seen by lower levels of TCWC. However, it can be seen from the table that in clear-sky
category, ERA5 and ground-measurements agree 77% of the time. The agreement on sky-condition is smaller in
intermediate-cloudy category where 41% of the time ERA5 predicts the same conditions as in-situ observations,
while the agreement in overcast category is 53%. Overall, 67.3% of the times it is seen that ERA5 and ground
measurements classify the same conditions. Figure 7 shows the scatter plot of ground measurements and ERA5
for both of these conditions, when there is an agreement on classification and when there is a disagreement. It can
be seen that the spread is large when there is a disagreement. A correlation coefficient of 0.98 is found for
agreement data points while a correlation coefficient of 0.90 is found for disagreement point.

Scatter plot for days with agreement ot , Scatter plot for days with disagreement cou
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Figure 7: Scatter plots for the days when ERA5 and ground measurement agree in classification and when there
is a disagreement. A correlation coefficient of 0.98 is found for agreement points and 0.90 for disagreement points.
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Table 5 illustrates RMSD, MAD, and MBD of ERAS in different sky categories. It shows the error metrics for the
days when ERA5 and ground measurements agree on a category and for when there is a disagreement. The days
of agreement on sky categories in table 5 can be compared to the deviations presented in Section 4.1, Figure 3. It
can be seen that on the days of agreement ERAS performs very similar to CLARA. However, large errors are
observed when ERA5 does not agree with ground measurements in sky categorization. In terms of RMSD and
MAD, the highest increase is seen in clear-sky and overcast categories. The MBD is positive in clear-sky category
and negative in intermediate-cloudiness and overcast categories, which again shows that there are less amount of
clouds in the clear-sky category and more clouds in intermediate-cloudiness and overcast categories. From a solar
energy-harvesting point of view, the clear-sky days produce more energy than intermediate-cloudy or overcast
days. It can be observed that ground-measurement and ERA5 predicts almost the same percentage of clear-sky
days, which further shows that on daily averages reanalyses may not predict clouds accurately but on longer time
scales, the solar radiation estimation improves.

Table 5

RMSD, MAD, and MBD for ERAS daily averages in different sky categories. The errors are shown for the days
when ERAS5 and ground measurements agree on classification and for when they do not agree. Years from 2000
to 2015 are used in the analysis over all locations included in the study (see appendix B).

Agreement on sky conditions Disagree on sky conditions
RMSD (Wm™) MAD (Wm™) MBD (Wm?) RMSD (Wm) MAD (Wm) MBD (Wm?)
Clear-sky 16.9 11.8 5.6 42.9 31.2 31.2
Intermediate- 25.7 17.7 -74 33.8 24.2 -15.1
cloudiness
Overcast 15.3 9.6 -4.5 38.4 26.3 -26.3

5. Conclusion
This study provides a comprehensive evaluation of different GHI estimating datasets for high-latitude
locations. Overall, SARAH provides lower errors than other datasets but is limited to 60-65°N latitudes in
Scandinavia; hence, it cannot provide complete coverage on the northern Scandinavian locations. For monthly
averages of GHI, MAD of 5.8 Wm2 is found for SARAH. Nevertheless, it provides very high quality solar-
radiation estimates for the area it covers. The second best dataset found in this study is CLARA that has a
global coverage and provides multi-decadal time series. For monthly mean estimates of GHI, CLARA gives
a MAD of 6.3 Wm2. One of the challenges for estimating GHI at high latitude locations is the ability of the
satellite estimation algorithms to differentiate between clouds and snow covers. ERA5 being a coarse-
resolution global dataset is observed to perform nearly as well as CLARA with a MAD of 6.4 Wm2 for
monthly averages of GHI. ERAS has similar spatial resolution as CLARA but it provides data on higher
temporal resolutions and unlike CLARA, it has no missing values. ASR is found to have the highest errors in
this analysis. MAD of 14.5 Wm2is found for ASR monthly means. In a similar study performed by Urraca et
al. (2017b), MAD of 8 — 13 Wm? was reported for CM-SAF daily means datasets.
Both satellite estimation and reanalyses have problems in estimating solar radiation in intermediate-cloudiness
and overcast conditions. To evaluate the strength of the datasets, the ground-measured data is divided into
clear-sky, intermediate-cloudiness, and overcast categories and error statistics are calculated. In this test,
satellite based estimations perform better than reanalyses. However, ERAS has larger errors than CLARA and
SARAH, but still considerably smaller errors than ASR. At high latitude locations, the seasonal variation in
the length of the day is extreme. Taking this into consideration, an analysis is performed for different seasons.
In this analysis, CLARA, SARAH and ERA5 have similar errors in the range of 6-13 Wm in the summer
months; however, ASR has relatively high errors in all seasons. On yearly GHI averages, SARAH provides
the lowest MAD of 3.9 Wm?, followed by 4.8 Wm™ for CLARA, 5.6 Wm™ for ERAS5, and 17.8 Wm2 for
ASR. SARAH and CLARA also provide better yearly energy estimates than ERA5 and ASR. CLARA and
ERAS are observed to provide lower errors below 65°N than above, while CLARA and SARAH perform
better at coastal regions, and ERA5 performs better in inland locations that have more snow covers.
Finally, an in-depth analysis is performed on ERAS for its compatibility in sky stratification. It is found that
in clear-sky conditions, the TCWC is overestimated, while in intermediate-cloudiness and overcast conditions
itis underestimated. It is also observed that ERA5 has a positive bias on estimating clear-sky and intermediate-
cloudy conditions, while a negative bias is seen in estimating overcast conditions. In conclusion, both CLARA
and SARAH provide good estimates but both of these datasets have disadvantages, including the spatial limits
of SARAH and the low temporal frequency of CLARA. On the other hand, ERA5 provides advantages in the
form of historical data series and global coverage. On the basis of these results it is suggested that CLARA
and SARAH provides better estimates for solar radiation, but ERA5 can be used to fill the missing data in
these datasets.
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Appendix A
Table Al

Locations of the Norwegian measurement stations analysed in this study.

Station Latitude | Longitude | Altitude | Land type
1 Holt 69.65 18.91 12 Coastal
2 Sortland 68.65 15.28 14 Coastal
3 Vaganes 67.28 14.45 26 Coastal
4 Tjatta 65.83 12.43 10 Coastal
5 Skogmo 64.51 12.02 32 Inland
6 Rissa 63.59 9.97 23 Coastal
7 Kvithamar | 63.49 10.88 28 Inland
8 Skjetlein 63.34 10.3 44 Coastal
9 Surnadal 62.98 8.69 5 Inland
10 Tingvoll 62.91 8.19 23 Coastal
11 Favgang 61.46 10.19 184 Inland
12 Fureneset 61.29 5.04 12 Coastal
13 Gausdal 61.22 10.26 375 Inland
14 Loken 61.12 9.06 527 Inland
15 Ilseng 60.8 11.2 182 Inland
16 Kise 60.77 10.81 129 Inland
17 Apelsvoll 60.7 10.87 262 Inland
18 Hgnefoss 60.14 10.27 126 Inland
19 Arnes 60.13 11.39 162 Inland
20 Etne 59.66 5.95 8 Inland
21 As 59.66 10.78 94 Inland
22 Bg 59.42 9.03 105 Inland
23 Rakkestad 59.39 11.39 102 Inland
24 Ramnes 59.38 10.24 39 Coastal
25 Tomb 59.32 10.81 12 Coastal
26 Gjerpen 59.23 9.58 41 Coastal
27 Hjelmeland | 59.23 6.15 43 Inland
28 Tjalling 59.05 10.13 19 Coastal
29 Seerheim 58.76 5.65 90 Coastal
30 Landvik 58.34 8.52 10 Coastal
31 Lyngdal 58.13 7.05 4 Inland
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Appendix B

Table B1

List of years not included in the study.

Years failing Years having Years
Long and Dutton | operational error | having
Years having more than 5% missing | test (snow/frost/ equipment

Station data shading/soiling) | error

1 | Holt 2001,2002,2006,2007,2008,2010 2013 2000

2 | sortland 2000,2006,2007,2010,2013

3 | vagenes 2006,2007 2002

4 2008,
Tjotta 2006,2007 2012

5 2011 2013,
Skogmo 2006,2007,2008,2015 2014

6 |Rissa 2006,2007 2000

7| Kvithamar 2006,2007,2013

8 | Skjetlein 2006,2007 2000

9 | surnadal 2006,2007,2014

101 Tingvoll 2006,2007,2012

11| Favang 2006,2007 2001

12| Fyreneset 2006,2007,2011,2012

13| Gausdal 2006,2007,2009 2015

141 gken 2006,2007

151 j1seng 2006,2007,2004 2000 2009

16 | Kise 2002,2006,2007,2015 2013

17| Apelsvoll 2006.2007 2002,2003,2004 | 2009

18 | Hgnefoss 2006,2007 2000

19| Arnes 2006,2007

20| Etne 2006,2007 2004,2012

21| As 2006,2007

22| g 2000,2006,2007

23 | Rakkestad 2006,2007

24 | Ramnes 2006,2007 2009

25| Tomb 2006,2007 2009

26| Gjerpen 2006,2007,2015

27 2002,
Hjelmeland | 2006,2007 2015

28 2012,2015 2000,
Tjglling 2006,2007,2008,2014 2010

29| saerheim 2000,2006,2007

30 2005,2010,2014,
Landvik 2006,2007 2015

31| Lyngdal 2006,2007 2001




553  Appendix C
554  Table C1

555 Error metrics expressed in Wm2, for the datasets analysed in this study. Number without parentheses are monthly
556  averaged errors while in parentheses are daily averaged errors.

Station RMSD(Wm?) MAD(Wm?) MBD(Wm?)
CLARA | SARAH | ERA5 | ASR | CLARA [ SARAH | ERA5 | ASR | CLARA [ SARAH | ERA5 | ASR
55 47 96 15 11 28 15 11 25
Holt (9.1) - (120) | (188) | (29 - (3.5) @8 | (14 - (1.4) (3.4)
175 125 151 114 77 97 -11.0 11 06
Sortland | (23.0) - (209 | (38.2) | (16.0) - (18.9) | (244) | (120 - (2.4) (2.2)
51 10.4 20.9 32 57 128 0.7 39 118
Végenes | (13.8) - (267) | (@21 | 87 - (150) | (248 | (0.3) - 63) | (162
6.1 128 278 46 84 16.9 03 79 15.2
Tiotta | (13.8) - (20.2) | (479 | (95) - 74 | (80 | (13 - (10.7) | (19.4)
124 118 8.2 20.2 78 8.2 53 125 3.7 6.3 10 114
Skogmo | (20.0) | (208) | (236) | (416) | (133) | (134) | @42 | @58 | (24) | (56 | (@5 | @153
8.2 72 8.2 241 55 49 5.1 148 2.7 33 2.1 136
Rissa | (17.3) | a76) | @71 | @54) | (123 | @5 | arn | @ | 15 | (249 | @42 | 95
73 78 77 316 5.1 10 52 203 24 0.2 01 19.2
Kvithamar | (16.0) | (16.8) | (264) | (47.7) | (11.4) | 106) | (164) | (295 | (12 | (44) | @4 | (231
79 838 72 29.9 6.0 6.4 51 19.7 1.0 6.0 04 18.9
Skjetlein | (17.4) | (17.6) | (259) | @65 | @27) | (11.6) | (165) | (286) | 08 | (48 | (20 | (226
97 111 10.9 19.0 7.0 77 75 12.9 41 6.0 65 11.9
Surnadal | (208) | (235) | (284) | 412 | @41) | 45 | 179 | @52 | (27 | 51 | (83) | (148)
8.3 93 10.4 16.9 6.4 6.4 65 10.7 17 438 51 8.4
Tingvoll | (18.0) | (200) | (27.) | (400) | (134) | @26) | (169) | (245) | (01) | (40 | .0 | (111
131 10.0 10.4 212 95 73 6.8 146 8.4 6.8 18 141
Favang | (223) | (188) | (27.3) | (439) | (163) | (128 | (18.0) | (29.2) | (76) | (-66) | (2.8 | (19.5
47 57 10.7 185 35 38 6.9 126 11 238 6.4 113
Fureneset | (14.9) | (16.8) | (283) | 42.0) | @04) | 02 | 170 | @63) | ©6 | 18 | (86 | (141
114 7.0 132 209 8.8 52 8.8 14.8 12 1.9 5.1 146
Gausdal | (206) | (17.4) | @r7) | @28 | @53) | (121) | (183) | .0 | ©4 | 06 | (71 | 19
143 [10.7 9.2 127 95 74 59 8.2 8.4 6.7 18 37
Loken | (243) | (21.0) | (283) | (405) | @a76) | (145 | (186) | (266) | (72) | (61 | (4.0) (6.1)
118 93 11.0 214 8.8 538 76 16.7 5.9 22 11 16.7
lseng | (234) | (192) | 280) | (439 | (168) | (129 | @87n | @7 | 41 | (10) | @0 | (98
9.9 8.3 8.9 226 6.8 55 6.0 16.1 1.0 15 23 16.1
Kise (206) | (182) | (259 | @27 | @51 | (124) | 170) | (286) | (0.9 (0.4) 43) | (20.8)
102 8.4 9.1 318 77 50 6.3 25.0 16 02 28 25.0
Apelsvoll | (19.6) | @a74) | (258 | (48.2) | (1an | @19 | a73) | G40 | @42 (L5) (51 | (29.0)
7.0 71 8.9 20.8 53 48 6.1 15.2 33 35 01 151
Hgnefoss | (16.6) | (158) | (25.7) | (41.6) | (122) | 10.8) | (17.0) | (280) | (13) | (22 | 0 | (203
9.0 78 79 198 6.2 5.1 52 14.9 4.0 38 13 133
Ames | 173) | (162) | (246) | 40.0) | @27 | (1.0) | (163) | 266) | (28 | (30 | (01 | (184
93 9.7 128 231 6.9 7.0 8.9 15.0 44 54 6.4 145
Etne (200) | (220) | (294) | (486) | (145 | (148 | 196 | ¢L0) | (29 | (46 | 89 | 194
73 71 8.0 211 48 5.1 53 151 35 4.0 21 14.4
As (136) | (146) | 45 | 1.0 | 671 | 100 | a6 | @67 | 19 | (28 | (05 | (192
79 65 10.3 215 57 46 71 16.4 14 15 49 16.2
Bo (178) | (166) | (54) | @32 | @30 | (116 | a7 | 94 | 3.0 (3.0) 7.5) (20.3)
72 78 8.2 21.0 55 55 58 16.1 2.9 43 06 15.2
Rakkestad | (15.9) | (17.8) | @6.1) | (06) | (115 | (103) | @64) | @72 | 14 | (36 | @5 | @83
8.9 75 8.2 22.1 71 55 58 16.4 56 34 13 158
Ramnes | (16.7) | (154) | (240) | (408) | (123) | @06) | (158 | (265) | (41) | (20 | (3) | (187)
115 2.7 11.2 203 70 B9 6.9 14.4 5.9 5.0 33 125
Tomb | (19.0) | (19.0) | (280) | (40.9) | (128 | @4.0) | @77 | (256) | (45 | (39 | (21 | (169
115 88 116 204 83 11 84 148 43 0.2 13 10.7
Gjerpen | (19.1) | (19.9) | (25.8) | (408) | (145 | @43) | @81 | (279 | (30) | (41) | 03) | (154)
47 55 10.9 19.7 34 36 75 139 0.1 0.9 6.6 135
Hjelmeland| (16.6) | (16.1) | (295) | @6.0) | @2.1) | (109 | (196) | 311 | @8 (0.2) (9.8 | (181
8.2 75 114 285 6.0 52 75 19.7 01 19 44 191
Tjalling | (18.0) | (138) | (265) | (451) | (128 | (@6) | (168) | (296) | (19 | (06 | (.2 | (25.1)
59 6.2 74 17.0 44 43 4.9 116 12 1.9 22 97
Serheim | (152) | (16.0) | (26.4) | 435 | 08) | (208 | @167 | @80) | 03 | 0.7 | (41 | (128)
73 6.3 102 230 52 46 65 15.8 12 04 55 155
Landvik | (165) | (143) | (25.7) | 422 | a18) | @7 | (167) | (281) | (39 (1.8) 88 | (21.3)
113 956 121 15.8 74 12 83 10.9 6.0 0.4 2.9 59
Lyngdal | (21.8) | (22.8) | (29.9) | (415 | @37 | 35 | (195) | (259) | (-6.1) | (-1.8) | (3.6) (7.0
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APPENDIX D

Table D1

Statistical errors of the yearly average solar radiation for the datasets included in the study. This table shows the
deviations for inland, coastal, above 65 ° N, and below 65°N latitude regions. RMSD, MAD, and MBD are
expressed in Wm-2,

RMSD (Wm2year™) MAD (Wmyear? MBD (Wm2year?)
CLARA[SARAH| ERA5 | ASR | CLARA | SARAH | ERA5 | ASR | CLARA [ SARAH | ERA5 | ASR
AllSites | 74 52 68 | 187 | 48 39 56 17.8 42 28 44 175
'2%‘3&" 8.9 - 96 | 166 | 52 - 8.8 15.6 4.4 - 71 134
Bgf,ll"’ 72 5.2 64 | 189 | 48 39 5.2 18.1 -4.1 -2.9 41 18.0
Coastal 6.2 49 74 | 181 | 38 35 6.2 171 3.1 2.4 46 16.6
inland 82 54 64 | 192 | 56 4.0 5.0 18.4 5.0 3.0 42 18.2
Appendix E
Table E1

Seasonal analysis of the datasets showing the variations in terms of RMSD, MAD, and MBD and expressed in
Wm2, CLARA and SARAH performs similarly and better than other datasets, while ERA5 gives median values
and ASR performs the worst

RMSD (Wm?) MAD (Wm?) MBD (Wm?)
FMA | MJJ | ASO NDJ | FMA [ MJJ ASO NDJ | FMA | MJJ | ASO | NDJ
CLARA | 127 94 84 19 838 73 6.4 05 76 11 41 0.3
(20.0) | 223) | @6.6) | (130 | (17.3) | 17.0) | (115 | (7.9 | (117 | @3) | (04 | (7.1
SARAH | 123 98 838 55 9.2 78 6.8 35 74 28 40 2.9
19 | @55 | @59 | 02 | @50 | 7.9 | (11.0) | @8) | (72 | 31 | w2 | (24
ERA5 | 115 151 9.9 47 838 122 75 27 6.9 73 31 0.1
238) | 413) | @41 | 07 | a0 | ¢18) | @700 | @5 | @3 | @3 | 22 | 04
ASR 225 384 17.0 55 194 346 12.8 34 18.9 340 92 12
(35.9) | 676) | 386) | (11.3) | (26.0) | (52.8) | (27.1) | (5.8) | (19.9) | (34.2) | (143) | (15)
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Abstract

Datasets from meteorological reanalyses and measurements from polar orbiting satellites are the
available sources of large-scale information about solar radiation. However, both the reanalyses and the
satellite-based estimates can be severely biased, especially in high latitude regions. In this study, solar
radiation estimates from the ECMWF Reanalysis 5 (ERA5) and the Cloud, Albedo, Radiation dataset
Edition 2 (CLARA-A2) were used as input to a random forest regression (RFR) model to construct a
novel dataset with higher accuracy and precision than the input datasets. For monthly averages of global
horizontal irradiance (GHI) at Norwegian sites, CLARA-A2 and ERAS5 respectively produced a root
mean squared deviation (RMSD) of 9.6 Wm and 10.2 Wm, a mean absolute deviation (MAD) of 6.3
Wm2and 7.0 Wm?2, and a bias of -1.6 Wm2 and 3.9 Wm. In contrast, the proposed regression model
provided an RMSD of 6.6 Wm2, an MAD of 4.3 Wm?, and a bias of -0.2 Wm. This shows that the
RFR model is both accurate and precise, and significantly reduces both dispersion and bias in the new
dataset with respect to the constituent sources. The proposed model provided more accurate and precise
estimates in a seasonal error analysis as well. A sky stratification analysis was performed to evaluate the
accuracy of the datasets under different sky conditions. It was found that the proposed model provides
better estimates under all sky conditions with particular improvements in overcast conditions. The
proposed regression model was also tested on five Swedish locations and it was found to improve solar
radiation estimates to a similar degree as for the Norwegian locations, thus proving its consistency under
similar climatic conditions.

Keywords: Solar radiation; High latitudes; ERA5; CLARA; CMSAF; Random forest regression
1. Introduction

The bankability of solar power plants largely depends on the accuracy and precision of the solar radiation
measurements or estimates, which are required at all stages of solar energy projects. Time series or
temporal averages of solar radiation are obtained initially before a particular system can be simulated
and its design criteria and performance are evaluated. In the case of flat plate collectors, such as
photovoltaic (PV) and thermal, global horizontal irradiance (GHI) or global tilted irradiance (GTI) are
used in the feasibility and planning phases. Additionally, long-term variability in solar radiation is used
to quantify the solar resource and project worst-case scenarios of energy production in such systems.
During operation, real-time data are typically required to verify the performance of the system and
detect problems. In both cases, the required data can be obtained from measurement, modelling, or
a combination of both (Sengupta et al., 2017; Urraca et al., 2017b).

High quality solar resource assessments make technology deployment possible by helping the decision
makers to reduce the uncertainty in investment decisions. However, the assessments cannot rely
exclusively on ground measurements of solar radiation, because these are usually not available at most
locations in the world. Even though such measurements exist at some locations, they frequently contain
missing or erroneous data that must be filled in by using modelled data or interpolation from nearby
measurement stations. Lastly, the cost of maintaining local equipment is larger than operating a model,
assuming that satellite data and the output of reanalyses are provided free of charge or at a reasonable
cost. Although model data are not as accurate as ground measurements, they can be used as an alternative



(Stoffel et al., 2010). Nevertheless, quality ground measurements remain essential because they have
low errors and can be used to validate models (Sengupta et al., 2017).

Geostationary satellites are widely used for estimating surface solar radiation at low and medium
latitudes, where their measurements of top-of-atmosphere upwelling radiances and surface albedos are
used to derive GHI at the surface (Cano et al., 1986; Pinker and Laszlo, 1992; Rigollier et al., 2004;
Tarpley, 1979). These satellites are positioned over the equator at different longitudes in order to provide
a global coverage between -60° and +60° in latitudes. For instance, the Meteosat first and second
generation geostationary satellites provide coverage of most of continental Europe (Muller et al., 2015;
Pfeifroth et al., 2017; Schmetz et al., 2002; Urraca et al., 2017b). However, estimates above 65°N are
prohibited by the slant viewing angle that geostationary satellites experience when they point away from
nadir i.e., the vertical direction directly below the satellite (Schulz et al., 2009).

Above the critical latitudes that limit geostationary satellites, polar orbiting satellites can be used to
estimate surface solar radiation (Karlsson et al., 2017). Polar orbiting satellites traverse the entire Earth
and provide global coverage, but their accuracy decrease at high latitudes because of the large angles
between the satellite sensor and the Sun. Another factor that decreases the accuracy at high latitude is
the frequent snow cover, which the satellites sensors cannot differentiate from clouds in the visible
spectrum. The temporal resolution of solar radiation estimated by polar orbiting satellites is lower than
that of geostationary satellites, since the revisit time of the former is higher than the repeat time of image
acquisitions used by geostationary satellites. Whereas the latter capture images at least every 15 minutes,
the polar orbiting satellites sense a given location twice each day on the equator and about 14 times each
day near the poles. The sensing frequency of polar orbiting satellites is best at high latitudes, since swath
overlap increases towards the poles, where their orbits converge. The accuracy of solar radiation
estimated from satellite data is lower than ground measurements, but the advantages include large spatial
and temporal coverage (Noia et al., 1993). In another study it was observed that estimates from polar
orbiting satellites provide reasonable accuracy, but estimates obtained over snow-covered surfaces result
in high errors because it is difficult to differentiate clouds from snow in the visible spectrum of light
(Babar et al., 2018a). For a list of known issues and uncertainty sources, refer to Suri and Cebecauer
(2014).

In addition to satellite measurements, meteorological reanalyses also provide surface short-wave
incoming radiation estimates (Wild, 2008; Wild et al., 2015). Reanalysis datasets are produced by data
assimilation of historical observational data, aiming to obtain the initial state of selected parameters
which best fits a numerical weather prediction (NWP) model to the available data (Kennedy et al., 2011).
Reanalyses are not as accurate as satellite-based estimates, but they provide global coverage for multi-
decadal time range (Babar et al., 2018b; Urraca et al., 2017b; Urraca et al., 2018).

Both the satellite-derived estimates and reanalyses have a certain degree of uncertainty, but proper
identification and removal of errors can improve the results. Site adaptation refers to the improvements
that can be obtained in satellite-derived or model-based solar irradiance by using short-term ground
measurements to reduce the systematic bias in the original dataset. In Polo et al. (2016), the authors have
provided a preliminary survey of available site adaptation techniques. Site adaptation can be physically
based methods in which the atmospheric input data such as aerosol optical depth and vertically-
integrated water column are adjusted to better match the ground based observations (Gueymard, 2012).
Other such methods include the use of clear-sky models to adjust the atmospheric aerosol on clear sky
days (Cebecauer and Suri, 2012). The second type of site adaptation is based on statistical adjustment
of meteorological observations, such as rain, wind and so forth. The linear statistical methods for bias
removal is performed by first fitting a line to the observations and estimations. In the next step an x=y
line is subtracted from all observations (Polo et al., 2015). This type of adjustment removes the
systematic errors that exist due to the regional inconsistencies or from the radiative models. Moreover,
non-parametric regression by using multiple input datasets has been performed by Davy et al. (2016)
for Australia. In this study, the authors used generalized additive models with cubic smoothing splines



to improve accuracy. By including an NWP model-derived irradiance as input, they reduced the root
mean square deviation by a few percent. In the study presented here, an approach similar to the site
adaptation technique by Davy et al. (2016) is used.

This study presents a novel dataset that is obtained by using mainly the solar radiation estimates from
ECMWEF Reanalysis 5 (ERAS5) and Cloud, Albedo, Radiation dataset Edition 2 (CLARA-A2), hereafter
referred as ERAS and CLARA. It is observed that reanalyses usually overestimate surface solar radiation
and satellite methods usually underestimate it (Babar et al., 2018a; Riiheld et al., 2015; Urraca et al.,
2017b). The main motivation behind constructing a new estimate is that we want to overcome the
underestimation tendency of satellite methods and the overestimation tendency of reanalyses by
combining them into a dataset with lower bias and variance. The input datasets were used together with
in-situ measurements to develop a novel random forest regression (RFR) model, which can be used to
produce accurate and precise estimates of solar radiation at high latitudes.

This paper is formatted as follows: Section 2 describes the datasets, quality control procedures, RFR
model and pre-processing used in this study. Section 3 describes the results of the study. Section 4
provides a conclusion of this work.

2. Datasets

CLARA and ERADS are coarse resolution datasets and provide data on a grid of 0.25° x 0.25° and 0.28°
x 0.28°, respectively. Data extraction from these datasets is performed by selecting the four grid points
surrounding any location where we have ground measurements, and applying inverse distance weighted
interpolation to obtain solar radiation at these coordinates. In case of CLARA, there are missing data
points, which implies that at some of the time frames there is data lacking in the surrounding four grid
points. When the surrounding points have less than three valid values, the interpolation is replaced by a
missing data value, indicating that a valid value could not be extracted for that particular time. The
ERAGS dataset does not contain missing values. It will be explained in section 2.6 how the proposed
regression model handles missing data values.

2.1 CLARA-A2

This dataset was released in December 2016 and it is the second edition of CLARA (Cloud, Albedo,
Radiation dataset) produced by Eumetsat’s Satellite Application Facility on Climate Monitoring (CM-
SAF) (Karlsson et al., 2017). The dataset covers 1 January 1982 to 31 December 2015, and constitutes
an extension of 6 years relative to the previous CLARA-A1 dataset. This dataset has global coverage
with a spatial resolution of 0.25° x 0.25° on a regular latitude-longitude grid and it provides daily and
monthly averages of surface incoming shortwave (SIS) radiation. To calculate daily averages, at least
20 observations of incoming solar radiation in each grid box are required. Similarly, 20 valid daily
averages are required to generate monthly averages (SAF, 2016). Along with SIS, CLARA also provides
longwave up- and down-welling surface radiation.

The fundamental method used in calculating surface solar irradiance from satellite observations is that
the reflectance measured by the satellite instruments is related to the atmospheric transmittance. The
underlying algorithm in CLARA uses Advanced Very High Resolution Radiometer (AVHRR) sensor
data to derive the cloud cover, which is used to calculate surface incoming solar radiation (Karlsson et
al., 2017). In addition to the cloud cover information, the solar radiation is estimated by using auxiliary
data like the solar zenith angle, vertically-integrated water vapour and aerosol optical depth. Finding
solar zenith angles is straightforward and can be calculated accurately. In this dataset, all data points
with solar zenith angles larger than 80° are set to missing values and solar zenith angles larger than 90°
are set to zero. The vertically-integrated water vapour and aerosol optical depth are not available in the
AVHRR data and for these external sources are used. For vertically-integrated water vapour, the ERA-
Interim Reanalysis (Dee et al., 2011) is used and the vertical ozone column is set to a constant value of
335 DU, as its variability has negligible impact on the estimated solar radiation. Aerosol information



for the algorithm is taken from the modified version of the monthly mean aerosol fields from the Global
Aerosol Data Set/Optical Properties of Aerosols and Cloud (GADS/OPAC) climatology. In the
algorithm, AVHRR data is used to retrieve only the cloud cover information. The first step in estimating
surface solar radiation is the classification of the sky condition. Software from Eumetsat’s Nowcasting
Satellite Application Facility (SAFNWC) is used to derive the information on cloud coverage for each
pixel by using the information from the satellite sensor (SAF, 2016). If no cloud is detected (cloud free
pixel), surface solar radiation is calculated by using the clear-sky Mesoscale Atmospheric Global
Irradiance Code (MAGIC) (Mueller et al., 2009) by using only auxiliary sources. If the pixel is classified
as cloudy (cloud contaminated or fully cloudy), visible channels of AVHRR instrument are used to
derive broadband reflectance. The reflectance for each pixel is then transferred to broadband fluxes by
using a bidirectional reflectance distribution function (BRDF). In the next step, the broadband top-of-
the-atmosphere albedo is used to derive transmissivity through a look-up table approach. Finally, the
transmissivity is used to calculate the surface solar radiation. However, as a temporally constant surface
albedo is used by the algorithm, it does not provide radiation estimates on snow and sea ice coverage
areas (Karlsson et al., 2017). For more information on the CLARA dataset and its accuracy, refer to
Karlsson et al. (2017).

2.2 ERAS

ECMWEF Reanalysis 5 (ERADb) is the fifth generation atmospheric reanalysis of the global climate from
the European Centre for Medium-Range Weather Forecasts (ECMWF). It spans a period from 1950 to
near present time (Hersbach and Dee, 2016). At the time of this study, data from 2000 to 2017 is
available. Further data back in time will be released in 2019-20, and the dataset will continue to update
forward in near real-time. In ERA5, the solar radiation variable has a spatial resolution of 31km
(0.28125° x 0.28125°) and an hourly temporal frequency. ERAS uses Integrated Forecasting System
(IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4ADVAR) assimilation
system. ERA5 has a higher number of pressure levels than ERA-Interim (the previous edition of
ECMWEF reanalysis) and provides more parameters, including hourly estimates of atmospheric, land and
oceanic climate variables. For more information on ERA5 refer to ECMWF (2018).

In this study, shortwave surface downward radiation and shortwave surface downward radiation clear-
sky are used from this dataset. In ERA5, the incoming shortwave irradiance is obtained from a Radiative
Transfer Model (RTM). This model simulates the attenuation in solar radiation caused by the
atmosphere. Therefore, the quality of the radiation estimates depends on the RTM used. Reanalyses
generally do not assimilate aerosol, clouds or water vapour data, which increases the uncertainty in the
estimated surface irradiance (You et al., 2013; Zhao et al., 2013).

2.3 Ground data

The ground-measured data used in this study for regression and validation is obtained from the
Norwegian Institute of Bioeconomy Research (NIBIO) for Norwegian locations and from the Swedish
Meteorological and Hydrological Institute (SMHI) for Swedish locations. NIBIO and SMHI collect,
maintain, and provide data from their respective networks of meteorological measurement stations in
Norway and Sweden, including ground-measured solar radiation. NIBIO and SMHI register hourly-
average GHI by using Kipp and Zonen CMP11 or CMP13 pyranometers. The data is quality controlled
and the equipment is maintained regularly on a daily or weekly basis (NIBIO, 2018; Persson, 2000).
The coordinates of the locations, their altitudes and land type are indicated in Appendix A, Tables Al-
A2 and an overview of the site locations is shown in Figure 1. The Swedish locations were only used in
the testing of regression model, so as to prove its robustness.

For the analysis, the Norwegian sites were divided into inland and coastal regions by observing the
proximity to the shoreline. Regions within 30 km of the shoreline were considered as coastal. From the
31 Norwegian locations studied here, 14 sites were classified as coastal and 17 sites as inland. The



locations were also divided into two other groups, where locations lying above 65°N were grouped
together and locations lying below 65°N were put in another group. In this latitude-based grouping, four
sites were in the above 65°N group and 27 sites belonged to below 65°N group. For details on this
classification, refer to appendix A, Table Al.
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Figure 1: Locations of the Norwegian sites included in the study. To avoid overlapping of hames
some locations are shown with only white dots.

2.4 Quality Control

Although the data provided by NIBIO are quality controlled, Urraca et al. (2017a) observed that
operational and equipment errors exist in NIBIO stations. The first check performed in this study is to
look at the percentage of missing data. Any year having more than 5% of missing values was discarded
from the analysis. The second check was performed by using the BSRN Global Network recommended
quality control (QC) tests, version 2.0 (Long and Dutton, 2010). The BSRN QC test highlights values
that are extremely rare and physically impossible. Based on this test, years having more than 1% of
flagged values were removed from the ground data. The third quality control procedure was applied by
using the QC technique of Urraca et al. (2017a). In this test, CLARA and ERAS5 datasets are used to
check the quality of ground measurements by constructing confidence intervals to detect the operational
and equipment errors. Following Urraca et al. (2017a), the locations in Norway were divided into two
sections by grouping locations above 65°N and locations below 65°N. Separate confidence intervals
were constructed for both groups. After constructing these confidence intervals, the ground data was
passed through an algorithm to check the data with errors, which appear in the form of flags. Following
Urraca et al. (2017a) two checks were performed, one to see the operational errors and the other to see
the equipment errors. After these checks, the years having large number of flags were visually inspected
and removed from the analysis. For example, Pasvik, Mare, Njgs and Ullensvang were found to have a
large number of flags from the third QC test, hence these locations were discarded. For more information
on this quality control procedure, refer to Urraca et al. (2017a). A number of Norwegian locations were
found to have large percentage of missing data points in years 2006 and 2007, hence these years were



rejected from all Norwegian locations. See Appendix B, Table B1 for details of the years not included
in this study.

2.5 Random forest regression

The motivation for adopting a regression model from the recent machine learning literature came from
the hypothesis that our regression analysis might benefit from using an algorithm, which applies
different regression functions for different subsets of the predictor data space. Conventional regression
methods apply the same regression function, parametric or nonparametric, to the whole dataset and
include all independent variables (predictors) as arguments to this function. More advanced methods
can, on the other hand, allow more flexibility by judiciously selecting subsets of predictors or tailoring
the regression function for subsets of the data in a manner that improves the overall performance in the
regression analysis.

An example of such an approach is stratified regression analysis (Anderson et al., 1980; Tso and Yau,
2007), where separate regression models are set up for stratified samples of the independent variables,
that are observed or hypothesized to exhibit different relations to the dependent variable. The strata can
often be identified directly from the independent variables as natural groupings of the data. This idea is
further developed in so-called clusterwise regression or regression clustering (Bagirov et al., 2017; Hsu,
2015; Spath, 1979), where clusters in the independent data are identified during the adaption of the
regression model. Both the cluster-specific regression functions and the optimal clustering of the
independent variable space are learnt iteratively from a training dataset containing paired independent
and dependent samples. Input data points (vectors of predictor data) may be assigned to a unique cluster,
or they may be given a fuzzy membership in multiple clusters. These membership values may then be
used as weights in an ensemble approach where the dependent variable is predicted as a weighted
average of the clusterwise regression functions. Another approach is the use of regression trees (Tso and
Yau, 2007; Yu et al., 2010), where the predictor data space is recursively partitioned into finer regions
using a tree structure, hoping that stronger relationships between independent and dependent variables
can be formulated in these fine regions or branches of the tree. This may capture relations that are
difficult to perceive in an explanatory data analysis if structures in the data are not visually apparent.

RFR is a regression tree method that has become very popular in recent years due to its strong
performance, ease of implementation and low computational cost. It is an ensemble learning technique
developed by Leo Breiman (Breiman, 2001), which is based on the construction of a multitude of
decision trees. Branches of the trees represent particular paths that the input data can traverse,
determined by threshold tests at the bisections. Leaves represent the output values stored at the end
points of branching. In RFR, a particular tree is grown in accordance with the realization of a random
vector in order to introduce variation. The final prediction is based on aggregation over the ensemble of
trees, referred to as the forest (Segal, 2004). On each of the trees, branches or nodes are made which are
based on comparing a randomly selected feature to a random threshold. The randomness introduced in
both variable selection and threshold determination has been shown to result in attractive properties such
as a controlled variance, resistance to overtraining, and robustness to outliers as well as irrelevant
variables. Moreover, RFR inherently provides estimates of generalization error and measures of variable
importance (Bylander, 2002; Siroky, 2009). The process of dividing the input training data over
branches are repeated until one or a pre-set number of data points are contained in each branch. This
final node of the tree is referred to as a leaf, and it represents the outcome of that particular regression
in the whole model. The structure of the forest and hence the RFR behaviour can be controlled by three
parameters: the number of trees, the number of variables considered in each node (set to m=P/3, where
P is the total number of predictor variables), and the number of data points that can reside in a leaf (our
default value is 10). Having a very high number of leaves in the model can cause overfitting, which can
be overcome by pruning, i.e. limiting the number of data points in each leaf. Increasing the number of
trees in the forest has two main effects: The computation load will increase. An initial increase in the



accuracy of the regression will also be observed, before reaching a saturation point (Luppino et al.,
2018), after which improvements are limited by a strong correlation between the trees (Breiman, 2001).

2.6 Pre-processing and input data for the model

The regression algorithm presented in Section 2.5 requires a training dataset for training the model and
a test dataset to validate the trained model. In this study, the main inputs to the model are the surface
solar radiations from CLARA and ERADS. In addition to these, clear sky indices were obtained by using
shortwave surface radiation downward clear-sky (SWSDC) from ERA5 and GHI from ground
measurements. By using clear sky indices, the RFR algorithm can take advantage of the sky stratification
in different conditions. The daytime averages of solar zenith angle were also used as an input as it can
provide the regression algorithm with the variation in solar elevation and its effects on surface radiations.
Furthermore, latitudes and altitudes of the locations were used as input to the algorithm. In the training
phase, 20% of randomly selected data was used from Norwegian locations, while the rest of the 80%
data and data from Swedish locations were used in testing phase for validation of the model. The size
of the training data was selected after running multiple runs with different sizes of data. Using more
than 20% of data did not result in significant improvements. The model was tested with a number of
trees ranging from 32 to 256 and pruning from 1 to 10 data points per leaf node. After multiple runs,
128 trees were selected with 10 data points per leaf node. The results presented in the next section are
for the whole dataset.

Two main pre-processing procedures were applied in the training data of the regression model. Because
of problems with convergence of the regression model, the missing data in CLARA and ground
measurements was treated. First, training data with missing values in the ground measurements were
discarded. This step eliminates the missing values in the ground data so that the regression model can
converge, and also reduces the number of missing values in CLARA. This process was not performed
on the test dataset, as missing values in the ground-measured data used in validation would not affect
the errors statistics. Following previous studies that have shown that reanalyses can be used to fill the
gaps in satellite datasets, we replaced in the second step the missing values of CLARA by corresponding
values from ERAS (Babar et al., 2018b; Urraca et al., 2017b; Urraca et al., 2018). These pre-processing
steps enable the regression model to converge although with less training data.

2.7 Validation

In order to evaluate the performance of the RFR model, we introduce some common statistical measures.
We first introduce the deviation (sometimes called error or residual) as the difference between the
estimated (or predicted) and the observed global horizontal irradiance: & = GHlgstimatea,i —
GHIypservea i Where the subscript i is a data point index.

A widely used measure of dispersion is the root mean square deviation (RMSD), computed from a
sample of N data points as

N
1
RMSD = NZ(GHIestimated,i - GHIobserved,i)2 . (1)
i=1

This measure combines both accuracy and precision.

The bias (or mean deviation) is used in the evaluation to quantify under- or overestimation. The bias is
a measure of accuracy and is computed from the sample as

N
) 1
Bias = NZ(GHIeStimated,i - GHIobserved,i) = GHloseymatea — GHlopservea (2)
i=1



where GHlogtymatea @0 GHIpserveq are the sample means of the estimated and the observed GHI
values, respectively.

The mean absolute deviation (MAD) is another measure of dispersion, which give less weight to and is
therefore less sensitive to outliers than the RMSD (and the variance). The sample MAD is computed as
(Sanchez-Lorenzo et al., 2013; Willmott and Matsuura, 2005)

N
1
MAD = NZ|GHIestimated,i - GHIobserved,il . (3)
i=1
Following Karlsson et al. (2017), the standard deviation of § (STD) is also used in the evaluation. The
sample STD is computed as

N
1
STD = mz ((GHIestimated,i - GHIobserved,i) - (GHIesthated - GHIobserved))
i=1

2 (4)

In addition, a bias-variance decomposition was used to obtain the optimal configuration of the RFR,
with respect to the number of trees and the number of leaves. Moreover, R? and scatter plots are used to
indicate the spread and overall correlation of the datasets with ground measurements.

3. Results

Table 1 compares performance of the models in terms of RMSD, MAD and bias for CLARA, ERA5
and the proposed RFR model. The RFR model performs better than the models that were used to
construct it.

We start by looking at accuracy. For monthly averages of GHI at Norwegian locations, CLARA and
ERAS produced a bias of -1.6 Wm™ and 3.9 Wm?, respectively. The RFR model delivered a bias of
—0.2 Wm™2. The underestimation of the satellite model and the overestimation of the reanalysis is in
agreement with previous studies (Babar et al., 2018a; Babar et al., 2018b; Urraca et al., 2017b; Urraca
et al., 2018). The regression model underestimates the GHI, but the magnitude of the bias is reduced
with 88% with respect to CLARA and with 95% with respect to ERA5, proving that the RFR model
substantially improves the accuracy. These percentages are, as we will see, somewhat exaggerated when
compared to seasonal values of the bias. Nonetheless, the seasonal biases are also much improved. The
underestimation of the RFR model indicates that it weights CLARA higher than ERA5 on the whole,
although the algorithm clearly adapts to exploit the strengths of either source under different conditions,
as we will discuss below.

Regarding the dispersion measures, CLARA and ERA5 gave an MAD of 6.3 Wm2 and 7.0 Wm?,
respectively. The RFR model produced an MAD of 4.3 Wm, which is a relative improvement of 32%
and 39% with respect to CLARA and ERAS5. Similarly, an RMSD of 6.6 Wm™ was observed for the
RFR model, while the RMSD of CLARA and ERA were 9.6 Wm2 and 10.2 Wm?, respectively. The
relative improvement in the RMSD was 31% and 35%, respectively. From the bias-variance
decomposition of mean squared error (MSE = RMSD?), the variance can be computed as: Var =
RMSD? — Bias?. We can use this to use that the variances of CLARA and ERADS are very similar, and
the variance of the RFR model is less half of these. This proves that the RFR model also provides a large
improvement in precision. Table 1 also lists bias, MAD and RMSD for daily averages of GHI that show
similar patterns as for the monthly averages.

Table 1 lists the error metrics after geographically grouping the ground measurement sites as explained
in section 2.3. A brief overview of Table 1 shows that the proposed regression model improved all the
four groups (above 65°N, below 65°N, coastal and inland). Like CLARA and ERAS5, the proposed RFR



model performed better at above 65°N than below 65°N. Nevertheless, the accuracy and precision is
improved in both of these groups.

Table 1: The RMSD, MAD and bias of the input datasets and the presented model are shown. The error
metrics for all locations in addition to providing an analysis on below 65°N, above 65°N, coastal and
inland locations are shown. Numbers without parentheses are monthly averaged errors while those in

parentheses are daily averaged errors. Best results are indicated in bold.

RMSD (Wm2) MAD (Wm Bias (Wm?)

CLARA | ERAS RFR | CLARA | ERA5 RFR | CLARA | ERA5 | RFR

NIBIO 9.6 10.2 6.6 6.3 7.0 4.3 -1.6 3.9 -0.2
sites | (19.1) | (26.7) | (15.7) | (13.0) | (16.7) | (10.2) | (-2.0) | (3.9) | (-0.2)
Above 9.6 10.1 6.5 6.3 6.9 4.2 -1.6 3.8 -0.2
65°N | (16.0) | (26.3) | (13.7) | (9.7) | (145 | 82 | (29) | (5.6) | (-0.1)
Below 9.7 12.7 8.0 6.5 94 54 -1.8 5.7 0.1
65°N | (195) | (26.8) | (15.9) | (136) | (17.3) | (105) | (-1.8) | (3.9) | (-0.1)
Coastal 9.7 10.1 6.6 6.4 7.0 4.3 -1.7 3.8 -0.2
(16.7) | (26.7) | (14.8) | 1.4) | (16.3) | (9.4) | (-1.1) | 4.9) | (0.4

Inland 8.2 11.2 6.6 5.7 7.9 4.6 -0.6 4.5 0.1
(208) | (26.7) | (16.4) | (14.4) | (175) | (108) | (-2.6) | (3.4) | (-0.9)

In addition, a seasonal error analysis was performed after dividing the yearly time series in groups of
three months, i.e. February to April in FMA, May to July in MJJ, August to October in ASO, and
November to January in NDJ. This type of grouping was preferred in this analysis because most
locations analysed in this study are high latitude locations and at such locations the spread of solar
radiation density is not as uniform as at other regions closer to the equator. At high latitude locations,
most of the sun hours occur in summer months and least sun hours occur in winter months. By having
such a grouping, summer and winter seasons are analysed separately. The seasonal analyses in Table 2
shows that errors decreased in all of the seasonal groups with the RFR model. However, the largest
improvements were seen in FMA and MJJ. An analysis of the results of CLARA and ERA5 in NDJ and
FMA shows that ERAS performed better than CLARA in this period. This is mainly because of the low
solar elevation in winter months, which increases errors in satellite-based estimates. However, CLARA
performed better than ERAS5 in MJJ and ASO.

The RFR model improves the accuracy and precision through all seasons. Nonetheless, the seasonal
analysis reveals some interesting features: The bias of the RFR model varies over the year. The model
underestimates in winter and overestimates in summer. However, we see that the biases of CLARA and
ERAGS also fluctuate, and the RFR model succeeds in maintaining a much lower bias throughout the
year. We may take this as a sign that the RFR model is flexible and adaptive, and manages to weight the
input datasets in an appropriate way and combine their strengths to obtain good performance under
various conditions. When it comes to the dispersion measures, the values of the RFR model follow the
pattern of CLARA and ERA and largely decrease over the year. The largest relative improvements are
seen in the FMA quarter, when the RFR model produces a 25% improvement in RMSD and a 39%
improvement in MDA with respect to ERA5 (the best alternative). The magnitude of the bias reduction
also over 70% for both models. The seasonal improvements are lower than the improvement in monthly
averaged values, but the RFR model has much more consistent performance over the year than the input
datasets. This is evident if one studies and compares the ranges or totals of the seasonal error metrics
for the three models.



Table 2: The seasonal error analysis of CLARA, ERA5 and the RFR model are shown here. Major
improvements occur in the FMA and MJJ quarters. Numbers without parentheses are monthly averaged
errors while those in parentheses are daily averaged errors. Best results are indicated in bold.

RMSD (Wm) MAD (Wm) Bias (Wm)
FMA MJJ ASO NDJ FMA MJJ ASO NDJ FMA MJJ ASO NDJ
CLARA | 153 8.8 8.9 6.9 104 6.7 4.9 4.4 -6.9 1.3 14 0.3
(21.4) | (21.9) | (15.8) | (11.0) | (14.7) | 165) | (11.0) | (5.3) | (8.3) | (1.2) | (1.1 | (-23)

ERA | 129 | 143 | 98 | 62 | 92 | 114 | 67 2.7 7.0 7.2 2.0 0.2
(235) | (40.7) | (23.7) | (9.3) | (16.4) | (30.9) | (165) | (4.2 | 7.0 | (7.1) | (1) | (0.3)
RFR 97 | 74 | 78 | 56 | 56 | 56 | 44 23 | -18 | -01 | 15 0.0

Model | (159) | (21.2) | (144) | 88) | (1L.1) | (15.9) | (10.0) | B9) | (17) | (0.2) | (15) | (0.0)

Finally, the R? values and the standard deviation (STD) of the Norwegian locations is analysed. Values
of the coefficient of determination, R?, are computed from the ground-measured and model data. The
standard deviation is a measure of the spread of the prediction errors around their mean value. Table X
shows the R? values and standard deviation for all Norwegian locations, in addition to below 65°N,
above 65°N, coastal and inland regions. The standard deviation in Table 3 has units of Wm2, whereas
R? has no units. For standard deviation, the smaller the value, the better the model estimates and for R?,
the larger the value, the better are the estimates.

Table 3: The R? and error standard deviation analysis of CLARA, ERAS5 and the proposed RFR model
for Norwegian locations is shown here. The RFR model improves the estimates in all types of
geographical categories. The units of the standard deviation (STD) is Wm and R? is unit-less. Best
results are indicated in bold.

NIBIO sites Above 65°N Below 65°N Coastal Inland
R? STD R? STD R? STD R? STD R? STD
CLARA 0.96 23.8 0.96 18.4 0.95 25.0 0.97 21.1 0.95 25.9
ERA 0.92 26.9 0.89 28.5 0.92 26.7 0.91 27.1 0.92 26.7
RFR model 0.97 16.0 0.97 15.3 0.97 16.1 0.97 15.3 0.97 16.5

It can be observed that the proposed regression model improves the solar radiation estimates at all
Norwegian locations. The largest improvements were observed in location above 65°N, although the
differences are small. The proposed model had lower standard deviation than CLARA and ERAS in all
geographical groups. Note that CLARA performs better in coastal regions than in inland regions, while
the opposite is true for ERA5.

3.1 Sky stratification in CLARA, ERAS5 and the regression model

To evaluate the datasets for their performances in different sky conditions, the datasets were divided
into clear-sky, intermediate-cloudiness and overcast categories. This division was established based on
the clear-sky index (Kc), which is defined as the ratio of clear-sky GHI to the GHI recorded on the
ground. Shortwave solar radiation clear-sky downwards (SWSCD) from ERA5 was used to obtain the
clear-sky index. After calculating clear-sky index, Kc, following Smith et al. (2017) and Widén et al.
(2017), values higher than 0.8 were considered as indicating a clear-sky day, values of Kc between 0.4
and 0.8 were considered as intermediate-cloudy, and values below 0.4 were considered as overcast. This
kind of categorization is quite arbitrary, as days with Kc value of 0.8 or higher are not necessarily days
with completely clear sky, but a majority of these days are expected to have a clear sky. This analysis is
used here to roughly divide the sky conditions followed by a rigorous analysis. Any misclassification
based on the clear sky indices will have similar effects on all the datasets.

Figures 2-4 show the errors in the datasets under different sky categories. It can be seen from the figures
and the tables that the RFR model improves the results in the clear-sky and intermediate cloudy



categories. However, in the overcast category, CLARA and the RFR model performed similarly besides
that CLARA had a lower bias. On average, CLARA underestimated radiation in clear and cloudy
conditions, while an overestimation was observed in overcast conditions. On the contrary, ERAS
overestimated radiation in cloudy and overcast conditions, while it was underestimated in clear-sky
condition. ERADS is reported to have a positive bias towards estimating days as clear sky and a negative
bias towards estimating overcast days (Babar et al., 2018b). The reason for these biases is the higher
concentration of total cloud water content in the ERA5 model on rather clear sky days and a lower
concentration of total cloud water content in cloudy conditions. The underestimation in CLARA in clear
sky and intermediate-cloudy days is possibly due to the use of an optically thick aerosol climatology —
in this case the Global Aerosol Data Set/Optical Properties of Aerosols and Cloud (GADS/OPAC)
climatology (Babar et al., 2018b; Mueller and Trager-Chatterjee, 2014). The RFR model underestimated
solar radiation in clear sky condition and overestimated radiation in intermediate-cloudy and overcast
conditions. Nevertheless, large improvements were observed in clear-sky and cloudy conditions.
However, from a solar energy harvesting point of view, in overcast conditions smaller amounts of energy
is produced as compared to clear-sky and intermediate-cloudy days.
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Figure 2: CLARA errors under clear-sky, intermediate-cloudy and overcast conditions for Norwegian sites. The
scatter plots for different sky categories are also shown. The coloured legend bar shows the density of points.
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Figure 3: Same as Figure 2, but for ERA5.
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3.2 Testing the regression model on Swedish locations

In this section, the regression model is tested on five Swedish locations. Data from these locations were
not used in the training of the model, therefore this analysis tests the robustness of the regression model
proposed in this study. Table A2 in Appendix A lists the information on the Swedish locations used in
the analysis.

Table 3 lists the errors for CLARA, ERA5 and the RFR model for individual Swedish locations. The
errors for all locations are summarized in the last row of the table. In this analysis, it was found that the
RFR model improved the solar radiation estimates for Swedish locations as well. The monthly MAD
for all Swedish locations for CLARA and ERA5 was found to be 6.3 Wm2 and 5.6 Wm, respectively.
At these locations, the RFR model gave a MAD of 4.5 Wm2. Similarly, the daily averages were also
improved in the RFR model. As previously observed for Norwegian locations, CLARA underestimated
the solar radiation and ERAS5 overestimated it for Swedish locations. The proposed RFR model
underestimated the solar radiation as well, but the magnitude of the bias was smaller than for CLARA
and ERADS. This analysis shows that the proposed model can at least be used for Swedish locations that
may have a similar climate in terms of cloud, snow and sunlight conditions.

Table 3: The RMSD, MAD and Bias of the input datasets and the RFR model for Swedish locations is
shown here. These locations were not used in the training of the regression model. Numbers without
parentheses are monthly averaged errors while those in parentheses are daily averaged errors. Best
results are indicated in bold.

RMSD (Wm?) MAD (Wm) Bias (Wm

CLARA | ERA5 RFR | CLARA | ERAS RFR | CLARA | ERAS RFR

Kiruna 17.2 7.6 11.0 10.1 4.9 6.8 -7.0 -2.3 -5.9
(26.6) | (24.0) | (18.7) | (16.6) | (14.4) | (11.7) | (-8.2) | (-25) | (-6.0)

Luled 10.6 10.4 5.6 6.9 6.6 3.8 -4.4 51 -2.1
(24.4) | (25.1) | (17.5) | (149 | (15.3) | (11.0) | (4.2 (4.9 | (-2.1)

Umea 8.3 7.1 55 6.1 4.4 3.8 -3.2 2.0 -2.6
(16.4) | (23.0) | (135 | (115) | 142) | ©.1) | (35 | (21) | (-25)

Stockholm 6.8 7.0 5.9 5.1 4.8 4.5 2.6 3.1 3.9
(16.4) | (23.6) | (14.6) | (11.5) | (15.7) | (100) | (25 | (31) | (4.0)

Goteborg 4.7 9.5 4.8 3.5 7.3 3.7 1.6 6.9 3.0
(14.9) | (26.1) | (14.4) | (105) | (17.0) | (9.9 | (1.8) | (6.8) | (2.9

SMHI 10.4 8.4 6.9 6.3 5.6 4.5 2.1 2.9 -0.8
locations (20.3) | (24.4) | (15.9) | (13.0) | (15.3) | (10.3) | (-2.3) (2.9) | (-0.7)




4 Conclusion

Studies have shown that satellite estimation of solar radiation provide reasonable estimates and
reanalyses can be used to fill the gaps when satellite datasets are not available or they contain missing
data. It has also been observed that at high latitude locations there are a larger number of missing values
in satellite-derived data, as in CLARA. Some previous studies have reported that prediction errors
increase with latitude, so the available datasets have a systematic bias that grows with latitude. This
study proposes a novel method to construct an improved dataset by combining a surface solar radiation
dataset based on satellite measurements (CLARA-A2) and a newly published global reanalysis dataset
(ERAD5). The assumption used in this study is that the underestimation in satellite models and the
overestimation in reanalyses can be largely cancelled and overcome if they are fused in a regression
model to improve the estimates of surface solar radiation. The proposed regression model is constructed
by using the random forest regression method, which is a machine learning algorithm based on
regression trees and ensemble learning.

It is seen that on monthly and daily averages of radiation, the regression model provided more accurate
estimations than CLARA and ERA5. On monthly averages of surface solar radiation for Norwegian
locations, CLARA provided an MAD of 6.3 Wm while ERA5 provided an MAD of 7.0 Wm™. The
regression model reduced the error to a MAD of 4.3 Wm2, Similarly, on daily averages, CLARA and
ERAGS provided MADs of 13.1 Wm2 and 16.7 Wm, respectively, while the regression model gave a
MAD of 10.2 Wm2. Similar improvements were seen in RMSE values, proving that the RFR model has
significantly improved precision with respect to the input datasets. In addition the RFR model was seen
to provide large reductions in both annual and seasonal bias, showing that the accuracy improves as
much as the precision.

A discussion of the seasonal analysis concluded that the RFR model succeeds in combining the input
datasets in an adaptive fashion, such that the strengths of both models are exploited to produce
consistently high performance under all conditions and throughout the whole year. Moreover, from a
geographical analysis of errors it was observed that large improvements were obtained in locations
above 65°N and coastal regions. A seasonal error analysis is performed and it is observed that the
regression model provided better estimates than CLARA and ERAS in all seasons of the year with large
improvements in the period of November to April. A sky stratification analysis was performed on
Norwegian locations to assess the datasets in different sky conditions. It was observed that the regression
model improved solar radiation estimates in all sky condition, especially in clear-sky and intermediate-
cloudy conditions. Additionally, in terms of standard deviation, large improvements were found inland
and below 65°N. The proposed model was also tested on Swedish locations, that were not included in
the training set, and very similar improvements were observed.

Overall, the regression model provides an improved alternative to the available reanalyses and satellite
based estimates of surface solar radiation. In addition to an improved dataset, this study also highlights
the important role of machine learning algorithms in the production of sophisticated databases for high
latitude locations.



Appendix A
Table Al

Lists of Norwegian locations with their coordinates, altitudes and land type.

Station Latitude | Longitude | Altitude | Land type
1 Holt 69.65 18.91 12 Coastal
2 Sortland 68.65 15.28 14 Coastal
3 Vaganes 67.28 14.45 26 Coastal
4 Tjatta 65.83 12.43 10 Coastal
5 Skogmo 64.51 12.02 32 Inland
6 Rissa 63.59 9.97 23 Coastal
7 Kvithamar | 63.49 10.88 28 Inland
8 Skjetlein 63.34 10.3 44 Coastal
9 Surnadal 62.98 8.69 5 Inland
10 Tingvoll 62.91 8.19 23 Coastal
11 Favang 61.46 10.19 184 Inland
12 Fureneset 61.29 5.04 12 Coastal
13 Gausdal 61.22 10.26 375 Inland
14 Loken 61.12 9.06 527 Inland
15 Ilseng 60.8 11.2 182 Inland
16 Kise 60.77 10.81 129 Inland
17 Apelsvoll 60.7 10.87 262 Inland
18 Hgnefoss 60.14 10.27 126 Inland
19 Arnes 60.13 11.39 162 Inland
20 Etne 59.66 5.95 8 Inland
21 As 59.66 10.78 94 Inland
22 Bg 59.42 9.03 105 Inland
23 Rakkestad 59.39 11.39 102 Inland
24 Ramnes 59.38 10.24 39 Coastal
25 Tomb 59.32 10.81 12 Coastal
26 Gjerpen 59.23 9.58 41 Coastal
27 Hjelmeland | 59.23 6.15 43 Inland
28 Tjalling 59.05 10.13 19 Coastal
29 Seerheim 58.76 5.65 90 Coastal
30 Landvik 58.34 8.52 10 Coastal
31 Lyngdal 58.13 7.05 4 Inland
Table A2
Lists of Swedish locations with their coordinates, altitudes and land type.
Station Latitude | Longitude | Altitude | Land type
1 Kiruna 67.83 20.43 408 Inland
2 Luled 65.55 22.13 17 Coastal
3 Umea 63.82 20.25 10 Coastal
4 Stockholm 59.35 18.07 30 Coastal
5 Goteborg 57.70 12.00 5 Coastal




Appendix B

Table B1

The following years are not included in the study.

Years failing Years having Years
Long and Dutton | operational error | having
Years having more than 5% missing | test (snow/frost/ equipment

Station data shading/soiling) | error

1 | Holt 2001,2002,2006,2007,2008,2010 2013 2000

2 | sortland 2000,2006,2007,2010,2013

3 | vagenes 2006,2007 2002

4 2008,
Tjotta 2006,2007 2012

5 2011 2013,
Skogmo 2006,2007,2008,2015 2014

6 |Rissa 2006,2007 2000

7| Kvithamar 2006,2007,2013

8 | Skjetlein 2006,2007 2000

9 | surnadal 2006,2007,2014

101 Tingvoll 2006,2007,2012

11| Favang 2006,2007 2001

12| Fyreneset 2006,2007,2011,2012

13| Gausdal 2006,2007,2009 2015

141 gken 2006,2007

151 j1seng 2006,2007,2004 2000 2009

16 | Kise 2002,2006,2007,2015 2013

17| Apelsvoll 2006.2007 2002,2003,2004 | 2009

18 | Hgnefoss 2006,2007 2000

19| Arnes 2006,2007

20| Etne 2006,2007 2004,2012

21| As 2006,2007

22| gg 2000,2006,2007

23 | Rakkestad 2006,2007

24 | Ramnes 2006,2007 2009

25| Tomb 2006,2007 2009

26| Gjerpen 2006,2007,2015

27 2002,
Hjelmeland | 2006,2007 2015

28 2012,2015 2000,
Tjglling 2006,2007,2008,2014 2010

29| saerheim 2000,2006,2007

30 2005,2010,2014,
Landvik 2006,2007 2015

31| Lyngdal 2006,2007 2001
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