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Abstract 

Background: Alzheimer’s disease (AD) may develop 10-15 years before onset of mild 

cognitive impairment (MCI). Early intervention may serve to halt or delay disease 

progression. Thus, there is a need to investigate early cognitive and biological markers to 

detect and track disease progression. Subjective cognitive decline (SCD) is an established 

risk-factor for AD. However, SCD is a common phenomenon in healthy aging, and most 

cases are benign. Thus, improved methods of identifying and tracking SCD due to AD are 

needed. 

Objectives/aims: This thesis investigates the role of SCD as a preclinical stage of AD and 

seeks to improve methods of early detection. In paper I, potential recruitment source biases in 

demographics and cognitive performance between memory-clinic referred and self-referred 

SCD and MCI cases were investigated. In paper II, the cerebrospinal fluid (CSF) 

Neurogranin/BACE1 ratio was explored as a biomarker of putatively AD-coupled synapse 

affection in SCD and MCI cases with amyloid plaques. In paper III, more sensitive and 

culturally adapted test norms for the Consortium to Establish a Registry for Alzheimer’s 

Disease (CERAD) word list episodic memory test (WLT) was developed.  

Methods: Participants were primarily drawn from the Norwegian “Dementia Disease 

Initiation (DDI)” study comprising 658 baseline and 428 follow-up participants. An 

additional 59 healthy controls were included from the Norwegian “Trønderbrain” study for 

the purpose of developing cognitive test norms.  

Results and conclusions: In paper I, we found that both the SCD and MCI groups, regardless 

of recruitment method, showed reduced cognitive performance compared to controls. 

Differences in cognitive impairment for memory clinic-referrals compared to self-referrals 

were found only within the MCI group. In this study, a need to establish new test norms for 

the episodic memory test, CERAD WLT was revealed, which were ultimately developed in 
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paper III. The CSF Neurogranin/BACE1 ratio was increased in SCD and MCI cases with 

amyloid plaques. Increased ratios were related to reductions in hippocampal and amygdala 

volumes, corresponding to cognitive impairment at baseline and decline at 2-year follow-up. 

The Neurogranin/BACE1 ratio holds promise as a preclinical AD marker of synapse loss. 

 

1 Introduction 

More than a century has passed since Alois Alzheimer first described “A peculiar severe 

disease process of the cerebral cortex”. Where upon autopsy, the brain histology of a 50-year-

old woman showed distinct plaques and neurofibrillary tangles (Hippius & Neundörfer, 

2003). Plaques and tangles were later identified as consisting of beta-amyloid proteins and 

abnormally folded tau proteins (Kosik, Joachim, & Selkoe, 1986; Masters et al., 1985). In the 

early 1990’s, the amyloid cascade hypothesis was first described (D. J. Selkoe, 1991). While 

other views exist (Kametani & Hasegawa, 2018; Small & Duff, 2008), the amyloid 

hypothesis is to date the dominant model of AD pathogenesis. This hypothesis states that the 

accumulation of beta-amyloid (Aβ) due to reduced or failure of Aβ clearance mechanisms sets 

of a detrimental cascade of events, ultimately leading to the formation of neurofibrillary 

tangles, loss of synapses and neuronal degradation which cause cognitive impairment and 

dementia (Dennis J. Selkoe & Hardy, 2016). In addition, several lines of evidence implicate 

the innate immune system as a potential key player in the AD pathological trajectory (Fan, 

Brooks, Okello, & Edison, 2017; Jansen et al., 2019; Nordengen et al., 2019; Rajendran & 

Paolicelli, 2018).  

Alzheimer’s Disease (AD) has been extensively studied, especially the past four decades, with 

many discoveries being made, but unfortunately so far not resulting in effective treatments. 

AD is by far the most common cause of dementia, accounting for between 50-75 % of cases 
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(Karantzoulis & Galvin, 2011). Dementia and cognitive impairment are the leading chronic 

disease contributors to disability and care dependency among older people worldwide 

(Livingston et al., 2017). Dementia is primarily an age-related condition, and as populations 

are ageing in most countries, the frequency of dementia is increasing and prevalence rates are 

expected to double every 20 years (Prince et al., 2013). The cost to patients, caregivers and 

society as a whole is immense. Global costs was estimated at 604 billion USD in 2010 

(Wimo, Jonsson, Bond, Prince, & Winblad, 2013), and a recent Swedish report estimates a 

societal cost of 0.5 million NOK yearly for each patient with dementia (Akerborg et al., 

2016). In 2014, The Norwegian public health report estimated dementia prevalence to 80 000 

– 100 000 ("Public Health Report: Dementia in Norway," 2014) which would equate to costs 

of approximately 40 – 50 billion NOK annually. With numbers expected to increase, it is 

therefore of paramount importance to discover methods, which may prevent, stabilize or 

reduce prevalence rates. The discovery of effective prevention or intervention measures will 

be of huge benefit for patients, caregiver and society as a whole.  

 

1.1 The biological continuum of Alzheimer’s Disease  

Alzheimer’s disease (AD) may be described as a biological continuum that includes the 

hallmark pathological processes of amyloid-beta (Aβ) dysmetabolism, formation of amyloid 

plaques (A), neurofibrillary tangles (T) and neurodegeneration (N), which may be derived 

from measuring cerebrospinal fluid (CSF) levels of Aβ1-42, phosphorylated tau (p-tau) and 

total-tau (t-tau), respectively (C. R. Jack, et al., 2018). While most regard amyloid 

dysmetabolism and plaque formation as an early event in the AD disease trajectory, the 

precise pathophysiological mechanisms and sequence of events from early formation of 

amyloid plaque towards the formation of neurofibrillary tangles, synapse degeneration and 

neuronal loss are not yet fully understood (C. R. Jack et al., 2018; Marsh & Alifragis, 2018). 
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To aid research efforts in delineating the evolution of AD pathology, C. R. Jack et al. (2018) 

have proposed an unbiased classification system for AD biomarkers, which summarize the 

presence or absence of pathological markers as an A/T/N-score. This score can be used to 

classify cases along the AD biological continuum according to severity of pathological 

change. For example, the sole presence of amyloid plaque pathology would yield a A+T-N- 

score, whereas the presence of pathological neurodegeneration and neurofibrillary tangle 

formation would yield a A+T+N+ score (C. R. Jack et al., 2018).   

 

Previous research has largely focused on the pathological changes linked to cognitive 

impairment, either in the early stages of mild cognitive impairment (MCI), or at the later stage 

of dementia. However, converging evidence from studies of at-risk cohorts and clinically 

normal older individuals indicates that the pathophysiological underpinnings of Alzheimer’s 

disease may begin 10 to 15 years before the emergence of clinical symptoms (Perrin, Fagan, 

& Holtzman, 2009). Consequently, this has led to the proposal that AD has a preclinical phase 

wherein brain-compensatory mechanisms make up for early pathological changes (Dubois et 

al., 2016; Sperling, Aisen, et al., 2011). Intervention studies aimed at reducing parenchymal 

amyloid plaque load has generally shown no improvement in cognition (Honig et al., 2018; 

Ostrowitzki et al., 2012; Salloway et al., 2014). A contributing factor to this lack of success 

may be due to the inclusion of patients late in the trajectory of the disease, where substantial 

and possibly irreversible loss of neurons and cognitive dysfunction have already occurred. 

Future effective treatments in the preclinical phase of the disease (i.e. before clinical cognitive 

impairment) could serve to preserve cognitive function or delay onset of cognitive decline 

(Karran & De Strooper, 2016; Reiman et al., 2016; Sperling, Aisen, et al., 2011). Thus, 

identifying individuals at risk for AD in the preclinical phase is a key objective (Dubois et al., 

2016; Jessen et al., 2014; Sperling, Jack, & Aisen, 2011).  
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1.2 Clinical manifestation of preclinical AD: Subjective Cognitive Decline 

A proposed target population for preclinical AD is patients with subjective experience of 

cognitive deficits, hypothesizing that subjective cognitive decline (SCD), while performing 

within the normal range on standardized cognitive tests, may imply risk of having abnormal 

AD CSF biomarkers and show greater progression towards MCI and ultimately AD dementia 

(Jessen et al., 2014). SCD should manifest before the onset of MCI or dementia, and could 

potentially serve as a target population for early intervention trials. Indeed, several 

longitudinal studies have shown that SCD carries a small, but detectable risk of conversion to 

MCI (Mendonca, Alves, & Bugalho, 2016; Ronnlund, Sundstrom, Adolfsson, & Nilsson, 

2015; van Harten et al., 2013; Visser et al., 2009). However, an overwhelming majority do 

not show progression to objective cognitive decline (MCI or Dementia) when assessed at 

follow-up (Hessen et al., 2017; Mendonca et al., 2016). Indeed, it has been shown that 43 % 

of those aged between 65 and 74 years report subjective memory problems, while dementia 

prevalence in this age range is low (Bassett & Folstein, 1993). Thus, in many, if not most 

cases, the experience of cognitive decline may be benign. Several studies have shown that the 

presence of biomarkers indicating amyloid plaque deposition in cognitively normal 

individuals carries an increased risk of progression to MCI (Petersen et al., 2016; van Harten 

et al., 2013; Vogel et al., 2017). However, identification of pathological biomarkers presently 

requires invasive and costly procedures through biomarker CSF analysis or amyloid PET 

imaging. Consequently, there is a need to identify the characteristics of SCD due to AD and 

other disorders to identify preclinical at-risk populations eligible for early intervention and 

intervention trials (Jessen et al., 2014).  

 

The Subjective Cognitive Decline working group (SCD-I) (Jessen et al., 2014) has proposed a 

conceptual framework for research on SCD as a preclinical risk factor for AD. Among several 
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issues, they underline that differences in research setting, design and participant selection may 

influence the composition of clinical characteristics within at-risk cohorts. At-risk participants 

are recruited by different means, resulting in cohorts with different clinical and demographic 

characteristics. It has been demonstrated that MCI patients recruited through memory clinics 

are cognitively more impaired (Brodaty et al., 2014), show a higher prevalence of APOE ε4 

alleles (Brodaty et al., 2014; Fladby et al., 2017), harbor more AD-type pathology (Fladby et 

al., 2017; Whitwell et al., 2012), and show higher risk of progression to dementia (Farias, 

Mungas, Reed, Harvey, & DeCarli, 2009; Roh et al., 2016) compared to study participants 

recruited through community or population based samples. However, few studies have 

investigated the effects of recruitment bias for patients with SCD (Rodriguez-Gomez, 

Abdelnour, Jessen, Valero, & Boada, 2015). Chen et al. (2016) demonstrated that persons 

with normal cognitive scores at baseline, showed an annual conversion rate to MCI of 30 % in 

a memory clinic sample compared to 5 % in a community-based sample. The authors 

attributed this finding to level of concern leading to medical help seeking. Similarly, Perrotin 

et al. (2016) found reduced cerebral gray matter volumes and increased depressive 

symptomatology in SCD cases from a memory clinic sample compared to a community 

sample. While these studies did not demonstrate any differences in cognitive performance due 

to recruitment bias in SCD cases, Abdelnour et al. (2017) showed reduced cognitive 

performance in SCD cases from a memory-unit compared to cases recruited from an open 

house initiative offering free examinations to the community. These findings demonstrate a 

need to explore potential differences in clinical characteristics within and between preclinical 

cohorts employing different recruitment strategies. SCD is a particularly vulnerable clinical 

group, as many cases ultimately are not related to AD (Bassett & Folstein, 1993; Hessen et 

al., 2017; Mendonca et al., 2016).  
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1.3 The measurement of cognitive deficits due to AD 

In order to determine clinical stage (e.g. cognitively normal SCD or impaired MCI/Dementia) 

and measure clinical progression in AD, standardized tests of cognitive performance within 

several cognitive domains are employed (e.g. memory, attention and executive functions, 

language and visuoperceptual abilities). MCI in elderly persons has been studied extensively 

the past decades (Petersen, 2016). MCI is conceived as a prodromal phase of AD and other 

neurodegenerative disorders, where patients show mild deficits on standardized tests of 

cognitive performance while still retaining the ability to function independently in their daily 

lives (Albert et al., 2011). Memory impairment is the most prominent feature of prodromal 

AD, with most cases either showing mild impairments in episodic memory (pure amnestic 

MCI) or memory impairment with concurrent deficits in other cognitive domains such as 

attention and executive functions (amnestic multidomain MCI) (Petersen, 2016). The latter is 

often associated with increased neurodegenerative burden (Lenzi et al., 2011; Whitwell et al., 

2007), and more rapid progression to dementia (Hessen et al., 2014; Nordlund et al., 2010; 

Tabert et al., 2006). However, the time of disease onset and clinical progression varies 

considerably due to differences in genetic and environmental risk factors (Gatz et al., 2006; 

Jansen et al., 2019; Reitz & Mayeux, 2014; Tosto et al., 2017). Furthermore, some cases of 

MCI may be caused by conditions other than neurodegenerative disease (Petersen, 2016). 

Moreover, it has been shown that people with higher levels of education, or with a history of 

intellectually challenging work, may be more resistant against AD pathological change. This 

is known as the “cognitive reserve hypothesis”, whereby some individuals may better adjust 

to the effects of synapse loss and neuronal degradation in the earlier phases of the disease and 

thus retain normal performance on cognitive tests (Stern, 2012). Alternatively, individuals 

with high cognitive reserve may have a higher premorbid baseline due to superior cognitive 

function, and while declining from their individual baseline levels, still perform within the 
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accepted normal range on cognitive tests at clinical assessment (Soldan et al., 2017). Indeed, 

there is support for a “threshold effect” where individuals with higher education may resist 

the detrimental effects of neurodegeneration for a longer period of time, but show more rapid 

progression in cognitive decline once brain pathology reaches a critical level (Meng & 

D'Arcy, 2012). In addition, while advancing age is associated with decline in episodic 

memory performance (Park & Festini, 2017), tests of verbal list learning memory such as the 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) wordlist test (WLT) 

also show a female advantage in normative performance (Beeri et al., 2006; Heaton, Miller, 

Taylor, & Grant, 2004; Liu et al., 2011). If left unchecked, these factors could influence 

estimates of cognitive performance and consequently incorrectly diagnose individuals as 

cognitively impaired, or cognitively normal. More importantly, MCI due to AD may remain 

undetected, and are thus precluded from entry in intervention trials.  

 

In order to reliably measure normative performance of cognitive functions, clinicians rely on 

published norms, which aim to correct for demographics known to influence test 

performance. The CERAD WLT is a widely used word list memory test in AD research. 

However, it was originally developed to detect AD dementia, and MCI due to AD in at-risk 

geriatric populations. Thus, norms are primarily developed for elderly cohorts (Beeri et al., 

2006; Fillenbaum et al., 2005; Sotaniemi et al., 2012; Welsh et al., 1994). More recent 

research efforts now focus on tracking the preclinical or asymptomatic phases of the AD 

trajectory. Consequently, several slightly younger cohorts have been established (Fladby et 

al., 2017; Soldan et al.; Weiner et al., 2015). Recently, Hankee et al. (2016) proposed norms 

for the CERAD WLT for younger and middle-aged adults based on an American sample. 

These norms are aimed at younger individuals (<55 years), and norms are only provided for 

either age or education. However, as learning and memory are influenced by age, education, 
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and gender (Beeri et al., 2006; Heaton et al., 2004; Liu et al., 2011) correction for additional 

demographic factors may be necessary to avoid misclassification of cognitively normal and 

impaired individuals. In addition, CERAD WLT norms developed for Scandinavian countries 

(Danish, Swedish or Norwegian language) are lacking. Thus, in order to reliably detect MCI 

and track cognitive decline in younger cohorts, more sensitive and culturally adapted norms 

for cognitive tests, including the CERAD WLT, may need to be established.  

 

A conventional approach to establish norms for cognitive tests is the use of discrete norming 

procedures (e.g. capturing the normative performance of a certain demographic as a reference 

group). However, to ensure that the reference group is a representative sample of the 

population distribution, this approach requires an adequate sample size of healthy individuals. 

When adjusting for several demographics such as age, gender and education, the sample size 

requirements increase dramatically (Oosterhuis, van der Ark, & Sijtsma, 2016). In addition, 

normative performance may increase or decrease substantially by moving from one reference 

age group to the next (i.e. moving from a 54-59 year group to 60-65 year group) (Zachary & 

Gorsuch, 1985). A possible solution is to use a regression-based continuous norming 

procedure (Parmenter, Testa, Schretlen, Weinstock-Guttman, & Benedict, 2010; Testa, 

Winicki, Pearlson, Gordon, & Schretlen, 2009). Using multiple regression analyses, this 

approach uses the entire normative reference sample to estimate the relative effects of 

demographics such as age, gender and educational influences on CERAD WLT performance. 

As a consequence of using the entire normative sample to estimate demographic influences, 

the sample size requirements are 2.5 to 5.5 times smaller than by conventional discrete 

norming procedures (Oosterhuis et al., 2016). The derived regression equations from this 

analysis may be used to estimate predicted normative performance. More importantly, this 

approach allows highly individualized norms due to the adjustment of several covariates in a 
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linear fashion, meaning that the estimation of normative performance is possible at yearly 

increases in age and education for both males and females. Using this approach, the individual 

differences in performance should largely be due to factors other than known demographic 

influences, such as subtle or mild cognitive deficits due to pathology in the preclinical and 

prodromal stages of AD.  

 

1.4 Synapse loss in Alzheimer’s disease, an early event? 

While increased levels of CSF t-tau have been established as a marker of neuronal loss (C. R. 

Jack et al., 2018), several lines of research indicate loss of synaptic integrity and function as 

an early event in AD (Alberdi et al., 2010; Alzheimer's Association Calcium Hypothesis, 

2017; Dennis J. Selkoe, 2002; Zhang, Li, Feng, & Wu, 2016). Thus, sensitive markers of 

synaptic affection due to AD are sought. Moreover, synaptic function is closely related to 

cognition (Terry et al., 1991), and early synaptic affection may relate to the cognitive deficits 

seen in early mild cognitive impairment (MCI) even before substantial neuronal loss has 

occurred (Lleo et al., 2019). 

 

Neurogranin is a post-synaptic protein, which is highly expressed in dendritic spines of 

hippocampal and amygdala pyramidal cells and is linked to post-synaptic signal transduction 

and long-term potentiation of memories through the dendritic spine NMDA Ca2+-Calmodulin 

second messenger complex (Diez-Guerra, 2010; Higo, Oishi, Yamashita, Matsuda, & 

Hayashi, 2004). Increased levels of CSF neurogranin (Ng) have been related to loss of 

synapses and elevated levels of CSF Ng have been found in both MCI and dementia with 

amyloid plaques compared to both healthy controls and other neurodegenerative diseases 

(Kester et al., 2015; Portelius et al., 2015; Tarawneh et al., 2016; Wellington et al., 2016). 

While synaptic loss is not specific to AD, the apparent specificity of neurogranin related 
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synapse loss in AD may be due to its prominent expression in the pyramidal cells of medial 

temporal lobe (MTL) structures such as the hippocampus (Higo et al., 2004) and thus relate to 

the observed memory deficits in AD. In AD, amyloid-β precursor protein (AβPP) metabolizes 

to Aβ-peptide, which precipitate in amyloid plaques (Vassar, 2004). In a recent study, an 

inverse relationship between CSF Ng and the CSF Aβ1-42/Aβ1-40 ratio in MCI and dementia 

was shown, suggesting that synaptic loss and AβPP metabolism may be linked (De Vos et al., 

2015). The β-site APP cleaving enzyme 1 (BACE1) is a rate-limiting step in the production of 

beta amyloid through its metabolism of AβPP and is largely found in presynaptic terminals 

(Del Prete, Lombino, Liu, & D'Adamio, 2014; Sun & Roy, 2018). A known genetic risk 

factor for AD is the presence of one (heterozygote) or two (homozygote) APOE ε4 alleles, 

which is linked to AD through several proposed pathways. An important AD related pathway 

is through its interaction with the β-amyloid precursor protein (AβPP) which has shown to 

both increase availability of AβPP (Huang, Zhou, Wernig, & Sudhof, 2017) and increase the 

propensity of soluble monomers of Aβ1-42 to form oligomers (Huynh, Davis, Ulrich, & 

Holtzman, 2017; Sanan et al., 1994). In experimental studies, Aβ-oligomers have been shown 

to accumulate at synaptic terminals where it disrupts pyramidal cell N-methyl-D-aspartate 

(NMDA) receptors leading to post-synaptic Ca2+ dyshomeostasis, (Alberdi et al., 2010; 

Alzheimer's Association Calcium Hypothesis, 2017; Zhang et al., 2016) which putatively lead 

to loss of synapses.  

 

In a recent study, several CSF measures were compared as both single analytes and ratios to 

cognitive decline. It was demonstrated that an increased ratio between CSF neurogranin trunc 

P75 and BACE1 (CSF Ng/BACE1) was a robust correlate of cognitive decline in MCI cases 

due to AD (e.g. with amyloid plaques) (De Vos et al., 2016). Since BACE1 is predominately 

a presynaptic enzyme, and neurogranin is located in post-synaptic spines, these proteins are 
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highly correlated. De Vos et al. (2016) argued that this ratio may reflect synaptic integrity and 

thus relate to cognition. However, this ratio may alternatively reflect an Aβ-linked disease 

mechanism whereby the release of post-synaptic neurogranin in CSF (reflecting synapse 

loss), is related to the toxic effect of Aβ oligomers at the synaptic terminals. As the pre-

synaptic activity of BACE1 relates to rate of Aβ production, the relative increase in CSF 

Ng/BACE1 ratio may be a sensitive candidate marker of early synapse affection in AD. 

Increased levels of this ratio could herald development of cognitive deficits even at a 

preclinical stage of AD. 

 

2 Objectives 

The overall objective of this thesis was to investigate the role of SCD as a preclinical stage of 

AD and to improve methods of early detection of at-risk individuals. Herein, I aimed to 

investigate methods to improve the identification of at-risk SCD cases that are due to AD, 

develop more sensitive norms for the detection and tracking of normative episodic memory 

performance and investigate a new CSF biomarker of putatively AD-coupled synapse 

affection that may closely relate to both subjective and objective cognitive decline or 

impairment. Paper I investigates potential recruitment biases in cognitive performance and 

demographics in SCD and MCI participants recruited through memory-clinic referred 

participants as compared to self-referred participants following response to advertisements in 

media, newspapers or news bulletins. Paper II investigates if the CSF Ng/BACE1 ratio is 

increased in SCD and MCI cases with amyloid plaques and relate to reduced magnetic 

resonance imaging (MRI) derived MTL volumetry, cognitive deficits and longitudinal 

decline, putatively due to synaptotoxic Aβ oligomers. Paper III seeks to develop 

demographically adjusted CERAD WLT test norms in a Norwegian sample aged 40 – 80 
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years using a regression-based norming procedure. 

 

3 Methods and materials 

3.1 The Dementia Disease Initiation Cohort 

Participants were primarily drawn from the national multi-center study “Dementia Disease 

Initiation” (DDI) cohort comprising inclusions from university hospitals in the Norwegian 

health regions (Helse Sør-Øst, Helse Vest, Helse Midt and Helse Nord). Between January 

2013 and February 2019, participants with self-reported cognitive reduction and healthy 

controls were recruited. In early 2017, when drafting paper I, the cohort comprised a total of 

577 participants of which n=463 fulfilled inclusion criteria and had completed assessments. 

As the DDI study is still including participants, the cohort is growing. In 2018, when papers 

II and III were drafted, the cohort grew to n=744 subjects (n=658 fulfilling inclusion criteria 

with completed assessments), and n=428 had available 2-year follow-up assessments with 4 

year follow-ups just starting. Participant inclusion according to papers I-III is illustrated in 

Figure 1. Participants were recruited mainly from general practitioner (GP) referrals to local 

memory clinics, or self-referred following advertisements in media, newspapers or news 

bulletins. Healthy controls were recruited from spouses of patients with cognitive symptoms, 

volunteers from the community responding to advertisements, newspapers or news bulletins, 

and from patients who completed lumbar puncture for orthopedic surgery. All participants 

were examined following a standardized comprehensive assessment protocol and staged as 

either healthy controls, SCD or MCI using published criteria (Albert et al., 2011; Jessen et al., 

2014) (described below). Individuals with a native language of Norwegian, Swedish or 

Danish were included. In order to capture individuals in the preclinical, as well as prodromal 

phases of AD, participants between 40 and 80 years of age were included. Exclusion criteria 

were brain trauma or disorder, including clinical stroke, dementia, severe psychiatric disorder, 
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severe somatic disease that might influence the cognitive functions, or intellectual disability 

or other developmental disorders. 

 

3.2 The Trønderbrain Cohort 

For the purposes of paper III, an additional 59 healthy controls were included from the 

Trønderbrain cohort. This cohort recruited participants with MCI, early AD dementia and 

healthy controls between 2009 and 2015. Healthy controls were recruited from societies for 

retired people in central Norway, or spouses of recruited MCI or early AD dementia 

participants. Exclusion criteria were a present psychiatric or malignant disease (i.e. currently 

undergoing treatment for cancer), use of anticoagulant medication or high alcohol 

consumption (Berge et al., 2016). 

 

3.3 DDI Case report form and cognitive screening battery 

The DDI case report form (CRF) includes a comprehensive account of the participants 

medical history (corroborated by an informant when possible) as well as physical and 

neurological examinations and a measure of depressive symptoms using the 15-item Geriatric 

Depression Scale (GDS) (Mitchell, Bird, Rizzo, & Meader, 2010). Educational level was 

encoded in two ways. 1) Recorded as a continuous measure of total years of education and 2) 

Classified according to norms provided by Heaton et al. (2004) in the following categories: 0 

= Primary school (7 – 8 years), 1 = High School (9 – 11 years), 2 = College (12 years), 3 = 

Bachelor degree (13-15 years), 4 = Master or equivalent = 16 – 17 years, 5 = Higher 

university degree/PhD (18 - 20 years). The cognitive assessment battery included the Mini 

Mental State Examination (MMSE-NR) (Folstein, Folstein, & McHugh, 1975), non-verbal 

cognitive screening (The clock drawing test) (Shulman, 2000), verbal learning & memory 
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(CERAD WLT) (Fillenbaum et al., 2008), visuoperceptual ability (VOSP silhouettes) 

(Warrington & James, 1991), psychomotor speed and attention/executive functions (Trail 

making test (TMT) A and B) and the Controlled Oral Word-Association Test (COWAT), a 

measure of word fluency (Benton & Hamsher, 1989). 

 

3.4 Classification of healthy controls, SCD and MCI 

The CRF includes an account of participants’ experience of subjective cognitive decline 

modeled on the suggested framework by the working group of SCD-I.  It includes the nature 

of cognitive decline (cognitive domain, onset), concerns and worries including feeling worse 

compared to age matched peers and informant confirmation of decline (when available). 

Participants were classified as SCD according to the SCD-I framework, which requires 

normal objective cognitive performance in combination with subjectively experienced decline 

in any cognitive domain (Jessen et al., 2014). MCI was classified according to the NIA-AA 

criteria, which require the presence of subjective cognitive decline combined with cognitive 

impairment in one or more cognitive domains, yet preserved independence in functional 

ability and not fulfilling the criteria of dementia (Albert et al., 2011; McKhann et al., 2011). 

Healthy controls did not endorse any subjective experience of cognitive decline. Performance 

was classified as normal or abnormal according to published norms for the different tests 

(Benton & Hamsher, 1989; Fillenbaum et al., 2008; Folstein et al., 1975; Reitan & Wolfson, 

1985; Shulman, 2000; Sotaniemi et al., 2012; Warrington & James, 1991). Due to 

overlapping and mutually exclusive criteria, the cut-off values for SCD vs. MCI (defined as 

normal or abnormal cognition) were ≤1.5 standard deviation below normative mean on either 

CERAD WLT (delayed recall), VOSP silhouettes, TMT-B or COWAT, or having MMSE 

score equal to or below 27. Cognitive functioning was also assessed by the Clinical Dementia 
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Rating scale (CDR) (Hughes, Berg, Danziger, Coben, & Martin, 1982). Participants with 

dementia were excluded if CDR > 0.5 (Petersen, 2004). 

 

3.5 Cerebrospinal fluid (CSF) and blood biomarkers 

The standard assessment protocol includes collection of CSF and blood biomarkers from 

controls, SCD and MCI cases. However, biomarkers were only analyzed in paper II. CSF 

biomarkers were collected through lumbar puncture (performed before noon), using 

polypropylene tubes (Thermo Nunc) and centrifuged within 4 h at 2000 g for 10 min at room 

temperature. The supernatant was transferred to new tubes and frozen at –80° C prior to 

analysis. All CSF samples were analyzed at the Department of Interdisciplinary Laboratory 

Medicine and Medical Biochemistry at Akershus University Hospital, and samples from other 

sites were frozen before sending to this laboratory.  

 

CSF Aβ1-42, total tau, and phosphorylated tau were determined using ELISA (Innotest β-

Amyloid (1–42), Innotest h-Tau Ag and Innotest Phospho-Tau (181P), Fujirebio, Ghent, 

Belgium). CSF BACE1 and neurogranin (trunc P75) levels were determined using kits from 

EUROIMMUN AG (Lübeck, Germany) and are described in detail elsewhere (De Vos et al., 

2016). All samples were analyzed in duplicates and reanalyzed if relative deviations (RDs) 

exceeded 20% and quality control samples with RD threshold of 15% controlled for interplate 

and interday variation. 

 

APOE genotyping was performed on EDTA blood samples either at Akershus University 

Hospital (Gene Technology Division, Department of Interdisciplinary Laboratory Medicine 

and Medical Biochemistry) according to the laboratory’s routine protocol using real-time 
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PCR combined with a TaqMan assay (Applied Biosystems, Thermo Fisher Scientific, 

Waltham, USA) or at the University Hospital of Trondheim according to the protocol for the 

Fast Start DNA Master HybProbe Kit (Roche, Basel, Switzerland) in combination with the 

LightMix ApoE C112R R158C kit from TiB MolBiol (Berlin, Germany) followed by 

LightCycler technology (Roche, Basel, Switzerland). 

 

3.6 A/T/N classification 

In paper II, participants were classified according to the A/T/N classification scheme for AD 

using CSF biomarkers (C. R. Jack et al., 2018). Where A+ denote (CSF amyloid pathology 

only), A+N+ (CSF amyloid pathology and neurodegenerative marker) and A+T+N+ (CSF 

amyloid pathology, neurodegenerative marker and marker of neurofibrillary tangles). An 

optimal cut-off at CSF Aβ1-42 <708 for amyloid plaque pathology was determined following 

DDI PET [18F]-Flutemetamol uptake studies (Kalheim, Fladby, Coello, Bjørnerud, & Selnes, 

2018). The following cut-off values for CSF total tau (t-tau) and phosphorylated tau (p-tau) 

abnormality were applied according to the laboratory recommendations (modified from 

Sjogren et al. (2001)); t-tau  >300 pg/ml for age  <50 years,  >450 pg/ml for age 50–69 years, 

and  >500 pg/ml for age ≥70 years and p-tau ≥80 pg/ml. 

 

3.7 Magnetic resonance imaging (MRI) 

All participants in DDI were referred to MRI scan. However, in this thesis, brain MRI images 

were only acquired and analyzed in paper II. MRI was performed at seven sites, and seven 

scanners were used, a total of 57 MRI scans out of 74 included cases were available for 

analysis. For group 1 (12 subjects), MRI was performed on a Philips Achieva 3 Tesla system 

(Philips Medical Systems, Best, The Netherlands). A 3D T1-weighted turbo field echo 
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sequence (TR/TE/TI/FA = 4.5 ms/2.2 ms/853 ms/8◦ matrix = 256 × 213, 170 slices, thickness 

= 1.2 mm, in-plane resolution of 1 mm × 1.2 mm) was obtained. For group 2 (22 subjects), 

MRI was performed on a Philips Ingenia 3 Tesla system (Philips Medical Systems, Best, The 

Netherlands). A 3D T1-weighted turbo field echo sequence (TR/TE/TI/FA = 4.5 ms/2.2 

ms/853 ms/8◦, matrix = 256 × 213, 170 slices, thickness = 1.2 mm, in-plane resolution of 1 

mm × 1.2 mm) was obtained. For group 3 (3 subjects), MRI was performed on a Siemens 

Skyra 3 Tesla system (Siemens Medical Solutions, Erlangen, Germany). A 3D T1- 

Magnetization-Prepared Rapid Gradient-Echo sequence (TR/TE/TI/FA = 2300 ms/2.98 

ms/900 ms/9◦ matrix = 256 × 256, 176 slices, thickness = 1.2 mm, in-plane resolution of 1.0 

mm × 1.0 mm) was obtained. For group 4 (11 subjects), MRI was performed on a Philips 

Ingenia 1.5 Tesla system (Philips Medical Systems, Best, The Netherlands). A 3D T1-

weighted turbo field echo sequence (TR/TE/TI/FA = 7.63 ms/3.49 ms/937 ms/8◦ matrix = 256 

× 256, 180 slices, thickness = 1.0 mm, in-plane resolution of 1.0 mm × 1.0 mm) was obtained. 

For group 5 (1 subject), MRI was performed on a Siemens Avanto 1.5 Tesla system (Siemens 

Medical Solutions, Erlangen, Germany). A 3D T1-weighted Magnetization-Prepared Rapid 

Gradient-Echo sequence (TR/TE/TI/FA = 1190 ms/3.10 ms/750 ms/15◦ matrix = 512 × 512, 

144 slices, thickness = 1.0 mm, in-plane resolution of 0.50 mm × 0.50 mm) was obtained. For 

group 6 (7 subjects), MRI was performed on a GE Optima Medical Systems 1.5 Tesla system 

(GE Healthcare, Chicago, Illinois, USA). A 3D T1-weighted fast spoiled gradient echo 

sequence (TR/TE/TI/FA = 11.26 ms/5.04 ms/500 ms/10◦ matrix = 256 × 256, 156 slices, 

thickness = 1.2 mm, in-plane resolution of 1.0 mm × 1.0 mm). Lastly, one MRI scan was 

performed on a Siemens Avanto 1.5 Tesla system (Siemens Medical Solutions, Erlangen, 

Germany). A 3D T1-weighted Magnetization-Prepared Rapid Gradient-Echo sequence 

(TR/TE/TI/FA = 1700 ms/2.42 ms/1000 ms/15◦ matrix = 256 × 256, 144 slices, thickness = 

1.2 mm, in-plane resolution of 1.0 mm × 1.0 mm) was obtained. 
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3.8 MRI segmentations and analyses 

Volumetric segmentation was performed with the FreeSurfer image analysis suite version 

6.0.0 (http://surfer.nmr.mgh.harvard.edu/). This includes segmentation of the subcortical 

white matter and deep gray matter volumetric structures (Fischl et al., 2002). For the 

hippocampus and amygdala, volumes from the left and right hemispheres were added, and 

relative volumes (per ml of total intracranial volume) were computed. 

 

3.9 Ethics 

The regional medical research ethics committee approved the study. Participants gave their 

written informed consent before taking part in the study. All further study conduct was in line 

with the guidelines provided by the Helsinki declaration of 1964, revised 2013 and the 

Norwegian Health and Research Act. 

 

3.10 Participant selection according to papers I-III 

Participant selections according to papers I-III are illustrated in Figure 1.  

For Paper I, a total of n=577 participants with baseline data were considered, and 87 were 

excluded due to withdrawal or nor fulfilling the baseline criteria. Of the remaining 490 

participants, 463 had disease stage classification available. Of these, 32 controls had abnormal 

cognitive screening and were excluded from analysis. This yielded a total of 431 subjects 

comprising healthy controls (n= 132), SCD (n=163) and MCI, n=136). A total of n=179 cases 

were self-referred (recruited through response to advertisements), and n=86 were recruited 

from local memory clinics. Participants recruited by other means were excluded from analysis 
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(n=34).  For paper II, a total of n=74 participants were selected from the DDI cohort 

according to study design criteria: 1) Healthy controls with low risk of AD (n = 20, APOE-ɛ4-

), 2) Healthy controls with increased risk of AD (at least one APOE-ɛ4 allele and first degree 

relative with dementia, n = 16, APOE-ɛ4+), 3) SCD (n = 18) with CSF confirmed amyloid 

pathology, 4) MCI (n = 20) with CSF confirmed amyloid pathology. In addition, n=42 had 

come to 2 year follow-up examinations. Amyloid-positive cases were screened in accordance 

with the A/T/N classification scheme (C. R. Jack et al., 2018) before inclusion to ensure equal 

distribution of pathological markers between SCD and MCI groups. For paper III, a total of 

n=227 healthy controls were included from the DDI cohort (n=168) and the “Trønderbrain” 

cohort (n=59). In addition, n= 168 participants with MCI from the DDI cohort was included.  

 

Figure 1. Participant selections from the DDI and Trønderbrain cohort according to papers I-III 
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3.11 Statistical analyses 

All statistical analyses for papers I-III were performed with the Statistical Package for the 

Social Sciences (SPSS version 24 and 25). For both paper 1 & II, normality was assessed 

through the visual inspection of QQ-plots, box-plots, histograms of frequency distributions 

and the Shapiro-Wilk test of normality. Effect sizes were reported for ANOVAs (ηp2) Mann-

Whitney U tests and Kruskal-Wallis tests (η2) (Fritz, Morris, & Richler, 2012). 

 

3.11.1 Paper I.  

For continuous variables with assumed normal distributions (age at inclusion, CERAD WLT 

learning & recall T-scores, VOSP silhouettes T-score and TMT A & B T-scores, and 

COWAT T-score), between group differences were compared using analysis of variance 

(ANOVA). For continuous variables with non-normal distributions (MMSE and Clock 

drawing test), group differences were assessed using Mann-Whitney U tests. In addition, 

group differences in educational level being an ordinal variable, were also measured using a 

Mann-Whitney U test. 

 

3.11.2 Paper II.  

Differences in CSF biomarkers, MTL volumes, cognitive tests and demographics were 

assessed between clinical groups (APOE-ɛ4- or APOE-ɛ4+ controls, SCD and MCI groups 

with amyloid plaques). For variables with normal distributions, One-way ANOVAs with 

planned comparisons were performed. For non-normal distributions, the Kruskal-Wallis test 

with Dunn's nonparametric pairwise post hoc test were performed. For MTL volumes, 

ANOVA analyses were performed on standardized residuals after covariate regression 

correction for age, gender, and MRI scanner model. To compare levels of CSF neurogranin, 

CSF BACE1, and Ng/BACE ratio score to groups derived from the A/T/N classification 
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scheme, one-way ANOVAs with post hoc Bonferroni corrections were performed. The 

relationships between CSF biomarkers and cognitive tests at baseline were assessed using 

simple regression models with age-adjusted T-scores as dependent variables. However, for 

MMSE, a multiple linear regression model controlling for age was used. The relationships 

between biomarkers and MTL volumes were assessed using multiple regression analyses 

controlling for effects of age, gender, and MRI scanner model. Effect sizes for the overall 

regression models are provided (R2). CSF Aβ1–42 was used as core selection criteria in the 

study design and was omitted as a predictor from baseline regression analyses with cognitive 

tests and MRI variables. However, CSF Aβ1–42 was assessed as a predictor of cognitive 

change at 2-year follow-up. As CSF p-tau and t-tau demonstrated collinearity (variance 

inflation factor > 7), only CSF t-tau was included in our regression models. To measure 

individual change in cognitive scores between baseline and 2-year follow-up, individual 

follow-up scores were subtracted from baseline scores. The resulting score was used to 

predict cognitive changes from baseline CSF biomarkers using linear regression models. For 

the CERAD WLT, we used the normative performance of the DDI cohort control group 

(Fladby et al., 2017) to calculate T-scores following findings in paper I which showed that 

published norms from Sotaniemi et al. (2012) did not match the younger and more educated 

DDI cohort. 

 

3.11.3 Paper III. 

 First, CERAD WLT performance in the healthy control group was assessed by fitting 

multiple regression analyses with age, gender and years of education as predictors. In 

addition, non-linear effects of age (i.e. improving CERAD WLT performance at younger age, 

and declining with older age) and a potential between-cohort bias between DDI and 

Trønderbrain cohorts were investigated. However, no non-linear relationships or cohort bias 
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were found. Thus, only linear terms were included in the final models. Overall estimates of 

the regression models (adjusted R2, F-value, p-value), and relative contributions for individual 

predictors (β, partial R2, p-value) were reported. Due to a marked ceiling effect, The CERAD 

WLT recognition subtest did not produce a normal distribution of test scores required for the 

regression-based norming procedure. However, our data indicate that age and gender had the 

strongest demographic influence on test performance. Thus, cumulative percentiles of 

recognition subtest for geriatric (65 – 80 years) and non-geriatric (40 – 64 years) populations 

split by gender were provided.    

 

Then, regression-based norms for CERAD learning and recall subtests were developed using 

the following stepwise procedure: 1) The control groups raw test scores were normalized by 

retrieving the cumulative frequency distribution of both measures. The resulting distribution 

was converted into a standard scaled score with a mean of 10 and a standard deviation of 3. 2) 

The resulting scaled scores were regressed on age, gender and education, and the regression 

model parameters, including regression coefficients were retrieved. Plots of standardized 

residuals predicted values were assessed to ensure that the assumption of homoscedasticity 

was not violated, and normality of the residuals was checked visually with Q-Q plots. 3) To 

derive normative information, the multiple regression equations derived from this analysis 

was used to compute a persons predicted scaled score [intercept + individual age(coefficient 

for age) + individual years of education(coefficient for years of education) + individual 

gender(coefficient for gender)]. A person’s expected normal scaled score, derived from the 

healthy control group’s normalized scaled score distribution, was then subtracted from the 

regression equation predicted scaled score. The resulting discrepancy score was then divided 

by the standard deviation of healthy control group’s residuals (from the regression analysis 

described above) to yield a standardized z score, which can then be converted to a T score. 
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 Lastly, demographically adjusted T scores for the CERAD WLT learning and recall 

subtests were calculated for the DDI MCI group (n=168). Multiple regression models with 

age, gender and years of education as predictors were then fitted to the DDI MCI group’s T 

score distributions to confirm adequate adjustment of demographic variables in an 

independent sample. 

 

4 Summary of results 

4.1 Paper I 

Title: Screening for Alzheimer's Disease: Cognitive Impairment in Self-Referred and Memory 

Clinic-Referred Patients.  

Aims: To investigate recruitment source bias in self-referred and memory-clinic referred 

patient cohorts to reveal potential differences in cognitive performance and demographics in 

participants with SCD and MCI. 

Methods: We included 431 participants 40 – 80 years old. Participants were classified as 

controls (n=132) or symptom group (n=299). The symptom group comprised of subjective 

cognitive decline (SCD, n=163) and mild cognitive impairment (MCI, n=136). We compared 

cognitive performance and demographics in memory clinic-referrals (n=86) to self-referred 

participants responding to advertisements and news bulletins (n=179). Participants recruited 

by other means were excluded from analysis (n=34).   

Results: At symptom group level, we found significant reductions in cognitive performance 

in memory clinic-referrals compared to self-referrals. However, significant reductions were 

only found within the MCI group. We found no differences in cognitive performance due to 

recruitment within the SCD group. The MCI group was significantly impaired compared to 

controls on all measures. Significant reductions in learning, and executive functions were also 

found for the SCD group. 
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Conclusion: Regardless of recruitment source, both the SCD and MCI groups showed 

reduced cognitive performance as compared to controls. Differences in cognitive impairment 

for memory clinic-referrals compared to self-referrals were only found within the MCI group. 

 

4.2 Paper II 

Title: Cerebrospinal fluid neurogranin/β-site APP-cleaving enzyme 1 predicts cognitive 

decline in preclinical Alzheimer's disease. 

Background/Aims: Increased CSF Ng/BACE1 ratio may reflect synaptic affection coupled 

to synaptotoxic Aβ oligomers in AD. The aim of this paper was to investigate if CSF 

Ng/BACE1 ratios are increased in SCD and MCI cases with amyloid plaques as compared to 

controls and if increased Ng/BACE1 ratio relates to baseline MTL volumes, baseline 

cognitive performance and cognitive decline at follow-up. Additionally, we investigated if 

healthy at-risk APOE-ε4 carriers would also show increased CSF Ng/BACE1 ratios as 

compared to non-carriers.  

Methods: Established CSF AD biomarkers (Aβ1-42, t-tau and p-tau), and the CSF synaptic 

markers Ng, BACE1 and Ng/BACE1 levels were compared between cases with SCD (n = 18) 

and MCI (n = 20) both with amyloid plaques and healthy controls (APOE-ε4+, n = 16; APOE-

ε4-, n = 20). Regression analyses were performed between cerebrospinal fluid levels, baseline 

hippocampal and amygdala volumes, and pertinent cognitive measures (memory, attention, 

Mini Mental State Examination [MMSE]) at baseline and after 2 years.  

Results: APOE-ε4- and APOE-ε4+ control groups had equal levels of all CSF biomarkers. No 

differences in AD biomarkers were found between the SCD and MCI groups. While no 

significant differences in CSF Ng or BACE1 between groups were found, CSF Ng/BACE1 

levels were equally elevated in both SCD and MCI compared to healthy controls. Higher CSF 

Ng/BACE1 ratio was the only CSF biomarker associated with lower baseline hippocampal 
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and amygdala volumes corresponding to lower baseline memory functions, attention, and 

MMSE. Increased CSF Ng/BACE1 ratios also predicted decline in MMSE and memory 

function at 2-year follow-up.  

Conclusions: CSF Ng/BACE1 ratios were equally increased in SCD and MCI cases with 

amyloid plaques, related to baseline MTL volumes and cognitive performance and predicted 

cognitive decline at follow-up. Importantly, increased CSF Ng/BACE1 ratio in preclinical 

SCD cases may reflect synapse affection, which have yet to reach the threshold for clinical 

impairment. Thus, early synapse affection, guided by the CSF Ng/BACE1 ratio, could be a 

target for early intervention. 

 

4.3 Paper III 

Title: Demographically adjusted CERAD wordlist test norms in a Norwegian sample from 40 

to 80 years. 

Background/Aims: The CERAD WLT is a widely used test in dementia research. However, 

culturally adapted and demographically adjusted test norms for younger ages are lacking. The 

aim of this paper was to investigate normative CERAD WLT performance in healthy 

Norwegian speaking participants and provide demographically adjusted test norms for ages 

40 – 80 years.  

Method: Normative influences of age, gender and years of education on CERAD WLT test 

performance were estimated using regression analyses in healthy controls aged 40 – 80 years 

(n=227) from the Norwegian DDI (n=168) and Trønderbrain (n=59) cohorts. Then, a 

regression-based norming procedure was used to develop demographically adjusted norms for 

the CERAD WLT. In order to evaluate normative performance, we applied the norms to an 

independent sample of individuals previously diagnosed with mild cognitive impairment 

(MCI, =168) and performed multiple regression analyses to evaluate adjustment of pertinent 
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demographics.  

Results: CERAD WLT norms adjusted for effects of age, gender and educational level are 

proposed. The norms successfully adjusted for effects of age, gender and education in an 

independent sample of Norwegians with MCI.  

Conclusion: This paper offers demographically adjusted norms for the CERAD WLT for 

ages 40 through 80 years based on a Norwegian sample. To our knowledge, this is the first 

normative study of this test to offer demographically adjusted norms for this age span. 

 

5 Discussion 

5.1 Summary of findings 

This thesis aimed to investigate the role of SCD as a preclinical stage of AD and sought to 

improve early detection of at-risk individuals by investigating a potential recruitment source 

bias in participant inclusion of SCD, develop more sensitive test norms for episodic memory 

performance and investigate a new CSF biomarker of putatively AD-coupled synapse 

affection in SCD and MCI with amyloid plaque pathology. In paper I, we found that while 

there was a general bias of worse cognitive performance in memory clinic referrals, results 

were only statistically significant for MCI cases. However, findings from this paper have 

generated new hypotheses that could help delineate benign SCD from SCD due to AD, which 

are currently being investigated in the DDI study. This study also revealed the need to 

establish new test norms for the CERAD WLT. Norms were ultimately developed in paper 

III and found to successfully adjust for demographic influences in an independent sample of 

MCI cases. In paper II, the CSF Ng/BACE1 ratio was found to be increased in both SCD and 

MCI cases with amyloid plaques. Increased ratios were related to reductions in hippocampal 

and amygdala volumes, corresponding to impairments in learning and memory at baseline and 

predicting future cognitive decline at 2-year follow-up. 
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5.2 Paper I 

MCI inclusions from memory clinics are at higher risk, or later stage of disease development  

In paper I, we showed that memory-clinic referred MCI cases performed worse on cognitive 

tests compared to self-referred individuals. These findings generally support the notion that 

inclusion from memory clinics recruit individuals who are at higher risk of conversion to 

dementia (Farias et al., 2009; Roh et al., 2016) or who may be farther along the disease 

trajectory than participants recruited through other means (Brodaty et al., 2014; Whitwell et 

al., 2012).  Moreover, the MCI participants recruited through memory clinics, while more 

cognitively impaired, were also younger, and could represent an earlier onset, or more 

aggressive form of pathology than found in the older self-referred sample. Indeed, Fladby et 

al. (2017) analyzed the CSF AD biomarker distributions of the DDI cohort and found that the 

memory clinic sample showed higher prevalence of pathological CSF AD markers and higher 

rates of APOE-e4 carrier status, possibly mirroring the lower cognitive performance found in 

the present study. These findings are in line with previous reports showing higher risks in 

terms of genetic risk factors (Brodaty et al., 2014), higher presence of AD-type pathology 

(Schneider, Aggarwal, Barnes, Boyle, & Bennett, 2009) or more aggressive forms of 

pathology (Whitwell et al., 2012). However, the memory clinic-referred MCI cases in our 

sample had a lower educational level than their self-referred counterparts. Educational level is 

associated with cognitive reserve (Valenzuela & Sachdev, 2006), thus lower cognitive 

performance in this group may also to a certain degree be confounded with a lower ability to 

compensate for brain pathology compared to the self-referred group.  

 

SCD inclusions from memory clinics may be at higher risk 

No significant differences in demographics or cognitive performance due to recruitment bias 



 

35 

were found within the SCD group. However, although not reaching the level of statistical 

significance, the data showed a trend towards both subtle lower performance and lower 

educational level in memory clinic-referred SCD cases compared to self-referrals. The lack of 

statistical significance for this result may be due to a small sample size (memory clinic-

referred SCD cases (n = 40). Moreover, we did find an overall significant difference in 

cognitive performance at symptom group level (SCD+MCI) beyond what was shown by the 

MCI group alone. This suggests that although the differences are small, SCD cases recruited 

from memory clinics may represent a cognitively more impaired group than self-referred SCD 

cases. In addition, the SCD group, regardless of recruitment source, performed worse on key 

cognitive domains associated with AD such as learning and executive functions, as well as a 

general decline in overall cognitive screening performance (MMSE) compared to controls. 

Although observed effect sizes were small, these findings support the notion that SCD could 

be a symptom of awareness of subtle cognitive decline witnessed by small declines in 

cognitive performance, while still performing within limits of normal variations (Jessen et al., 

2014). As previously noted, the Fladby et al. (2017) biomarker study has also confirmed that 

the SCD group in DDI cohort harbors higher rates of CSF amyloid pathology and APOE-e4 

carriers as compared to controls, possibly mirroring the findings of our study. Taken together, 

these results support SCD as an important risk factor for AD.   

 

Increased depressive symptoms caused by increased awareness of SCD? 

Interestingly, a relative increase in depressive symptoms measured by the GDS 15 in the 

memory clinic-referred SCD cases compared to self-referrals was observed (data not shown). 

However, the observed increase in symptoms was not above the suggested cut-offs for clinical 

depression at group level (Marc, Raue, & Bruce, 2008). This is not a surprising finding since 

severe psychiatric illness, including major depression, is a core exclusion criterion in this 
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study. However, this may not be the case in all study designs investigating SCD cases. 

Accordingly, recruitment from memory clinics may lead to inclusion of a higher percentage 

of clinically depressed individuals. The role of depressive symptoms in SCD and preclinical 

AD is however unclear [12]. A study by Perrotin et al. (2016) comparing SCD cases recruited 

from memory clinics and community sample, showed a significant reduction in gray matter 

volume related to AD pathology in the memory clinic group. The authors concluded that 

medical help seeking and increased depressive symptoms were related to this volume 

reduction and pointed out an increased affective burden as a potential part of prodromal AD. 

Conversely, Heser et al. (2013) found that depressive symptoms were fully mediated by 

subjective memory impairment worry, suggesting that depressive symptoms were caused by 

an increased awareness of subjective decline, explaining levels of depressive symptoms in 

individuals with subjective cognitive complaints. This latter point raises an important 

question. Are all persons presenting with SCD to their GP always referred to memory clinics? 

 

Are all SCD cases seeking medical help referred to memory clinics? 

While our findings suggest that recruitment source affects clinical characteristics of 

preclinical cohorts and should be taken into consideration, subjective memory impairment 

worry may be an important risk factor in the SCD group leading to memory-clinic referral. 

While SCD in general may often be a benign symptom (Bassett & Folstein, 1993; Hessen et 

al., 2017), worried individuals with SCD have an increased risk of developing objective 

cognitive decline (Jessen et al., 2014; Rabin et al., 2012; Reisberg & Gauthier, 2008). 

However, patients who report SCD to their GP may not always be referred to a memory clinic 

for assessment (Jenkins, Tales, Tree, & Bayer, 2015). Increased depressive symptoms could 

be caused by an increased awareness of SCD, rather than indicating a clinical depressive state 

(Heser et al., 2013) and subsequently prompt the individual to seek medical help. As not all 
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SCD cases seeking help are referred to memory clinics, some of the self-referred cases could 

indeed have a history of seeking medical help due to SCD. The DDI CRF includes questions 

of prior medical help seeking for persons recruited by self-referral and may be an important 

factor initially underemphasized when conducting this study. We are therefore currently 

investigating the role of worry and history of medical help seeking among SCD cases within 

the DDI study with regards to both biomarkers, demographics and cognitive impairment. 

Results from the current and future studies are important not only in the selection of at-risk 

participants for prospective research studies, but are also clinically relevant as they may 

inform general practitioners about risk-factors for SCD due to AD. 

 

Methodological considerations and study limitations in Paper I 

Some methodological considerations and limitations for paper I need to be addressed. First, 

due to geographic differences in Norway, the availability of memory clinics may differ. This 

could lead to a biased inclusion of memory clinic-referrals living in, or near city centers 

where the university hospitals are located. This may also influence the rate of which SCD 

cases are referred by GP to memory-clinic assessment. Second, while we at the time of the 

study did not include the use of biomarker evidence to further characterize selection bias, this 

was addressed by Fladby et al. (2017) in a parallel paper and results are included in the 

discussion above. Third, a general limitation in the DDI study worth mentioning is a trade-off 

effect due to the inclusion of younger middle-aged adults (40 – 80 years). While this offers an 

optimal design to capture preclinical AD and track disease development through longitudinal 

change, the current study was limited to a cross sectional comparison. These inclusion criteria 

thus lower the mean age and increase variability in the sample and may lead to dilution of AD 

prevalence in both SCD and MCI samples in cross sectional analyses of the DDI cohort.  
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Fourth, a point could be made for employing post-hoc correction for multiple testing in this 

paper. However, since relatively few comparisons were made with regards to recruitment 

source, there is a relatively low chance of increased rate of false positive discoveries (Bender 

& Lange, 2001). Lastly, an important incidental finding from this paper, was that the use of 

Sotaniemi et al. (2012) CERAD WLT normative dataset may be unfit for the DDI cohort. 

These norms are based on a sample that is on average 10 years older and less educated than 

the DDI cohort. This may in some cases result in an uncertain classification of MCI and SCD. 

This finding ultimately led to the development of new regression-based norms for the 

CERAD WLT in paper III.  

 

5.3 Paper II 

Increased CSF Ng/BACE1 is associated with AD related MTL reductions and corresponding 

memory deficits and predicts future cognitive decline 

In paper II, we showed that CSF Ng/BACE1 levels were equally increased in both Aβ+ MCI 

and SCD groups compared to controls (figure 2). No significant group differences were found 

for either CSF Ng or BACE1, when measured separately. Moreover, no differences in CSF 

biomarker levels emerged between APOE-ɛ4+ and APOE-ɛ4- controls. These results suggest 

that synapse affection may be coupled to the presence of established amyloid pathology in 

both SCD and MCI cases. Importantly, we found that increased CSF Ng/BACE1 ratios were 

the only biomarker associated with reduced baseline hippocampal and amygdala volumes in 

our sample (figure 3). Concordantly, increased CSF Ng/BACE1 ratio was also the only 

biomarker associated with poorer baseline performance in both baseline CERAD learning and 

memory recall (figure 4), as well as attention/psychomotor speed (TMT-A), and global 

cognitive function (MMSE).  
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Figure 2. CSF Ng/BACE1 ratio (A), CSF Ng (B) and BACE1 (C) levels between groups. Abbreviations: Ctr = 

Controls, APOE-ɛ4+/-; Apolipoprotein E4 allele positive or negative, Aβ+ = CSF amyloid pathology. SCD = 

subjective cognitive decline. MCI = mild cognitive impairment. Horizontal brackets showing contrast 

comparisons for CSF Ng/BACE1 only (A). Significant results (p<.05) or non-significant results (n.s.) are shown. 
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When analyzing available 2-year follow up cognitive scores, we showed that lower baseline 

CSF Ng/BACE1 ratios predicted practice effects in the CERAD learning subtest at follow-up 

(i.e., showing improved performance), and increasing ratios predicted less improvement and 

finally a decline in CERAD word list learning ability (figure 4). This relationship was also 

shown for CSF Ng measured separately, supporting previous findings (Portelius et al., 2015; 

Figure 3. CSF Ng/BACE1 in relation to medial temporal lobe volumetry. Average hippocampal (A & B) and amygdala 

volumes (C & D). Medial temporal lobe volumes are adjusted for age, gender and MRI scanner variant. Open circles = 

APOE-ɛ4+ controls. Closed circles = APOE- ɛ4- controls. Open triangles = MCI with amyloid plaques. Closed triangles 

= SCD with amyloid plaques. 
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Tarawneh et al., 2016). While a similar result was obtained with CSF t-tau as a baseline 

predictor, an inspection of the scatterplot indicated that the regression model may have been 

biased by a few subjects with extreme baseline CSF total tau values (figure 4). This result 

suggests that the subjects with high baseline measures of neuronal degradation (CSF t-tau) 

may be at a more advanced stage of disease development and therefore show a steeper 

cognitive decline. This is in line with findings linking markers of neuronal degradation to 

disease severity (Sämgård et al., 2010). In contrast, CSF Ng/BACE1 may represent synaptic 

loss that is more closely tied to smaller increments of cognitive decline along the early 

Alzheimer’s trajectory, which may precede markers of significant neuronal degradation. This 

could explain why only the CSF Ng/BACE1 ratio was related to baseline learning and 

memory function in our sample, possibly due to early synaptic loss in the hippocampus where 

neurogranin is highly expressed (Higo et al., 2004). Moreover, while higher CSF Ng/BACE1 

was related to lower MMSE at baseline and decline at follow-up, CSF Ng/BACE1 was 

predominantly related to CERAD learning and memory recall. The MMSE contains word-list 

memory items, and the observed relationship could be influenced by this shared measure. 

Interestingly, TMT-A, a measure of psychomotor speed and attention was inversely related to 

CSF Ng/BACE1. This is in accordance with previous investigations showing that 

performance on the TMT-A is related to amyloid load in SCD cases, and mixed samples of 

MCI and healthy subjects (Duara et al., 2013; Loewenstein et al., 2016). To our knowledge, 

this is the first study showing that the Ng/BACE1 ratio is related to memory deficits and 

reduced MTL volumes in Aβ-positive preclinical cases and that CSF Ng/BACE1 is 

significantly increased relative to controls in amyloid-positive subjects with SCD.  
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CSF Ng/BACE1 ratio may be an early marker of synapse loss due an Aβ-coupled disease 

mechanism and point to possibilities for early intervention   

BACE1 and neurogranin have predominantly pre (Del Prete et al., 2014; Sun & Roy, 2018) 

and post-synaptic roles, where neurogranin in particular is linked to the dendritic spine 

NMDA Ca2+-Calmodulin second messenger complex (Diez-Guerra, 2010). Presynaptic 

BACE1 cleavage of AβPP is a rate-limiting step in the production of the aggregation prone 

Figure 4. CSF Ng/BACE1 and CSF t-tau in relation to baseline and 2-year follow-up CERAD learning and memory 

recall tests. CSF Ng/BACE1 and baseline CERAD subtest T scores (A & B). CERAD Learning T score change at 

follow-up CSF Ng/BACE1 (C), CSF t-tau (D). Open circles = APOE-ɛ4+ controls. Closed circles = APOE-ɛ4- controls. 

Open triangles = MCI with amyloid plaques. Closed triangles = SCD with amyloid plaques. Abbreviations: CERAD = 

The Consortium to Establish a Registry for Alzheimer’s Disease word list test. 
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Aβ1-42 species (Das & Yan, 2017), and Aβ oligomers have shown to accumulate at synaptic 

terminals in AD where it may disrupt postsynaptic NMDA receptors, leading to Ca2+ 

dyshomeostasis and spine degeneration (Alberdi et al., 2010; Alzheimer's Association 

Calcium Hypothesis, 2017; Zhang et al., 2016). As neurogranin is expressed in dendritic 

spines, elevated CSF concentrations in AD may reflect this process. Thus, the release of CSF 

neurogranin relative to the activity of BACE1 measured in CSF concentrations of this enzyme 

(i.e. the Ng/BACE1 ratio), may indicate a post-synaptic Aβ-linked disease mechanism, and 

hence better reflect AD-related synaptic degradation. The pathogenesis of AD involves 

degradation of the medial temporal lobe structures (C. R. Jack et al., 1997; Poulin, Dautoff, 

Morris, Barrett, & Dickerson, 2011) where neurogranin is highly expressed (Higo et al., 

2004). Thus, the selective increases in CSF concentrations of Ng observed in AD (Wellington 

et al., 2016) may occur as consequence of degradation of these structures. Hippocampal and 

amygdala volume reductions were indeed significantly related to higher CSF Ng/BACE1 

levels in our study, which suggest that the CSF Ng/BACE1 ratio may relate to synapse loss in 

these regions. Moreover, while CSF Ng/BACE1 was similarly increased in the Aβ+ MCI and 

SCD groups, the latter still performed within the normal range on cognitive tests. This may 

reflect an active disease state of progressive synaptic loss, which has yet to reach sufficient 

loss needed for clinical impairment and may offer possibilities for intervention. Interestingly, 

Insel et al. (2017) recently demonstrated that subtle memory decline, corresponding to cortical 

atrophy and hypometabolism in the temporal and medial temporal regions may begin several 

years before biomarkers of amyloid plaque pathology become positive. However, this was not 

shown for the parietal cortex or other lobes, where the spread of pathology was evident only 

after established plaque pathology, corresponding to declines in global cognition. This 

suggests a temporal sequence where early pathological changes could be tied to synapse 

affection preceding substantial neuronal loss and tangle formation seen at later stages. The 
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formation of Aβ oligomers precede parenchymal plaque deposition and show synaptotoxic 

properties (Alberdi et al., 2010; Alzheimer's Association Calcium Hypothesis, 2017; Hong et 

al., 2016; Zhang et al., 2016). Thus, if Aβ oligomers are responsible for early synapse loss in 

AD, CSF Ng/BACE1 ratios may increase in the years preceding plaque formation. 

Importantly, NMDA antagonists have been suggested as protective in AD (Wang & Reddy, 

2017). If our hypothesis is confirmed, such intervention guided by early CSF Ng/BACE1 

increase might be useful. 

 

Presence of APOE-ɛ4 allele may enhance oligomerization of Aβ peptides 

While APOE-ɛ4 allele carrier status was included as a predictor of both MTL volumetry and 

cognition in this study, no significant associations were found. However, a large majority of 

the Aβ+ SCD and MCI cases (28 of 37) had at least one APOE-ɛ4 allele and APOE-ɛ4 

carriers with amyloid plaques had higher CSF Ng/BACE1 compared to non-carriers with 

plaques (data not shown). In this scenario, enhanced synaptotoxic polymerization of Aβ-

peptides in APOE-ɛ4 SCD and MCI carriers could have a more rapid synaptic loss due to 

increased levels of synaptotoxic Aβ fibrils (Alberdi et al., 2010; Huynh et al., 2017; Sanan et 

al., 1994). However, while APOE-ɛ4 could enhance CSF Ng/BACE1 related pathology 

through its interaction with Aβ (Alberdi et al., 2010; Huynh et al., 2017; Sanan et al., 1994), a 

larger material with more APOE-ɛ4 negative and Aβ+ SCD and MCI cases is needed to 

establish ɛ4-allelic effects. At the time when this study was conducted, CSF Ng and BACE1 

levels were only available for a subset of DDI participants, selected in accordance with the 

study design for this paper. However, CSF analyses were completed for the entire DDI cohort 
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in early 2019 and analyses of APOE-ɛ4 allelic effects on CSF Ng/BACE1 related pathology 

are currently being investigated.  

 

Alternative hypotheses for increased CSF Ng/BACE1: the tau hypothesis and the role of the 

innate immune system in AD 

We found that CSF Ng/BACE1 ratios increased with A/T/N classified AD biomarker 

severity, (i.e. moving from normal CSF towards amyloid plaques combined with markers of 

neurodegeneration and neurofibrillary tangles) (C. R. Jack et al., 2018). In addition, an 

increase was also observed for both CSF BACE1 (Barao et al., 2013) and Ng (De Vos et al., 

2016), when measured separately. These results support previous findings indicating a link to 

neurodegeneration.  

However, these findings also point to an important question due to a central limitation in our 

study. As we did not include Aβ-negative SCD or MCI cases, our findings do not 

conclusively support the hypothesis that increased CSF Ng/BACE1 ratio is linked to amyloid 

pathology. It has been shown that the spread of tau pathology (neurofibrillary tangles) is more 

closely linked to clinical progression in AD than amyloid pathology (Bejanin et al., 2017) and 

may lead to cognitive deficits through a variety of mechanisms, including neurodegeneration. 

Moreover, impairments in AβPP metabolism have shown to induce axonal and synaptic 

defects independently of the buildup of beta-amyloid (Rodrigues, Weissmiller, & Goldstein, 

2012). Kametani and Hasegawa (2018) argue that this may cascade into the propagation of 

pathological tau and neurofibrillary tangle formation. Thus the spread of tau may cause 

synapse degeneration and neuronal loss independently of amyloid deposition. The spread of 

tau, rather than beta-amyloid, may be the main cause of AD. However, the authors also note 

that neuroinflammation caused by amyloid deposition may further affect the progression of 

tau pathology (Kametani & Hasegawa, 2018). However, alternative views exist, and new 
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developments also points to a central role of microglia in Alzheimer’s related synapse loss 

(Rajendran & Paolicelli, 2018). Complement mediators such as C1q and C3 are highly 

increased with amyloid deposition in experimental studies (Reichwald, Danner, Wiederhold, 

& Staufenbiel, 2009) and a recent study has shown that mice injected with of Aβ oligomers 

leads to upregulation of C1q and C3 levels, which in turn promote microglia removal of 

synaptic connections by phagocytosis. Furthermore, it was shown that synapse loss in the 

hippocampus was rescued in mice treated with an anti-C1q antibody (Hong et al., 2016). It 

has also been shown that AD mouse models depleted of C3 reduces synapse loss and 

promotes cognition regardless of continued amyloid accumulation (Shi et al., 2017). These 

studies suggest a microglia complement-dependent pathway of synapse loss in AD due to 

effects of Aβ oligomers. This could putatively lead to the observed CSF Ng/BACE1 ratio 

increases in Aβ+ SCD and MCI cases in our study. While more work is needed to further 

delineate the precise sequence of pathological events and associated mechanism, CSF 

Ng/BACE1 ratio may be a promising biomarker for Alzheimer’s related synaptic loss owing 

to its strong associations to volume reductions in pertinent medial temporal lobe structures 

and cognitive measures in our study. These results warrant further studies investigating the 

role of CSF Ng/BACE1 in the AD pathogenesis, potentially reflecting synaptic pathology due 

to an Aβ-linked disease mechanism. 

 

Methodological considerations and study limitations in Paper II  

An important finding in this study, was the prominent relationship between higher CSF 

Ng/BACE1 ratio and reduced amygdala volume. It has been shown that amygdala atrophy is 

prominent in early AD, related to global illness severity, and may relate to neuropsychiatric 

symptoms such as anxiety and irritability (Poulin et al., 2011) and to changes in memory 

consolidation due to emotional arousal (Satler et al., 2007). Neuropsychiatric symptoms are 
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prevalent in AD (Lyketsos et al., 2002), and CSF Ng/BACE1 related synapse affection in the 

amygdala could putatively relate to some of the neuropsychiatric symptoms observed in AD. 

However, as measures of neuropsychiatric symptoms were not included in this paper, 

potential relationships are unknown. In 2017/2018, the DDI study established a new cohort 

(DDI plus) with a focus on investigating neuropsychiatric symptoms as a part of the 

preclinical phases of AD and other forms of dementia. Thus, in future studies, the link 

between CSF Ng/BACE1 related synapse loss in the amygdala and neuropsychiatric 

symptoms should be investigated. 

As discussed above, a central limitation in this study was the omission of Aβ-negative SCD or 

MCI cases. In order to establish AD specificity for the CSF Ng/BACE1 ratio, including 

APOE-ɛ4 effects, a larger material with both Aβ+ and Aβ- SCD and MCI cases will be 

needed. In addition, these findings have to be interpreted cautiously due to a relatively small 

baseline sample size (n=74), confined to small subgroups, and the even smaller sample size 

with available cognitive tests at a relatively short 2-year follow-up interval (n=42). However, 

we are currently investigating the CSF Ng/BACE1 ratio concerning these issues owing to the 

completion of CSF Ng and BACE1 analyses for the entire DDI cohort in early 2019. This will 

yield a significantly larger material for the next round of analyses, including the investigation 

of the role of CSF markers for neuroinflammation and APOE-ɛ4 (Nordengen et al., 2019) 

with respect to synapse loss in the AD trajectory. 

 

5.4 Paper III 

Development of regression-based norms for the CERAD WLT  

In paper I we discovered that the CERAD WLT norms sourced for the DDI study (Sotaniemi 

et al., 2012) may not be suitable due to the DDI cohort being on average 10 years younger and 

more educated than what these norms were aimed for. However, since the CERAD WLT was 
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developed for detecting MCI and dementia in geriatric populations, available norms are 

mostly developed for elderly cohorts (Beeri et al., 2006; Fillenbaum et al., 2005; Sotaniemi et 

al., 2012; Welsh et al., 1994). While Hankee et al. (2016) provide normative data for younger 

ages (primarily for ages 35 through 55 years), these norms would not be suitable for the DDI 

cohort due to insufficient coverage of older ages in the DDI cohort (40 – 80 years). In 

addition, while it is shown that performance on the CERAD WLT is affected by age, 

education and gender (Beeri et al., 2006; Heaton et al., 2004; Liu et al., 2011), these norms 

were only adjusted for either age or education. Lastly, these norms are based on an American 

sample, and norms for Scandinavian speaking countries (Danish, Swedish or Norwegian 

language) are lacking. Thus, in paper III, we sought to develop regression-based 

demographically adjusted norms for the CERAD WLT based on a Norwegian sample. 

In line with previous reports, our results showed that increasing age had the strongest impact 

on CERAD word list performance (Sotaniemi et al., 2012; Welsh et al., 1994), followed by 

smaller effects of education (Beeri et al., 2006) and gender (Beeri et al., 2006; Heaton et al., 

2004; Liu et al., 2011). In addition, we investigated a potential non-linear effect of age on 

performance (i.e. increasing memory capacity in early life superseded by a slow decline in 

later life). However, non-linearity was not demonstrated in our data, possibly because 

learning and memory capacity is fully developed or showing normal age-related decline in 

this age cohort (Hartshorne & Germine, 2015). While we included healthy controls from both 

the DDI and Trønderbrain cohorts, no between-cohort bias on performance was found. Thus, 

the norms were developed adjusting for age, education and gender based on the healthy 

controls (n=227) from both DDI and Trønderbrain cohorts.  
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Successful adjustment of pertinent demographics in an independent sample 

A primary utility of these norms is to detect cognitive decline not caused by normal aging or 

expected performance differences due to gender or educational attainment. Thus, to evaluate 

the regression-based norms, we calculated T scores in a group of Norwegian speaking patients 

(n=168) aged 40 through 80 years previously diagnosed with MCI from the DDI cohort and 

fitted regression models to confirm that the norms reliably adjust for demographic variables 

when applied to an independent sample. We found that the regression-based norms 

successfully adjusted for age, gender and years of education in this sample. Moreover, 

estimated T scores in the MCI group reflected an impaired normative performance with mean 

scores below 1 SD compared to the healthy controls. Owing to the successful adjustment of 

pertinent demographics, impaired learning and memory recall on the CERAD WLT should be 

due to factors largely independent of normal aging, gender differences and educational level.  

 

The CERAD WLT may be too easy for younger individuals 

An important finding using the predictions offered from the regression norms was that 

younger people between the ages of 40 – 50, and especially women, generally do very well on 

this test, and the estimated normative performance for these individuals is therefore truncated 

and skewed. The CERAD WLT consists of only 10 words, and may therefore be too easy. 

Thus, in order to detect longitudinal change in cognitive proficiency due to degenerative brain 

disease, the CERAD WLT may not be optimal. For memory clinics and prospective research 

studies including younger participants, a more challenging wordlist test such as the Rey 

Auditory Verbal Learning Test (RAVLT) (Schmidt, 1996) may be better suited. 
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Cultural bias on educational level and consequences for other commonly used cognitive tests 

In line with previous reports, years of education predicted higher performance on both 

CERAD WLT learning and recall subtests. However, the explained variance was relatively 

low (about 2 %) compared to gender (about 5 %). The relatively low variance explained by 

this variable may be due to a high mean educational level in both the healthy control group 

(14.2 years) and in the independent MCI group (13.6 years). While these mean levels seem 

fairly high, they are consistent with Norwegian population statistics ("Statistics Norway," 

2018), which indicate that 37.4 % of Norwegians have completed upper secondary school 

(12-13 years) and 33.4 % of the population have obtained a university degree (bachelor or 

higher) with more than 15 years of education in total. As such, the relatively high educational 

level observed in our study could represent a cultural bias, which could influence estimated 

normative performance on neuropsychological tests (Hayden et al., 2014; Heaton et al., 

2004).  

This finding raises an important question for other cognitive tests presently used in the DDI 

study. The cognitive screening battery presently includes the TMT A & B subtests as well as 

the verbal fluency measure, COWAT. Both tests use norms derived from a large American 

normative study published in 2004 (Heaton et al., 2004). While these norms use a similar 

regression-based norming procedure adjusting for several demographics, they may 

nevertheless be unsuited due to possible differences in educational estimates at different ages 

(i.e. higher mean level of education in the Norwegian sample, and educational backgrounds 

for elderly in 2019 may be different as compared to 2004). Thus, the American norms could 

be based on different relative estimates of educational influences at different ages and thus 

provide estimates that do not fit the expected normative performance in the Norwegian 

sample. This could impact normative estimates of cognitive performance and in some cases 

lead to misclassification of cognitively normal and impaired individuals. Consequently, 
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normative studies of the other cognitive tests included in the DDI study are currently in 

progress. 

 

A solution for computing regression based normative scores in the clinic 

While many clinicians are familiar with using conventional discrete norms, regression-based 

norms may not be as easy and familiar to use. In addition to providing a detailed step-by-step 

procedure in paper III, we have developed a free web-based intuitive normative calculator 

(https://uit.no/ressurs/uit/cerad/cerad-calc.html). The functionality is straight forward and 

intuitive, not requiring knowledge of the regression equations used to derive normative 

estimates. An illustration of the normative calculator is shown in figure 5. 

 

Figure 5. An illustration of the CERAD WLT web-based normative calculator layout 

  

Methodological considerations and study limitations in Paper III 

Regression-based norming procedures require stringent methodological criteria to be fulfilled 

https://uit.no/ressurs/uit/cerad/cerad-calc.html
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(Testa et al., 2009). However, when criteria are met, this method has several advantages over 

the conventional discrete norming approach. Since we are using the entire normative sample, 

regression norming allows for the adjustment of several covariates in a linear fashion, 

meaning that the estimation of normative performance is possible at yearly increases in age 

and education for both males and females. Moreover, this is achieved with a lower sample 

size than required by discrete norms (Oosterhuis et al., 2016). However, when assumptions of 

linear regression are violated (i.e. normal distribution of errors, homoscedasticity and 

linearity), this method may produce biased and unreliable estimates (Oosterhuis, et al., 2016). 

In this study, efforts were made to ensure that assumptions of homoscedasticity and normal 

distributions of residuals were met. As previously mentioned, non-linear effects were also 

assessed by accounting for non-linearity by introducing an age squared term in our regression 

models.  

A limitation of this study regards the missing scores on the CERAD WLT recognition 

memory test. Also, this subtest showed a marked ceiling effect, and did not produce a normal 

distribution of test scores required for regression-based norming. However, our data indicate 

that age and gender have the strongest influence on normative performance. Thus, normative 

performance on this test was shown by providing cumulative percentile ranks for geriatric 

(≥65) and non-geriatric (≤64) age groups, further split by gender. Secondly, we did not have a 

complete longitudinal record of our healthy controls to verify that they remained cognitively 

healthy within a reasonable timeframe. Thirdly, while the regression equations will 

mathematically estimate age, and educational effects beyond the age and education range in 

this study, estimates are not reliable beyond these ranges. Lastly, an important general note on 

MCI cutoff criteria in the DDI study needs to be addressed. While the National Institute on 

Aging and Alzheimer's Association (NIA-AA) (Albert et al., 2011) recommends a cutoff 

criteria at between -1 and -1.5 SD below the normative mean on standardized cognitive tests, 
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the DDI study has opted for stringent cutoff at ≤−1.5 SD. In addition, the MMSE was used to 

determine MCI with a cutoff set at ≤27. However, as the MMSE is not adjusted for effects of 

demographics, the use of this criterion may lead to higher rates of false positive MCI. These 

factors could impact classification rates of SCD vs MCI within DDI. In addition, in the 

current thesis, all SCD/MCI classifications were made with CERAD WLT norms from 

Sotaniemi et al. (2012). As discussed, these norms were not suitable, and may have affected 

disease stage classifications. However, efforts were made in paper II to overcome this by 

using T scores calculated on the basis of DDI control groups performance (Fladby et al., 

2017) when relating pertinent CSF biomarkers to cognitive performance. In 2019, the MMSE 

was dropped as a criterion of MCI diagnosis in the DDI study. Moreover, after the publication 

of paper III, the entire DDI cohort was restaged according to the new demographically 

adjusted CERAD WLT norms. Our planned normative studies for the remaining cognitive 

tests in the DDI battery will further serve to improve estimated of cognitive performance for 

future papers in DDI.  

 

The potential use of regression-based norms to account for practice effects  

An important note, not addressed in this paper, is the role of practice effects when assessing 

participants at follow-up (Salthouse, Schroeder, & Ferrer, 2004; Wilson, Li, Bienias, & 

Bennett, 2006). It has been demonstrated that not only cognitively healthy persons, but also 

persons diagnosed with MCI show practice effects at retest (Duff et al., 2007). Thus, a person 

showing no change in normative T scores between baseline and follow-up may in fact 

represent decline rather than cognitive stability. Participants are reassessed with the same 

cognitive tests at 2-year intervals in DDI. This raises an important issue, as using baseline-

derived norms ignore practice effects between assessments, which can lead to underdiagnoses 

of MCI at follow-up (Elman et al., 2018). A potential solution is to use a regression-based 
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approach to estimate relative expected normative practice effects between baseline and 

follow-up time points within the DDI study. Similar to the regression-based norming 

procedure detailed in this thesis, a multiple regression model with age, gender, education as 

well as baseline scores (Time point 1) could be fitted to model normative performance at 

follow-up (Time point 2) (Duff, 2012). In the DDI study, participants are invited to follow-up 

examinations every 2 years. If norms accounting for practice effects are developed for several 

time points (e.g. 2, 4, 6 or 8 years), a linear mixed model approach may be appropriate 

(Salthouse et al., 2004). However, this also requires an adequate sample size of normal 

healthy controls at different time points. Presently it is unknown how many of our healthy 

controls will come for additional visits. However, if sufficient data will be available for such 

analysis, future normative studies in DDI should attempt to tackle this important issue. 

 

6 Conclusions and future directions 

 

This thesis is based on three published papers, which provide important findings to the 

ongoing research on preclinical AD. While we did not show significant recruitment source 

biases for memory-clinic referred as compared to self-referred SCD cases, our findings have 

generated new hypotheses. These are currently being investigated in DDI and may help 

distinguish benign SCD from SCD due to pathology such as AD. In addition, this work 

revealed the need for new test norms for the CERAD WLT better suited for the younger and 

more educated DDI cohort. To our knowledge, this was the first paper providing CERAD 

WLT demographically adjusted norms for this age range. Memory performance is a central 

part of AD research and sensitive and culturally adapted tools to capture normative 

performance differences caused by pathological processes are an important contribution to the 

DDI study, and possibly for the many clinicians in Scandinavia which rely on this test. This 
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work also pointed out the potential need to develop new demographically adjusted norms for 

other commonly used cognitive tests, such as the TMT A & B, which is one of the most used 

neuropsychological test in the Nordic countries (Egeland et al., 2016).  

 

The Neurogranin/BACE1 ratio is a promising marker for synapse affection in AD. To our 

knowledge, this is the first paper demonstrating Neurogranin/BACE1 ratio synapse affection 

at the preclinical SCD stage, which also related to pertinent medial temporal lobe structures, 

memory recall deficits and future cognitive decline. This ratio may be connected to an Aβ-

linked synaptic pathomechanism. If confirmed, this would point to the synapse as a nidus of 

early disease development in AD and could open possibilities for early intervention through 

NMDA receptor antagonists. However, alternate pathomechanisms putatively leading to 

increases in Neurogranin/BACE1 ratio need to be investigated. The precise sequence of 

pathological events leading to AD dementia is still unknown. However, the advances in PET 

imaging, CSF and blood proteomics and cognitive assessment tools, promises to further 

advance our understanding of AD pathology and possibilities for future intervention or 

prevention therapies.  

The unique multimodal and longitudinal design of the DDI study holds promise for even 

more exciting discoveries in the next round of analyses!   
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