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Abstract: Earth’s global surface temperature shows variability on an extended range of temporal
scales and satisfies an emergent scaling symmetry. Recent studies indicate that scale invariance
is not only a feature of the observed temperature fluctuations, but an inherent property of the
temperature response to radiative forcing, and a principle that links the fast and slow climate
responses. It provides a bridge between the decadal- and centennial-scale fluctuations in the
instrumental temperature record, and the millennial-scale equilibration following perturbations in the
radiative balance. In particular, the emergent scale invariance makes it possible to infer equilibrium
climate sensitivity (ECS) from the observed relation between radiative forcing and global temperature
in the instrumental era. This is verified in ensembles of Earth system models (ESMs), where the
inferred values of ECS correlate strongly to estimates from idealized model runs. For the range of
forcing data explored in this paper, the method gives best estimates of ECS between 1.8 and 3.7 K,
but statistical uncertainties in the best estimates themselves will provide a wider likely range of
the ECS.

Keywords: climate sensitivity; scale invariance; long-range persistence; climate variability;
emergent constrains

1. Introduction

The Intergovernmental Panel on Climate Change [1] (IPCC) has estimated the likely range of
equilibrium climate sensitivity (ECS) to be between 1.5 and 4.5 K. The ECS, which is widely used
in assessments of anthropogenic climate change, is defined as the asymptotic temperature increase
following an instantaneous CO2 doubling. In Earth system models (ESMs), the ECS is generally
estimated via the so-called Gregory plots [2], where the response in the top-of-the-atmosphere
radiation N is plotted against the global mean surface temperature (GMST) anomaly ∆T during
the equilibration following an instantaneous doubling or quadrupling of the atmospheric CO2

concentration. The assumption is that the adjustment in radiation depends linearly on the surface
temperature increase,

N = F− λ∆T, (1)

so that the feedback parameter λ and the forcing F can be determined via linear regression. The ECS
is hence F2×CO2 /λ, where F2×CO2 is the forcing associated with a CO2 doubling. The Gregory plots
show that the linearity assumption is only approximate, and in particular, there are slow feedbacks
in the models that reduce the feedback parameter as the planet warms [3]. A state dependence
is also observed in the so-called paleo sensitivity [4–7]. Nevertheless, the usefulness of ECS and
its estimation still relies on the linearity assumption in Equation (1). Satellite observations of the
top-of-the-atmosphere radiation are available through the Clouds and the Earth’s Radiant Energy
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System (CERES), but unfortunately, the data only covers the years 2000-present. The state-of-the-art
ECS estimates based on the satellite data gives a wide likely range (in this case a 17–83% confidence
interval) of 2.4–4.5 K [8].

A different approach, which can be used when the top-of-the-atmosphere radiation is unknown,
is to combine model results with the instrumental temperature record. Recently Cox et al. claimed that
ECS can be constrained to a “likely range” (in this paper specified to be the 66% confidence interval) of
2.2 to 3.4 K, with a best estimate of 2.8 K [9]. They propose a metric ψ characterizing the correlation
structure of the internal variability of the GMST in both the instrumental temperature record in the
period 1880 to 2016 and in the corresponding historical runs in the Coupled Model Intercomparison
Project Phases 5 (CMIP5) ensemble. By exploring a so-called emergent relationship between ECS
and ψ, they estimate a distribution P(ECS|ψ) for the Gregory estimate of ECS conditioned on ψ,
and using the law of total probability in conjunction with Bayes Theorem, they obtain a probability
density function P(ECS) constrained by the instrumental record. However, it has been demonstrated
that their estimated metric depends on the response to the strong anthropogenic forcing in the time
period after year 1950, and hence one has to take into account that the historical forcing times series
used in different models in the ensemble are not exactly the same [10]. Another problem is that the
emergent relationship was derived from an oversimplified one-box stochastic energy balance equation
(Equation (7) described in Section 2.1). This model does not take into account the memory effects in
the response due to heat exchange between the ocean mixed layer and the deep ocean. Models that do
incorporate such memory effects are briefly reviewed in Sections 2.2 and 2.3.

A method of constraining ECS from the instrumental record that does not draw on a simplified
physical model is to include data for historical forcing, with its uncertainties, and to estimate response
functions that describe the relationship between global radiative forcing and the observed GMST.
If one adopts a hypothesis of a linear and stationary response, then the temperature anomaly ∆T
can be written as a convolution of the forcing F with a response function G(t):

∆T(t) =
∫ t

−∞
G(t− s)

(
F(s)ds + σdB(s)

)
, (2)

where the term F(t) is the known (deterministic) forcing and dB(t) represents a white-noise random
forcing that gives rise to the internal variability. Equation (2) only assumes linearity and stationarity of
the response, and it is only the functional form of G(t) that depends on the particular physical
modeling of this response. As discussed in Section 2.2, such a linear response can be derived from a
multi-layer energy balance model, where the response function is a sum of exponential functions with
decay rates that are given by the real and negative eigenvalues of the system of differential equations.
Fredriksen and Rypdal [11] have shown that three exponential terms are sufficient to obtain a model
that simultaneously displays responses to historical and reconstructed forcing that are consistent with
the instrumental temperature record and the reconstructed last millennium global mean temperature,
respectively. In addition, it correctly describes the statistical properties of the internal variability on
time scales from months to centuries [12]. The constructed response function corresponds to an ECS
estimate of 3.0 K, obtained by using the forcing F(t) = F2×CO2 Θ(t) in Equation (2), where Θ(t) is the
unit step function. Defining the ECS as limt→∞ ∆T(t), Equation (2) yields

ECS = F2×CO2

∫ ∞

0
G(t)dt. (3)

The forcing F2×CO2 is well approximated by a logarithmic dependence of the CO2 concentration,
with a best estimate of 3.7 W/m2 found by the IPCC [1]. Uncertainties associated with the radiative
transfer calculations are small [13]. However, forcing estimates from CMIP5 models often include
rapid adjustments of the atmosphere, resulting in larger uncertainties [14]. The more serious issues are
the uncertainty of the estimate of the response function, the uncertainty of the adjusted forcing data,
and the validity of the linearity assumption.
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The uncertainty of the response function estimates can be assessed in several ways, for instance
using an ensemble of runs of the same experiment in one ESM. The uncertainty of the forcing
presents a significant challenge, which is not addressed by Cox et al. [9]. In the present paper,
we take part of this uncertainty into account by analyzing the spread of the adjusted forcing over
the CMIP5 ensemble. We shall also consider the order of magnitude of uncertainty that can be
attributed to our limited knowledge about the forcing from volcanic aerosols. In model runs with
historical forcing, the adjusted forcing is obtained from Equation (1) by comparing the time series of
∆T(t) and the top-of-the-atmosphere radiation N(t) for a fixed estimate of the feedback parameter
λ [15]. The resulting time series F(t) is an estimate of the forcing experienced by the ESM. However,
the construction of F(t) from the assumed linear relationship between ∆T(t) and N(t) results in forcing
signals where some short-scale internal climate variability, including the El Niño Southern Oscillation
(ENSO), are clearly observable in the forcing signal. Consequently, these forcing data are not suitable
for statistical estimation of response functions G(t) from Equation (2). The alternative, which is used
in this paper, is to fix a forcing time series, for instance the time series provided by Hansen et al. [16],
and to modify it for each model so that the trend (or low-frequency variability) is equal to the adjusted
forcing for the model. This approach serves two purposes; we ensure that when we fit a response
function to a model the increasing trend in the forcing is consistent with the forcing in the model run,
and it provides an ensemble of forcing time series with different trends. The estimates of the response
function from the observed temperature record can be repeated across this ensemble of forcing time
series and provide an estimate of the uncertainty in the response function that is associated with the
uncertainty in the forcing trend.

If one derives the response function from a multibox energy balance model it will take the form
(see Section 2.2),

G(t) =
N

∑
k=1

cke−t/τk . (4)

In Section 3 it is described how to obtain statistical estimates ĉk and τ̂k of the parameters ck and τk
from historical runs of each of the ESMs in the CMIP5 ensemble, as well as for the instrumental
temperature record. For each model, this estimate corresponds to an estimate of ECS through
Equation (3), which in this case reads

ÊCS = F2×CO2

N

∑
k=1

ĉkτ̂k.

If the estimate ÊCS correlates strongly with the Gregory estimate of ECS over the CMIP5 ensemble,
then the estimate ÊCS obtained from the instrumental temperature record can be used to constrain the
distribution of ECS in the ensemble. Unfortunately, such an analysis will show a very weak correlation
between the two estimates, and this apparently indicates that response function estimates are useless
for constraining ECS. On the other hand, the reason for the low correlation is that the instrumental
temperature record is too short to provide useful information about the slow response of the climate
system, and the general form of the response function leads to statistical over-fitting. The method
can be improved by reducing the number of free parameters. A naïve approach is to reduce the
response function to one characteristic time scale (which is what comes out of using the one-box model
employed by Cox et al. [9]). This gives a model that is unable to accurately describe the temporal
structure of the temperature response, and would lead to a systematic underestimation of the ECS.
A better alternative is to use the emergent property of temporal scale invariance.

Rypdal and Rypdal [12] have demonstrated that a scale-invariant response model, i.e.,
Equation (2) with

G(t) =
( t

µ

)β/2−1
Θ(t)ξ, (5)
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where ξ = 1 km2 J−1 is a factor needed to give G(t) the right physical dimension, provides a
parsimonious and accurate model on time scales from months to several centuries, although not on
longer time scales. In fact, it will be argued in Section 4 that the power-law dependence (at least
in the models) is invalid on time scales substantially longer than a millennium. The existence of a
cut-off in this dependence on very long time scales is obvious, since the ECS according to Equation (3)
would be infinite otherwise [12]. We don’t have to worry about this cut-off when we estimate the
model parameters from historical data since the temperature records and the forcing time series we
have for the industrial period are relatively short compared to this cut-off time, which corresponds
to the time it takes for global surface temperature to relax to a new equilibrium after an abrupt CO2

doubling in ESMs. This large separation of the two time scales (observation time and relaxation time)
is also the main reason why it is so difficult to provide accurate estimates of ECS from observational
data. The fact that a response model with infinite ECS can perform well when tested on observation
data suggests that these time series are too short for ECS assessment and that ECS may not be the
most useful measure of climate sensitivity in the face of anthropogenic climate change. It may be more
useful to study the scale-dependent (or frequency-dependent) sensitivity;

R( f ) = F2×CO2 |G̃( f )|, (6)

where
G̃( f ) =

∫ ∞

−∞
G(t)e−2πi f tdt

is the Fourier transform of the response function. However, as the main results of this paper will
show, the scale dependent sensitivity evaluated at f = 10−3 y−1 correlates strongly with the Gregory
estimate of ECS. Hence, this technique can be used to constrain the ECS in the model ensemble on the
instrumental temperature record. It is evident from the results presented in this paper that uncertainty
in the historical forcing data is the main obstacle for more accurate assessment of ECS.

The paper is structured as follows. In Section 2 we discuss stochastic linear response models
for global surface temperature variability to motivate the analyses presented in Section 4. We also
discuss some dissipation-response relations that follow from this modeling framework. Details on
data employed and the statistical analyses are presented in Section 3. In Section 4 we present the main
results, and in Section 5 we discuss and conclude our findings.

2. Linear Response Models and Scale-Dependent Sensitivity

2.1. The 1-Box Energy Balance Model

The simplest climate model, the so-called 1-box energy balance model, describes the temperature
anomaly ∆T via the first order differential equation

Cd∆T(t) = −λ∆Tdt + F(t)dt, (7)

where C is a heat capacity, λ is the feedback parameter and F(t) is the radiative forcing. If one includes
a white-noise stochastic forcing, the model becomes a stochastic differential equation on the form

Cd∆T(t) = −λ∆Tdt + F(t)dt + σdB(t), (8)

where dB(t) is the white-noise random measure. The solution of the equation is

∆T(t) =
1
C

∫ t

−∞
e−(t−s)/τ F(s)ds +

σ

C

∫ t

−∞
e−(t−s)/τdB(s), (9)
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where the characteristic time scale is τ = C/λ. The second term in the above expression defines the
Ornstein-Uhlenbeck process

X(t) =
σ

C

∫ t

−∞
e−(t−s)/τdB(s),

i.e., the continuous-time version of an AR(1) process, sometimes referred to as red noise. This is
a Gaussian process characterized by its exponentially decaying correlation function. In fact,
the covariance structure of the process is given by the expression

rX(∆t) = 〈X(t)X(t + ∆t)〉 = σ2τ

2C2 e−|∆t|/τ ,

and from the Wiener-Kinchin theorem it follows that the power-spectral density (PSD) of X(t)
is Lorentzian

SX( f ) =
∫ ∞

−∞
rX(t)e−2πi f tdt =

1
C2

σ2τ2

1 + 4πτ2 f 2 .

The PSD scales as S( f ) ∼ f−2 for frequencies f � 1/τ, and as S( f ) ≈ σ2τ2/C2 for f � 1/τ.
The first term in Equation (9) can be referred to as the response to the deterministic (or known)

forcing, and denoted ∆Tdet(t). If the forcing is an instantaneous CO2 doubling at time t = 0 we can
write F(t) = F2×CO2 Θ(t), where F2×CO2 is the forcing corresponding to the CO2 doubling, and Θ(t) is
the unit-step function. The response is

∆Tdet(t) =
F2×CO2

C

∫ t

0
e−(t−s)/τds =

F2×CO2 τ

C

(
1− e−t/τ

)
.

In particular an expression for the ECS is obtained in the limit t→ ∞:

ECS =
F2×CO2 τ

C
=

F2×CO2

λ
.

We note that there are connections between the response to deterministic forcing and the statistical
properties of the random fluctuations X(t). For instance, the low-frequency limit of the PSD is
proportional to the square of the ECS:

lim
f→0

SX( f ) =
∫ ∞

−∞
rX(t)dt =

σ2τ2

C2 =
σ2

λ2 =
σ2

F2
2×CO2

ECS2.

The above expression is an example of a dissipation-response relation that holds for more general
linear response models.

2.2. Generalizations of the 1-Box Model

The 1-box energy-balance model describes temperature response through a single characteristic
time scale, and does not accurately take into account the warming of the deep oceans, which is much
slower than the thermal response of the atmosphere. A more accurate energy-balance model is the
so-called 2-box model, for which the analog of Equation (8) is

C1d∆T1(t) = −λ∆T1dt + κ(∆T2 − ∆T1)dt + F(t)dt + σdB(t)

C2d∆T2(t) = −κ(∆T2 − ∆T1)dt.

For κ > 0, this system has two negative eigenvalues −1/τ1 and −1/τ2, and the surface
temperature anomaly ∆T = ∆T1 can be written as Equation (2), where G(t) = (c1e−t/τ1 + c2e−t/τ2)Θ(t)
now is a response function with two characteristic time scales. The model can be further generalized to
the class of N-box models for which we have a response function given by Equation (4), or to an even
more general class of models for which we just assume that there is some response function G(t) with
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G(t) = 0 for t < 0. In the general case we find, by using the definition X(t) = σ
∫ t

0 G(t− s) dB(s) of
the noise-driven response process and the relation 〈dB(s) dB(s′)〉 ∝ δ(s − s′) for the white noise
process, that

rX(∆t) = 〈X(t)X(t + ∆t)〉 = σ2
∫ ∞

0
G(t)G(t + ∆t)dt

for ∆t > 0. The angle brackets here denote the expectation value. From Equation (3), we then have

ECS2 = F2
2×CO2

∫ ∞

0

∫ ∞

0
G(t)G(s)dtds =

F2
2×CO2

σ2

∫ ∞

−∞
rX(∆t)d∆t =

F2
2×CO2

σ2 lim
f→0

SX( f ). (10)

We now define the scale-dependent climate sensitivity as

R( f ) =
F2×CO2

σ
SX( f )1/2. (11)

It appears immediately from Equation (10) that R( f → ∞) = ECS, so from a theoretical
viewpoint, this definition makes sense. For computational purposes, however, the definition presented
in Equation (6) is more practical. From the definitions of SX( f ), rX(t), and X(t) it is easy to
demonstrate that

SX( f ) = σ2|G( f )|2, (12)

hence the two definitions are equivalent.

2.3. Scale-Invariant Models

The statistical properties of global surface temperature are consistent with those of long-range
dependent (LRD) stochastic properties [17–22], in particular with fractional Gaussian noise (fGn).
This can be modeled by letting the response function G(t) take the form of Equation (5). In fact,
the stochastic component

X(t) =
∫ t

−∞

( t− s
µ

)β/2−1
ξdB(s)

can be taken as a formal definition of a fGn (see the Appendix of [12]). Its PSD is S( f ) ∼ f−β. Studies
also indicate that scale invariance is not only a feature of the observed temperature fluctuations, but an
inherent property of the temperature response to radiative forcing [11,12,22–24]. This means that the
deterministic component

∆Tdet(t) =
∫ t

−∞

( t− s
µ

)β/2−1
F(s)ξds

is an accurate description of the temperature response to the known deterministic forcing. Moreover,
the stochastic and deterministic responses can simultaneously describe the deterministic temperature
response and the climate noise (residual), meaning that the parameters β and µ can take the same
values in the two terms. This is a type of dissipation-fluctuation result, but not as strong as those
that directly link the statistical properties of the climate noise to the characteristics of the response.
More important; it provides a statistical model for which parameter estimates are very stable, and this
makes these models suitable for extracting proxies of ECS from historical runs in the model ensemble.

3. Materials and Methods

3.1. Data

The instrumental temperature record used in this paper is the HadCRUT4 observational dataset
which was downloaded from https://crudata.uea.ac.uk/cru/data/temperature/. The CMIP5 ESM
data was downloaded from https://esgf-data.dkrz.de/search/cmip5-dkrz/. Forcing data was

https://crudata.uea.ac.uk/cru/data/temperature/
https://esgf-data.dkrz.de/search/cmip5-dkrz/
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retrieved from the sources provided in [15,16]. The time period 1850-2016 is used for all historical runs
and for the instrumental temperature record.

3.2. Parameter Estimation

In discrete time, the statistical model given by Equations (2) and (5) can be written as

∆T = σf G(β) (F0 + F) + ε(σ, β), (13)

where we have defined a matrix

Gt,s(β) =

{
(t− s + 1

2 )
β/2−1, 1 ≤ s ≤ t

0, otherwise
.

Here ∆T = (∆T(t1), ∆T(t2), . . . , ∆T(tn))T is the time series for global surface temperature,
F = (F(t1), F(t2), . . . , F(tn))T is the time series for the known forcing, and ε = ε(σ, β) = (ε(t1), ε(t2), . . . , ε(tn))T ,
where ε is a fGn with parameters β and σ. In this paper we only consider time series that are sampled
yearly, so we let ti = i, and omit the time unit for simplicity. The random vector ε is a segment of
a fGn, so by definition it is a stationary zero-mean Gaussian vector with covariance matrix

Σi,j =
σ2

2

(
|i− j + 1|β+1 + |i− j− 1|β+1 − 2|i− j|β+1

)
.

The parameter β is related to the Hurst exponent H through the relation β = 2H − 1 [25].
In fitting Equation (13) to a given temperature series, the parameters β, σf , σ and F0 are

found numerically using the methodology of integrated nested Laplace approximation (INLA) [26].
In addition, the parameter µ is determined using the formula (1/µ)β/2−1 = σf . INLA is available
within the programming environment R, using the open-source package R-INLA which can be
downloaded from www.r-inla.org. It represents a computationally efficient Bayesian approach
which gives accurate estimates of the posterior marginals for all the parameters in Equation (13),
potentially also including the predictor itself.

Specifically, INLA is designed to provide inference for a flexible class of three-stage hierarchical
models, referred to as latent Gaussian models [26]. The first stage specifies that the observations (∆T)
are assumed conditionally independent given a latent field and hyperparameters. The second stage
assumes that the latent field (E(∆T)T , εT) given additional hyperparameters is a zero-mean Gaussian
Markov random field. This assumption implies that the precision (inverse covariance) matrix of the
latent field will be sparse. The third stage specifies a prior for each of the hyperparameters (β, σ, σf ,F0).

The model defined by Equation (13) does not fit into the class of latent Gaussian models without
modifications. First, the LRD properties of the fGn process make the precision matrix of the latent
field dense. To ensure computational efficiency, this is circumvented by approximating the fGn as
a weighted sum of four AR(1) processes as introduced in [27]. Second, the mean of the observation
vector, E(∆T) = σf G(β) (F0 + F) has a non-standard form. This requires separate specification as
described in [28], also providing implementation of the model using the freely available R package
INLA.climate.

4. Results

For each ESM in the CMIP5 ensemble we modify the forcing data of Hansen et al. [16] such that its
17-year moving average becomes identical to the the moving average of adjusted forcing provided by
Forster et al. [15] for that model. This is done by adding the difference between the moving average of
the adjusted model forcing and the Hansen forcing to the raw Hansen forcing time series. The idea is to
construct forcing time series for each model that retain a common structure on time scales that resolve
volcanic forcing, the solar cycle and ENSO variability, but exhibit the overall trend on multi-decadal

www.r-inla.org
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time scales of the forcing time series used in the respective models. A 17-year moving average window
is found to be the optimum choice to achieve that goal. For the model given by Equation (2) with
response function given by Equation (5) we fit parameters β and µ to the global surface temperature of
the historical run of the given ESM, using the modified Hansen forcing as input. The parameters
are estimated using a technique described in Section 3. Figure 1a shows the adjusted forcing and
the modified Hansen forcing for the NorESM1-M model, and Figure 1b shows the response to the
modified Hansen forcing according to the fitted linear response model together with the global surface
temperature in the historical run of the NorESM1-M model.

1850 1900 1950 2000
-3

-2

-1

0

1

2

Δ
F
(W

/m
2
)

Model forcing estimated by Forster et al. (2013)

Modified Hansen forcing

NorESM1-M

a

1850 1900 1950 2000

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Δ
T
(K

)

NorEMS1-M historical run

Linear response to modified Hansen forcing

b

Figure 1. (a) The red curve is the adjusted forcing for the NorESM1-M model provided by
Forster et al. [15]. The black curve is the forcing data of Hansen et al. [16] modified so that its
17-year moving average equals the 17-year moving average of the red curve. (b) The black curve is the
global surface temperature in the historical run of the NorESM1-M model, and the blue curve is the
response to the modified Hansen forcing (the black curve in (a)) for the model given by Equation (5).
Parameters are estimated as β = 0.67 and µ = 7.8× 10−3 y−1.

When parameters β and µ are estimated for the historical runs of each ESM, the estimated scale
dependent sensitivity R( f ) can be computed for each model using Equation (6). The factor F2×CO2 is
taken individually for each model based on the Gregory estimates in [1]. A scalar metric R is obtained
by evaluating the functions R( f ) at the frequency f = 10−3 y−1. The results are presented in Table 1.
The choice of frequency is based on how well the corresponding scalar metric correlates with the
Gregory estimates of ECS. The scale-dependent sensitivities are computed from Equation (6) under the
assumption that the response function is scaling and given by Equation (5). Hence the R( f )-curves are
power-laws and displayed as the straight, sloping lines in the double-logarithmic plot in Figure 2a.
The figure shows that over the model ensemble, R( f ) typically equals the Gregory estimate of ECS for
frequencies f ≈ 10−3 y−1, and Figure 2b shows that the correlation (over the model ensemble) between
R( f ) and the Gregory estimate of ECS has its maximum for f ≈ 10−3 y−1. The falling correlation
for lower f suggests that the power-law assumption for R( f ) fails for time scales much longer than
a millennium.

Figure 3a shows a plot of the R, i.e., R( f ) evaluated at f = 10−3 y−1, versus the Gregory
estimate of ECS. The points (letters) represent the different ESMs in the model ensemble, and the
contour plot shows the conditional probability density function (PDF) p(ECS|R) estimated from the
seventeen data points corresponding to the seventeen ESMs in the ensemble. The method used to
estimate p(ECS|R) is the same as prescribed by Cox et al. (2018) [9], with the obvious weakness that
it is based on the assumption that the deviation among the models from an emergent linear relationship
ECS = aR + b between ECS and R has a Gaussian distribution.
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Table 1. Estimated quantities for the Earth system model (ESM) in the ensemble. The columns for
equilibrium climate sensitivity (ECS) and F2×CO2 are obtained from Gregory plots for 4 × CO2 runs
and taken from [1]. The columns denoted β, µ and σ show the estimates of the parameters in the model
given by Equation (2) with response function given by Equation (5), obtained from historical runs of the
ESMs and the modified Hansen forcing for each model. The last column displays the scale-dependent
sensitivity R( f ) obtained from Equation (6) using the values of F2×CO2 , β and µ that are listed in the
columns to the left, and evaluated at f = 10−3 y−1.

Model ECS (K) F2×CO2 (W/m2) β µ (10−3 y) σ (W/m2) R (K) *

GISS-E2-R 2.1 3.8 0.49 13.8 0.07 3.3
HadGEM2-ES 4.6 2.9 0.95 7.3 0.32 4.8
IPSL-CM5A-LR 2.6 3.1 0.79 9.6 0.16 4.0
NorESM1-M 2.8 3.1 0.67 7.8 0.12 2.7
Access1-0 3.8 3.0 0.68 7.3 0.10 2.6
Miroc-ESM 4.7 4.3 0.73 6.6 0.12 3.9
Miroc5 2.7 4.1 0.78 4.0 0.21 3.2
CanESM2 3.7 4.1 0.59 17.5 0.15 4.8
CCSM4 2.9 3.8 0.49 14.9 0.12 3.5
CNRM-CM5 3.3 3.6 0.60 15.0 0.12 3.9
GFDL-CM3 4.0 3.0 0.62 19.0 0.14 4.0
GFDL-ESM2G 2.4 3.1 0.72 5.8 0.15 2.5
CSIRO-MK3 4.1 2.6 0.82 8.9 0.17 3.4
BCC-CSM1-1M 2.8 3.2 0.53 15.8 0.09 3.2
GFDL-ESM2m 2.4 3.1 0.47 15.3 0.16 2.8
INM-CM4 2.1 3.0 0.82 1.6 0.12 1.6
MPI-ESM-LR 3.6 4.1 0.78 7.6 0.16 4.5
MRI-CGCM3 2.6 3.2 0.58 9.9 0.10 2.6

* In the last column R = R( f ) for f = 10−3 y−1.
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Figure 2. (a) The sloping lines are double-logarithmic plots of the scale dependent sensitivity R( f ) for
each ESM in the ensemble. The different slopes correspond to different β-estimates. The horizontal
lines indicate the ECS of the ESMs obtained from the Gregory plots and reported in [1], and the black
dots indicate for which frequency f we have R( f ) = ECS for each model. (b) Correlation (over the
ensemble of ESMs) between the scale-dependent sensitivity R( f ) and the Gregory estimate of the ECS.
The correlation coefficient is plotted as a function of the frequency f .



Climate 2018, 6, 93 10 of 15

The vertical black line in Figure 3a is R = 2.9 K. This value of R is obtained from the parameters
β = 0.66 and µ = 11.9× 10−3 y−1, which are estimated from the instrumental temperature record
using the Hansen-forcing. We have used F2×CO2 = 3.8 W/m2, which is the value for the GISS-E2-R
model given in Table 1. Hence this value for R is the one estimated for the effective forcing used in
this particular model and applied to the observed temperature time series. Similar estimates are made
for the adjusted forcing in all the other models, using the values of F2×CO2 for those models given
in Table 1. The black curve in the lower part of Figure 3a is a PDF P(R) for the metric R estimated
this way. The PDF is obtained by considering two sources of uncertainty in the R-estimates. One is the
spread in parameter estimates when we vary the forcing. The forcing is varied over the set of modified
Hansen forcing time series, where each modification corresponds to a historical run of an ESM in
the ensemble. The parameter estimates for the instrumental temperature record, and the resulting
value of R, for varying forcing data is shown in Table 2. Another source of uncertainty is the spread
in the parameters β and µ across repeated historical runs of the same model, i.e., runs where the
known forcing is the same, but where chaotic dynamics create random components that vary among
realizations. Table 3 shows a set of parameter estimates for repeated historical runs of the CSIRO
model, which is the model in the CMIP5 ensemble that provides the largest number of runs with
identical forcing. The total variability from these two sources is obtained by a simple mixture model,
and the plotted PDF is computed by a smooth kernel method. The black, full curve in Figure 3b shows
the PDF for ECS computed from the formula

p(ECS) =
∫

p(ECS|R)p(R)dR, (14)

where p(R) is the PDF shown in Figure 3a. The histogram in Figure 3b is the distribution of ECS in the
model ensemble, and the dotted curve is a Gaussian fit to the distribution of ECS in the model ensemble.
The figure demonstrates that when constrained by the scale-dependent sensitivity of the instrumental
temperature record, the best estimate of ECS in the model ensemble is reduced by approximately 0.2 K.
The PDF p(R) shown in Figure 3a, also shows that, with the uncertainties taken into account, models
with ECS larger than 4 K are inconsistent with the instrumental temperature record.

From Figure 3a and Equation (14) we observe that the uncertainty represented by p(ECS) in
Figure 3b is formed by a combination of the range of R-values R represented by the black curve
for p(R) in Figure 3a and the width of the conditional PDF represented by the contour lines in that
panel. The latter represents the uncertainty associated with the deviation from the emergent linear
relation between ECS and R among the models, which is the main source of uncertainty found by
Cox et al. (2018) [9]. In our approach, however, the wide range of the metric R represented by p(R)
that we have found by using the adjusted forcing of each model to estimate R is a major contribution to
the uncertainty in p(ECS).

One can explore the effect of uncertainty of adjusted forcing among models on the uncertainty of
ECS by neglecting the uncertainty associated with deviations from the emergent linear relation.
From the scatter plot in Figure 3a we can fit a linear relationship ECS = aR + b, and in Table 2 we
have a set of estimates of R for the instrumental temperature record. The linear fit maps each of
the R-estimates to an ECS-value, which can be interpreted as the best estimate of ECS based on the
corresponding forcing data. This mapping is shown in Figure 4a. The range of these best estimates of
ECS are between 2.3 and 3.4 K. Note that these are the best estimate of R for each model and that the
uncertainty of each estimate arising from uncertainty in estimates of β and µ is not taken into account.
For this reason, we don’t plot PDFs, but only indicate the range of best estimates of R.
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Table 2. The parameter estimates for the instrumental temperature record, and the resulting values
of R, for varying forcing data.

Forcing β µ (10−3 y) σ (W/m2) R (K) *

GISS-E2-R 0.61 5.8 0.12 2.4
HadGEM2-ES 0.87 5.3 0.20 3.3
IPSL-CM5A-LR 0.64 6.4 0.12 2.2
NorESM1-M 0.74 6.3 0.14 2.8
Access1-0 0.67 6.3 0.12 2.3
Miroc-ESM 0.68 7.6 0.14 3.7
Miroc5 0.68 6.6 0.12 3.3
CanESM2 0.68 5.5 0.13 3.0
CCSM4 0.62 4.5 0.13 2.1
CNRM-CM5 0.69 8.2 0.13 3.3
GFDL-CM3 0.86 5.6 0.19 3.4
GFDL-ESM2G 0.75 4.4 0.14 2.3
CSIRO-MK3 0.86 6.0 0.19 3.1
BCC-CSM1-1M 0.70 3.9 0.13 2.0
GFDL-ESM2m 0.73 4.9 0.14 2.4
INM-CM4 0.67 5.9 0.12 2.2
MPI-ESM-LR 0.81 1.8 0.15 2.3
MRI-CGCM3 0.79 6.9 0.15 3.4

* In the last column R = R( f ) for f = 10−3 y−1.

Table 3. A set of parameter estimates for repeated historical runs of the CSIRO model.

Ensemble Run β µ (10−3 y) σ (W/m2) R (K) *

1 0.82 13.0 0.17 3.5
2 0.91 8.0 0.23 3.9
3 0.80 19.4 0.16 4.1
4 0.88 13.6 0.23 4.4
5 0.73 21.8 0.14 3.6
6 0.89 9.9 0.22 3.8
7 0.82 16.9 0.17 4.1
8 0.87 9.5 0.19 3.4
9 0.86 11.6 0.19 3.8

* In the last column R = R( f ) for f = 10−3 y−1.

The effect of uncertainty in the forcing on the estimated ECS can be explored further by varying
the various forcing components within plausible ranges of uncertainty. As an example we consider
the forcing from volcanic aerosols, which are subject to considerable controversy. In Figure 4b we
have made the same plot as in Figure 4a, but with the volcanic component of the Hansen forcing
reduced by 50 percent. The effect on the spread in the estimated ECS is considerable. Another
source of uncertainty is the choice of regression model for the emergent relation between ECS and R.
From a physical viewpoint, vanishing ECS should correspond to vanishing R, so if one sticks to a linear
model it could be reasonable to choose the model ECS = aR rather than ECS = aR + b. The result for
such a model, keeping the low volcanic forcing, is shown in Figure 4c, with a range of best estimates
for ECS between 1.8 and 3.7 K.
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Figure 3. (a) The letters (see the legend inserted in panel (b)) show the Gregory estimate of ECS
versus R(f)m evaluated at f = 10−3 y−1 for each model in the ensemble. The contour plot shows the
conditional probability density function (PDF) p(ECS|R). The vertical black line is R = 2.9 K, which
is obtained from the parameters β = 0.66 and µ = 11.9× 10−3 y−1 estimated from the instrumental
temperature record using the Hansen forcing. The thick, black curve is the estimated PDF of R( f ).
(b) The full curve shows the PDF for ECS computed from Equation (14), where p(R) is the PDF shown
in (a). The histogram is the distribution of ECS in the model ensemble, and the dotted curve is a
Gaussian fit to the histogram.
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Figure 4. (a) The points in the scatter plot are the same as (the letters) in Figure 3a. The line
is the least-square fit of the model ECS = aR + b. The vertical lines correspond to the R-values
estimated from the instrumental temperature record for the different modified Hansen forcing time
series. The horizontal lines show how these R-values are mapped to ECS-values by the linear model.
(b) As in (a), but prior to the analysis the volcanic forcing is reduced to half of its original values.
(c) As in (b), but using a linear model ECS = aR with zero intercept to map R-values to ECS-values.

5. Discussion

The PDF for the ECS shown in Figure 3b is similar to the one presented by Cox et al. [9]. However,
there are important differences in methodology that must be pointed out. Cox et al. use a pure
dissipation-response relationship to constrain ECS in the model ensemble. They propose a metric ψ,
which plays a similar role as the metric R proposed in this work, and claim that estimates of ψ are
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independent of the forcing. This claim has been demonstrated to be false [10]. In our framework,
an approach in the spirit of Cox et al. would be to use Equation (10), and to seek estimates of the
correlation function (or equivalently the PSD) of the climate noise X(t) that are independent of the
forcing. Such an approach would lead to the same problems as those in [9], namely that the estimates
would be influenced by the strong anthropogenic forcing in the instrumental period. This is our
motivation for developing a method that employs forcing data in the estimation of our metric R, and as
a consequence we have to take the uncertainty in the forcing into account. We have done this by using
a fixed data set for historical forcing (the Hansen-forcing) and varied its low-frequency variability
over the ensemble of adjusted forcing time series provided by Forster et al. [15]. Clearly, this does not
represent the full uncertainty in the historical forcing, and hence the spread in the distribution of ECS
(the black, full curve in Figure 3b) is narrower than what we expect to find if we were to model the full
forcing uncertainty. We conclude that accurate estimates of the uncertainty in historical forcing is a key
factor for establishing constraints on ECS in ESM ensembles.

The modeling of the relationship between R and ECS is also a source of uncertainty. It is evident
from Figure 4a that the coefficient a in the linear map ECS = aR+ b is less than one. In fact, its estimated
value is a = 0.6. As a consequence the mapping from R to ECS is contracting, so that the spread
in ECS-values is smaller than the spread in R-values. The same is true for the analysis presented
in Figure 3, since the conditional PDF p(ECS|R) is constructed from the fitted line ECS = aR + b.
We note that for a model without the intercept term b, and lower volcanic forcing, the estimated
coefficient is a = 0.91, and the range of the best estimates of ECS becomes 1.8–3.7 K. Other assumptions
about the functional relationship between R and ECS will lead to yet different ranges of best estimates.

Apart from the constraints on ECS, an important result presented in this paper is that
scale-dependent climate sensitivity provides a good proxy for ECS. Moreover, despite having infinite
ECS, scale-invariant linear response models are useful for estimating ECS from observational data.
The advantage over multi-layer energy balance models is that the scale-invariant models have few free
parameters and are less prone to statistical overfitting. The accuracy of the models is associated with
the scaling nature of climate variability, an emergent property of the complex climate system.
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Abbreviations

The following abbreviations are used in this manuscript:

ECS Equilibrium climate sensitivity
ESM Earth system model
IPCC Intergovernmental Panel on Climate Change
GMST Global mean surface temperature
CERES Clouds and Earth’s Radiant Energy System
CMIP5 Coupled Model Intercomparison Project Phase 5
ENSO El Niño Southern Oscillation
PSD Power Spectral Density
LRD Long-range dependence
fGn fractional Gaussian noise
PDF Probability density function
INLA Integrated nested Laplace approximation
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