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ABSTRACT

Our aim is to use unsupervised, non-Gaussian cluster-
ing of Arctic glaciers for post-classification change de-
tection. Firstly, we demonstrate the consistency of non-
Gaussian clustering algorithms for Envisat ASAR im-
ages by characterizing the expected random error level
for different SAR acquisition conditions (such as inci-
dence angle).This allows us to determine whether an ob-
served variation is statistically significant and therefore
can be used for post-classification change detection of
Arctic glaciers. Real significant change was not detected
with mixed configurations during the time period of this
study.
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1. INTRODUCTION

Changes in the Arctic glaciers and ice caps provide a visi-
ble manifestation of climate change. Being recognized as
potentially the largest short term contributors to sea level
rise and having been observed to be one of the fastest
warming areas on the planet [1], the present state of the
Arctic ice masses, and changes over time, are of scientific
and social importance.

As climate changes, so too do the variables affect-
ing glaciers. Identifying and monitoring fluctuations in
glacier facies provides a means to track climate change.
The only feasible method to obtain good spatial and tem-
poral coverage of the Arctic glaciers is through the use of
satellites. Space-borne SAR instruments, operating inde-
pendently of weather and daylight, are a particularly valu-
able tool in Arctic areas. SAR has an added advantage
over higher frequency instruments (visible and laser) be-
cause the signal penetrates some distance into the glacier
such that the return signal is influenced not only by the
surface, but also by the shallow subsurface.

Pixel-wise analysis of SAR imagery is generally compli-
cated due to the presence of speckle and requires that sta-
tistical modeling methods are employed. It is well known
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that radar speckle is often non-Gaussian in distribution.
For this reason, various non-Gaussian models have been
proposed to represent SAR data [2]. These have later
been extended into the polarimetric realm, where the mul-
tivariate K-distributions [3, 4] and G-distributions [5] are
successful examples. Both these distributions are mem-
bers of the so-called product model, which states that,
under certain conditions, the backscattered signal results
from the product between a Gaussian speckle noise com-
ponent and the terrain backscatter. Associated with these
models is a so-called non-Gaussianity parameter, which
accounts for deviation from Gaussian statistics.

The analysis utilizes several Envisat ASAR, dual-pol
scenes over Kongsvegen glacier, Svalbard (See Fig. 1)
[6], from winter 2004, 2005 and 2006, together with
some ground based field observations. In this study, we
use the non-Gaussian based K-Wishart clustering algo-
rithm to segment each SAR scene into several glacier
classes. Ground truth data are used to reduce the number
of classes of segmented images into four major ground
truth classes and to investigate the accuracy of classifica-
tion.

We demonstrate consistency by comparing scenes close
together in time and from different acquisition parame-
ters (e.g. incidence angle). Subsequent yearly classifica-
tions are discussed in terms of post-classification change
detection, by directly observing differences in the clas-
sified images. These procedures may form the basis for
more operational monitoring of Arctic areas.

This paper is organized as follows: In section 2 and sec-
tion 3 we introduce GPR data profiles as a set of ground
truth data and SAR images in different acquisitions as a
satellite data set, respectively. Section 4 demonstrates
the product model used in this study. Section 5 identifies
the KW-distribution for statistical modeling and the use
of this distribution in a Baysian classifier is introduced
in section 6. Then in sections 7 and 8, we look at the
results of unsupervised classification, classification accu-
racy and change detection. Finally, conclusions on the
presented research are given in the last section.
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Figure 1. The left image shows the location of our case study in Svalbard and the right image is a combined SAR intensity

image showing the four zone of interest .

2. GROUND TRUTH DATA

Ground truth data are derived from a network of ground
penetrating radar (GPR) profiles collected in 2005. The
along glacier profiles have been manually classified into 4
zones of interest [6] in Fig. 2. These zones include glacier
ice, herringbone ice, superimposed ice and firn. These
GPR data profiles have been overlaid onto one of the clas-
sified image as can be seen in Fig. 4. We use GPR pro-
files to reduce the classified images different number of
classes into these four major ground truth classes and ob-
tain an overall classification accuracy. Since these class
labels now match on all images, we subsequently inves-
tigate changes in the firn class alone for consistency and
time series analysis.

3. SATELLITE DATA SET

Our data consist of a time series of yearly winter SAR
images for the period 2004-2006 with different acquisi-
tion configurations over Kongsvegen glacier, Svalbard.
We have available 118 dual polarization C-band Envisat
ASAR images in AP mode from both ascending and de-
scending orbits and in both HH/HV and VV/VH polariza-
tions, over a large range of incidence angles from 14 to 43
degrees (swath angles IS1 to IS7). The SAR acquisition
conditions affect backscatter from different objects and
glacier facies and we can have variation from differing:

e Polarisation (Dual polarised: VV/VH or HH/HV)
e Incidence angles (IS1 to IS7)
e Orbit (ascending or descending passes)

The raw single-look complex (SLC) data is geo-coded
and multi-looked simultaneously to produce 30m resolu-
tion, 96-look covariance matrix data (MLC) images. A
mask is applied to isolate the glacier pixels for classifica-
tion.

4. PRODUCT MODEL

After multi-looking, our image data consist of multi-look
complex (MLC) matrix data, C, which are the covariance
matrices of the raw scattering coefficients, S.
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where L is the number of looks. The non-Gaussian prod-
uct model describes the covariance matrix data as the
product of a non-Gaussian fexture term and a Wishart dis-
tributed speckle term [7]. Assuming that the texture has
higher spatial correlation than the speckle over small lo-
cal neighborhoods, our MLC product model can be writ-

ten:
C=72W,r; Wi~ W’L'ShaTt(L,I‘). 2)

The non-Gaussian nature of the product model depends
on the specific model for the scalar texture variable Z
[8, 7].

5. K-WISHART DISTRIBUTION

If the texture term of the product model is given by
the gamma distribution with probability density function



20
40
60
80

100

Time (ns)

20
40
60
80

100

Time (ns)

Figure 2. (a) GPR copolarized radar cross section. (b) GPR cross-polarized radar cross section. The different glacier
zones are labeled in the color bar at the top. Blue = glacier ice (Gl), red = herringbone ice (HBI), green = superimposed

ice (S1), and yellow = firn [6].

(pdf) given by

a\® Zo-1 «
p(Z;p, ) = (M) WCXP(—;Z% 3

then the marginal distribution for C may be obtained by
integrating the conditional pdf over the prior distribution
of Z, that is

C|Z ~ We(L,T).
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The resulting distribution is known as the K-Wishart dis-
tribution [8] and in closed form is:
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where ¢r(-) and | - | denote the trace operation and deter-
minant, respectively, and I(L, d) is a normalization con-
stant

d
I(L,d) =7 [[T(&—i+1). ©)
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Note that the probability expression is influenced by the
shape «, the width p, the number of looks L and polari-
metric covariance structure matrix I' [9]

6. BAYSIAN CLASSIFIER

In the previous section, we introduced the K-Wishart dis-
tribution along with its defining parameters. Here we ap-
ply this distribution in a Bayesian classifier [8]. We want
to assign each pixel to a specific class based upon the
posterior probability for the class w; among the set of
possible outcomes w1, wa, ..., wi. Using Bayes’s rule:

P(w;|C; aj, p15,T;) o< KW(Clwj; ozj7uj,1"j)P(wj)(,7)

where P(w;|C; «j, iuj,T';) is the posterior probability of
class membership, i.e., the probability that C belongs to
w; given the observation C. Using Bayes’ rule above,
we label a new case C with a class w; that achieves the
highest posterior probability.

Unsupervised segmentation of C matrices is achieved us-
ing a modified expectation-maximization (EM) approach,
which includes an additional goodness-of-fit test stage.
The standard EM-algorithm consists of an E-step that
estimates class likelihoods using K-Wishart distribution
and an M-step that updates all class parameters [10]. Our
modification is to include a regular goodness-of-fit test
stage to split ’bad’ classes and merge ’virtually identi-
cal’ competing classes [11]. This ensures that the final
clusters are all good model fits, and also dynamically de-
termines the appropriate number of significant clusters
within the data. Additionally, it requires no special ini-
tialization, as it can start with the entire data in a sin-
gle mixed class and split down to an appropriate level.
The final class partition has % classes with associated K-
Wishart parameters for each class.



7. CLASSIFICATION RESULTS

In this study, we obtained unsupervised clustering of the
sample covariance matrix data using the K-Wishart clas-
sifier with different number of classes (it varies from 4
to 11 classes). Fig. 3 shows 2 examples of K-Wishart
clustering (top) for 5 and 7 classes (left and right, re-
spectively) with class histograms (below). The class his-
tograms are 1-D compactions of covariance matrix sam-
ples that can be used to visualize the goodness-of-fit to
the models [9].

7.1. Classification accuracy

As it was mentioned, we have classified images with dif-
ferent number of classes. We now merge these classifi-
cation classes into four major ground truth classes (firn,
superimposed ice, glacier ice and Herringbone ice), using
the GPR ground truth profiles.

Fig. 4 is as an example where the number of classes
in the original classified image has been reduced into 4
major classes and GPR data profiles have been overlaid
on merged classified image.

We investigate the effect of acquisition conditions on
the classification accuracy compared to the ground truth
classes. Fig. 5 shows the results of K-Wishart classifica-
tion accuracy (%) for different incidence angles by keep-
ing other parameters fixed.

This preliminary investigation shows more consistent re-
sults for middle incidence angles (IS3-1S6) with different
orbits and polarizations and it is expected to get better
classifications and less variability. But there is no clear
preference for HHHV or VVVH polarization and ascend-
ing or descending orbit.

Some results for the K-Wishart unsupervised classifica-
tion reduced into 4 major classes with different parameter
acquisitions are shown in Fig. 6. As can be seen, the main
confusion seems to be at herringbone/glacier ice bound-
ary. In most cases the firn/superimposed ice boundary
is recognizable which is more important for glaciology
studies.

7.2. Classification consistency

We characterize the consistency of the classification as
the firn area total variation between two images to obtain
the expected variation of firn area boundary with super-
imposed ice zone. Table 1 is list of omission errors of
firn line for different pairs which is an indicator of vari-
ability of this boundary. We obtained the total variation
of about 10.08% =+ 2.69% and this variation is only due
to classification. Note that this is for the worst case of
mixed acquisition conditions. The differences between

two classified images can only be considered significant
when compared to that of the classification total variation.

B Glacierice [l Herringbone ice

Superimposed ice Firm

Figure 4. The merged classified image of the 4 major
ground truth classes with GPR data line overlaid.
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Figure 5. The results of K-Wishart classification accu-
racy (%) for different incidence angles, by fixing other
parameters, showing more consistent results for middle
incidence angles (1S3-1S6).
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Figure 3. Unsupervised classification images (shown on a UTM grid projection) from K-Wishart clustering (top) for 5
classes (left) and 7 classes (right) with class histograms (below).
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Figure 6. Some reduced classification results showing the variation with different acquisition conditions.



8.758

B.756

8.754

B8.752

8.748

8.746

8.744

8.742

8.762

8.76

8.758

B.756

8.754

8.752

B8.75

8.748

8.746

8.744

8.742

x 10

4.5

x 10°

4.55

20040509S5ascVV, H

4.6 4.65

20080505S2desHH |V

4.7

B Gladerice [Jj Herringbone ice

x 10°

| 8.744

20050422S3desHH, vV

x 10°

8.762

8.76

8.758

8.756

8.754

8.752

8.75

8.748

8.746

B8.742

4.5 4.55 46 4.65 4.7
x 10

- 200605065 2asc\/V, H
8.762 |

8.76
8.758
8.756
8.754
8.752

8.75
8.748
8.746
8.744

B8.742

Superimposed ice Fiim

Figure 7. Images for change detection : 2004, 2005, 2006 and rain image from 2006



Table 1. The variation of Firn area for some pairs

Image 1 Image 2 Total Error
20040405S5decHH/HV | 20040428S2ascVV/VH 10.45%
20040405S5decHH/HV | 20050309S2ascVV/VH 13.65%
20040405S5decHH/HV | 20050415S4ascVV/VH 11.79 %
20040405S5decHH/HV | 20060412S7decVV/VH 14.39 %
20040428S2ascVV/VH | 20050309S2ascVV/VH 8.90%
20040428S2ascVV/VH | 20050415S4ascVV/VH 7.52%
20040428S2ascVV/VH | 20060412S7decVV/VH 11.56%
20050309S2ascVV/VH | 20050415S4ascVV/VH 6.95%
20050309S2ascVV/VH | 20060412S7decVV/VH 7.4%
20050415S4ascVV/VH | 20060412S7decVV/VH 8.22%

Table 2. Total error of

Firn for change detection images

Image 1 Image 2 Total Error
20040509S5ascVV/VH | 2005042253decVV/VH 5.50%
20040509S5ascVV/VH | 2006050552decHH/HV 8.72%
20050422S3decVV/VH | 20060505S2decHH/HV 7.31%
20060505S2decHH/HV | 20060506S2ascVV/VH 65.2%

8. POST-CLASSIFICATION CHANGE DETEC-
TION

After dealing with consistency by comparing scenes close
together in time and from different acquisition parame-
ters, we may now discuss subsequent yearly classifica-
tions in terms of post-classification change detection by
directly observing differences in the classified images and
obtaining the variation of firn area for each pair of im-
ages.

Fig. 7 shows images for change detection from 2004,
2005, 2006. Table 2 indicates measure of variations of
firn area between two images. The total variation of firn
area found between 2004 and 2006 do not exceed the ex-
pected classification variation, which indicates insignif-
icant change for this period. However, one image (the
last row in Table 2, 2006050652ascVV/V H) shows a
significant change of 65.2% compared to the day before.
Kongsvegen is known to be a slow moving glacier and
so changes at this scale are not expected. The last im-
age coincided with the onset of rain in the meteorologi-
cal records, which explains the change because wet snow
has a markedly different backscatter response to cold dry
SNOW.

9. CONCLUSIONS

This study presented non-Gaussian clustering of Arctic
glacier, Kongsvegen, using Envisat ASAR images with
different acquisition parameters. The highest classifica-
tion accuracy, compared to ground truth, was around 84%
for IS3 VVVH Descending. We characterized the consis-
tency of the classification as the firn area total variation
between two images to obtain the expected variation just
due to classification. The variation found between 2004
and 2006 did not exceed the expected classification vari-
ation and we cannot detect significant change for this pe-
riod. However, an image taken after the onset of rain
clearly showed significant change compared to the day
before. Hence, images acquired during wet conditions
must be avoided. We will study on the statistical interpre-
tation of mixed acquision configurations with more sam-
ples in future.
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